
A survey on Code Analysis and Slicing

Program Analysis and Transformation
2007/2008

Braga, July 2008



Contents

Glossary 4

1 State-of-the-Art: Code Analysis 7
1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Anatomy of code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Information representation . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Knowledge Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Current code analysis challenges . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Language Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Multi-Language Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Static, Dynamic and Real-Time analysis . . . . . . . . . . . . . . . . . 22
1.3.4 Analyzing executables . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.5 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.6 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Applications of code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Reverse engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Tools for code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1 FxCop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Lint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.3 CodeSonar and CodeSurfer . . . . . . . . . . . . . . . . . . . . . . . . 29

2 State-of-the-Art: Slicing 32
2.1 The Concept of Program Slicing . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Program example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Static slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.3 Dynamic slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.4 Quasi-static slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.5 Conditioned slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.6 Simultaneous dynamic slicing . . . . . . . . . . . . . . . . . . . . . . . 40

2



2.1.7 Union slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.8 Other concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.9 Dicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.10 Chopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.11 Relationships among program slicing models . . . . . . . . . . . . . . 44
2.1.12 Methods for Program Slicing . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Static slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1 Basic slicing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2 Slicing programs with arbitrary control flow . . . . . . . . . . . . . . . 47
2.2.3 Interprocedural slicing methods . . . . . . . . . . . . . . . . . . . . . . 48
2.2.4 Slicing in the presence of composite datatypes and pointers . . . . . . 54

2.3 Dynamic slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Basic algorithms for dynamic slicing . . . . . . . . . . . . . . . . . . . 55
2.3.2 Slicing programs with arbitrary control flow . . . . . . . . . . . . . . . 59
2.3.3 Interprocedural slicing methods . . . . . . . . . . . . . . . . . . . . . . 59
2.3.4 Slicing in the presence of composite datatypes and pointers . . . . . . 60

2.4 Applications of Program Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.2 Software Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.3 Reverse engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.4 Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.6 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Tools using Program Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.1 CodeSurfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.2 JSlice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.3 Unravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.4 HaSlicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.5 Other tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References 65



Glossary

A

API Application Programming Interface, p. 26.

ASP Active Server Pages, p. 20.

AST Abstract Syntax Tree, p. 15.

C

CFG Control Flow Graph, p. 8.

CLR Common Language Runtime, p. 28.

D

DDG Dynamic Dependence Graph, p. 58.

DLL Dynamic Link library, p. 23.

F

FSA Finite State Automata, p. 16.

H

HTML HyperText Markup Language, p. 20.

J

JVM Java Virtual Machine, p. 19.

L

LR Left-to-right parse, Rightmost derivation, p. 14.

M

MDG Module Dependence Graph, p. 12.

4



5

P

PDG Program Dependence Graph, p. 9.

S

SDG System Dependence Graph, p. 10.

SSA Single Static Assignment, p. 13.

T

TFG Trace Flow Graph, p. 13.

V

VDG Value Dependence Graph, p. 12.



6



Chapter 1

State-of-the-Art: Code Analysis

The increasing amount of software developed in the last few years have produced a growing
demand for programmers and programmer productivity to maintain it working along the
years. During maintenance, the most reliable and accurate description of the behavior of a
software system is its source code. However, given the complexity of modern software, the
manual analysis of source code is costly and ineffective. A more viable solution is to resort to
tool support. Such tools provide information to programmers that can be used to coordinate
their efforts and improve their overall productivity.
In [Bin07], David Binkley presents a definition of source code analysis:

Source code analysis is the process of extracting information about a program
from its source code or artifacts (e.g. from Java byte code or execution traces)
generated from the source code using automatic tools. Source code is any static,
textual, human readable, fully executable description of a computer program that
can be compiled automatically into an executable form. To support dynamic anal-
ysis the description can include documents needed to execute or compile programs,
such as program inputs.

The rest of this chapter will have as basis this definition of source code analysis.
At the earlier stage of compilers (when they were introduced), programmers compile their
code and then make minor adjustments (tweak) to the output assembly code to improve its
performance. Once adjusted, future updates (that might be better made at high-level source)
require one of the three choices:

• re-adjusting the assembly code;

• performing the changes at the lower-level assembly code; or

• changing the high-level source code, recompiling and forget the adjustments.

The final option was adopted after the emergency of the improved compiler technology and
faster hardware.
Nowadays, the modern software projects often start with the construction of models (e.g.
using the UML). These models can be “compiled” to a lower-level representation: source code.
But this code is incomplete and thus requires that the programmers analyze the generated



8 State-of-the-Art: Code Analysis

code and complete it. Until such models are fully executable, the source code is considered
“the truth” and “the system”.
So, in both cases, code analysis is a relevant task in the life cycle of programs.
There are two kind of code analysis: static and dynamic code analysis. In both of them, the
extracted information must be coherent with the language semantics and should be disproved
from lexical concerns, focusing on abstract semantic information. This extracted information
should help a programmer gain insight of the source code’s meaning.
The remainder of this chapter is organized as follow. In section 1.1 are presented some basic
concepts around code analysis area. In section 1.2 are presented the stages of a typical code
analysis. In section 1.3 some current code analysis techniques are discussed. In section 1.4
the applications of code analysis are reviewed. In section 1.5 some tools for code analysis are
presented.

1.1 Basic Concepts

In this section are introduced some basic concepts related not only with code analysis but
also with the other areas covered by this pre-thesis. These concepts are relevant to a better
understanding of the remainder of this and the following chapters.

Definition 1 A Control Flow Graph (CFG) is a representation, using graph notation, of
all paths that might be traversed through a program during its execution. A CFG contains a
node for each statement and control predicate in the program; an edge from node i to node
j indicates the possible flow of control from the former to the latter. CFGs contains special
nodes labeled Start and Stop indicating the beginning and the end of the program, respectively.

There are several types of data dependencies: flow dependence; output dependence; and
anti-dependence. In the context of slicing, only flow dependence is relevant.

Definition 2 A node j is flow dependent on node i if there exists a variable x such that:

• x ∈ DEF (i);

• x ∈ REF (j); and

• there exists a path from i to j without intervening definitions of x.

where DEF(i) denotes the set of variables defined at node i, and REF(i) denotes the set of
variables referenced at node i.

In other words, we can say that the definition of a variable x at a node i is a reaching definition
for node j.
Control dependence is usually defined in terms of post-dominance.

Definition 3 A node i in the CFG is post-dominated by a node j if all paths from i to Stop
pass through j.

Definition 4 A node j is control dependent on a node i if and only if:



1.1 Basic Concepts 9

• There exists a path from i to j such for that any u 6= i, in that path u is post-dominated
by j; and

• i is not post-dominated by j.

Notice that if j is control dependent on i, then i has two outgoing edges (i.e., corresponds to
a predicate). Following one of the edges always results in j being executed, while taking the
other edge may result in j not being executed. If the edge which always causes the execution
of j is labeled with true (false, respectively), then j is control dependent on the true (false)
branch of i.

Definition 5 A program path from the entry node Start to the exit Stop is a feasible path if
there exists some input values which cause the path to be traversed during program execution
(assuming program termination).

Definition 6 A state trajectory of length k of a program P for input I is a finite list of
ordered pairs T =< (p1, σ1), (p2, σ2), ..., (pk, σk) >, where pi ∈ P , 1 ≤ i ≤ k, and σi

is a function mapping the variables in V to the values they assume immediately before the
execution of pi.

A feasible path that has actually been executed for some input can be mapped onto the values
the variables in V (V is the set of variables in a program P ) assume before the execution of
each statement. Such a mapping is the referred state trajectory. An input to the program
univocally determines a state trajectory.
Program slices can be computed using the Program Dependence Graph [FOW87, HRB88]
both at intraprocedural [OO84] and interprocedure level [KFS93b], and also in the presence
of goto statements [CF94]. A program dependence graph (PDG) is a program representation
containing the same nodes as the CFG and two types of edges: control dependence edges and
data dependence edges.

Definition 7 A program dependence graph (PDG) is a directed graph with vertices corre-
sponding to statements and control predicates, and edges corresponding to data and control
dependencies.

The concepts hereby defined of CFG and PDG are illustrated in Figures 1.1 and 1.2 w.r.t.
program in Listing 1.1, which asks for a number n and computes the sum and the product of
the first n positive numbers.
In Figure 1.1 node 7 is flow dependent on node 4 because:

a) Node 4 defines variable product;

b) Node 7 references variable product; and

c) There exists a path 4→ 5→ 6→ 7 without intervening definitions of product.

Notice that, for the same reason, node 7 is also flow dependent on node 2 and 8.
Also in the CFG of Figure 1.1, node 7 is control dependent on node 5 because there exists a
path 5→ 6→ 7 such that:



10 State-of-the-Art: Code Analysis

Figure 1.1: CFG corresponding to the program listed in 1.1

a) Node 6 is post-dominated by node 7; and

b) Node 5 is not post-dominated by node 7.

Figure 1.2 shows a PDG constructed according to [HRB88] variant, where solid edges represent
control dependencies and dashed edges represent flow dependencies.

Listing 1.1: Program example 1: iterate sum and product�
1 main ( ) {
2 int n , i , sum , product ;
3 s can f ("%d" ,&n ) ;
4 i = 1 ;
5 sum = 0 ;
6 product = 1 ;
7 while ( i <= n) {
8 sum += i ;
9 product ∗= i ;

10 i ++;
11 }
12 p r i n t f ("Sum: %d\n" , sum ) ;
13 p r i n t f ("Product: %d\n" , product ) ;
14 }� �

Definition 8 A System Dependence Graph (SDG) is a collection of procedure-dependence
graphs (PDG) - one for each procedure - in which vertices are statements or predicate expres-
sions.
The term “system” is used to emphasize a program with multiple procedures. Parameter
passing by value-result is modeled as follows:

a) the calling procedure copies its actual parameters to temporary variables before the call;

b) the formal parameters of the called procedure are initialized using the corresponding tem-
porary variables;

c) before returning, the called procedure copies the final values of the formal parameters to
the temporary variables; and



1.1 Basic Concepts 11

Figure 1.2: PDG corresponding to the program listed in 1.1



12 State-of-the-Art: Code Analysis

d) after returning, the calling procedure updates the actual parameters by copying the values
of the corresponding temporary variables.

A SDG contains a program dependence graph for the main program, and a procedure depen-
dence graph for each procedure. Procedure dependence graphs are very similar to program
dependence graphs except that they include vertices and edges representing call statements,
parameter passing, and transitive flow dependencies due to calls. A call statement is rep-
resented using a call vertex; in the called procedure, parameter passing is represented using
four kinds of parameter vertices: on the calling side, parameter passing is represented by
actual-in and actual-out vertices, which are control dependent on the call vertex and model
copying of actual parameters to/from temporary variables; in the called procedure, parame-
ter passing is represented by formal-in and formal-out vertices, which are control dependent
on the procedure’s entry vertex and model copying of formal parameters to/from temporary
variables. Actual-in and formal-in vertices are included for every global variable that may be
used or modified as a result of the call and for every parameter; actual-out and formal-out are
included only for global variables and parameters that may be modified as a result of the call.

Transitive dependence edges, called summary edges, are added from actual-in vertices to
actual-out vertices to represent transitive flow dependencies due to called procedures. Ac-
cording to the Reps et al algorithm [RHSR94], a summary edge is added if a path of control,
flow and summary edges exists in the called procedure from the corresponding formal-in vertex
to the corresponding formal-out vertex. The addition of a summary edge in procedure Q may
complete a path from a formal-in vertex to a formal-out vertex in Q’s PDG, which in turn
may enable the addition of further summary edges in procedures that call Q.

Procedure dependence graphs are connected to form a SDG using three new kinds of edges:

• a call edge is added from each call-site vertex to the corresponding procedure-entry vertex;

• a parameter-in edge is added from each actual-in vertex at a call site to the corresponding
formal-in vertex in the called procedure; and

• a parameter-out edge is added from each formal-out vertex in the called procedure to
the corresponding actual-out vertex at the call site.

Definition 9 A Call Graph is a directed graph that represents calling relationships between
subroutines in a program. Each node represents a procedure and each edge (f, g) indicates
that procedure f calls procedure g. Thus, a cycle in the graph indicates recursive procedure
calls.

Definition 10 A Value Dependence Graph (VDG) is a directed graph whose vertices are
nodes representing computations and operand values (ports) representing values. Arcs connect
nodes to their operand values and ports to the computation (nodes) producing them as results.
Each port is either produced by exactly one node or is a free value1 not produced by any node.

Definition 11 A Module Dependence Graph (MDG) is a graph MDG = (M,R) where M
is the set of named modules of a software system, and R ⊆M ×M is the set of ordered pairs

1The free values of a VDG can be viewed as analogous to the free variables in a lambda term.



1.1 Basic Concepts 13

< u, v > that represent the source-level dependencies (e.g., procedural invocation, variable
access) between modules u and v of the same system.

Definition 12 A XTA2 Graph is a graph G = {V,E, TypeF ilters,ReachableTypes}:

• V ⊆M
⋃
F{α}, where M is a set of methods, F is a set of fields, and α is an abstract

name representing array elements;

• E ⊆ V × V , is the set of directed edges;

• TypeF ilters ⊆ E → S, is a map from an edge to a set of types; and

• ReachableTypes ⊆ V → T , is a map from a node to a set of types T .

The XTA graph combines call graphs and field/array accesses. A call from a method A to a
method B is modeled by an edge from node A to node B. The filter set includes parameter
types of method B. If B’s return type is a reference type, it is added in the filter set of the
edge from B to A. Field reads and writes are modeled by edges between method and fields,
with the fields’ declaring classes in the filter. Each node as a set of reachable types.

Definition 13 A Trace Flow Graph (TFG) is derived from a collection of annotated CFGs.
The TFG is a reduced “inlined” representation of the CFGs. In the TFG, all method invocations
are replaced by expansions of the methods that they call, and the resulting graph is then reduced
by the removal of all nodes that neither bear event annotations nor affect control flow.

Definition 14 The Static Single Assignment (SSA) is a representation that exposes very
explicitly the flow of data within the program. Every time a variable X is assigned a new
value, the compiler creates a new version of X and the next time that variable X is used, the
compiler looks up the latest version of X and uses that.

The central idea of the SSA is versioning. This representation is completely internal to the
compiler, it is not something that shows up in the generated code nor could be observed by
the debugger.
For example, for the program below (see Listing 1.2) the internal representation using the
SSA form is shown in Listing 1.3.

Listing 1.2: Program example�
1 int getValue ( ) {
2 int a = 3 ;
3 int b = 9 ;
4 int c = a + b ;
5 int d = a + c ;
6 return d ;
7 }� �

2XTA is a mechanism for implementing a dynamic reachability-based interprocedural analysis.



14 State-of-the-Art: Code Analysis

Listing 1.3: Static Single Assignment Form of Listing 1.2�
1 int getValue ( ) {
2 int a 1 = 3 ;
3 int b 2 = 9 ;
4 int c 3 = a 1 + b 2 ;
5 int d 4 = a 1 + c 3 ;
6 return d 4 ;
7 }� �

Notice that every assignment generates a new version number for the variable being modified.
And every time a variable is used inside an expression, it always uses the latest version. So,
the use of variable a in line 4 is modified to use a 1.

Definition 15 An Abstract Syntax Tree (AST) is a finite, labeled, directed tree, where the
internal nodes are labeled by operators, and the leaf nodes represent the operands of the node
operators.

1.2 Anatomy of code analysis

Under the umbrella of code analysis, there are many techniques used to handle relevant
static and dynamic information from a program: slicing, parsing, software visualization,
software metrics, and so on. In this section, the three components needed for code analysis
are described.
The three components, illustrated in Figure 1.3, are:

• Data extraction;

• Information representation; and

• Knowledge exploration.

1.2.1 Data extraction

The process of retrieving data out of data sources for further data processing or data storage
is named data extraction. The import of that data into an intermediate representation is a
common strategy to make easier the data analysis/transformation and possibly the addition
of metadata prior to export to another stage in the data workflow.
In the context of the code analysis this process is usually done by a syntactic analyzer, or
parser. It parses the code into one or more internal representations. A parser is the part of a
compiler that goes through a program and cuts it into identifiable chunks before translation,
each chunk more understandable than the whole.
Basically, the parser searches for patterns of operators and operands to group the source
string into smaller but meaningful parts (which are commonly called chunks).
Parsing is the necessary evil of most code analysis. While not theoretically difficult, the
complexities of modern programming languages, in particular those that are not LR(1) [AU72,
FRJL88] and those incorporating some kind of preprocessing significantly make harder code
analysis, as will be seen in section 1.3.1.



1.2 Anatomy of code analysis 15

Figure 1.3: Components of code analysis

1.2.2 Information representation

After extracting from the code the relevant information, there is a need to represent it in a
more abstract form. This is the second component of code analysis: store the collected data
into an internal representation, such that data is kept grouped in meaningful parts and the
relations among them are also stored to give sense to the whole. The main goal of this phase
is to abstract a particular aspect of the program into a form more suitable for automated
analysis. Essentially, an abstraction is a sound, property-preserving, transformation to a
smaller domain. Some internal representations are produced directly by the parser (e.g.
Abstract Syntax Tree (AST), Control Flow Graph (CFG), etc), while others require the result
of prior analysis (e.g., dependence graphs requires prior pointer analysis).
Many internal representations raise from the compilers area. Generally, the most common
internal representation is the graph (specially if it degenerates in forms such as trees) — the
most widely used are the Control Flow Graph (CFG), the Call Graph, and the Abstract Syntax
Tree (AST). The Value Dependence Graph (VDG) is another graph variant that improves (at
least for some analysis) the results obtained using SSA form; VDG and SSA were both defined
in section 1.1. VDG represents control flow as data flow and thus simplify analysis [WCES94].
Another used graph is the Dependence Graph (see section 1.1), introduced in the context of
a work with parallelizing and highly optimizing compilers [FOW87], where vertices represent
the statements and predicates of the program. These graphs have since been used in other
analysis [HRB88, HR92, Bal02]. A related graph, the Module Dependency Graph (MDG),
used by the Bunch tool, represents programs at a coarser level of granularity. Its vertices
represents modules of the system and edges the dependencies between them [MMCG99].
Other sorts of graphs, also referred in the literature and defined in section 1.1, include Dy-



16 State-of-the-Art: Code Analysis

namic Call Graphs [QH04, PV06] (a dynamic call graph is intended to record an execution
of a program) and XTA graphs [QH04] built in support of dynamic reachibility-based inter-
procedural analysis. These techniques are required to analyze languages such as Java that
include dynamic class loading.
Finally, the Trace Flow Graph is used to represent concurrent programs [CCO01].
Another known internal representation also referred in section 1.1 is the Single Static As-
signment (SSA). SSA form simplifies and improves the precision of a variety of data-flow
analyzes.
Also Finite-state Automata (FSA) are used to represent analysis of event-driven systems and
the transitions in distributed programs where they provide a formalism for the abstraction of
program models [Sch02].
In real applications, it is common to combine different kinds of graphs or AST with Identi-
fiers Table (or similar mapping) in such a way the enriches and structures the information
extracted.
All of the variants of graphs or other internal representations presented are actually used
according to the type of analysis and the desired results of that analysis.

1.2.3 Knowledge Exploration

After organizing the data extracted into an intermediate representation that makes or trans-
forms it into information, the third component of code analysis is aimed at knowledge in-
ference. This process requires the inter-connection of the pieces of the information stored
and their inter-relation with previous knowledge. This can be achieved using quantitative
or qualitative methods. Concerning quantitative methods, the resort to program metrics is
the most common used approach. Concerning qualitative methods, name analysis, text and
data mining, and information retrieval are the most widely used. Visualization techniques
are crucial for the effectiveness of that process.
According to Binkley [Bin07], the main strategies used to extract the knowledge from the In-
termediate Representation could be classified as follows: static versus dynamic, sound versus
unsound, flow sensitive versus flow insensitive, and context sensitive versus context insensi-
tive.

