
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master Course in Computing Engineering

João Carlos Alves Cruz

QGE - An Attribute Grammar based System to assess Grammars
Quality

Master dissertation

Supervised by: Pedro Rangel Henriques

Co-supervised by: Daniela da Cruz

Braga, October 27, 2015

Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master Course in Computing Engineering

João Carlos Alves Cruz

QGE - An Attribute Grammar based System to assess Grammars
Quality

Master dissertation

Supervised by: Pedro Rangel Henriques

Co-supervised by: Daniela da Cruz

Braga, October 27, 2015

PA R E C E R

Serve o presente parecer para declarar que o aluno João Carlos Alves Cruz concluiu, conforme esper-

ado, a escrita do seu relatório de dissertação. O documento foi revisto pelos orientadores, os quais

atestam a sua validade cientı́fica, assim como o cumprimento dos objetivos propostos para esta etapa.

Mais se informa que as atividades de mestrado do aluno João Carlos Alves Cruz decorrem dentro

dos planos e prazos inicialmente previstos.

O R I E N TA D O R Pedro Rangel Henriques

C O - O R I E N TA D O R Daniela da Cruz

AC K N OW L E D G E M E N T S

a

A B S T R AC T

The development and support of a software system is a complex task, therefore software engineering

is responsible to supply a collection of techniques and scientific methods, to deal and cope with

such complexity. Analysis, modeling/specification, design, maintenance, among others, are activities

included in this field of engineering.

This master work aims at proposing an approach for the application of these techniques and meth-

ods within languages, more precisiley, grammars. Emphasis is put on the grammars development

process, implementation and maintenance, aiming for better results, in terms of efficiency and quality,

concerning both the generated language and its processor. Assuming a grammar, gaps were identified

related to the study of its quality, more specific, in terms of ease of learning (reading and understand-

ing), ease of derivation and maintenance, as well as in terms of efficiency, like the language sentences

recognition and the generation of the language processor. A set of metrics is proposed to overcome

those gaps and improve the quality of grammars.

This process is based on: i) selecting a set of well-defined software metrics, for the quantitative

measurement of the quality of grammars; ii) deciding how each metric relates to the characteristics

which affect the quality of a grammar.

The solution that will be presented here aims at developing a tool, based on Attribute Grammars

to assess, in an automatic way, the quality of grammars. The implementation of the grammars quan-

tification process enables the achievement and discussion of results for a given attribute grammar as

well, as it allows us to take elations concerning the language that is defined by this grammar, due to a

symbiotic relationship between the two concepts . Another important aspect, after reading the results

obtained by this process is the direct manipulation of grammars, turning them into a higher quality

software product, validated by well-defined software engineering techniques.

Keywords: grammar engineering, attribute grammars, software metrics, software quality and main-

tenance

b

R E S U M O

A construção e o suporte de um sistema de software é um processo complexo, pelo que a engen-

haria de software é responsável por proporcionar uma coleção de técnicas e métodos cientı́ficos, de

acordo com essa complexidade. Inclui atividades como a análise, modelação/especificação, design,

implementação, manutenção, entre outros.

Neste documento de tese de mestrado propõe-se uma abordagem de aplicação destas técnicas e

métodos no âmbito das linguagens, mais precisamente, das gramáticas, num ramo da engenharia de

software conhecido por Engenharia Gramatical. A proposta foca-se no processo de desenvolvimento,

implementação e manutenção de gramáticas com o intuito de melhorar os resultados em termos de

eficiência e qualidade, quer da linguagem definida pela gramática, quer do respetivo processador.

Pesquisando no universo da engenharia gramatical, identificaram-se lacunas referentes a estudos sobre

a sua qualidade, mais propriamente, em termos de facilidade de aprendizagem (leitura e compreensão),

facilidade de derivação e manutenção, bem como em termos de eficiência, tanto no reconhecimento

de frases da linguagem como na geração de um processador para essa linguagem, e propõe-se uma

solução para superar tais lacunas, através de um processo de avaliação baseado em medidas rigorosas

de certos parâmetros.

Este processo baseia-se: i) na seleção de um conjunto de métricas de software bem definidas, para

a aferição quantitativa da qualidade das gramáticas; ii) na escolha da forma como cada métrica se

relaciona com as caracterı́sticas que influenciam a qualidade de uma gramática.

A solução que será aqui apresentada visa o desenvolvimento de uma ferramenta, baseada em

Gramáticas de Atributos para aferir, de uma forma automática, a qualidade das gramáticas. A implementação

do processo de avaliação quantitativa de gramáticas possibilita a obtenção e discussão de resultados

referentes a uma dada gramática de atributos, bem como, permite tirar elações referentes à linguagem

que é definida por essa gramática, devido a uma relação simbiótica que existe entre os dois con-

ceitos. Outro aspecto importante, depois de uma leitura aos resultados obtidos por este processo é a

manipulação direta das gramáticas, transformando-as num produto de software de maior qualidade,

validado por técnicas de engenharia de software bem definidas.

Palavras-Chave: engenharia gramatical, gramáticas de atributos, métricas de software, qualidade

de software

c

C O N T E N T S

Contents . iii

1 I N T RO D U C T I O N . 3

1.1 Grammar Engineering . 3

1.2 Motivation . 4

1.3 Aims/Objectives . 6

1.4 Document Structure . 7

2 S TAT E O F T H E A RT . 8

2.1 The art of Measurement . 8

2.1.1 Measurement in Software Engineering 9

2.1.2 The Scope of Metrics . 12

2.1.3 The Theory behind measurement . 15

2.1.4 A framework for software measurement 16

2.2 Quality of Languages . 18

2.3 Quality of Grammars . 22

2.3.1 Formal Grammar Definitions . 22

2.3.2 Assessing Grammar Quality . 27

2.3.3 Metrics for Grammars . 33

3 T H E P RO B L E M A N D I T S C H A L L E N G E S . 41

3.1 Tool Description . 42

4 G Q E - G R A M M A R Q UA L I T Y E VA L UAT O R . 44

4.1 A Tool for Metric Evaluation . 44

4.2 GQE Architecture . 45

4.3 Grammar Objects . 47

4.3.1 Context-Free Grammar . 48

4.3.2 Attribute Grammar . 55

4.4 ANTLR Linking Component . 58

4.5 Splitter Expander . 59

4.6 GQE Interface . 61

4.7 Execution Flow . 62

5 G Q E M A I N R E S U LT S . 64

5.1 CFG analysis: Lisp Language . 64

5.2 AG analysis: Lisp Language . 70

6 C O N C L U S I O N S . 75

iii

Contents

6.1 Conclusions . 75

6.2 Future work . 77

A G R A M M A R O F A N T L R M E TA - L A N G UAG E . 81

B T H E A N T L R T O O L . 101

B.1 Generated Code . 103

B.2 ANTLR Grammar Format . 105

B.2.1 Lexicon . 105

B.2.2 Structure . 106

B.2.3 Parser Rules . 107

B.2.4 Actions and Attributes . 107

B.2.5 Lexer Rules . 108

C N AT U R A L L A N G UAG E S T O O L S . 110

C.1 Perl Module Lingua::IdSplitter . 110

C.2 WordNet . 111

C.2.1 Relations . 111

C.2.2 Options . 113

C.3 Perl Module WordNet::QueryData . 115

iv

L I S T O F F I G U R E S

Figure 1 Measurement for promotion . 11

Figure 2 Example aspects of a productivity model 12

Figure 3 The ISO 9126-1 software quality model 14

Figure 4 Empirical relations for the attribute ”height” 15

Figure 5 Derivation Tree of a production . 25

Figure 6 Dependency Graph between Symbols of a grammar that specifies List lan-

guage. 26

Figure 7 Activity Diagram . 43

Figure 8 Grammar Quality Evaluator Logo. 45

Figure 9 Structural diagram with the four main components of GQE. 46

Figure 10 Structural diagram of the Grammar Objects component. 47

Figure 11 Data structure for productions of the grammar from Example 1. 50

Figure 12 Structural diagram of the ANTLR linking component. 58

Figure 13 Structural diagram of the SplitterExpander component. 60

Figure 14 Structural diagram of the User Interface component. 62

Figure 15 Execution flow of GQE. 63

Figure 16 Computed grammar size metrics for CFG specifying Lisp language. . 66

Figure 17 Computed syntactic complexity metrics for CFG specifying Lisp language. 66

Figure 18 Deterministic Automaton LR(0) for CFG specifying Lisp language. . 67

Figure 19 Computed parser size metrics for CFG specifying Lisp language. . . . 67

Figure 20 Computed style metrics for CFG specifying Lisp language. 68

Figure 21 Computed lexicographic metrics for CFG specifying Lisp language. . 68

Figure 22 Assessment report for CFG specifying Lisp language. 69

Figure 23 Computed grammar size metrics for AG specifying Lisp language. . . 71

Figure 24 Computed semantic complexity metrics for AG specifying Lisp language. 72

Figure 25 Computed style metrics for AG specifying Lisp language. 73

Figure 26 Computed lexicographic metrics for AG specifying Lisp language. . . 73

Figure 27 Assessment report for AG specifying Lisp language. 74

Figure 28 Language Recognizer . 101

Figure 29 Simple assign rule in ANTLR. 102

Figure 30 Method generated from the assign rule, to create the desired parser. 102

Figure 31 Example of a simple Array language described in ANTLR format. . . 103

Figure 32 Generated files from running ANTLR on a .g4 grammar. 104

v

List of Figures

Figure 33 Dialog box exited by ANTLR with -gui option with the filled parse tree.104

Figure 34 Integration of ANTLR tool in a Java main program. 105

Figure 35 General form of a grammar written in ANTLR. 106

Figure 36 Parser rule example in ANTLR. 107

Figure 37 Declaration of attributes and local variables in a rule. 108

Figure 38 Accessing attributes and local variables in a rule. 108

Figure 39 Wordnet usage example, with the word park. 112

Figure 40 Wordnet usage example, with the word park and the overview option. 112

vi

L I S T O F TA B L E S

Table 1 The influence that Language Characteristics have on Quality Factors . 21

Table 2 The influence that CFG elements have on Quality Grammar factors. . 29

Table 3 The influence that AG elements have on Quality Grammar factors. . . 32

Table 4 Metrics for assessing the Size of Context-Free Grammars. 33

Table 5 Metrics for assessing the Syntax Complexity of Context-Free Grammars. 33

Table 6 Metrics for assessing the Parser Size of Context-Free Grammars. . . . 33

Table 7 Metric for assessing the form of Recursion of Context-Free Grammars. 34

Table 8 Metric for assessing the type of Recursion of Context-Free Grammars. 34

Table 9 Metric for assessing the Notation used in Context-Free Grammars. . . 34

Table 10 Metric for verifying Clear Identifiers for Non-Terminals and Terminals-Variables

declared in Context-Free Grammars. 35

Table 11 Metric for assessing Reserved-words and Clear Signs declared in CFGs. 35

Table 12 Metric for measuring Terminal-Variables flexibility in CFGs. 35

Table 13 Metric for checking the amount of comment types in CFGs. 35

Table 14 The influence between the metrics and the quality factors in CFGs. . . 36

Table 15 Metrics for assessing the Size of Attribute Grammars. 37

Table 16 Metrics for assessing the Semantic Complexity of Attribute Grammars. 37

Table 17 Metric for assessing Attributes Complexity in AGs. 37

Table 18 Metric for assessing the Complexity of Attributive Operations in AGs. 38

Table 19 Metric for assessing the Calculation Scheme, regarding the values aggrega-

tion form, in AG. 38

Table 20 Metric for assessing the Calculation Scheme, regarding the values accumu-

lation pattern, in AG. 38

Table 21 Metric for assessing the Semantic Restriction Scheme in AG. 38

Table 22 Metric for assessing the Translation Scheme in AG. 38

Table 23 Metric for assessing Clear Identifiers for Attributes in AG. 39

Table 24 Metric for assessing Clear Identifiers for Attributive Operators in AG. 39

Table 25 The influence that metrics have on Quality factor of AGs. 40

vii

L I S T O F L I S T I N G S

4.1 Variables declarations of Context-Free Grammar Java class. 48

4.2 Variables declarations of Attribute Grammar Java class. 55

5.1 A Context-Free Grammar example for specifying Lisp language. 64

5.2 A Attribute Grammar example for specifying Lisp language. 70

A.1 Context-Free Grammar of ANTLR’s meta-language. 81

C.1 Snippet from SplitterExpander component related with the Wordnet::QueryData im-

plementation. 115

viii

L I S T O F A L G O R I T H M S

1 Algorithm for direct measurement evaluation. 51

2 Algorithm for metrics by manipulating data structures. 52

3 Algorithm for finding indirect recursion pattern. 53

4 Algorithm for finding LL(1) recursion pattern. 53

5 Algorithm for attributes evaluation. 56

6 Algorithm for semantic complexity evaluation. 57

ix

1

I N T RO D U C T I O N

As is well known currently the human society is crossing the Information Age or Digital Age, where

the paradigm dictates the application of digital technology in all aspects of our lives, such as individual

business, governments, mass communications, art, medicine or science. Although the term engineer-

ing have emerged in ancient times as a way to apply mathematical, technical and scientific knowledge

for the creation, maintenance and improvement of materials, devices, structures, systems or processes,

we continue to see today in the software field, news of software errors with tragic consequences.

Just to give a veridical example among many others, somewhere between 1985 and 1987, a radiation

therapy machine called Therac-25, was involved in a catastrophic accident killing at least six patients,

due to a software error. This error caused the management to patients of radiation doses that were

thousands of times greater than normal, resulting in death or serious injury1.

To avoid that accidents like the one mentioned before, it is necessary to improve the quality of

software products. It is precisely in this context that this master’s thesis fits, but addressed to the

grammatical software field of study.

1.1 G R A M M A R E N G I N E E R I N G

Grammar Engineering [Klint et al. (2005), Alves and Visser (2008), Lämmel (2001), Erbach (1992)]

is a field in software engineering that involves the application of well studied software techniques and

methods to grammar, just as they are applied on another software product. Such techniques include

version control, static analysis, unit testing, grammar software metrics, grammar evolution, refactor-

ing among others. Through their implementation, in today’s process of developing and maintaining

large grammars, better results can be achieved in terms of quality, increasing their efficiency and

confidence2.

Grammars are present everywhere in software development and their use has been growing in im-

portance assuming them as tools for the definition of concrete or abstract programming languages

syntax, exchange formats in component-based software applications and others. The software indus-

try is faced with various kinds of applications that rely on grammars such as compilers, debuggers,

1 For more information and other examples consult http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-
extreme-consequences/

2 In terms of processing and results.

3

http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-consequences/
http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-consequences/

1.2. Motivation

slicing tools, documentation tools, language tools, reference manuals, browsers and IDE’s, software

analysis tools, code processing tools and software transformation tools. So, it is expected that a disci-

plined engineering plays a relevant role, but that is not the case.

Klint, Lammel and Verhoef [Klint et al. (2005)] introduced the concept of Grammarware, to rep-

resent all the software systems which core relys on grammars. In other words, software that involves

or encodes grammatical structure. This kind of software provide a critic level of automated support

among software development life cycle. Looking to grammars as formal specifications, profits can be

taken by using that formal approach to analyze and assess them.

1.2 M OT I VAT I O N

As happens in human society, when two or more people wants to communicate, it is necessary to define

a Language3, creating cooperation and co-existence. This language is the key for the interaction

between humans as is for the interaction between a person and a computer or machine [Henriques

(2013)]. Therefore, the language has an important role in the communication process because must

ensure that the sender knows exactly what he wants to transmit and the receiver understands exactly

what was submitted. To accomplish that task correctly and in an efficient way, the language must have

some kind of support, that indicates how to transmit valid sentences with the right semantics and how

to interpret that sentences for the right extraction of their meaning, and that is where Grammars4

come in.

This two important processes, writing the sentences and executing their recognition, are within the

scope of grammar processing, in the way they define the language. The relation that exists between

a grammar and the language that is defined by that grammar is undeniable. This relationship allows

for the discussion that will be addressed in this document: from the results obtained by evaluating

the quality of a grammar, reasoning can be made and elations can be taken about the quality of the

language that is defined by that grammar. It will be proposed that grammars can be, not only a tool

that defines a language and its processing, but also a tool for its evaluation [Henriques (2013)].

Software Engineering aims to put together methods and processes that allows for a effective devel-

opment of software systems. The same can be told about grammar engineering and the development

and maintenance of large scale grammars5, as a software system. The need for refinement of the

quality of grammars, both in its development and in its maintenance, arising from gaps in grammar

engineering may be briefly identified:

• The techniques and methods of software engineering are used since 1960[Kan (2002)] and yet

play an important role in today’s software development. After the functional era, the schedule

era and the cost era, we now stand on the quality and efficiency era. Because of the increasing of

3 Something simple such as a set of sentences (sequence of symbols from an alphabet).
4 In real life as in the software development
5 In this context all types of grammars are considered, such as Context Free Grammars, Attribute Grammars, Sintax Definition

Formalism Grammars [Alves and Visser (2005)], and others.

4

1.2. Motivation

software products in every aspects of our lives, it became necessary to reason about things that

were not considered before6. The problem is that this principles and fundamentals of software

engineering are not being applied, in a sustained and efficient way, to the development and

maintenance of grammar-dependent software7[Klint et al. (2005), Power and Malloy (2004),

Bender (2007), Lämmel (2001)].

Grammars cannot be regarded as formal aspects such as parsing algorithms. The way to go is

paying more attention to the engineering aspects of grammars and all of grammar-based soft-

ware, applying to them the same techniques and methods that are applied to other software

products, leading to the improvement of quality of grammarware and to increase the productiv-

ity of grammar-based software development.

In reality, grammarware is treated, to a large extent, in an ad hoc manner with regard

to design, implementation, transformation, recovery, testing, etc. ACM Transactions

on Software Engineering and Methodology, Vol. 14, No. 3, July 2005.

• The act of writing a program is an activity that has to be tested and modified until it reach the

expected behavior. Because programming is a difficult process, the good-practice rules dictate

that this process cannot be done in a fast, instinctive and without thinking way. Well, the writing

of large grammars follow the same pattern but in a incremental way, where a cycle of: writing

or modifying the grammar, testing the grammar, debugging the grammar, should be adopted.

Grammar engineering tools must support this cycle[Erbach (1992)].

• This deficiency of engineering related to grammars is noted also in terms of actual costs, espe-

cially in companies that depend crucially on grammars or grammar-based software. Complex

grammars can be difficult to understand and therefore difficult to maintain. The maintenance

process required is a big slice of the software budget 8.

Costs related to software quality are very important and the reference to technical debt[de Groot

et al. (2012)] is often made. This charge represents costs in repairing problems in software

systems to achieve the ideal quality. The interest in debt represents additional costs to maintain

a software system due to its lack of quality. The proposal made in this document is setup in this

context, where Quality is assessed from engineering principles.

In the recent development of grammar-based software, Attribute Grammars9 have been a very often

used tool in many products including compilers construction, detection of program anomalies, as a

basis for a language-based editor, and a basis for a software development paradigm [Ghani and Hunter

(1996)], for the specification of the programming language.

6 Such as verification and certification of software, when there exists lives at stake, for example.
7 In grammar engineering the term grammar hacking is often used to describe precisely this situation where issues like testing

and disciplined adaptation of grammars play a minor role.
8 Estimates of the cost of maintenance range from 65% to 80% of the total software budget.
9 A Context-free Grammar with a set of attributes associated. Each attribute represents a static semantic property of the

associated symbol. A more detailed definition is given ahead on this document, in the State Of the Art chapter.

5

1.3. Aims/Objectives

Assuming the premise that with the expected results of higher quality, it is possible to develop more

robust and reliable grammar software, is a strong motivational factor could lecture on something that

is used a lot in the development of modern software and we can introduce principles of engineering to

make it better. This is the essence of a software engineer.

1.3 A I M S / O B J E C T I V E S

The aim broader of this master work consists in providing to software engineers and others developers

in the language processing field, a tool to evaluate the quality of the Attribute Grammars automatically.

Based on a set of well established software metrics, to assess the quality of the software, a mapping

is done from this general software metrics to be applied to grammar. Then, with this set of grammar

metrics, the tool accept an Attribute Grammar as input to automatically assess the quality of that

grammar.

In a more specific sense, objectives to be achieved can be described as follows:

• The development of a grammar-based software tool, as described in the first and second para-

graphs of this section, with the following features:

– allowing to define the metrics to calculate, linking the synthesized attributes10 to the sym-

bols of the grammar;

– allowing to define rules to evaluate the attributes, according to the meaning of its metric;

– accepting a given grammar, and assess their quality evaluating the attributes;

– allowing grammar manipulation, for example transforming into another equivalent gram-

mar with better quality.

• Provide techniques, well-founded and proven methods to support the development, mainte-

nance, recovery and the implementation of attribute grammars;

• Supervising and controlling the development process of attributes grammar, improving aspects

such as performance, reliability and efficiency, always in a well sustained and scalable man-

ner according to the complexity of each grammar presented, leading to better quality software

systems;

In the long term, and as a result of work performed it is desired to, reduce the cost of maintenance

of grammar software.

With the objectives presented above, the final outcome intended is one reasoning platform to apply

the most rigorous software process and provide a great support to grammarware and more precisely

to attribute grammars.

10 Shortly, they represent the transmission of semantic information in a bottom-up direction, on the syntactic tree. In the
opposite top-down direction, inherited attributes are used. More ahead in this document, this theme will be detailed.

6

1.4. Document Structure

1.4 D O C U M E N T S T RU C T U R E

The present document is organized in six chapters that describe the working area and exposes a pro-

posal for assessing the quality of grammars, more precisely Context-Free Grammars and Attribute

Grammar, and as consequence the quality of the Languages specified by those grammars.

The first Chapter present the field of study in which this theme is involved, the context , the motiva-

tion that led to this work and the main goals or aims appointed. It is desired that questions like What

for the purpose of? and Why bother with?, are proper clarified.

The second Chapter addresses the State of the Art revealing the scientific method - Measurement

- and formalizing the concepts involved such as the Languages Quality and the Grammars Quality.

Some important formal definitions are also exposed, with the intention of clarifying the technical

speech that will be used in the following chapters. The quality characteristics to be covered by the

proposed software metrics for grammars, are described. In this case, the question that is intended to

answer is How it will be carried out?

The third Chapter intents to cover the characterization of the Problem and its challenges responding

to the question What will be done? It states, in objective terms, what should be achieved or the

requirements of the solution, as well as, the execution flow for desired software system.

The fourth Chapter introduces the solution to the problem characterized in the previous chapter,

in this case, a tool for assessing grammars quality named GQE, which stands for Grammar Quality

Evaluator. The content of this chapter specify what kind of tool is GQE, how it was assembled, in

architectural terms and the technologies involved in the development process. A brief description

is made for each one of the four components, in which this software system is divided. The final

section exposes the execution flow of this system, meaning what happens in the background, since the

moment that the User execute the application until the moment that the results are displayed, in this

case, some elations about the quality of the grammar.

The fifth Chapter shows the practical results achieved by GQE, with the help of some case study

grammars. The aim is to present the different results and behaviors of this system when he is con-

fronted with different type of grammars, in terms of quality and characteristics.

The final Chapter present the conclusions, where a summary of all document is done, relating each

aspect of the thesis with the proposed objectives. A final critical reflection, upon the work that was

developed, is made, pointing out some aspects of the future work that can be done in the following of

this dissertation.

7

2

S TAT E O F T H E A RT

As all engineering, the software engineering is not limited only by the creation process of new prod-

ucts, but must also embrace a production with demanding requirements in terms of quality and man-

agement. Therefore quality can be assessed by different methods such as debugging, testing, assess-

ments, risk based quality improvement and measurement. A vast literature can be found on software

measurement and the state of the practice is evolving[Shoemaker and Mead (2013)].

The first section of this chapter is addressed to the foundations of measurement, What is it? and

Why we do it?, followed by an introduction to the underlying theory.

The second section will cover the Languages Quality, by identifying their quality characteristics.

In an ideal world this quality should allow to measure the level of satisfaction with that language

serves the purpose for which it was designed, or at least allow compares several alternatives. For this

document the intention is, to initially present a language quality definition and then discuss the criteria

to assess language quality according to that definition, and then to relate the grammar quality with the

quality of the language defined by that grammar.

The last section starts to formally define the object of study of this thesis - Grammars, then using

the same procedure explained above for identifying quality characteristics on grammars1 and ending

the chapter defining a set of metrics that will be used to measure those characteristics.

2.1 T H E A RT O F M E A S U R E M E N T

Measurement is an old good practice not only in software engineering [Fenton and Pfleeger (1998),

Kan (2002), Kitchenham (1996)], but also in many systems in every day life. All areas of our daily

lives are confronted with this concept of measurement: economics, medicine, education, construction,

science, and so on. To give some more specific examples: in geology, the age of the rocks is estimated

based on measurements between the parent element and the child element; in the finance business, the

whole exercise of the stock market is done by measurements; measurements in radar systems enable

us to detect paths or objects under the sea; architects and civil engineers use the measurements to

know the quantities of a certain material to apply while building a structure; all the diagnostic systems

for persons, cars, weather, etc., rely on measurement.

