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ABSTRACT 
Keywords: Computer vision, Image classification, Image segmentation, Machine Learning, Coins 

 
The use of computer vision for identification and recognition of coins is well studied 

and of renowned interest. However the focus of research has consistently been on modern 
coins. The same algorithms that advertise a hit of 97% in recognition of modern coins are 
quite disappointing when applied to ancient coins. 

This discrepancy has several reasons, starting with the nature of ancient coins, that 
are manually minted, having plenty variances and failures, frequent ripples and centuries 
of degradation which further deform the characteristic patterns, making their identification 
a hard task even for humans. 

Another noteworthy factor in almost all similar studies is the controlled environments 
and uniform illumination of all images of the datasets. Though it makes sense to focus on 
the more problematic variables, this is an impossible premise to find outside the 
researchers’ laboratory, therefore a problematic that must be approached. 

This dissertation focuses on medieval and ancient coin recognition in uncontrolled “real 
world” images, thus trying to pave way to the use of vast repositories of coin images all 
over the internet that could be used to make our algorithms more robust. 

In the first part of the dissertation I propose a fast and automatic method to segment 
ancient coins over complex backgrounds using a Histogram Backprojection approach. 
Results are compared against a proposed automation of GrabCut algorithm, and its 
benefits are demonstrated. Although the present report is oriented to ancient coin 
segmentation, the method can also be used in other contexts presenting thin objects with 
uniform colors. 

In the second part, several state of the art machine learning algorithms are compared 
in the search for the most promising approach to classify these challenging coins. 
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RESUMO 

Palavras-Chave: Visão por computador, Classificação de Imagens, Segmentação de 
imagens, Machine Learning, Moedas 

 
O uso de visão por computador para identificação e reconhecimento de moedas é 

bastante estudado e de reconhecido interesse. No entanto o foco da investigação tem sido 
sistematicamente sobre as moedas modernas. Os mesmos algoritmos que anunciam um 
sucesso de 97% no reconhecimento de moedas modernas são bastante desapontantes 
quando aplicados a moedas antigas. Esta discrepância de resultados tem várias 
justificações, a começar pela natureza das moedas antigas que, sendo cunhadas à mão, 
apresentam bastantes variações e falhas, frequentes ondulações na sua superfície e 
séculos de degradação que deformam ainda mais os padrões característicos, tornando a 
sua identificação uma tarefa ingrata mesmo para o ser humano. Um outro fator digno de 
nota na quase totalidade dos estudos desta problemática é o uso de ambientes 
controlados e iluminação uniformizada entre todas as imagens dos datasets. Embora faça 
sentido focar-se nas variáveis mais problemáticas, esta é uma premissa impossível de 
encontrar fora do laboratório do investigador e portanto uma problemática que tem que 
ser estudada. 

Esta dissertação foca-se no reconhecimento de moedas medievais e clássicas em 
imagens não controladas, tentando assim abrir caminho ao uso de vastos repositórios de 
imagens de moedas disponíveis na internet, que poderiam ser usados para tornar os 
nossos algoritmos mais robustos. Na primeira parte da dissertação, proponho um método 
rápido e automático para segmentar moedas antigas sobre fundos complexos, numa 
abordagem que envolve Histogram Backprojection. Os resultados são comparados com 
uma automação do algoritmo GrabCut e são demonstradas as mais-valias do método 
proposto. Embora este relatório seja orientado para a segmentação de moedas antigas, 
este método pode ser usado noutros contextos que incluam objetos planos de cor 
uniforme. Na segunda parte, o estado da arte de Machine Learning é testado e comparado 
em busca da abordagem mais promissora para classificar estas moedas complicadas. 
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1 
INTRODUCTION 

The use of computer vision for recognition of coins is well studied and of renowned 
interest in areas ranging from vending machines to fakes identification. In fact the problem 
is so relevant that it has been object of financing by the European Union (e.g. Project 
COINS [1], [2] ) and international competitions for researchers (e.g. Muscle, 2006 and 
2007). However the focus of research and testing has consistently been on modern coins, 
under controlled lighting conditions. The focus on ancient and medieval coins could 
provide valuable tools for archeologists’ rapid finding identification; museum curators 
could be more easily guided on cataloging their collections, or identifying fake or stolen 
coins; and perhaps historians could find unsuspected relations between different coins 
from different areas, consequently establishing cultural relations. 

The challenge is that the same algorithms that advertise a hit of 97% in recognition of 
modern coins are quite disappointing when applied to ancient coins. 

The discrepancy in these results has several reasons, starting with the nature of ancient 
coins, that are hand minted, having plenty variances and failures. For example, if we take 
two pieces of 1 euro (from the same country) they are totally identical and practically 
indistinguishable from each other, in the case of ancient coins no two are alike copies (if 
they are equal, surely one of them is a fake). The well-defined standards and uniform 
thicknesses of modern coins do not exist in ancient coins, which present frequent ripples 
even within the same figure, not centered or incomplete designs, or irregular shapes. On 
top of all this are the softer metal alloys and centuries of degradation which further deform 
the characteristic patterns, making their identification a hard task sometimes even for 
humans. When we move from the classical coins (like Roman and Greek) to medieval 
coins, the task gets even harder, due to the severe declination in the artistic quality from 
artisans in the Middle Ages. 

Another noteworthy factor in almost all similar studies is the controlled environments 
and uniform illumination of all images of the training and testing datasets. This choice 
makes sense, taking into account the amount of other more problematic variables that 
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must be managed in research algorithms to achieve minimally encouraging results. 
However this is an impossible premise to find in the real world, where the photographs 
that populate shops, auction houses, numismatic forums, archeology offices and 
sometimes even museums are the most disparate imaginable and often with awful lighting 
conditions. Thus, any methodology that aims to be applied to the world outside the 
researcher's laboratory will necessarily have to consider this disparity. 

In an age when image recognition researchers seem to be battling over a few decimal 
points in success rates, working on medieval coins, especially in such hard conditions, 
does not foretell to be promising at all, thus, this is not a very appellative area to bet our 
time and careers on. Nevertheless, the technology is achieving a point that could already 
start to be used in the real world helping researchers in other areas (like archeologists, 
museum experts and numismatists) forwarding our global knowledge. This work aims to 
give a modest contribution to such advance. 
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2 
STATE OF THE ART 

2.1 IMAGE RECOGNITION EVOLUTION 

From the primordial image matching to the hype on Convolutional Neural Networks, 
the evolution of image recognition was not always easy, but also not immune to fashion. 
In a much simplistic way, we could describe its progress more or less like this: 

In 1999 Lowe [3] introduced Scale Invariant Feature Transform (SIFT) and researchers 
from all around the world praised the new messiah and changed the course of their works. 
SIFT allows a point inside an RGB image to be represented robustly by a low dimensional 
vector and find a way to be invariant to scaling and rotation, partially invariant to 
illumination changes and robust to local geometric distortion, a much welcome evolution 
from the previous ordinarily used Sum of Squared Distances (SSD). 

The Local Descriptors were on the rise when it became clear the internet would be the 
future for everything digital. The images were going online and easily grown into large-
scale datasets. No longer were the researchers confined to their laboratories with their 
own small datasets. Rapidly the big problem became “my dataset is bigger than yours”.  

More ambitious object recognition problems were arising and raw SIFT was not enough 
to deal with deforming objects or occlusions. New methods had to be found. Visual Words 
(VW) were a clever way of applying the same principles from text matching to visual 
content. It can be represented by small parts of an image which carry some kind of 
information related to the features (such as the color, shape or texture), or changes 
occurring in the pixels, such as deformations or missing areas. Another popular idea arose 
at the time: the need to have some sort of binning structure for matching objects. Grids 
were initially placed around entire images, and later on they would be placed around 
object bounding boxes. Methods like Pyramid Match Kernel introduced powerful and 
hierarchical ways of integrating spatial information into the image matching. 
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A new feature descriptor arrived around 2005, and started a new reign: the Histogram 
of Oriented Gradients (HOG), based on the counting of occurrences of gradient orientation 
in localized portions of an image, came to simplify and greatly improve the processing 
speed. HOG and a new machine learning tool called Support Vector Machine (SVM) easily 
gained acceptance. A later technique called the Deformable Parts-based Model (DPM), 
helped reinforce even more the popularity and strength of the HOG technique. 

As datasets became larger, an old and discredit method rose again (this time with many 
folds the computation power from the 80s): Deep Learning. It attempts to model high-level 
abstractions in data by using multiple processing layers with complex structures, or 
otherwise composed of multiple non-linear transformations. Suddenly everyone seems to 
be jumping into the Convolutional Neural Networks (CNN) bandwagon, Machine Learning 
is fusing with Artificial Intelligence, and the word of the day is BigData… even if the 
problem is small. 

2.2 COIN RECOGNITION 

2.2.1 Of modern coins 

One of the first major advances in coin recognition was given by the Dagobert  [4] 
project1. Its purpose was to sort high volumes of modern coins. The coins were already 
singled out and put on a conveyor belt where a camera observed one coin at a time in 
ideal lighting conditions. The method relied on binarized edge information that was 
correlated with all possible master edge images stored in a database, finding the master 
coin with lowest distance. For edge information they used Canny edge operator and 
Laplacian of Gaussian (LoG), plus a polar coordinate representation, but also sensor 
information of coin diameter and thickness. The success rate was high but the use of 
sensors and such very controlled conditions make this method infeasible for the purpose 
of this work. The massive coin image database was later available to the public, and it 
still provides the best dataset existent for modern coin recognition. 

                                                 
1 A presentation video of the Coin Classification Machine is available in www.youtube.com/watch?v=I6JiD2yEi8Q  
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Huber et al. [5] proposed the use of Eigenspaces in modern coin recognition. The 
method consisted in a preprocessing, performed to obtain a translationally and rotationally 
invariant description, followed by a second stage, in which an appropriate Eigenspace was 
selected. 

The MUSCLE CIS Coin Competition2 in 2006 and 2007 launched new ground in coin 
recognition investigation. The big winner in 2006 was Reisert et al. [6], who used gradient 
based orientations in order to achieve the most effective success rate. They segmented 
the coin from the background by applying the Hough transform, then normalized the region 
containing the coin and transformed it to polar coordinates. An angular image was then 
computed based on the image gradient orientations. The similarity between two different 
coins was computed by counting the number of pixels with which the two respective angles 
coincide. This similarity measure was fed to a Nearest Neighbor classifier that would find 
the best-matching coin within a given coin image database. Reisert would later improve 
the method [7]. The runner-up, called COIN-O-MATIC [8], also persists in paper citations. 
This one focused on reliability and speed, relying on the coin edge information, but also 
on sensor information. The Edge angle-distance distributions were calculated and 
classified using the Nearest Neighbor approach. In 2007 Maaten showed up again with a 
paper over partially occluded coins [9]. For that he used Texton-based texture classifiers 
and template matching based on gradient orientations. But Zaharieva paper [10] tested a 
promising new area for coin recognition: Scale-Invariant Feature Transform (SIFT) 
(originally presented by Lowe [3]), which would prove much more effective in ancient 
coins. 

Other authors experienced new approaches around the same time. Neural Networks 
were tested by several researchers, like Khashman et al. [11]. Ghanem et al. [12] tried a 
Gabor wavelet approach for feature extraction followed by Nearest Neighbor classification.   