Static vs dynamic

Static analysis analyze the program to obtain information that is valid for all possible execu-
tions. Dynamic analysis instrument the program to collect information as it runs. The results
of a dynamic analysis are typically valid for the run in question, but make no guarantees for
other runs. For example, a dynamic analysis for the problem of determining the values of
global variables could simply record the values as they are assigned. A static analysis might
analyze the program to find all statements that potentially affect the global variables, then
analyze the statements to extract information about the assigned values.
Dynamic analysis has the advantage that detailed information about a single execution is
typically much easier to obtain than comparably detailed information that is valid over all
executions.
Another significant advantage of dynamic tools is the precision of the information that they
provide, at least for the execution under consideration. Virtually all static analysis extract



1.2 Anatomy of code analysis 17

properties that are only approximations of the properties that actually hold when the program
runs. This imprecision means that a static analysis may provide information that is not
accurate enough to be useful. If the static analysis is designed to detect errors (as opposed
to simply extracting interesting properties), the approximations may cause the tool to report
many false positives. Because dynamic analysis usually record complete information about
the current execution, that approach does not suffer from these problems. The trade-off, of
course, is that the properties extracted from one execution may not hold in all executions.
Some techniques sit in between. They take into account a collection of initial states that, for
example, satisfy a predicate.

Sound vs unsound

A deductive system is sound with respect to a semantics if it only proves valid arguments.
So, a sound analysis makes correctness guarantees.
Sound static analysis produce information that is guaranteed to hold on all program execu-
tions; sound dynamic analysis produce information that is guaranteed to hold for the analyzed
execution alone. Unsound analysis make no such guarantees. A sound analysis for determin-
ing the potential values of global variables might, for example, use pointer analysis to ensure
that it correctly models the effect of indirect assignments that take place via pointers to global
variables. An unsound analysis might simply scan the program to locate and analyze only
assignments that use the global variable directly, by name. Because such an analysis ignores
the effect of indirect assignments, it may fail to compute all of the potential values of global
variables.
Unsound analysis can exploit information that is unavailable to sound analysis [JR00]. Ex-
amples of this kind of information include information present in comments and identifiers.
Ratiu and Deissenboeck [RD06] described how to exploit non-structural information such as
identifiers in maintaining and extracting the mapping between the source code and real real
word concepts.
Maybe it could be “unsound” why an engineering will be interested in unsound analysis.
However, in many cases, the information from an unsound analysis is correct, and even when
incorrect, may provide a useful starting point for further investigation. Unsound analysis are
therefore often quite useful for those faced with the task of understanding and maintaining
legacy code.
The most important advantages of unsound analysis, however, are their ease of implemen-
tation and efficiency. Reconsider the two examples cited above for extracting the potential
values of global variables. Pointer analysis is a complicated interprocedural analysis that
requires a sophisticated program analysis infrastructure and a potentially time-consuming
analysis of the entire program; locating direct assignments, on the other hand, requires noth-
ing more than a simple linear scan of the program. An unsound analysis may thus be able to
analyze programs that are simply beyond the reach of the corresponding sound analysis, and
may be implemented with a small fraction of the implementation time and effort required for
the sound analysis.
For all these reasons, unsound analysis will continue to be important.
A slightly different concept of sound analysis is the safe analysis.
Safe static analysis means that the answer is precise on “one side”. For example, a reaching-



18 State-of-the-Art: Code Analysis

definitions computation can determine that certain assignments definitely do not reach a given
use, but the remaining assignments may or not reach the use.
Sagiv et al. [SRW02] present a static analysis technique based on a three-valued logic, cap-
turing indecision as a third value. Thus again using reaching-definition as an example, a
definition could be labeled “reaches”, “does not reach”, or “might reach”.

Flow sensitive vs Flow insensitive

Flow-sensitive analysis takes the execution order of the program’s statements into account.
It normally uses some form of iterative dataflow analysis to produce a potentially different
analysis result for each program point. Flow-insensitive analysis do not take the execution
order of the program’s statements into account, and is therefore incapable of extracting any
property that depends on this order. It often use some form of type-based or constraint based
analysis to produce a single analysis result that is valid for the entire program.
For example, given the sequence p = &a; q = p; p = &b;, a flow-sensitive points-to analysis
can determine that q does not point to b.
In contrast, a flow-insensitive analysis treats the statements of a program as an unordered
collection and must produce conservative results that are safe for any order. In the above
example, a flow-insensitive points-to analysis must include that q might point to a or b. This
reduction in precision comes with a reduction in computational complexity.

Context sensitive vs Context insensitive

Many programming languages provide constructs such as procedures that can be used in
different contexts. Roughly speaking, a context-insensitive analysis produces a single result
that is used directly in all contexts.
A context-sensitive analysis produces a different result for each different analysis context. The
two primary approaches are to reanalyze the construct for each new analysis context, or to
analyze the construct once (typically in the absence of any information about the contexts in
which it will be used) to obtain a single parameterized analysis result that can be specialized
for each analysis context.
Context sensitivity is essential for analyzing modern programs in which abstractions (such as
abstract datatypes and procedures) are pervasive.

1.3 Current code analysis challenges

In this section we present the challenges that are being posed to the code analysis. Many of
this challenges are not related with only one of the components referred in the previous section;
instead of it, each issue affects more than one component increasing the level of challenge.
The relationship between those challenges and the code analysis components are depicted in
Figure 1.4 in a Venn Diagram form, where: orange color refers to the first component (data
extraction); green color refers to the second component (information representation); and the
blue color refers to the third component (knowledge exploration).



1.3 Current code analysis challenges 19

Figure 1.4: Relationship among code analysis

1.3.1 Language Issues

In the last few years, many enhancements have been done to programming languages. The
introduction of concepts such as dynamic class loading and reflection in languages such as
Java and C# contributes to the language evolution.
Language reflection provides a very versatile way of dynamically linking program components.
It allows to create and manipulate objects of any classes without the need to hardcode the
target classes ahead of time. These features make reflection especially useful for creating
libraries that work with objects in very general ways. For example, reflection is often used in
frameworks that persist objects to databases, XML, or other external formats.
Reflection has a couple of drawbacks. One is the performance issue. Reflection is much slower
than direct code when used for field and method access. A more serious drawback for many
applications is that using reflection can obscure what’s actually going on inside the code.
Programmers expect to see the logic of a program in the source code, and techniques such as
reflection that bypass the source code can create maintenance problems. Reflection code is
also more complex than the corresponding direct code.
Dynamic class loading is an important feature of the Java Virtual Machine (JVM). It provides
to the Java platform the ability to install software components at run-time. It has a number of
unique characteristics. First of all, lazy loading means that classes are loaded on demand and
at the last moment possible. Second, dynamic class loading maintains the type safety of the
JVM by adding link-time checks, which replace certain run-time checks and are performed only
once. Finally, class loaders can be used to provide separate name spaces for various software
components. For example, a browser can load applets from different web pages using separate
class loaders, thus maintaining a degree of isolation between those applet classes.
This concepts and also the presence of casting, pointer arithmetic and the like make the task
of parsing a difficult task.
Modern languages increasingly require tools for high precision source code analysis to handle
only partially known behavior (such as generics in Java, plug-in components, reflection, user-
defined types, and dynamic class loading).
These features increase flexibility at run-time and impose a more powerful dynamic analysis,
but compromise static analysis.



20 State-of-the-Art: Code Analysis

1.3.2 Multi-Language Analysis

Many software systems are heterogeneous today, i.e., they are composed by components of
different programming and specification languages. Analysis in current software develop-
ment tools, e.g., Integrated Development Environments (IDEs), cannot process these mixed-
language systems as a whole since they are too closely related to a particular programming
languages and do not process mixed-language systems across language boundaries.
So, multi-language analysis grows more important as systems are built of many parts com-
posed of many languages. Even a simple Java program could consist of Java-source and
-bytecode components. A larger system, e.g., a WEB application, join SQL, HTML, and Java
codes on the server site and additional languages on the client site. For example, the Visual
Studio .Net environment merge languages such as ASP, HTML, C#, J#, and Visual Basic.
Below, is a fragment of a small WEB application, that illustrates such mix of languages.

1 <%@ Page Language="C#"%>
2

3 <s c r i p t runat="server">
4 protec ted void Button1 Cl ick ( ob j e c t sender , EventArgs e ) {
5 Response . Red i rec t ("Home.aspx" ) ;
6 }
7 </s c r i p t>
8

9 <html>
10 <head>
11 <s c r i p t type="text/javascript">
12 f unc t i on ShowModalPopup ( ) {
13 var modal = $ f ind (’ModalPopupExtender’ ) ;
14 modal . show ( ) ;
15 }
16 </s c r i p t>
17 </head>
18 <body>
19 <form id="form1" runat="server">
20 <div>
21 <asp : Button ID="Button1" runat="server"
22 OnClick="Button1_Click" Text="Button" />
23 </div>
24 </form>
25 </body>
26 </html>

This example contains an ASP.Net web page file. The ASP web page that is basically an HTML
file with some special ASP.Net elements and program code. When this page is requested on
an ASP application server, the code is executed first, which results in a translated HTML
code is sent to the client. The page contains C# code in a script region. This code defines
the associated event to the button defined in the ASP code. The page also contains a special
HTML element <asp:Button>, which represents a button. This element has an attribute
ID with the value Button1. The ASP application server uses this ID to allow program code
to refer to the <asp:Button> element and to modify it before it is sent to clients.
To support these mixed-language systems with automated analysis, information from all
different sources ought to be retrieved and commonly processed. Only a system with a global



1.3 Current code analysis challenges 21

view allows for a global correct analysis.
Today’s IDEs fail in cross-language analysis. At best, they can only handle several program-
ming languages individually.
In this context of cross-language analysis, Strein et al. [SKL06] the reason for this gap is the
lack of a common meta-model capturing program information for analysis that is common for a
set of programming languages abstracting from details of each individual language and that is
related to the source code level of abstraction in order to allow for code analysis. The authors
propose an architecture for analysis composed by three major classes: information extracting
front-ends, a component meta-model (model data-structure), and analysis components.
According with the three steps described in the previous section, these three components
matches with the three components referred for the code analysis, where the common meta-
model corresponds to the intermediate representation.
The common meta-model captures program information in a language independent way.
Different language specific front-ends extract information from program written in the re-
spective languages. They use language specific analysis and capture information about the
program in a language specific meta-model first. Information that is relevant for global anal-
ysis is also stored in the common model.
The front-ends retrieve the information represented in the common model to implement low-
level analysis (e.g. to look-up declarations). Different high-level analysis access the common
model. The common model represents information gained from analysis of a complete mixed-
language program. Thus, concrete analysis based on this information are language agnostic
and can handle cross-language relations.
In short, a front-end is responsible for parsing and analyzing specific languages, whereas the
common model stores the relevant analysis information abstracting from language specific
details. The common meta-model is accessed by language independent analysis. This meta-
model does not need to be a union of all language concepts of all languages to support.
Instead, it is sufficient to model only those language concepts, that are relevant to higher
level analysis or to other languages.
Formally, each front-end supports a specific file type F that incorporates a set of supported
languages: F = {L1, L2, ..., Ln}. A file type F -specific front-end FF is defined by a triple:

FF = (φF , {αL1 , αL2 , ..., alphaLn}, {σL1 , σL2 , ..., σLn})

The front-end provides the parsing function φF that sorts file parts according to their lan-
guages into blocks and constructs syntax trees representing the different file blocks.
For each language L of such a block, the front-end defines the syntax mapping αL, that maps
language specific syntax trees ASTL to common meta-model trees AST .
For each language L the semantic analysis function σL constructs common semantic relations
between nodes that are defined by the syntax mapping. σL is based on the common meta-
model M as well as specific syntactic meta-model to handle language specificities. Through
the common meta-modelM it can indirectly access information created by front-ends for other
languages. This way, it can be constructed cross-language relations for arbitrary language
combinations.
The semantical relations include also dynamic relations that could actually only be computed
at runtime, e.g., dynamic types in weakly or dynamic typed languages or dynamic call targets



22 State-of-the-Art: Code Analysis

in object-oriented languages. However, the computation of (non-trivial) dynamic properties
using static-analysis is generally an undecidable problem.
At least the parsing, the syntax mappings, the semantic analysis functions need to be imple-
mented for each new filetype. Also, might be necessary to extend the constructs in order to
capture properties of a new language.
So, the key for a multi-language analysis is a common meta-model to capture the concepts
of each programming language. However, as referred in subsection 1.3.1, parsing languages
with mismatched concepts and with different principles is not an easy task, specially when
dealing with dynamic languages.

1.3.3 Static, Dynamic and Real-Time analysis

Static analysis is usually faster than dynamic analysis but less precise. Therefore it is often
desirable to retain information from static analysis for run-time verification, or to compare
the results of both techniques. It would be desirable to share the same generic algorithm by
static and dynamic analysis.
Martin et al. describe in [MLL05] an error detection tool that checks if a program conforms
to certain design rules. This system automatically generates from a query a pair of comple-
mentary checkers: a static checker that finds all potential matches in an application and a
dynamic checker that traps all matches precisely as they occur.
Slightly more sophisticated combinations often use static analysis to limit the need for in-
strumentation in the dynamic analysis. Path testing tools use this approach as does Martin
et al.’s error detection tool, where “static results are also useful in reducing the number of
instrumentation points for dynamic analysis. They report that the combination proves able
to address a wide range of debugging and program queries.
Gupta et al. [GSH97] present an algorithm that integrates dynamic information from a pro-
gram’s execution into a static analysis. The resulting technique is more precise than static
analysis and less costly than the dynamic analysis.
Heuzeroth et al. [HHHL03] consider the problem of reverse engineering design patterns using
a more integrated combination of static and dynamic analysis. In this case, static is used first
to extract structures regarding potential patterns and then dynamic analysis verifies that
pattern candidates have the correct behavior. Here static analysis does more than improve
the efficiency of the dynamic approach. The two truly compliment each other.
Closer still to true integration is a combination that, in essence, iterates the two to search
for test data input. This technique applies a progression of ever more complex static analysis
with search. This synergistic arrangement allow low-cost static analysis to remove “obvious”
uninteresting paths. It then applies relatively naive, but inexpensive dynamic search. If more
test is needed more sophisticated static and dynamic techniques are applied. All these tech-
niques, however, fall short of a truly integrated combination of static and dynamic techniques.
Future combinations should better integrate the two.
Another kind of analysis that should be considered is the real-time analysis. This research
problem has two distinct facets: compile-time and run-time. Self-healing code3 and instru-
mented code are run-time examples. Here analysis is being done real time while the program

3While no consensus-based definition of the term “self-healing” exists, intuitively, these systems automati-
cally repair internal faults.



1.3 Current code analysis challenges 23

is executing. The archetypical example of this idea is just-in-time compilation.
Looking forward, more such processing can be done in real-time. For instance, code coverage
and memory-leak analysis might be performed, at least partially, at compile time instead of
at run-time. This has the advantage of providing information about a piece of code that is
current focus of the programmer.

Other future challenges in code analysis will emerge, such as the combination of source code
analysis with natural language analysis; real-time verification; and improved support for user
interaction (rather than being asked to make a collection of similar low-level choices, tools will
ask about higher level-patterns that can be used to avoid future questioning). Code analysis
tools will also need to use information from edit, compile, link, and run-time and continue
to include a combination of multiple views of a software system such as structure, behavior,
and run-time snapshots, that is what is being proposed in this thesis.

1.3.4 Analyzing executables

In the past years a considerable amount of research activity to develop static-analysis tools
to find bugs and vulnerabilities. However, most of the effort has been on static-analysis of
source code, and the issue of analyzing executables was ignored. In the security context, this
is particular unfortunate because source code analysis can fail to detect certain vulnerabilities
due to the phenomenon: “What You See Is Not What You eXecute” (WYSINWYX). That is,
there can be a mismatch between what a programmer intends and what is actually executed
on the processor.
Thomas Reps et al. [RBL06] presents a number of reasons why analysis based on source code
do not provide the right level of detail for checking certain kind of properties:

1. Source level tools are only applicable when source is available, which limits their use-
fulness in security applications (e.g. to analyzing code from open-source projects);

2. Analysis based on source code typically make assumptions. This often means that an
analysis does not account for behaviors that are allowed by the compiler;

3. Programs make extensive use of libraries, including Dynamic Linked Libraries (DLL),
which may not be available in source code form. Typically, source-level analysis are
performing using code stubs that model the effects of library calls.

4. Programs are sometimes modified subsequent to compilation, e.g. to perform optimiza-
tions or insert instrumentation code [Wal91]. They also be modified to insert malicious
code. Such modifications are not visible to tools that analyze source code.

5. The source code may have been written in more than one language. This complicates,
as referred in previous subsection, the life of designers of tools that analyze source code
because multiple languages must be supported, each with its own peculiarities.

6. Even if the source code is primarily written in one high-level language, it may contain
inlined assembly code in selected places.

Thus, even if source code is available, a substantial amount of information is hidden from
analysis that start from source code, which can cause bugs, security vulnerabilities, and



24 State-of-the-Art: Code Analysis

malicious behavior to be invisible to such tools. Moreover, a source-level analysis tool that
exert to have greater fidelity to the program that is actually executed would have to duplicate
all of the choices made by the compiler and optimizer, such an approach is destined to fail.
The main goal of the work done and presented in [RBL06] was to recover, from executables,
Intermediate Representations (g̃lossir) that are similar to those that would be available had
one started from source code, but expose the platform-specific details discussed above. Specif-
ically, the authors are interested in recovering IRs that represent the following information:

• Control Flow Graphs (CFGs) with indirect jumps resolved;

• A Call Graph with indirect calls resolved;

• Information about the program’s variables;

• Sets of used, killed, and possibly.killed variables for each CFG node;

• Data dependencies (including dependencies between instructions that involve memory
accesses);

• Type information (e.g. base types, pointer types, and structs).

In IR recovery, there are numerous obstacles that must be overcome. In particular, in
many situations debugging information is not available. So, the authors have designed IR-
recovery techniques that do not rely on debugging information being present and are language-
independent.
One of the main challenges in static analysis of low-level code is to recover information about
memory access operations (e.g. the set of addresses accessed by each operation). The reasons
for this difficulty are:

• While some memory operations use explicit memory addresses in the instruction (easy),
others use indirect accessing via address expressions (difficult);

• Arithmetic on addresses is pervasive. For instance, even when the value of a local
variable is loaded from its slot in an activation record, address arithmetic is performed;

• There is no notion of type at the hardware level: address values are not intrinsically
different from integer values;

• Memory accesses do not have to be aligned, so word-size address values could potentially
be cobbled together from misaligned reads and writes.

As a proof of concepts exposed in [RBL06], the authors implement a set of tools: CodeSurfer/x86,
WPDS++ and Path Inspector.
CodeSurfer/x86 recovers IRs from an executable that are similar to the IRs that source code
analysis tools create.
WPDS++ [KRML04] is a library for answering generalized reachability queries on weighted
pushdown systems (WPDSs) [RSJM05]. This library provides a mechanism for defining and
solving model-checking and data-flow analysis problems.
The Path Inspector is a software model checker built on top of CodeSurfer and WPDS++.



1.3 Current code analysis challenges 25

To recover the IR the authors assume that the executable that is being analyzed follows a
“standard compilation model”. By this, they means that the executable has procedures,
activation records, a global data region, and a heap; might use virtual functions and DLLs;
maintains a runtime stack; each global variable resides at a fixed offset in memory; each
local variable of a procedure f resides at a fixed offset in the activation records for f ; actual
parameters of f are pushed onto the stack by the caller so that the corresponding formal
parameters reside at a fixed offsets in the activation records for f ; the program’s instruction
occupy a fixed area of memory and are not self-modifying.
With this assumptions, this set of tools gave a major contribution in the variable and type
discovery area, especially for aggregates (i.e., structures and arrays). The variable and type
discovery phase of CodeSurfer/x86 recovers such information for variables that are allocated
globally, locally (i.e. on the run-time stack), and dynamically (i.e. from the heap). An
iterative strategy is used; with each round of the analysis, the notion of the program’s variables
and types is refined. The memory model that they use is an abstraction of the concrete
(runtime) address space, and has two parts:

• Memory-regions Although in the concrete semantics the activation records for proce-
dures, the heap, and the memory for global data are all part of one address space, for the
purpose of analysis, they separate the address space into a set of disjoint areas, which
are referred as memory-regions. Each memory-region represents a group of locations
that have similar runtime properties.

• A-loc The second part of the memory model uses a set of proxies for variables, which
are inferred for each memory-region. Such objects are called a-locs, which stands for
“abstract locations”. In addition to the a-locs identified for each memory-region, the
registers represent an additional class of a-locs.