1 In this case Context-Free Grammars and Attribute Grammars

8

2.1. The art of Measurement

Many authors define measurement formally, such as [Fenton and Pfleeger (1998)]:

Measurement is the process by which numbers or symbols are assigned to attributes of

entities in the real world in such a way as to describe them according to clearly defined

rules.

Reasoning about the previous statement, three important concepts are highlighted: entities, at-

tributes and rules. With measurement, information about the attributes of entities is extracted. An

entity is something that we can compare and describe through its properties, like an object or event

in the real world2. Attributes represent a feature, a property or a characteristic of entities, such as the

area or the length (of a football field), the color (of a sweater) or the duration (of a battery). The rules

or the scales, allow us to relate and compare the values of attributes between entities.

This of course is not something objective and not easy to define because it is open to a subjective

interpretation. Are we measuring the characteristic or attribute that really matters? How can we

validate? How can we analyze the results? Mistakes are often made, for example as in ”It is cold

today” when we really mean that the air temperature is cold today, and when can we say it is cold,

is there a threshold? How do we calculate it? To answer these questions we have to rely in some

scientific basis and apply them to our problems.

Progress is made in terms of understanding what we measure, every time we successfully measure

something that was initially unmeasurable, increasing the power of software engineering as is done in

other engineering disciplines. Despite the opinion of some software engineers [Fenton and Pfleeger

(1998)], that attributes like quality 3, dependability, usability and others are not quantifiable, the sim-

ple fact of proposing a set of metrics allow us to try use measurement to increase our understanding of

them. In this context arise confusion between two kinds of quantification: measurement and calcula-

tion. The difference between this two terms is that we refer to measurement as a direct quantification

or a direct assessment for gathering information about how the product behaves; on the other side cal-
culation is indirect, when measures are combined into a quantified item that reflects some attribute.

For example, the color of a ball or the weight of a computer is a direct quantification 4, but the amount

of taxes that a family must pay is calculated using a formula that combines the number of household

members, the incoming profits, the out coming expenses, and all the other factors.

2.1.1 Measurement in Software Engineering

Now that a short introduction to the notion of measurement in everyday life was made, let us reason

about how we can apply this discipline in software engineering, more precisely to software products or

processes. An engineering approach is needed, in a scientific way, to control and understand software,

2 Different types of entities can be identified such as products, processes, resources, artifacts, activities, agents, organizations,
environments and constraints. An entity can also be represented as a set of other entities.

3 Precisely the attribute that this master work is based on, for grammar assessment.
4 Tell us something about the product without never have seen it. By the weight of the computer or its dimensions, I know if

that computer fits on my bag, for example.

9

2.1. The art of Measurement

aiming for that no surprises occur in its specification, design and maintenance. The importance of

software engineering can not be ignored, because software pervades our lives[Fenton and Pfleeger

(1998)]5,further more it affects the quality of life.

Although faced with a significant increase in corporate6 and institutional customers that offer this

type of activity in a software product, the negligence measurement in software engineering is still

present. The small amount of engineers or managers that rely on measurements do it on a incomplete,

infrequent and inconsistent way7, but the bigger slice of development projects:

• Fail to set measurable targets, the goal defined on the specification phase, for example the

reliability or the usability, cannot be proven achieved, in other words, the results cannot be

validated;

• The component costs of software projects are not quantified and understood; as consequence,

if the project have financial losses there is no way to control it. Even if the company wants to

optimize their development process to improve the incoming, they don’t know how much the

coding phase costs;

• The quality of the product is not quantified or predicted. Therefore, even if a company develop

a good product8, they lose the market because the quality of the product was not measured and

the potential costumers cannot compare its quality with the other software candidates;

• The promotional process of the software product is done based on an misleading evidence

to convince the users to buy it. Its features, advantages or a innovation technology, are not

supported with scientific basis for the claims.

The direction to combat this poor and misleading process in software engineering is using measure-

ment in a correct and valid way. This technique of measurement must be motivated by a specific and

particular purpose or need, for the product or process, something that is easy to understand and clearly

defined. Even for a problem free project, this is needed at least for assessing his current situation, to

have the minimum control, in which state their products are, how are their processes and how useful

really are their resources.

You cannot control what you cannot measure. DeMarco, 1982

Software quality can be measured, by discovering the faults, failures and changes as they occur,

enabling us to compare, to predict the effects of changes and to assess the effects of new practices

leading to product improvement.

5 A wide list of examples can be given such as airbags control, bank transactions, sophisticated medical tools, traffic control,
spaceship control, sophisticated power plants and further more.

6 Just point two sample companies using the software measurement as product: the Software Improvement Group
(http://www.sig.eu/en) and the Cost Engineering (http://www.costengineering.eu/index.php).

7 A good example of this is the misleading measurement in software products promotions, as illustrated on the figure.
8 In technical terms.

10

http://www.sig.eu/en
http://www.costengineering.eu/index.php

2.1. The art of Measurement

Figure 1.: Measurement for promotion

Raising the speech to formalisms, also required, it becomes fundamental to point out the reasons

[Fenton and Pfleeger (1998) and Park et al. (1996)] why it is important to measure in software:

T O U N D E R S TA N D As result of measure the attribute or property of a particular software product or

process, we characterize to gain understanding of what is happening. Baselines are established

to differ the assessment in the product life cycle as well as to set goals for future behavior.

Aspects of process and product are highlighted and we can reason about what affect the entities.

T O P R E D I C T Getting to know the relationships between processes and product leads to an under-

standing which in turn leads to building models of this set of relations. With this models we

can predict behavior, by analyzing the values of the attributes that were measured. Prediction

allows us to set goals for the future of the projects in terms of costs, schedule and quality;

T O C O N T RO L At this point if we understand and predict, we are able to know exactly what is

happening in projects and control them. Estimations can be done in what is more likely to

happen if some change is made, what will be affected and in pejorative terms how can we avoid

it. Basically, the current status of the project is clearly visible by managers and engineers and

the achievement of quality goals can be assessed;

T O I M P ROV E The improvement benefit is easily sighted, because measurement could be or is an

iterative process. By analyzing and reasoning about the values and the results obtained in pre-

vious measures, combining the understanding and control of the processes and projects, we

can always improve the properties of the measured products. The identification of deficien-

cies, breaking points, flaws and inadequacies opens doors for improving product quality and

performance.

11

2.1. The art of Measurement

Productivity

Value

Quality

Reliability Defects

Quantity

Size Functionality

Cost

Personnel

Time Money

Resources

Hardware Software

Complexity

Environmental Difficulty

Figure 2.: Example aspects of a productivity model

2.1.2 The Scope of Metrics

Software measurement is presented in some portion in many operations that are supported with Soft-
ware Metrics. All these activities, that will be listed below9, are related to each other not only by

software metrics but also by the theoretical foundations, that will be briefly addressed in the next

section.

Cost and effort estimation

Many models for software cost and effort estimation have been proposed and used, as soon as the

need arose to predict the costs in which and every one of the development phases, during a project

lifecycle. Four of the most popular algorithmic models used to estimate software costs are COCOMO

model (Boehm, 1981), SLIM model (Putnam, 1978), Function Points models (Albrecht, 1979) and

ESTIMACS [Kemerer (1987)].

These models are used to compare the software parameters estimated against the actual values. A

relation between the model and its accuracy can be spotted, so that estimators analyze it and improve

accuracy for future projects.

Productivity models and measures

Productivity models and measures are used to assess staff productivity along differents stages of soft-

ware development. The next figure shows an example of the possible components that affect produc-

tivity. Productivity can be assessed in this case, as a combination between value and cost, which in

turn can be decomposed in other aspects, expressed in measurable form.

9 The specialists do not have a unanimous opinion as regards the separation of different types of activities. Some argue, for
example, that factors such as maintenance, usability or testability should not be included in the quality models and measures,
but should be addressed in a more detailed and extensively leading to an independent expertise.

12

2.1. The art of Measurement

Data Collection

The data collection of a program, though not appear to, have an influence in its quality. Good practices

of software engineering indicate that metrics of data collection must be planned and executed in a

careful and sensitive manner. Increasingly in software development, specialist evolve to achieve goals

in this field: measures are defined unambiguously, that collection is consistent and complete, and that

data integrity is not at risk.

The data collected allows managers to see and predict the progress and problems of development,

for example, through simple charts of aspects in development, such as the time and the number of

people involved in the design process, the costs of resources over time or the number of faults in the

code phase.

Quality models and measures

The productivity models discussed earlier turned out to be insufficient to the production rate, since the

product quality was not being assessed. Therefore thus became necessary to build quality models to

combine with aspects of productivity.

The amount of theoretical materials available on this topic is vast [Fenton and Pfleeger (1998), Heit-

lager et al. (2007), Jørgensen (1999)] and all are based on three models of software quality: Boehm’s

cost estimation model is linked to a quality model (Boehm, 1978); McCall quality model (McCall,

1977); and ISO/IEC 9126-110 quality model. All these models are based on a methodology according

which important high-level quality factors or attributes of software products are defined and composed

with one or more low-level criteria (a way of measurement) for easy understanding and measurement.

The first two models are very similar in structure and propose [Cavano and McCall (1978), Boehm

et al. (1978)], even some quality factor are repeated such as: usability, portability, efficiency and relia-

bility. The latest and most fashionable ISO/IEC 9126-111 stresses the quality concept which includes

6 main characteristics: functionality, reliability, usability, efficiency, maintainability and portability.

These attributes are divided into sub-characteristics or criteria, as illustrated in Figure 2. This quality

model distinguishes three different points of view in software product quality: i) Internal quality for

measuring properties of the system with no execution; ii) External quality for measuring properties in

the execution moment; iii) Quality in use for measuring the properties experienced by its users.

Reliability models

Many of the factors mentioned in the quality models give rise to new specialization models, such as

Maintainability[Heitlager et al. (2007)] models and Reliability models (Littlewood, 1988). There is a

10 International Organization for Standardization(http://www.iso.org/iso/home.html) standard for quality software product,
which is covered by the quality model of the 9000 family of standards

11 The ISO/IEC 9126 is composed for one International Standart that defines the quality model IS 9126-1 , and three Technical
Reports: the TR 9126-2 for External Metrics, the TR 9126-3 for Internal Metrics and the TR 9126-4 for Quality in Use
Metrics. This three reports list a consensual inventory of metrics for assessing the quality factors defined in the models.

13

http://www.iso.org/iso/home.html

2.1. The art of Measurement

external and
internal quality

functionality reliability usability efficiency maintainability portability

suitability

accuracy

interoperability

security

maturity

fault tolerance

recoverability

understandability

learnability

operability

attractiveness

time behavior

resource utiliza-
tion

analysability

changeability

stability

testability

adaptability

installability

co-existence

replacability

Figure 3.: The ISO 9126-1 software quality model, based on the 6 main characteristics and the corresponding
sub-characteristics.

need to study further and in detail these important quality characteristics that can be understood and

better individually controlled.

Performance evaluation and models

Performance is another aspect of software quality, where exists engineers currently studying the effi-

ciency of algorithms as embodied in computational and algorithmic complexity. Response time and

completion rates are some of the observable system aspects that represent performance characteristics.

Management by metrics

Using measurement as a tool for assessing the status of a project is a method more and more used

by managers. The charts and graphs built according to metrics help managers to decide the best way

for their projects. This becomes even more important when we have a product that does not depend

entirely on software, but as a part of it has to be evaluated and thought. For certain managers that

are involved in this type of business and does not have a thorough knowledge of the software is really

rewarding this type of techniques that the only thing that demands is reading and understanding the

data.

Structural and complexity metrics

When we want to measure some quality attributes like reliability and maintainability, some opera-

tional version of the code have to be available. When they are not, but managers still want to predict

which parts of the software systems are less reliable, more testable or need more maintenance, we

measure structural attributes of representation of the software which are available without the need for

execution.

The (Halstead, 1977) and (McCabe, 1976) are two classic examples of defining measures that are

derived from suitable representation of source code.

14

2.1. The art of Measurement

Figure 4.: We can learn about height by observing attributes in some entities. Ferb is taller than Phineas, Ferb
is tall and Ferb is much taller than Perry.

2.1.3 The Theory behind measurement

As has been said, in the previous sections, we use measurement in everyday life to understand, control,

predict and improve the activities that we do and the way we do it. Applying this technique in several

areas, on non-software entities, we use tools and principles that are taken for granted and we do not

think on the scientific basis behind it. But when we face software entities, the same tools and principles

cannot be as easily applied. A deep understanding of software attributes is needed complemented with

some sort of ”applied”12 rules for measurement.

Questions about software entities are difficult to answer, such as:

1. Do we really know everything about an attribute to consider measuring it? The ”complexity” of

programs is well defined for us to be able to measure it?

2. How do we know if we have really measured the attribute we wanted to measure?

3. What can we state about an attribute and the entity that posses it?

4. What meaningful operations can we perform on measures?

so we must establish the basis of a theory of measurement.

The theory that will be presented shortly is the representational theory13 of Measurement according

to the author[Fenton and Pfleeger (1998)]. First the concept of intuitive understanding is crucial

because we need to identify and understand the attributes of a well defined entity. After that, we

capture our intuitive understanding about the attribute by assigning numbers or symbols to the entities.

According to the data received, we observe, and extrapolate relations between entities, that are named

as empirical relations. Is the nature of human beings perceive things by comparing them, rather than

assigning numbers or symbols to them.

12 There is no set of rules entirely well-defined and established on the art of measurement, we can only learn and take profits
of the daily lessons activities.

13 Norman Fenton addresses to this theory as the theory who ”seeks to formalize our intuition about the way the world works”.

15

2.1. The art of Measurement

Measurement supports a mapping between entities in the real world and values in the numeric

system, for example ”Ferb’s height is 13”, but must preserve the empirical relations of the real world

in the numeric system. In other words and following the previous examples, if exists a relation ”is

taller then” between Ferb and Phineas, in the real world and a mapping is done where the height of

Ferb is linked to 17 and Phineas to 13, then the relation must also be valid in the numeric system, in

this case, height(Ferb) > height(Phineas). We call this the representation condition.

To achieve the desire purpose in measure, we need to interpret the data in the numeric system and

draw conclusions. Different kinds of mapping can be made and this affect the type of analysis we can

do, because scale types will be different for each attribute. There is a total of five scale types: nominal,

ordinal, interval, ratio and absolute. According to each one, we can meaningfully make distinct kinds

of statement about measures. For example, we can compute means for ratio-scales measures, but not

for ordinal measures; medians can be computed for ordinal-scale measures but not for nominal-scale

measures.

Most of the attributes, in software engineering, are not directly measurable, therefore we need to

perform an extra effort to combine the vector elements into a larger, indirect measure.

2.1.4 A framework for software measurement

As mentioned in the previous subsection, there is not a concrete theory that dictates if a set of es-

tablished metrics is valid or not, but there is a goal-based framework for software measurement, that

can contribute to software organizations practices. The core of this framework lies on three principles:

classifying the entities to be studied, determining relevant measurement goals and identifying the level

of maturity reached.

In software this means that an entity can be categorized as a Process, a Product or a Resource14,

and each attribute can be classified as internal or external, depending if it can be measured only by

studying the product, process or resource, or also by its behavior.

The main question, to software-engineering problems, in practice lies in which metrics should

be used and how they can be applied. The common practice in software measurement is to capture

product internal and external attributes, resource attributes (such as productivity and tools) and process

attributes, but for the sake of this thesis, only product attributes will be explored. Just as Fenton and

Pfleeger presented in [Fenton and Pfleeger (1998)], and for most of the cases in software measurement,

there are two main internal attributes to measure: size and structure.

”Internal product attributes are important, and measuring them directly allow us to assess

early products and predict likely attributes of later ones.”

Size is the traditional attribute to measure in software, because is useful, easy to measure without

having to execute the system and because software development is besides everything, a physical

14 Processes are aggregations of software-related activities; Products are deliverables that results form software activity; Re-
sources are entities required by a process activity.

16

2.1. The art of Measurement

entity. The software product size can be described in four main aspects: length is the physical size,

functionality, what is really extracted by the user, complexity, and reuse size of reused product.

Relatively to the length, there are three aspects whose size is worth to know: the code15, the speci-

fication and the design16. To measure functionality three approaches are used: function points, which

relate the functionality with the specification; object points and specification weight. Complexity is

hard to measure and its necessary to distinguish its types: problem complexity, measure the complex-

ity of the problem; algorithmic complexity, measure the complexity of the algorithm implemented to

solve the problem; structural complexity, measure the structure of the software used to implement the

algorithm; and cognitive complexity, which measure the effort required to understand the software.

Another common internal attribute to measure is structure. It is proven that not always a bigger

module takes longer to specify, design, code and test than a small one, the structure of the product

affects its maintenance and development effort. Control-flow structure, data-flow structure and data

structure are the pieces of structure. Control-flow structure reflects the interactive and looping nature

of program, normally measured with direct graphs; Data-Flow structures measures the behavior of

the data as it interacts with the program; Data structure measure the organization of the data itself,

independent of the program.

The main goal of software engineering is to improve the quality of software products. In a mea-

surement point of view, quality must be very well defined in terms of specific product attributes of

interest of the user. From the knowledge presented to this section, anyone who desires to know how

to measure the extent of his software product, is able to set targets for quality attributes. Therefore,

and for the semantic flow of this document, the quality of the software product that will be studied is

going to be defined and the attribute to capture that quality will be specified. A model for measuring

that product will be created, starting from this framework and adapting it, to target the specified at-

tributes. In other words, another different attributes, among the ones that were described above, will

be specified in order to achieve the exact characteristics that are required to assess the product.

In a software measurement project, even if some of the metrics that are defined to be measured, for

some reason, appear to be direct and at first sight usefulness, it is very important not to forget that

each attribute captures a key aspect of a software quality characteristic and in the words of Fenton and

Pfleeger:

”Those who rejects a measure because it does not provide enough information may be

expecting to much of a single measure.”

15 Include the traditional measures such as lines of code(LOC), comment lines, data declarations and others
16 The specification length can be good pointer of how long the design is likely to be and the same can be said about the design

length relatively to code length.

17

2.2. Quality of Languages

2.2 Q UA L I T Y O F L A N G UAG E S

As told in the previous sections, when we are trying to measure some attribute about some entity, first

we need to characterize the attribute for that entity. In this master work, the attribute to be assessed

is the Quality and the entity is an Attribute Grammar. But before characterizing attribute grammars

we will characterize Languages, because there is a strong relationship between both concepts 17, as

already said before in the Introduction section of this document.

To discuss the quality of languages in software is very important, for all kinds of reasons such

as picking the work language for everyday activities, for solving complex problems, to improve the

programmer quality of the work, and so on. And its important to do it in terms of efficiency for the

recognition process of the sentences and legibility for easy learning, easy understanding and easy

writing.

Definition 1 (Quality of a Language). The quality of a language is assessed in terms of how easy it

can be learned, used and understanded, and in terms of the efficiency with which its sentences are

processed.

According to the Henriques [Henriques (2013)] personal opinion and his understanding of others

ideas, such as Hoare[Hoare (1973)], Howatt[Howatt (1995)], Sebesta[Sebesta (2009)] e Watt[Watt

and Findlay (2004)], it is fundamental to find a set of characteristics allowing a clear and objective

reasoning about the properties that contribute for the quality of the languages and then on top of it a

way to assess them. According to the author above, there are eight main characteristics that contribute

to define language quality:

• Expressiveness

• Documentation

• Unicity

• Consistency

• Extensability

• Scalability

• Reliability

• Modularity

In the sequel, for each one of the features listed above, it will be provided an explanation of how

that item affects each one of the four critical factors characterizing the quality of a language:

17 This section is based on the ideas and definitions proposed and discussed for Rangel Henriques in [Henriques (2013)].

18

2.2. Quality of Languages

• learning

• writing

• understanding

• efficient recognition

E X P R E S S I V E N E S S can be defined as the ability to expose clearly and naturally the message to

communicate, or in other words, the ease with which one can write the instructions you want to

transmit. According with Pedro Rangel Henriques, exists three main elements that affect this

characteristic:

• Basic Operators - languages that allow the used of several basic operators are more ex-

pressive, because a more natural, simple description can be made;

• Clarity - the used lexicon, such as the name of the operator and the signs, and the opera-

tions syntax;

• Abstraction - the complexity level of the operators and operations, relating with low level

code.

As is expected the expressiveness characteristic affect positively the learning, writing and un-

derstanding factors because it allows saving time and effort in productivity due to the ease of

language expression, but not affect the efficiency of recognition.

D O C U M E N TAT I O N is the aptitude to improve the writing of the message in some language with

extra information about that message. The common example of documentation in languages are

comments18. Some languages provide a syntax itself within these comment lines for entering

data for documentation.

This characteristic affect positively the understanding factor, because more information of the

message is provided, but affect negatively the writing factor because forces the sender to write

more words. For the others two factors, documentation slightly affect the efficiency of recogni-

tion and does not affect the understanding.

U N I C I T Y can be described as the capacity that a language has the form of writing operations, if

there is only one way to present its instructions or if there is a choice of directions to set the

same.

Clearly, unicity speeds up the learning time, the recognition time because increase its efficiency

and facilitates the understanding, if there is only one way to write an instruction it is easy to the

programmers to understand the sentences. In the opposite direction, unicity affect negatively

the writing factor, because takes the liberty to express the ideas in the way that suits more to the

person.

18 Normally this piece of information can be placed in every point and its limited by the end of the line or in case of multi-lining
could involve the use of specifics symbols, to differ this information from the rest of the message.

19

2.2. Quality of Languages

C O N S I S T E N C Y is revealed by a language when the way of writing the same kind of ideas is consis-

tent, always the same. Usually seen this kind of feature for its negative side, ie, many languages

have, in fact, inconsistencies, either by their different syntax for similar data or be updated over

time by someone who is not the original creator.

It is also important to highlight, in this characteristic, another property that plays a role in the

quality of a language, just like consistency, the orthogonality. A language is orthogonal if the

set of operators can be applied to all data types available. Consistency and orthogonality affect

positively the learning, writing and understanding factor but they do not affect the recognition

efficiency.

E X T E N S A B I L I T Y is the ability that a language have to offer procedures to be modified or improved.

There are two kinds of extensions: static extensions, which extend the language in compilation

time and dynamic extensions which allow to modify a program compiled just in the run time.

The extensability speeds up the writing time because it allows user to create their own vocabu-

lary and, syntax and semantic constructors, using them with efficiency from there on. Clearly,

this characteristic have a negative effect on the learning factor and the recognition efficiency

factor. As for the understanding factor, its not safe to say that have a positive or a negative

effect because in one way the appearance of new constructions will difficult the understanding

process but one the other side if the constructions made by the programmers are simple, could

have a positive effect on understanding.

S C A L A B I T Y can be described as the language attribute where with a succession of increasingly

complex problems it maintains its characteristics and quality of a uniform manner. A language

is called scalable if allows to write, understand and process long sentences in the same way that

allow short ones.

Scalability does not degrade the recognition efficiency and preserver readability, in other words,

does not change the ease of learning, understanding and writing.

R E L I A B I L I T Y is the characteristic that a language have to offer mechanisms and procedures to

increase the reliability that a user have, when executing his code. This reliability is specified in

terms of safety of the program and in terms of performing without errors, all the tasks for that

was designed.

To increase the reliability that a user or a programmer have in a language there is some useful

facets to hold, such as, a very clearly defined, unambiguous and precise semantics, one rigid

type policy and a supply of constructions for error control during the execution of the program.

As is easy to predict, this characteristic increase the recognition efficiency and the time of

write, but facilitates the understanding factor. As for the learning factor the reliability as no

considerable effect.

20

2.2. Quality of Languages

M O D U L A R I T Y is the capacity that a language have to offer support for the writing of modules.

Modules are unities or individual components that contains parts of the message and their

beneficts are essentially code reutilization and ease of writing.

Modularity benefits the time of writing, as it is expected, and facilitates the understanding factor,

because the code is better defined and structured, parts of the code with the same purpose or

operation are put together in the same module. The upside down of this characteristic is that

slightly affect, in a non positive way, the learning process, because it is necessary to integrate

different modules in the code, and the recognition efficiency, to the extent that there is more

components to process and more data to store and manage.

S U M M A R Y The following table briefly summarizes all that was exposed on the influence of features

chosen over the four critical factors identified above, to assess the quality of a language.

Characteristics vs Factors Learning Writing Understanding Recognition
Expressiveness + + + x
Documentation x − + x

Unicity + − + +
Consistency + + + X
Extensability − + +/− −
Scalability = = = =
Reliability x + X −
Modularity x + + x

Table 1.: The influence that Language Characteristics have on Quality Factors

(Legend) Table 1 was completed according the following criteria:

+ (positive effect) - helps to facilitate the factor in question

− (negative effect) - helps to difficult the factor in question

+/− (variable effect) - his contribution is not always the same, depends on other aspects

X (have no effect) - have no interference with the factor in question

x (minimum effect) - slightly helps to difficult the factor in question

= (conservative effect) - helps to maintain the facility of the factor in question

By analyzing the previous table, Henriques[Henriques (2013)] postulated that, the quality of the

language expressed in Definition 1, can be assessed by the presence of these characteristics, knowing

that a language is so much better such as the number of characteristics that holds.

The challenge now exposed here is how to verify automatically and objectively if a given lan-

guage holds some of the characteristics or not, since that they are not directly measurable indicators.

More, how far the grammar quality can be automatically measured helping to assess the quality of the

language which defines.