Some later, if more modest, contributions in the modern coin recognition, are Märtens 
et al. [13], who used Cross-correlation (CC) matching (while admittedly CC is not invariant 
to imaging scale, rotation, illumination and perspective distortions, the authors claim that  
normalization of the CC can significantly improve the method); Vadivelan et al. [14], who 

                                                 
2 Information and data from the competition in: muscle.caa.tuwien.ac.at/coin_past.php  
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experimented both Gabor wavelet and LBP operator features over several distance 
measurement methods and a Nearest Neighbor classifier; and Wei et al. [15], who 
presented an approach based on image textures, using Ant colony optimization (ACO) for 
optimal threshold segmentation and Tree-structured Wavelet Transform (TWT) for the 
Textural Characteristics Extraction.  

 An interesting survey on Techniques of Coin Detection and Recognition is presented 
by Mehta et al. in [16]. But, by that time, with all the previous studies, and optimistic 
success rates, the problem of coin recognition seemed all but solved, to most researchers. 

Yet, these same methods provided very frustrating success rates when applied to 
ancient coins, proving that the techniques developed for modern coin classification are 
not sufficient for ancient coin classification [17], [18], [19]. The reasons were already 
discussed in the introduction, but some basic assumptions also changed. For instance, 
the generally accepted use of Hough transforms for segmentation of the image is no longer 
appropriate because very frequently the coins are not perfectly round. Also the controlled 
lighting conditions are harder to achieve due to the degradation and deformation of the 
ancient coins. And, of course, the use of sensors does not make much sense when dealing 
with just a few specimens instead of thousands, or in industrial/commercial applications. 

2.2.2 Of ancient coins 

Some attention to ancient coin recognition came from the EU sponsored COINS 
(Combat On-Line Illegal Numismatic Sales) project [1], [2], focusing on fake and stolen 
coins identification. Its main approach relied on individual, unique features, which make 
a specimen different from all other individuals in the same class. For over two years, a 
good number of studies came from this project. The team started with a good analysis of 
the problem [20], provided a dataset of ancient coins from the collection of Fitzwilliam 
Museum in Cambridge, and have shown again the potential of SIFT classification. The 
various problematics were approached in distinct papers. The segmentation problem was 
discussed in [21] and [22] suggesting the use of local entropy and a local range of grey 
values, but still facing the big problem of the coin shadows. The image acquisition was 
also tested in [23], towards an optimized acquisition process. Several books [24], [25], 
and internet articles already existed on the subject, but the study made sense since these 
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are focused on the aesthetics and not on the recognition optimization. Nevertheless the 
investigation continued to be on controlled images. Some possible numismatic research 
fields where debated in [26], paving the way for more investigation in the area. 

The team presented in [27] an end-to-end coin identification workflow for ancient coins, 
with decent results. They cross-evaluated the performance of several Interest Point 
Detectors [Difference-of-Gaussian (DoG), Harris-Laplace, Harris-Affine, Hessian-Laplace, 
Hessian-Affine, Fast-Hessian, Geometry-based region (GBR), IBR, and Maximally Stable 
Extremal Regions (MSER)] with different local image feature descriptors for coin 
classification and recognition [SIFT, Gradient Location and Orientation Histogram (GLOH), 
shape context and Speeded Up Robust Features (SURF)]. Based on the irregular shape of 
ancient coins, in [17] they introduced the use of a deviation from circular shape matching 
(DCSM) as a form of identification (not classification), a method they would use in several 
of their later papers, under the argument that the outline is a unique characteristic of a 
coin. While this is true and useful when identifying stolen coins, relying on it for the 
identification of fake coins shows some unawareness on the refined methods used by the 
fakers. Other problems with the concept are the lighting conditions, which admittedly 
could influence the results, and the computation time which, according to a newspaper 
article3, took a few minutes. 

The fact that the online tools from COINS project come public provided much more 
feedback about its effectiveness. Some reviews claimed that the results were variable4, 
and the segmentation was not impressive, exposing the difficulties of using “real world” 
photos. By now the internet site along with the online tools have vanished5, leaving the big 
public with nothing to work with once again.  

Meanwhile a limited number of researchers add their contribution, too. Arandjelovic ́ 
[28] introduced a new concept based on localized analysis rather than taking the coin as 
a whole. His method is based on a feature he called Locally Biased Directional Histogram 
(LBDH). For each interest point found by the Difference-of-Gaussian (DoG) detector, a set 
                                                 
3 The article can be read online in diepresse.com/home/techscience/wissenschaft/364117/Keine-zwei-Munzen-
gleichen-einander-zu-100-Prozent?_vl_backlink=/home/techscience/index.do. 
4 e.g. digitalhn.blogspot.pt/2009/06/software-from-coins.html. 
5 Although there is still a page about the project in oldwww.prip.tuwien.ac.at/research/completed-projects/coins. 
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of weighed and directed histograms is computed. These features aim to capture geometric 
relationships between interest points. This proved a promising kind of feature as it offers 
a powerful representation able to capture the class-specific coin appearance. The method 
achieved 52.7% classification accuracy, largely outperforming a histogram of SIFT 
representation, but mainly it opened the eyes of the community for the need to look at 
special relations between the interest points. 

Allahverdi et al. [29], [30] tested some already known methods on Sassanid coins, 
which are relevant for this project for being closer to medieval coin’s style than the Roman 
coins used in most investigations. One of the papers explored the Discrete Cosine 
Transform (DCT), the other used Principal Component Analysis (PCA), plus Bhattacharyya 
distances between the coefficients vector and those representing each training coin. Both 
methods presented interesting results but were meanwhile outperformed by later studies. 
The same kind of coin was later approached by Parsa et al. [31], using a representation 
of the coin image based on the phase of the 2-D Fourier Transform (FT) of the image so 
that the adverse effect  of illumination was eliminated. Then, a Bi-Directional PCA (BDPCA) 
approach was used and an entry-wise matrix norm calculated the distance between two 
feature matrices so as to classify coins. 

From 2011 to 2014 the ILAC6 [32] research project joined again (at least) some of the 
researchers from COINS project for a new batch of studies. The previous approaches were 
extended by Huber-Mörk et al. [33] using a preselection step based on the coin’s contour. 
In this step, equally spaced rays are cast from the coin’s center of gravity and intersected 
with its contour. The distances along the rays between these intersection points and the 
hypothetical perfect circle fitted to the coin area are measured and form a descriptor that 
can be computed quickly. This descriptor can be quickly matched and allows for fast 
pruning of large coin databases when attempting to identify a specific coin from an image. 
The second stage uses preselection by the first stage in order to refine the matching using 
local descriptors, and the results are combined using naïve Bayesian fusion.  

The multi-stage method was also used in classification in [34]. The hierarchical sub-
selection scheme showed that the classifier-free classification time could be reduced to 

                                                 
6 The project site can be found in www.caa.tuwien.ac.at/cvl/project/ilac/. 
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one-seventh without a loss of classification accuracy, a crucial gain.  This was an 
improvement to a previous paper [35] defending the use of a classifier-free approach, like 
SIFT flow matching, with the main benefit of making us less dependent on the availability 
of a large and representative set of training images. This makes total sense when talking 
about scarce ancient coins. On the other hand the computation times, even using the 
hierarchical sub-selection scheme, are big and get even bigger as the dataset grows. In 
their tests, with 180 images, from 60 classes, the average classification time varies 
between 7 and 472 seconds. With a bigger dataset the times would become too 
uncomfortable for general public use. The classifier-free and multi-stage viewpoint was 
maintained later in [36], with computation times around 22s in the same 60-class 
problem. This time their approach was a data-driven first-order matching and used 
geometric constraints afterwards to reason about the geometric plausibility of the 
correspondences found. They also opted out SIFT descriptor in favor of Local Image 
Descriptor Robust to Illumination Changes (LIDRIC), a descriptor presented in [37] by the 
same team. 

Again Huber-Mörk et al. [38], brought back edge features, in a comparison analysis 
between two approaches for classification and identification of coins: a method based on 
matching edge features in polar coordinates representation (as in [4]) and a method for 
matching based on an Eigenspace representation (as in [5]). Interesting results were 
achieved for identification with the Eigenspace method using deviation from circular shape 
matching (DCSM) and SIFT (again, with the limitations already commented on). 

Anwar et al. [39] and [40], used Bags Of Visual Words (BoVW) – also called Bags of 
Features (BoF) – based on densely extracted local features such as SIFT, with spatial 
information, to propose a new method for classification by recognizing motifs minted on 
their reverse sides. The dense sampling for BoVW results in a better classification rate as 
it is capable to capture the underlying geometry of the motif even if some of its parts are 
missing.  

Inevitably, the glamour of Convolutional Neural Networks (CNN) would prove irresistible 
to try on this field too, a good example is the work of Kim et al. [41], concluding that CNN 
outperforms Support Vector Machine (SVM), but presenting success classification rates 
no better than the previous papers. There are hundreds of new papers on the subject 



10 

every year (unfortunately not explicitly on coins) which makes it hard to keep track, but a 
very good example of what is being made is presented by Szegedy et al. [42].  

2.2.3 Other approaches  

Different approaches have been tried which, even if not applicable in the current study, 
are very interesting and show that creativity in new methodologies shall not be restrained. 

Facial recognition 
The fact that a great number of Roman coins display the rulers’ bust or some deity 

inspired a few authors to use some form of adapted facial recognition approaches in coin 
recognition. Kim et al. [43], [44] approaches the subject with a method based on 
discriminative Deformable Part Models (DPM).  

Character recognition 
Most coins have legends, so the use of character recognition to classify a coin or at 

least to help in the process seems a logical next step. Arandjelovic ́ [45] concentrated on 
Roman Imperial denarii, which have uniform legends, and after a geometric normalization 
of the text (through the use of polar coordinates) applied a HOG-like descriptor for letters. 
In spite of being a very interesting approach, it is limited to a very specific niche of coins, 
presenting difficulties in the presence of Roman numerals and being unable to deal with 
legends which are not arranged along the border.  

The ILAC project team addressed the same problem in [46], [47] and [48], both based 
on the work of Wang et al. [49]. The latter allows both straight and curved words (an 
important feature in coins), but requires the text to have a certain size relative to the coin 
image size, as the SIFT descriptors are only computed at one relative size. In [50] the 
same team finally combines image matching and the recognition of the coin legends (using 
the same methods already discussed), in order to improve the robustness of image-based 
coin classification. 

In any case, and as interesting as the ability of character recognition may seem, we 
can extract information from the legend only if we are given a very well-preserved coin, 
with very well defined legends and no other similar features complicating the “reading”. 
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When we deal with medieval coins, we know that it is hardly an option. In fact the 
characters are usually so rough and worn that they are difficult to read even by the human 
eye. Another issue is the evolution of the alphabet styles (Latin, Uncial, Gothic, Medieval, 
among others) and all its regional and period variants, and sometimes the use of several 
of these styles in one single coin, which gives the problem a much higher dimensionality 
than the above approaches suggest. 

3D models 
The use of 3D images for recognition or identification was approached in a hybrid way 

by Marchand et al. [51], [52] in which several photos were taken of the same coin with 
different lighting directions, in order to make a model resilient to the lighting conditions.  

