
Circular Programming Across Paradigms

Proposal for Post-doc Research Project

João Fernandes

September 25, 2008

Contents

1 Summary 1

2 The Team 2
2.1 Post-doc Researcher . 2
2.2 Supervisors . 2
2.3 Host Institutions . 3

3 Introduction/Motivation 3

4 Tasks 4
4.1 Strictification of Circular Programs in Calculational Form 4
4.2 Bidirectional Transformations . 5
4.3 Incremental Computation . 5
4.4 Attribute Grammars . 6
4.5 Spreadsheets . 6
4.6 Research Questions . 7

4.6.1 Significance . 7

Bibliography7

1 Summary

We propose to explore the technique of Circular Programming across several
programming paradigms. Circular lazy programs, as introduced by Richard
Bird, are a famous example that demonstrates the power of a lazy evaluation
mechanism. Bird’s work showed that any multiple traversal algorithm can be ex-
pressed in a lazy language as a single traversal circular function. Using the style
of Circular Programming, the programmer does not have to concern him/herself
with the definition and the scheduling of the different traversal functions, since
a single (traversal) function has to be defined. Moreover, because there is a
single traversal function, the programmer does not have to define intermediate
gluing data structures to convey values computed in one traversal and needed
in following ones, either.

1

In our work, we intend to systematically explore the nice of circular programs
in programming paradigms such as bidirectional transformations, incremental
computing, program calculation, attribute grammars or spreadsheets.

2 The Team

2.1 Post-doc Researcher

Dr. João Fernandes
Departamento de Informática
Universidade do Minho
Braga
Portugal

João Fernandes will obtain his PhD. title in Computer Science from the Univer-
sity of Minho in ? ?. The title of his PhD. thesis is Design, Implementation and
Calculation of Circular Programs. His promotor and co-promotor are Prof. Dr.
João Saraiva (Universidade do Minho), and Prof. Dr. Oege de Moor (Oxford
University).

2.2 Supervisors

Prof. Dr. Alberto Pardo
Instituto de Computación
Universidad de la República
Montevideo
Uruguay

Alberto Pardo is Associate Professor of the Instituto de Computación (INCO)
at Universidad de la Repblica (Montevideo, Uruguay), which he joined in 1986,
and the head of the Formal Methods Group of INCO. He also taught Computer
Science courses at Universidade Federal de Pernambuco (Brazil) and Technis-
che Universität Darmstadt (Germany). Alberto Pardo holds an M.Sc. degree
from the Universidade Federal de Pernambuco and a PhD from the Technische
Universität Darmstadt. His research interests are focused on program trans-
formation techniques for functional programs, generic programming and formal
semantics of programming languages.

Alberto Pardo has been responsible for several research projects on program
transformation tecniques in subjects close to this project. He is member of the
IFIP TC2 Working Group 2.1 on ”Algorithmic Languages and Calculi”. He has
also been involved in the organization of various international events like, for ex-
ample, the International Summer School on Language Engineering and Rigurous
Software Development (LERNET 2008), the 11th International Conference on
Logic for Programming Artificial Intelligence and Reasoning (LPAR 2004), and
the International Winter School on Semantics and Applications (WSSA 2003).

Prof. Dr. João Saraiva
Departamento de Informática
Universidade do Minho
Braga
Portugal

2

João Saraiva is an university lecturer of Computer Science at University of
Minho and the research coordinator of the Department of Informatics in the
Algoritmi Research Institute. His research is focused on programming language
design and implementation, and functional programming. João Saraiva com-
pleted a Ph.D. program at Utrecht University, The Netherlands, in December
1999 where he worked on purely functional implementation of attribute gram-
mars.

João Saraiva has been involved in the organization of various international
events in the context of this project, for example, the 10th European Joint
Conferences on Theory and Practice of Software (ETAPS 2007), the Interna-
tional Summer Schools on Advanced Functional Programming AFP’98 (Swier-
stra et al., 1999b), Applied Semantics APPSEM’00 (Barthe et al., 2002) and
Generative and Transformation Techniques on Sofware Enginnering 2005, 2007
and 2009 (Lämmel et al., 2006), and the International Workshop on Attribute
Grammars and their Applications (WAGA) and International Workshop on Lan-
guage Descriptions Tools and Application (LDTA).