21

2.3. Quality of Grammars

2.3 Q UA L I T Y O F G R A M M A R S

After the approach taken in the previous section, to the concept of language and the quality require-

ments that should ideally be present in languages, an approach is made, in this section, to the central

object of study in this master work - Grammars[Henriques (2013),Power and Malloy (2004),Klint

et al. (2005),Power and Malloy (2000)] . Before submitting the necessary formal definitions for speech

specification, an informal and more abstract vision of the term will be presented.

The word grammar comes from the greek meaning grammatiké, which is formed by the junction of

the word gramma(weight or measure) plus the word temática(theme, center or focus), therefore can

be classified as ”focus control”. In a more abstract view, a grammar can be seen as a skeleton of the

language, in the sense that as a skeleton defines an objective structure, shape or composition, in the

human body, a grammar defines a language.

Linguistically, a grammar is a set of individual rules used to regulate the language and to establish

writing patterns, presenting unities and structures that allow good use of language through the valida-

tion of sentences from an alphabet according to the syntax. The art of putting the right words in the

right places.

Now bringing these terms to the field of computer science, it is inevitable not to mention Noam

Chomsky19, for his famous work in the field of formal languages, where he proposed a hierarchy to

classify formal grammars into groups/classes - Chomsky Hierarchy20. Typically, in software systems,

grammars are used to describe formal languages such as programming languages, where the syntax

of the language is specified using the Chomsky grammatical model known as Context-Free Gram-

mars(CFG) [Knuth (1968)], which will be defined below. To give semantic meaning to sentences

and restrict some senseless syntactic constructions, typically are used Attribute Grammars (AG) [De-

ransart et al. (1988)], which will be also defined in the next subsection.

The languages are structurally described by grammars, and any language can be defined by a num-

ber of different grammars. That why, it is desirable, that the quality of the grammar affect the quality

of the language generated.

2.3.1 Formal Grammar Definitions

Definition 2 (Context-Free Grammar). A Context-Free Grammar (CFG) is defined by the four-tuple:

CFG =< T, N, S, P >

19 Linguistic, philosopher, cognitive scientist and still a Linguistic Professor in MIT(Massachussets Institute of Technology),
is known as the ”father of modern linguistics” and responsible for a major contribute to the field of automatic process
languages. He is the author of vast literary collection of books and articles which first appeared the term of generative
grammar. For further more information about this author, please check http://www.chomsky.info/.

20 This hierarchy is composed by four levels: Type-0 unrestricted grammars, which includes all formal grammars and can
generate arbitrary recursively enumerable languages; Type-1 context-sensitive grammars which generate context-sensitive
grammars; Type-2 context-free grammars which generates context-free languages, recognized by a non-deterministic au-
tomaton; and Type-4 regular grammars which generates regular languages, recognized by a finite state automaton.

22

http://www.chomsky.info/

2.3. Quality of Grammars

where T is the (finite) vocabulary of the terminals symbols of the language, N represent the non-
terminals symbols set of the grammar, S is the start symbol of the grammar where S ∈ N, and

finally P is the set of productions or derivation rules of the grammar. The T set of terminals symbols

is divided in 3 disjoints subsets - T = RW ∪ Sig ∪ TV - the Reserved-Words, the Signs and the

Terminals-Variables.

A grammar defines a language by specifying valid sequences of derivation steps which comprises

to a sequence of symbols(sentences of the language). The exercise performed to derive a phrase from

a grammar is: from the start symbol S and applying the production rules, replacing the non-terminals

for the right side of the production until only terminal remain.

Each production p ∈ P is a rule formed by:

p : X0 → X1 . . . Xi . . . Xn

in which p is the rule identifier, → is the derivation operator, X0 ∈ N and Xi ∈ (N ∪ T) with

1 ≤ i ≤ n. The production p should be read - from the left side of the operator, also designated

LHS(p) which is always a non-terminal symbol, to the right side of the operator RHS(p), a sequence

of non-terminal and terminal symbols - as ”non-terminal X0 derives phrase X1 . . . Xi . . . Xn”.

Now, that a production rule is defined, it is important to characterize a unit production, once this

will be relevant in the following subsections.

Definition 3 (Unit Production). A unit production is a production up ∈ P with only one symbol in

the right side (#RHS(p) = 1), such as:

X0 → X1

noting always that X0 6= S

Following the definitions, it is presented below a small CFG example, serving as a simple case of

study, which define a language called List.

Example 1. This grammar say that a sentence in List is a Content surrounded by brackets and

a Content is either an Item or either an Item followed by a comma and a Content. An Item is

a atomic value, number (num) or a word (wrd).

T = {num, wrd, ‘[‘, ’]’, ‘,’}

N = {List, Content, Item}

S = List

P = {

p0: List -> ‘[’ Content ‘]’

p1: Content -> Item

p2: Content -> Item , Content

p3: Item -> num

23

2.3. Quality of Grammars

p4: Item -> wrd

}

According to the example, a list must always have elements of any kind and in any order. A valid

sentence of the generated language by this grammar is:

[3, sad, tigers]

and an invalid sentence is, for example:

[, sad, 1, tigers]

One way to verify that a CFG is well written is trough the notion of well-formed grammar:

Definition 4 (CFG well-formed). It is said that a Context-Free Grammar is well-formed if:

• for all X ∈ N exists at least 1 production with X on the left;

• for all X ∈ N, X is reachable, this is, exists at least 1 derivation form the axiom that uses X;

• for all X ∈ N, X is terminable.

Complementing the previous definition,

Definition 5 (Terminable Symbol). A symbol it is called terminable if:

• is a terminal symbol;

• is a non-terminal symbol and exists at least 1 production with this symbol on the left which his

right side is a terminable sequence.

wherein a sequence of symbols N ∪ T is terminable if:

• is the empty sequence;

• each symbol of this sequence is terminable.

To clarify the terms introduced before, an example is presented above.

Example 2. Despite being uncommon, the grammar of List language, is well-formed because:

• exists at least 1 production for each one of the 3 non-terminals symbols: p0 to List; p1, p2

to Content; p3, p4 to Item.

• the two non-terminal besides the axiom are reachable from List : Content is used directly

in p0; and Item is used indirectly (via Content) in p1.

24

2.3. Quality of Grammars

• all non-terminals are terminables: Item is terminable thanks to p3 because his RHS is a

terminal(or p4, for the same reason); Content is terminable because p1 in which the RHS
is a terminable sequence; List is terminable because in the RHS(p0) all symbols are ter-

minables.

Another set of relevant definitions for grammars and for better characterization, both in practical

terms of implementing the processors or in visually terms of derivation rules flow, is the concepts of:

Derivation Tree or also as known as Parsing Tree, and Dependency Graph, both will be defined above.

Definition 6 (Derivation Tree of a production). Each production p ∈ P have a derivation tree which

the root is X0 and the descendants are the n symbols Xi from the right side.

Example 3. In the case of the production rule p0 ∈ P defined in the Example1:p0 : ‘ [’ Content ‘] ’

Lisp

‘[’ Content ‘]’

Figure 5.: The derivation tree from production rule p0, where we can see the root as the left side symbol of p0
and the three descendants from the right side as leaves.

Definition 7 (Derivation Tree). The derivation tree of a grammar is a tree whose root is the start

symbol, whose nodes are non-terminals and whose leaves are terminals. The children of any node in

the tree correspond to those symbols on the right hand side on a production rule. Taking the previous

definition, the tree is the junction of each derivation tree from the productions.

Definition 8 (Dependency Graph between symbols). It is given the name of Dependency Graph
between Symbols (DGS), to a graph in which his vertices are symbols N ∪ T from the grammar and

the branches or arches, go from the Y vertex to the X vertex every time that exists in P one production

p such as p : X → . . . Y . . . , concluding then that X depends on Y or that Y derived from X.

Example 4. In the case of the List grammar, specified in Example 1, the DGS is illustrated on Figure

6.

As pointed out before, to specify the semantics of the language is used a Attribute Grammar, defined

as:

Definition 9 (Attribute Grammar). A Attribute Grammar (AG) is defined by the tuple:

AG =< CFG, A, CR, CC, TR >

where,

A =
⋃

A(X), ∀X ∈ (N ∪ T) is the set of attributes of all symbols of the grammar.

CR =
⋃

CR(p), ∀p ∈ P is the set of attributes calculation rules in all productions of the grammar.

25

2.3. Quality of Grammars

List

‘[’

Content

‘]’

‘,’

Item

num wrd

Figure 6.: The DGS of the List grammar, where are included the branches of the grammar.

CC =
⋃

CC(p), ∀p ∈ P is the set of context conditions in all productions of the grammar.

TR =
⋃

TR(p), ∀p ∈ P is the set of translation rules in all productions of the grammar.

The attributes A(X) of each symbol are devised in two distinct finite subsets

A(X) = Inh(X) ∪ Syn(X), Inh(X) ∩ Syn(X) = ∅

in which,

Inh(X) is the inherited attributes set of the symbol X, the ones that carry the information down

through the sub-tree.

Syn(X) is the synthesized attributes set of the symbol X, the ones that synthesize the information

from the leaves and carry it up through the tree.

For each instance of the symbol X in the derivation tree, X ∈ N ∪ T, it will be saved a set of

properties (the concrete values of his attributes), characterizing from the semantic point of view. The

term of decorated derivation tree arises in this context, where the derivation tree in filled with the

properties of each symbol, in other words, carrying the meaning of each node.

The calculation rules indicates how valuing the attributes, to obtain the meaning. With the meaning

of each symbol, the meaning of the sentence is built and so, it is possible to transform, or translate,

the sentence to obtain the desired result. However, for the sentence to be processed two things have to

happen, the CFG productions have to ensure syntactic correction; and the AG context conditions have

to ensure semantic validation, explaining the restrictions which the concrete values of attributes have

to hold for a sentence to make sense.

Definition 10 (AG well-formed). It is said that a Attribute Grammar is well-formed if:

26

2.3. Quality of Grammars

• the underlying CFG is well-formed;

• for each production p ∈ P is provided one and only one rule of the form

Xi.a = f (. . . Xj.b . . .);

to the attributes evaluation a from Xi, may be used the attribute b from Xj, according with the

following conditions:

– The attributes a to evaluate have mandatorily to be the synthesized from X0 and the inher-

ited from Xi, 1 ≤ i ≤ n;

– In the calculation formula can be used the attributes b inherited from X0 or synthesized

from Xj,1 ≤ j ≤ n.

• the induced Dependency Graph upon each derivation tree by that calculation rules is acyclic.

2.3.2 Assessing Grammar Quality

Following the speech of reasoning so far presented and to integrate the scientific method presented

earlier in this chapter, the need arises, to assess the quality of a grammar. Similarly to the characteri-

zation of Languages, exposed in this document, it is intended to characterize also the grammars, with

the ultimate goal compile a set of software metrics that will quantitatively assess the quality criteria

then presented.

According to the train of thought presented in the Grammatical lesson performed by Pedro Rangel

Henriques, a grammar is responsible for two activities:

• to define or generate the language, and therefore validating the sentences according to the syn-

tax;

• to guide the recognition of the language phrases that generates, being this function crucial

because it allows to derive automatically and systematically the programs responsible for the

process of the sentences (recognition and transformation).

The characteristics that allow to assess grammar quality and comparing them are:

• Usability while language generator of the grammar as tool for sentences derivation of a lan-

guage:

– ease of understanding

– ease of derivation

– ease of maintenance

• Efficiency while program generator of the grammar as tool for language processors derivation:

27

2.3. Quality of Grammars

– efficient recognition of sentences from the generated language

– efficient processor automatic generation

Definition 11 (Grammar Quality). The quality of a grammar, while specification that generates a
language, is recognized if it facilitates its usability, in other words, if it easy to learn it (understanding

what describes), to use it for derive sentences and to maintain.

The quality of a grammar, while specification that generates a processor, is assessed by the pro-

gram efficiency, which from it derives, and the efficiency of the own generation process. Then, it is

assumed that a grammar hols quality if allows the generation of efficient language processors without

degrade the ease of automatic generation.

As the definition of Attribute Grammar evolved through the definition of Context-Free Grammar,

first will be debated the characterization of Context-Free Grammars, in which the syntax of the lan-

guage is defined and then Attribute Grammars, which specify even the language semantic.

Context-Free Grammars Characterization

U S A B I L I T Y can be referred as the clarity and ease with which the entities interact with grammars.

It is important distinguish two groups of entities that handle grammars in different perspectives:

the final user, that seizes the grammar as a tool for the transmission of a message, in the lin-

guistic aspect, in which case the usability is assessed by ease with which he read and use the

grammar , while instrument for deriving sentences of the language; the grammar engineer, that

seizes the grammar in a technical aspect, concerned that the grammar fulfills efficiently the

functions for which it was designed, in this case the usability is assessed by ease with with he

understand and maintain the grammar.

The understanding criteria is related to:

• choosing the identifiers for the non-terminals and terminals symbols

• the use of unit productions

• the length of the right sides of productions

• the notation employed

• the type of recursion (right or left, direct or indirect).

Looking now for derivation criteria, reducing the number of productions and the number of

non-terminals facilitates the process, such maintaining of the same notation and using clear

identifiers.

Finally, for the maintenance criteria, besides all that was exposed before, two more elements

emerged as important: modularity, in the process of creating and maintaining a grammar with

the reuse option, importing pieces of another grammars, and complexity, in the way how sym-

bols depend on each other.

28

2.3. Quality of Grammars

E F F I C I E N C Y in program generation can be seen as the way that the grammar writing affect the

generated processor efficiency and the own generation process.

The Efficiency Recognition of the sentences from the generated language is measured in terms

of:

• Parsing time

• size/complexity of the Parsing Tables

The increasing of the number of symbols and productions implies an increase of Parsing Tables

size, or control structures. This event does not affect the recognition time, but in practice slightly

degrades it. The increasing of the right sides of productions will lead to an increase of the used

memory, in the recognition operation, but in consequence will decrease the time, due to less

parsing operations.

As for the Efficiency in automatic Generation of processor is a characteristic that depends

on:

• generation time

• the data structures size, used for storing and transforming the grammar

An increase on the grammar size (number of symbols and productions) implies an increase in

the generation time and in the storage space for that process. The complexity and the recursion

system does not affect the efficiency in this generation phase, but on the other hand, the mod-

ularity degrades the processing time of the grammar, because have more modules to open and

analyze.

S U M M A R Y The following table briefly summarizes all that was exposed on the influence of fea-

tures chosen in the four critical factors identified above, to assess the quality of a Context-Free

Grammar.

Elements vs Factors
Usability Efficiency

Understanding Derivation Maintenance Recognition Aut.Generation
Clear Ids Symbols + + + X +Ti,Si
Unit Productions + − + +Ti,Si +Ti,Si
RHS Length − + − x+Ti,Si X
Notation +/− −p, +ex −p, +/−ex X X
Recursion System +/− +r, −l +/− −Ti,Si X
Modularity − − + X +Ti
Syntax Complexity X X − X X

Table 2.: The influence that CFG elements have on Quality Grammar factors.

(Legend) Table 2 was completed according the following criteria:

+ (positive effect) - helps to facilitate the factor in question

29

2.3. Quality of Grammars

− (negative effect) - helps to difficult the factor in question

+/− (variable effect) - his contribution is not always the same, depends on other aspects

X (have no effect) - have no interference with the factor in question

x (minimum effect) - slightly helps to difficult the factor in question

Ti - Processing/Generation Time

Si - Size of the Data Structures for supporting the processing/generation

p - pure-BNF

ex - ex-BNF

r - right recursion

l - left recursion

Attribute Grammars Characterization

Under the premise that an Attribute Grammar has always themselves an underlying Context-Free

Grammar, it is expected that the characterization should be made completing the characterization of a

CFG with the study of semantic behavior, implied by the AG, in terms of usability and efficiency. To

accomplish that, the same procedure will be followed, as it was for the previous subsection, where the

general characteristic of usability is dismantled in three components: ease of understanding, ease of

derivation and ease of maintenance, and the general characteristic of efficiency is dismantled in two:

efficiency in processing and efficiency in automatic generation of processor.

U S A B I L I T Y The understanding criteria of an AG, besides all the elements appointed for CFG, also

makes sense to add the following specific elements of this type of grammars:

• the right choice for the attributes identifiers

• the attributes complexity

• the number of attributes

• the number of calculation rules, context conditions and translation rules

• the notation used and the simplicity in which attributive operations are written

As is easily perceptible, the choice for clear and concise identifiers for attributes, describing

well what they represent, affects positively the understanding of the grammar, such as the lower

complexity of the attributes, in a way that, attributes that store structured values are more diffi-

cult to understand then attributes storing atomic types.

For knowing how the number of attributes and operations affect the understanding is not so

noticeable. As might initially think, as the number of both increase the difficulty in understand-

ing increases in a proportional way, however, if the number of attributes grown but his type is

simpler, as well as less elaborate operations, the ease of understanding could actually decrease.

30

2.3. Quality of Grammars

Relatively to the notation or the programming languages in which the attributive operations

are written, declarative languages have advantage to the understanding of the calculation rules,

context condition and translation rules, because they handle complex data type more easily then

imperative languages.

The recursion system element does not affect to much the understanding, the pure-BNF notation

allows a more systematic, simpler and clear writing, the modularity although allow to maintain

the grammar compact and organized, in this case end up to difficult the legibility and finally the

complexity between symbols and attributes have no significant influence on the understanding

criteria.

In case of derivation, there is little to add, the elements mentioned in the characterization of

CFG are still valid and can only mention that for the derivation only the context conditions give

some information to the user of the language. The right location of the context conditions on

productions and the way that they are clearly written helps the user on the derivation process,

for valid sentences.

To facilitates the grammar maintenance, intervenes again all identified elements for CFG,

emerging only an important factor: the semantic complexity. The way that attributes depend on

each other- how many other attributes an attribute need to be calculated- affect the maintenance,

the simpler the easier it is to keep it.

E F F I C I E N C Y The Efficiency in Processing the sentences of the generated language is a character-

istic that is measured in terms of:

• time of analysis and translation

• size/complexity of the structures that guide the analysis and translation

On this topic, it must be stated that in terms of the AG size, the number of attributive opera-

tions affect the verification and translation effort, increasing the time according to that number.

But a AG can have a higher number of attributive operations in relation to another, and still

performing them better, if they have less complexity. The number of symbol, productions or

even attributes, will lead to a bigger internal structure for verification/translation support and

so, besides increasing the memory consumption also increase the crossing time on the abstract

syntax tree, which implies an indirect conditioning on the time of processing.

The Efficiency in automatic generation of processor is a characteristic that is measured in

terms of:

• generation time

• size of the internal data structures used for grammar storage and transformation

What can be said, in objective and generic terms, in this case is that an increasing of the AG size

(number of symbols, number of productions, number of attributes and attributive operations)

31

2.3. Quality of Grammars

implies also an increasing on the generation time and on the storage space required during that

process. The difference for the syntax complexity discussed for CFG, is that now the semantic

complexity strongly affect the generation process due to the determination of the total order to

performing attributive operations during the decorated abstract syntax tree traveling. Therefore,

the generator efficiency decreases when the semantic complexity rises.

S U M M A R Y The following table briefly summarizes all that was exposed on the influence of features

chosen in the four critical factors identified above, to assess the quality of a Attribute Grammar.

Elements vs Factors
Usability Efficiency

Understanding Derivation Maintenance Recognition Aut.Generation
Clear Ids Attributes + X + X +Ti,Si
No Attributes

√
X − xTi,Si +Ti,Si

No Attr.Operators
√

X − +Ti +Ti,Si
No Symbols+Prod.

√
− − xTi,Si +Ti,Si

Attr.Complexity − x − +Ti,Si X
Attr.Opert.Complexity − x − +Ti,Si X
CCs Placement/Clarity + + + X X
Notation +p, −ex x +p, −ex X X
Recursion System +/− +/− +/− −Ti,Si X
Modularity − − + X +Ti
Semantic Complexity X X − X +Ti,Si

Table 3.: The influence that AG elements have on Quality Grammar factors.

(Legend) Table 3 was completed according the following criteria:

+ (positive effect) - helps to facilitate the factor in question

− (negative effect) - helps to difficult the factor in question

+/− (variable effect) - his contribution is not always the same, depends on other aspects
√

(dependent effect) - has influence, but the signal depends on other aspects

X (have no effect) - have no interference with the factor in question

x (minimum effect) - slightly helps to difficult the factor in question

Ti - Processing/Generation Time

Si - Size of the Data Structures for supporting the processing/generation

p - pure-BNF

ex - ex-BNF

r - right recursion

l - left recursion

32

2.3. Quality of Grammars

2.3.3 Metrics for Grammars

Metrics for Context-Free Grammars

Assuming G as a well-formed Context-Free Grammar and DGS as the respective Dependency Graph

between symbols, this document exposes the metrics to assess the quality of G, dividing them into 3

groups:

• Size Metrics:

– (SM1) Grammar size, measured in terms of:

Parameter Description
#T number of terminal symbols
#N number of non-terminal symbols
#P number of productions
#UP number of unit productions
#R number of symbols directly or indirectly recursive
§RHS average number of symbols in the right hand sides
§RHS-Max maximum number of symbols on a right side, max(length(RHS))
§Alt(1) average number of alternative productions for the same left sides
§Alt-Max maximum number of alternative productions for the same left side
#Mod number of imported grammatical modules

Table 4.: Metrics for assessing the Size of Context-Free Grammars.

– (SM2) Grammar syntax complexity, measured in terms of:

Parameter Description
FanIn(2) average number of branches of the input nodes (non-terminals) of the DGS
FanOut(3) average number of branches of the output nodes of the DGS

Table 5.: Metrics for assessing the Syntax Complexity of Context-Free Grammars.

– (SM3) Parser size, measured in terms of:

Parameter Description
#RD number of functions from the Recursive-Descent Pure Parser (#(N ∪ T))
§TabLL dimension of the Parsing Table LL(1) (#N × (#T + 1))
§DA-LR dimension of the Deterministic Automaton LR(0) (#Q)
§TabsLR dimension of the Parsing Tables LR(0) (#Q× (#T + 1); #Q× #N)

Table 6.: Metrics for assessing the Parser Size of Context-Free Grammars.

Notes:

1. To the calculation of §Alt, it is assumed that each non-terminal symbol has always 1 alter-

native; therefore, this value is #P/#N.

33

2.3. Quality of Grammars

2. derivation factor, measure how many symbols derives from one symbol.

3. dependency factor, measure the times that one symbol is used in other symbols defini-

tions.

• Style Metrics

– (FM1) form of Recursion, may have one of the following values:

Value Description
DirectRec all recursion cases follow the pattern X → . . . X . . .
IndirectRec all recursion cases follow the pattern X → . . . Y . . . ;Y → . . . X . . .
FMixedRec both forms of recursion are used

Table 7.: Metric for assessing the form of Recursion of Context-Free Grammars.

– (FM2) type of Recursion, may have one of the following values:

Value Description
RecR DirectRec cases follow the recursive right pattern X → ε | e X
RecR-LL DirectRec cases follow the recursive LL(1) pattern X → e C;C → ε | e X
RecL DirectRec cases follow the recursive left pattern X → ε | X e
TMixedRec several direct recursion patterns are used

Table 8.: Metric for assessing the type of Recursion of Context-Free Grammars.

– (FM3) notation, may have one of the following values:

Value Description
BNF all notations are written in Backus-Naur Form pure
ex-BNF all notations are written in Extended Backus-Naur Form
MixedN both notations are used

Table 9.: Metric for assessing the Notation used in Context-Free Grammars.

• Lexicographical Metrics

– (LM1) clear identifiers for terminals and non-terminals symbols, is calculated by the

formula:

#IdCompl/(#IdCompl + #IdAbrev)

considering the definition 12, the name of the concept for each symbol N or TV from the

grammar and being:

34

2.3. Quality of Grammars

Value Description
#IdCompl number of symbols in which the identifier derives from the concept name
#IdAbrev number of symbols in which the identifier does not derives from the concept name

Table 10.: Metric for verifying Clear Identifiers for Non-Terminals and Terminals-Variables declared in Context-
Free Grammars.

– (LM2) reserved-words and clear signs from the language defined by G is calculated

through the formula:

#RWCompl/(#RWCompl + #RWAbrev)

considering the definition 12, the name of the each concept from the language and being:

Value Description
#RWComp number of cases in which the reserved-word derives from the concept name
#RWAbrev number of cases in which the reserved-word not derives from the concept name

Table 11.: Metric for assessing Reserved-words and Clear Signs declared in CFGs.

– (LM3) flexibility of terminal-variables, is calculated through the formula:

#TFlex/(#TFlex + #TRigid)

being:

Value Description
#TFlex number of terminals with flexibility on the value or identifier construction (T-variable)
#TRigid number of terminals without flexibility on the value or identifier construction (T-variable)

Table 12.: Metric for measuring Terminal-Variables flexibility in CFGs.

– (LM4) kind of comment, is calculated through the formula:

inline + block + metaI

being:

Value Description
inline 1 if accepts comments from one point to the eol; otherwise 0
block 1 if accepts comments formed by blocks with one or more lines; otherwise 0
metaI 1 if accepts meta-information inside the comments blocks; otherwise 0

Table 13.: Metric for checking the amount of comment types in CFGs.