Huber-Mörk et al. [38] discussed the advantages of using 3D data for surface analysis. 
Once again, they aim to avoid the interference caused by lighting variations, like shadows, 
or highlights due to specular reflections that distort the features of the coin. However 3D 
acquisitions are more laborious and expensive and, to our knowledge, 3D vision 
approaches applied to 3D databases of coins do not exist at the moment. 

Measurement data 
We have already seen that some works used sensors to retrieve more valuable data, 

helping in the classification process and computation time. Yet the use of sensors is not 
the only way to go: Herrmann et al. [53] showed a method for retrieving measurements 
on coins by means of a ruler placed next to the coin when taking the photo. As interesting 
as it is, it implies that we have control over the photo taken and thus it is not applicable 
in the current study. 

Iconography 
The project DIANA [54] avoids the usual emphasis on classification or identification, 

and gives us an interesting new function: it recognizes the iconography on the coin in 
order to map its origin. In fact the iconography on the (loosely labeled) Greek coins are 
very specific to the states which minted the coins, thus an analysis of its figures can give 
us its origins.  



12 

2.3 OTHER RELEVANT STUDIES 

Even if not specifically related to coin recognition or identification, some state of the 
art studies deserve to be mentioned for the potential they present to new approaches 
applied to coins in this or future works. 

The light/shadow variation problems are addressed by Kwatra et al. [55], who present 
an apparently very good method to remove shadows from images. Unfortunately the 
process appears to be closed and patented. Guo et al. [56] presented another method, 
but the tests carried out in coins revealed a computation time unaffordable for this work. 

Chen et al. [57] introduce the Logarithmic Total Variation (LTV) model and explain the 
way it removes varying illumination for face images. Although it is applied to face 
recognition, it could be applied in the recognition of busts in ancient coins, or major coin 
features. 

The segmentation problem is approached in [58], where Arbeláez et al. examine the 
effect of multiple local cues combined into a globalization framework based on spectral 
clustering. Rother et al. [59] launches the concept of GrabCut, which extends the graph-
cut approach by means of an iterative version of the optimisation and a robust algorithm 
for “border matting”. 

Edge detect advances were made by Dollár et al. [60] with the use of Structured 
Random Forests, capable of real time frame rates (faster than most competing state of 
the art methods) while achieving state of the art accuracy.  

Law’s Texture Energy Measure (TEM) was used in [61] on the subject of butterflies, but 
could as well be explored on coins. 

Even if SIFT and Speeded Up Robust Features (SURF) (SIFT’s faster version) are the 
most well-known descriptors around, every year several more algorithms appear 
competing for accuracy or faster performance. A good example is given by Takacs et al. 
[62], presenting a Radial Gradient Transform (RGT) and a fast approximation: the 
approximate RGT (ARGT), which is incorporated in Rotation-Invariant Fast Feature (RIFF). 
They demonstrate that using the ARGT, RIFF extracts features 16× faster than SURF, while 
achieving a similar performance for image matching and retrieval. Other more generalized 
methods shall be presented in a later chapter. 
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3 
THE PROBLEM AND ITS CHALLENGES  

3.1 THE PROBLEM IS THAT THERE ARE MANY PROBLEMS 

By recognition we usually mean the acknowledgement of something relevant, either by 
realizing something as existing or previously known, or by finding some useful relation to 
some other known thing. So when we say coin recognition, we are entering a multiple war 
front (or at least we should). 

3.1.1 Classification 

This is the most widely studied problem and probably the one that once presented to 
the public would be more acclaimed and criticized.  

The act of classification consists of putting the coin successfully into a group of similar 
coins. These distinct groups are already established by generations of numismatists and 
sometimes it is not very easy to understand the criteria on which they are based. Taking 
into account that a group (or class) of ancient/medieval coins is not as uniform as a class 
of modern coins, an automatic classifier based on pictures of one’s coin would be 
gratefully received by the whole numismatic and archeological community (as it would be 
lapidated for its lapses). 

The challenges 
The fact that they are hand minted and submitted to centuries of degradation and 

deformation makes it virtually impossible to find two equal coins. Their differences may 
be bigger due to malformation than due to class distinction. In fact the intra-class 
variations may sometimes stand out more than inter-class variations, it is all about 
conventions. To that we must add the abundant noise and deformation caused by 
degradation, or improper minting. So grouping coins in classes is more an approximation 
process than a complete match, more about the symbolism present on the coins than the 
visual aesthetics. 
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3.1.2 Identification 

The uniformity and high levels of quality control on modern coins make the task of 
identifying a fake very hard for image recognition, unless we know beforehand which 
inaccuracies we are looking for. But the same factor that makes the ancient and medieval 
classification so hard - there are no two equal coins – is a big advantage on ancient coin 
identification. Identification of a specific stolen coin, for example, is a matter of simple 
matching. So theoretically, we are technologically fit to pick an image from eBay or some 
other auction house and compare it to a database of stolen coins (that is, if every museum 
and police force could be persuaded to cooperate). Moreover a fake coin is often made 
from a mold of an existing coin, so sometimes it is also possible to identify it. Yet, in this 
case it is not as easy as it sounds, as we will see below. 

The challenges 
In practice, the problem of identification is the same as classification, except that in 

this case each class is an individual coin, thus the volume of information and computation 
time will be inevitably bigger. The team from COINS project [1], [2], and later ILAC project 
[32] found a shortcut: instead of processing the whole coin, they concentrate only on the 
coin’s edge. The principle is that if we could have a perfect enough segmentation from 
the coin’s edge, we would have a faster, smaller and still accurate descriptor. The 
challenge is that a perfect enough outline has proven sometimes hard and it takes a long 
time. But the really tricky part is that the lighting conditions can severely influence the 
resulting extracted coin shape and the perfectly controlled lighting conditions of the 
dataset images can hardly be found in the real world.  

Relying on the coin’s edge for identification of fake coins has a very limited 
effectiveness since modern fakers use much more refined methods than simple copying. 

Fake identification becomes a different challenge from stolen identification, in fact, 
three different challenges: 

Falsifications by casting, the easiest and most common, are made using a mold from 
an existing coin, so they present a large similarity with the original coin. Yet, a mold has 
to have an opening to pour the metal in, in fact it has a second opening on the opposite 
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side so the air doesn’t get trapped. So we have already two discontinuities that can 
represent around 10% to 30% of the coin edge (depending on the coin size). In some 
cases, instead of one mold, they use two, one for each side of the coin, and then glue 
both halves and all the edge of the coin is filled off to smooth it (so much for coin edge 
identification). In both cases, as the molds are used a second, a third or even more times, 
some imperfections start to appear shifting the fake from the original even more. 

Then, there is the falsification by die-struck. In this case the faker hand-cuts a die, 
pretty much with the same kind of process as the ancients did, and mints a very credible 
coin. Even if these fakes are less common, for they require a very talented engraver, these 
are very dangerous fakes, often hard to spot even by experts. In this case we cannot 
compare the fake coin with an existing coin, so the analysis must be on the metal (like 
searching for silver crystallization, a sign of oldness), the style of the coin, and the search 
for artificial ageing processes. All these are very hard, if not impossible, to spot from a 
photo. 

And then, there is the (so-called) fantasy coin, one that has all the correct style from 
the time and place it intends to imitate, but that never existed. These present day coinages 
mostly imitate pre-classical coins, or classes not much documented. In these cases there 
is absolutely no comparison point, so the identification shall be made by the same 
methods as the die-struck fakes, except that the stylist analysis is harder even for humans.  

On top of all that, in most cases the fakers usually strive to give an ancient look, they 
disguise every revealing mark and force some degradation to keep it credible or to be 
different enough between copies so that they can sell several without suspicion. They also 
apply chemical patina (the characteristic colors from ancient coins) and bury the 
specimens to get dirty.  

In conclusion, usually the fakes are different enough from the original to restrain us 
from using simplistic methods like direct matching or the coin’s outline matching, 
although these can be used as a supporting process if they are efficient. The strategy 
should include occlusion resilience (to ignore the disguised parts of the coin) and a 
probabilistic approach (the more features of the coin are equal to another one, the more 
probable it is a fake). That said, for humans comparing a coin to every known fake is very 
hard to be done (as new fake types appear every day) and so the trained eye can use 
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other signs, like too regular holes in the coin field, or small metal bubbles, or the lack of 
stress marks from the mint (all possible indicators of casting), or an abstract style 
evaluation. Even if this may seem next to impossible to do with current technology, it 
would be a good future course of action. 

3.1.3 Style 

While nearly every single study on the field seems to overlook it, computer vision 
applied to coins doesn’t have to be all about classification and identification. The stylistic 
aspects also have a tremendous importance in numismatics research and though it is 
hard, with current knowledge, to evaluate a specific aesthetic facet, it is possible to 
compare the symbolic features between specimens. This analysis may be used for clue 
searching from mint origins to dating the coin relatively to others. We could go even further 
and try to correlate icons from geographically distant coins that could point us to 
unsuspected commercial or political relations. 

The challenges 
How do we deal with an abstract concept like style? We could evaluate the lines and 

motifs struck (in general, the fineness or coarseness of the struck are a good indicator of 
the quality of the artisan), but the edge extraction is too prone to lighting variations to 
make a correct analysis. The concept of aesthetics is also too hard (by now) to explain to 
a machine. That leaves us to symbolism. Symbols are something we can deal with (just 
think of characters), we can identify, compare and scrutinize the spatial relations between 
them. If we tried to build classifiers for symbols and their positioning instead of classifiers 
for whole coins, we would probably be surprised by the information that would give us, 
not only for coin classification, but also for coin class relationships. 

We could also get valuable information from legend reading, but the abbreviations were 
so common that we would need a huge and indecisive dictionary to be able to deal with 
them. Besides, the medieval characters were so unpolished that it is much easier for now 
just to deal with them as symbols. 

The big challenge is that, given the malformations of ancient and medieval coins, the 
current edge detectors are not very precise in these cases. We would have to assume 
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occluded symbols and the fusion between them, and to learn which ones are real symbols 
and which are noise. Either we need better edge detection or better ways of learning from 
the current ones. This is a case that could fit well in convolutional networks, if only we 
had enough images to make the method accurate. 

3.2 AND EVEN MORE CHALLENGES 

When we look at the studies in the field, some more general challenges become evident: 

3.2.1 Medieval coins are evil  

Although several researchers experienced coin recognition on classical coins (usually 
on Roman coins, a few on Greek coins), from all the papers searched I could find only two 
teams approaching the problem with medieval coins, and both in a sideway, comparing 
with modern or Roman coins and achieving modest results. The difference is not as subtle 
as one may imagine. In fact, after the fall of the Roman Empire, the artistic quality 
standards and the artisans’ talent gave a massive leap back. The coins from medieval 
times were as coarse as the ones thirteen centuries before (this is particularly true for 
peripheral European states). So the task of recognizing medieval coins is expected to be 
even more difficult than the already approached classical coins. 

It gets worse: the chosen datasets, almost always the same ones, come from museums’ 
collections and represent coins generally with a very good grade (conservation status). If 
we try to deal with the coins generally found in the market, private collections, or minor 
museums, we will confirm that such a grade of coins represent only a very small fraction 
of the specimens available. Most coins present a modest conservation status, which 
means an even harder task on relevant features extraction.  