2.3 Host Institutions

This Pos-doc research project will be carried out in the Department of Infor-
matics at Minho University. Several members of the department (José Nuno
Oliveira, Lúıs Barbosa, José Barros, Jorge Sousa Pinto, João Saraiva) are in-
vestigating the use of formal methods and generic programming in the context
of Program Understanding and Re-engineering.

Programming languages, design and implementation is also an intensive area
of research in the department (Pedro Henriques, José Almeida, José Ramalho,
João Saraiva). Work in this area has been done around the Lrc project in col-
laboration with Ordina Research, Holland (Dr. Matthijs Kuiper) and the group
on Software Technology of the Department of Computer Science at Utrecht Uni-
versity (headed by Prof. Dr. Doaitse Swierstra), and we keep in regular contact
with our industrial and academic collaborators.

vou tentar escrever alguma coisa sobre minhas mutiples visitas ao Minho e
o projeto ALFA Uruguay...

3 Introduction/Motivation

Circular lazy programs, as introduced by Bird (1984), are a famous example that
demonstrates the power of a lazy evaluation mechanism. Bird’s work showed
that any multiple traversal algorithm can be expressed in a lazy language as a
single traversal circular function. Such a (virtual) circular function may contain
a circular definition, that is, an argument of a function call that is also a result
of that same call. Although circular definitions induce non-termination under
a strict evaluation mechanism, they can be immediately evaluated using a lazy
evaluation strategy. The lazy engine is able to compute the right evaluation
order, if that order exists. Indeed, using this style of circular programming, the
programmer does not have to concern him/herself with the definition and the
scheduling of the different traversal functions, since a single (traversal) func-
tion has to be defined. Moreover, because there is a single traversal function,

3

the programmer does not have to define intermediate gluing data structures to
convey values computed in one traversal and needed in following ones, either.

Bird’s work showed the power of circular programming, not only as an opti-
mization technique to eliminate multiple traversal of data, but also as a powerful,
elegant and concise technique to express multiple traversal algorithms. Circular
programs are also used in the construction of Haskell compilers (Marlow and
Jones, 1999; Hinze and Jeuring, 2002), to express pretty printing algorithms
(Swierstra et al., 1999a), breadth-first traversal strategies (Okasaki, 2000), type
systems (Dijkstra and Swierstra, 2004) and aspect-oriented compilers (de Moor
et al., 2000). As an optimization technique, circular programs are used, for ex-
ample, in the deforestation of accumulating parameters (Voigtländer, 2004).
Circular programs can also be obtained through partial evaluation (Lawall,
2001) and continuations (Danvy and Goldberg, 2002).

4 Tasks

In this section we present the different working directions that compose our
reserach proposal. All of them have circular programming as the common com-
ponent.

4.1 Strictification of Circular Programs in Calculational
Form

Functional programs often combine separate parts of the program using in-
termediate structures for communicating results. Programs such as prog =
cons ◦ prod, where prod is called the producer function and cons is called the
consumer function, are modular and have many benefits, such as clarity and
maintainability, but suffer from inefficiencies caused by the generation of the
intermediate data structures that glue functions cons and prod together.

Indeed, the elimination of such intermediate structures, also called program
fusion, is a key aspect taken into account in the implementation of functional
compilers (Jones et al., 1993; Leroy, 1997). Program fusion has, therefore,
been thoroughly studied in the context of functional languages: for pure pro-
grams (Wadler, 1990; Gill et al., 1993; Onoue et al., 1997; Ohori and Sasano,
2007; Fernandes et al., 2007) but also in the context of monadic programs (Ghani
and Johann, 2008; Manzino and Pardo, 2008; Pardo et al., 2009).

Another key optimization to implement in compilers for lazy languages such
as Haskell is the static detection of functions that can be evaluated strictly.
Indeed, an important area of research is strictness analysis (?). Thus, we plan
to study how to transform circular programs into strict ones, using calculational
techniques and proving the correctness of the transformation. In this research,
we will closely follow the approach studied in (Fernandes and Saraiva, 2007),
where attribute grammar techniques have been adapted to transform circular
programs into compositions of strict programs. The correctness of such tech-
niques, however, remains to be formally proved.