Many efforts have being made to improve the recovery of IRs through the analysis of exe-
cutables. However, there is still a need to study this area to cover other aspects like dynamic
languages, object-oriented programming languages and so on.

1.3.5 Information Retrieval

In the last years, Information Retrieval (IR) was blossomed with the grow of the Internet and
the huge amount of information available in electronic form.
Some applications of IR to code analysis include automatic link extraction [ZB04], con-
cept location [MSRM04], software and website modularization [GMMS07], reverse engineer-
ing [Mar03], software reuse impact analysis [SR03, FN87], quality assessment [LFB06], and
software measurement [Hoe05, HSS01].
These techniques could be used to estimate a language model for each “document” (e.g. a
source file, a class, an error log, etc) and then use a classifier (e.g. a classifier based on the
Bayesian’s theorem which relates the conditional and marginal probabilities of two random
events) to score each. Much of this work has a strong focus on program identifiers [LMFB06].
Unlike other approaches that consider non-source documents (e.g. the requirements), this
approach focuses exclusively on the code. It divides each source code module into two docu-
ments: one includes the comments and the other the executable source code.
To date, the application of IR has concentrated on processing the text from source and non-
source software artifact (which can be just as important as source) using only a few developed



26 State-of-the-Art: Code Analysis

IR techniques. Given the growing importance of non-source documents, source code analysis
should in time, develop new IR-based algorithms specifically designed for dealing with source
code.

1.3.6 Data Mining

Recently the mining of software-related data repositories has started. Techniques such as the
analysis of large amounts of data requires significant computing resources and the application
of techniques such as pattern recognition [PM04], neural networks [LSL96], and decision
trees [GFR06], which have advanced dramatically in recent years.
Most existing techniques has been conducted by software engineering researchers, who often
reuse simple data mining techniques such as association mining and clustering. A wider
selection of data mining techniques should see more general application that removes the
requirement that existing systems fit the features provided by existing mining tools. For
example, API usage patterns often involve more than two API method calls or involve orders
among API method calls, leaving mining for frequent item sets insufficient. Finally, the
mining of API usage patterns in development environments as well as many other tasks pose
requirements that cannot be satisfied by reusing existing simple miners in a black-box way.
Data mining is also being applied to software comprehension. In [KT04], the authors propose
a model and associated method to extract data from C++ source code which is subsequently
to be mined, and evaluates a proposed framework for clustering such data to obtain useful
knowledge.
Thus, there is demand for the adaptation or development of more advance data mining
methods.

1.4 Applications of code analysis

Along the years, the source-code analysis techniques have being used for many engineering
tasks, facing the challenges discussed in the previous sections and many others. This sections
lists the applications of code analysis but only few of them will be discussed in detail.
The applications of code analysis are: architecture recovery [Sar03]; clone detection [MM01,
LLWY03]; comprehension [Rug95]; debugging [FGKS91]; fault location [11005]; middle-
ware [ICG07]; model checking in formal analysis [DHR+07]; model-driven development [FR07];
performance analysis [WFP07]; program evolution [BR00]; quality assessment [RBF96]; re-
verse engineering [CP07]; software maintenance [10405]; symbolic execution [KS06]; test-
ing [Ber07, Har00]; tools and environments [Zel07]; verification [BCC+03]; and web applica-
tion development [Jaz07, FdCHV08].

1.4.1 Debugging

Along the years, debugging and debuggers were a research topic that was decreasing in
strength and increasing in quantity, maybe due to the ever increasing complexity of the
problem imposed by more complex compiler back-ends and new language features, such the
ones previous referred: reflection and dynamic class loading, among others. Some recent de-
bugging innovations that counter this trend includes algorithmic debugging, delta debugging
and statistical debugging.



1.4 Applications of code analysis 27

Algorithmic debugging uses programmer responses to a series of questions generated automat-
ically by the debugger. There are two goals for future algorithmic debuggers: first, reducing
the number of questions asked in order to find the bug, and second, reducing the complexity
of these questions [Sil06].
Delta debugging systematically narrows the difference between two executions: one that
passes a test and one that fails [Zel01]. This is done by combining states from these two
executions to automatically isolate failure causes. At present the combination is statically
defined in terms of the input but a more sophisticated combination might use dependence
information to narrow down the set of potential variables and statements to be considered.
The SOBER tool uses statistical methods to automatically localizer software faults any prior
knowledge of the program semantics [12406]. Unlike existing statistical approaches that select
predicates correlated with program failures, SOBER models the predicate evaluation in both
correct and incorrect executions and regards a predicate as fault-relevant if its evaluation
pattern in incorrect executions significantly diverges from that in correct ones. Featuring a
rationale similar to that of hypothesis testing, SOBER quantifies the fault relevance of each
predicate in a principled way.

1.4.2 Reverse engineering

Reverse engineering is an attempt to analyze source code to determine the know-how which
has been used to create [CP07]. Pattern matching approaches to reverse engineering aim
to incorporate domain knowledge and system documentation in the software architecture
extraction process. Most existing approaches focus on structural relationships (such as the
generalization and association relationships) to find design patterns. However, behavioral
recovery, a more challenging task, should be possible using data mining approaches such as
sequential pattern discovery. This is useful as some patterns are structurally identical but
differ in behavior. Dynamic analysis can be useful in distinguishing such patterns.

1.4.3 Comprehension

The increasing size and complexity of software systems introduces new challenges in compre-
hending the overall structure of programs.
In this context, program comprehension is necessary to get a deeper understanding of a soft-
ware application. This is necessary if the software applications need to be changed or extended
and its original documentation is missing, incomplete, or inconsistent with the implementation
of the software application. Source code analysis as performed by Rigi [MTO+92, TWSM94]
or Software Bookshelf [FHK+02] is one approach for program comprehension. These ap-
proaches generate a source model that enables the generation of high level sequence and col-
laboration diagrams. Since the collaboration between different modules also depends on run-
time data, dynamic tools such as Software Reconnaissance [84801, WC96], BEE++ [BGL93]
or Form [SMS01] have been developed. These approaches identify the code that implements
a certain feature by generating different execution traces.
But, for a comprehensive understanding of any software system, several complementary views
need to be constructed, capturing information about different aspects of the system in ques-
tion. The 4+1 Views model, introduced in [Kru95], for example, identifies four different
architectural views: logical view of the system data, the process view of the system’s thread



28 State-of-the-Art: Code Analysis

of control, the physical view describing the mapping of the software elements onto hardware,
and the development view describing the organization of the software models during devel-
opment. Scenarios of how the system is used in different types of situations are used to
integrate, illustrate and validate the above views.
Chen and Rajlich [CS00] propose a semi-automatic method for feature4 localization, in which
an analyst browse the statically derived System Dependency Graph (SDG). The SDG describes
detailed dependencies among subprograms, types, and variables at the level of expressions
and statements. Even though navigation on the SDG is computer-aided, the analyst takes on
all the search for a feature’s implementation.
Understanding a system’s implementation without prior knowledge is a hard task for reengi-
neers in general. So, along the years many code analysis models have been proposed to aid
program comprehension. However, it would be desirable to have multiple model represent-
ing alternative views. For enabling slicing and abstractions mechanisms cross the models,
the semantic relations between them should be well defined. It would be useful to reflect
modifications in one view directly in the other views. Moreover, for program comprehension,
the environment should allow the user to easily navigate between static and dynamic views
as well as between low and high level views (for instance, the user might want to select a
component in one view and explore its role in the other views).

1.5 Tools for code analysis

Code analysis tools can help to acquire a complete understanding of the structure, behavior
and functionality of the system being modified, or they can assist in the assessment of the
impact of a change. Code analysis tools are also useful in post-maintenance testing (for
example to generate cross-reference information, and to perform data flow analysis) and to
produce specification and design level documents that record for future use the knowledge
gained during a maintenance operation. Under the umbrella of reverse engineering, many
tools are available that support the extraction of system abstractions and design information
out of existing software systems.
In this section it will be described tools that are, in some way, related with the purpose of
this thesis: interconnect multi-level code.

1.5.1 FxCop

FxCop [Mic08b] is an application that analyzes modules coded in assembly (targets modules
included in the .NET Framework Common Language Runtime (CLR)) and reports informa-
tion about the modules, such as possible design, file system localization, performance, and
security improvements. Many of the issues concern violations of the programming and de-
sign rules set forth in the Design Guidelines for Class Library Developers [Mic08a], which are
the Microsoft guidelines for writing robust and easily maintainable code by using the .NET
Framework.
Figure 1.5 shows an working example, where: the left window displays the tree structure
of the parsed assembly; the right window displays de errors and warnings resulting of code

4A feature f is a realized functional requirement.



1.5 Tools for code analysis 29

analysis; and the bottom window displays either the pretty-print of the parsed code or the
explanation for the errors/warnings signaled.
However, the tool has a few drawbacks: it only parses the assembly code and display it
in a pretty form; it analyzes the assembly code and does not infer any kind of knowledge,
because its analysis is based in a set of pre-defined and fixed rules; it does not have any kind of
abstraction/visualization of the intermediate representation, obtained from the parsing, to aid
program comprehension; it only analyzes assembly code file one at a time, not relating them,
restricting the analysis and comprehension of an whole system to its components (usually
a system is composed by many source code and assembly files — as happens with Web
applications).

1.5.2 Lint

Lint [Joh78, Dar86] is a tool to examine C programs that compiled without errors, aiding to
find bugs that had escaped detection.
Lint’s capabilities include:

• complains about variables and functions which are defined but not otherwise mentioned.
An exception is variables which are declared through explicit extern statements but are
never referenced.

• attempts to detect variables that are used before being set. Lint detects local variables
(automatic and register storage classes) whose first use appears physically earlier in the
input file than the first assignment to the variable. It assumes that taking the address
of a variable constitutes a “use” since the actual use may occur at any later time, in a
data dependent fashion.

• attempts to detect unreachable portions of the programs. It will complain about unla-
beled statements immediately following goto, break, continue, or return statements. An
attempt is made to detect loops which can never be left at the bottom, detecting the
special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at
best they are bad style, at worst bugs.

• enforces the type checking rules of C more strictly than the compilers do. The additional
checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and
in the use of enumerations.

Obviously a drawback of the Lint tool is that is limited to the C language and uses a static
approach,; does not covers modern languages with new improvements, such as the notion of
object, class, reflection, or dynamic class loading.

1.5.3 CodeSonar and CodeSurfer

Both CodeSonar [Gra08a] and CodeSurfer [Gra08b] are tools from GramaTech.
CodeSonar is a source code analysis tool that performs a whole-program, interprocedural
analysis on C/C++ code and identifies complex programming bugs that can result in system



30 State-of-the-Art: Code Analysis

Figure 1.5: FxCop tool



1.5 Tools for code analysis 31

crashes, memory corruption, and other serious problems. CodeSonar pinpoints problems at
compile time that can take weeks to identify with traditional testing. The main goals of
CodeSonar are:

• to detect and eliminate bugs early in the development cycle, when problems are easier
and less expensive to fix;

• to avoid having to debug defects that can be pinpointed quickly and simply with auto-
mated analysis; and

• to catch problems that test suites miss.

CodeSurfer, related to CodeSonar, is a program-understanding tool that makes manual review
of code easier and faster. CodeSurfer does a precise analysis. Program constructs — including
preprocessor directives, macros, and C++ templates — are analyzed correctly. CodeSurfer
calculates a variety of representations that can be explored through the graphical user interface
or accessed through the optional programming API. Some of its feature include:

• Whole-Program Analysis: see effects between files;

• Pointer Analysis: see which pointers point to which variables and procedures;

• Call Graphs: see a complete call graph, including functions called indirectly via pointers;

• Impact Analysis: see what statements depend on a selected statement;

• Dataflow Analysis: pinpoint where a variable was assigned its value.

• Control Dependence Analysis: see the code that influences a statement’s execution.

Again, the main drawback of this tools is that are language dependent (is this case of C/C++).



Chapter 2

State-of-the-Art: Slicing

Since Weiser first proposed the notion of slicing in 1979 in his PhD thesis [Wei79], hun-
dreds of papers have been proposed in this area. Tens of variants have been studied, as
well was algorithms to compute them. Different notions of slicing have different properties
and different applications. These notions vary from Weiser’s syntax-preserving static slicing
to amorphous slicing which is not syntax-preserving; algorithms can be based on dataflow
equations, information flow relations or dependence graphs.
Slicing was first developed to facilitate program debugging [M.93, ADS93, WL86], but it is
then found helpful in many aspects of the software development life cycle, including soft-
ware testing [Bin98, HD95], software metrics [OT93, Lak93], software maintenance [CLM96,
GL91a], program comprehension [LFM96, HHF+01], component re-use [BE93, CLM95], pro-
gram integration [BHR95, HPR89b] and so on.
In this chapter, slicing techniques are presented including static slicing, dynamic slicing and
the latest slicing techniques. We also discuss the contribution of each work and compare the
major difference between them.
The remainder of this chapter is organized as follow. In section 2.1 is presented the concept
of program slicing and its variants. In section 2.1.12 are presented the basic methods used to
pose program slicing in practice. In section 2.1.11 are discussed the relationship among the
different slicing techniques discussed in the section 2.1. In section 2.2 is focused in the basic
slicing approaches. In section 2.3 is reviewed the non-static slicing approaches. In section 2.4
is reviewed the applications of program slicing. In section 2.5 is presented some tools using
the program slicing approach.

2.1 The Concept of Program Slicing

In this section it is presented the original static slice definition and also its most popular
variants. At the end of each subsection, the respective concept will be clarified through. The
examples are based on the program introduced hereafter in subsection 2.1.1.

2.1.1 Program example

Listing 2.1 below corresponds to a program, taken from [CCL98], that will be used as the
running example for all the next subsection aiming at illustrating each concept introduced.



2.1 The Concept of Program Slicing 33

That program takes the integers n, test and a sequence of n integers a as input and compute
the integers possum, posprod, negsum and negprod. The integers possum and negsum
accumulate the sum of the positive numbers and of the absolute value of the negative numbers
in the sequence, respectively. The integers posprod and negprod accumulate the products
of the positive numbers and the absolute value of the negative numbers in the sequence,
respectively. Whenever an input a is zero, the greatest sum and the greatest product are
reset if the value of test is non zero. The program prints the greatest sum and the greatest
product computed.

Listing 2.1: Program example 2�
1 main ( ) {
2 int a , t e s t , n , i , posprod , negprod , possum , negsum , sum , prod ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = posprod = negprod = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 posprod ∗= a ;
11 }
12 else i f ( a < 0) {
13 negsum −= a ;
14 negprod ∗= (−a ) ;
15 }
16 else i f ( t e s t ) {
17 i f ( possum >= negsum ) {
18 possum = 0 ;
19 }
20 else { negsum = 0 ; }
21 i f ( posprod >= negprod ) {
22 posprod = 1 ;
23 }
24 else {
25 negprod = 1 ;
26 }
27 }
28 i ++;
29 }
30 i f ( possum >= negsum ) {
31 sum = possum ;
32 }
33 else { sum = negsum ; }
34 i f ( posprod >= negprod ) {
35 prod = posprod ;
36 }
37 else { prod = negprod ; }
38 p r i n t f ("Sum: %d\n" , sum ) ;
39 p r i n t f ("Product: %d\n" , prod ) ;
40 }� �



34 State-of-the-Art: Slicing

2.1.2 Static slicing

Program slicing, in its original version, is a decomposition technique that extracts from a
program the statements relevant to a particular computation. A program slice consists of
the parts of a program that potentially affect the values computed at some point of interest
referred to as a slicing criterion.

Definition 16 A static slicing criterion of a program P consists of a pair C = (p, Vs), where
p is a statement in P and Vs is a subset of the variables in P .

A slicing criterion C = (p, Vs) determines a projection function which selects from any state
trajectory only the ordered pairs starting with p and restricts the variable-to-value mapping
function σ to only the variables in Vs.

Definition 17 Let C = (p, Vs) be a static slicing criterion of a program P and T =< (p1, σ1),
(p2, σ2), ..., (pk, σk) > a state trajectory of P on input I. ∀i, 1 ≤ i ≤ k:

Proj′C(pi, σi) =
{
λ ifpi 6= p
< (pi, σi|Vs) > ifpi = p

where σi|Vs is σi restricted to the domain Vs, and λ is the empty string.

The extension of Proj′ to the entire trajectory is defined as the concatenation of the result
of the application of the function to the single pairs of the trajectory:

ProjC(T ) = Proj′C(p1, σ1)...P roj
′
C(pk, σk)

A program slice is therefore defined behaviorally as any subset of a program which preserves
a specified projections in its behavior.

Definition 18 A static slice of a program P on a static slicing criterion C = (p, Vs) is any
syntactically correct and executable program P ′ that is obtained from P by deleting zero or
more statements, and whenever P halts, on input I, with state trajectory T , then P ′ also
halts, with the same input I, with the trajectory T ′, and ProjC(T ) = ProjC(T ′).

The task of computing program slices is called program slicing.
Weiser defined a program slice S as a reduced, executable program obtained from a program P
removing statements, such that S preserves the original behavior of the program with respect
to a subset of variables of interest and at a given program point.
Executable means that the slice is not only a closure of statements, but also can be com-
piled and run. Non-executable slices are often smaller and thus more helpful in program
comprehension.
The slices mentioned so far are computed by gathering statements and control predicates by
way of a backward traversal of the program, starting at the slicing criterion. Therefore, these
slices are referred to as backward slices [Tip95]. In [BC85], Bergeretti and Carré were the
first to define a notion of a forward slice. A forward slice is a kind of ripple effect analysis,
this is, it consists of all statements and control predicates dependent on the slicing criterion.



2.1 The Concept of Program Slicing 35

A statement is dependent of the slicing criterion if the values computed at that statement
depend on the values computed at the slicing criterion, or if the values computed at the slicing
criterion determine if the statement under consideration is executed or not.
Both backward or forward slices are classified as static slices. Static means that only statically
available information is used for computing slices, this is, all possible executions of the program
are taken into account; no specific input I is taken into account.
Since the original version proposed by Weiser [Wei81], various slightly different notions of
program slices, which are not static, have been proposed, as well as a number of methods
to compute slices. The main reason for this diversity is the fact that different applications
require different program properties of slices.
The last two concepts presented (dicing and chopping in section 2.1.9 and 2.1.10, respectively)
are two variations on the slicing theme but very related to slicing.

Listing 2.2 emphasizes the variable sum (in red color) and the variables affect by its value (in
blue color).

Listing 2.2: Program with sum variable emphasized�
1 main ( ) {
2 int a , t e s t , n , i , posprod , negprod , possum , negsum , sum , prod ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = posprod = negprod = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 posprod ∗= a ;
11 }
12 else i f ( a < 0) {
13 negsum −= a ;
14 negprod ∗= (−a ) ;
15 }
16 else i f ( t e s t ) {
17 i f ( possum >= negsum ) {
18 possum = 0 ;
19 }
20 else { negsum = 0 ; }
21 i f ( posprod >= negprod ) {
22 posprod = 1 ;
23 }
24 else {
25 negprod = 1 ;
26 }
27 }
28 i ++;
29 }
30 i f ( possum >= negsum ) {
31 sum = possum ;
32 }
33 else { sum = negsum ; }



36 State-of-the-Art: Slicing

34 i f ( posprod >= negprod ) {
35 prod = posprod ;
36 }
37 else { prod = negprod ; }
38 p r i n t f ("Sum: %d\n" , sum ) ;
39 p r i n t f ("Product: %d\n" , product ) ;
40 }� �

At a first glance, if we only focus at variable sum in program 2.1 it is easy to infer that
its value depends on values of possum and negsum. Listing 2.3 shows a static slice of the
program 2.1 on the slicing criterion C = (38, sum)1.

Listing 2.3: A static slice of program 2.1�
1 main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 }
11 else i f ( a < 0) {
12 negsum −= a ;
13 }
14 else i f ( t e s t ) {
15 i f ( possum >= negsum ) {
16 possum = 0 ;
17 }
18 else { negsum = 0 ; }
19 }
20 i ++;
21 }
22 i f ( possum >= negsum ) {
23 sum = possum ;
24 }
25 else { sum = negsum ; }
26 p r i n t f ("Sum: %d\n" , sum ) ;
27 }� �

2.1.3 Dynamic slicing

Korel and Laski [KL88, KL90] proposed an alternative slicing definition, named dynamic
slicing, where a slice is constructed with respect to only one execution of the program corre-
sponding just to one given input. It does not include the statements that have no relevance
for that particular input.