3.2.2 Ordinary images are not role models 

While on laboratory we can build a dataset in a controlled environment with uniform 
conditions. When we get out to the general public, that’s an impossible premise to 
maintain. The common images shared on the internet present a dreadful diversity of: light 
colors, directions and intensities; shadows, highlights and reflections; complex 
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backgrounds; sometimes the picture is taken with the coin inside its protective blister; the 
image resolution is at times too low, the noise too high; and a lot of other variations we 
cannot control. So, in any problem we shall focus on, the first step must categorically be 
trying to find the most resilient algorithms and homogenize as far as we can all these 
variations. 

3.2.3 Big data is hardly an option (but big contribution is not) 

When we read in a scientific magazine, or on the internet, on the subject of computer 
recognition, one concept is omnipresent: Deep Learning. Big Data, Convolutional 
networks, and alike notions seem to be putting a test on every imaginable problem around. 
Yet, how can we speak of big data when so many coin classes have no more than a handful 
of existent specimens, and often only one or two photos around? We may argue that if 
they are so rare the problem of classifying is not so hard, but the variations between 
classes are often so subtle that it is problematic to distinguish if we have two coins of 
different classes or if it is some variation inside the same class. If we want to classify a 
coin, we must have classifiers; however we can hardly have a complete dataset, and even 
that will be scarcely populated for each class. Therefore, instead of talking about Big Data, 
in this context we should be discussing Small Data. 

That said, it doesn’t mean we shouldn’t use the internet communities to help feed the 
learning machine, on the contrary, their help is crucial in obtaining a big database and 
correct its mismatches, towards a recognition system both robust and helpful. That is why 
it is so important to bring these tools to the public instead of keeping them in the 
laboratory. 
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3.3 PROPOSED APPROACH – SOLUTION 

3.3.1 The goal 

The aim of this work is to contribute to a model for automatic recognition of medieval 
and ancient coins that could lead in the future to a system opened to the big public and 
helpful in classification and identification problems.  

It is not the purpose to create new algorithms or methods, but to use or adapt the 
current state of the art, for only that way it is possible to cover such a large scope. That 
said, some innovations were needed in order to cope with the rough initial premises. 

Since the goal is to orient the model to big public usage, there are two premises: 
 The software, methodologies and algorithms are preferred to be of free access, 

or open source. This choice implies the dismissal of methods which hold a 
patent, closed, or with no available implementation, as promising as they may 
seem. It doesn’t mean proprietary software cannot be used during the tests, 
but the final model must be free to use or be able to be adapted for that 
purpose. 

 It must be oriented to the use of non-controlled images, as it is the expected 
reality. Nevertheless it was needed to include controlled images during the tests 
in order to understand the most critical variances and how to deal with them. 

3.3.2 The approach 

As the chosen subject and conditions are very hard, this work concentrates more on 
the initial phases of the recognition process – dealing with non-controlled images, 
segmentation, edge detection and feature extraction – since these present the biggest 
challenge and the most ill-studied one.  

As discussed before, I believe that both identification and classification should be made 
by a probabilistic approach, being the big difference a matter of building class descriptors 
or specimen descriptors. In that sense both methodologies can be approached in the same 
way. 
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As for the style analysis (in the previously explained sense), this is a virtually unstudied 
concept, with its own challenges demanding new approaches, so it deserves its own 
focused research and it is not to be covered here. 

Neither character recognition nor facial detection were used to assist the recognition 
process because, as discussed above, their contribution would be too limited in these 
particular coins and uncontrolled images. 

3.3.3 The framework and test environment 

Even if Matlab is the most widely used framework in the research community, this work 
was based on OpenCV 3.1 over C++. This is an open source framework, that besides going 
along with the initial premises of free access for all, it makes much easier if someone 
wishes to import the models here defined and programmed to end-user application (either 
web, desktop or even smart-phone based). As a bonus, some studies suggest that OpenCV 
tends to be faster than Matlab dealing with image processing, as shown in [63]. 

As for the tests, a controlled environment image dataset of medieval coins, detailed in 
chapter 4, was composed in order to represent the most common variations that interfere 
with the segmentation or edge detection, as: coin color and texture; lighting color, 
direction and intensity; noise and poor resolution; shadows; and different complex 
backgrounds. To this set some challenging images chosen from the internet were added. 
This dataset was the basis for the tests over Segmentation and Edge Detection.  

For classification/identification using machine learning algorithms, a known existent 
image dataset of roman coins was used. 
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4 
THE METHOD: I – SEGMENTATION  

4.1 INTRODUCTION 

Segmentation, when applied in the context of coins, usually refers to the separation of 
the coin from the background on an image and it is expectedly the first step in any 
classification method. Yet the researchers keep basing their work on little more than a 
couple of available image datasets, with grayscale pictures taken in carefully controlled 
light conditions, and contrasted backgrounds in uniform tones, in order to maximize 
detection results. This presents a serious problem in two ways. Firstly, we are wasting 
vast repositories of coin images all over the internet that could be used to make our 
algorithms more robust, and secondly, the same algorithms that achieve great results on 
these controlled images, when applied to “real world” coin images, tend to be very 
disappointing. 

It is undeniable that dealing with internet or uncontrolled images and their low quality 
standards brings great challenges. Dark cast shadows or bright reflections severely 
interfere with most algorithms. Poor image resolution or too high compression lead to 
pixilation or “block” effect, thus adulterating the shapes. The complex backgrounds are 
presently very hard to remove. Ancient and medieval coins provide even more difficulties, 
like the irregularity of its borders that very rarely are a perfect circle; some coins are so 
thin that they barely contrast with the background; some are so thick that their shadows 
extend their border on segmentation algorithms; some coins are square, some are cut in 
half, some have holes. To make it even worse many images display the coin inside 
protection holders, making it very hard for a segmentation algorithm to distinguish 
between the coin border and the holder border. On the upside, the computation power is 
now much higher than a decade ago, so there is no more reason not to use color 
information on our algorithms. 

Although the homogeneity of the controlled datasets facilitates higher (apparent) 
success rates, this is a false premise. Therefore, the segmentation of the public coin 
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images, overcoming big problems as bad illumination and terrible background choices, is 
the ground to more robust approaches on classification, not only narrowing the gap 
between researchers and public applications, but also allowing easy access to huge image 
datasets. 

As this is the most ill-studied step on the present context, it is also where this research 
may give the most significant contribution, and so it is where the biggest share of time 
and effort were thrown in order to achieve a new efficient method.  

A primary approach of the present method was accepted in the 2016 International 
Conference on Autonomous Robot Systems and Competitions (ICARSC 2016) and gave 
way to a paper to be published by IEEE [64]. Meanwhile the research continued and the 
method has evolved to include edge information on the detection, as long as some 
optimizations. 

4.2 RELATED WORK 

The research on coin segmentation has seldom been approached in isolated studies, 
being rather associated to a whole classification process.  

The already mentioned initial researches with big acclamation, like Dagobert Project 
[4] and Coin-O-Matic [8], set the tone to the use of a massive dataset of modern coins 
photographed in an extremely controlled environment. In these conditions, they need only 
to rely on a global threshold and some basic edge detection to provide segmentation. 
Many researches, as in [7], frequently working over the same dataset, made use of 
generalized Hough Transform (HT). The HT limitation of detecting only circles is not a 
problem on modern coins, so this method was broadly accepted in that context. 
Unfortunately ancient and medieval coins do not provide perfect circles (or no circle at 
all) so HT is clearly insufficient. Some pioneer ancient coins researches, as [18], proposed 
the use of Canny Edge, since Sobel filters provided inaccurate edge information. Even 
GrabCut was deprecated in favor to Canny Edge in [43], which was shown to provide better 
accuracy. 

It 2009 Zambanini and Kampel [22] concentrated exclusively on the segmentation 
problem over ancient coins and came up with a method combining Local Entropy and 



23 

Local Range of Gray Values. The method, still applied on grayscale images, provided good 
results, except when addressing the border shadows. My tests also revealed that Local 
Entropy calculation tends to be very computational intensive, even more adding a gray 
range calculation according to the paper description. More recently, Huber-Mörk, 
Zambanini, Zaharieva, and Kampel [33] presented a coin identification method heavily 
based on the border shape, and thus in segmentation, and suggested the use of a 
connected components analysis and the same Local Range of Gray Values. The method is 
not detailed but seems a lot similar to [22], proving the team was very confident on its 
accuracy. Still, in the presence of complex backgrounds, both entropy measure and local 
range if gray tend to highlight the background as much as the coin, making these methods 
unhelpful in the present context. 

All these methods were using grayscale and controlled images, at least to some degree, 
and surely with uniform backgrounds. 

4.3 PROPOSED METHOD 

Despite its reliefs, a coin usually presents a narrow range of colors. Even if on occasion 
ancient and medieval coins may present areas of oxidation or dust, usually the most 
dramatic color variations are on its intensity. Thus, this approach begins with isolating the 
coin from the background based on a probabilistic comparison of color hue and saturation 
using Histogram Backprojection (described in A.1). Ignoring the intensity value has the 
additional advantage of diminishing the shadows noise on the border detection. We can 
then calculate a border approximation by means of a Convex Hull over the previous results 
(A.2).  

A second stage uses edge information in order to refine the detected border. A Canny 
edge operator is calculated over the area previously calculated (B.1), followed by a second 
Convex Hull (B.2) resulting in a mask to apply over the original image hopefully removing 
all the background. 

Some optimizations are made along the process in order to reduce noise and enhance 
the borders. The edge operators are particularly useful in the presence of pixelation 
caused by less than optimal compression of the original image.  
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Figure 1 - Proposed method for segmentation.  
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The stages of the process are outlined in Figure 1. From top to bottom, the images 

show: original image; result from Histogram Backprojection and result from Canny Edge; 
contours in red and the biggest convex hull as white area; masked Canny Edge’s result; 
result from second convex hull mask; final segmented image. 

4.3.1 Step A.1 – Histogram Backprojection 

Histogram Backprojection (HB) has been proposed by Swain and Ballard [65] back in 
1992. Given a model image, the HB algorithm computes its histogram and then back-
projects it in the test image’s histogram in search for fitting pixels. The result is a single 
channel matrix with the probability of each pixel belonging to our ground model. In other 
words it gives us the probabilistic prediction of our object of interest.  

Commonly HB is used with a previous model image like a section of skin to detect 
faces or hands in a test image. The test image may also be used as the model to perform 
some kind of self-HB, assuming that the object of interest fills most of the image. Given 
the variability of the coins, uncontrolled images and the complexity of possible 
backgrounds, neither of these approaches by itself is adequate in the present context.  

Pre-processing and Color space conversion 
A previous filtering with a Gaussian blur has shown to improve the results by removing 

noise. Gauss blur proved to be more successful than edge-preserving filters like Median 
blur or Meanshift.  

Although a following addition to the image of its Laplacian, thus sharpening the image 
edges, may sometimes ameliorate outcomes, this was deprecated in favor of an edge 
refinement over the HB discussed later.  

Converting the image from the usual RGB color space (Red, Green, Blue) to HSV color 
space (Hue, Saturation, Value or intensity) allows us to ignore the intensity value, more 
prone to lighting variations, and rely solely on the hue and saturations to define our object 
of interest. Obviously, a grayscale image, which has only one channel based on the 
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intensity – the channel we desire to ignore -, provides us low discriminating capabilities 
and it is not a good candidate for this algorithm.  