In order to be able to calculate strict programs from circular ones, we initially
will try to invert the transformation presented in (Fernandes et al., 2007): there,
a calculation rule was proposed to calculate circular programs from strict ones.

4

4.2 Bidirectional Transformations

There are many situations in which one data structure, called source, is trans-
formed to another, called view, in such a way that changes on the view can be
transformed back to those on the original data structure. This is called Bidirec-
tional Transformation (BT), and pratical examples include synchronization of
replicated data in different formats (Foster et al., 2005), presentation-oriented
structured document development (Hu et al., 2004; Michiel, 2004), interactive
user interface design (Meertens, 1998), and the well-known view updating mech-
anism which has been intensively studied in the database community (Bancilhon
and Spyratos, 1981; Dayal and Bernstein, 1982; Gottlob et al., 1988; Lecht-
enbörger and Vossen, 2003). The simple diagram presented below illustrates a
Bidirectional Transformation.

source view
forward transformation

view′source′

backward transformation

Figure 1: Bidirectional Transformation

It was during a visit of the candidate to one of the leading research groups
in the area of Bidirectional Transformation, at the University of Tokyo, that
it was preliminary discussed how such transformations could benefit from the
properties of circular programs. Indeed, circular programs may provide an ideal
setting to compute a new source, given the original one and it’s view, but
submitted to a particular change.

In this task, we intend to fully explore this promising research direction. Our
plan is to formally establish how circular programs can be integrated within
Bidirectional Transformations, namely how circular programs can be used in
the backward transformation of BTs.

4.3 Incremental Computation

Incremental computation is about maintaining the input-output relationship of
a program, as the input undergoes changes. The changes in the input may be
such that one cannot avoid a complete recomputation of the output. However,
in many cases, one can reuse results of the previous computation to update
the output more efficiently than by performing a complete recomputation from
scratch. Obviously, incremental computation is more efficient for cases where
changes in the input cause small changes in the output.

The investigation field of incremental computation has proven to be an ex-
citing one, as, over the years, several researchers have studied and proposed
techniques to reuse previously computed results, in order to improve efficiency of

5

computer programs. Incremental Computation is, indeed, essential to the imple-
mentation of programming environments (Reps and Teitelbaum, 1989; Michiel,
2004) or spreadsheets, for example.

Change Propagation (Reps, 1982), Adaptive Programming (Acar et al., 2002,
2006b,a) and Function Memoization (Pugh and Teitelbaum, 1989; Hughes, 1985)
are among the techniques proposed to achieve Incremental Computation.

However, the Change Propagation and Function Memoization approaches
do not handle circular programs. Furthermore, Reps’ techniques do not handle
circular attribute grammars. Thus, the incremental functional implementations
derived from incremental attribute grammars will never be circular programs.

Acar’s ingenious Adaptive Programming technique is proposed in the strict
functional setting ML and its implementation in Haskell (Carlsson, 2002) does
not support lazyness. Thus, his technique also does not allow to combine incre-
mentality with the circular definitions that may occur in a lazy setting.

As for Memoization, Hughes’ lazy memo-functions are specially suitable to
manipulate circular (infinite) structures. However, these circularities are not of
the same kind as the ones we want to be able to deal with: we exploit the use
of function call results as some of the same call arguments with the purpose of
eliminating multiple traversals over data structures. It is still not clear how to
memoize such circular function calls.

Our plan in this subject is the development of techniques that make it pos-
sible to combine incrementality with circular programming.

4.4 Attribute Grammars

Circular programs and Attribute Grammars are closely related. Indeed, as Johns-
son (1987) and Swierstra and Kuiper (Kuiper and Swierstra, 1987) originally
showed, circular programs are the natural representation of attribute grammars
in a lazy setting (Swierstra and Azero, 1998; de Moor et al., 2000; Saraiva,
1999; Dijkstra, 2005). Furthermore, several Haskell and circular based Attri-
ubte Grammar Systems have been developed (Swierstra et al.; Wyk et al., 2006).

In our research, we plan to use circular program strictification techniques,
in the sense described in Section 4.1, to derive/design a correct by construction
Attribute Grammar System. Furthermore, we plan to incorporate in such a sys-
tem our developments on Incremental Computation, as described in Section 4.3,
in order to obtain incremental attribute evaluators. Indeed, incremental eval-
uators are an important application of Attribute Grammars after the seminal
work of Tom Reps on the Synthesizer Generator system(Reps and Teitelbaum,
1989).

