
Uma lógica para a especificação formal de
organizações

Olga Pacheco
CCTC/Departmento de Informática
Universidade do Minho, Portugal

Seminários do MICEI
Novembro de 2005

MICEI 2005



Questão

Discuta em que medida a especificação normativa de uma organização
pode ser útil a essa organização e às pessoas que com ela interagem.

MICEI 2005 CCTC/DI, Univ. of Minho



Contexto

Uma lógica para a especificação formal de organizações

• Lógica modal

– 2ψ - é necessário que ψ seja verdade.
– 3ψ - é posśıvel que ψ seja verdade.
– Mundos posśıveis: estados de informação ao longo do tempo, do espaço, de

ńıveis de conhecimento, ...

• Modos de ser verdade:

– Lógica temporal: 2ψ - ψ verifica-se sempre no futuro, 3ψ - ψ verifica-se
eventualmente no futuro.

– Lógica deôntica: Oψ - é obrigatório que ψ se verifique, Pψ - é permitido que
ψ se verifique.

– Lógica epistémica: Kaψ o agente a sabe que ψ se verifica.
– ...

MICEI 2005 CCTC/DI, Univ. of Minho



Contexto

Uma lógica para a especificação formal de organizações

• Especificação: descrição da estrutura e comportamento.

• Em sistemas de software complexos podemos não ter o controlo total sobre o
comportamento do seus componentes:

– informação incompleta
– demasiado complexa
– custos incomportáveis
– intervenção humana imprevisivel
– ...

• Mas, pelo menos, deve saber-se qual o comportamento ideal/esperado de cada
componente.

MICEI 2005 CCTC/DI, Univ. of Minho



Contexto

• Especificação normativa:

– normas descrevendo o comportamento esperado do sistema e dos seus
componentes.

– assumindo que podem ocorrer falhas (violações das normas definidas -
comportamento efectivo diferente do comportamento esperado)

– e definindo como reagir a falhas (sanções, recuperação do estado ideal).

• Normas: conjunto de obligações e permissões.

• Normas regulam acções de agentes - o seu comportamento.

Temos de relacionar obrigações e permissões com as acções dos agentes.

MICEI 2005 CCTC/DI, Univ. of Minho



Um exemplo

Caracterização da noção de confiança em sistemas computacionais, inseridos
num contexto organizacional .

(Tendo por base o seguinte artigo:
Olga Pacheco, Normative specification: a tool for trust and security, Proceedings
of the 3.rd International Workshop on Formal Aspects of Security and Trust
(FAST’05), Newcastle, Julho de 2005)

MICEI 2005 CCTC/DI, Univ. of Minho



Introduction: trusty computer system

• People trust computer systems

– if they don’t fail or
– if they do, by believing that someone will be responsible by any damage

caused.

• But we cannot attribute responsibilities to a software entity!

• There must always be some person responsible
(human person or artificial person).

How to establish this link between software entities and persons?

MICEI 2005 CCTC/DI, Univ. of Minho



Introduction

We propose an unifying and integrating model of organizational systems, where
software agents are specified at the same level as human agents.

As agents may exhibit non ideal behavior we will use normative specification to
describe expected behavior.

We have to relate obligations and permissions with actions of agents, confronting
expected with actual behavior.

We want to establish a responsibility link between software entities and persons,
which will allow us to attribute responsibility for every action.

MICEI 2005 CCTC/DI, Univ. of Minho



A model:Artificial persons

A company is

• an abstract entity
(We don’t see a company walking in the street...)

• a collective entity
(A company “lives” through the persons that constitute it.)

MICEI 2005 CCTC/DI, Univ. of Minho



A model: artificial persons

A company is an abstract entity

• it must be classified in legal terms as an artificial person:
association, foundation, liability society,...;

• that legal classification determines in global terms

the structure of the company (a set of positions that the members of the
company will occupy)
a set of norms describing how the holders of each position should behave
(what they are obliged to do, or not to do, what are their permissions, ...)

• The statutes of a company contain all the information about the structure and
the norms that characterize it. They are public and describe the company’s aims
and how they will be achieved.

MICEI 2005 CCTC/DI, Univ. of Minho



A model: artificial persons

Any artificial person has

– juridical personality:
it may be the subject of obligations, permissions, rights...

– legal qualification:
it can exercise its rights and be responsible for the unfulfillment of obligations.

A company is a collective entity:

– A company must act to fulfill its obligations.
– A company acts through the agents that “support” its structure.
– It must be defined:
∗ How the obligations of the company are transmitted to the agents that

support its structure;
∗ How the actions of the agents may “count as” actions of the company.