Histogram Backprojection 
The HB is calculated having the defined model as seed (see section: Automatizing the 

method) and its resulting probability matrix may be shown as an image, as in Figure 2, 
and has proven very efficient in attenuating complex backgrounds. However, sometimes 
the border contours may seem roughly defined, thus the need to refine the result. 

 

 Adding Edge Info 
Hue channel is particularly sensitive to artifacts caused by less than optimal image 

compression (in jpeg for instance). This may lead to an extravagant aliasing on the HB 
result. In these circumstances the border may be refined using edge information from a 
Canny edge operator over a grayscale version of the original image. We cannot simply add 
both results (HB’s and Canny’s) because it would retrieve back all the undesired features 
or noise. A bitwise And between the results is a better option, but still less successful than 
the chosen one: inflate the HB’s pixel values that coincide to the edge detection by a 
multiplication factor. For instance: if some pixel in the HB result has the value 15 (dark, 
meaning low probability of belonging to the object of interest) and this pixel is in the edge 
detected by Canny operator, then we multiply that value by, let us say 4 (tests showed 2 
to 4 to be good multipliers, more than that and the noise becomes too significant), getting 
a new value of 60. Our pixel will now for sure be kept once we do the binarization by 
thresholding on step A.2. 

This process does not add border information where it absolutely was not found by HB, 
on the other hand it will also not highlight noise or undesired features to a degree that 
will interfere with the thresholding. In fact the tests showed that even if the improvements 

     Figure 2 - Original image with rectangle model (left), result from HB (right). 
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are very slight, they are relevant enough to include this step in the method, and the 
increased processing time is not significant, since we will reuse the Canny edge calculation 
on step B.1. 

4.3.2 Step A.2 – Border approximation by Convex Hull 

Pre-processing and Thresholding 
A Gaussian blur is applied to the output from the previous step in order to remove noise 

peaks, followed by an automatic threshold (see section: Automatizing the method) to 
eliminate the residual noise from the background that still populates the image. At the 
end of these operations the background should have been completely replaced by a black 
level. 

Convex Hull 
By then whatever remains must belong to our coin, although it is presented as an 

unconnected point distribution and not a uniform shape. To find the outline we calculate 
the Convex Hull, which is defined as the smallest convex set that contains a set of neighbor 
points. If more than one shape is found, either inside the coin (from shadows or colored 
dirt on the coin), or outside (from remnants from the background), we choose the biggest 
one and take it as the outline (border) of the coin.  

As a failure recognition system, if the biggest shape’s area is smaller than 20% of the 
image area (the size of the model rectangle) then it is marked as an assured failure and 
the chosen shape is set back to whole-image, based on the consideration that it is better 
to have a non-segmented image than just a small fragment of the coin. This possibility is 
interesting since it allows an automatic process to try again with the second stage, or a 
completely different method, without the need for human interaction. 

We can now fill the outline calculated and use it as a mask over the original image to 
complete the first stage of the segmentation process.  
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4.3.3 Step B.1 – Second stage – Canny edge 

If we really need real-time performances, we can end the method here (and deactivate 
the previous Adding Edge Info step). But we can significantly improve accuracy by refining 
a bit more the segmentation, especially in the cases where the first stage failed or had 
less than optimal results. As we based the first stage on color/texture information, it 
makes sense to base this stage on edge information. 

Canny Edge  
The algorithm for this operator was proposed by John Canny [66], and intends to find 

the edges of an image by a multi-stage algorithm consisting in: applying a Gaussian filter 
to remove noise; finding the intensity gradients; applying non-maximum suppression; 
applying a double threshold to determine the edges; and tracking the edges by hysteresis 
for suppression of the edges that are weak and not connected to strong edges. This is still 
one of the most robust and widely used algorithms for edge detection. 

Masking the calculated Canny edges 
As good as Canny’s algorithm may be calculating the edges, it provides no means of 

distinguishing between our coin and the unintended features or background patterns. Thus 
we apply the mask calculated in the first stage.  

4.3.4 Step B.2 – Refined border 

Morphological operator: Close 
After we apply the Canny edge operator, the result will be an image with black 

background and white features’ edges. Still, rather than lines delineating the edges, we 
have a group of unconnected pixels. We can apply a common Find edges procedure to 
connect these pixels, but there is a problem: on uncontrolled images, we want to choose 
Canny’s threshold values (see section: Automatizing the method) that maximize the edges 
in order not to end up with an open contour of the coin, but this also means that the inner 
edges from the coin faces will also be maximized. As these inner edges often touch the 
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border of the coin, the Find edges procedure often follows them causing a contour with 
canals cutting the outer border into the inner coin. 

Applying a Close operator before finding the edges minimizes to a great extension the 
mentioned problem. On the downside: sometimes some small holes or dents persist on 
the border, inhibiting us from using the direct edge found. 

A second Convex Hull 
Consequently we need to recalculate a Convex Hull over the found edges. The process 

is the same as before, except this time we need not to binarize the image. 

Final result 
The result is a mask that, when applied to the original image, will show us a nice 

segmentation of our coin. 

4.3.5 Automatizing the method 

The automation of the process implies being able to calculate a good model for the HB 
algorithm and the most favorable threshold values for Convex Hull and Canny edge 
calculations. Many tests have been made and these are the elected methods: 

Defining a model for Backprojection 
The tests revealed that using a partial section of the coin in the test image results in a 

good model for the segmentation. The larger the section model chosen, the better it covers 
the tone and shadow variances of the coin, thus tending to provide a more exact result. 
Nevertheless we cannot risk to overflow too much over the background or to choose the 
wrong section. In order to automatize the process, a rigid rectangle model with the 
following characteristics is established: 

 centered in the image; 
 sized on 20% of the image dimensions. 

These conditions may be changed according to the needs of each project, yet they are 
not arbitrary: Even if most coins are round, using a round model would cover only its 
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center area, thus leaving out most nuances caused by lateral lighting (shadows and 
highlights). The rectangular shape allows us to cover the center and to reach out a part 
of the outer sections of the coin with the model’s corners. Also the position and 
dimensions of the established model force that the coin is also centered in the image and 
occupies at least 20% of it. Most images will easily satisfy this requirement, yet, in the 
cases where the coin is smaller, or there are several coins, or (the most common case) 
both sides of the coin are collated on the same image, we can use Cascade Classifiers, 
or any other detection method, to identify each coin and treat them separately, one at a 
time (this detection step is not covered in this work). 

Threshold calculation over HB 
A good estimation of the most favorable threshold value possible over the HB results 

is a crucial point in the presented method, but traditional automatic methods like Otsu’s 
or Adaptive threshold failed miserably in this task. On empirical analysis, a relation was 
found between the ideal value and the end of the gradient from the biggest histogram 
peak: we reach an ideal value being equal to the first histogram bin, after the biggest 
peak, that is lower than 2.5% the maximum histogram value (i.e. if the maximum histogram 
value is 400, the ideal threshold value shall be the following bin number with a value lower 
than 10). To prevent remaining noise, the next few pixels are also required to remain 
below that percentage. Even if this value fails in some cases, it was the best approximation 
found, beating all statistical calculations (like averaging and standard deviations) and the 
mentioned traditional methods. In Figure 3 we can see an example of HB’s histogram 
(flatted for display purposes): the maximum peak usually occurs in the first bins, 
representing the low probability assigned to background pixels. The secondary big peaks 
shown in this example suggest a somewhat troubled result with remaining noise. 

 

 Figure 3 - Histogram from HB result with a red line on the estimated ideal threshold value. 
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Canny Edge Thresholds 
Fang, Yue and Yu [67] suggested the use of the Otsu’s threshold value as Canny's high 

threshold (T1) and half that value for the low threshold (T2). This choice proved 
particularly efficient in images whose histogram presents the characteristic of two-
extremum, which is rarely the case in pictures from coins. Nevertheless, the tests carried 
out in this research’s context deducted that Otsu’s value is a good reference, yet more 
detailed results came from using T1 = Otsu/2 and a T2 = Otsu/4. This values were later 
corroborated by [68] that presents a very proximate conclusion (for T2 they use 0.3*Otsu). 

In another line of thought, we could also use the average (avg) of the image values and 
its standard deviation (std), in the form of: T1 = avg/2, and T2 = (avg/2) - std. Both 
estimation methods result in very similar values, and show no perceptive differences. 

4.4 EXPERIMENTS AND RESULTS 

As the segmentation over non-ideal images is the least studied step of the classification 
of coins, this research invested a vast amount of time and effort being thorough on 
studying and testing the existing methods (always respecting the initial premises). The 
proposed method evolved over the limitations found along those tests. In the hope that it 
may be useful for other researchers to avoid the same errors, a list of other main methods 
and variants tested is presented in the Support Material chapter, along with some simple 
notes over their advantages and disadvantages. It is also worth to note that, besides the 
methods presented here, several other state of the art approaches were tested, proving 
disappointing results in this specific context, and so they were excluded from this analysis.  

4.4.1 The datasets 

Development dataset 
In order to identify the variants that interfere with the coin segmentation, a dataset of 

“bad cases” was constructed over 17 medieval coins, chosen to represent the 
combinations of their usual relevant characteristics: color, brightness and field texture. 
Over these coins we constructed a controlled data set contemplating hard conditions, with 
combinations of the following variations: lighting directions, shadow intensities, shadows 
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over fractures (over several directions), textured backgrounds (colored coin trays, wood, 
marble, textured metal and newspaper) and noise (either caused by bad exposure, low 
resolution, or bad white balance). A small collection of 18 images of unusual specimens, 
like oddly shaped coins (square, oblong, holed, or concave), half coins, or unusually bright 
ones, was combined to the dataset. Over the refining tests the images that did not 
represent real variations, or repeated similar cases, were removed. In order to cover non-
predicted variants, a random set of 32 coins was selected from the internet, regarding 
their complex backgrounds or challenges. 

The resulting dataset, although partially having controlled conditions (in a harmful way), 
represents a collection of harsh cases that were used to study the challenges and to refine 
the proposed method, hoping to build a system as robust as possible. 

Test dataset 
To avoid the common pitfall of over-tuning a method to a dataset, a second collection 

was built of random internet images that provided a final test dataset.  
A spider was used to transfer images from a google search on “medieval OR ancient 

coin”. After removing all unsuitable images (like images with several coins, drawings, or 
unrelated images) and the ones that didn’t follow the premises for both methods (proposed 
and GrabCut), the first 100 images were chosen to compose a test dataset. This provided 
a random collection of “real world” images, used for a final testing. 

4.4.2 Comparing method - GrabCut  

As a comparison method we used the general purpose GrabCut algorithm [59], an 
approach based on optimization by graph-cut. This interactive method relies on a user 
defined bound box around the object of interest and estimates the color and contrast 
distributions from both the object and the background, isolating the connected regions 
inside the bound box. The process may suffer multiple iterations until the user finds a 
satisfactory result. Some interesting variations of this algorithm appeared meanwhile, 
including “GrabCut in One Cut” [69], which is interactive just the same but, as the name 
indicates, tries to achieve the best result in only one iteration. 



33 

In order to automate the process an arbitrary bound box was chosen, 10 pixels from 
the image edge, on the assumption that people always leave a margin around the coin. If 
one wants to limit the method to round coins, one could also use the corners of the image. 