Definition 19 A dynamic slicing criterion of a program P executed on input I is a triple
C = (I, p, Vs) where p is a statement in P and Vs is a subset of the variables in P .

1Whenever not ambiguous, statements will be referred by their line numbers.



2.1 The Concept of Program Slicing 37

Definition 20 A dynamic slice of a program P on a dynamic slicing criterion C = (I, p, Vs)
is any syntactically correct and executable program P’ obtained from P by deleting zero or
more statements, and whenever P halts, on input I, with state trajectory T, then P’ also
halts, on the same input I, with state trajectory T’, and Proj(p,Vs)(T ) = Proj(p,Vs)(T

′).

Due to run-time handling of arrays and pointer variables, dynamic slicing treats each ele-
ment of an array individually, whereas static slicing considers each definition or use of any
array element as a definition or use of the entire array [JZR91]. Similarly, dynamic slicing
distinguishes which objects are pointed to by pointer variables during a program execution.
In section 2.3, this concept of dynamic slicing will be detailed and algorithms for its imple-
mentation will be also presented.

Listing 2.4 shows a dynamic slice of the program 2.1 on the slicing criterion C = (I, 38, sum)
where I =< (test, 0), (n, 2), (a1, 0), (a2, 2) >2.

Listing 2.4: A dynamic slice of program 2.1�
1 main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 }
11 i ++;
12 }
13 i f ( possum >= negsum ) {
14 sum = possum ;
15 }
16 p r i n t f ("Sum: %d\n" , sum ) ;
17 }� �

In the first loop iteration, hence the value of a is zero and so none of the statements in the
if expression is executed, the whole conditional branch is excluded from the program slice.
However, at the second loop iteration, the if statement is executed and so is included in the
program slice, being excluded the else statements and the last else if statements.
Notice that the dynamic slicing in Listing 2.4 is a subprogram of the static slice in Listing 2.3
— all the statements that will never be executed, under the values of the input, are excluded.

2.1.4 Quasi-static slicing

Venkastesh introduced in 1991 the quasi-static slicing in [Ven91], which is a slicing method
between static slicing and dynamic slicing. A quasi-static slice is constructed with respect to
some values of the input data provided to the program. It is used to analyze the behavior of
the program when some input variables are fixed while others vary.

2The subscripts refer to different occurrences of the input variable a within the different loop iterations



38 State-of-the-Art: Slicing

Definition 21 A quasi-static slicing criterion of a program P is a quadruple C = (V ′i , I
′, p, Vs)

where p is a statement in P ; Vi is the set of input variables of a program P and V ′i ⊆ Vi; and
I ′ is the input data just for the subset of variables in V ′i .

Definition 22 A quasi-static slice of a program P on a quasi-static slicing criterion C =
(V ′i , I

′, p, V ) is any syntactically correct and executable program P’ that is obtained from P
by deleting zero or more statements, and whenever P halts, on input I, with state trajectory
T, then P’ also halts, on input I, with state trajectory T’, and Proj(p,V )(T ) = Proj(p,V )(T ′).

Definition 23 Let Vi be the set of input variables of a program P and V ′i ⊆ Vi. Let I ′ be an
input for the variables in V ′i . A completion I of I ′ is any input for the variables in Vi, such
that I ′ ⊆ I.

Each completion I of I ′ identifies a trajectory T . We can associate I ′ with the set of trajec-
tories that are produced by its completions. A quasi-static slice is any subset of the program
which reproduces the original behavior on each of these trajectories.
It is straightforward to see that the quasi-static slicing includes both the static and dynamic
slicing’s. Indeed, when the set of variables V ′i is empty, quasi-static slicing reduces to static
slicing, while for V ′i = Vi a quasi-static slice coincides with a dynamic slice.

According to De Lucia in [Luc01], the notion of quasi static slicing is closely related to partial
evaluation or mixed computation [BJE88], a technique to specialize programs with respect to
partial inputs. By specifying the values of some of the input variables, constant propagation
and simplification can be used to reduce expressions to constants. In this way, the values of
some program predicates can be evaluated, thus allowing the deletion of branches which are
not executed on the particular partial input. Quasi static slices are computed on specialized
programs.
As told above, the need for quasi-static slicing arises from applications where the value of
some input variables is fixed while the behavior of the program must be analyzed when other
input values vary.
Listing 2.5 shows a quasi-static slice of the program 2.1 on the slicing criterion C = (I ′, 38, sum)
where I ′ =< (test, 0) >.

Listing 2.5: A quasi-static slice of program 2.1�
1 main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 }
11 else i f ( a < 0) {
12 negsum −= a ;
13 }
14 i ++;



2.1 The Concept of Program Slicing 39

15 }
16 i f ( possum >= negsum ) {
17 sum = possum ;
18 }
19 else { sum = negsum ; }
20 p r i n t f ("Sum: %d\n" , sum ) ;
21 }� �

Hence the value of variable test is zero, the else if branch is excluded from static slice. All
the other conditional branches stay as part of the final quasi-static slice.

2.1.5 Conditioned slicing

Canfora et al presented the conditioned slicing in [CCL98]. A conditioned slice consists of
a subset of program statements which preserves the behavior of the original program with
respect to a slicing criterion for any set of program executions. The set of initial states of the
program that characterize these executions is specified in terms of a first order logic formula
on the input.

Definition 24 Let Vi be the set of input variables of a program P , and F be a first order
logic formula on the variables in Vi. A conditioned slicing criterion of a program P is a triple
C = (F (Vi), p, Vs) where p is a statement in P and Vs is the subset of the variables in P which
will be analyzed in the slice.

Definition 25 Let Vi be a set of input variables of a program P and F (Vi) be a first order
logic formula on the variables in Vi. A satisfaction for F (Vi) is any partial input I to the
program for the variables in Vi that satisfies the formula F . The satisfaction set S(F (Vi)) is
the set of all possible satisfactions for F (Vi).

If V ′i is a subset of the input variables of the program P and F (V ′i ) is a first order logic
formula on the variables in V ′i , each completion I ∈ S(F (Vi)) of I ′ ∈ S(F (Vi)), identifies a
trajectory T . A conditioned slice is any subset of the program which reproduces the original
behavior on each of these trajectories.

Definition 26 A conditioned slice of a program P on a conditioned slicing criterion C =
(F (Vi), p, Vs) is any syntactically correct and executable program P’ such that: P ′ is obtained
from P by deleting zero or more statements; whenever P halts, on input I, with state trajectory
T, where I ∈ C(I ′, V ′i ), I ′ ∈ S(F (Vi)), V ′i is the set of input variables of P , and S is the
satisfaction set, then P’ also halts, on input I, with state trajectory T’, and Proj(p,Vs)(T ) =
Proj(p,Vs)(T

′).

A conditioned slice can be computed by first simplifying the program w.r.t. the condition
on the input (i.e., discarding infeasible paths with respect to the input condition) and then
computing a slice on the reduced program. A symbolic executor [Kin76] can be used to
compute the reduced program, also called conditioned program in [CCLL94]. Although the
identification of the infeasible paths of a conditioned program is in general an undecidable
problem, in most cases implications between conditions can be automatically evaluated by



40 State-of-the-Art: Slicing

a theorem prover. In [CCL98] conditioned slices are interactively computed: the software
engineer is required to make decisions that the symbolic executor cannot make.
Conditioned slicing allows a better decomposition of the program giving human readers the
possibility to analyze code fragments with respect to different perspectives.
Actually, conditioned slicing is a framework of statement deleting3 based methods, this is,
the conditioned slicing criterion can be specified to obtain any form of slice.

Listing 2.6 shows a conditioned slice of the program 2.1 on the slicing criterion C = (F (Vi), 38, sum)
where Vi = {n}

⋃
1≤i≤n{ai} and F (Vi) = ∀i, 1 ≤ i ≤ n, ai > 0. The condition F imposes that

all input values for the variable a are positive. This allows to be discard from the static slice
of Listing 2.1 all the statements dependent on the condition a < 0 or a == 0.

Listing 2.6: A conditioned slice of program 2.1�
1 main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 }
11 i ++;
12 }
13 i f ( possum >= negsum ) {
14 sum = possum ;
15 }
16 p r i n t f ("Sum: %d\n" , sum ) ;
17 }� �

2.1.6 Simultaneous dynamic slicing

Hall proposed the simultaneous dynamic slicing in [Hal95], which computes slices with respect
to a set of program executions. This slicing method is called simultaneous dynamic program
slicing because it extends dynamic slicing and simultaneously applies it to a set of test cases,
rather than just one test case.

Definition 27 Let {T1, T2, ..., Tk} be a set of trajectories of length l1, l2, lk, respectively, of a
program P on input {I1, I2, ..., Ik}. A simultaneous dynamic slicing criterion of P executed on
each of the input Ij, 1 ≤ j ≤ k, is a triple C = ({I1, I2, ..., Ik}, p, Vs) where p is a statement
in P and Vs is a subset of the variables in P .

Definition 28 A simultaneous dynamic slice of a program P on a simultaneous dynamic
slicing criterion C = ({I1, I2, ..., Ik}, p, V ) is any syntactically correct and executable program
P’ that is obtained from P by deleting zero or more statements, and whenever P halts, on

3Statement deletion means deleting a statement or a control predicate from a program.



2.1 The Concept of Program Slicing 41

input Ij, 1 ≤ j ≤ m, with state trajectory Tj, then P’ also halts, on input Ij, with state
trajectory T ′j, and Proj(p,Vs)(Tj) = Proj(p,Vs)(T

′
j).

A simultaneous program slice on a set of tests is not simply given by the union of the dynamic
slices on the component test cases.
In [Hal95], Hall proposed an iterative algorithm that, starting from an initial set of state-
ments, incrementally builds the simultaneous dynamic slice, by computing at each iteration
a larger dynamic slice.

Listing 2.7 shows a simultaneous dynamic slice of the program 2.1 on the slicing criterion C =
({I1, I2}, 38, sum) where I1 =< (test, 0), (n, 2), (a1, 0), (a2, 0) > and I2 =< (test, 1), (n, 2), (a1, 0), (a2, 2) >.

Listing 2.7: A simultaneous dynamic slice of program 2.1�
1 main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 }
11 else i f ( a < 0) {}
12 else i f ( t e s t ) {
13 i f ( possum >= negsum ) {
14 possum = 0 ;
15 }
16 }
17 i ++;
18 }
19 i f ( possum >= negsum ) {
20 sum = possum ;
21 }
22 p r i n t f ("Sum: %d\n" , sum ) ;
23 }� �

2.1.7 Union slicing

Beszedes et al. [BFS+02, BG02] introduced the concept of union slice and the computing
algorithm. A union slice is the union of dynamic slices for a finite set of test cases; actually
is very similar to simultaneous dynamic program slicing. A union slice is an approximation
of a static slice and is much smaller than the static one.
The union slicing criterion is the same as the considered in the simultaneous dynamic slicing.

Definition 29 An union slice of a program P with different executions using the inputs
X = {I1, I2, ..., In}, w.r.t. a slicing criterion C = (X, p, Vs), is defined as follows:

UnionSlice(X, p, Vs) =
⋃

Ik∈X

DynSlice(Ik, p, Vs)



42 State-of-the-Art: Slicing

where DynSlice(Ik, i, Vs) contains those statements that influenced the values of the variables
in V at the specific statement p.
Combined with static slices, the union slices can help to reduce the size of program parts
that need to be investigated by concentrating on the most important parts first. The authors
performed a series of experiments with three medium size C programs. The results suggest
that union slices are in most cases far smaller than the static slices, and that the growth rate
of union slices (by adding more test cases) significantly declines after several representative
executions of the program. Thus, union slices are useful in software maintenance.
Daninic et al [DLH04] presented an algorithm for computing executable union slices, using
conditioned slicing. The work showed that the executable union slices are not only applicable
for program comprehension, but also for component reuse guided by software testing.
De Lucia et al [LHHK03] studied the properties of unions of slices and found that the union
of two static slices in not necessarily a valid slice, based on Weiser’s definition of a static
slice. They argue that a way to get valid union slices is to propose algorithms that take
into account simultaneously the execution traces of the slicing criteria, as in the simultaneous
dynamic slicing algorithm proposed by Hall [Hal95].
Listing 2.8 shows an union slice of the program 2.1 on the slicing criterion C = (I1

⋃
I2, 38, sum)

where I1 =< (test, 0), (n, 2), (a1, 0), (a2, 2) > and I2 =< (test, 0), (n, 3), (a1, 1), (a2, 0), (a3,−1) >.

Listing 2.8: An union slice of program 2.1�
1 main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;
3 s can f ("%d" ,& t e s t ) ; s can f ("%d" ,&n ) ;
4 i = 1 ;
5 possum = negsum = 0 ;
6 while ( i <= n) {
7 s can f ("%d" ,&a ) ;
8 i f ( a > 0) {
9 possum += a ;

10 }
11 else i f ( a < 0) {
12 negsum −= a ;
13 }
14 i ++;
15 }
16 i f ( possum >= negsum ) {
17 sum = possum ;
18 }
19 p r i n t f ("Sum: %d\n" , sum ) ;
20 }� �

2.1.8 Other concepts

There are a number of other related approaches that use different definitions of slicing to com-
pute subsets of program statements that exhibit a particular behavior. All these approaches
add information to the slicing criterion to reduce the size of the computed slices.



2.1 The Concept of Program Slicing 43

Constrained slicing

Field et al introduce in [FRT95] the concept of constrained slice to indicate slices that
can be computed w.r.t. any set of constraints. Their approach is based on an intermediate
representation for imperative programs, named PIM, and exploits graph rewriting techniques
based on dynamic dependence tracking that model symbolic execution. The slices extracted
are not executable. The authors are interested in the semantic aspect of more complex
program transformations rather than in simple statement deletion.

Amorphous slicing

Harman et al introduced amorphous slicing in [HBD03]. Amorphous slicing removes the
limitation of statement deletion as the only means of simplification. Like a traditional slice, an
amorphous program serves a projection of the semantics of the original program from which
it is constructed. However, it can be computed by applying a broader range of transformation
rules, including statement deletion.

Hybrid slicing

Gupta et al presented the hybrid slicing in [GSH97], which incorporate both static and
dynamic information. They proposed a slicing technique that exploits information readily
available during debugging when computing slices statically.

2.1.9 Dicing

Dicing was a concept first introduced by Lyle et al in [LW86]. A program dice is defined
as the set difference between the static slices of an incorrect variable and that of a correct
variable, this is, the set of statements that potentially affect the computation of incorrect
variable while do not affect the computation of the correct one. It is a fault location technique
for further reducing the number of statements that need to be examined when debugging.
Later, in 1993, Chen et al [CC93], have proposed the dynamic program dicing.

2.1.10 Chopping

Chopping, introduced by Jackson [JR94], is a generalization of slicing. Although expressible
as a combination of intersections and unions of forward and backward slices, chopping seems
to be a fairly natural notion in its own right.
Two sets of instances form the criterion: source, a set of definitions, and sink, a set of uses.
Chopping a program identifies a subset of its statements that account for all influences of the
source on the sink. A conventional backward slice is a chop in which all the sink instances
belong to the same site, and the source set contains every variable at every site. A chop is
confined to a single procedure. The instances in source and sink must be within the proce-
dure, and chopping only identifies statements in the text of the procedure itself.

After a survey of all the variants of the original slicing concept (static slicing) and its most
important variant — the dynamic slicing — will be detailed in section 2.2 and 2.3 the original
approach.



44 State-of-the-Art: Slicing

Figure 2.1: Relationships between program slicing models

2.1.11 Relationships among program slicing models

The slicing models discussed in the previous section can be classified according to a partial
ordering relation, called subsume relation, based on the sets of program inputs specified by
the slicing criteria. Indeed, for each of these slicing models, a slice preserves the behavior of
the original program on all the trajectories identified by the set of program inputs specified
by the slicing criterion.
In 1998, Canfora et al [CCL98] presented the concept of subsume relation.

Definition 30 A program slicing model SM1 subsumes a program slicing model SM2 if for
each slicing criterion defined according to SM2 there exists an equivalent slicing criterion
defined according to SM1 that specifies the same set of program inputs.

A slicing model is stronger than the slicing models it subsumes, because it is able to specify
and compute slices w.r.t. a broader set of slicing criteria. Consequently, any slice computed
according to a slicing model can also be computed with a stronger model. The subsume
relation defines an hierarchy on the statement deletion based.
According to their definition of subsumes relation, the conditioned slicing subsumes any other
model. Figure 2.1.11 shows the subsume hierarchy.
It is argued that the set of slicing models (static, dynamic, quasi-static, simultaneous, condi-
tioned) is partially ordered with respect to subsume relation:

• Quasi-static slicing subsumes static slicing;

• Quasi-static slicing subsumes dynamic slicing;

• Simultaneous dynamic slicing subsumes dynamic slicing;

• Conditioned slicing subsumes quasi-static;

• Conditioned slicing subsumes simultaneous dynamic slicing; and

• There is no relation between static slicing and dynamic slicing and between quasi-static
slicing and simultaneous dynamic slicing.

In an attempt to formalize slicing concepts, Binkley et al defined in [BDG+04, BDG+06]
subsume relation in terms of syntactic ordering and semantic equivalence. This formalization
establish a precise relationship between various forms of dynamic slicing and static slicing,
counteracting the Canfora affirmation that there is no relation between static and dynamic
slicing.



2.2 Static slicing 45

2.1.12 Methods for Program Slicing

According to Tip [Tip95] classification, there are three major kinds of approaches in program
slicing:

• Dataflow equations;

• Information-flow relations; and

• Dependence graph based approaches.

The Weiser’s original approach is a kind of method based on iteration of dataflow equations.
In this approach, slices are computed in an iterative process, by computing consecutive sets of
relevant statements for each node in the CFG. The algorithm first computes directly relevant
statements for each node in the CFG, and then indirectly relevant statements are gradually
added to the slice. The process stops when no more relevant statements are found.
Information flow relations for programs presented by Bergeretti [BC85] can also be used to
compute slices. In this kind of approach, several types of relations are defined and computed
in a syntax-directed, bottom-up manner. With these information-flow relations, slices can be
obtained by relational calculus.
The most popular kind of slicing approach, the dependence graph approach, was proposed
by Ottenstein and Ottenstein [OO84] and restate the problem of static slicing in terms of
a reachability problem in a PDG. A slicing criterion is identified with a vertex in the PDG,
and a slice correspond to all PDG vertices from which the vertex under consideration can
be reached. Usually, the data dependencies used in program slicing are flow dependencies
corresponding to the DEF and REF sets defined in section 1.1.
In these approaches using PDG, slicing can be divided into two steps. In the first step, the
dependence graph of the program are constructed, and then the algorithm produce slices by
doing graph reachability analysis over it.
As defined in section 1.1, a dependence graph is a directed graph using vertexes to represent
program statements and edges to represent dependencies. So, the graph reachability analysis
can be done by traversing edges on the dependence graph from a node representing the slicing
criteria. A dependence graph can represent not only dependencies but also other relations
such as process communications and so on. Different slices can be obtained by constructing
different dependence graphs.

2.2 Static slicing

In this section it is discussed the basic static slicing approaches. Each subsection is divided
according to the methods presented in previous section.

2.2.1 Basic slicing algorithms

In this subsection, are presented algorithms for static slicing of structured programs without
non-scalar variables, procedures and interprocess communication.



46 State-of-the-Art: Slicing

Dataflow equations

The original concept of program slicing [Wei81] was first proposed as the iterative solution to
a dataflow problem specified using the program’s control flow graph (CFG).

Definition 31 A slice is statement-minimal if no other slice for the same criterion contains
fewer statements.

Weiser argues that statement-minimal slices are not necessarily unique, and that the problem
of determining statement-minimal slices is undecidable.
Many researchers have investigated this problem, and various approaches result in good ap-
proximations. Some techniques are based on data-flow equations [KL88, LR87, Wei81] while
others use graph representations of the program [AH90, Agr94, BH93a, Bin93, CF94, HRB88,
JR94].
An approximation of statement-minimal slices are computed in an iterative process [Tip95], by
computing consecutive sets of relevant variables for each node in the CFG. First, the directly
relevant variables are determined, by only taking data dependencies into account. Below, the
notation i→CFG j indicates the existence of an edge in the CFG from node i to node j. For
a slicing criterion C = (n, V ) (where n denotes the number line), the set of directly relevant
variables at node i of the CFG, R0

C(i) is defined as follows:

• R0
C(i) = V , when i = n;

• For every i→C FGj, R0
C(i) contains all variables v such that either

- v ∈ R0
C(j) and v 6∈ DEF (i);

- v ∈ REF (i) and DEF (i)
⋂
R0

C(j) 6= ∅.