In order to complete the lexicographic metrics it is necessary the following definition:

35

2.3. Quality of Grammars

Definition 12 (Identifier Derivation). It is said that a Identifier derives from the Concept

Name if:

1. the identifier is equal the name;

2. the identifier is a prefix of the name, with 3 or more letters;

3. the identifier has a prefix which is prefix of the name and the other letters can be

obtained from the name by removing some of them.

The previous metrics here exposed affect differently the several characteristics, explored in the

former section, to assess the grammars, as well as, by implication the characteristics to assess the

languages.

Metric vs Factors Understanding Derivation Maintenance Recognition Aut.Generation LQ
SM1

√ √ √ √ √ √

SM2
√ √

SM3
√ √ √

FM1
√ √ √ √

FM2
√ √ √ √

FM3
√ √ √ √

LM1
√ √ √ √ √

LM2
√ √

LM3
√ √

LM4
√ √

Table 14.: The influence between the metrics and the quality factors in CFGs.

Metrics for Attribute Grammars

Assuming AG as a well-formed Attribute Grammar, LDG as the respective Local Dependencies

Graph for attributes and keeping in mind all metrics introduced before for the assessment of the un-

derlying Context-Free Grammar, a set of attributive parameters for measure its quality are presented:

• Size Metrics:

– (ASM1) Attribute Grammar size, measured in terms of:

36

2.3. Quality of Grammars

Parameter Description
#A number of attributes
#IA number of inherited attributes
#SA number of synthesized attributes
#CR number of calculation rules
#CC number of context conditions
#TR number of translation rules

Table 15.: Metrics for assessing the Size of Attribute Grammars.

– (ASM2) Grammar semantic complexity, measured in terms of:

Parameter Description
FanIn(1,2) average number of branches of the input attributes of the productions LDGs
FanOut(1,3) average number of branches of the output attributes of the productions LDGs

Table 16.: Metrics for assessing the Semantic Complexity of Attribute Grammars.

Notes:

1. calculation is done by analyzing the Local Dependency Graph, LDG, associated with each

production and taking for each attribute the maximum.

2. measure how many attributes does one attribute need for his definition.

3. measure the times that one attribute is used in other attributes definitions.

• Style Metrics

– (AFM1) attributes complexity, is calculated by the formula:

#AComplex/(#AComplex + #AAtom)

being:

Parameter Description
#AAtom number of attributes pf type atomic
#AComplex number of attributes of type structured (with/without pointers, or hashing)

Table 17.: Metric for assessing Attributes Complexity in AGs.

– (AFM2) complexity of the attributive operations, is calculated by the formula:

#OComplex/(#OComplex + #OSimple)

being:

37

2.3. Quality of Grammars

Parameter Description
#OSimple number of CR, CC, or TR formed only by 1 instruction
#OComplex number of CR, CC, or TR formed by 1 block of instructions

Table 18.: Metric for assessing the Complexity of Attributive Operations in AGs.

– (AFM3) calculation scheme for writing CRs, measured by the addition of two values,

one that assess the from of aggregation according to the following table:

Value Description
CRAggreg the attributes calculation follow the values aggregation pattern
CRNAggreg the attributes calculation follow the values non-aggregation pattern

Table 19.: Metric for assessing the Calculation Scheme, regarding the values aggregation form, in AG.

and another that classifies the form of recursive values accumulation, according to the

following table:

Value Description
CRpureS the calculation of the accumulation attributes follow the purely synthesized pattern
CRpureI the calculation of the accumulation attributes follow the purely inherited pattern
CRmixIS the calculation of the accumulation attributes follow the mixed i/s pattern
CRvar the attributes calculation does not follow a typical pattern

Table 20.: Metric for assessing the Calculation Scheme, regarding the values accumulation pattern, in AG.

– (AFM4) semantic restriction scheme for writing CCs, can take the following values:

Value Description
CCTop the CCs collocation follow mostly the synthesized pattern
CCCentered the CCs collocation follow mostly the right point pattern
CCBottom the CCs collocation follow mostly the inherited pattern
CCvar the CCs collocation does not follow a typical pattern

Table 21.: Metric for assessing the Semantic Restriction Scheme in AG.

– (AFM5) translation scheme for writing TRs, can take the following values:

Value Description
TRTop the TRs collocation follow mostly the synthesized pattern
TRInterm the TRs collocation follow mostly the right point pattern
TRBottom the TRs collocation follow mostly the inherited pattern
TRvar the TRs collocation does not follow a typical pattern

Table 22.: Metric for assessing the Translation Scheme in AG.

– (AFM6) style of the language to the writing of the attributive operations, if it is a declar-

ative language, or not (if it is imperative).

38

2.3. Quality of Grammars

– (AFM7) language specificity to the writing of the attributive operations, if it is a standard

programming language or not.

• Lexicographical Metrics

– (ALM1) clear identifiers for attributes, is calculated by the formula:

#IdACompl/(#IdACompl + #IdAAbrev)

considering the definition 12, the name of the concept denoted for each attribute from the

grammar and being:

Value Description
#IdACompl number of attributes in which the identifier derives from the concept name
#IdAAbrev number of attributes in which the identifier does not derives from the concept name

Table 23.: Metric for assessing Clear Identifiers for Attributes in AG.

– (ALM2) clear identifiers for attributive operators (function names, predicates and called

procedures in the CR, CC and TR), is calculated by the formula:

#IdOCompl/(#IdOCompl + #IdOAbrev)

considering the definition 12, the name of each operation which intended to preform in

each rule and being:

Value Description
#IdOCompl number of operations in which the identifier derives from the operation name
#IdOAbrev number of operations in which the identifier does not derives from the operation name

Table 24.: Metric for assessing Clear Identifiers for Attributive Operators in AG.

Following the procedure done for the Context-Free Grammars, Table 25 presents the influence of

the several metrics involving attributes upon the characteristics defined before for assessing the quality

of the grammar, showing also the relation with the quality of the generated language by the AG.

39

2.3. Quality of Grammars

Metric vs Factor Understanding Derivation Maintenance Recognition Aut.Generation LQ
ASM1

√ √ √ √ √ √

ASM2
√ √ √ √ √

AFM1
√ √ √ √ √

AFM2
√ √ √ √

AFM3
√ √ √ √ √ √

AFM4
√ √ √ √ √ √

AFM5
√ √ √ √ √

AFM6
√ √ √ √ √

AFM7
√ √ √ √ √ √

ALM1
√ √ √ √ √

ALM2
√ √ √ √ √

Table 25.: The influence that metrics have on Quality factor of AGs.

40

3

T H E P RO B L E M A N D I T S C H A L L E N G E S

In this chapter, the characterization and delimitation of the problem, that this masters work aims

to fulfill, is presented and discussed. After Chapter 1 contextualize the theme, and after presenting

the State of the Art, where the theoretical foundations (such as the basis of Measurement) and the

formalization of all the basic concepts were seen, arises the Problem and its challenges chapter.

It is necessary to define the extent to which this proposal intents to use a scientific method - Mea-

surement - applying it to the object of study - Attribute Grammars - creating this way an Hypothesis,

upon which something will be developed for the sake of assessing the quality of a grammar and, by

direct consequence, the quality of the language generated by such grammar.

The problem that this masters work aims to address is, in more objective terms, the Quality of

Attribute Grammars, which can be seen as an intention to overcome the flaws of the grammar-based

software, an agenda advocated by many authors, just as was exposed in the Motivation section. Gram-

marware is present not only in programming language compilers, but also in tools for reverse en-

gineering, program analysis, software metrics, documentation generation and detection of program

anomalies. Ensuring their completeness and correctness is vital to their use, by making robust and

reliable large grammars.

The objective is to develop a software application that implements the notions of grammars and

language quality, performing an automatic metrics calculation, as previously defined. It is desired

as final goal, an effective computable technique to assess quality of grammarware and to steer the

improvement of quality. In simple words, the wish is to automate, by developing a tool, the process

of assessing grammars quality, as explained before.

Although exists some tools similar to the described, such as the SynQ tools by Power and Malloy

[Power and Malloy (2004)] and the gMetrics tools [Crepinsek et al. (2010)], the proposed system is

something different. Despite using similar procedures, it will show different results because different

metrics will be evaluated and involved in the assessment.

41

3.1. Tool Description

3.1 T O O L D E S C R I P T I O N

Assuming G as a grammar and ML as the meta-language in which G is specified, being MG the

meta-grammar that generates ML and MG an attribute grammar, the QG - Quality Grammar - system

should:

• allow to define the metrics to calculate, associating synthesized attributes to the MG symbols;

• allow to define evaluation rules for those attributes, according to the respective metric meaning;

• accept a given G grammar, written in ML, and assess its quality evaluating the attributes;

• allow to manipulate G, for example, transforming it into an equivalent grammar with higher

quality.

To accomplish the desired features listed above, the tool should be developed accordingly some

requirements:

• accept as input two different type of grammars, defined in the previous chapter, Context-Free

Grammars and Attribute Grammar;

• validate the syntax of those grammars, because for now it is intended to accept only the ANTLR1

format;

• use a grammar that specifies the ANTLR meta-language and therefore, using the own ANTLR

tool, generate the Parser and the Lexer;

• calculate automatically each metric by extracting information in the recognition process (add

semantic to the grammar);

• from the evaluated metrics, perform a quality report for the input grammar and the respective

generated language.

Figure 7 represents, trough an Activity Diagram, what was said, or in other words, the activity flow

that the system should obey.

1 ANother Tool for Language Recognition is a parser generator that takes as input a grammar that specifies a language and
generates as output source code for a recognizer for that language. A language is specified using a Context-Free Grammar
which is expressed using Extended Backus–Naur Form (EBNF) notation.

42

3.1. Tool Description

Figure 7.: Activity Diagram

43

4

G Q E - G R A M M A R Q UA L I T Y E VA L UAT O R

This chapter presents itself as the main result of this thesis, the core of this document and the proof for

the scientific evidence provided in the previous chapters. The main goal of this Contribution chapter,

after in the previous chapters having responded to the questions: the What? in chapter 1, the What

for? in the chapter 2 and the Why? in the chapter 3, is to answer now, to the How? question.

Following the thread of this dissertation, a new software tool for metric evaluation will be intro-

duced, representing the obtained result with a simple purpose, evaluating a new set of metrics for

context-free grammars (CFG) and attribute grammars (AG) in order to help the assessment of gram-

mars quality. The premise is to explain completely how this tool was developed, in what architecture

is settle, how it works, what are its functions and how the metrics were implemented (algorithms and

structures).

Therefore, the first section of this chapter is to introduce formally the obtained tool, the second

section explores all tool architecture, explaining why is it assemble in that manner and what kind

of technologies this tool relies on. Finally, the third, fourth, fifth and sixth section covers all tool

implementation: algorithms and structures, justifying all the roads that were taken, the implementation

of each metrics and why some of them are impossible to automatically evaluate, without the help of

the user.

4.1 A T O O L F O R M E T R I C E VA L UAT I O N

Continuing all the reasoning presented in this document so far, concerning grammars as object of

study, with the knowledge and concept discussed, emerge now the GQE - Grammar Quality Evalua-
tor, which come to give support to an automatic grammar quality assessment, by performing automatic

evaluation of a large set of metrics. Based on the metrics computed, any Grammar Engineering will

easily be able to reason about the quality of its grammar and to improve it.

Although there exists similar tools to the one here described and already mentioned in chapter 2,

the resultant GQE system is different in two crucial aspects: in one hand it is extended to deal with

AGs (not only CFGs) and in other hand it will produce different results because new metrics will be

considered for the assessment (notice that besides the traditional size metrics, the tool contribute with

a new innovator set of style and lexicographic metrics).

44

4.2. GQE Architecture

Figure 8.: Grammar Quality Evaluator Logo.

To raise the speech once more to a formal level, the GQE is an attribute grammar compiler (proces-

sor) written in Java, and generated by ANTLR1 from an grammar originally designed by Sam Harwell

and Terrence Parr, and afterwards extended by the author with the necessary attributes and semantic

rules to perform the computation of the size, style and lexicographic metrics that are needed. The

context-free grammar used to validate the ANTLR meta-language syntax is exposed in Appendix A.

The tool reads any ANTLR Grammar (this is, any grammar written in the ANTLR meta-language)

and outputs the value for each one of the metrics under consideration. The user (for sure a gram-

mar engineering) will analyze the values provided and will be able to come up with an assessment.

Easily he will be able to transform his original grammar and submit the new one for re-evaluation to

understand the eventual improvement.

Before moving forward in this reasoning, it is suitable to shortly justify the main reasons why those

two technologies were selected to achieve the desire solution. For ANTLR please consult Appendix

B, as for Java programming language, without much explanation, was the choice because:

• it is a Object-Oriented language, free, with a very rich API and libraries, allowing the develop-

ing of application much easier, and it also helps to keep system modular, flexible and extensible;

• it is a language that author is comfortable to work with;

• it is everywhere and allow the development in tools, such as the used, IntelliJ IDEA2;

• allow to easily link the ANTLR, the development of the application interface and the data

structures, all together without any kind of translation process.

4.2 G Q E A R C H I T E C T U R E

To properly explain from scratch how GQE is architected, first this section will start by showing how

exactly the GQE was assembled, as a tool, from the outside in a more abstract point of view, then will

evolve to showing the inside structure as well as their components, their function and how they all

interact with each others upon each user execution.

1 The ANTLR version used was 4.5.1, available for download in this link http://www.antlr.org/download.html .
2 https://www.jetbrains.com/idea/

45

http://www.antlr.org/download.html
https://www.jetbrains.com/idea/

4.2. GQE Architecture

As stated in the previous section, this application was all developed around an attribute grammar,

written in ANTLR. So, before the execution of any kind of grammar, it is required to compile that

grammar down into parser and lexer in Java language (for more details about how this task is produced

please read section B.1 in appendix B). This way, there is no need to manually create a parser and a

lexer, because it is taken advantage of the ability on ANTLR tool to automatically generate those files,

from the source grammar. Even more, this work it is made only one time, when the grammar is ready

and producing the desire results, before building the GQE application itself and before any execution.

The ANTLR will be summon again in the execution flow for each grammar passed as argument to

GQE, but more on that later.

Figure 9.: Structural diagram with the four main components of GQE.

Speaking know in architectural terms, the GQE tool is composed by four main components, as

shown in Figure 9: the graphical user interface or GUI, the grammar objects (Java classes), the

ANTLR linking component and the SplitterExpander. It is important to notice that this architecture

was assembled in a hierarchical form wherein one component will always depend on other compo-

nent. Even the SplitterExpander, which is positioned on the base of this hierarchy depends on other

independents programs.

The SplitterExpander component is used for the assessment of the lexicographic metrics. The

ANTLR linking component is the one responsible to execute the parser and the lexer generated in the

initial phase, from the Attribute Grammar designed to describe ANTLR’s meta-language.

All the metrics calculation process is embedded in the attribute grammar, it is there that the Java

classes, which represent the object grammar, are fed to store the value from that process as well as the

46

4.3. Grammar Objects

call to SplitterExpander component. Finally, the GUI uses the Java classes to fetch the metrics values

and display them.

4.3 G R A M M A R O B J E C T S

Grammar objects are the Java classes that were created to conceptualize the notions of Context-Free

Grammars and Attribute Grammars, provided by the Definition 2 and 9 respectively, from section 2.3.

Basically, the idea was to create an Java abstract class to describe the object Grammar, then from

that, create an extension of that class, with its own characteristics, to specify the object Context-Free
Grammar and from this extension to create yet another extension to specify the object Attribute
Grammar, just like stated in their definitions.So, in this section will be explained the purpose of this

component and how is developed, as well as what is inside of each class that represents both grammar

objects.

The main function of this component is from one hand to store the values outputted from an gram-

mar recognition and from another hand to supply the user interface with the metrics already calculated.

The benefits of this solution is to take all the calculation process of the grammar, thereby making the

grammar more clean and readable. Another important aspect is the easiness to maintain the applica-

tion as well as its own development process. In the future any update on the application can be done

just by linking a value from the grammar recognition and changing a metric definition in the desire

grammar object, for example.

Figure 10.: Structural diagram of the Grammar Objects component.

47

4.3. Grammar Objects

Speaking know in structural terms, inside this component, let us take a look at Figure 10, where is

shown the three main classes written in Java, each one representing a different object. Note that this

objects are linked in hierarchical terms, just as was stated before: an abstract class called Grammar,

an extension of that class called Context-Free Grammar and finally another extension of the

last class named Attribute Grammar. Besides that, another two classes were implemented:

Identifier used to instantiate the results provided by the SplitterExpander component (more on

this ahead) and PairVertices class to facilitate the construction of the syntax/semantic complexity

graphs.

Before get in more details about what is implemented in this objects, it is important to point out

that the development of this objects (data structures, algorithms) was made incrementally and always

regarding some factors:

• definition of each proposed metric exposed in the Subsection 2.3.3;

• easiness of data structure manipulation;

• maintenance and efficiency;

The top level object in the component is Grammar specified by in an abstract class with the same

name. As such, this top object can not be instantiated and the purpose of its creation is to symbolize

clearly the semantic between a grammar and a context-free grammar. Further more, although it is not

used in this project (for know), there are other kinds of grammar, so for a future implementation this

structure class can be useful.

4.3.1 Context-Free Grammar

The Context-Free Grammar class was implemented to evaluate and store the values of all proposed

metrics required for assessing all input grammars of this type. In this subsection will be presented all

the data structures that were used, always justifying the choice for the variables type, as well as, the

methods that are defined in this class and how the structures were manipulated to achieve the desire

results. Only some choices, the ones able to raise questions to the reader, will be fully dissected, such

as some complex data structures and algorithms behind methods.

In the Listing 4.1 is possible to observe all the main data structure used, as well as their meaning

described in the comment line of the variable declaration.

p u b l i c c l a s s ContextFreeGrammar ex tends Grammar{

p r i v a t e HashSet<S t r i n g > T e r m i n a l s ; / / Terminals Symbols Table
p r i v a t e i n t t e r m i n a l s ; / / Number of Terminals
p r i v a t e HashSet<S t r i n g > NonTerminals ; / / Non Terminals Symbols Table
p r i v a t e HashMap<S t r i n g , S t r i n g > T e r m i n a l s V a r i a b l e s ; / / Termina l sVar iab le s Set
p r i v a t e HashSet<S t r i n g > KeywordsSigns ; / / Keywords and Signs Set
p r i v a t e i n t n o n t e r m i n a l s ; / / Number of nontermina l s

48

4.3. Grammar Objects

p r i v a t e i n t p r o d u c t i o n s ; / / Number of Product ions
p r i v a t e i n t u n i t p r o d u c t i o n s ; / / Number of Unit Product ions
p r i v a t e HashSet<S t r i n g > RecSymbols ; / / Se t o f R e c u r s i v e s Symbols
p r i v a t e double RHS; / / Average number of RHS symbols
p r i v a t e i n t RHS max ; / / Maximum RHS
p r i v a t e double A l t ; / / Average number of a l t e r n a t i v e s
p r i v a t e i n t Alt max ; / / Maximum number of a l t e r n a t i v e s
p r i v a t e i n t Mod ; / / Number of grammatical modules imported
p r i v a t e i n t RD; / / Number of f u n c t i o n s from RD parser
p r i v a t e i n t TabLL ; / / Dimension of Pars ing Table LL(1)
p r i v a t e HashMap<S t r i n g , A r r a y L i s t<A r r a y L i s t<S t r i n g >>> Prod ; / / A l l produc t ions
p r i v a t e i n t AD LR ; / / Dimension of the Automata LR(0)
p r i v a t e i n t Tabs LR rows ; / / Dimension of the Pars ing Tables LR(0)
p r i v a t e i n t T a b s L R c o l s ; / / Dimension of the Pars ing Tables LR(0)
p r i v a t e S t r i n g r e c f o r m ; / / R e c u r s i v i t y Form (D i r e c t / I n d i r e c t / Mixed)
p r i v a t e S t r i n g r e c t y p e ; / / R e c u r s i v i t y Type (Right /LL/ Lef t / Mixed)
p r i v a t e S t r i n g n o t a t i o n ; / / Nota t ion (BNF, e−BNF)
p r i v a t e double F a n i n ; / / Average number of branches In DSG
p r i v a t e double F a n o u t ; / / Average number of branches Out DSG
p r i v a t e S t r i n g s t a r t s y m b o l ; / / The va lue o f S t a r t Symbol
p r i v a t e i n t i n l i n e ; / / i n l i n e comment
p r i v a t e i n t block ; / / b lock comment
p r i v a t e i n t meta ; / / meta comment
p r i v a t e HashSet<S t r i n g > comments ; / / s e t o f s u s p e c t s f o r comments
p r i v a t e HashMap<S t r i n g , I d e n t i f i e r > I d e n t i f i e r s ; / / I d e n t i f i e r s and SE r e s u l t s
p r i v a t e HashMap<S t r i n g , I d e n t i f i e r > CommentsList ; / / Comments s u s p e c t s
p r i v a t e HashMap<S t r i n g , I d e n t i f i e r > Keywords ; / / L i s t o f a l l Keywords
p r i v a t e S t r i n g B u i l d e r GrammarComments ; / / Comments found in grammar

Listing 4.1: Variables declarations of Context-Free Grammar Java class.

As it obvious, most of the variables type or why they are used raise no doubts, but it is important to

justify some options:

• Terminals and Non-Terminals have a structure to store their symbols, but there is also two int

variables to store their sizes because some of the more complex metrics use this variables in

their own evaluation, so instead of always calculating the sets size it is more efficient to only do

it once and store it in a value, for both sets;

• For all the Map and Set interfaces, the options to their implementation was Hash because their

use is not only to storage purpose but also to help on the evaluation of other metrics. As for type

of the interfaces the criteria was the definition of the metric: Set of . . . or List of ..., to decide

between HashSet and ArrayList, and the HashMap when was needed to link some key to his

respective information;

• All results of the SplitterExpander were instantiated by the class Identifier;

49

4.3. Grammar Objects

The only variable structure that need some additional explanation is the variable Prod, used to

store all the productions. At the first look may seem a structure to much complex, but storing the

productions like this facilitated the algorithms complexity. To better understand this structure let us

remember the grammar for Lists, exposed in the Example 1 and observe the data structure Prod of

this set of productions in Figure 11. Clearly the left side symbols of the productions are the keys of the

HashMap, which is very useful and efficient to discover the recursion form or type, for example. The

value for each key is an ArrayList < ArrayList < String >> which represent the alternatives of

a rule, caring about the order. Finally, in each alternative there is an ArrayList < String > storing

the right hand side symbols, one more time, concerning the order in which they appear. This way the

algorithms to evaluate complex metrics were, some how, not so difficult to implement.

Figure 11.: Data structure for productions of the grammar from Example 1.

Concerning now the methods of this class, there are three main set of methods implemented in this

class: getters - necessary for the intercommunication/data exchange between the ANTLR Grammar,

the SplitterExpander and the User Interface component; setters - used to store the values in the vari-

ables, normally used by the ANTLR Grammar or some methods inside the own class3; and the metrics

evaluation - methods used to evaluate some more complex metrics, to trade instantiate the data sent

by the SplitterExpander and more.

Instead of exposing each method implementation to detail, a brief explanation of how each metric,

used for assessing Context-Free Grammar quality, is evaluated will be presented. In other words, the

algorithms behind each result achieved by GQE or as said previously, the way that the data structures

are manipulated. So, for all set of proposed metrics, in the subsection 2.3.3 of the chapter 2, an

3 Also a good programming practice inside the context of Object Oriented Paradigm languages.

50

4.3. Grammar Objects

explanation will be given, stating either if the metric in cause is possible (how) or impossible (why)

to evaluate. Some of the metrics are easy to evaluate during the grammar recognition phase, while

others can only be evaluated after the input grammar is recognized.

• During the recognition phase:

This particular subset of metrics is easy to evaluate because it can be done with an direct mea-

surement, directly made in the grammar and in some cases in more than one place4. Most of the

size metrics (#T, #N, #P, §Alt, §Alt-Max, #Mod) and one style metric (notation) are calcu-

lated based in an incremental logic related with the recognition of some element or event, like

is shown in Algorithm 15.

Algorithm 1: Algorithm for direct measurement evaluation.
input :Context-Free Grammar CFG = (R) such as R is a set of rules

output :Metrics evaluated

while not at end of grammar recognition do
read parser rules specifications;

for each production do
read right hand side elements;

if element recognized then
increment element;

end
end

end

• After the input grammar is recognized:

The metrics that fit in this situation are: the ones that needed some more information about the

entire grammar to be evaluated and the lexicographic metrics.

4 This happens because some elements can appear in more than one place and form. For example, the ANTLR meta-language
syntax allows that the Terminals can appear as an atom of an element in the right hand side of an alternative or as an element
in the notSet construction, specific to ANTLR.

5 Of course some metrics need some more work, speaking in programming implementation, such as auxiliary variables or
structures, flags and some more conditions, as it clearly perceptible.

51

4.3. Grammar Objects

Metrics such as: #UP, #R, §RHS, §RHS-Max and recursion form/type, are evaluated by ma-

nipulating the data structure Prod, as exposed by the following algorithm.