4.4.3 Results 

The results of both methods applied over the Test Dataset (100 random google images) 
are summed up in Table 1 and are grouped according to four criteria: 

 Good: when the segmentation follows closely the border of the coin. 
 Acceptable: near miss, leaves a small margin or small bits of the background 

around the coin, but still provides an acceptable segmentation. 
 Non-acceptable: near miss, similar in magnitude to Acceptable, but crops minor 

segments of the coin possibly limiting a future classification process. In other 
contexts both Acceptable and Non-acceptable may be joined into one 
acceptable/failed group. 

 Failure: when the detected outline crops significant segments of the coin, or 
leaves large areas of the foreground. 

A human evaluation inevitably falls on some degree of subjectivity, yet this scale was 
preferred to an exact quantification of the deviation for the reason that it would not improve 
the usefulness of the evaluation. In fact, if we have a margin of a couple of pixels along 
all the coin border, the deviation would be the same as an equivalent area cropped from 
the coin. In the first case the segmentation would still provide a very valid object for 
classification, in the latter it would seriously damage the attempt of classification. 

   

Method 
Segmentation results 

Good  Near miss Failure acceptable non-acceptable 
GrabCut 30% 19% 07% 44% 
Proposed 51% 25% 09% 15% 

Table 1 - Summary of empirical evaluation results 
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The average computation times are presented in Table 2. For a better perspective, the 
images were also separated into Small (file size bellow 400KB, average size of these 
images: 83KB), Medium (between 400KB and 1MB, average size: 580KB) and Big (above 
1MB, average size: 2,1Mb) and time averages were calculated for each of the groups. 

 

Method 
Segmentation times  

Average   small images 
average: ~80KB 

medium images 
average: ~580KB big images 

average: ~2,1MB 
GrabCut 19,58 s 9,63 s 82,66 s 148,65 s 
Proposed 0,29 s 0,16 s 0,80 s 2,62 s 

Table 2 - Computation times on empirical evaluation 
 

4.5 DISCUSSION 

The chosen GrabCut approach presents reasonable results, and it easily addresses 
coins’ fractures and holes. Surprisingly, while in the development dataset (the “hard 
cases”), GrabCut results fall mostly in the class of Near misses, in the test dataset the 
results tend to be more decisive and fall in Good or Fail. One limitation is that, although 
it works well with complex backgrounds, such a large initial bound box may embrace 
undesired elements that will not be excluded from the result image. In general terms, this 
method is very sensitive to shadows and tends to include them in its segmentation 
misstating the results. But the biggest deal breaker is the elevated computational times, 
typically around 10 seconds for small images, and 80-150 seconds for larger ones, which 
may stand prohibitive in most applications.  

The proposed method achieves a good segmentation in half of the internet images and 
a low failure rate of 15%. Its biggest challenge is when the coin tones are very similar to 
the background. It also does not address the concave curves on the coin border, including 
fractures, due to the use of the convex hull method.  

Both GrabCut and proposed method results may be affected by extreme cases of 
compression artifacts, the blocky effect caused by some algorithms like jpeg when too 
high compression is applied. This is something hard to attenuate and no process was 
found to overcome this problem.  
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The proposed method reveals to be very efficient dealing with shadows and highlights, 
and excluding them from the segmentation result.  Besides accuracy, a very significant 
advantage of the proposed method is the computation time, in average more than fifty 
times faster than GrabCut.  

4.6 CONCLUSIONS  

None of the methods provide next to perfect accuracy in border description, so their 
use for cosmetic purposes is limited. Nevertheless the most usual need for coin 
segmentation is to be followed by a classification or identification process, and in that 
perspective the outcomes are very satisfactory.  

The proposed method shows convincing results and proves that HB is able to give a 
convenient estimate of the actual coin region in a simple and fast way. Yet there is space 
for future improvements that may include: an HB model estimation, more flexible and 
comprehensive than the centered rectangle; a correction for concave curves; addressing 
image’s high compression issues. The previous use of a detection method, like Cascade 
Classifiers, could allow every image to fulfil the premises for this method and increase 
even more the number of internet images fit for a classification/identification process.  
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5 
THE METHOD: II – FEATURE EXTRACTION & RECOGNITION  

5.1 INTRODUCTION 

The previous chapter helped purge our tests images from everything but the coin itself, 
but since the beginnings of machine vision we know it is not possible to match two distinct 
images (even from the same object) by a simple bitwise compare. There are too many 
variants – like lighting direction or color, or a variation on the angle of the photo – for that 
to be a valid solution. 

As humans, in order to classify a coin, we find its meaningful elements (or features) 
and compare it to previously known elements from other coins. The classification process 
is a matter of finding the class with all the same elements (or at least most of them in 
case there is occlusion or poor conservation). Dealing in ancient coins, we tend not to be 
too picky about the shape similarity. In an over-simplified example of a common symbol 
on coins, a cross is a cross, no matter if its branches are a little thicker, or if it is damaged 
in a corner. 

Machine recognition shall follow the same principles: we need a higher level description 
of our object. More than that, we need a way to deal with all the variances that description 
may have, either environmental inconsistencies (again: lighting, angle, among others) or 
inter-class variations.  

Having these feature descriptors, we then need to divide groups of features into 
classes. This task may be fuzzier than it seems. In the above example, we must admit 
that there are many different types of crosses (Latin cross, Christ cross, Templar cross, 
and tens of others) and sometimes it is not very easy (even for humans) to discriminate 
between them, especially if they are not in perfect shape. Although initial researches used 
a simple shape compare (suitable for modern coins), that proved too rigid for ancient 
coins.  
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We need some advanced techniques of machine learning in order to be able to separate 
sets of features (with many shared elements) into different classes, and then be able to 
apply that skill into new images to classify them. 

 
The difference between a classification problem and an identification problem is in the 

magnitude of the classes: in the identification problem each coin is a class. A direct 
implication of this remark is that the identification problem is in fact a simplification of a 
classification problem, whether on the features to consider (like the simple use of outline 
shape on [38]), or on the matching of specimens (one can use a direct feature match in 
this case). Consequently, in this research we will focus on the classification problem and 
assume that identification can be achieved just as successfully with the same method, or, 
as an alternative, may be derived by a simplification of that method. 

5.2 PROPOSED METHOD  

5.2.1 Overview  

As explained, bits are not enough to define features, so we need a higher level 
description of our object, and one that follows at least these two conditions: 

 Focus only on the meaningful features from the object; 
 It is able to translate that description into a mathematical language, so a 

machine can deal with it. 
Many visual descriptors have been proposed in the past, from simple shape or color to 

more elaborated ones like texture, energy or more abstract forms.  In this research we 
test some of the latest and more successful feature descriptors, as long as some promising 
new-comers: SIFT, SURF, ORB, A-KAZE and DAISY. These shall be further reviewed in the 
following sub-chapters.  

Just as letters have a much stronger meaning when grouped into words, these 
descriptors will then be grouped into Bags of Visual Words (BoVW) to increase their 
significance.  
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After achieving a robust description for each image, we need a way to teach the 

machine how to distinguish to which class it belongs to. That task is well suited for a 
supervised learning approach, one that conjectures a function from labeling training data 
(in opposition to unsupervised learning where data is unlabeled, thus excluding the 
possibility of evaluating the solution). For that we need a set of labeled template images, 
the labeling being the class which each image represents. That set is then “trained” by a 
chosen supervised training algorithm in order to provide us with the function (or model) 
that will allow us to classify future test images. 

 

 
Figure 4 - Overview of the proposed classification method 

 
The following sections shall explain and justify the choice of the methods that were 

included in the tests in each of the steps presented here. 
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5.2.2 Feature Extraction 

The previous work on this area, summed up in the chapter State of the art, shows that 
the latest and most successful articles tend to use SIFT and alike for detection and 
description in feature extraction, thus this is also the approach in this research. In the 
last few years many alternatives for SIFT were presented, some of these most hailed new 
contenders are also interesting to examine in the present context. The following methods 
were chosen to be tested, taking into account their implementation availability, their 
success reports, and for being both scale-invariant and rotation-invariant (critical 
capabilities when dealing with coin images): 

SIFT 
Scale-Invariant Feature Transform was presented in [3] and is arguably the most 

acclaimed feature descriptor. It is both scale-invariant and rotation-invariant and its 
implementations include the detection of the key points. Although it is erroneous to 
generalize to all contexts, it is usually seen as the most (or at least one of the most) 
precise descriptor around. On the low side it is a little slow (for today’s standards), it is 
somewhat sensitive to orientation estimation error. This method is patented though free 
to use for research purposes. 

SURF 
Speeded Up Robust Features [70] is viewed as the fast brother of SIFT, though the 

fastness often comes with the price of a reduced accuracy. It retains the same invariance 
properties, same sensitiveness, and it is also protected by patent but free to use for 
research purposes. 

ORB 
Oriented FAST and Rotated BRIEF [71], as its name discloses is a fusion of Features 

from Accelerated Segment Test (FAST) key point detector and a scale-invariant and 
rotation-invariant version of the Binary Robust Independent Elementary Features (BRIEF) 
descriptor. ORB claims to be a free, fast and efficient alternative to SIFT/SURF and in fact 
it was presented in [72] to be the best of a group of contenders of SIFT/SURF for image 
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recognition and as being the descriptor of choice for large illumination changes or 
perspective distortions. Nevertheless, SIFT still usually presents slightly better accuracy 
and the same paper is surprised to note than ORB descriptor is less efficient to compute 
than SURF. 

A-KAZE 
KAZE, the Japanese word for wind, was presented in [73] and operates in a nonlinear 

scale space, in opposition to previous methods as SIFT that find features in the Gaussian 
scale space. Accelerated-KAZE (A-KAZE) is a faster version of the method using Fast 
Explicit Diffusion, and claims to obtain comparable results to KAZE. The methods are 
perhaps even more robust than SIFT/SURF/ORB in terms of rotation and scale invariance, 
and also to brightness and blur invariance. Some tests present an accuracy comparable 
to SIFT or even better. This method is open source. 

DAISY 
DAISY [74] does not incorporate a key point detector, thus one must use another 

detector in combination with this descriptor. It was designed specifically for dense wide 
baseline matching purposes and some tests show comparable accuracy to SURF and even 
SIFT at a fraction of time. It is supposed to be scale and rotation invariant, nevertheless 
it usually shows lower performance in comparison with other methods like SIFT and ORB 
[72]. It is also somewhat sensitive to orientation estimation error. 

 
Whatever detector/descriptor is chosen, the previous segmentation (as the one 

presented in part 1 of this research) shall exclude any key point detected outside the coin 
thus preventing the background interference in the classification process. Depending on 
the detectors, some pre-processing, like smoothing the image to reduce noise, may also 
improve the success rate. 

5.2.3 Feature organization 

The direct matching of features may be applied in an identification problem, but for 
classification it has many limitations (remember the inter-class variability explained in the 



41 

beginning of this report?). In fact, the features detected are not complete human readable 
symbols, but somewhat rigid descriptions of small areas. It is not a surprise that the first 
attempts to match features in ancient coins had promising results [27], but still too 
inaccurate. Some model of organization or grouping may be helpful in this task. 

 A strategy that is gaining adepts is inspired on the field of natural language processing: 

Bag of Features (BoF), aka Bag of Visual Words (BoVW) 
In the Bag of Words (BoW) model a text is represented as a set (bag) of words. The 

model neglects the order of the words, or even grammar, but focus on the multiplicity of 
words. The concept is that a letter by itself has little discriminative value, but when 
grouped in words it provides a strong meaning. And the counting of words may well identify 
a text. No wonder this ended up being used for computer vision [75].  