From this, a set of directly relevant statements, S0
C , is derived. S0

C is defined as the set of all
nodes i which define a variable v that is relevant at a successor of i in the CFG:

S0
C = {i|DEF (i)

⋂
R0

C(j) 6= ∅, i→CFG j}

Information-flow relations

Bergeretti and Carré, in [BC85], proposed another approach that defines slices in terms of
information-flow relations derived from a program in a syntax-directed fashion. The authors
have defined a set of information-flow relations for sequences of statements, conditional state-
ments and loop statements.

Dependence graph based approach

It were Karl Ottenstein and Linda Ottenstein [OO84] the first of many to define slicing as a
reachability problem in a dependence graph representation of a program. They use the PDG
for static slicing of single-procedure programs. The statements and expressions of a program
constitute the vertices of a PDG, and edges correspond to data dependencies and control
dependencies between statements (section 1.1). The key issue is that the partial ordering of



2.2 Static slicing 47

the vertices induced by the dependence edges must be obeyed so as to preserve the semantics
of the program.
In the PDG’s of Horwitz et al [HPR88, HRB88] a distinction is made between loop-carried and
loop-independent flow dependencies. It is argued that the PDG variant of [HPR88] is minimal
in the sense that removing any of the dependence edges, or disregarding the distinction
between loop-carried and loop-independent flow edges would result in inequivalent programs
having isomorphic PDGs.
The PDG variant considered in [OO84] shows considerably more detain than that of [HRB88].
In particular, there is a vertex for each (sub)expression in the program, and file descriptors
appear explicitly as well.
In all dependence graph based approaches, the slicing criterion is identified with a vertex v
in the PDG.

2.2.2 Slicing programs with arbitrary control flow

Dataflow equations

In intraprocedural program slicing, the critical problem is to determine which predicates to
be included in the slice when the program contains jump statements.
Lyle reports in [Lyl84] that the original slicing algorithm proposed by Weiser was able to
determine which predicates to be included in the slice even when the program contains jump
statements, It did not, however, make any attempt to determine the relevant jump statements
themselves to be included in the slice. Thus, Weiser’s algorithm may yields incorrect slices
in the presence of unstructured control flow. Lyle presents a conservative solution for dealing
with goto statements. His algorithm produces slices including every goto statement that has
a non-empty set of active variables associated with it.
Gallagher [Gal90, GL91b] also use a variation of Weiser’s method. In the algorithm, a goto
statement is included in the slice if it jumps to a label of an included statement.
Jian, Zhou and Robson [JZR91] have also proposed a set of rules to determine which jump
statements to include in a slice.
Agrawal shows in [Agr94] that either Gallagher algorithm or Jian et al algorithm does not
produce correct slices in all cases.

Dependence graph based approach

Ball and Horwitz [BH93a, Bal93] and Choi and Ferrante [CF94] discovered independently
that conventional PDG-based slicing algorithms produce incorrect results in the presence of
unstructured control flow: slices may compute values at the criterion that differ from what
the original program does. These problems are due to the fact that the algorithms do not
determine correctly when unconditional jumps such as break, goto, and continue statements
are required in a slice. They proposed two similar algorithms to determine the relevant jump
statements to include in a slice. Both of them require that jumps be represented as pseudo-
predicates and the control dependence graph of a program be constructed from an augmented
flow graph of the program. However, Choi and Ferrante distinguish two disadvantages of the
slicing approach based on augmented PDGs (APDG). First, APDGs requires more space than
conventional PDGsand their construction takes more time. Second, non-executable control



48 State-of-the-Art: Slicing

dependence edges gives rise to spurious dependencies in some cases.
In their second approach, Choi and Ferrante also proposed another algorithm to construct an
executable slice in the presence of jump statements when a “slice” is not constrained to be
a subprogram of the original one. The algorithm constructs new jump statements to add to
the slice to ensure that other statement in it are executed in the correct order.
The main difference between the approach by Ball and Horwitz and the first approach of Choi
and Ferrante is that the latter use a slightly more limited example language: conditional and
unconditional goto’s are present, but no structured control flow constructs. Although Choi
and Ferrante argue that these constructs can be transformed into conditional and uncon-
ditional goto’s. Ball and Horwitz show that, for certain cases, this results in overly large
slices.
Both groups have been proposed two formal proofs to show that their algorithms compute
correct slices.
Agrawal [Agr94] proposed an algorithm has the same precision as that of the above two
algorithms. He observes that a conditional jump statement of the form if P then goto L
must be included in the slice if the predicate P is in the slice because another statement in
the slice is control dependent on it. This algorithm is appealing in that it leaves the flow-
graph and the PDG of the program intact and uses a separate graph to store the additional
required information. It lends itself to substantial simplification, when the program under
consideration is a structured program. Also, the simplified algorithm directly leads to a
conservative approximation algorithm that permits on-the-fly detection of the relevant jump
statements while applying the conventional slicing algorithms.
Harman and Danicic [HD98] defined an extension of Agrawal’s algorithm that produces
smaller slices by using a refined criterion for adding jump statements (from the original
program) to the slice computed using Ottenstein’s algorithm for building and slicing the
PDG [OO84].
Kumar and Horwitz [KH02] extended the previous work on program slicing by providing a new
definition of “correct” slices, by introducing a representation for C-style switch statements,
and by defining a new way to compute control dependencies and to slice a PDG so as to
compute more precise slices of programs that include jumps and switches.

2.2.3 Interprocedural slicing methods

Dataflow equations

Weiser describes a two-step approach for computing interprocedural static slices in [Wei81].
In the first step, a slice is computed for the procedure P which contains the original slicing
criterion. The effect of a procedure call on the set of relevant variables is approximated using
interprocedural summary information [Bar78]. For a procedure P , this information consists
of a set MOD(P ) of variables that may be modified by P , and a set of USE(P ) of variables
that may be used by P , taken into account any procedures called by P . The fact of Weiser’s
algorithm does not take into account which output parameters are dependent on which input
parameters is a cause of imprecision. This is illustrated in program 2.9 listed below. The
Weiser’s interprocedural slicing algorithm will compute the slice listed in program 2.10. This
slice contains the statement int a = 17; due to the spurious dependence between variable
a before the call, and variable d after the call.



2.2 Static slicing 49

Listing 2.9: Interprocedural sample program�
1 void s impleAss ign ( int v , int w, int x , int y ) {
2 x = v ;
3 y = w;
4 }
5

6 main ( ) {
7 int a = 17 ;
8 int b = 18 ;
9 int c , d ;

10 s impleAss ign ( a , b , c , d ) ;
11 p r i n t f ("Result: %d\n" , d ) ;
12 }� �

Listing 2.10: Weiser’s Interprocedural slice of program 2.9�
1 void s impleAss ign ( int v , int w, int x , int y ) {
2 y = w;
3 }
4

5 main ( ) {
6 int a = 17 ;
7 int b = 18 ;
8 int c , d ;
9 s impleAss ign ( a , b , c , d ) ;

10 }� �
In the second step of Weiser’s algorithm new criteria are generated for:

a) Procedures Q called by P ;

b) Procedures R that call P .

The two steps described above are repeated until no new criteria occur. The criteria of
a) consists of all pairs (nQ, VQ) where nQ is the last statement of Q and VQ is the set of
relevant variables in P which is in the scope of Q (where formals are substituted by actual).
The criteria of b) consists of all pairs (nR, VR) such that NR is a call to P in R, and VR is
the set of relevant variables at the first statement of P which is in the scope of R (actuals
are substituted by formals). The generation of new criteria is formalized by way of functions
UP (S) andDOWN(S) which map a set S of slicing criteria in a procedure P to a set of criteria
in procedures that call P , and a set of criteria in procedures called by P , respectively. The
closure UP

⋃
DOWN*({C}) contains all criteria necessary to compute an interprocedural

slice, given an initial criterion C. Worst-case assumptions have to be made when a program
calls external procedures, and the source code is unavailable.
Horwitz, Reps and Binkley report that Weiser’s algorithm for interprocedural slicing is un-
necessarily inaccurate because of what they refer to as the “calling context” problem, i.e., the
transitive closure operation fails to account for the calling context of a called procedure. In
a nutshell, the problem is that when the computation ’descends’ into a procedure Q that is
called from a procedure Q, not only P . This corresponds to execution paths which enter Q
from P and exit Q to a different procedure P ′.



50 State-of-the-Art: Slicing

Tip [Tip95] conjecture that the calling context problem of Weiser’s algorithm can be fixed
by observing that the criteria in the UP sets are only needed to include procedures that
transitively call the procedure containing the initial criterion. Once this is done, only DOWN
sets need to be computed.
Hwang, Du and Chou [JDC88] proposed an iterative solution for interprocedural static slicing
based on replacing recursive calls by instances of the procedure body. The slice is recomputed
in each iteration until a fixed point is found (i.e., no new statement are added to a slice).
This approach do not suffer from the calling context problem because expansion of recursive
calls does not lead to considering infeasible execution paths. However, Reps [RHSR94, Rep96]
showed that for a certain family P k of recursive programs, this algorithm takes time O(2k),
i.e., exponential in the length of the program.

Dependence graph based approach

Interprocedural slicing as a graph reachability problem requires extending of the PDG and,
unlike the addition of data types or unstructured control flow, it also requires modifying
the slicing algorithm. The PDG modifications represents call statements, procedure entry,
parameters, and parameter passing. The algorithm change is necessary to correctly account
for procedure calling context.
Horwitzs, Reps and Binkley [HRB88] introduce the notion of System Dependence Graph
(SDG) for the dependence graphs that represents multi-procedure programs. Figure 2.2.3
shows the SDG corresponding to the program 2.11 listed below.

Listing 2.11: Example system and its SDG�
1 void Add( int∗ a , int b) {
2 ∗a = ∗a + b ;
3 }
4

5 void Increment ( int z ) {
6 Add(&z , 1 ) ;
7 }
8

9 void A( int x , int y ) {
10 Add(&x , y ) ;
11 Increment(&y ) ;
12 }
13

14 void main ( ) {
15 int sum = 0 ;
16 int i = 1 ;
17 while ( i < 11) {
18 A(&sum , i ) ;
19 }
20 p r i n t f ("Sum: %d\n" , sum ) ;
21 }� �

Interprocedural slicing can be defined as a reachability problem using the SDG, just as in-
traprocedural slicing is defined as a reachability problem using the PDG. The slices obtained
using this approach are the same as those obtained using Weiser’s interprocedural slicing



2.2 Static slicing 51

Figure 2.2: Example system and its SDG



52 State-of-the-Art: Slicing

Figure 2.3: The SDG from Figure 2.2.3 sliced w.r.t. the formal-out vertex for parameter z in
procedure Increment, together with the system to which it corresponds.

method [Wei84]. However, is approach does not produce slices that are as precise as possible,
because it considers paths in the graph that are not possible execution paths. For example,
there is a path in the SDG shown in Figure 2.2.3 from the vertex of procedure main labeled
“xin = sum” to the vertex of main labeled “i = yout”. However this path corresponds to
procedure Add being called by procedure A, returning to procedure Increment, which is not
possible. The value of i after the call to procedure A is independent of the value of sum
before the call, and so the vertex labeled “xin = sum” should not be included in the slice
w.r.t. the vertex labeled “i = yout”. Figure 2.2.3 shows this slice.
To achieve more precise interprocedural slices, an interprocedural slice w.r.t. vertex s is
computed using two passes over the graph. Summary edges permit moving across a call
procedure; thus, there is no need to keep track of calling context explicitly to ensure that
only legal execution paths are traversed. Both passes operate on the SDG, traversing edges
to find the set of vertices that can reach a given set of vertices along certain kinds of edges.
Informally, if s is in procedure P then pass 1 identifies vertices that reach s and are either



2.2 Static slicing 53

in P itself or procedures that (transitively) call P [BG96] . The traversal in pass 1 does
not descend into procedures called by P or its callers. Pass 2 identifies vertices in called
procedures that induce the summary edges used to move across call sites in pass 1.
The traversal in pass 1 starts from s and goes backwards (from target to source) along
flow edges, control edges, call edges, summary edges, and parameter-in edges, but not along
parameter-out edges. The traversal in pass 2 starts from all vertices reached in pass 1 and
goes backwards along flow edges, control edges, summary edges, and parameter-out edges, but
not along call, or parameter-in edges. The result of an interprocedural slice of a graph G with
respect to vertex set S, denoted by Slice(G,S), consists of the sets of vertices encountered
during by pass 1 and pass 2, and the set of edges induce by this vertex set.
Slice(G,S) is a subgraph ofG. However it may be infeasible (i.e., it may be not the SDG of any
system). The problem arises when Slice(G,S) includes mismatched parameters: different call-
sites on a procedure include different parameters. There are two causes of mismatches: missing
actual-in vertices and missing actual-out vertices. Making such systems syntactically legal
by simply adding missing parameters leaves semantically unsatisfactory systems [Bin93]. In
order to include the program components necessary to compute a safe value for the parameter
represented at missing actual-in vertex v, the vertices in the pass 2 slice of G taken with
respect to v must be added to the original slice. A pass 2 slice includes the minimal number
of components necessary to produce a semantically correct system. The addition of pass 2
slices is repeated until no further actual-in vertex mismatches exist.
The second cause of parameter mismatches is missing actual-out vertices. Because missing
actual-out vertices represent dead-code no additional slicing is necessary. Actual-out mis-
matches are removed by simply adding missing actual-out vertices to the slice.
The details of this algorithm are given in [Bin93].
Several extensions of Horwitz-Reps-Binkley (HRB) algorithm have been presented. Lakho-
tia [Lak92] adapted the idea of lattice theory to interprocedural slicing and presented a slicing
algorithm based on the augmented SDG in which a tag is contained for each vertex of SDG.
Different from HRB algorithm, this one only need one traverse on the SDG. Binkley extended
HRB algorithm to produce executable interprocedural program slices in [Bin93].
Clarke et al. [CFR+99] extended HRB algorithm to VHDL (Very High Speed Integrated Cir-
cuit Hardware Description Language), using an approach based on capturing the operational
semantics of VHDL in traditional constructs. Their algorithm first maps the VHDL constructs
onto traditional program language constructs and then slices using a language-independent
approach.
Orso et al. [OSH01] proposed a SDG-based incremental slicing technique, in which slices are
computed based on types of data dependencies. They classified the data dependencies into
different types. The scope of a slice can be increased in steps, by incorporating additional
types of data dependencies at each steps.
To the problem of SDG constructing, Forgacsy and Gyimóthy [FG] presented a method to
reduce the SDG. Livadas and Croll [LC94] extended the SDG and proposed a method to
construct SDG directly from parser trees. Their algorithm is conceptually much simpler, but
it cannot handle recursion. Kiss [KJLG03] presented an approach to construct SDG from the
binary executable programs and proposed an algorithm to slice on them. Sinha, Harrold and
Rothermal [SHR99] extended the SDG to represented interprocedural control dependencies.
Their extension is based on Augmented Control Flow Graph (ACFG), a CFG augmented with



54 State-of-the-Art: Slicing

edges to represent interprocedural control dependencies. Hisley et al. [HBP02] extended the
SDG to threaded System Dependence Graph (tSDG) in order to represent non-sequential
programs.

Information-flow relations

Bergeretti and Carré explains in [BC85] how the effect of procedure calls can be approximated.
Exact dependencies between input and output parameters are determined by slicing the called
procedure with respect to which output parameter (i.e., the computation of the µ relation
for the procedure). Then, each procedure call is replaced by a set of assignments, where each
output parameter is assigned to a fictitious expression that contains the input parameters it
depends on. As only feasible execution paths are considered, this approach does not suffer
from the calling context problem. A call to a side-effect free function can be modeled by
replacing it with a fictitious expression containing all actual parameters. Note that the
computed slices are not truly interprocedural since no attempt is done to slice procedures
other than the main program.

2.2.4 Slicing in the presence of composite datatypes and pointers

Dependence graph based approach

When slicing, there are two approaches to handle arrays. A simple approach for arrays is to
treat each array as a whole [Lyl84]. According to Lyle, any update to an element of an array
is regarded as an update and a reference of the entire array. However, this approach leads
to unnecessary large slices. To be more precise requires distinguishing the elements of array.
And this needs dependence analysis.
The PDG variant of Ottenstein and Ottenstein [OO84] contains a vertex for each sub-expression;
special select and update operators serve to access elements of an array.
Banerjee [Ban88] presented the Extended GDC Test. It can be applied to analyze the general
objects (multi-dimensional arrays and nested trapezoidal loops). The test is derived from
number theory. The single equation a1x1+a2x2+...+anxn = b has an integer solution if and
only if gdc(ai) divides b. This give us an exact test for single-dimensional arrays ignoring
bounds. And it can be extended to multi-dimensional arrays.

In the presence of pointers, situations may occur where two or more variables refer to the same
memory location. This phenomenon is commonly called aliasing. Algorithms for determining
potential aliases can be found in [CBC93, LR92]. Slicing in the presence of aliasing requires
a generalization of the notion of data dependence to take potential aliases into account.
Tip [Tip95] have presented the definition of potentially data dependent.

Definition 32 A statement s is potentially data dependent on a statement s′ if:

i) s defines a variable X ′;

ii) s′ uses a variable X;

iii) X and X ′ are potential aliases; and



2.3 Dynamic slicing 55

iv) there exists a path from s to s′ in the CFG where X is not necessarily defined.

Such paths may contain definitions to potential aliases of X.

A slightly different approach is pursued by Horwitz, Pfeiffer and Reps [HPR89a]. Instead of
defining data dependence in terms of potential definitions and uses of variables, they defined
this notion in terms of potential definitions and uses of abstract memory locations.
However, Landi [Lan92] have shown that precise pointer analysis is undecidable. So the
analysis has to do a trade-offs between cost and precision. There are several dimensions
that affect the trade-offs. How a pointer analysis addresses each of these dimensions helps to
categorize the analysis.
Besides the data dependence, in the presence of pointers, the reaching definition also need to
be changed, and the l-valued expression have to be taken into account.

Definition 33 An l-valued expression is any expression which may occur as the left-hand
side of an assignment.

Jiang [JZR91] presented an algorithm for slicing C programs with pointers and arrays. Un-
fortunately, the approach appears to be flawed. There are statements incorrectly omitted,
resulting in inaccurate slices.

2.3 Dynamic slicing

In this section is is discussed the dynamic slicing approaches.

2.3.1 Basic algorithms for dynamic slicing

Dataflow equations

It was Korel and Laski [KL88, KL90] who first proposed the notion of dynamic slicing. As it
was defined in section 2.1.3, a dynamic slice is a part of a program that affects the concerned
variable in a particular program execution. As only one execution is taken into account,
dynamic program slicing may significantly reduce the size of the slice as compared to static
slicing.
Most dynamic slices are computed w.r.t. an execution history or trajectory. This history
records the execution of statements as the program executes. The execution of a statement
produces an occurrence of the statement in the trajectory. Thus, the trajectory is a list of
statement occurrences.
Two example execution histories are shown below for the program 2.12. Superscripts are used
to differentiate between the occurrences of a statement. For example, statement 2 executes
twice for the second execution producing 21 and 22.
In order to compute dynamic slices, Korel and Laski introduce three dynamic flow concepts
which formalize the dependencies between occurrences of statements in a trajectory.

Definition 34 Definition Use (DU). vi DU uj ⇔ vi appears before uj in the execution history
and there is a variable x defined at vi, used at uj, but not defined by any occurrence between
vi and uj.