4.5 Spreadsheets

Spreadsheet tools can be viewed as programming environments for non-professional
programmers. These so-called “end-user” programmers vastly outnumber pro-
fessional programmers. In fact, spreadsheets, when viewed as a programming
language (PL), are one of the largest PLs and can be characterized as a partic-
ularly low-level one: there is no support for abstraction, testing, encapsulation,
or structured programming. As a result, numerous studies have shown that
existing spreadsheets contain errors at an alarmingly high rate.

6

Surprisingly, there is little work by the programming language community
on the foundations of spreadsheets, being the works (Burnett, 2004; Abraham
et al., 2005; Erwig et al., 2005) an exception.

Spreadsheets are the motivating example for incremental evaluation. In-
deed, a spreadsheet defines dependencies between different cells. When the user
changes the value of one cell, only the ones that are affected by the change are
re-evaluated.

Building a spreadsheet system is a complex and hard-working task: the
developer has to define/maintain not only a complex dependency graph to de-
termine the re-evaluation order and propagate changes, but also a powerful
incremental evaluation engine. Within the style of circular programming the
user does not have to handle such dependencies: the lazy machinery infers the
dependencies and evaluation order at runtime. Moreover, if we combine circu-
lar programming with incremental evaluation, then we have a perfect setting to
develop spreadsheets.

4.6 Research Questions

With our work, we plan to answer the following questions:

• how can circular programs be transformed, in a calculational setting, into
strict programs, whose execution is not restricted to a lazy execution
model? A calculational setting is essential since we want to be able to
prove the correctness of the transformation.

• develop a proved correct Attribute Grammar System, once we have the
answer to the previous research question. Indeed, by then we will be able
to prove that the transformations implemented in such system are correct.

• how to fully explore circular definitions in the implementation of Bidirec-
tional Transformations? In particular, up to which extent can circular
programs be used in the implementation of simple and concise backward
transformations?

• how can the nice properties of circular programming be combined with
incremental programming? Ideally, we intend to develop a framework
where we can write circular programs that can be executed incrementally.

• implement a spreadsheet system, using our circular and incremental pro-
gramming setting. Such a programming environment is indeed the ideal
one to avoid the complex tasks of maintaining all the dependencies be-
tween all the cells of a spreadsheet and of determining a re-evaluation
order to propagate the changes resulting from a change in a cell.

4.6.1 Significance

This proposal is geared towards realizing the full potential of circular program-
ming, by exploring its best properties in the interest of a wide range of pro-
gramming/research areas. We expect benefits of performance, conciseness, and
robustness in areas such as program calculation, bidirectional transformations
or spreadsheets, for example.

7

References

Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. Vi-
sual specifications of correct spreadsheets. In VLHCC ’05: Proceedings of the
2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 189–196, Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7695-2443-5. doi: http://dx.doi.org/10.1109/VLHCC.2005.70.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional pro-
gramming. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 247–259, New
York, NY, USA, 2002. ACM.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An
experimental analysis of self-adjusting computation. In PLDI ’06: Proceedings
of the 2006 ACM SIGPLAN conference on Programming language design and
implementation, pages 96–107, New York, NY, USA, 2006a. ACM.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional pro-
gramming. ACM Trans. Program. Lang. Syst., 28(6):990–1034, 2006b.

F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Trans. Database Syst., 6(4):557–575, 1981. ISSN 0362-5915. doi:
http://doi.acm.org/10.1145/319628.319634.

Gilles Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, editors. Applied Se-
mantics, International Summer School, APPSEM 2000, Caminha, Portugal,
September 9-15, 2000, Advanced Lectures, volume 2395 of Lecture Notes in
Computer Science, 2002. Springer. ISBN 3-540-44044-5.

Richard S. Bird. Using circular programs to eliminate multiple traversals of
data. Acta Inf, 21:239–250, 1984.

Margaret Burnett. Spreadsheet Quality. In Int. workshop on Foundations of
Spreadsheet (inivted talk), 2004.

Magnus Carlsson. Monads for incremental computing. In ICFP ’02: Proceed-
ings of the seventh ACM SIGPLAN international conference on Functional
programming, pages 26–35, New York, NY, USA, 2002. ACM.