In images, instead of letters we have features, thus the name of the method changing 
to Bag of Features or Bag of Visual Words. We can cluster those key points (using k-means 
for instance) and the cluster centers will act as visual words (or features, but in a higher 
level sense, the nomenclature may be confusing here). We now have a Bag of Visual 
Words. 

Taking a set of template images we can compile a collection of visual words and 
establish a reference dictionary. For each image we can now represent it by comparing 
each feature and its surroundings with its nearest neighbor in the dictionary and 
computing a histogram of the words frequency.  

Recent articles with the highest successful rates stand out this strategy as a very 
efficient one in the context of Roman coins, especially when including spatial information 
[39][40][44], making it strong candidate for this research. Unfortunately most 
implementations of BoVW, including Opencv v.3.1 used in this research, cluster the key 
points based in Euclidean distance, which is an inappropriate way to cluster binary 
descriptors like ORB and A-KAZE. An work-around could be implementing the clustering 
process based in Hamming distance, like suggested in [76], but that is beyond the scope 
of this research so ORB and A-KAZE will be left out of BoVW approach. 
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5.2.4 Machine Learning 

In a supervised learning approach applied to image classification, a set of images 
(templates) carefully labeled with its corresponding classes is trained in order to establish 
a model able to distinguish each class. That model will later be used to predict the class 
for a giving test image. The mathematical way of discriminating between classes is what 
distinguishes each algorithm, making them more appropriate for some scenarios and less 
to others. Unfortunately there is no good-for-all algorithm, so the approach in this research 
is to test several of the most promising methods. 

A side note: in the last few years we have seen a lot of hype about Convolutional Neural 
Networks for its good results in many areas, even if it often needs hard-to-rationalize 
parametrizations. The problem is that these algorithms perform better with training sets 
in the order of the tens or hundreds of thousands, and up, the so-called Big-Data. As 
exposed in the beginning of this report, Big Data is not an option in the present context. 
Even if some work-arounds are starting to be explored, as artificially expand the “small 
data” for instance, this is still a very shady area, deserving its own research. Thus, even 
if I have no doubt that the application of Convolutional Networks on classification of 
ancient coins is a subject to be watchful, it is not tested in this research. 

On the other hand, some other favorite techniques are very suitable in this context and 
shall be tested. It is the case of SVM, Random Forests and Naive Bayes. The older and 
not so promising K-Nearest neighbors is also included for comparison purposes.  

SVM 
Support Vector Machine [77], has been around for some time, used in many contexts, 

and still shows up as an excellent alternative. This discriminative classifier takes the 
labeled training data (the extracted features for each class) and calculates a separating 
hyperplane that can be used to mark new images into one class or the other, based on 
which side of the hyperplane they fall, thus making SVM a non-probabilistic binary linear 
classifier. In Figure 5 we can see a simplified example of the discriminative hyperplane 
calculated, the red line, H3, marks the larger minimum distance between the two classes 
(black dots and white dots). 
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Figure 5 - Simple example of discrimination on SVM 

 
Of course this example is an oversimplification. Besides SVM being able to deal with 

multi-class discrimination, the features often intersect between classes and the algorithm 
can perform non-linear classification mapping spaces whose dimension is higher than two. 

We can have many ways of applying SVM to a classification task, these are the most 
common strategies: 

 Multiclass ranking: SVM tries to separate all classes with a single mathematical 
function. This is the fastest and most compact approach, yet in many cases a 
single function doesn’t exist so the approximations found may have a low 
accuracy. 

 One-Against-All: Rather than one n-Class problem, we deal with n binary 
problems. One class remains on one side of the hyperplane (as a positive), all 
the other classes are on the other side (as negatives). In practice, this means 
having to learn a function for each class known. Although more computational 
intensive, this strategy tends to be more accurate. 

 Pairwise (aka One-Against-One): Again, the big problem is reduced to multiple 
binary problems, but in this case a function is computed for each pair of 
classes, leaving us with n(n-1)/2 classifiers. As the dataset grows this strategy 
may become computational prohibitive for end-user applications thus this 
strategy will not be tested in this work. 



44 

SVM is frequently the first try (and often the last) in many classification problems. In 
the coin context, it is still part of the most successful methods, so it is no surprise that it 
is tested in this research too. 

Random Forests (aka Random Trees, or Random Decision Forests)  
Random Forests [78] is a method that can deal both with classification and regression, 

among other tasks. It is based on Decision Tree, a predictive model which maps binary 
decisions about each node (in our case it can be a feature or group of features), where 
each non-leaf node has two child nodes. The process leads to leaves that represent 
conclusions about the whole object (in our case, the class). The same class may be 
represented in several leaves, which represent several paths to the same conclusion. 
Figure 6 shows a fantasy decision tree that tries to figure the predominant color in an 
image. Notice that it is imperfect and very incomplete, but it is the representation the 
algorithm achieved based on the training data supplied. 

 
Figure 6 - A Decision Tree 

  
A big problem about Decision Trees is that, as we allow it to grow, they tend to become 

over-trained, thus not being able to classify any sample we give. An intuitive explanation, 
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using our example: as we provide more templates and allow the tree to grow, it will achieve 
very specific colors as navy-blue and turquoise-blue, making it more improbable to be able 
to identify many other tones or the ability to just answer: “It is blue”.  

Random Forests overcame this problem by providing an aggregation of different Trees, 
each trained with the same parameters but with random sub-sets of the features. The 
output is the prediction that receive the majority of votes. The random sampling feeding 
multiple trees (formally bootstrap aggregating) decreases the variance of the model by 
preventing strongly correlated trees, thus conducting to higher accuracy. 

In many problems, Random Forests tend to achieve better results than SVM, it is usually 
faster to train, easier to parametrize, and may provide intelligible models showing the 
most relevant features. It also tends to work better than SVM when there are complex 
interactions between features. On the downside, some authors claim it tends to perform 
worse on high-dimensional sparse data, which is the case with Bag of Words.  

Naïve Bayes 
Naïve Bayes [79] is in fact a whole family of simple classification techniques, that 

represents classes as vectors of feature values, assumes they are normally distributed 
and usually (but not necessarily) the features values are taken as independent of the value 
of any other feature. Despite being considered a probabilistic classifier, it can be used 
without accepting the Bayesian probability. It remains a very popular method in many 
areas, and in some contexts is still competitive with more advanced methods as SVM, or 
Random Forests, thus the reason to be included in this research. A strong benefit of Naïve 
Bayes is that it only requires a small amount of training data, which may be interesting in 
our context. 

 OpenCV’s implementation, the one tested, assumes that the continuous values 
associated with each class are distributed according to a Gaussian distribution. The 
vectors of feature values are calculated for all the training data, and for each class, a 
mean vector is estimated as well as covariance matrices. Those will later be used for 
classification of new images. 
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k-NN 
K-Nearest neighbors is about the simplest as a classification algorithm can be. It 

matches the raw training data and the class of a new sample is predicted by a majority 
vote, i.e. the most common, of a number (k) of its nearest neighbors. To increase accuracy 
a weight may be assigned to each neighbor according to its distance, and that factor is 
taken into account during the voting. The test here presented considers this weight factor.  

 The computation is deferred until classification, but the process is so simple that it 
does not imply necessarily higher computation times in relation to other more advanced 
methods. 

k-NN may hardly be expected to be as accurate as more advanced methods, 
nevertheless it is included in this research to serve as a base line for comparison 
purposes. 

5.3 EXPERIMENTS AND RESULTS  

5.3.1 The dataset 

For the tests an image dataset of Roman republican coins, belonging to the Museum 
of Fine Arts in Vienna, Austria, was provided by Computer Vision Labs. This dataset was 
used for evaluation in [34] and it is publicly available for research purposes in [80]. 

The dataset is composed of 180 images, distributed in 60 classes, 3 samples per class. 

 
Figure 7 - Sample images on the dataset 

For each class: 
 The first samples were used to compose the dictionary on the Bag of Visual 

Words model.  
 Both the first and second samples were used as training images in all the 

machine learning algorithms.  
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 The third samples were used as test images to which correspond the results 
presented. 

5.3.2 The tests 

The method is divided into 3 stages: 
 Dictionary Creation 

It is a one-time operation. The template images (first sample of each class) 
have its features extracted, and these are clustered into a pre-defined number 
of Visual Words that will establish the dictionary (also called vocabulary). This 
dictionary is saved into an “yml” file in order to be read and used in the other 
stages.  

 Training 
Also a one-time operation. The template images (first and second samples of 
each class) have their features extracted and, in the BoVW approach, these are 
also grouped according to the dictionary. Then the descriptors and 
corresponding labels are fed to the Machine Learning algorithm that will 
generate a Model which can be saved as an “xml” file to be used later. 

 Testing 
Applying the prediction model to unknown images is the real goal of all the 
process, and is supposed to be used as needed. Again, the features of the 
image are extracted (with the same technique used in the previous stages). In 
the case of the BoVW these are also grouped according to the dictionary. Then, 
based in the model created in the training stage, the algorithm outputs a 
prediction of the coin class. 

Although several feature detectors/extractors were tested, there was no combination 
between them and the same method was used across all stages. For instance, when SIFT 
is used as a detector, it is also used as a descriptor, and it is used for dictionary creation, 
for training, and for testing. The whole process is separately tested for each of the 
remaining feature descriptors (SURF, ORB, A-KAZE, DAISY). 
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All the tests were coded over OpenCV v.3.1 framework.  
 

 Dictionary 
creation Training Testing 

 
Figure 8 – Chart of the classification tests 

 

5.3.3 Results and Discussion 

The initial tests, using a BoVW dictionary with size 200, are summarized in Table 3. 
They show that the most promising methods are SVM, with the One-against-All strategy, 
and Naïve Bayes. Random Forests tends to have worse results than the above and does 

Result

Predicting

Training

BoVW

Feature Extractors

Dataset
(pre-segmented)

60 classes, 3 samples per class
1st sample 1st+2nd sample 3rd sample

SIFT/SURF

Dictionary of Visual Words

SIFT/SURF/ORB/...

SVM / RF / NBayes

Model

SIFT/SURF/ORB/...

SVM / RF / NBayes / k-NN

Class
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not present much improvement when adjusting the parameters or applying pre-processing 
to the images. In fact R. Forests consistently behaves worse when the images are pre-
processed. The results shown here for SVM consider a linear kernel, since both Polynomial 
and Radial Basis Function always presented worse accuracy. The value of parameter C 
was kept very low (0.05 or below) for the best accuracy. The advisable strategy for Non-
linearly separable data suggests that besides keeping C low, one should increase 
considerably the maximum number of iterations in order to correctly solve the problem. 
Nevertheless, increasing the iterations conserved or lowered the accuracy during the tests.  

 
 SVM 

(1-vs-All) SVM 
(multiclass) RForests Nbayes k-NN 

SIFT 15,00% 13,33% 16,67% 15,00% 8,33% 
SIFT+Gauss 28,33% 16,67% 6,67% 21,67% 8,33% 
SURF 18,33% 16,67% 15,00% 23,33% 8,33% 
SURF+Gauss 25,00% 18,33% 15,00% 16,67% 11,67% 

Table 3 - Summary of Machine Learning results 
 
Pre-processing tests were tried, always applied to all stages: dictionary creation, 

training and detecting. Although the Gauss filter seems to show the best accuracy 
improvement, there are cases where the results deteriorate. Other strategies included: 
normalizing the image’s histogram; equalizing the image; resizing to 480x480 pixels in 
order to minimize noise and minor undesired features; and contrast enhancing. Table 4 
summarizes the results, considering the use of SIFT descriptors. 