56 State-of-the-Art: Slicing

Listing 2.12: Two execution histories�
1 s can f ("%d" , &n ) ;
2 for ( i = 1 ; i < n ; i++) {
3 a = 2 ;
4 i f ( c1 ) {
5 i f ( c2 ) {
6 a = 4 ;
7 }
8 else {
9 a = 6 ;

10 }
11 }
12 z = a ;
13 }
14 p r i n t f ("Result: %d\n" , z ) ;� �

Execution history 1
Input n = 1, c1 and c2 both true:
< 11, 21, 31, 41, 51, 61, 121, 22, 141 >

Execution history 2
Input n = 2, c1 and c2 false on the first
iteration and true on the second:
< 11, 21, 31, 41, 121, 22, 32, 42, 51, 61, 122, 23, 141 >

This definition captures flow dependence that arise when one occurrence represent the assign-
ment of a variable and another use of that variable. For example, in program 2.12 listed above,
when c1 and c2 are both false, there is a flow dependence from statement 3 to statement 12.

Definition 35 Test Control (TC). vi TU uj ⇔ u is control dependent on v (in the static
sense) and for all occurrences wk between vi and uj, w is control dependent on v.

This second definition captures control dependence. The only difference between this defi-
nition and the static control dependence definition is that multiple occurrence of predicates
exist.

Definition 36 Identity Relation (IR). vi IR uj ⇔ v = u.

Dynamic slices are computed in an iterative way, by determining successive sets Si of directly
and indirectly relevant statements. For a slicing criterion C = (Iq, p, V ) the initial approxi-
mation S0 contains the last definition of the variables in V in the trajectory, as well as the
test actions in the trajectory on which Iq is control dependent. Approximation Si+1 is defined
as follows:

Si+1 = Si
⋃
Ai+1

where Ai+1 consists of:

Ai+1 = Xp|Xp 6∈ Si, (Xp, Y t) ∈ (DU
⋃
TC

⋃
IR)forsomeY t ∈ Si, p < q

The dynamic slice if obtained from the fixpoint SC of this process (as q is finite, this always
exists): any statement X for an instance Xp occurs in SC will be in the slice.
Program 2.13 shows the Korel and Laski slice of the program shown in program 2.12 taken
with respect to (32, 2, {a}).

Listing 2.13: A dynamic slice of the program listed in program 2.12 and its execution history�
1 s can f ("%d" , &n ) ;



2.3 Dynamic slicing 57

2 for ( i = 1 ; i < n ; i++) {
3 a = 2 ;
4 }� �

This slice is computed as follows: DU = {(11, 21), (31, 121), (61, 122), (122, 141)}
TC = {(21, 31), (21, 41), (21, 121), (21, 32), (21, 42), (21, 122), (22, 32), (22, 42), (22, 122), (42, 51), (51, 61)}
IR = {(21, 22), (21, 23), (22, 23), (31, 32), (41, 42), (121, 122)}
S0 = {21}
S1 = {11, 21}
S2 = {11, 21}} = S1, thus the iteration ends.
S = {31}

⋃
{11, 21} = {11, 21, 31}.

Information-flow relations

Gopal [Gop91] have proposed an approach were dynamic dependence relations are used to
compute dynamic slices. He introduces dynamic versions of Bergeretti and Carré information-
flow relations. The λS relations contains all pairs (v, e) such that statement e depends on the
input value of v when program S is executed. Relation µS contains all pairs (e, v) such that
the output value of v depends on the execution of statement e. A pair (v, v′) is in the relation
ρS if the output value of v′ depends on the input value of v. In this definitions it is presumed
that S is executed for some fixed input.
For empty statements, assignments, and statement sequences Gopal’s relations are exactly
the same as for the static case.

Dependence graph based approach

Miller and Choi [MC88] first proposed the notion of dynamic dependence graph. However,
their method mainly concentrates on parallel program debugging and flowback analysis4

Agrawal and Horgan [AH90] developed an approach for using dependence graphs to compute
non-executable dynamic slices. Their first two algorithms for computing dynamic slices are
inaccurate. The initial approach uses the PDG and marks the vertices that are executed for
a given test. A dynamic slice is computed by computing a static slice in the subgraph of the
PDG that is induced by the marked vertices. By construction, this slice only contains vertices
that are executed. This solution is imprecise because it does not detect situations where there
exists a flow edge in the PDG between a marked vertex v1 and a marked vertex v2, but where
the definitions of v1 are not actually used at v2.
The second approach consists of marking PDG edges as the corresponding dependencies arise
during execution. Again, the slice is obtained by traversing the PDG, but this time only along
marked edges. Unfortunately , this approach still produces imprecise slices in the presence of
loops because an edge that is marked in some loop iteration will be present in all subsequent
iterations, even when the same dependence does not recur.
This approach computes imprecise slices because it does not account for the fact that differ-
ent occurrences of a statement in the execution history may be (transitively) dependent on

4Flowback analysis is a powerful technique for debugging programs. It allows the programmer to examine
dynamic dependencies in a program’s execution history without having to re-execute the program.



58 State-of-the-Art: Slicing

Figure 2.4: The DDG for the example listed in program 2.12.

different statements. This observation motivate their third solution: create a distinct vertex
in the dependence graph for each occurrence of a statement in the execution history. This
kind of graph is referred as Dynamic Dependence Graph (DDG). A dynamic slicing criterion
is identified with a vertex in the DDG, and a dynamic slice is computed by determining all
DDG vertices from which the criterion can be reached.
A dynamic slice can now be defined in terms of a variable, an execution history, and an
occurrence of a statement in the execution history. The slice contains only those statements
whose execution had some effect on the value of the variable at the occurrence of the statement
in the execution history.
Figure 2.4 shows the DDG for program 2.12, considering the slice on variable z at statement
14, where c1 and c2 false on the first iteration and true on the second.
Goswami and Mall [GM02] presented a dynamic algorithm based on the notion of compact dy-
namic dependence graph (CDDG). The control dependence edges of the CDDG are constructed
statically while the data-flow dependence edges are constructed dynamically.
Mund et al. [MMS03] found that CDDG-based approaches may not produce correct result
in some cases. They proposed three intraprocedural dynamic slicing methods, two based on
marked PDG and another based on their notion of Unstructured Program Dependence Graph
(UPDG) which can be used for unstructured programs. Their first method also based on the
marking and unmarking of edges, while the other two based on the runtime marking and
unmarking of nodes. It is claimed that all the three algorithms are precise and more space
and time efficient than former algorithms.
Zhang et Gupta [ZG04] found that different dynamic dependence could be expressed by one
edge in the dependence graph. They presented a practical dynamic slicing algorithm which is
based upon a novel representation of the dynamic dependence graph that is highly compact
and rapidly traversable.
Further, Zhang et al. [ZGZ04] studied the statistical characteristics of dynamic slices by
experiments. Based on the forward slicing methods, they introduced a way of using reduced
ordered binary decision diagrams (roBDDs) to represent a set of dynamic slices. Within this



2.3 Dynamic slicing 59

technique, the space and time requirements of maintaining dynamic slices are greatly reduced.
Thus, the efficiency of dynamic slicing can be improved.

2.3.2 Slicing programs with arbitrary control flow

Dependence graph based approach

Korel [Kor97a, Kor97b] used a removable block based approach to handle jump statements
in dynamic program slicing. This approach can produce correct slices in the presence of
unstructured programs.
Huynh and Song [HS97] then extended the forward dynamic slicing method presented in [KY94]
to handle jump statements. However, their algorithm can handle unstructured programs hav-
ing only structured jumps.
Mund, Mall and Sarkar [MMS03] proposed a notion of jump dependence. Based on this
notion, they build the Unstructured Program Dependence Graph (UPDG) as the intermediate
representation of a program. Their slicing algorithm based on UPDG can produce precise
slices.
Faragó and Gergely [FG02] handled jump statements for the forward dynamic slicing by
building a transformed D/U structure for all relevant statements. This method can be applied
to goto, break, continue and switch statements of C programs.

2.3.3 Interprocedural slicing methods

Dependence graph based approach

Several approaches have been presented concerning on interprocedural dynamic slicing.
In [ADS91], Agrawal et al. consider dynamic slicing of procedures with various parameter-
passing mechanisms. Call-by-value parameter-passing is modeled by a sequence of assign-
ments f1 = a1; ...; fn = an;5 which is executed before the procedure is entered. In order to
determine the memory cells for the correct activation record, the USE (see section 1.1) sets
for the actual parameters ai are determined before the procedure in entered, and the DEF
sets for the formal parameters fi after the procedure is entered.
For Call-by-value-result parameter passing, additional assignments of formal parameters to
actual parameters have to be performed upon exit from the procedure.
Call-by-reference parameter-passing does not require any actions specific to dynamic slicing,
as the same memory cell is associated with corresponding actual and formal parameters ai

and fi.
Notice that in this approach dynamic data dependencies based on definitions and uses of
memory location are used. This way, two potential problems are avoided. First, the use of
global variables inside procedures does not pose any problems. Second, no alias analysis is
required.
Kamkar et al. [KSF92, KFS93b] further discussed the problem of intraprocedural dynamic
slicing. They proposed a method that primarily concerned with procedure level slices. That
is, they study the problem of determining the set of call sites in a program that affect the
value of a variable at a particular call site.

5It is assumed that a procedure P with formal parameters f1, ..., fn is called with actual parameters a1, ..., an



60 State-of-the-Art: Slicing

During execution, a dynamic dependence summary graph is constructed. The vertices of this
graph, referred to as procedure instances, correspond to procedure activations annotated with
their parameters. The edges of the summary graph are either activations edges corresponding
to procedure calls, or summary dependence edges. The latter type reflects transitive data and
control dependencies between input and output parameters of procedure instances.
A slicing criterion is defined as a pair consisting of a procedure instance, and an input or
output parameter of the associated procedure. After constructing the summary graph, a slice
with respect to a slicing criterion is determined in two steps. First, the parts of the summary
graph from which the criterion can be reached is determined; this subgraph is referred to
as an execution slice. Vertices of an execution slice are partial procedure instances, because
some parameters may be “sliced away”. An interprocedural program slice consists of all call
sites in the program for which a partial instance occurs in the execution slice.

2.3.4 Slicing in the presence of composite datatypes and pointers

Dataflow equations

Korel and Laski [KL90] consider slicing in the presence of composite variables by regarding
each element of an array, or field of a record as a distinct variable. Dynamic data structures
are treated as two distinct entities, namely the pointer itself and the object being pointed to.
For dynamically allocated objects, they propose a solution where a unique name is assigned
to each object.

Dependence graph based approach

Agrawal et al. [ADS91] present a dependence graph based algorithm for dyanmic slicing in
the presence of composite datatypes and pointers. Their solution consist of expressing DEF
and USE sets in terms of actual memory locations provided by the compiler. The algorithm
presented is similar to that for static slicing in the presence of composite datatypes and
pointers by the same authors.
Faragó [FG02] also discussed the problem of handling poniters, arrays and structures for C
programs when doing forward dynamic slicing. Abstract memory locations are used in this
method and program instrumentation is used to extract these locations.

2.4 Applications of Program Slicing

As discussed in the previous sections, program slicing is a well-recognized technique that
is used mainly at source code level to highlight code statements that impact upon other
statements. Slicing has many applications because it allows a program to be simplified by
focusing attention on a sub-computation of interest for a chosen purpose. In this section we
present some of the applications of program slicing.

2.4.1 Debugging

The original motivation for program slicing was to aid the location of faults during debugging
activities. The idea was that the slice would contain the fault, but would not contain lines



2.4 Applications of Program Slicing 61

of code that could not have caused the failure observed. This is achieved by setting the slice
criterion to the variable for which an incorrect value is observed.
Clearly slice cannot be used to identify bugs such as missing initialization of a variable. If the
original program does not contain a line of code the slice will not contain it either. Although
slicing cannot identify omission errors, Harman have argued that slicing can be used to aid
the detection of such errors [HBD03].
In debugging, one is often interested in a specific execution of a program that exhibits anoma-
lous behavior. Dynamic slices are particular useful here because they only reflect the actual
dependencies of that execution, resulting in smaller slices than static ones. In his thesis,
Agrawal discussed how static and dynamic slicing can be used for semi-automated debugging
of programs. He proposed an approach where the user gradually ’zooms out’ from the location
where the bug manifested itself by repeatedly considering larger data and control slices.
Slicing is also useful in algorithmic debugging [FSKG92]. An algorithm debugger partially
automates the task of localizing a bug by comparing the intended program behavior with the
actual program behavior. The intended behavior is obtained by asking the user whether or
not a procedure (program unit) behaves correctly. Using the answers given by the user, the
location of the bug can be determined at the unit level.
Debugging was also the motivation for program dicing and latter program chopping (see
section 2.1.10). Dicing uses the information that some variables fail some tests, while other
variables pass all tests, to automatically identify a set of statements likely to contain the
bug [LW87]. The techinque of program chopping identifies the statement that transmit values
from a statement t to a statement s. A program chop is useful in debugging when a change
at t causes an incorrect result to be produced at s. The statements in chop(t, s) are the
statements that transmit the effect of the change at t to s. Debugging attention should be
focused here. In the absence of procedures, chop(t, s) is simply the intersection of the forward
slice taken with respect to t and the backward slice taken with respect to s can be viewed as
a generalized kind of program dice.

2.4.2 Software Maintenance

Software maintainers are faced with the upkeep of programs after their initial release and
experiment the same problems as program integrators: understanding existing software and
making changes without having a negative impact on the unchanged part.
Gallagher and Lyle [GL91b] use the notion of decomposition slice of programs. A decomposi-
tion slice with respect to a variable v consists of all statements that may affect the observable
value of v at some point; it is defined as the union of slices with respect to v at any statement
that outputs v, and the last statement of the program. Essentially, they decompose a program
into a set of components (reduced programs), and each of them captures part of the original
program’s behavior. The main observation of [GL91b] is that independent statements in a
slice do not affect the data and control flow in the complement. This results in the follow
guidelines for modification:

• Independent statements may be deleted from a decomposition slice;

• Assignments to independent variables may be added anywhere in a decomposition slice;

• Logical expressions and output statements may be added anywhere in a decomposition



62 State-of-the-Art: Slicing

slice;

• New control statements that surround any dependent statements will affect the com-
plement’s behavior.

Slicing can also be used to identify reusable functions [CLLF94, CCLL94, CLM95, CLM96,
LV97]. Canfora et al. presented a method to identify functional abstraction in existing
code [CLLF94]. In this approach, program slicing is used to isolate the external functions of
a system and these are then decomposed into more elementary components by intersection
slices. They also found that conditioned slice could be used to extract procedures from
program functionality.

2.4.3 Reverse engineering

Besides above application in software maintenance, program slicing can be used in reverse
engineering [BE93, JR94]. Reverse engineering concerns the problem of comprehending the
current design of a program and the way this design differs from the initial development.
This involves abstracting out of the source code, the design decisions and rationale from
the initial development (design recognition) and understanding algorithms chosen (algorithm
recognition).
Beck and Eichmann [BE93] applied program slicing techniques to reverse engineering by
using it to assist in the comprehension of large software systems, through traditional slicing
techniques at the statement level, and through a new technique, interface slicing, at the
module level. A dependence model for reverse engineering should treat procedures in a
modular fashion and should be fine-grained, distinguishing dependencies that are due to
different variables. Jackson and Rollins [JR94] proposed an improved PDG that satisfies both,
while retaining the advantages of PDG. They proposed an algorithm to compute chopping
from their dependence graph which can produce more accurate results than algorithms based
directly on the PDG.

2.4.4 Comprehension

Program comprehension is a vital software engineering and maintenance activity. It is neces-
sary to facilitate reuse, inspection, maintenance, reverse engineering, reengineering, migration,
and extension of existing software systems.
Slicing revealed to be helpful in the comprehension phase of maintenance. De Lucia et
al. [LFM96] used conditioned slicing to facilitate program comprehension. Quasi-static slicing
can also be used in program comprehension. These techniques share the property that a slice
is constructed with respect to a condition in addition to the traditional static slicing and thus
can give the maintainer the possibility to analyze code fragments with respect to different
perspectives.
Indeed, slicing can be used in many aspects of program comprehension: Harman, Sivagu-
runathan and Daninic [HSD98, SHS02] used program slicing in understanding dynamic mem-
ory access properties. Komondoor and Horwitz [KH01] presented an approach that use PDG
and slicing to find duplicate code fragments in C programs. Henrard et al. [HEH+98] made
use of program slicing in database understanding. Korel and Rilling used dynamic slicing to
help understand the program execution [KR97].



2.4 Applications of Program Slicing 63

2.4.5 Testing

Software maintainers are also faced with the task of regression testing: retesting software after
a modification. This process may involve running the modified program on a large number
of test cases, even after the smallest of changes. Although the effort required to make a small
change may be minimal, the effort required to retest a program after such a change may be
substantial. Several algorithms based on program slicing have been proposed to reduce the
cost of regression testing.
A program satisfies a conventional data flow testing criterion if all def-use pairs occur in a
successful test.
Duesterwald, Gupta and Soffa [DGS92] propose a more rigorous testing criterion, based on
program slicing: each def-use pair must be exercised in a successful test; moreover it must
be output influencing, i.e., have an influence on at least one output value. A def-use pair is
output-influencing if it occurs in an output slice (a slice with respect to an output statement).
It is up to user, or an automatic test generator to construct enough tests such that all def-use
pairs are tested.
Kamkar, Shahmerhi and Fritzon [KFS93a] extended the previous work to multi-procedure
programs. To this end, they define appropriate notions of interprocedural def-use pairs.
The interprocedural dynamic slicing method of [KFS93b, KSF92] is used to determine which
interprocedural def-use pairs have an effect on a correct output value, for a given test. The
summary-graph presentation is slightly modified by annotating vertices and edges with def-
use information. This way, the set of def-use pairs exercised by a slice can be determined
efficiently.
In [GHS92], Gupta, Harrold and Soffa describe an approach to regression testing where slicing
techniques are used. Backward and forward slices serve to determine the program parts
affected by the change, and only tests which execute affected def-use pairs need to be executed
again. Conceptually, slices are computed by backward and forward traversals of the CFG of
a program, starting at the point of modification.
In [BH93b], Bates and Horwitz used a variation of the PDG notion of [HPR89b] for incremental
program testing. Bates and Horwitz presented test selection algorithms for all the vertices
and flow-edges test data adequacy criterion. They proved that statements in the same class
are exercised by the same tests. This work only considers single procedure programs.
Binkley [Bin97] presented two complementary algorithms for reducing the cost of regression
testing that operate on programs with procedures and procedure calls.

2.4.6 Measurement

Cohesion and coupling are two important metrics in software measurement.
Cohesion is an attribute of a software unit that measures the “relatedness” of the unit. It
has been qualitatively characterized as coincidental, logical, procedural, communicational,
sequential and functional; coincidental is the weakest and functional is the strongest.
Several approaches using program slicing to measure cohesion have been presented.
It was Longworth [Lon85] the first to study the use of program slicing as indicator of cohesion.
Ott and Thuss [OT89] then noted the visual relationship that existes between the slices of
a module and its cohesion as depicted in a slice profile. Certain inconsistencies noted by



64 State-of-the-Art: Slicing

Longworth were eliminated through the use of metric slices [OB92, Ott92, OT93, Thu88].
A metric slices takes into account both uses and used by data relationships; that is, they are
the union of Horwitz et al.’s backward and forward slices.
Bieman and Ott [BO93] examined the functional cohesion of procedures using a data slice
abstraction. A data slice is a backward and forward static slice that uses data tokens rather
than statements as the unit of decomposition. Their approach identifies the data tokens that
lie on more than one slice as the “glue” that bind separate components together. Cohesion
is measured in terms of the relative number of glue tokens, tokens that lie on more that one
data slice, and super-glue tokens, tokens that lie on all data slices in a procedure, and the
adhesiveness of the tokens.
Coupling is the measure of how one module depends upon or affects the behavior of another.
Harman et al [HOSD] proposed a method of using program slicing to measure coupling. It
is claimed that this method produce more precise measurement than information flow based
metrics.

2.5 Tools using Program Slicing

In this section we present some tools that uses program slicing to aid at program understand-
ing and comprehension.