Algorithm 2: Algorithm for metrics by manipulating data structures.
input :Data structure Prod=(K,V), where K is the Prod.KeySet() and V the values set

output :Metrics evaluated

for each rule specification, r ∈ K do
if has only one production with one symbol then

increment unit productions;

end
for each alternative, alt ∈ V(r) do

if alternative is empty then
if exists right recursion in r then

rightRecursion←− true;

end
if exists left recursion in r then

le f tRecursion←− true;

end
if exists right recursion LL in r then

rightRecursionLL←− true;

end
end
for each element, elem ∈ alt do

increment RHS;

if element is equals to r then
increment recursive symbols;

directRecursion←− true;

if elem is the first symbol from the left then
if exists empty alternative in rule r then

le f tRecursion←− true;

end
else

if exists empty alternative in rule r then
checkLL(elem,alt);

end
end

else
if element is a Non-Terminal then

checkIndirectRecursion(elem,r);

end
end

end
end

end

52

4.3. Grammar Objects

With the intention of not extend the previous algorithm and thereby making it, more difficult to

read and less perceptive, some functions has been added. The algorithms used in these functions

will are shown in the Algorithms 3 and 4.

Algorithm 3: Algorithm for finding indirect recursion pattern.
input : (elem,r) - element in the RHS of rule r.

output : check Indirect Recursion.

for each alternative in elem rule specification do
for each symbol in alternative do

if symbol is equal to r then
increment recursive symbols;

indirectRecursion←− true;

end
end

end

Algorithm 4: Algorithm for finding LL(1) recursion pattern.
input : (elem,alt) - element and the set of productions of r.

output : check LL(1) Recursion.

for each rule specification do
if rule contains one alternative equal to alt and the LHS is different from elem then

rightRecursionLL←− true;

else
rightRecursion←− true;

end
end

After processed the Algorithm 2 some other metrics are know evaluated, such as: #RD, §TabLL,

§TabsLR, FanIn, FanOut, because they are calculated at the expense of others, already valued.

The only metric left, aside the lexicographic metrics, is §DA-LR, known as the dimension or

number of states of the Deterministic Automaton LR(0). This metric is not so easy to evaluate

without actually building the deterministic automaton, but it is deductible that the transition

function between states is related with the recognition of a certain symbol, with some excep-

tions. So, the method used to number of states count was implemented regarding the following

premises:

– the number of states corresponds to the number of right hand side symbols of all produc-

tions. So, every time that a symbol in an alternative is recognized, the count is incremented,

except when:

1. the alternative is empty, X0 → ε;

53

4.3. Grammar Objects

2. two or more alternatives in the same rule specification(X0) start with the same se-

quence of symbols,

X0 → X1; X0 → X1X2;

3. exists one rule(X1) with an alternative where left recursion is present and another

rule(X0) with an alternative that start with X1

X0 → X1; X1 → X1 . . . ;

– the final state must be counted, that is why the count starts in 1, because we have to

considerate the state when all grammar is recognized. The symbol that is between the

initial state and the final state is the initial symbol of the grammar;

The lexicographic metrics are evaluated in the end of the recognition phase because they require

a call to the SplitterExapander component. This call is made by sending data to an external perl

program which takes always some time. So, instead of making that call every time that an

identifier is recognized, all the variables that need the SplitterExpander are joined in the end,

and the process communication is done.

The clear identifiers metric is achieved by sending two different sets(terminals and non-terminals)

to the SplitterExpander, which will verify if those identifiers derives from the concept name or

not. For more information about how all this process is done, please check Section 4.5.

The first step back found in the implementation of these metrics was evaluating reserved-words
and clear signs metric. Evaluating the reserved-words is easy because follows the same method

used for the identifiers. The difficulty arises when we talk about clear signs, not because they

are hard to recognize but because it is very complex or even impossible to say if they are clear or

not, automatically. Imagine that a list is specified in a grammar and the separator used between

the elements is the comma(’,’) sign. For us, humans it is obvious that the comma sign can be

considered clear and enlightening, but for a machine to do it automatically is not so obvious.

Another metric that was not implemented was terminal-variables flexibility. This metrics is

related with the lexer rules for the terminals variables and depend to much on what the grammar

format allows to specify the tokens. ANTLR format is very extensible in this case and allows

constructions such as regular expressions, fragments, lexer modes, recursion and others to spec-

ify the right hand side of a lexer rule, which makes the automatic evaluation very difficult.

Finally, to evaluate the kind of comments that the language specified by some grammar allows,

it was taken advantage of the SplitterExpander. A list of possible or provable identifiers for

inline, block and meta-information comments was created, and embedded in the SE source

code. All lexer rules that can contain the specification of those three kind of comments are

crossed with that list.

54

4.3. Grammar Objects

4.3.2 Attribute Grammar

Following the train of concepts presented in the start of this section, emerge know the Attribute Gram-

mars. As defined before, in this document, attribute grammar are an extension of context-free gram-

mar combined with a set of attributes and their semantic meaning. To represent this concept, in this

application, a Java class was created to evaluate and store the values of all proposed metrics required

for assessing know, attribute grammars.

Once more, the intention is to give an idea of the structures and algorithms used to secure such

assessment, always justifying the paths that were taken, how each metric is evaluated and if is not

why.

p u b l i c c l a s s A t t r i b u t e G r a m m a r ex tends ContextFreeGrammar{

p r i v a t e i n t a t t r i b u t e s ; / / Number of A t t r i b u t e s
p r i v a t e i n t s y n a t t r ; / / Number of S y n t h e t i z e d A t t r i b u t e s
p r i v a t e i n t i n h a t t r ; / / Number of I n h e r i t e d A t t r i b u t e s
p r i v a t e i n t CR; / / Number of C a l c u l a t i o n Rules
p r i v a t e i n t c o m p l e x a t t r ; / / Number of a t t r i b u t e s with s t r u c t u r e d type
p r i v a t e S t r i n g v a l u e s a g g r e g ; / / Form of v a l u e s a g g r e g a t i o n
p r i v a t e S t r i n g v a l u e s a c c u m ; / / Form of v a l u e s accumulat ion
p r i v a t e HashMap<S t r i n g , I n t e g e r > A t t r ; / / Each a t t r i b u t e and h i s complex i ty
p r i v a t e HashMap<S t r i n g , A r r a y L i s t<P a i r V e r t i c e s >> LDG; / / Local Dependencies Graph
p r i v a t e HashMap<S t r i n g , A r r a y L i s t<S t r i n g >> Syn ; / / s y n t h e t i z e d a t t per NT
p r i v a t e HashMap<S t r i n g , A r r a y L i s t<S t r i n g >> Inh ; / / i n e r i t e d a t t per NT
p r i v a t e double a g F a n i n ; / / Average number of branches In LDG
p r i v a t e double a g F a n o u t ; / / Average number of branches Out LDG
p u b l i c HashMap<S t r i n g , I d e n t i f i e r > a t t r i b u t e s I d s ; / / Att . and t h e i r SE r e s u l t s

Listing 4.2: Variables declarations of Attribute Grammar Java class.

Relatively to this Attribute Grammar class, the variables and their respective data types are shown

in Listing 4.2. Here, there is not much to be told, because all the data types are easily understandable

towards its purpose and what it have to store. Just like before, the idea is to make a clear notion of

each metric and use this declarations to facilitate the calculation process and its efficiency.

Taking into account, once more, the set of proposed metrics to assess, this time attribute grammars,

defined in subsection 2.3.3, a short explanation of each metric implementation will be provided now.

The same division can be made about the metrics calculation process:

• During the recognition phase:

All metrics proposed to assess attribute grammars size(#A,#IA,#SA and #CR) are inserted in

this phase and all share the same logic towards its evaluation, shown already in Algorithm 1.

Note that the number of context conditions(#CC) and the number of translation rules(#TR)

were not implemented because they are not calculable in the ANTLR format. Consequently,

55

4.3. Grammar Objects

form metrics semantic restriction scheme and translation scheme are also impossible to eval-

uate, for now and for this format. Although, in the future this metrics can be implemented for a

different grammar specification format and demonstrate their purpose.

Thanks to the addition of the Java code specification in the ANTLR meta-language grammar,

exposed in Appendix A, was possible to evaluate some more metrics. For attributes complexity
the followed the logic is presented Algorithm 5.

Algorithm 5: Algorithm for attributes evaluation.
input :Attribute Grammar

output :Metrics evaluated

while not at end of grammar recognition do
read parser rules specifications;

for each rule do
read attributes and semantic information;

for each attribute recognized do
read attribute type;

if attribute has complex type then
increment attributes complexity;

end
end

end
end

Now, to assess the calculation scheme for writing calculation rules it was needed to evaluate

the form of values aggregation and the form of values accumulation. This idea of presenting

schemes to aggregate or accumulate values to build the semantic value of a grammar may seem

ingrate because there is a lot of valid ways to do it. The method used to identify aggregation
values patterns was searching for a generic aggregation function, with the following form:

X0 → X1 . . . Xn; {X0.s = genericFunction(X1.a, . . . , Xn.a)}

After this genericFunction being found, some invariants must be hold, to be recognized as a

aggregation pattern:

– the arguments list of the genericFunction can not be empty;

– the attribute s from X0 must have complex type;

– each genericFunction argument must return and attribute from the Terminals or Non-

Terminals presented in the productions of X0 specification.

As for identifying accumulation patterns no effort was needed. if the grammar only use syn-

thesized attributes to pass the information around the derivation tree, then we are in the present

56

4.3. Grammar Objects

of a purely synthesized pattern. In the other hand if only inherited attributes are used then we

have a purely inherited pattern.

• After the input grammar is recognized:

Once again, the lexicographic metrics to assess, this time, attributes are found here. Both met-

rics, clear identifiers for attributes and attributive operations, follow the same logic ex-

plained before for lexicographic metrics in Context-Free Grammars.

Finally, the semantic complexity metrics(FanIn and FanOut) were calculated with some dif-

ficulty level. Besides the difficulty to build the Local Dependencies Graph between attributes,

arise the task of identifying the attributes used for another attribute construction. Algorithm 6

shows how this graph were built and from that the number of branches that go in and out on

attributes are easy to count.

Algorithm 6: Algorithm for semantic complexity evaluation.
input :Attribute Grammar

output :Metrics evaluated

for each calculation rule do
for each statement expression do

if is an attributive expression, with the purpose A = B then
if A is an rule attribute and expression B contains attributes of the RHS symbols then

increment Local Dependencies Graph;

end
end

end
end

All the work lies in this attributive expressions presented in statements, because these expres-

sions can take various forms, for example: a = b, a = f (b) or a ++, but all with the same

purpose: to give a value at some element. All possible expressions are specified in grammar rule

expression(line 518 in Appendix A) but only a part of them allow attributions. The logic is

to identify these attributions, and by consequence if the attributive element is an attribute from

the grammar and if other attributes, from the grammar, are used in these attributions.

Outside of this division are two form metrics style of the language and language specificity be-

cause they depend exclusively on the grammar format. In the ANTLR format case, attributive opera-

tions are written in standard programming language Java, oriented to the objects paradigm.

57

4.4. ANTLR Linking Component

4.4 A N T L R L I N K I N G C O M P O N E N T

This component is an important part of all GQE structure, not because of the complexity presented

in it, but because of its function and what it represents. Therefore, this section is dedicated to this

component exposition, saying what is in it and explaining some of the process.

The main function of this component, as detectable from this section name, is linking all the

ANTLR files with the other components, more precisely the Grammar Objects and the User Interface.

At the beginning of the input grammar recognition process, a Java object is created(Context-Free

Grammar or Attribute Grammar) and initialized. In the end the User Interface retrieves this object

from this component and display the metrics.

Figure 12.: Structural diagram of the ANTLR linking component.

Figure 12 shows the structure of this component, with the separated grammar files: parser and lexer,

the generated files from running ANTLR on the parser and on the lexer, and finally a main Java class

to tie them all together.

As stated already in 4.2 from the ANTLRv4Parser.g4 and ANTLRv4Lexer.g4 files, the

ANTLR tool will generate a .tokens and a .java file for each one. The purpose of the main class

is to create a lexer and parser object(with the help of the generated files) and executing the parsing

process. This main class is similar to the Test class defined in Figure 34, the only differences are

that the start symbol of the grammar is grammarSpec and the input stream come from an input file,

selected by the user.

58

4.5. Splitter Expander

4.5 S P L I T T E R E X PA N D E R

The SplitterExpander is a program developed in Perl programming language responsible to help on the

assessment of the lexicographic metrics, for both Context-Free Grammars and Attribute Grammars,

defined in the subsection 2.3.3, chapter 2.

Recalling the definition 12, in which it is established the validity of an Identifier by verifying if it

derives from a concept name or not, this program was created with the desire to perform three main

tasks:

1. to split the Identifier into logical pieces, if some splitting pattern were found or both, such as

the CamelCase technique6 or the ’ ’ (underscore) separator technique7;

2. to expand the Identifier to the correct concept name, if the Identifier is a prefix or if it was

divided in pieces to expand each one to the correct concept name;

3. to validate the syntax of the Identifier;

At first sight, this goal to evaluate the correct structure and to expand an Identifier into the precise

concept name for which was created, may seem bold, because this task appear to depend on the logic

deduction of a human being, but the aim is to approximate the program results to the evaluation of the

human reasoning.

Just to prove that all this wanted behavior it is not easy to accomplish let us take a look to some

examples, in the range of possibilities that could appear, demonstrating the source Identifier and the

expected result from processing it.

Example 5. The most simple case is from the Identifiers that has no need to be splitted neither ex-

panded. The only restrictions is that they have to be composed by more than one letter and have to

belong to English dictionary.

Example 6. Other possible case come from the Identifiers that need to be splitted but do not need to

be expanded.

Example 7. Some Identifiers or pieces of Identifiers that were splitted need to be expanded. In some

cases the expansion of such sequences of characters are easy to predict.

But different from all the previous examples, are the Identifiers in which the expansion is not that

easy to predict.

6 Classic technique in programming languages used to separate different words in a Identifier. Very clean and legible for
those who are reading the code and trying to understand the purpose of some methods or variable. Some examples are:
DestAddrLst which can be splitted and expanded to Destination Address List or incrementTerminals that can be
splitted in Increment Terminals, with no need for expansion.

7 Another classic Identifiers separation technique, but this time instead of using the Camel Case to highlight the separation,
the meta character underscore ’ ’ is used. Few examples are: number of productions, print Tab for print table.

59

4.5. Splitter Expander

Example 8. Identifiers that the expansion is not so predictable, for example prefixes or just letter in

the middle of an Identifier.

All the tasks listed before are achieved by the SplitterExpander with the help of two other programs:

a perl module called Lingua::IdSplitter8 and other natural processing language tool named Wordnet9,

just as shown by Figure 13. For more details about this natural languages tool, please see Appendix

C.

Figure 13.: Structural diagram of the SplitterExpander component.

The perl module Lingua::IdSplitter was edited to better suit the integration with the rest of the

application and to produce other kind of results. He is responsible to identify the splitting patterns

(CamelCase and ’ ’ separator), then split the Identifier into smaller identifiers and then check the

semantic validity of that identifier. Another feature of this module is that have implemented some

custom dictionaries for some easy expansions.

The other perl module presented in Figure 13 is Wornet::QueryData. This module is only used as

an interface for the already introduced tool Wordnet, because it allows a direct query context with all

the data relations that Wordnet provides. It is more clear and efficient to work with a perl module in

perl programming language then to build some mechanism to contact with the stand alone tool it self.

8 https://github.com/nunorc/Lingua-IdSplitter
9 https://wordnet.princeton.edu/wordnet/

60

https://github.com/nunorc/Lingua-IdSplitter
https://wordnet.princeton.edu/wordnet/

4.6. GQE Interface

With the intention of going far ahead in the expansion of some complex Identifiers, such the ones

provided by the example 8, the idea was to isolate those identifiers and apply on them three heuristics

that could help to make a rational decision for theirs expansion.

• Heuristic One [Documentation] - Clues about some identifiers most probable expansion are

looked in the documentation files of the grammar, if they exists;

• Heuristic Two [Comments] - During the recognition phase of the input grammar, all the rec-

ognized comments are joint together so that they can be sent to the SplitterExpander. This

comments may be useful, for some complex expansions;

• Heuristic Three [Grammar Domain] - Grammar Domain can be specified in the Interface by

the user, if not, the application will assume that the top level domain of the grammar is the

grammar name. With this domain, and with the help of Wordnet, a list of related words (various

relations) is presented. Once again, the idea is to expand some ambiguous identifiers with this

domain related words.

Of course all these heuristics starts from the notion that all the grammars designers are good, this is,

they comment correctly the grammars, the rules and the productions, they have documentation files in

the same directory of the source grammar and they give a clear identifier to the name of the grammar.

Even so, if it is possible to apply at least one of the heuristics to the grammar, the result could be

very helpful and determinant to the correct expansion of some of the grammar Identifiers. More, if

appear two or more different possibilities for some identifier expansion, this heuristics may give us

some decision about which is the most probable possibility, for that identifier, for that grammar, in

that context.

4.6 G Q E I N T E R F AC E

This section present the visual component of the GQE application. It contains all the information about

the User Interface and answer to some questions, such as: what is the purpose of this component, in

which technologies was built, what resources consumes and the output it produce.

The objective of this component, as is deductible by its name, is to perform the interface between

the GQE application and the user, for sure a grammatical engineer. This interface can be seen as the

result of all the work made by all the others components. It was only one simple task: to show the

results of the computed metrics, responsible to assess the input grammar.

Although, considering this as a simple component, it was built upon some desire aspect and be-

havior, characteristics that should be share by all interfaces. The intention was to design an efficient

interface, easy to manipulate by any user, without to much windows or panels, providing results in

very few steps and aesthetically pleasant.

61

4.7. Execution Flow

For this simple component, to achieve this objectives, it was structured like shown in Figure 14. In

the total, the User Interface has three main interaction elements: a Presentation Panel, a Input options

panel and a Results display panel. The Presentation Panel is used as an introduction for the application,

presenting GQE and informing the user that the program was been initialized. The Input options panel

requires more interaction with the user, for choosing the input grammar file and to assess the grammar

with some options, such as the type(CFG or AG), the format(for the future because know it only accept

ANTLR format) and more. Finally, the Result Panel is used to display the metrics evaluation and the

quality conclusions inferred towards the input grammar.

Figure 14.: Structural diagram of the User Interface component.

This interface was built with the help of the Swing Java technology, a GUI widget toolkit for Java.

In other words, Swing is an API suit that allows the design of interfaces by creating and manipulating,

already defined, graphical components for Java programs10. The benefits of this option are obvious,

because it provides total compatibility with the others GQE components built in Java programming

language and allows an easy way to build and maintain, nice interfaces.

4.7 E X E C U T I O N F L O W

Now, that all the four components have been introduced and the purpose of each one exposed, comes

the section responsible to explain all the activity performed by GQE. Since the moment that the user

indicates the input grammar to be consumed by the tool, until the moment that the quality report is

displayed on the interface, a lot of processes are executed in the background.

10 For more information about this technology, please consult http://docs.oracle.com/javase/tutorial/uiswing/.

62

http://docs.oracle.com/javase/tutorial/uiswing/

4.7. Execution Flow

All this process starts when the user execute GQE and select the input grammar. Right after this

selection, the tool will validate syntactically the grammar in question, to see if respects the form of

the ANTLR format. As is obvious, all this activity happens in the Interface component, responsible to

listen the type of grammar that the user wish to assess and therefore sending it along with the file path

to the ANTLR linking component.

With the type of grammar and the already generated files (from compiling the used grammar to

describe ANTLR meta-language) a new instance of parser and lexer object are created using as input

the received file path. The recognition phase of the input grammar starts from the moment that this

component execute the parse() procedure.

Once triggered this recognition process a new Grammar Object(Context-Free Grammar or Attribute

Grammar) is created according the type previous selected by the user. Trough the methods imple-

mented in those objects, the data structures there declared are fed every time a new symbol or construc-

tor of the grammar is recognized. Some of the metrics evaluation happens directly in the recognition

moment and others are only evaluated once all the file is accepted, as explained before. Specifically,

the set of lexicographic metrics is very important because it is the one that communicates with the

SplitterExpander component.

All the data exchange between the Grammar Object and the SplitterExpander is done by sending

JSON files. This option is taken because JSON files are simple to create/read, efficient for the task

proposed and because they can be used, in the future, for sending information for others external

systems. After verifying the clarity of the identifiers a new JSON file is sent in return, for that all the

results can be stored.

After all the metrics calculation, the Grammar Object is retrieved by the Interface component, up-

dating the display panel with all the information stored in the data structures, including the quality

report, which present the desire final output. Figure 15 shows this flow between components.

Figure 15.: Execution flow of GQE.

63

5

G Q E M A I N R E S U LT S

Following the trend of this dissertation, comes now the chapter responsible to show the real application

of the main result, in this case, the real application of the GQE tool introduced in the previous chapter.

As stated before in this document, this tool is inserted in the Grammar Engineering field of study

therefore it is there that the product of this investigation have its real application and provides an

increment such as this knowledge system to grammars.

So, the purpose of this Main Results chapter is to present the benefits of using this tool in two types

of grammars, more precisely Context-Free Grammar and Attribute Grammars. In order to achieve

that, different grammars, in quality terms, will be used as Case Studies, showing the different results

displayed by GQE for each one of them.

The approach chosen was to use one case study of Context-Free Grammar and expose all the results

displayed by GQE, in an complete way, and repeat the process with another case study but this time

of Attribute Grammar. Then, promptly, some pieces of different elements used in grammars, that have

a direct impact in the quality of the grammar, will be shown, confronting them with the respective

outputted result. Some verification will be made to check if the tool is behaving desireously according

different inputs.

5.1 C F G A N A LY S I S : L I S P L A N G UAG E

1 grammar Lisp ;
2

3 l i s p : sExp ;
4

5 sExpLis t : sExp sExpLis t
6 |
7 ;
8

9 sExp : NUM
10 | WRD
11 | ’ (’ sExpLis t ’) ’ ;

Listing 5.1: A Context-Free Grammar example for specifying Lisp language.

64

5.1. CFG analysis: Lisp Language

The grammar listed in Listing 5.1 will be used as case study for Context-Free Grammars in this

section. It says that a Lisp sentence is a symbolic expression(sExp) and that a symbolic expression

is an atomic value - number(NUM) or a words(WRD) - or a list of symbolic expression(sExpList)

between parentheses.

The result of analyzing this grammar in GQE tool will be presented first by the metrics evaluation,

and then by the assessment report, both performed automatically by GQE. This automated process is

successfully done by this tool thanks to the implementation of the algorithms, exposed in Subsection

4.3.1.

– Metrics Evaluation

Figure 16 shows the panel in GQE interface responsible for displaying the calculated value for

each grammar size metric, defined in Table 4. As is possible to verify the results obtained from

GQE are correct. The grammar have in fact:

– 4 terminal symbols - NUM, WRD, ’(’ and ’)’;

– 3 non-terminal symbols - lisp, sExp and sExpList;

– 6 productions - p0 in Line 3, p1 in Line 5, p2 in Line 6, p3 in Line 9, p4 in Line 10 and

p5 in Line 11;

– no unit productions;

– 2 recursive symbols - sExp and sExpList;

– an average number of right hand side symbols of 1,3 = (1 + 2 + 0 + 1 + 1 + 3)/6;

– a maximum right hand side of 3 symbols in production p5 Line 11;

– an average number of alternatives of 2 = (1 + 2 + 3)/3;

– a maximum of 3 alternatives in sExp specification;

– and no imported modules.

For the subset of syntax complexity metrics defined in Table 5, the outputted results by GQE,

are presented in Figure 17, such as the resultant Dependencies Graph between Symbols1. Here

the metrics evaluation are also accordingly to the desire:

– a FanIn of 2,6 = (1 + 2 + 5)/3;

– and a FanOut of 1,1 = (0 + 2 + 1 + 1 + 1 + 2 + 1)/7;

Relatively now, to the last subset of size metrics - Parser size - listed in Table 6, it is possible to

see the results in Figure 19. By analyzing them, once more the tool proven to be accurate:

– 7 functions in the Recursive Descendant Parser = (4 + 3);

– the dimension of Parsing Table LL(1) = (3 ∗ (4 + 3));

– 10 states for the Deterministic Automaton LR(0), just as shown in Figure 18;

1 GQE interface shows this graph to the user because it gives a different perspective of how complex the grammar in question,
is.

65

5.1. CFG analysis: Lisp Language

Figure 16.: Computed grammar size metrics for CFG specifying Lisp language.

Figure 17.: Computed syntactic complexity metrics for CFG specifying Lisp language.

– and (50; 30) for the dimension of Parsing Tables LR(0) = (10 ∗ (4 + 1); 10 ∗ 3).

The set of style metrics is divided in three metrics: form of recursion, type of recursion and

notation, defined in Table 7, Table 8 and Table 9 respectively, can be seen in Figure 20. Clearly:

66

5.1. CFG analysis: Lisp Language

Figure 18.: Deterministic Automaton LR(0) for CFG specifying Lisp language.

Figure 19.: Computed parser size metrics for CFG specifying Lisp language.

– direct recursion is present in production p1 Line 5 and indirect recursion in production p5
Line 11;

– the type of direct recursion is right recursion;

– and all production are written in pure-BNF.