 
 SVM 

(1-vs-All) SVM 
(multiclass) RForests Nbayes k-NN 

No pre-proc. 15,00% 13,33% 16,67% 15,00% 8,33% 
Histogram norm. 20,00% 13,33% 6,67% 16,67% 6,67% 
Resize to 480px. 10,00% 21,67% 5,00% 18,30% 6,67% 
Gauss filter 28,33% 16,67% 6,67% 21,67% 8,33% 
Equalization 28,33% 16,67% 6,67% 20,00% 10,00% 

Table 4 - Impact of preprocessing over de training methods with SIFT descriptors 
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As for training times R. Forests is very fast, N. Bayes is by far the slowest method and 

SVM is fast but the One-against-All implies multiplying the training time by the number of 
classes and in this case it becomes the most time consuming training. k-NN does not have 
a training stage. All methods are very fast in predicting stage. 

5.3.4 Conclusion 

The results are quite disappointing, considering the optimistic results shown by a 
couple of papers using the same methods. Some more work needs to be done in this area 
both in the search for pre-processing filters that enhance the final results and in the search 
for optimal parameters. R. Forests has generally shown worse results than N. Bayes, which 
comes as a surprise. An interesting approach to study could be the use of a One-against-
All strategy similar to SVM. 
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6 
FINAL CONCLUSIONS 

6.1 CONCLUSIONS 

Detailed conclusions for each part of the method were already presented in the 
corresponding sections. In general terms the segmentation method here proposed reveals 
itself as a very promising way of making coin datasets step out of the labs and allowing 
the internet to provide material for future researches. As discussed, a coin detector 
method could improve even more the number of available images.  

Although this work was focused on such a specific subject as medieval and ancient 
coins, the same segmentation method can be easily applied or adapted to other flat and 
uniform-colored subjects. 

On the machine learning part, there is still some work to be done. None of the tried 
strategies provided acceptable results for end-use application, in spite of the optimistic 
results shown on same papers using the same strategies. The work started here must 
continue, trying other approaches and combinations, and keeping alert to new findings in 
the area.  

6.2 PROSPECT FOR FUTURE WORK 

The focus on this research was always to provide a basis for getting the coin recognition 
out of the lab to the public usage. Thus, as long as we can reach interesting results in the 
machine learning part, it would be interesting to really implement these methods in an 
end-user application. 

On the research point of view, a different approach to overcome the difficulties of 
contours detection could be the use of video in order to infer a 3D model of the coin face. 
With this model we would eliminate the effects of shadow and highlights and would have 
an accurate representation of saliencies, thus the segmentation would be a simpler task 
and the contours would be much more precise. Ideally this method would allow an end-
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user to simply wave a smartphone over a coin, to get the 3D representation of its face 
and get a more accurate classification, or an alert on an existent identical coin (perhaps 
a fake or a stolen coin). 

A very interesting follow-up to this research would be to try to adapt traditional 
Convolutional Networks to the use of “small data” (instead of the more fitted concept of 
“big data”). Besides auspicious accuracy rates, this could provide the tools to change the 
focus from random feature extraction to symbol recognition, thus paving the way to style 
analysis (whose benefits were discussed in the introduction). 
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A.1 NOTES ON EXAMINED METHODS ON SEGMENTATION CHAPTER 

According to the explained approach, the following is a light summary of the most 
relevant methods scrutinized from proven state of the art papers or from basic computer 
vision standards, and from tests conducted over the present context. Some examined 
methods were excluded for not following the established criteria, some provided such 
weak results (in this context) that dispensed further analyses, others where thoroughly 
explored in a detail that couldn’t fit in such a table. 

This is presented here in the hope of being useful as a starting point for future 
investigations on the subject. 
 

Method Advantages / Notes Disadvantages 
Segmentation   
Local entropy + Local 
range of gray values 

> outperforms adaptive thresholding 
> outperforms  mean shift method 
> no parameter adjustment 

> shadows still pose a problem 
> border tracing methods can (should?) 
be used to determine the exact border of 
the coin. 

Structured Random 
Forests 

> define a better outline than entropy 
filter 
> faster than entropy filter, but still 
slow 

> may not deal so well with complex 
backgrounds 
> slow (in OpenCV implementation) 
> results apparently worse than canny 

Entropy filter  > slow 
> often very light and unpredictable 
results 
> useless on highly textured 
backgrounds 

Canny edge > outperforms GrabCut in 
segmentation 
> Increasing the contrast first (ex. With 
CLAHE) can enhance image details 
and facilitate the coin detection 

> low resilience to highlights on the edge 
of the coin 
> week results in conjunction with 
shadow removal methods 
> applying Canny edge over the 3 RGB 
channels  (and add-weighted) has 
similar results when applied to gray 
image (even worse in HSV color space) 
> Canny doesn't connect pixels into 
chains or segment.  

GrabCut > good results after applying constant 
L in Lab color space 

> outperformed by Canny edge on same 
papers (ideal conditions) 
> extremely slow (4-50s) 
> low resilience to highlights and 
shadows 

Gaussian Mixture 
Models (GMM) 

 > slow 
> seems to have low resilience to 
shadows  
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> GrabCut (and similar methods) use 
GMM as a 'color' clustering step 
> GraphCuts is patented  

Hough transform  > assumes a perfectly round coin, thus 
not applicable on ancient coins 
> very unreliable 

Adaptive Thresholding  > outperformed by Local entropy + Local 
range of gray values 

Sobel + threshold > better and faster than Scharr 
> in practice seems better than 
Laplacian in shadows and small 
cracks 
> better resilience to shadows than 
Laplacian 
> better results using "Total Gradient 
absolute (approximate)" than "Total 
Gradient (approximate)" 

> theoretically should be outperformed 
by Canny edge 
> Sobel slower than Laplacian 
> Laplacian over 3 channels seems to 
have better contours (but less resilient to 
shadows 
> Sobel over the 3 channels (RGB) takes 
the double time and has similar results 

Scharr + threshold > better results using "Total Gradient 
absolute (approximate)" than "Total 
Gradient (approximate)" 

> low resilience to light gradients 
> too sensible to background even after 
fixed Y 
> usually slower than Sobel and worse 
results 

Laplacian > contours as good as or better than 
Gradient 
> Laplacian over 3 channels much 
better than just over grey image 
> very fast 
> Laplacian over 3 channels is faster 
than Sobel; and better than Sobel for 
coin outline, but shows more noise. 

> low contrast may difficult thresholding 
(over gray) 
> low resilience to shadows (worse than 
Sobel) 
 

Gradient computing 
 

> better outlines than Canny edge > sacrifices shadow zones 
> highlights on the outer edge remain a 
problem 

Morphological 
operator: Opening 

> more  resilience to highlights on the 
edge of the coin 

> rounds up the bulges 

OpenCV: 
FindCountours() 

 > weak results 
Watershed  > unhelpful segmentation, it is hard to 

guess which segments should be joined 
to form the coin 
> deforms the border too much 
> bad results also with shadow removal 
methods 

Mean Shift Filtering  > very slow (15 to 200s) when high 
spatialrad 
> low resilience to highlights & shadows 
> very susceptible to compression 
artifacts 
> no improvement for fixed Y images 
(shadow removal) 
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Saliency Detection 
Algorithms 

 > usually be slow in big images 
> hard to discriminate the ROI 

Connected 
Components 

> good selection of connected 
components 
> nice segmentation from background 
/ other features 

> too sensitive to shadows and 
highlights 
> inconsistent “ideal” threshold (could 
not find an auto estimative) 
> CannyEdge defines better edges 
> still needs border approximation (with 
convex hull or similar) 

Image feature 
detection using Phase 
Stretch Transform 

 > US Patented 
> results no better than canny edge 

   
Edge detection   
Sobel > slightly better than LoG, worse than 

Canny edge 
> uses generic operators and does not 
consider the image characteristics. 
> tends to provide inaccurate edge 
information in the presence of noise 
> theoretically should be outperformed 
by Canny edge 

Scharr > theoretically as fast as but more 
accurate than the standard Sobel 

> low resilience to light gradients 
 

Prewit  > uses generic operators and does not 
consider the image characteristics 
> worse than LoG 

Laplacian  of  
Gaussian  (LoG) 

 > uses generic operators and does not 
consider the image characteristics. 
> low resilience to shadows 
> worse results than Canny 

Canny edge > seems to be the best of the basic 
methods 
 

> uses generic operators and does not 
consider the image characteristics. 

Deriche edge detector > theoretically better than  Canny edge 
> Deriche uses two IIR filters: one for 
blurring and another for derivative. As 
it is, IIR filter edge localization is better 
than Sobel filter but it is time 
consuming 

> slower 

Roberts  > worse results than Canny Edge 
ZeroCross  > similar results to LoG 
Ant colony 
optimization (ACO) 

 > based on threshold, just searches for 
optimal threshold value 
> presented on modern coins, good 
illumination 
> ACO might not be the fastest 
algorithm available 
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Structured Random 
Forests 

> capable of real time frame rates 
(faster than most competing state of 
the art methods) while achieving state 
of the art accuracy 

> Results similar to Canny edge but with 
double lines 

Laplacian 
 

> good results when the coins has 
good contrast  

> bad contrast = bad results  
Morphological 
operator: Gradient  

> better outlines than Canny edge > sacrifices shadow zones 
> highlights on the outer edge remain a 
problem 

Gradient computing  > outlines sometimes worse than Canny 
edge sometimes better 
> sacrifices shadow zones 

Difference of 
Gaussians (DoG) 

 > results similar to Gradient but less well 
defined and penalizing in the shadows 
> generally bad with textures 

Morphological 
operator: Top Hat 

> outline very well defined > too penalizing in the shadows, even 
more than Gradient  
> in dark images may lose detail 

Wavelet Transform 
(Wavelet-Based Edge 
Detection) 

 > weak results 
> blurs instead of lines 
> too variable 

   
Shadow Removal   
Shadow removal by 
information theoretic 
intrinsic image 
analysis 

 > patented 

Paired Regions for 
Shadow Detection 
and Removal 

 > too slow (several minutes) 
> needs other related images 
> too shallow effect 

Equalize shadow  > can infatuate noise 
Through RGB and 
HSB values pixel to 
pixel 

 > very weak results 

Fix V value in HSV  > helpful in some cases > weak results for most cases 
> sometimes there is severe "blocky" 
effect in the result (jpg losses) 
> does not help for GrabCut 
> may help for borders with Canny but 
not for edges 

Fix V value in HSV 
and equalize S 

> may improve color frontiers (careful 
with coins with dust similar to 
background) 

> tested following by Canny and  
GrabCut with poor results 
> in general following Canny appears to 
have worse results than without 
equalization 
 

Fix L in Lab channels > very good results when well 
contrasted image 

> too low variance in many cases 
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> not as strong "blocky" effect as in 
HSV 

> bad results when similar coin and 
background colors are present in image 

Fix Y value in YCrCb > results similar to Lab, some better, 
some worse 

 
 

 
 

 