MICEI 2005 CCTC/DI, Univ. of Minho



A model: artificial persons

Law imposes the legal classification of a company as an artificial person, for
security reasons: people that interact with the company must know what to
expect from the company and who is going to be responsible when things go
wrong.

People trust (some) companies and interact with them, because they feel
protected by law and know what they should expect of them.

MICEI 2005 CCTC/DI, Univ. of Minho



From artificial persons to institutional agents

Based on the concept of artificial person we proposed a model for organizational
systems: institutional agent.

Institutional agents are suited to model collective entities that have a role-based,
stable structure which is supported by agents.

Agents always act in roles.

Why do we need roles?

– Roles provide the deontic context to evaluate actions: is an action
permitted/forbidden/obligatory?

– The effects of an action depend on the role: the same action done by the
same agent in different roles has different consequences.

MICEI 2005 CCTC/DI, Univ. of Minho



Roles and action in a role

• Roles correspond to positions in an organization (president of the board, member
of a program committee) or in a contract (representative, manager,...).

• Roles are occupied by agents (human, software or institutional agents)

• A role may be occupied by several agents.

• An agent may hold different roles.

• When an agent holds a role he inherits the deontic characterization of the role.

MICEI 2005 CCTC/DI, Univ. of Minho



Institutional agents

Legend:

Agents: i, h1..h6, s1 and s2;

Roles: r1, r2 and r3

STi =< Ri, DCRi, TOi, RERi >

SA =< iAg, sAg, hAg,CONT >

MICEI 2005 CCTC/DI, Univ. of Minho



The logic LDA

• We defined a first-order, multi-modal, many-sorted logic.

• Action operator: Ea:r φ
(agent a acting in role r brings about φ)

• Deontic operators:

– Oa:r φ (agent a, when playing role r, is under the obligation φ)
– Pa:r φ (agent a, when playing role r, is permitted to do φ)

MICEI 2005 CCTC/DI, Univ. of Minho



The logic LDA: the formal language

• Sorts:

– Ag - agent sort
iAg - institutional agent sort;
sAg - software agent sort;
hAg - human agent sort).

– R - role sort (itself).
– AgR - agent in a role sort.

• Some predicates:

– is− iAg of sort (iAg);
is− sAg of sort (sAg);
is− hAg of sort (hAg).

– is− rg of sort (Ag) (qual(a : r) abbreviates is− r(a)).

MICEI 2005 CCTC/DI, Univ. of Minho



The logic LDA: some properties

Axioms:
(TE) Ea:rB → B success operator

(CE) Ea:rA ∧ Ea:rB → Ea:r(A ∧ B)

(Qual) Ea:rB → qual(a : r) agents that act in roles are qualified

(Itself) (∀x)qual(x : itself) every agent is qualified to act as itself

Proof rule:
(REE) If ` A↔ B then ` Ea:rA↔ Ea:rB

Axioms:
(CO) Oa:rA ∧Oa:rB → Oa:r(A ∧ B)

(O → P ) Oa:rB → Pa:rB

(O → ¬P¬) Oa:rB → ¬Pa:r¬B
(O ∧ P ) Oa:rA ∧ Pa:rB → Pa:r(A ∧ B)

Proof rules:
(REO) If ` A↔ B then ` Oa:rA↔ Oa:rB

(RMP ) if ` A→ B then ` Pa:rA→ Pa:rB

(RMEP ) If ` Ea1:r1
A→ Ea2:r2

B then ` Pa1:r1
A→ Pa2:r2

B

MICEI 2005 CCTC/DI, Univ. of Minho



Deontic characterization of roles

The deontic characterization of a role in an organization is part of the identity
of the organization and does not depend on the agent that holds that role in a
particular moment.

Orψ
abv
= (∀x)(qual(x : r) → Ox:rψ)

Prψ
abv
= (∀x)(qual(x : r) → Px:rψ)

• When we have multiple agents holding a role, all of them “inherit” the deontic
characterization of the role. For instance, if there is some obligation associated
to a role, all of its holders will be under that obligation and all of them will have
to fulfill it.

MICEI 2005 CCTC/DI, Univ. of Minho



Representative roles

• To express the representation notion associated to an agent in a role, we
introduce the abbreviation:

(x : r1) : REP (y : r2, ψ)
abv
= (Ex:r1ψ → Ey:r2ψ)

Agent x : r1 is representative of y : r2 for ψ means that when x acting on role
r1 brings about ψ, this counts as y having produced ψ (in role r2).
ψ is the scope of representation.