Finally, for the lexicographic metrics set only the results of the Clear Identifiers metric, revealed

in Table 10, are shown in Figure 21. The option of showing only this metric of the referred set,

was taken because it is the only element that have a direct effect on Context-Free Grammars

quality, just like state already in Table 2. In the light of what was imposed by Definition 12, the

results provided by GQE are correct once more:

67

5.1. CFG analysis: Lisp Language

Figure 20.: Computed style metrics for CFG specifying Lisp language.

– the identifiers for the Non-Terminals (lisp, sExp and sExpList) are considered clear, be-

cause all of them derive from the concept names - Lisp, Symbolic Expression and Symbolic

Expression List;

– the 2 terminals-variables (NUM and WRD) are also considered clear, for the same reason

- Number and Word.

Figure 21.: Computed lexicographic metrics for CFG specifying Lisp language.

Note that the GQE interface also shows the expansions for each identifier and, in the case of a

multiple terms identifier, the separator used(Observation(s) field).

– Assessment Report

This assessment report, performed automatically by GQE, on Context-Free Grammars is the

great benefit for the users of this application. It provides quality assumptions allowing the final

user to reasoning about his grammar and possibly to also compare it to another.

68

5.1. CFG analysis: Lisp Language

Relatively to the grammar in study, the quality report displayed by this tool is exposed in Figure

22. Looking more carefully to this report and taking into account what has been discussed over

subsection 2.3.2, it is perceptible that all generated quality assumptions, towards the grammar,

are in conformity to the truth.

Figure 22.: Assessment report for CFG specifying Lisp language.

Concerning now the quality of the language generated by this Context-Free Grammar, can only

be stated that:

– it will not be so easy to understand the language;

– if the respective parser is well chosen and implemented, its recognition can be efficient;

– to support what has listed before is the fact that the grammar does not allow any kind of

comments in the generated language, complicating the understanding and not degrading

the efficiency;

– the language expressiveness will not be facilitated for the absent of keywords, but other-

wise, the scalability will be ensured in terms of writing and processing large programs.

This permanent relation between the quality of the grammar and the quality of the language

generated by that grammar, is not taken into account in GQE, at least not for now. More details

about this option will be given in the next chapter.

69

5.2. AG analysis: Lisp Language

5.2 AG A N A LY S I S : L I S P L A N G UAG E

1 grammar Lisp ;
2

3 l i s p r e t u r n s [i n t coun tN out , i n t countW out]
4 @init{ i n t c o u n t N i n = 0 , countW in = 0 ; }
5 : sExp [coun tN in , countW in]
6 { $ c o u n t N o u t = $sExp . c o u n t N o u t ;
7 $countW out = $sExp . countW out ;
8 System . o u t . p r i n t l n (” T o t a l o f numbers : ” + $ c o u n t N o u t + ”\n ” + ” T o t a l o f

words : ” + $countW out + ”\n ”) ;}
9 ;

10

11 sExp [i n t coun tN in , i n t countW in] r e t u r n s [i n t coun tN out , i n t countW out]
12 : NUM
13 { $ c o u n t N o u t = $ c o u n t N i n +1;
14 $countW out = $countW in ; }
15 | WRD
16 { $ c o u n t N o u t = $ c o u n t N i n ;
17 $countW out = $countW in +1; }
18 | ’ (’ sExpLis t [coun tN in , countW in] ’) ’
19 { $ c o u n t N o u t = $ s E x p L i s t . c o u n t N o u t ;
20 $countW out = $ s E x p L i s t . countW out ; }
21 ;
22

23 sExpLis t [i n t coun tN in , i n t countW in] r e t u r n s [i n t coun tN out , i n t countW out]
24 @init{ i n t aux1 , aux2 ; }
25 : a1=sExp [coun tN in , countW in]
26 { aux1 = $a1 . c o u n t N o u t ;
27 aux2 = $a1 . countW out ; }
28 a2= sExpLis t [aux1 , aux2]
29 { $ c o u n t N o u t = $a2 . c o u n t N o u t ;
30 $countW out = $a2 . countW out ; }
31 |
32 { $ c o u n t N o u t = $ c o u n t N i n ;
33 $countW out = $countW in ; }
34 ;

Listing 5.2: A Attribute Grammar example for specifying Lisp language.

Following the same structure of the previous section, a new case study will be introduced and

analyzed, but this time in order to an Attribute Grammar. Listing 5.2 exhibit the same context-free

grammar for the Lisp language, exposed in Listing 5.1, extended with a semantic component defined at

the expense of attributes. It is precisely this semantic component that GQE will automatically assess,

70

5.2. AG analysis: Lisp Language

thanks to the implementation of the algorithms, exposed in Subsection 4.3.2. Note that the quality

assessment done previously stays valid for this grammar, as attribute grammars definition suggest.

In order to elucidate the speech taken hereinafter, the semantic component of this attribute grammar

is responsible to calculate the total of number(NUM) and words(WRD) sequenced in the list2. This

task is fulfilled by sending data, in this case counters, up and down between productions through

synthesized and inherited attributes, and increment them when a number or a word is recognized.

– Metrics Evaluation

Figure 23 shows the results displayed by GQE for the set of attribute grammar size metrics

defined in Table 15. Again, the results provided are in agreement with the desire, because

exists:

– a total of 10 attributes = (2 + 4 + 4);

– 4 inherited attributes = (0 + 2 + 2);

– 6 synthesized attributes = (2 + 2 + 2);

– 15 calculation rules = (3 + 2 + 2 + 2 + 4 + 2);

– just as justified before, in the previous chapter, the number of Context Conditions and

number of Translation Rules metrics are impossible to evaluate, for this ANTLR format.3

Figure 23.: Computed grammar size metrics for AG specifying Lisp language.

The output for the pair of metrics used to assess the semantic complexity listed in Table 16 are

exposed in Figure 24. Identically to what was shown for the syntax complexity metrics, here

the GQE interface shows the Local Dependencies Graph, related to each attribute definition.

Looking to the grammar and to the own graph, it is clearly that:

2 If the syntax of Attribute Grammars and its components is not clear to understand, please consult the Appendix B.
3 In the future, some others grammars formats can be implemented in GQE, thenceforth those and other metrics are able for

evaluation.

71

5.2. AG analysis: Lisp Language

– each attribute, on average, need one attribute for his definition - FanIn= (1 + 0 + 0 + 2 +
0 + 2 + 1 + 2 + 2 + 0)/10;

– each attribute, on average, is used in one attribute definition - FanOut= (0 + 1 + 1 + 1 +
1 + 2 + 0 + 2 + 1 + 1)/10;

Figure 24.: Computed semantic complexity metrics for AG specifying Lisp language.

As for the results of the style metrics set, regarding now, attribute grammars and defined in

Table 17, Table 18, Table 19, Table 20, Table 21 and Table 22, are presented in Figure 25. Once

more, this results are correct, because:

– there is no attribute with a complex type - all attributes have a atomic type(int);

– the calculation rules follow the non aggregation pattern - all the partial values are main-

tained in simple distinct attributes - and a mixed pattern for the values accumulation -

information is carried up and down between the productions;

– once more, for the same reason already explained, the Context Conditions Scheme and

Translation Rules Scheme metrics are not evaluated;

– the style of the language is, in fact, object oriented;

– and the language specificity for writing attributive operations is Java and therefore Stan-

dard.

Figure 26 expose the results for the lexicographic metric, Clear Identifiers for Attributes, defined

in Table 23. This set of metrics is completed with the metric listed in Table 24 related with Clear

Identifiers for the Attributive Operator in calculation rules. Since this grammar example does

not have any attributive operator to be assessed, the resultant panel displayed by GQE is not

exposed here.

Taking into account, once more, the Definition 12 it is possible to check that all the identifiers

used for attributes are clear:

– the identifier countW out derives from the concept terms - Count, Word and Out;

72

5.2. AG analysis: Lisp Language

Figure 25.: Computed style metrics for AG specifying Lisp language.

– the identifier countW in derives from the concept terms - Count, Word and In;

– the identifier countN in derives from the concept terms - Count, Number and In;

– and the identifier countN out derives from the concept terms - Count, Number and Out.

Figure 26.: Computed lexicographic metrics for AG specifying Lisp language.

– Assessment Report

After all the previous set of metrics being evaluated, and similarly to what was done for context-

free grammar, a quality assessment report is displayed by GQE, as shown in Figure 27. By

crossing the metric values with their impact on the quality of the grammar - listed in Table 3 -

the tool generate a set of quality assumptions about the attribute grammar in study.

By analyzing all the assumptions provided and looking for the grammar in question, it is easy

to verify that all of them make sense and states about some quality factor.

73

5.2. AG analysis: Lisp Language

Figure 27.: Assessment report for AG specifying Lisp language.

74

6

C O N C L U S I O N S

6.1 C O N C L U S I O N S

This final chapter is a summary, or a synopsis, of everything that was exposed throughout this docu-

ment, remembering the aims of the project and how they were achieved. Just as stated in the Intro-

duction, a critical reflection will be done in this chapter, discussing some aspects of the research and

development work done, as well as what is expected for future work.

First, the document starts to contextualize the grammars in the software engineering, trough all

software products that as the core knowledge based on grammar, the defined grammarware and how

the aspects of engineering, such as the quality, are not being used in its production. Then is presented

the motivation for this masters’ work. So, to assess the quality of any software application several

techniques and methods can be applied, but in this case regarding the grammars, one is introduced -

Measurement.

It was discussed that for applying the measurement theory to any object, is necessary to identify the

attributes to be measured, the entities in which such attributes are measured and how is measured. The

theory behind measurement say that for measuring some attribute, like quality on software products,

which is an attribute not directly measurable, we need to first characterize the attribute for a certain

entity. After that, this document discusses the assessment of attribute grammars’ quality.

Following the previous reasoning, first the quality characteristics for Languages were identified,

because it is also a challenge of this thesis, relating the quality of a grammar with the quality of

the language generated by that grammar. To assess the language quality, eight characteristics were

defined: Expressiveness, Documentation, Unicity, Consistency, Extensability, Scalability, Reliability

and Modularity. The more characteristics a language holds the better it is. For each characteristic,

was measured the influence over the four critical factors to quality of the language: learning, writing,

understanding and the efficiency in recognition.

Then, the same procedure was applied to grammar, more precisely, Context-Free Grammars and

Attribute Grammars. The quality of the Grammar was defined as, while specification that generates

the language, in terms of usability, and while specification that generates a processor, in terms of effi-

ciency. The influence that some grammar elements have over this quality factors was also discussed.

75

6.1. Conclusions

As result of all the reasoning made, a set of metrics is introduced to assess the quality of Context-

Free Grammars and Attribute Grammars. This set is divided in 3 subsets: the common Size, Style/-

Form metrics, and the innovative lexicographic metrics, considered useful for retaining information

related with the quality of the generated language.

Assuming the grammars as the instruments of this work and converging all the theory until then

dissected arises then the GQE - Grammar Quality Evaluator system. GQE is a tool for assessing

automatically the quality of Context-Free Grammars and Attribute Grammars, at the expense of the

metrics evaluation. The first concern was to build the data structures needed for applying on them

algorithms that allowed a correct implementation of each introduced metric. Then a reasoning mecha-

nism was implemented, responsible to read the values of each metric and display an assessment report

about the grammar in question.

By analyzing the quality reports displayed by GQE, it is concluded that, in fact, is possible to assess

the quality of a grammar automatically, at the expense of the metrics introduced here, in terms of its

usability (understanding, derivation and maintenance as a tool for generating some language and

efficiency as a tool for generating the parser for that language.

Remembering the aims proposed for this masters work and checking the accomplished achieve-

ments, it is possible to infer that:

1. A grammar-based software tool for software engineers and others developers in the language

processing field, was developed accordingly the desired requirements:

• a new set of grammar metrics were introduced in accordance with the quality characteris-

tics present both in grammars and in the languages generated by those grammars;

• those metrics were implemented successfully in the system, allowing the attributes evalu-

ation;

• accept a given grammar (CFG or AG) and assess their quality;

• manipulating a grammar and transforming it into another equivalent grammar with better

quality is not automatically done by GQE. Although, it is clear to see that this process

of increasing the quality of the grammar by transformation can be done easily now. In

fact, implementing this feature into this tool it will be very laborious (in terms of coding

and interfacing), when with the quality results the grammar developer can do it fast and

without effort.

2. Well-founded and proven methods and techniques were provided to support the development,

maintenance, recovery and implementation of attribute grammars. Through the application

of a scientific method called measurement and with the respective measurement techniques

discussed in the State of the Art chapter, attribute grammar processes can be aided.

3. Better quality grammar-based software systems can be achieved with the aid of GQE, because

the development process of context-free grammars and attribute grammars can be supervised

76

6.2. Future work

and controlled easily. Therefore and by systematically apply this solution and reasoning about

the quality assessment that this provide, there is room also for improving critical aspects such

as performance, reliability and efficiency in a sustained way.

6.2 F U T U R E W O R K

It is intended to discuss here some circumstances about the thread of possible future investigations

following this dissertation. It is noted, obvious, that it still exist a lot of work to be done in this

field due to the relevance of the subject and the advantages that future projects can bring to software

engineering.

• Relatively to the Grammar Quality Evaluator there is room for improvement. More grammar

formats can be added to the range of this tool, implementing then some of the metrics that were

proven to be impossible to evaluate for the ANTLR format. Also, taking this system to next

level, by providing some artificial intelligence techniques regarding the quality of the already

assessed grammars.

The idea is to create a base of knowledge for grammars and therefore improving the specificity

of the quality assumptions displayed. This can be achieved by saving the opinions of the gram-

mar engineers users and in consequence teaching automatically the system what could be good

or poor grammar in terms of quality.

Although the obvious involved complexity, it would be nice to have some sort of stable formula,

calculated using the values of the assessed metrics, that gives us some final verdict about the

quality of the grammars. For sure, that is the dream!

• After being proven, by the content of this dissertation, that from the quality assessment made

on a grammar it is possible to draw conclusions about the quality generated by that grammar,

the intention is to do it automatically. This can be accomplished by giving an intensive studying

upon the subject languages quality, just as the one made here for grammars, and relating that

with the product of this dissertation;

• And to finalize, continue gifting the grammar engineering and the languages processing field

with more established and well-founded methods of engineering.

77

B I B L I O G R A P H Y

Tiago L. Alves and Joost Visser. Metrication of sdf grammars. Technical report, Universidade

do Minho, May 2005. URL http://wiki.di.uminho.pt/twiki/pub/Personal/

Tiago/Publications/DI-PURe-05-05-01.pdf.

Tiago L. Alves and Joost Visser. A case study in grammar engineering. In Software Language

Engineering, First International Conference, SLE 2008, Toulouse, France, September 29-30, 2008.

Revised Selected Papers, pages 285–304, 2008. doi: 10.1007/978-3-642-00434-6 18. URL http:

//dx.doi.org/10.1007/978-3-642-00434-6_18.

Emily M. Bender. 1 grammar engineering for linguistic hypothesis testing, April 2007. URL http:

//faculty.washington.edu/ebender/papers/TLSX_preprint.pdf.

Barry W Boehm, John R Brown, Hans Kaspar, and Myron Lipow. Characteristics of software quality.

TRW Softw. Technol. North-Holland, Amsterdam, 1978.

Nuno Ramos Carvalho, José João Almeida, Pedro Rangel Henriques, and Maria João Varanda Pereira.

From source code identifiers to natural language terms. Journal of Systems and Software, 100:117–

128, 2015. doi: 10.1016/j.jss.2014.10.013. URL http://dx.doi.org/10.1016/j.jss.

2014.10.013.

Joseph P. Cavano and James A. McCall. A framework for the measurement of software quality.

SIGSOFT Softw. Eng. Notes, 3(5):133–139, January 1978. ISSN 0163-5948. doi: 10.1145/953579.

811113. URL http://doi.acm.org/10.1145/953579.811113.

Matej Crepinsek, Tomaz Kosar, Marjan Mernik, Julien Cervelle, Rémi Forax, and Gilles Roussel. On

automata and language based grammar metrics. Comput. Sci. Inf. Syst., 7(2):309–329, 2010. doi:

10.2298/CSIS1002309C. URL http://dx.doi.org/10.2298/CSIS1002309C.

Jelle de Groot, Ariadi Nugroho, Thomas Bäck, and Joost Visser. What is the value of your soft-

ware? In Proceedings of the Third International Workshop on Managing Technical Debt, MTD

2012, Zurich, Switzerland, June 5, 2012, pages 37–44, 2012. URL http://dl.acm.org/

citation.cfm?id=2666043.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars: Definitions, Systems, and

Bibliography, volume 323 of Lecture Notes in Computer Science. Springer, 1988. ISBN 3-540-

50056-1. doi: 10.1007/BFb0030509. URL http://dx.doi.org/10.1007/BFb0030509.

78

http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/DI-PURe-05-05-01.pdf
http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/DI-PURe-05-05-01.pdf
http://dx.doi.org/10.1007/978-3-642-00434-6_18
http://dx.doi.org/10.1007/978-3-642-00434-6_18
http://faculty.washington.edu/ebender/papers/TLSX_preprint.pdf
http://faculty.washington.edu/ebender/papers/TLSX_preprint.pdf
http://dx.doi.org/10.1016/j.jss.2014.10.013
http://dx.doi.org/10.1016/j.jss.2014.10.013
http://doi.acm.org/10.1145/953579.811113
http://dx.doi.org/10.2298/CSIS1002309C
http://dl.acm.org/citation.cfm?id=2666043
http://dl.acm.org/citation.cfm?id=2666043
http://dx.doi.org/10.1007/BFb0030509

Bibliography

Gregor Erbach. Tools for grammar engineering. In Proceedings of the Third Conference on Applied

Natural Language Processing, ANLC ’92, pages 243–244, Stroudsburg, PA, USA, 1992. Associa-

tion for Computational Linguistics. doi: 10.3115/974499.974548. URL http://dx.doi.org/

10.3115/974499.974548.

Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and Practical Ap-

proach. PWS Publishing Co., Boston, MA, USA, 2nd edition, 1998. ISBN 0534954251.

A. A Ghani and R. B. Hunter. An attribute grammar approach to specifying halstead’s metrics.

Malaysian Journal of Computer Science, 9, 1996.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring maintainabil-

ity. In Quality of Information and Communications Technology, 6th International Conference

on the Quality of Information and Communications Technology, QUATIC 2007, Lisbon, Portugal,

September 12-14, 2007, Proceedings, pages 30–39, 2007. doi: 10.1109/QUATIC.2007.8. URL

http://dx.doi.org/10.1109/QUATIC.2007.8.

Pedro Rangel Henriques. Brincando às Linguagens com Rigor: Engenharia Gramatical. (habilitation

in cs) technical report, CCTC/DI, Univeristy of Minho, November 2013.

C. A. R. Hoare. Hints on programming language design. Technical Report CS-TR-73-403, Stanford

University, Stanford, CA, USA, 1973.

James W. Howatt. A project-based approach to programming language evaluation. SIGPLAN Notices,

30(7):37–40, 1995. doi: 10.1145/208639.208642. URL http://doi.acm.org/10.1145/

208639.208642.

M Jørgensen. Software quality measurement. Advances in Engineering Software, 30(12):907 – 912,

1999. ISSN 0965-9978. doi: http://dx.doi.org/10.1016/S0965-9978(99)00015-0. URL http:

//www.sciencedirect.com/science/article/pii/S0965997899000150.

Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002. ISBN 0201729156.

Chris F Kemerer. An empirical validation of software cost estimation models. Commun. ACM, 30

(5):416–429, May 1987. ISSN 0001-0782. doi: 10.1145/22899.22906. URL http://doi.acm.

org/10.1145/22899.22906.

Barbara A. Kitchenham. Software Metrics: Measurement for Software Process Improvement. Black-

well Publishers, Inc., Cambridge, MA, USA, 1996. ISBN 1855548208.

Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for grammarware.

ACM Trans. Softw. Eng. Methodol., 14(3):331–380, July 2005. ISSN 1049-331X. doi: 10.1145/

1072997.1073000. URL http://doi.acm.org/10.1145/1072997.1073000.

79

http://dx.doi.org/10.3115/974499.974548
http://dx.doi.org/10.3115/974499.974548
http://dx.doi.org/10.1109/QUATIC.2007.8
http://doi.acm.org/10.1145/208639.208642
http://doi.acm.org/10.1145/208639.208642
http://www.sciencedirect.com/science/article/pii/S0965997899000150
http://www.sciencedirect.com/science/article/pii/S0965997899000150
http://doi.acm.org/10.1145/22899.22906
http://doi.acm.org/10.1145/22899.22906
http://doi.acm.org/10.1145/1072997.1073000

Bibliography

Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145,

1968. doi: 10.1007/BF01692511. URL http://dx.doi.org/10.1007/BF01692511.

Ralf Lämmel. Grammar testing. In Fundamental Approaches to Software Engineering, 4th In-

ternational Conference, FASE 2001 Held as Part of the Joint European Conferences on The-

ory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, pages

201–216, 2001. doi: 10.1007/3-540-45314-8 15. URL http://dx.doi.org/10.1007/

3-540-45314-8_15.

Robert E Park, Wolfhart B Goethert, and William A Florac. Goal-driven software measurement. a

guidebook. Technical report, DTIC Document, 1996.

Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013. ISBN

1934356999, 9781934356999.

James F. Power and Brian A. Malloy. Metric-based analysis of context-free grammars. In 8th In-

ternational Workshop on Program Comprehension (IWPC 2000), 10-11 June 2000, Limerick, Ire-

land, pages 171–178, 2000. doi: 10.1109/WPC.2000.852491. URL http://dx.doi.org/10.

1109/WPC.2000.852491.

James F. Power and Brian A. Malloy. A metrics suite for grammar-based software. Journal of Software

Maintenance, 16(6):405–426, 2004. doi: 10.1002/smr.293. URL http://dx.doi.org/10.

1002/smr.293.

Robert W. Sebesta. Concepts of programming languages (9. ed.). Addison-Wesley-Longman, 2009.

ISBN 978-0-201-38596-0.

Dan Shoemaker and Nancy R Mead. Software assurance measurement–state of the practice. Technical

report, Software Engineering Institute, Nov 2013.

David A. Watt and William Findlay. Programming language design concepts. Wiley, 2004. ISBN

978-0-470-85320-7.

80

http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1007/3-540-45314-8_15
http://dx.doi.org/10.1007/3-540-45314-8_15
http://dx.doi.org/10.1109/WPC.2000.852491
http://dx.doi.org/10.1109/WPC.2000.852491
http://dx.doi.org/10.1002/smr.293
http://dx.doi.org/10.1002/smr.293

A
G R A M M A R O F A N T L R M E TA - L A N G UAG E

To give the reader a little notion of what is behind the development of GQE, this appendix shows the

complete Context-Free Grammar to validate ANTLR meta-language.

The initial grammar was developed by Sam Harwell and Terrence Parr, but was extended to this

grammar by the author with the intention of including the Java language specification, valid in some

parts of the ANTLR meta-language such as actions, attributes declarations and others. It is important

to point out that only the parser grammar is shown because it is enough to understand how the language

is recognized.

parser grammar ANTLRv4Parser ;
2

o p t i o n s {
4 tokenVocab=ANTLRv4Lexer ;
}

6

/ / The main entry p o i n t f o r pars ing a v4 ANTLR Grammar .
8 grammarSpec

: (DOC COMMENT) ?
10 grammarType id SEMI

preque lCons truc t ∗
12 r u l e s

modeSpec∗
14 EOF

;
16

grammarType
18 : (LEXER GRAMMAR

| PARSER GRAMMAR
20 | GRAMMAR

)
22 ;

24 / / This i s the l i s t o f a l l c o n s t r u c t s t h a t can be d e c l a r e d b e f o re
/ / the s e t o f r u l e s t h a t compose the grammar , and i s invoked 0 . . n

26 / / t imes by the grammarPrequel r u l e .
preque lCons truc t

81

28 : opt ionsSpec
| delegateGrammars

30 | tokensSpec
| a c t i o n

32 ;

34 / / A l i s t o f o p t i o n s t h a t a f f e c t a n a l y s i s and / or code g e n e r a t i o n
opt ionsSpec

36 : OPTIONS (op t ion SEMI) ∗ RBRACE
;

38

op t ion
40 : id ASSIGN opt ionValue

;
42

opt ionValue
44 : id (DOT id) ∗

| STRING LITERAL
46 | ACTION

| INT
48 ;

50 delegateGrammars
: IMPORT delegateGrammar (COMMA delegateGrammar) ∗ SEMI

52 ;

54 delegateGrammar
: id ASSIGN id

56 | id
;

58

tokensSpec
60 : TOKENS id (COMMA id) ∗ COMMA? RBRACE

;
62

/∗ ∗ Match s t u f f l i k e @parser : : members { i n t i ;} ∗ /
64 a c t i o n

: AT (actionScopeName COLONCOLON) ? id LBRACE c o m p i l a t i o n U n i t RBRACE
66 ;

68 /∗ ∗ Sometimes the scope names w i l l c o l l i d e with keywords ; a l low them as
∗ i d s f o r a c t i o n s co pes .

70 ∗ /
actionScopeName

72 : id
| LEXER

74 | PARSER

82

;
76

modeSpec
78 : MODE id SEMI l e x e r R u l e ∗

;
80

r u l e s
82 : ru leSpec ∗

;
84

ru leSpec
86 : parserRuleSpec

| l e x e r R u l e
88 ;

90 parserRuleSpec
: DOC COMMENT?