Olivier Danvy and Mayer Goldberg. There and back again. In ICFP ’02: Pro-
ceedings of the seventh ACM SIGPLAN international conference on Func-
tional programming, pages 230–234, New York, NY, USA, 2002. ACM Press.
ISBN 1-58113-487-8. doi: http://doi.acm.org/10.1145/581478.581500.

Umeshwar Dayal and Philip A. Bernstein. On the correct translation of update
operations on relational views. ACM Trans. Database Syst., 7(3):381–416,
1982. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/319732.319740.

Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-
class attribute grammars. Informatica (Slovenia), 24(3), 2000. URL
citeseer.ist.psu.edu/demoor00firstclass.html.

8

Oege de Moor, Simon Peyton-Jones, and Eric Van Wyk. Aspect-oriented
compilers. Lecture Notes in Computer Science, 1799, 2000. URL
citeseer.ist.psu.edu/demoor99aspectoriented.html.

Atze Dijkstra. Stepping through Haskell. PhD thesis, Department of Computer
Science, Utrecht University, The Netherlands, November 2005.

Atze Dijkstra and Doaitse Swierstra. Typing haskell with an attribute grammar
(part i). Technical Report UU-CS-2004-037, Institute of Information and
Computing Sciences, Utrecht University, 2004.

Martin Erwig, Robin Abraham, Irene Cooperstein, and Steve Kollmansberger.
Automatic generation and maintenance of correct spreadsheets. In ICSE
’05: Proceedings of the 27th international conference on Software engineering,
pages 136–145, New York, NY, USA, 2005. ACM. ISBN 1-59593-963-2. doi:
http://doi.acm.org/10.1145/1062455.1062494.

João Paulo Fernandes and João Saraiva. Tools and Libraries to Model and Ma-
nipulate Circular Programs. In Proc. of the ACM SIGPLAN 2007 Workshop
on Partial Evaluation and Program Manipulation (PEPM’07), pages 102–111.
ACM Press, 2007.

João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion
rule for circular program calculation. In Haskell ’07: Proceedings of the ACM
SIGPLAN Haskell workshop, pages 95–106, New York, NY, USA, 2007. ACM.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transforma-
tions: a linguistic approach to the view update problem. In POPL ’05: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 233–246, New York, NY, USA, 2005. ACM.
ISBN 1-58113-830-X. doi: http://doi.acm.org/10.1145/1040305.1040325.

N. Ghani and P. Johann. Short Cut Fusion of Recursive Programs with Compu-
tational Effects. In Symposium on Trends in Functional Programming (TFP
2008), 2008.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to de-
forestation. In Conference on Functional Programming Languages and Com-
puter Architecture, pages 223–232, June 1993.

Georg Gottlob, Paolo Paolini, Roberto Zicari, and Roberto Zi-
cari. Properties and update semantics of consistent views. ACM
Trans. Database Syst., 13(4):486–524, 1988. ISSN 0362-5915. doi:
http://doi.acm.org/10.1145/49346.50068.

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and the-
ory. In Summer School on Generic Programming, 2002. URL
http://www.cs.uu.nl/ johanj/publications/GH.pdf.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable ed-
itor for developing structured documents based on bidirectional transfor-
mations. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN sympo-
sium on Partial evaluation and semantics-based program manipulation, pages

9

178–189, New York, NY, USA, 2004. ACM. ISBN 1-58113-835-0. doi:
http://doi.acm.org/10.1145/1014007.1014025.

John Hughes. Lazy memo-functions. In Jean-Pierre Jouannaud, editor, Func-
tional Programming Languages and Computer Architecture, volume 201 of
LNCS, pages 129–146. Springer-Verlag, September 1985.

Thomas Johnsson. Attribute grammars as a functional programming paradigm.
In Functional Programming Languages and Computer Architecture, pages
154–173, 1987.

Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and
Philip Wadler. The glasgow haskell compiler: a technical overview. In Proc.
UK Joint Framework for Information Technology (JFIT) Technical Confer-
ence, 1993. URL http://citeseer.ist.psu.edu/jones92glasgow.html.