• To express the notion of representative role we use the abbreviation:

r1 : REP (a : r2, ψ)
abv
= (∀x)(Ex:r1ψ → Ea:r2ψ)

Any agent that holds role r1 and brings it about that ψ when acting in that
role, produces ψ on behalf of a (acting in role r2).

MICEI 2005 CCTC/DI, Univ. of Minho



Transmission of obligations

To express the transmission of obligations of an organization to specific roles of
its structure (and indirectly, to the holders of those roles), we can use formulas like
the following ones:

Ox:itselfψ → Orψ for r a role of the structure of organization x .

MICEI 2005 CCTC/DI, Univ. of Minho



Contracts

Arbitrary contract:

C(a, b) = qual(a:r1) ∧ qual(b:r2)
Pa:r1B ∧ Pa:r1C ∧ Ob:r2D ∧
(a : r1) : REP (b : r2, B) ∧ (a : r1) : REP (b : r2, C)

Titularity contract:

C(a, i) = qual(a:r) ∧
Oa:rB ∧ Pa:rC ∧ Oi:itselfD

Ea:r¬B → Oa:rF

MICEI 2005 CCTC/DI, Univ. of Minho



Trusty institutional agents

• How can we trace responsibilities?

• Using contracts to explicitly state the relationships that exist between the agents:

– A software agent must always act as representative of some other agent (the
institutional agent or some other agent member of the institutional agent).
We must state that in the “contract” between the organization and the
software agent (that attributes the role it plays in the organization).

– There must exist (formal or informal) contracts between the persons involved:
∗ a contract between the company and the software developer (to assure

maintenance of the software),
∗ a contract between the software user and the company (securing user’s

rights, in one side; securing the company against bad use, on the other
side).

MICEI 2005 CCTC/DI, Univ. of Minho



Trusty institutional agents

• A first and natural attempt would be simply to use the representation notion
presented before as a way of transmission of responsibilities.

• But there is a problem: representation is not transitive. We cannot say that:

(x : r) : REP (y : r1, φ) ∧ (y : r1) : REP (z : r2, φ) → (x : r) : REP (z : r2, φ)

– Representation is a relationship between agents.
– There might exist a relationship between x and y where it is stated (x : r) :
REP (y : r1, φ); there might exit another relationship between y and z where
it is stated (y : r1) : REP (z : r2, φ).

– But from those two relationships we cannot infer that there is a relationship
between x and z.

MICEI 2005 CCTC/DI, Univ. of Minho



– Example: x may be representative of a company k for φ, and the company k
may hold the role of single auditor of company i, being representative of i for
φ. From that we cannot conclude that x is representative of i for φ (there is
no relationship between them).

MICEI 2005 CCTC/DI, Univ. of Minho



Trusty institutional agents

• We will consider (in a very simplistic way) only responsibility for action in a role
(RESP (x : r, φ) means “x acting in role r is responsible for φ”):

RESP (x : r, φ)
def
= Ex:rφ

• If we combine this responsibility concept with the representation concept
presented before, we can trace responsibilities for action.

MICEI 2005 CCTC/DI, Univ. of Minho



Trusty institutional agents

T-SAR: a software agent (sa) in a role (r) is trusty for some action (φ):

T − SAR(sa : r, φ)
def
= Esa:rφ→ ∃y∃r1(RESP (y : r1, φ) ∧ ¬(is− sAg(y)))

T-SA: a software agent is trusty for some action:

T − SA(sa, φ)
def
= ∀r((qual(sa : r) ∧ Prφ) → T − SAR(sa : r, φ))

T-I: an institutional agent is trusty for some action:

T − I(i, φ)
def
= ∀sa((is− sAg(sa) ∧member(sa, i)) → T − SA(sa, φ))

MICEI 2005 CCTC/DI, Univ. of Minho



An example

Legend:

Human agents: h1..h6;

Software agents: s1 - railway time-table database, s2 - ticket machine ;

Roles: r1 - railway manager, r2 - ticket seller, r3 - schedule manager

MICEI 2005 CCTC/DI, Univ. of Minho



An example

STi = < Ri, DCRi, TOi, RERi >
Ri = { is− role(r1, i), is− role(r2, i), is− role(r3, i), ...}
DCRi = { Or1A1, Pr1B1,

Or2A2, Or2B2,
Or3A3, ...}

TOi = { Oi:itselfA1 → Or1A1,

Oi:itselfA2 → Or2A2,

Oi:itselfA3 → Or3A3, ...}
RERi = { r1 : REP (i : itself, A1),

r2 : REP (i : itself, A2),
r3 : REP (i : itself, A3), ...}

where:
A1 - Define trains’ schedule;

B1 - Change ticket prices;

A2 - Collect the appropriate ticket prices;

B2 - Inform users to use the exact amount of money, when there is no change;

A3 - Inform about train schedule.