92 r u l e M o d i f i e r s ?
at t rParameters [0] ?

94 ru leReturns ? throwsSpec ? l o c a l s S p e c ?
r u l e P r e q u e l ∗

96 COLON r = ru leB lock SEMI
exceptionGroup

98 ;

100 / / Rules f o r pars ing JAVA code i n s i d e a t t r i b u t e s , a c t i o n s , members , e t c . .
c o m p i l a t i o n U n i t

102 : packageDec lara t ion ? im po r tD ec lar a t ion ∗ t y p e D e c l a r a t i o n ∗
;

104

packageDec lara t ion
106 : a n n o t a t i o n ∗ PACKAGE qual i f iedName SEMI

;
108

im po r tD ec lar a t ion
110 : IMPORT STATIC? qual i f iedName (DOT STAR) ? SEMI

;
112

t y p e D e c l a r a t i o n
114 : c l a s s O r I n t e r f a c e M o d i f i e r ∗ c l a s s D e c l a r a t i o n

| c l a s s O r I n t e r f a c e M o d i f i e r ∗ enumDeclaration
116 | c l a s s O r I n t e r f a c e M o d i f i e r ∗ i n t e r f a c e D e c l a r a t i o n

| c l a s s O r I n t e r f a c e M o d i f i e r ∗ annota t ionTypeDec lara t ion
118 | SEMI

;
120

m o d i f i e r

83

122 : c l a s s O r I n t e r f a c e M o d i f i e r
| (NATIVE

124 | SYNC
| TRANSIENT

126 | VOLATILE
)

128 ;

130 c l a s s O r I n t e r f a c e M o d i f i e r
: a n n o t a t i o n / / c l a s s or i n t e r f a c e

132 | (PUBLIC / / c l a s s or i n t e r f a c e
| PROTECTED / / c l a s s or i n t e r f a c e

134 | PRIVATE / / c l a s s or i n t e r f a c e
| STATIC / / c l a s s or i n t e r f a c e

136 | ABSTRACT / / c l a s s or i n t e r f a c e
| FINAL / / c l a s s only −− does not apply to i n t e r f a c e s

138 | STRICTFP / / c l a s s or i n t e r f a c e
)

140 ;

142 v a r i a b l e M o d i f i e r
: FINAL

144 | a n n o t a t i o n
;

146

c l a s s D e c l a r a t i o n
148 : CLASS id typeParameters ?

(EXTENDS type) ?
150 (IMPLEMENTS t y p e L i s t) ?

c lassBody
152 ;

154 typeParameters
: LT typeParameter (COMMA typeParameter) ∗ GT

156 ;

158 typeParameter
: id (EXTENDS typeBound) ?

160 ;

162 typeBound
: type (AND type) ∗

164 ;

166 enumDeclaration
: ENUM id (IMPLEMENTS t y p e L i s t) ?

168 LBRACE enumConstants ? COMMA? enumBodyDeclarations ? RBRACE

84

;
170

enumConstants
172 : enumConstant (COMMA enumConstant) ∗

;
174

enumConstant
176 : a n n o t a t i o n ∗ id arguments ? c lassBody ?

;
178

enumBodyDeclarations
180 : SEMI c l a s s B o d y D e c l a r a t i o n ∗

;
182

i n t e r f a c e D e c l a r a t i o n
184 : INTERFACE id typeParameters ? (EXTENDS t y p e L i s t) ? i n t e r f a c e B o d y

;
186

c lassBody
188 : LBRACE c l a s s B o d y D e c l a r a t i o n ∗ RBRACE

;
190

i n t e r f a c e B o d y
192 : LBRACE i n t e r f a c e B o d y D e c l a r a t i o n ∗ RBRACE

;
194

c l a s s B o d y D e c l a r a t i o n
196 : SEMI

| STATIC? blockS
198 | m o d i f i e r ∗ memberDeclaration

;
200

memberDeclaration
202 : methodDeclarat ion

| gener icMethodDec larat ion
204 | f i e l d D e c l a r a t i o n

| c o n s t r u c t o r D e c l a r a t i o n
206 | g e n e r i c C o n s t r u c t o r D e c l a r a t i o n

| i n t e r f a c e D e c l a r a t i o n
208 | annota t ionTypeDec lara t ion

| c l a s s D e c l a r a t i o n
210 | enumDeclaration

;
212

/∗ We use r u l e t h i s even f o r void methods which cannot have [] a f t e r parameters .
214 This s i m p l i f i e s grammar and we can c o n s i d e r void to be a type , which

renders the [] matching as a contex t−s e n s i t i v e i s s u e or a semant ic check

85

216 f o r i n v a l i d re turn type a f t e r pars ing .
∗ /

218 methodDeclarat ion
: (type |VOID) id formalParameters (LBRAC RBRAC) ∗

220 (THROWS qu a l i f i ed Name Lis t) ?
(methodBody

222 | SEMI
)

224 ;

226 gener icMethodDec larat ion
: typeParameters methodDeclarat ion

228 ;

230 c o n s t r u c t o r D e c l a r a t i o n
: id formalParameters (THROWS qu a l i f i ed Name Lis t) ?

232 constructorBody
;

234

g e n e r i c C o n s t r u c t o r D e c l a r a t i o n
236 : typeParameters c o n s t r u c t o r D e c l a r a t i o n

;
238

f i e l d D e c l a r a t i o n
240 : type v a r i a b l e D e c l a r a t o r s SEMI

;
242

i n t e r f a c e B o d y D e c l a r a t i o n
244 : m o d i f i e r ∗ in ter faceMemberDec larat ion

| SEMI
246 ;

248 in ter faceMemberDec larat ion
: c o n s t D e c l a r a t i o n

250 | i n t e r f a c e M e t h o d D e c l a r a t i o n
| g e n e r i c I n t e r f a c e M e t h o d D e c l a r a t i o n

252 | i n t e r f a c e D e c l a r a t i o n
| annota t ionTypeDec lara t ion

254 | c l a s s D e c l a r a t i o n
| enumDeclaration

256 ;

258 c o n s t D e c l a r a t i o n
: type c o n s t a n t D e c l a r a t o r (COMMA c o n s t a n t D e c l a r a t o r) ∗ SEMI

260 ;

262 c o n s t a n t D e c l a r a t o r

86

: id (LBRAC RBRAC) ∗ ASSIGN v a r i a b l e I n i t i a l i z e r
264 ;

266 / / s e e matching of [] comment in methodDeclaratorRest
i n t e r f a c e M e t h o d D e c l a r a t i o n

268 : (type |VOID) id formalParameters (LBRAC RBRAC) ∗
(THROWS qu a l i f i ed Name Lis t) ?

270 SEMI
;

272

g e n e r i c I n t e r f a c e M e t h o d D e c l a r a t i o n
274 : typeParameters i n t e r f a c e M e t h o d D e c l a r a t i o n

;
276

v a r i a b l e D e c l a r a t o r s
278 : v a r i a b l e D e c l a r a t o r (COMMA v a r i a b l e D e c l a r a t o r) ∗

;
280

v a r i a b l e D e c l a r a t o r
282 : v a r i a b l e D e c l a r a t o r I d (ASSIGN v a r i a b l e I n i t i a l i z e r) ?

;
284

qu a l i f i ed Name Lis t
286 : qual i f iedName (COMMA qual i f iedName) ∗

;
288

formalParameters
290 : LPAREN formalParameterLis t ? RPAREN

;
292

formalParameterLis t
294 : formalParameter (COMMA formalParameter) ∗ (COMMA las tFormalParameter) ?

| las tFormalParameter
296 ;

298 formalParameter
: v a r i a b l e M o d i f i e r ∗ type v a r i a b l e D e c l a r a t o r I d

300 ;

302 las tFormalParameter
: v a r i a b l e M o d i f i e r ∗ type SUSP POINTS v a r i a b l e D e c l a r a t o r I d

304 ;

306 methodBody
: blockS

308 ;

87

310 constructorBody
: blockS

312 ;

314 qual i f iedName
: id (DOT id) ∗

316 ;

318 / / Match a n n o t a t i o n s
a n n o t a t i o n

320 : AT annotationName (LPAREN (e lementValuePairs | elementValue) ? RPAREN)
?

;
322

annotationName : qual i f iedName ;
324

e lementValuePairs
326 : e lementValuePair (COMMA e lementValuePair) ∗

;
328

e lementValuePair
330 : id ASSIGN elementValue

;
332

elementValue
334 : e x p r e s s i o n

| a n n o t a t i o n
336 | e l e m e n t V a l u e A r r a y I n i t i a l i z e r

;
338

e l e m e n t V a l u e A r r a y I n i t i a l i z e r
340 : RBRACE (elementValue (COMMA elementValue) ∗) ? (COMMA) ? RBRACE

;
342

annota t ionTypeDec lara t ion
344 : AT INTERFACE id annotationTypeBody

;
346

annotationTypeBody
348 : LBRACE (annotat ionTypeElementDec larat ion) ∗ RBRACE

;
350

annotat ionTypeElementDec larat ion
352 : m o d i f i e r ∗ annotat ionTypeElementRest

| SEMI / / t h i s i s not a l lowed by the grammar , but apparent ly a l lowed by the
a c t u a l compi ler

354 ;

88

356 annotat ionTypeElementRest
: type annotationMethodOrConstantRest SEMI

358 | c l a s s D e c l a r a t i o n SEMI?
| i n t e r f a c e D e c l a r a t i o n SEMI?

360 | enumDeclaration SEMI?
| annota t ionTypeDec lara t ion SEMI?

362 ;

364 annotationMethodOrConstantRest
: annotat ionMethodRest

366 | annota t ionCons tantRes t
;

368

annotat ionMethodRest
370 : id LPAREN RPAREN d e f a u l t V a l u e ?

;
372

annota t ionCons tantRes t
374 : v a r i a b l e D e c l a r a t o r s

;
376

d e f a u l t V a l u e
378 : DEFAULT elementValue

;
380

/ / Match Java s t a t e m e n t s and b lo cks
382

blockS
384 : LBRACE blockStatement ∗ RBRACE

;
386

blockStatement
388 : l o c a l V a r i a b l e D e c l a r a t i o n S t a t e m e n t

| s ta tement
390 | t y p e D e c l a r a t i o n

;
392

l o c a l V a r i a b l e D e c l a r a t i o n S t a t e m e n t
394 : l o c a l V a r i a b l e D e c l a r a t i o n SEMI

;
396

l o c a l V a r i a b l e D e c l a r a t i o n
398 : v a r i a b l e M o d i f i e r ∗ type v a r i a b l e D e c l a r a t o r s

;
400

s ta tement

89

402 : blockS
| ASSERT e x p r e s s i o n (COLON e x p r e s s i o n) ? SEMI

404 | IF parExpress ion s ta tement (ELSE s ta tement) ?
| FOR LPAREN f o r C o n t r o l RPAREN s ta t ement

406 | WHILE parExpress ion s ta tement
| DO s ta tement WHILE parExpress ion SEMI

408 | TRY blockS (catchClause + f i n a l l y B l o c k ? | f i n a l l y B l o c k)
| TRY r e s o u r c e S p e c i f i c a t i o n blockS catchClause ∗ f i n a l l y B l o c k ?

410 | SWITCH parExpress ion LBRACE switchBlockStatementGroup∗ swi tchLabe l ∗
RBRACE

| SYNC parExpress ion blockS
412 | RETURN e x p r e s s i o n ? SEMI

| THROW e x p r e s s i o n SEMI
414 | BREAK id ? SEMI

| CONTINUE id ? SEMI
416 | SEMI

| s ta t e m en tE x pr es s io n SEMI
418 | id COLON s ta tement

;
420

catchClause
422 : CATCH LPAREN v a r i a b l e M o d i f i e r ∗ catchType id RPAREN blockS

;
424

catchType
426 : qual i f iedName (OR qual i f iedName) ∗

;
428

f i n a l l y B l o c k
430 : FINALLY blockS

;
432

r e s o u r c e S p e c i f i c a t i o n
434 : LPAREN r e s o u r c e s SEMI? RPAREN

;
436

r e s o u r c e s
438 : r e s o u r c e (SEMI r e s o u r c e) ∗

;
440

r e s o u r c e
442 : v a r i a b l e M o d i f i e r ∗ c l a s s O r I n t e r f a c e T y p e v a r i a b l e D e c l a r a t o r I d ASSIGN

e x p r e s s i o n
;

444

/ / Match the ANTLR a t t r i b u t e s
446 at t rParameters

90

: LBRAC a t t r L i s t RBRAC
448 ;

450 a t t r L i s t
: at trParameter (COMMA at trParameter) ∗

452 ;

454 at trParameter
: type v a r i a b l e D e c l a r a t o r I d (ASSIGN v a r i a b l e I n i t i a l i z e r) ?

456 ;

458 v a r i a b l e I n i t i a l i z e r
: a r r a y I n i t i a l i z e r

460 | e x p r e s s i o n
;

462

a r r a y I n i t i a l i z e r
464 : LBRACE (v a r i a b l e I n i t i a l i z e r (COMMA v a r i a b l e I n i t i a l i z e r) ∗ (COMMA) ?) ?

RBRACE
;

466 /∗ ∗ Matches c a s e s then s ta tements , both of which are mandatory .
∗ To handle empty c a s e s a t the end , we add swi tchLabe l ∗ to s ta tement .

468 ∗ /
switchBlockStatementGroup

470 : swi tchLabe l + blockStatement +
;

472

swi tchLabe l
474 : CASE c o n s t a n t E x p r e s s i o n COLON

| CASE enumConstantName COLON
476 | DEFAULT COLON

;
478

enumConstantName
480 : id

;
482

f o r C o n t r o l
484 : enhancedForControl

| f o r I n i t ? SEMI e x p r e s s i o n ? SEMI forUpdate ?
486 ;

488 f o r I n i t
: l o c a l V a r i a b l e D e c l a r a t i o n

490 | e x p r e s s i o n L i s t
;

492

91

enhancedForControl
494 : v a r i a b l e M o d i f i e r ∗ type v a r i a b l e D e c l a r a t o r I d COLON e x p r e s s i o n

;
496

forUpdate
498 : e x p r e s s i o n L i s t

;
500

/ / Match a l l kind of Java e x p r e s s i o n s
502 parExpress ion

: LPAREN e x p r e s s i o n RPAREN
504 ;

506 s ta t e m en tE x pr es s io n
: e x p r e s s i o n

508 ;

510 c o n s t a n t E x p r e s s i o n
: e x p r e s s i o n

512 ;

514 e x p r e s s i o n L i s t
: e x p r e s s i o n (COMMA e x p r e s s i o n) ∗

516 ;

518 e x p r e s s i o n
: primary

520 | e x p r e s s i o n DOT id
| e x p r e s s i o n DOT THIS

522 | e x p r e s s i o n DOT NEW nonWildcardTypeArguments ? innerCreator
| e x p r e s s i o n DOT SUPER s u p e r S u f f i x

524 | e x p r e s s i o n DOT e x p l i c i t G e n e r i c I n v o c a t i o n
| e x p r e s s i o n LBRAC e x p r e s s i o n RBRAC

526 | e x p r e s s i o n LPAREN (e x p r e s s i o n L i s t) ? RPAREN
| NEW c r e a t o r

528 | LPAREN type RPAREN e x p r e s s i o n
| e x p r e s s i o n (DOUBLE PLUS | DOUBLE MINUS)

530 | (PLUS |MINUS |DOUBLE PLUS |DOUBLE MINUS) e x p r e s s i o n
| (NOT |EXCL) e x p r e s s i o n

532 | e x p r e s s i o n (STAR |DIV |PERCENT) e x p r e s s i o n
| e x p r e s s i o n (PLUS |MINUS) e2= e x p r e s s i o n

534 | e x p r e s s i o n (LT LT | GT GT GT | GT GT) e x p r e s s i o n
| e x p r e s s i o n (LTE | GTE | GT | LT) e x p r e s s i o n

536 | e x p r e s s i o n INSTANCEOF type
| e x p r e s s i o n (EQUAL | NOT EQUAL) e x p r e s s i o n

538 | e x p r e s s i o n AND e x p r e s s i o n
| e x p r e s s i o n EXP e x p r e s s i o n

92

540 | e x p r e s s i o n OR e x p r e s s i o n
| e x p r e s s i o n DOUBLE AND e x p r e s s i o n

542 | e x p r e s s i o n DOUBLE OR e x p r e s s i o n
| e x p r e s s i o n QUESTION e x p r e s s i o n COLON e x p r e s s i o n

544 | e x p r e s s i o n
(ASSIGN

546 | PLUS ASSIGN
| MINUS ASSIGN

548 | STAR ASSIGN
| DIV ASSIGN

550 | AND ASSIGN
| OR ASSIGN

552 | EXP ASSIGN
| GG ASSIGN

554 | GGG ASSIGN
| LL ASSIGN

556 | PERCENT ASSIGN
)

558 e x p r e s s i o n
;

560

primary
562 : LPAREN e x p r e s s i o n RPAREN

| THIS
564 | SUPER

| l i t e r a l
566 | id

| DOLLAR id / / Acess ing r u l e a t t r i b u t e s
568 | type DOT CLASS

| VOID DOT CLASS
570 | nonWildcardTypeArguments (e x p l i c i t G e n e r i c I n v o c a t i o n S u f f i x | THIS

arguments)
;

572

e x p l i c i t G e n e r i c I n v o c a t i o n S u f f i x
574 : SUPER s u p e r S u f f i x

| id arguments
576 ;

578 l i t e r a l
: I n t e g e r L i t e r a l

580 | F l o a t i n g P o i n t L i t e r a l
| B o o l e a n L i t e r a l

582 | NULL
| STRING LITERAL

584 ;

93

586

nonWildcardTypeArguments
588 : LT t y p e L i s t GT

;
590

t y p e L i s t
592 : type (COMMA type) ∗

;
594

c r e a t o r
596 : nonWildcardTypeArguments createdName c l a s s C r e a t o r R e s t

| createdName (arrayCreatorRest | c l a s s C r e a t o r R e s t)
598 ;

600 createdName
: id typeArgumentsOrDiamond ? (DOT id typeArgumentsOrDiamond ?) ∗

602 | pr imi t iveType
;

604

typeArgumentsOrDiamond
606 : LT GT

| typeArguments
608 ;

610 c l a s s C r e a t o r R e s t
: arguments

612 ;

614 innerCreator
: id nonWildcardTypeArgumentsOrDiamond ? c l a s s C r e a t o r R e s t

616 ;

618 nonWildcardTypeArgumentsOrDiamond
: LT GT

620 | nonWildcardTypeArguments
;

622

s u p e r S u f f i x
624 : arguments

| DOT id arguments ?
626 ;

628 e x p l i c i t G e n e r i c I n v o c a t i o n
: nonWildcardTypeArguments e x p l i c i t G e n e r i c I n v o c a t i o n S u f f i x

630 ;

632 arrayCreatorRest

94

: LBRAC
634 (RBRAC (LBRAC RBRAC) ∗ a r r a y I n i t i a l i z e r

| e x p r e s s i o n RBRAC (LBRAC e x p r e s s i o n RBRAC) ∗ (LBRAC RBRAC) ∗
636)

;
638

arguments
640 : LPAREN e x p r e s s i o n L i s t ? RPAREN

;
642

type
644 : c l a s s O r I n t e r f a c e T y p e (LBRAC RBRAC) ∗

| pr imi t iveType (LBRAC RBRAC) ∗
646 ;

648 c l a s s O r I n t e r f a c e T y p e
: id typeArguments ? (DOT id typeArguments ?) ∗

650 ;

652 typeArguments
: LT typeArgument (COMMA typeArgument) ∗ GT

654 ;

656 typeArgument
: type

658 | QUESTION ((EXTENDS | SUPER) type) ?
;

660

pr imi t iveType
662 : BOOLEAN

| CHAR
664 | BYTE

| SHORT
666 | TINT

| LONG
668 | FLOAT

| DOUBLE
670 ;

672 v a r i a b l e D e c l a r a t o r I d
: id (LBRAC RBRAC) ∗

674 ;

676 / / End pars ing Java code a t t r i b u t e s

678 exceptionGroup
: except ionHandler ∗ f i n a l l y C l a u s e ?

95

680 ;

682 except ionHandler
: CATCH at t rParameters [2] LBRACE blockStatement ∗ RBRACE

684 ;

686 f i n a l l y C l a u s e
: FINALLY LBRACE blockStatement ∗ RBRACE

688 ;

690 r u l e P r e q u e l
: opt ionsSpec

692 | r u l e A c t i o n
;

694

ru leReturns
696 : RETURNS at t rParameters [1]

;
698

throwsSpec
700 : THROWS id (COMMA id) ∗

;
702

l o c a l s S p e c
704 : LOCALS at t rParameters [3]

;
706

/∗ ∗ Match s t u f f l i k e @init { i n t i ;} ∗ /
708 r u l e A c t i o n

: AT id LBRACE blockStatement ∗ RBRACE
710 ;

712 r u l e M o d i f i e r s
: r u l e M o d i f i e r +

714 ;

716 r u l e M o d i f i e r
: PUBLIC

718 | PRIVATE
| PROTECTED

720 | FRAGMENT
;

722

ru leB lock
724 : r u l e A l t L i s t

;
726

96

r u l e A l t L i s t
728 : l a b e l e d A l t (OR l a b e l e d A l t) ∗

;
730

l a b e l e d A l t
732 : a l t e r n a t i v e (POUND id) ?

;
734

l e x e r R u l e
736 : DOC COMMENT? FRAGMENT?

TOKEN REF COLON l exerRuleBlock SEMI
738 ;

740 l exerRuleBlock
: l e x e r A l t L i s t

742 ;

744 l e x e r A l t L i s t
: l e x e r A l t (OR l e x e r A l t) ∗

746 ;

748 l e x e r A l t
: l exerElement s lexerCommands ?

750 |
;

752

l exerElement s
754 : l exerElement +

;
756

l exerElement
758 : labe ledLexerElement e b n f S u f f i x ?

| lexerAtom e b n f S u f f i x ?
760 | l e x e r B l o c k e b n f S u f f i x ?

| LBRACE blockStatement ∗ RBRACE QUESTION?
762 ;

764 labe ledLexerElement
: id (ASSIGN | PLUS ASSIGN)

766 (lexerAtom
| block

768)
;

770

l e x e r B l o c k
772 : LPAREN l e x e r A l t L i s t RPAREN

;

97

774

/ / E . g . , channel (HIDDEN) , skip , more , mode (INSIDE) , push (INSIDE) , pop
776 lexerCommands

: RARROW lexerCommand (COMMA lexerCommand) ∗
778 ;

780 lexerCommand
: lexerCommandName LPAREN lexerCommandExpr RPAREN

782 | lexerCommandName
;

784

lexerCommandName
786 : id

| MODE
788 ;

790 lexerCommandExpr
: id

792 | INT
;

794

a l t L i s t
796 : a l t e r n a t i v e (OR a l t e r n a t i v e) ∗

;
798

a l t e r n a t i v e
800 : e lementOpt ions ? (element) ∗

;
802

element
804 : l abe ledElement

(e b n f S u f f i x
806 |

)
808 | atom{

(e b n f S u f f i x
810 |

)
812 | ebnf

| LBRACE (blockStatement) ∗ RBRACE (QUESTION) ?
814 ;

816 l abe ledElement
: id (ASSIGN | PLUS ASSIGN)

818 (atom
| block

820)

98

;
822

ebnf
824 : block b l o c k S u f f i x ?

;
826

828 b l o c k S u f f i x
: e b n f S u f f i x

830 ;

832 e b n f S u f f i x
: QUESTION QUESTION?

834 | STAR QUESTION?
| PLUS QUESTION?

836 ;

838 lexerAtom
: range

840 | t e r m i n a l
| RULE REF

842 | no tS e t
| LEXER CHAR SET

844 | DOT e lementOpt ions ?
;

846

atom
848 : range / / Range x . . y − only v a l i d in l e x e r s

| t e r m i n a l
850 | r u l e r e f

| no tS e t
852 | DOT e lementOpt ions ?

;
854

no tS e t
856 : NOT se tElement

| NOT b l o c kS e t
858 ;

860 b l o c kS e t
: LPAREN se tElement (OR se tElement) ∗ RPAREN

862 ;

864 se tElement
: TOKEN REF e lementOpt ions ?

866 | STRING LITERAL e lementOpt ions ?
| range

99

868 | LEXER CHAR SET
;

870

block
872 : LPAREN (opt ionsSpec ? r u l e A c t i o n ∗ COLON) ? a l t L i s t RPAREN

;
874

r u l e r e f
876 : RULE REF (LBRAC v a r i a b l e I n i t i a l i z e r (COMMA v a r i a b l e I n i t i a l i z e r) ∗ RBRAC) ?

e lementOpt ions ?
;

878 range
: STRING LITERAL RANGE STRING LITERAL

880 ;

882 t e r m i n a l
: TOKEN REF e lementOpt ions ?