2.5.1 CodeSurfer

As referred in subsection 1.5.3, CodeSurfer [Gra08b] is a static analysis tool designed to
support advanced program understanding based on the dependence-graph representation of
a program. CodeSurfer is thus named because it allows surfing of programs akin to surfing
the world-wide web [AT01].
CodeSurfer builds an intermediate representation called the system dependence graph (SDG—
see section 1.1). The program slices are computed using graph reachability over the SDG.
CodeSurfer’s output goes through two preprocessing steps before slicing begins [BGH07].
The first identifies intraprocedural strongly connected components (SCCs) and replaces them
with a single representative vertex. The key observation here is that any slice that includes a
vertex from an SCC will include all the vertices from that SCC; thus, there is a great potential
for saving effort by avoiding redundant work [BH03]. Once discovered, SCC formation is done
by moving all edges of represented vertices to the representative. The edgeless vertices are
retained to maintain the mapping back to the source. While slicing, the slicer need never
encounter them.
The second preprocessing step reorders the vertices of each procedure into topological order.
This is possible because cycles have been removed by the SCC formation. Topological sorting
improves memory performance — in particular, cache performance [BH03]. After preprocess-
ing, two kinds of slices are computed: backward and forward interprocedural slicing.
Operations that highlight forward and backward slices show the impact of a given statement
on the rest of the program (forward slicing), and the impact of the rest of a program on a
given statement (backward slicing). Operations that highlight paths between nodes in the
dependence graph (chops) show ways in which the program points are interdependent (or
independent).



2.5 Tools using Program Slicing 65

2.5.2 JSlice

JSlice [WR08, WRG] was the first dynamic slicing tool for Java programs. This slicer proceeds
by traversing a compact representation of a bytecode trace and constructs the slice as a set of
bytecodes; this slice is then transformed to the source code level with the help of Java class
files. This slicing method is complicated by Java’s stack-based architecture which require to
simulate a stack during trace traversal.
Since the execution traces are often huge, the authors of the tool develop a space efficient
representation of the bytecode stream for a Java program execution. This compressed trace
is constructed on-the-fly during program execution. The dynamic slicer performs backward
traversal of this compressed trace directly to retrieve data/control dependencies, that is,
slicing does not involve costly trace decompression.

2.5.3 Unravel

Unravel [LWG+95] is a static program slicer developed at the National Institute of Standards
and Technology as part of a research project. It slices ANSI-C programs. The limitations of
Unravel are in the treatment of unions, forks, and pointers to functions. The tool is divided
into three main components:

• a source code analysis component to collect information necessary for the computation
of program slices;

• a link component to connect information from separate source files together;

• and an interactive slicing component: to extract program components that the software
quality assurance auditor can use; and to extract program statements for answering
questions about the software being audited.

By combining program slices with logical set operations, Unravel can identify code that is
executed in more than one computation.

2.5.4 HaSlicer

HaSlicer [Rod06, RB06] is a prototype of a slicer for functional programs written in Haskell.
The tool was built for the identification of possible coherent components from monolithic
code. It covers both backward and forward slicing using a Functional Dependence Graph
(FDG), an extension to functional languages of PDG.
In [RB06] the authors discuss how the tool can be used to component identification through
the extraction process from source code and the incorporation of a visual interface over the
generated FDG to support user interaction.

2.5.5 Other tools

There are other tools that use program slicing: CodeGenie [LBO+07, Lop08] is a tool that
implements a test-driven approach to search for code available on large-scale code repositories
in order to reuse the fragments found; and GDB-Slice [Bes] which implements a novel efficient
algorithm to compute slices [GABF99] in GDB (GNU Project debugger) through the GCC
(GNU C Compiler Collection).



Bibliography

[10405] Csmr ’05: Proceedings of the ninth european conference on software maintenance
and reengineering, 2005.

[11005] Studying the fault-detection effectiveness of gui test cases for rapidly evolving
software. IEEE Trans. Softw. Eng., 31(10):884–896, 2005. Member-Atif M.
Memon and Student Member-Qing Xie.

[12406] Statistical debugging: A hypothesis testing-based approach. IEEE Trans. Softw.
Eng., 32(10):831–848, 2006. Member-Chao Liu and Member-Long Fei and
Member-Xifeng Yan and Senior Member-Jiawei Han and Member-Samuel P. Mid-
kiff.

[84801] Aiding program comprehension by static and dynamic feature analysis. In ICSM
’01: Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), page 602, Washington, DC, USA, 2001. IEEE Computer Society.

[ADS91] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. Dynamic slicing
in the presence of unconstrained pointers. In Symposium on Testing, Analysis,
and Verification, pages 60–73, 1991.

[ADS93] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. Debugging with
dynamic slicing and backtracking. Software - Practice and Experience, 23(6):589–
616, 1993.

[Agr94] Hiralal Agrawal. On slicing programs with jump statements. In PLDI ’94:
Proceedings of the ACM SIGPLAN 1994 conference on Programming language
design and implementation, pages 302–312, New York, NY, USA, 1994. ACM.

[AH90] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proceedings of the
ACM SIGPLAN ’90 Conference on Programming Language Design and Imple-
mentation, volume 25, pages 246–256, White Plains, NY, June 1990.

[AT01] Paul Anderson and Tim Teitelbaum. Software inspection using codesurfer. In
Workshop on Inspection in Software Engineering, 2001.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and
compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[Bal93] Thomas J. Ball. The use of control-flow and control dependence in software tools.
Technical Report CS-TR-1993-1169, 1993.



BIBLIOGRAPHY 67

[Bal02] FranCcoise Balmas. Using dependence graphs as a support to document pro-
grams. In SCAM ’02: Proceedings of the Second IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM’02), page 145, Washington,
DC, USA, 2002. IEEE Computer Society.

[Ban88] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Norwell, MA, USA, 1988.

[Bar78] Jeffrey M. Barth. A practical interprocedural data flow analysis algorithm. Com-
mun. ACM, 21(9):724–736, 1978.

[BC85] Jean-Francois Bergeretti and Bernard A. Carré. Information-flow and data-flow
analysis of while-programs. ACM Trans. Program. Lang. Syst., 7(1):37–61, 1985.

[BCC+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static an-
alyzer for large safety-critical software. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementa-
tion, pages 196–207, New York, NY, USA, 2003. ACM.

[BDG+04] Dave Binkley, Sebastian Danicic, Tibor Gyimothy, Mark Harman, Akos Kiss,
and Lahcen Ouarbya. Formalizing executable dynamic and forward slicing. scam,
00:43–52, 2004.

[BDG+06] Dave Binkley, Sebastian Danicic, Tibor Gyimóthy, Mark Harman, Ákos Kiss,
and Bogdan Korel. Theoretical foundations of dynamic program slicing. Theor.
Comput. Sci., 360(1):23–41, 2006.

[BE93] Jon Beck and David Eichmann. Program and interface slicing for reverse engi-
neering. In ICSE ’93: Proceedings of the 15th international conference on Soft-
ware Engineering, pages 509–518, Los Alamitos, CA, USA, 1993. IEEE Computer
Society Press.

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In FOSE ’07: 2007 Future of Software Engineering, pages 85–103, Washington,
DC, USA, 2007. IEEE Computer Society.

[Bes] Arpad Beszedes. Gnu gdb slice. http://www.sed.hu/gdbslice/.

[BFS+02] A. Beszedes, C. Farago, Z. Szabo, J. Csirik, and T. Gyimothy. Union slices for
program maintenance, 2002.

[BG96] David Binkley and Keith Brian Gallagher. Program slicing. Advances in Com-
puters, 43:1–50, 1996.

[BG02] A. Beszedes and T. Gyimothy. Union slices for the approximation of the precise
slice, 2002.

[BGH07] David Binkley, Nicolas Gold, and Mark Harman. An empirical study of static
program slice size. ACM Trans. Softw. Eng. Methodol., 16(2):8, 2007.

http://www.sed.hu/gdbslice/


68 BIBLIOGRAPHY

[BGL93] Bernd Bruegge, Tim Gottschalk, and Bin Luo. A framework for dynamic program
analyzers. SIGPLAN Not., 28(10):65–82, 1993.

[BH93a] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow.
In Automated and Algorithmic Debugging, pages 206–222, 1993.

[BH93b] Samuel Bates and Susan Horwitz. Incremental program testing using program
dependence graphs. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 384–396,
New York, NY, USA, 1993. ACM.

[BH03] David Binkley and Mark Harman. Results from a large scale study of performance
optimization techniques for source code analyses based on graph reachability
algorithms, 2003.

[BHR95] David Binkley, Susan Horwitz, and Thomas Reps. Program integration for lan-
guages with procedure calls. ACM Trans. Softw. Eng. Methodol., 4(1):3–35, 1995.

[Bin93] David Binkley. Precise executable interprocedural slices. LOPLAS, 2(1-4):31–45,
1993.

[Bin97] David Binkley. Semantics guided regression test cost reduction. IEEE Trans.
Softw. Eng., 23(8):498–516, 1997.

[Bin98] David Binkley. The application of program slicing to regression testing. Infor-
mation and Software Technology, 40(11-12):583–594, 1998.

[Bin07] David Binkley. Source code analysis: A road map. In FOSE ’07: 2007 Future
of Software Engineering, pages 104–119, Washington, DC, USA, 2007. IEEE
Computer Society.

[BJE88] D. Bjorner, Neil D. Jones, and A. P. Ershov, editors. Partial Evaluation and
Mixed Computation. Elsevier Science Inc., New York, NY, USA, 1988.

[BO93] James M. Bieman and Linda M. Ott. Measuring functional cohesion. Technical
Report CS-93-109, Fort Collins, CO, USA, 24 June 1993.

[BR00] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future of Software
Engineering, pages 73–87, New York, NY, USA, 2000. ACM.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive inter-
procedural computation of pointer-induced aliases and side effects. In POPL ’93:
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 232–245, New York, NY, USA, 1993. ACM.

[CC93] T. Y. Chen and Y. Y Cheung. Dynamic program dicing. In ICSM ’93: Proceed-
ings of the Conference on Software Maintenance, pages 378–385, Washington,
DC, USA, 1993. IEEE Computer Society.

[CCL98] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned pro-
gram slicing. Information and Software Technology, 40(11-12):595–608, Novem-
ber 1998. Special issue on program slicing.



BIBLIOGRAPHY 69

[CCLL94] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, and Giuseppe A. Di Lucca.
Software salvaging based on conditions. In ICSM ’94: Proceedings of the Inter-
national Conference on Software Maintenance, pages 424–433, Washington, DC,
USA, 1994. IEEE Computer Society.

[CCO01] Jamieson M. Cobleigh, Lori A. Clarke, and Leon J. Osterweil. Flaver: A fi-
nite state verification technique for software systems title2:. Technical report,
Amherst, MA, USA, 2001.

[CF94] Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto
statements. ACM Trans. Program. Lang. Syst., 16(4):1097–1113, 1994.

[CFR+99] Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Rajan, Thomas W. Reps,
Subash Shankar, and Tim Teitelbaum. Program slicing of hardware description
languages. In Conference on Correct Hardware Design and Verification Methods,
pages 298–312, 1999.

[CLLF94] Gerardo Canfora, Andrea Di Luccia, Giuseppe Di Lucca, and A. R. Fasolino.
Slicing large programs to isolate reusable functions. In Proceedings of EUROMI-
CRO Conference, pages 140–147. IEEE CS Press, 1994.

[CLM95] Aniello Cimitile, Andrea De Lucia, and Malcolm Munro. Identifying reusable
functions using specification driven program slicing: a case study. In ICSM ’95:
Proceedings of the International Conference on Software Maintenance, page 124,
Washington, DC, USA, 1995. IEEE Computer Society.

[CLM96] Aniello Cimitile, Andrea De Lucia, and Malcolm Munro. A specification driven
slicing process for identifying reusable functions. Journal of Software Mainte-
nance, 8(3):145–178, 1996.

[CP07] Gerardo CanforaHarman and Massimiliano Di Penta. New frontiers of reverse
engineering. In FOSE ’07: 2007 Future of Software Engineering, pages 326–341,
Washington, DC, USA, 2007. IEEE Computer Society.

[CS00] Chen and Skiena. A case study in genome-level fragment assembly. BIOINF:
Bioinformatics, 16, 2000.

[Dar86] Ian F. Darwin. Checking C programs with lint. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1986.

[DGS92] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Rigorous data flow
testing through output influences. In Proceeding on Second Irvine Software Sym-
posium, pages 131–145, 1992.

[DHR+07] Matthew B. Dwyer, John Hatcliff, Robby Robby, Corina S. Pasareanu, and
Willem Visser. Formal software analysis emerging trends in software model
checking. In FOSE ’07: 2007 Future of Software Engineering, pages 120–136,
Washington, DC, USA, 2007. IEEE Computer Society.

[DLH04] Sebastian Danicic, Andrea De Lucia, and Mark Harman. Building executable
union slices using conditioned slicing. iwpc, 00:89, 2004.



70 BIBLIOGRAPHY

[FdCHV08] Rúben Fonseca, Daniela da Cruz, Pedro Henriques, and Maria João Varanda.
How to interconnect operational and behavioral views of web applications. In
ICPC ’08: IEEE International Conference on Program Comprehension, Amster-
dam, The Netherlands, 2008. IEEE Computer Society.

[FG] Istvan Forgács and Tibor Gyimóthy. An efficient interprocedural slicing method
for large programs.

[FG02] Csaba Faragó and Tamás Gergely. Handling pointers and unstructured state-
ments in the forward computed dynamic slice algorithm. Acta Cybern.,
15(4):489–508, 2002.

[FGKS91] Peter Fritzson, Tibor Gyimothy, Mariam Kamkar, and Nahid Shahmehri. Gener-
alized algorithmic debugging and testing. In PLDI ’91: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementa-
tion, pages 317–326, New York, NY, USA, 1991. ACM.

[FHK+02] Patrick Finnigan, Richard C. Holt, Ivan Kallas, Scott Kerr, Kostas Kontogiannis,
Hausi A. Müller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and
Kerny Wong. The software bookshelf. pages 295–339, 2002.

[FN87] William B. Frakes and Brian A. Nejmeh. Software reuse through information
retrieval. SIGIR Forum, 21(1-2):30–36, 1987.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, 1987.

[FR07] Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In FOSE ’07: 2007 Future of Software Engineering,
pages 37–54, Washington, DC, USA, 2007. IEEE Computer Society.

[FRJL88] Charles N. Fischer and Jr. Richard J. LeBlanc. Crafting a compiler. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1988.

[FRT95] John Field, G. Ramalingam, and Frank Tip. Parametric program slicing. In
POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 379–392, New York, NY, USA, 1995.
ACM.

[FSKG92] Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, and Tibor Gyimothy. Gen-
eralized algorithmic debugging and testing. ACM Lett. Program. Lang. Syst.,
1(4):303–322, 1992.

[GABF99] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. An efficient relevant slic-
ing method for debugging. In ESEC/FSE-7: Proceedings of the 7th European
software engineering conference held jointly with the 7th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages 303–321,
London, UK, 1999. Springer-Verlag.

[Gal90] Keith Brian Gallagher. Using program slicing in software maintenance. PhD
thesis, Catonsville, MD, USA, 1990.



BIBLIOGRAPHY 71

[GFR06] João Gama, Ricardo Fernandes, and Ricardo Rocha. Decision trees for mining
data streams. Intell. Data Anal., 10(1):23–45, 2006.

[GHS92] R. Gupta, M. Harrold, and Mary Lou Soffa. An approach to regression test-
ing using slicing. In Proceedings of the International Conference on Software
Maintenance 1992, pages 299–308, 1992.

[GL91a] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751–761, 1991.

[GL91b] Keith Brian Gallagher and James R. Lyle. Using program slicing in software
maintenance. IEEE Trans. Softw. Eng., 17(8):751–761, 1991.

[GM02] D. Goswami and R. Mall. An efficient method for computing dynamic program
slices. Inf. Process. Lett., 81(2):111–117, 2002.

[GMMS07] Ulrich Güntzer, Rudolf Müller, Stefan Müller, and Ralf-Dieter Schimkat. Re-
trieval for decision support resources by structured models. Decis. Support Syst.,
43(4):1117–1132, 2007.

[Gop91] R. Gopal. Dynamic program slicing based on dependence relations. In Proceed-
ings of the Software Maintenance’91 Conference, pages 191–200, Sorrento, Italy,
October 1991.

[Gra08a] GramaTech. A code-analysis tool that identifies complex bugs at compile time.
http://www.grammatech.com/products/codesonar/, 2008.

[Gra08b] GramaTech. A code browser that understands pointers, indirect function
calls, and whole-program effects. http://www.grammatech.com/products/
codesurfer/, 2008.

[GSH97] Rajiv Gupta, Mary Lou Soffa, and John Howard. Hybrid slicing: integrating
dynamic information with static analysis. ACM Trans. Softw. Eng. Methodol.,
6(4):370–397, 1997.

[Hal95] R.J. Hall. Automatic extraction of executable program subsets by simultaneous
dynamic program slicing. Automated Software Engineering, 2:33–53, 1995. An
algorithm to automatically extract a correctly functioning subset of the code
of a system is presented. The technique is based on computing a simultaneous
dynamic program slice of the code for a set of representative inputs. Experiments
show that the algorithm produces significantly smaller subsets than with existing
methods.

[Har00] Mary Jean Harrold. Testing: a roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 61–72, New York, NY,
USA, 2000. ACM.

[HBD03] Mark Harman, David Binkley, and Sebastian Danicic. Amorphous program slic-
ing. J. Syst. Softw., 68(1):45–64, 2003.

http://www.grammatech.com/products/codesonar/
http://www.grammatech.com/products/codesurfer/
http://www.grammatech.com/products/codesurfer/


72 BIBLIOGRAPHY

[HBP02] Dixie Hisley, Matthew J. Bridges, and Lori L. Pollock. Static interprocedural
slicing of shared memory parallel programs. In PDPTA ’02: Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, pages 658–664. CSREA Press, 2002.

[HD95] Mark Harman and Sebastian Danicic. Using program slicing to simplify testing.
Software Testing, Verification & Reliability, 5(3):143–162, 1995.

[HD98] Mark Harman and Sebastian Danicic. A new algorithm for slicing unstructured
programs. Journal of Software Maintenance, 10(6):415–441, 1998.

[HEH+98] Jean Henrard, Vincent Englebert, Jean-Marc Hick, Didier Roland, and Jean-Luc
Hainaut. Program understanding in databases reverse engineering. In Database
and Expert Systems Applications, pages 70–79, 1998.

[HHF+01] Mark Harman, Rob Hierons, Chris Fox, Sebastian Danicic, and John Howroyd.
Pre/post conditioned slicing. icsm, 00:138, 2001.

[HHHL03] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and Welf Löwe. Automatic
design pattern detection. In IWPC ’03: Proceedings of the 11th IEEE Interna-
tional Workshop on Program Comprehension, page 94, Washington, DC, USA,
2003. IEEE Computer Society.

[Hoe05] Urs Hoelzle. Google: or how i learned to love terabytes. SIGMETRICS Perform.
Eval. Rev., 33(1):1–1, 2005.

[HOSD] Mark Harman, Margaret Okulawon, Bala Sivagurunathan, and Sebastian Dani-
cic. Slice-based measurement of function coupling.

[HPR88] Susan Horwitz, Jan Prins, and Thomas Reps. On the adequacy of program
dependence graphs for representing programs. In Conference Record of the Fif-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
146–157, San Diego, California, 1988.

[HPR89a] Susan Horwitz, P. Pfeiffer, and Thomas Reps. Dependence analysis for pointer
variables. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation, pages 28–40, New York, NY,
USA, 1989. ACM.

[HPR89b] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninterfering versions
of programs. ACM Trans. Program. Lang. Syst., 11(3):345–387, 1989.

[HR92] Susan Horwitz and Thomas Reps. The use of program dependence graphs in soft-
ware engineering. In ICSE ’92: Proceedings of the 14th international conference
on Software engineering, pages 392–411, New York, NY, USA, 1992. ACM.

[HRB88] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. In Proceedings of the ACM SIGPLAN ’88 Conference on
Programming Language Design and Implementation, volume 23, pages 35–46,
Atlanta, GA, June 1988.



BIBLIOGRAPHY 73

[HS97] D. Huynh and Y. Song. Forward computation of dynamic slicing in the presence
of structured jump statements. In Proceedings of ISACC, pages 73–81, 1997.

[HSD98] Mark Harman, Yoga Sivagurunathan, and Sebastian Danicic. Analysis of dy-
namic memory access using amorphous slicing. In ICSM, pages 336–, 1998.

[HSS01] Uri Hanani, Bracha Shapira, and Peretz Shoval. Information filtering: Overview
of issues, research and systems. User Modeling and User-Adapted Interaction,
11(3):203–259, 2001.