Matthijs Kuiper and Doaitse Swierstra. Using attribute grammars to derive effi-
cient functional programs. In Computing Science in the Netherlands CSN’87,
November 1987.

Ralf Lämmel, João Saraiva, and Joost Visser, editors. Generative and Transfor-
mational Techniques in Software Engineering, International Summer School,
GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers, volume 4143
of Lecture Notes in Computer Science, 2006. Springer. ISBN 3-540-45778-X.

Julia L. Lawall. Implementing Circularity Using Partial Evaluation. In Pro-
ceedings of the Second Symposium on Programs as Data Objects PADO II,
volume 2053 of LNCS. Springer-Verlag, May 2001.

Jens Lechtenbörger and Gottfried Vossen. On the computation of relational
view complements. ACM Trans. Database Syst., 28(2):175–208, 2003. ISSN
0362-5915. doi: http://doi.acm.org/10.1145/777943.777946.

Xavier Leroy. The Objective Caml System - Documentation and User’s Manual,
1997.

C. Manzino and A. Pardo. Short Cut Fusion of Monadic Programs. In Brazilian
Symposium on Programming Languages (SBLP 2008), 2008.

Simon Marlow and Simon Peyton Jones. The
new GHC/Hugs Runtime System. URL
http://research.microsoft.com/Users/simonpj/Papers/new-rts.ps.gz.
1999.

Lambert Meertens. Designing constraint maintainers for user interaction.
http://www.cwi.nl/∼lambert, 1998.

Martijn Michiel. Proxima : a presentation-oriented editor for structured doc-
uments. PhD thesis, Department of Computer Science, Utrecht University,
The Netherlands, 2004.

Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion.
In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 143–154, New York,
NY, USA, 2007. ACM Press.

10

Chris Okasaki. Breadth-first numbering: lessons from a small exercise in algo-
rithm design. ACM SIGPLAN Notices, 35(9):131–136, 2000.

Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A Calculational Fusion System
HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and
Calculi, Le Bischenberg, France, pages 76–106. Chapman & Hall, February
1997.

Alberto Pardo, João Paulo Fernandes, and João Saraiva. Calculating Monadic
Circular Programs, 2009. Submitted to ACM Symposium on Applied Com-
puting.

W. Pugh and T. Teitelbaum. Incremental computation via function caching. In
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 315–328, New York, NY, USA,
1989. ACM.

T. Reps and T. Teitelbaum. The Synthesizer Generator. Springer, 1989.

Thomas Reps. Optimal-time incremental semantic analysis for syntax-directed
editors. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 169–176, New York,
NY, USA, 1982. ACM.

João Saraiva. Purely Functional Implementation of Attribute Grammars. PhD
thesis, Department of Computer Science, Utrecht University, The Nether-
lands, December 1999.

Doaitse Swierstra, Pablo Azero, and João Saraiva. Designing and Implement-
ing Combinator Languages. In Doaitse Swierstra, Pedro Henriques, and
José Oliveira, editors, Third Summer School on Advanced Functional Pro-
gramming, volume 1608 of LNCS Tutorial, pages 150–206. Springer-Verlag,
September 1999a.

S. D. Swierstra, Arthur Baars, and Andres Löh. The UU-AG attribute grammar
system. http://www.cs.uu.nl/groups/ST.

S. Doaitse Swierstra and Pablo Azero. Attribute grammars in a functional style.
In Systems Implementation 2000, Berlin, 1998. Chapman & Hall.

S. Doaitse Swierstra, Pedro Rangel Henriques, and José N. Oliveira, editors.
Advanced Functional Programming, Third International School, Braga, Por-
tugal, September 12-19, 1998, Revised Lectures, volume 1608 of Lecture Notes
in Computer Science, 1999b. Springer. ISBN 3-540-66241-3.

Janis Voigtländer. Using circular programs to deforest in accumulating param-
eters. Higher-Order and Symbolic Computation, 17:129–163, 2004. Previous
version appeared in ASIA-PEPM 2002, Proceedings, pages 126–137, ACM
Press, 2002.

P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

11

Eric Van Wyk, Lijesh Krishnan, Derek Bodin, Eric Johnson, August Schw-
erdfeger, and Phil Russell. Tool demonstration: Silver extensible compiler
frameworks and modular language extensions for java and c. In SCAM, page
161, 2006.

12