MICEI 2005 CCTC/DI, Univ. of Minho



An example

SA = < iAg, sAg, hAg,CONT >

iAg = { is− iAg(i)}
sAg = { is− sAg(s1), is− sAg(s2)}
hAg = { is− hAg(h1), is− hAg(h2), is− hAg(h3), is− hAg(h4),

is− hAg(h5), is− hAg(h6)}
CONT = { Cont1(h1, i), Cont2(h2, i), Cont3(h6, i),

Cont4(s2, i), Cont5(s1, h2)

Cont6(h4, i), Cont7(h3, i), Cont8(h5, i)}
Cont1(h1, i) = qual(h1 : r1)

Cont2(h2, i) = qual(h2 : r3)

Cont3(h6, i) = qual(h6 : r2)

Cont4(s2, i) = qual(s2 : r2) ∧ (s2 : r2) : REP (i : itself, ∗)
Cont5(s1, h2) = qual(s1 : r) ∧ (s1 : r) : REP (h2 : r3, ∗)
Cont6(h4, i) = qual(h4 : r4) ∧ qual(i : r5) ∧Oi:r5A4 ∧Oh4:r4B4

Cont7(h3, i) = qual(h3 : r6) ∧Oh3:r6A5 ∧Oi:itselfB5

Cont8(h5, i) = qual(h5 : r8) ∧Oh5:r8A6 ∧Oi:itselfB6

MICEI 2005 CCTC/DI, Univ. of Minho



Valid actions and fulfillment/unfulfillment of obligations

• Is i a trusty agent?

• Our aim is to verify

–
– if an action is valid Ea:rψ ∧ Pa:rψ,
– if there is a fulfillment of some obligation Ea:rψ ∧Oa:rψ or
– if there is a violation of some obligation Ea:r¬ψ ∧Oa:rψ.

• ∆ `T (SA) ψ.

– T (SA) = LDA + formulas of SA
– ∆ - a set of action and/or deontic formulas

MICEI 2005 CCTC/DI, Univ. of Minho



Chain of responsibilities

∆ `T (SA) ψ.

Case 1:The railway time-table database s1 gives the user h3 correct
information about trains’schedule (A3), which is an obligation of i.
∆ = {Es1:rA3, Oi:itselfA3}
ψ = (Eh2:r3A3 ∧Oh2:r3A3) ∧ (Ei:itselfA3 ∧Oi:itselfA3)

Case 2: The railway time-table database s1 gives the user h3 incorrect
information about trains’ schedule (¬A3). This failure is due to a technical
problem ¬B4 of the responsibility of h4 (we will represent this causality by an
implication).
∆ = {Eh4:r4¬B4, Eh4:r4¬B4 → Es1:r¬A3, Oi:itselfA3}
ψ = (Eh4:r4¬B4 ∧Oh4:r4B4) ∧ (Eh2:r3¬A3 ∧Oh2:r3A3) ∧
(Ei:itself¬A3 ∧Oi:itselfA3)

MICEI 2005 CCTC/DI, Univ. of Minho



Future work

• Refine this high-level model:

– Relate states of affairs with actions.
– Detail contracts and norms.

• Characterize different levels of responsibility.

• Add dynamics.

MICEI 2005 CCTC/DI, Univ. of Minho



Algumas Referências Bibliográficas

• Carmo, J and Pacheco, O.: “Deontic and action logics for organized collective
agency, modeled through institutionalized agents and roles”, Fundamenta
Informaticae, Vol.48 (No. 2,3), pp. 129-163, IOS Press, November, 2001.

• O. Pacheco and J. Carmo: “ A Role Based Model for the Normative
Specification of Organized Collective Agency and Agents Interaction”, Journal
of Autonomous Agents and Multi-Agent Systems, Vol. 6, Issue 2, pp.145-184,
Kluwer, March 2003.

• O. Pacheco, “Normative specification: a tool for trust and security”,
T.Dimitrakos, F. Martinelli, P. Ryan, S. Schneider (eds.), Proceedins of the 3.rd

International Workshop on Formal Aspects of Security and Trust (FAST’05),
Newcastle, July, 2005 (to be published by Springer in January 2006).

MICEI 2005 CCTC/DI, Univ. of Minho