[ICG07] Valerie Issarny, Mauro Caporuscio, and Nikolaos Georgantas. A perspective on
the future of middleware-based software engineering. In FOSE ’07: 2007 Future
of Software Engineering, pages 244–258, Washington, DC, USA, 2007. IEEE
Computer Society.

[Jaz07] Mehdi Jazayeri. Some trends in web application development. In FOSE ’07:
2007 Future of Software Engineering, pages 199–213, Washington, DC, USA,
2007. IEEE Computer Society.

[JDC88] Hwang J.C., M.W. Du, and C.R. Chou. Finding program slices for recursive
procedures. In Proceedings of IEEE COMPSAC 88, Washington, DC, 1988.
IEEE Computer Society.

[Joh78] Stephen Johnson. Lint, a c program checker, 1978.

[JR94] Daniel Jackson and Eugene J. Rollins. A new model of program dependence for
reverse engineering. In SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT
symposium on Foundations of software engineering, pages 2–10, New York, NY,
USA, 1994. ACM.

[JR00] Daniel Jackson and Martin Rinard. Software analysis: a roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering, pages
133–145, New York, NY, USA, 2000. ACM.

[JZR91] J. Jiang, X. Zhou, , and D.J. Robson. Program slicing for c - the problems in
implementation. In Proceedings of Conference on Software Maintenance, pages
182–190. IEEE CSPress, 1991.

[KFS93a] Mariam Kamkar, Peter Fritzson, and Nahid Shahmehri. Interprocedural dynamic
slicing applied to interprocedural data flow testing. In Proceeding on Conference
on Software Maintenance, pages 386–395, 1993.

[KFS93b] Mariam Kamkar, Peter Fritzson, and Nahid Shahmehri. Three approaches to
interprocedural dynamic slicing. Microprocess. Microprogram., 38(1-5):625–636,
1993.

[KH01] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication
in source code. Lecture Notes in Computer Science, 2126:40–??, 2001.

[KH02] Sumit Kumar and Susan Horwitz. Better slicing of programs with jumps and
switches. In FASE ’02: Proceedings of the 5th International Conference on Fun-
damental Approaches to Software Engineering, pages 96–112, London, UK, 2002.
Springer-Verlag.



74 BIBLIOGRAPHY

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[KJLG03] Akos Kiss, Judit Jasz, Gabor Lehotai, and Tibor Gyimothy. Interprocedural
static slicing of binary executables. scam, 00:118, 2003.

[KL88] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–
163, 1988.

[KL90] Bogdan Korel and Janusz Laski. Dynamic slicing of computer programs. J. Syst.
Softw., 13(3):187–195, 1990.

[Kor97a] Bogdan Korel. Computation of dynamic program slices for unstructured pro-
grams. IEEE Trans. Softw. Eng., 23(1):17–34, 1997.

[Kor97b] Bogdan Korel. Computation of dynamic program slices for unstructured pro-
grams. IEEE Transactions on Software Engineering, 23(1):17–34, January 1997.

[KR97] Bogdan Korel and Jurgen Rilling. Dynamic program slicing in understanding of
program execution. wpc, 0:80, 1997.

[KRML04] Nick Kidd, Thomas Reps, David Melski, and Akash Lal. Wpds++: A c++
library for weighted pushdown systems, 2004.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–
50, 1995.

[KS06] Sarfraz Khurshid and Yuk Lai Suen. Generalizing symbolic execution to library
classes. SIGSOFT Softw. Eng. Notes, 31(1):103–110, 2006.

[KSF92] Mariam Kamkar, Nahid Shahmehri, and Peter Fritzson. Interprocedural dy-
namic slicing. In PLILP ’92: Proceedings of the 4th International Symposium on
Programming Language Implementation and Logic Programming, pages 370–384,
London, UK, 1992. Springer-Verlag.

[KT04] Yiannis Kanellopoulos and Christos Tjortjis. Data mining source code to fa-
cilitate program comprehension: Experiments on clustering data retrieved from
c++ programs. iwpc, 00:214, 2004.

[KY94] Bogdan Korel and Satish Yalamanchili. Forward computation of dynamic pro-
gram slices. In ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis, pages 66–79, New York, NY, USA,
1994. ACM.

[Lak92] Arun Lakhotia. Improved interprocedural slicing algorithm, 1992.

[Lak93] Arun Lakhotia. Rule-based approach to computing module cohesion. In ICSE
’93: Proceedings of the 15th international conference on Software Engineering,
pages 35–44, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[Lan92] William Landi. Undecidability of static analysis. ACM Lett. Program. Lang.
Syst., 1(4):323–337, 1992.



BIBLIOGRAPHY 75

[LBO+07] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, Joel Ossher, Ri-
cardo Santos Morla, Paulo Cesar Masiero, Pierre Baldi, and Cristina Videira
Lopes. Codegenie: using test-cases to search and reuse source code. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on Auto-
mated software engineering, pages 525–526, New York, NY, USA, 2007. ACM.

[LC94] Panos E. Livadas and Stephen Croll. System dependence graphs based on parse
trees and their use in software maintenance. Information Sciences, 76(3-4):197–
232, 1994.

[LFB06] Dawn J. Lawrie, Henry Feild, and David Binkley. Leveraged quality assess-
ment using information retrieval techniques. In ICPC ’06: Proceedings of the
14th IEEE International Conference on Program Comprehension, pages 149–158,
Washington, DC, USA, 2006. IEEE Computer Society.

[LFM96] Andrea De Lucia, A. R. Fasolino, and M. Munro. Understanding function be-
haviors through program slicing. In Proceedings of the 4th Workshop on Program
Comprehension, pages 9–18, 1996.

[LHHK03] Andrea De Lucia, Mark Harman, Robert Hierons, and Jens Krinke. Unions
of slices are not slices. In Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR 2003), 2003.

[LLWY03] Arun Lakhotia, Junwei Li, Andrew Walenstein, and Yun Yang. Towards a clone
detection benchmark suite and results archive. In IWPC ’03: Proceedings of
the 11th IEEE International Workshop on Program Comprehension, page 285,
Washington, DC, USA, 2003. IEEE Computer Society.

[LMFB06] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in
a name? a study of identifiers. In ICPC ’06: Proceedings of the 14th IEEE
International Conference on Program Comprehension, pages 3–12, Washington,
DC, USA, 2006. IEEE Computer Society.

[Lon85] H. D. Longworth. Slice-based program metrics. Master’s thesis, 1985.

[Lop08] Crista Lopes. Codegenie. http://sourcerer.ics.uci.edu/codegenie/, 2008.

[LR87] Hareton K. N. Leung and Hassan K. Reghbati. Comments on program slicing.
IEEE Trans. Softw. Eng., 13(12):1370–1371, 1987.

[LR92] William Landi and Barbara G. Ryder. A safe approximate algorithm for inter-
procedural aliasing. SIGPLAN Not., 27(7):235–248, 1992.

[LSL96] Hongjun Lu, Rudy Setiono, and Huan Liu. Effective data mining using neural
networks. IEEE Trans. on Knowl. and Data Eng., 8(6):957–961, 1996.

[Luc01] Andrea De Lucia. Program slicing: Methods and applications. In First IEEE
International Workshop on Source Code Analysis and Manipulation, pages 142–
149. IEEE Computer Society Press, Los Alamitos, California, USA, Novembro
2001.

http://sourcerer.ics.uci.edu/codegenie/


76 BIBLIOGRAPHY

[LV97] Filippo Lanubile and Giuseppe Visaggio. Extracting reusable functions by
flow graph-based program slicing. IEEE Transactions on Software Engineering,
23(4):246–259, April 1997.

[LW86] Jim Lyle and Mark Weiser. Experiments on slicing-based debugging tools. In
Proceedings of the 1st Conference on Empirical Studies of Programming, pages
187–197, Norwood, New Jersey, 1986. Ablex publishing.

[LW87] Jim Lyle and Mark Weiser. Automatic bug location by program slicing. In Pro-
ceedings of the Second International Conference on Computers and Applications,
pages 877–883, 1987.

[LWG+95] Jim Lyle, D. Wallace, J. Graham, Keith Gallagher, J. Poole, and David Binkley.
Unravel: A case tool to assist evaluation of high integrity software, 1995.

[Lyl84] James Robert Lyle. Evaluating variations on program slicing for debugging (data-
flow, ada). PhD thesis, College Park, MD, USA, 1984.

[M.93] Kamkar M. Interprocedural dynamic slicing with applications to debugging and
testing. PhD thesis, Linkoping University, Sweden, 1993.

[Mar03] Andrian Marcus. Semantic-driven program analysis. PhD thesis, Kent, OH,
USA, 2003. Director-Jonathan I. Maletic.

[MC88] B. P. Miller and Jong-Deok Choi. A mechanism for efficient debugging of parallel
programs. SIGPLAN Not., 23(7):135–144, 1988.

[Mic08a] Microsoft. Design guidelines for class library developers. http://msdn.
microsoft.com/en-us/library/czefa0ke(VS.71).aspx, 2008.

[Mic08b] Microsoft. Fxcop. http://msdn.microsoft.com/en-us/library/
bb429476(VS.80).aspx, 2008.

[MLL05] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application
errors and security flaws using pql: a program query language. SIGPLAN Not.,
40(10):365–383, 2005.

[MM01] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept
clones in source code. In ASE ’01: Proceedings of the 16th IEEE international
conference on Automated software engineering, page 107, Washington, DC, USA,
2001. IEEE Computer Society.

[MMCG99] Spiros Mancoridis, Brian S. Mitchell, Y. Chen, and Emden R. Gansner. Bunch: A
clustering tool for the recovery and maintenance of software system structures.
In ICSM ’99: Proceedings of the IEEE International Conference on Software
Maintenance, page 50, Washington, DC, USA, 1999. IEEE Computer Society.

[MMS03] G. B. Mund, Rajib Mall, and S. Sarkar. Computation of intraprocedural dynamic
program slices. Information & Software Technology, 45(8):499–512, 2003.

http://msdn.microsoft.com/en-us/library/czefa0ke(VS.71).aspx
http://msdn.microsoft.com/en-us/library/czefa0ke(VS.71).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx


BIBLIOGRAPHY 77

[MSRM04] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I. Maletic. An
information retrieval approach to concept location in source code. In WCRE
’04: Proceedings of the 11th Working Conference on Reverse Engineering, pages
214–223, Washington, DC, USA, 2004. IEEE Computer Society.

[MTO+92] Hausi A. Müller, Scott R. Tilley, Mehmet A. Orgun, B. D. Corrie, and Nazim H.
Madhavji. A reverse engineering environment based on spatial and visual soft-
ware interconnection models. In SIGSOFT ’92: Proceedings of the Fifth ACM
SIGSOFT Symposium on Software Development Environments, (Tyson’s Corner,
Virginia; December 9-11, 1992), pages 88–98, December 1992.

[OB92] Linda Ottenstein and James Bieman. Effects of software changes on module
cohesion. In International Conference on Software Maintenance, pages 345–353,
1992.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a
software development environment. SIGSOFT Softw. Eng. Notes, 9(3):177–184,
1984.

[OSH01] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Incremental slicing
based on data-dependences types. In ICSM, pages 158–, 2001.

[OT89] Linda Ottenstein and Jeffrey J. Thuss. The relationship between slices and
module cohesion. In International Conference on Software Engineering, pages
198–204, 1989.

[OT93] Linda Ottenstein and J. Thuss. Slice based metrics for estimating cohesion, 1993.

[Ott92] Linda Ottenstein. Using slice profiles and metrics during software maintenance,
1992.

[PM04] Sankar K. Pal and Pabitra Mitra. Pattern Recognition Algorithms for Data Min-
ing: Scalability, Knowledge Discovery, and Soft Granular Computing. Chapman
& Hall, Ltd., London, UK, UK, 2004.

[PV06] Sokhom Pheng and Clark Verbrugge. Dynamic data structure analysis for java
programs. In ICPC ’06: Proceedings of the 14th IEEE International Conference
on Program Comprehension, pages 191–201, Washington, DC, USA, 2006. IEEE
Computer Society.

[QH04] Feng Qian and Laurie Hendren. Towards dynamic interprocedural analysis in
jvms. In VM’04: Proceedings of the 3rd conference on Virtual Machine Research
And Technology Symposium, pages 11–11, Berkeley, CA, USA, 2004. USENIX
Association.

[RB06] Nuno Rodrigues and Luis Soares Barbosa. Component identification through
program slicing. In L. S. Barbosa and Z. Liu, editors, Proc. of FACS’05 (2nd Int.
Workshop on Formal Approaches to Component Software), volume 160, pages
291–304, UNU-IIST, Macau, 2006. Elect. Notes in Theor. Comp. Sci., Elsevier.

[RBF96] Ph.D. Ronald B. Finkbine. Metrics and models in software quality engineering.
SIGSOFT Softw. Eng. Notes, 21(1):89, 1996.



78 BIBLIOGRAPHY

[RBL06] Thomas Reps, Gogul Balakrishnan, and Junghee Lim. Intermediate-
representation recovery from low-level code. In PEPM ’06: Proceedings of the
2006 ACM SIGPLAN symposium on Partial evaluation and semantics-based pro-
gram manipulation, pages 100–111, New York, NY, USA, 2006. ACM.

[RD06] Daniel Ratiu and Florian Deissenboeck. How programs represent reality (and
how they don’t). In WCRE ’06: Proceedings of the 13th Working Conference on
Reverse Engineering, pages 83–92, Washington, DC, USA, 2006. IEEE Computer
Society.

[Rep96] Thomas W. Reps. On the sequential nature of interprocedural program-analysis
problems. Acta Informatica, 33(8):739–757, 1996.

[RHSR94] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up
slicing. In Proceedings of the ACM SIGSOFT ’94 Symposium on the Foundations
of Software Engineering, pages 11–20, 1994.

[Rod06] Nuno Rodrigues. Haslicer. http://labdotnet.di.uminho.pt/HaSlicer/
HaSlicer.aspx, 2006.

[RSJM05] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. Weighted push-
down systems and their application to interprocedural dataflow analysis. Sci.
Comput. Program., 58(1-2):206–263, 2005.

[Rug95] S. Rugaber. Program comprehension, 1995.

[Sar03] Kamran Sartipi. Software architecture recovery based on pattern matching. In
ICSM ’03: Proceedings of the International Conference on Software Maintenance,
page 293, Washington, DC, USA, 2003. IEEE Computer Society.

[Sch02] David A. Schmidt. Structure-preserving binary relations for program abstraction.
pages 245–265, 2002.

[SHR99] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary interprocedural control flow. In
International Conference on Software Engineering, pages 432–441, 1999.

[SHS02] Yoga Sivagurunathan, Mark Harman, and Bala Sivagurunathan. Slice-based
dynamic memory modelling – a case study, 2002.

[Sil06] Josep Silva. A comparative study of algorithmic debugging strategies. In LOP-
STR, pages 143–159, 2006.

[SKL06] Dennis Strein, Hans Kratz, and Welf Lowe. Cross-language program analysis and
refactoring. In SCAM ’06: Proceedings of the Sixth IEEE International Workshop
on Source Code Analysis and Manipulation, pages 207–216, Washington, DC,
USA, 2006. IEEE Computer Society.

[SMS01] Timothhy S. Souder, Spiros Mancoridis, and Maher Salah. Form: A framework
for creating views of program executions. In ICSM, pages 612–, 2001.

http://labdotnet.di.uminho.pt/HaSlicer/HaSlicer.aspx
http://labdotnet.di.uminho.pt/HaSlicer/HaSlicer.aspx


BIBLIOGRAPHY 79

[SR03] Eric J. Stierna and Neil C. Rowe. Applying information-retrieval methods to
software reuse: a case study. Inf. Process. Manage., 39(1):67–74, 2003.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[Thu88] J.J. Thuss. An investigation into slice based cohesion metrics. Master’s thesis,
1988.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3:121–189, 1995.

[TWSM94] Scott R. Tilley, Kenny Wong, Margaret-Anne D. Storey, and Hausi A. Müller.
Programmable reverse engineering. International Journal of Software Engineer-
ing and Knowledge Engineering, 4(4):501–520, 1994.

[Ven91] G. A. Venkatesh. The semantic approach to program slicing. In PLDI ’91:
Proceedings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, pages 107–119, New York, NY, USA, 1991. ACM.

[Wal91] David W. Wall. Systems for late code modification. In Code Generation, pages
275–293, 1991.

[WC96] Norman Wilde and Christopher Casey. Early field experience with the software
reconnaissance technique for program comprehension. In ICSM ’96: Proceedings
of the 1996 International Conference on Software Maintenance, pages 312–318,
Washington, DC, USA, 1996. IEEE Computer Society.

[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value
dependence graphs: representation without taxation. In POPL ’94: Proceedings
of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 297–310, New York, NY, USA, 1994. ACM.

[Wei79] Mark David Weiser. Program slices: formal, psychological, and practical inves-
tigations of an automatic program abstraction method. PhD thesis, Ann Arbor,
MI, USA, 1979.

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[WFP07] Murray Woodside, Greg Franks, and Dorina C. Petriu. The future of software
performance engineering. In FOSE ’07: 2007 Future of Software Engineering,
pages 171–187, Washington, DC, USA, 2007. IEEE Computer Society.

[WL86] Mark Weiser and Jim Lyle. Experiments on slicing-based debugging aids. In
Papers presented at the first workshop on empirical studies of programmers on
Empirical studies of programmers, pages 187–197, Norwood, NJ, USA, 1986.
Ablex Publishing Corp.



80 BIBLIOGRAPHY

[WR08] Tao Wang and Abhik Roychoudhury. Dynamic slicing on java bytecode traces.
ACM Trans. Program. Lang. Syst., 30(2):1–49, 2008.

[WRG] Tao Wang, Abhik Roychoudhury, and Liang Guo. Jslice. http://jslice.
sourceforge.net/.

[ZB04] Jihong Zeng and Peter A. Bloniarz. From keywords to links: an automatic ap-
proach. In ITCC ’04: Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC’04) Volume 2, page 283, Washington,
DC, USA, 2004. IEEE Computer Society.

[Zel01] Andreas Zeller. Automated debugging: Are we close. Computer, 34(11):26–31,
2001.

[Zel07] Andreas Zeller. The future of programming environments: Integration, synergy,
and assistance. In FOSE ’07: 2007 Future of Software Engineering, pages 316–
325, Washington, DC, USA, 2007. IEEE Computer Society.

[ZG04] Xiangyu Zhang and Rajiv Gupta. Cost effective dynamic program slicing, 2004.

[ZGZ04] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Efficient forward computation
of dynamic slices using reduced ordered binary decision diagrams. In ICSE ’04:
Proceedings of the 26th International Conference on Software Engineering, pages
502–511, Washington, DC, USA, 2004. IEEE Computer Society.

http://jslice.sourceforge.net/
http://jslice.sourceforge.net/

	Glossary
	State-of-the-Art: Code Analysis
	Basic Concepts
	Anatomy of code analysis
	Data extraction
	Information representation
	Knowledge Exploration

	Current code analysis challenges
	Language Issues
	Multi-Language Analysis
	Static, Dynamic and Real-Time analysis
	Analyzing executables
	Information Retrieval
	Data Mining

	Applications of code analysis
	Debugging
	Reverse engineering
	Comprehension

	Tools for code analysis
	FxCop
	Lint
	CodeSonar and CodeSurfer


	State-of-the-Art: Slicing
	The Concept of Program Slicing
	Program example
	Static slicing
	Dynamic slicing
	Quasi-static slicing
	Conditioned slicing
	Simultaneous dynamic slicing
	Union slicing
	Other concepts
	Dicing
	Chopping
	Relationships among program slicing models
	Methods for Program Slicing

	Static slicing
	Basic slicing algorithms
	Slicing programs with arbitrary control flow
	Interprocedural slicing methods
	Slicing in the presence of composite datatypes and pointers

	Dynamic slicing
	Basic algorithms for dynamic slicing
	Slicing programs with arbitrary control flow
	Interprocedural slicing methods
	Slicing in the presence of composite datatypes and pointers

	Applications of Program Slicing
	Debugging
	Software Maintenance
	Reverse engineering
	Comprehension
	Testing
	Measurement

	Tools using Program Slicing
	CodeSurfer
	JSlice
	Unravel
	HaSlicer
	Other tools


	References