884 | STRING LITERAL e lementOpt ions ?
;

886

/ / Terminals may be adorned with c e r t a i n o p t i o n s when
888 / / r e f e r e n c e in the grammar : TOK< , , ,>

e lementOpt ions : LT elementOption (COMMA elementOption) ∗ GT
890 ;

892 elementOption
: / / This format i n d i c a t e s the d e f a u l t node opt ion

894 id
| / / This format i n d i c a t e s opt ion ass ignment

896 id ASSIGN (id | STRING LITERAL)
;

898

id : RULE REF
900 | TOKEN REF

;

Listing A.1: Context-Free Grammar of ANTLR’s meta-language.

100

B
T H E A N T L R T O O L

The purpose of this appendix is to give a short summary about the ANTLR v4 Tool1, to allow the

reader to quickly get to know the ANTLR tool, what it does and how it does it, and by this way to

answer some questions that probably pop up in the reader mind while reading this document.

Quoting the authors, ANTLR is ” a powerful parser2 generator that you can use to read, process,

execute and translate a structured text or binary files”Parr (2013). A parser is generated for the

language specified by the input grammar, in other words, from the grammar a new program is created

which is able to recognize valid sentences in the language described by the grammar. This input

grammar must be written according with the syntax of ANTLR’s meta-language.

With the generated parser, or syntax analyzer, an application can be built, responding with the desire

behavior for each symbol that consumes or recognize. This application can be called interpreter if

computes or translator if converts sentences from one language to another. This kind of programs

have to recognize the symbols of the language and the order in which they appear. ANTLR splits the

task in two different stages: the Lexer3 an the Parser.

Figure 28.: Language Recognizer

The lexer, or lexical analyzer, tokenizes the input to feed the parser, that need the tokens to recognize

the structure of the sentence. The way that the parser recognizes the structure of the input sentence and

its component phrases are stored in a data structure built by the parser called Parse Tree or Syntax Tree.

1 Developed by Terrence Parr and Sam Harwell.
2 Program that breaks a sequence of terminal symbols of a given grammar into different parts (structure) according with the

rules of the grammar that defines this language. Parsing means that the initial string is divided into smaller and specific
components according to the structure of the language.

3 Separates the input character stream into vocabulary symbols of the language called tokens.

101

As shown in Figure 28, the input sp = 100; is recognized and the program knows that the input is

an assignment statement, sp is the target and the value to store is 100. The data structure stores in the

internal nodes the rules of the grammar that were identified and store the tokens in the leaves of the

parse tree are the terminals. Inspecting the parse tree in the illustrative figure, and without knowing

the grammar, it can be said for sure that there is one rule in the grammar in which the non-terminal

symbol stat derives in assign4.

What really happens in the background of ANTLR, speaking in language processing terms, is that

this tool generates recursive-descent parsers 5 from the grammar rules. Creating one method for

each grammar rule, the parser enters in the first method (exactly the one that corresponds to the start

symbol) and then it will make sure that all required tokens are present and in the order specified in the

rule. If it gets a terminal simply has to match it with the token; if it gets a non-terminal the parser has

to call the method with the name of that symbol. Considering again the example given in Figure 28,

the corresponding assign rule is presented in Figure 29:

Figure 29.: Simple assign rule in ANTLR.

For rule assign, ANTLR generate a method like the one listed in Figure 30:

Figure 30.: Method generated from the assign rule, to create the desired parser.

The idea is that when enters method assign(), the parser does not have to choose between more

than one alternative. When that happens the parser have to predict which alternative will succeed to

make a decision. This is possible by examining the next input token or lookahead. In some cases all

the lookahead tokens have to be considered from the current position until the end of the file.

4 ANTLR provides some useful tools to traverse along the parse tree, such as walkers like listeners and visitor, enabling a
more efficient application. This auxiliary tools are automatically generated by ANTLR and the same grammar can be reused
in different application without another compilation. To find out more useful tools and tricks from ANTLR please consult
Parr (2013).

5 Recursive-Descent Parser is a kind of Top-Down parser, which means that the derivation tree is filled from the root (start
symbol of the grammar) to the leaves, in other words, from top to bottom. The recursive term refers to the set of recursive
methods generated, one per rule.

102

B.1. Generated Code

B.1 G E N E R AT E D C O D E

As mentioned before, ANTLR tool automatically generate code for the user. This process is divided

in two stages, working with different components of ANTLR in each one.

In the first stage, when it is said ”run ANTLR on a grammar”, ANTLR tool itself is called to gen-

erate a parser and a lexer for the input grammar (.g4 extension file), capable of recognizing sentences

in the language described by the grammar. In the second stage, the generated files are compiled and

executed with the ANTLR runtime API, which is a library of classes and methods required.

To see what really happens in the file system let´s explore the following example from Parr (2013).

First a simple grammar is presented describing a simple array language, where the element are comma-

separated values between {...}, as shown in Figure 31.

Figure 31.: Example of a simple Array language described in ANTLR format.

From the directory of this input grammar, the ANTLR tool (first stage) can be executed, by typing

the following command6:

$ antlr4 ArrayInit.g4
Then some files are automatically generated, without any type of hand code, such as the ones

displayed in Figure 32. Very briefly the generated files are: ArrayInitParser.java which

contains the parser class definition, with one method for each rule, ArrayInitLexer.javawhich

obviously contains the lexer class definition, ArrayInit.tokens that assigns a token type number

for each token and store the values, ArrayInitListener.java is the interface that describes the

callbacks for implementation, used by tree walkers and ArrayInitBaseListener.java is a set

of empty methods that the user shall complete to create the implementations.

6 For more detailed information about the installation of the tool and how to make all the alias for the commands, please
check the first chapter of Parr (2013).

103

B.1. Generated Code

Figure 32.: Generated files from running ANTLR on a .g4 grammar.

Now to see the actual result of our generated parser, first the Java produced files have to be compiled,

all of them, then the runtime library offers a useful test tool called TestRig, that can be invoked with a

series of options like -tokens to print out the tokens that the lexer has created, -tree to print out

the parse tree and the -gui option to visualize the tree in a dialog box. Following again the example

and calling the runtime library with the name of the grammar file, the start symbol and with the -gui

option, the result of the test is shown by Figure 33.

$ javac *.java
$ grun ArrayInit init -gui
{1,{2,3},4}
EOF7

Figure 33.: Dialog box exited by ANTLR with -gui option with the filled parse tree.

Of course this is a simple example of using ANTLR to generate the parser and test the grammar.

When using this kind of tool in a language application, like the one presented in this document, it is

useful to integrate this code in a main program, written in Java. This was the technique followed to

7 Ctrl+D on Unix and Ctrl+Z on Windows.

104

B.2. ANTLR Grammar Format

execute the parser generated by the grammar described in the previous chapters. Just to clarify, let’s

take a look at Figure 34, an example provided by Parr (2013), and followed in the development of

GQE. The only difference is that in this example after the parsing, the parse tree in printed out, such

as the -tree command line option.

Figure 34.: Integration of ANTLR tool in a Java main program.

B.2 A N T L R G R A M M A R F O R M AT

In this section will be provided a short description about ANTLR meta-language. Not all aspects of

the language will be covered, but the information given should be enough to understand the grammar

language and how to create one.8

First the lexicon of ANTLR meta-language will be presented, followed by the structure of an

ANTLR grammar. Then the syntax options of parser rules, lexer rules and finally actions and at-

tributes needed for Attribute Grammars.

B.2.1 Lexicon

The lexicon of ANTLR is very similar to most of programming languages, such as C, aside the neces-

sary grammatical extensions. In a very short explanation the lexicon of ANTLR allows:

• Comments - Single line (// . . .), multiline (/*. . . */) and Javadoc-style comments (/**. . . */);

8 Once more, for more detailed information about this subject please take a look at chapter 15 from Parr (2013).

105

B.2. ANTLR Grammar Format

• Identifiers - Token names and lexer rules start with a capital letter, on the other hand parser rules

must start with lowercase letters. The the following characters can be uppercase or lowercase

letters, digits and underscores;

• Literals - All literal strings that have one or more characters in length are enclosed in single

quotes. They can contain Unicode escaped sequences and also escape sequences like newline

(’\n’), carriage return (’\r’), tab (’\t’), backspace (’\b’) and form feed (’\f’);

• Actions - Code block written in the target language, specified in the language option. The

code must be surrounded by curly braces and can appears in a lot of places on the grammar;

• Keywords - The list of reserved keywords are: import, fragment, lexer, parser,

grammar, returns, catch, finally, mode, options and tokens.

B.2.2 Structure

The syntax of a grammar in ANTLR is very simple, first there is a list of declarations(all of them

are optional except for grammar name) and then a set of rules. To write a grammar there is only two

things that are required: the grammar name declaration (represented by the header 1 in Figure 35) and

a non-empty set of rules.

Figure 35.: General form of a grammar written in ANTLR.

The filename that describes grammar X must be called X.g4. The header declaration can be used

also to specify the use of separated grammars (parser and lexer), by simply affix the keyword (parser

or lexer) in the start of the declaration. Another useful feature is to import another grammars with

the import declaration9, lexer grammars can include lexer grammars, parser grammars can include

parser grammars and combined grammars can include lexer or parser grammars.

Tokens section is used to define some tokens not declared in the lexer to add to the overall set. As for

the actions section, they are used to execute actions at a grammar level, just for Java target language:

9 ANTLR leads with importing a grammar kinda like object-oriented languages leads with super classes. A grammar can
inherit all the rules, tokens specifications and named actions from another one. Rules on the main grammar override the
rules from imported grammars.

106

B.2. ANTLR Grammar Format

@header(for importing java packages or classes) and @members (to declare global variables or

objects that can be accessed from any part of the grammar).

B.2.3 Parser Rules

Parser rules are very easy to read, write and understand in ANTLR. Rules are written in the same

way that the production are read, just as stated in the section 2.3 of the chapter 2, with some simple

differences. When exists more than one production for the same non-terminal, this productions must

be all written in one parser rule where alternatives are used from the second until the last production

of that non-terminal.

Figure 36.: Parser rule example in ANTLR.

Examining the figure 36 example, there are two productions from the same non-terminal and the

rule must be read like ”The symbol superClass derives in (’:’) the reserved word ’extends’

(string literal) followed by the terminal ID, or (’|’) in an empty alternative”. This match the formal

declaration:

px : SuperClass→ ”extends” id

py : SuperClass→ &
All rules in ANTLR must end with ’;’ and it is possible to do a lot of tricks such as labeling

the alternatives, labeling the elements of a rule and inserting subrules.10 In the right hand side of a

rule is possible to appear tokens (starts with uppercase letter), string literals, non-terminals for other

rules(starts with lowercase letter) and actions11. When working with attribute grammars it is possible

to also appear something like r[�args�], which match a rule passing in a comma-separated list

of expressions representing the inherited attributes for rule r.

B.2.4 Actions and Attributes

Just like methods in programming languages, rule can have arguments, return values and local vari-

ables. The arguments, values and variables are usually called attributes and follow the general syntax:

rulename[�args�] returns [�retvals�] locals [�args�]: ...;

10 Alternative blocks on the right hand side of the rules, in which the alternatives are surrounded by parentheses and followed
or not by a Extended-BNF operator (?, * or +), for example (x|y|z)?, or (x|y|z)*.

11 Block of code written in the target language and surrounded by {...}. Instructions are executed exactly on that position
before the recognition of the following symbol.

107

B.2. ANTLR Grammar Format

Figure 37 demonstrates precisely that case in which the rule row receive one attribute, an array of

String named columns as argument and returns a Map collection named values, where the keys

are Strings as well as their respective values. Also, a local variable col is declarated and initialized.

In a rule-level is also possible to specify actions.

Figure 37.: Declaration of attributes and local variables in a rule.

As is easily noticed in the previous figure, another important aspect is the syntax $attribute to access

or modify the value of an attribute, that is declared inside the rule itself. To access an attribute that

is associated with another parser rule, there is only one way to do it: $r.attribute where r is the rule

name or a label assigned to a rule reference. All three possibilities are exposed in the following figure.

Figure 38.: Accessing attributes and local variables in a rule.

B.2.5 Lexer Rules

Lexer rules specify tokens definitions and have a similar syntax of parser rules, except for the no

existence of arguments, return values or local variables. ANTLR provide a lot of ”gadgets” for lexer

rules such as lexical modes, recursive rules, lexer rule actions and lexer commands.

On the right hand side of lexer rules can appear:

literal - Match that sequence of characters;

108

B.2. ANTLR Grammar Format

[char set] - Match one of the characters in the character set. Interpret x-y as a set of characters

between range x and y, inclusively;

’x’ . . . ’y’ - Match any character from character x to y;

T - Summon lexer rule T;

. - The dot match any single character (wildcard);

{�action�´} - Actions once again written in the syntax of the target language;

x - Match any single character not in the set described by x.

109

C
NAT U R A L L A N G UAG E S T O O L S

In this appendix are presented three auxiliary programs used on the development of GQE application.

All these programs are inserted in the Natural Language processing tools family and were used to

essentially help the assessment of Lexicographic metrics defined in the chapter 2 and implemented by

GQE.

Two of the program are perl modules, because the component in which they are integrated it is

written in the Perl language, and one is a stand alone tool.

C.1 P E R L M O D U L E L I N G UA : : I D S P L I T T E R

Lingua::IdSplitter[Carvalho et al. (2015)] is a perl module designed to split source code identifiers

into words. Was developed by Nuno Carvalho and implemented in the SplitterExpander component,

with some modifications made by the author. The purpose of this section is to introduce this module,

justifying why were he used, why he have to be modified and the benefits of those modifications.

In simple words and quoting, Lingua::IdSplitter is “a dictionary based algorithm for splitting and

expanding strings that compose multi-term identifiers”[Carvalho et al. (2015)]. This original expan-

sion is based on custom dictionaries for programming language terms, abbreviations, acronyms and

on a natural language dictionary1. The words splitting is made by searching for two patterns: ’ ’

separator and CamelCase separator. This techniques are used for programmers to describe muti-term

identifiers. If non of the two splitting techniques is found and the word as no immediate expansion,

then he tries to separate terms letter by grouping letters.

Clearly, and taking into account the definition of lexicographic metrics made in Section 2.3, this

module was a very useful choice for the metrics implementation in GQE. His main feature coincide

with the desire to verify, in the grammars, if all identifiers derives from a concept name or not.

However, some modifications were made to improve, the already satisfying, results of this module.

The intention was to make it more suitable with a grammar application and to increase, particularly,

the expansion succession rate feature.

The modifications are:

1 This dictionary is achieve by creating a Text::Aspell speller from one natural language, in this case, English. For more
details please consult http://search.cpan.org/ hank/Text-Aspell/Aspell.pm

110

http://search.cpan.org/~hank/Text-Aspell/Aspell.pm

C.2. WordNet

• two more custom dictionaries were added, one for easy expansions of terms related with gram-

mar domain concepts and other with easy expansions related with inline, block and meta-

information comments;

• only two multi-terms separation techniques are valid: the ’ ’ separator and CamelCase separator.

Because of the rules stated in Definition 12, the technique were Lingua::IdSplitter search for

multi-terms by grouping different sequences of letters with the help of a rating system, have

to be eliminated. If the identifier have multi-terms and not separate them with some technique,

clearly make it invalid to be understanded;

• some values for rating were changed too, because to assess correctly some metrics, some infor-

mation about how expansions were achieved must be presented. The idea was using the own

rating system to perform that information.

With this medications, most of the lexicographic metrics were evaluated successfully, bringing to

the application vital information about the syntax and the semantic of the identifiers presented in the

grammar. The only downside of this choice is the modifications of the original Lingua::IdSplitter

module.

C.2 W O R D N E T

Wordnet is a tool for computer linguistics and natural language processing supported by a large lexical

database of the English Language. Words are divided in lexical categories such as nouns, verbs,

adverbs and adjectives, and grouped together into sets of cognitive synonyms called synsets.

All synsets are connected with each others by a few conceptual relations. They provide a brief

definition (gloss) and, in most cases, one or more short sentences illustrating the use of the synset

members.

Sometimes, words can have different senses causing the assigning to different synsets. The main

relations among words is synonyms because they denote the same concept, then according to the

lexical category and the meaning of the word more relations are presented. An example of that kind

of polysemous words is ’park’, like is shown in Figure 39 where the word is simply passed to wordnet.

As is seen, wordnet found the word park in two different lexical categories: nouns and verbs. Now,

to check the senses of the word in each category, the overview options is passed to wordnet, with the

following result, exposed in Figure 40.

C.2.1 Relations

The most common relation among synsets is the super-subordinate relations also known as hypernymy,

hyponymy or IS KIND OF relation, linking more general synsets to more specific ones. All nouns

111

C.2. WordNet

Figure 39.: Wordnet usage example, with the word park.

Figure 40.: Wordnet usage example, with the word park and the overview option.

hierarchies starts with the root node (entity) and both relations are transitive. Nouns are distinguished

between Types and Instances2.

Another important relation is meronyms or the part-whole relation, such as between chair and

backrest, seat and leg. Parts are inherited from their superordinates, but not from their subordinates:

chairs and kinds of chairs have legs, but not all kinds of furniture have legs.

2 Wordnet even distinguish specific persons, countries and geographic entities, such as Barack Obama is an instance of a
president.

112

C.2. WordNet

Just like nouns, verbs are also grouped in hierarchies, where the verbs at the bottom express a

specific action (move–jog–run), always depending on the semantic field. Even verbs with an indirect

relation are linked together such as (buy–pay) or (succeed–try).

Adjectives are linked in terms of antonyms or semantic similarity, such as (dry–wet) for the first

case and (dry–arid,parched) for the second one. Finally the adverbs are in short supply, as most of En-

glish adverbs are straightforwardly derived from adjectives via morphological affixation (surprisingly,

strangely, etc.).

Speaking know in practical terms of what can be passed to the wordnet tool and as stated before,

synsets are interlinked between them by means of semantic relations and these relations are not all

shared by all lexical categories.

C.2.2 Options

Using the command line interface wn for Wordnet lexical database, some useful options are provided,

which make the wordnet a precious tool for a lot of different applications. The syntax of the command

line call is:

wn [searchstr] [-h] [-g] [-a] [-l] [-o] [-s] [-n#] [search option . . .]
Forgetting the normal flags, let us focus on what can be really extracted, changing the search options,

from wordnet database. Please note that the relation is available only for some lexical categories, as

shown in the information between parentheses where, n stands for nouns, v for verbs, a for adjectives

and r for adverbs.

• syns (n | v | a | r) — Display synonyms and immediate hypernyms of synsets containing

searchstr .

• simsv — Display verb synonyms and immediate hypernyms of synsets containing searchstr .

Synsets are grouped by similarity of meaning.

• ants (n | v | a | r) — Display synsets containing antonyms of searchstr .

• faml (n | v | a | r) — Display familiarity and polysemy information for searchstr .

• hype (n | v) — Recursively display hypernym (superordinate) tree for searchstr (searchstr IS A

KIND OF relation).

• hypo (n | v) — Display immediate hyponyms (subordinates) for searchstr (IS A KIND

OF searchstr relation).

• tree (n | v) — Display hyponym (subordinate) tree for searchstr . This is a recursive search

that finds the hyponyms of each hyponym.

• coor (n | v) — Display the coordinates (sisters) of searchstr . This search prints the immediate

hypernym for each synset that contains searchstr and the hypernym’s immediate hyponyms.

113

C.2. WordNet

• deri (n | v) — Display derivational morphology links between noun and verb forms.

• domn (n | v | a | r) — Display domain that searchstr has been classified in.

• domt (n | v | a | r) — Display all terms classified as members of the searchstr ’s domain.

• subsn — Display substance meronyms of searchstr (HAS SUBSTANCE relation).

• partn — Display part meronyms of searchstr (HAS PART relation).

• membn — Display member meronyms of searchstr (HAS MEMBER relation).

• meron — Display all meronyms of searchstr (HAS PART, HAS MEMBER, HAS SUBSTANCE

relations).

• hmern — Display meronyms for searchstr tree. This is a recursive search that prints all the

meronyms of searchstr and all of its hypernyms.

• sprtn — Display part of holonyms of searchstr (PART OF relation).

• smemn — Display member of holonyms of searchstr (MEMBER OF relation).

• ssubn — Display substance of holonyms of searchstr (SUBSTANCE OF relation).

• holon — Display all holonyms of searchstr (PART OF, MEMBER OF, SUBSTANCE OF rela-

tions).

• hholn — Display holonyms for searchstr tree. This is a recursive search that prints all the

holonyms of searchstr and all of each holonym’s holonyms.

• entav — Display entailment relations of searchstr .

• framv — Display applicable verb sentence frames for searchstr .

• causv — Display cause to relations of searchstr .

• pert (a | r) — Display pertainyms of searchstr .

• attr (n | a) — Display adjective values for noun attribute, or noun attributes of adjective values.

• grep (n | v | a | r) — List compound words containing searchstr as a substring.

114

C.3. Perl Module WordNet::QueryData

C.3 P E R L M O D U L E W O R D N E T : : Q U E RY DATA

This perl module appears in this application just as the interface or API, for the previous described

natural language tool Wordnet. In this section will be explained how this module is implemented in

the SplitterExpander program and what kind of information is retrieved from the Wordnet database

semantic lexicon.

Since, the SplitterExpander component, introduced in Chapter 4, Section 4.5, is written in perl

programming language, makes sense to use this perl module as a bridge between the two applications:

SplitterExpander and Wordnet. This option makes the component more clear and efficient, because

this module is easy to learn, with few functions and options, and there was no need to think in some

always complex communication mechanism to deal with the stand alone Wordnet tool.

Essentially, to understand minimally how this module was implemented in the SplliterExpander

perl program, there are a few things to know:

• this module provide a series of methods to interact with Wordnet, but only two of them are

used to query the database: querySense and queryWord. The first is for extracting semantic

information (sense to sense) relations and the second is for lexical relations. Only the first

form of querying querySense is used in the component, because we are looking for semantic

relations, words related with the grammar domain, and not syntactic relations.

• for this query process, we have to specify one word and one relation. There are three ways to

specify word: i) word ii) word#pos (pos represents the lexical categories introduced in Section

C.2) iii) word#pos#sense . The first two types require no relation to query the database and

will return query forms available. The third type requires a relation and that is when the related

words are returned.

As for the relations they were exposed in the previous section, but only some of them were used

in the implementation. Some relations can only be sent to queryWord and others to querySense.

To implement this module in the SplitterExpander perl program, a method must be used, just like

is shown in Listing C.1. First a querySense is made with grammar domain. The result will give all

the available pos, related to the specified domain. Next, for each one, a new querySense is made,

resulting again in another set of available queries, but this time for senses. The same process is made

again, this time with type iii) queries, giving back the desire list of words.

my $wn = WordNet : : QueryData−>new (d i r => ” / u s r / l o c a l / C e l l a r / wordne t / 3 . 1 / d i c t / ” ,
no lo ad => 1) ;

my @ r e l a t i o n s = (’ g l o s ’ , ’ syns ’ , ’ hypes ’ , ’ hypos ’ , ’ mero ’ , ’ ho lo ’ , ’domn ’ , ’ domt ’) ;
my @pos = $wn−>q u e r y S e n s e ($grammar domain) ;
my @senses ;

foreach (@pos) {
push @senses , $wn−>q u e r y S e n s e ($) ;

115

C.3. Perl Module WordNet::QueryData

}

my @words ;
foreach my $s (@senses) {

foreach my $r (@ r e l a t i o n s) {
push @words , $wn−>q u e r y S e n s e ($s , $ r) ;

}
}

Listing C.1: Snippet from SplitterExpander component related with the Wordnet::QueryData implementation.

For more details about this module and others features that he present, please consult the CPAN

page http://search.cpan.org/ jrennie/WordNet-QueryData-1.49/QueryData.pm.

116

http://search.cpan.org/~jrennie/WordNet-QueryData-1.49/QueryData.pm

	Contents
	1 Introduction
	1.1 Grammar Engineering
	1.2 Motivation
	1.3 Aims/Objectives
	1.4 Document Structure

	2 State of the art
	2.1 The art of Measurement
	2.1.1 Measurement in Software Engineering
	2.1.2 The Scope of Metrics
	2.1.3 The Theory behind measurement
	2.1.4 A framework for software measurement

	2.2 Quality of Languages
	2.3 Quality of Grammars
	2.3.1 Formal Grammar Definitions
	2.3.2 Assessing Grammar Quality
	2.3.3 Metrics for Grammars

	3 The problem and its challenges
	3.1 Tool Description

	4 GQE - Grammar Quality Evaluator
	4.1 A Tool for Metric Evaluation
	4.2 GQE Architecture
	4.3 Grammar Objects
	4.3.1 Context-Free Grammar
	4.3.2 Attribute Grammar

	4.4 ANTLR Linking Component
	4.5 Splitter Expander
	4.6 GQE Interface
	4.7 Execution Flow

	5 GQE Main Results
	5.1 CFG analysis: Lisp Language
	5.2 AG analysis: Lisp Language

	6 Conclusions
	6.1 Conclusions
	6.2 Future work

	A Grammar of ANTLR meta-language
	B The ANTLR Tool
	B.1 Generated Code
	B.2 ANTLR Grammar Format
	B.2.1 Lexicon
	B.2.2 Structure
	B.2.3 Parser Rules
	B.2.4 Actions and Attributes
	B.2.5 Lexer Rules

	C Natural Languages Tools
	C.1 Perl Module Lingua::IdSplitter
	C.2 WordNet
	C.2.1 Relations
	C.2.2 Options

	C.3 Perl Module WordNet::QueryData

