
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno Tiago Abreu de Araújo

Efficient modelling of liquid surfaces
on multi-core CPU and Xeon Phi devices

October 2015

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno Tiago Abreu de Araújo

Efficient modelling of liquid surfaces
on multi-core CPU and Xeon Phi devices

Master dissertation
Master Degree in Computing Engineering

Dissertation supervised by
Alberto Proença
Luı́s Alves

October 2015

AG R A D E C I M E N T O S

Começo por agradecer aos meus pais, por abdicarem do que fosse preciso para que eu pudesse concluir

o meu objetivo. No final deste meu percurso de cincos anos, espero que eles sintam que tudo valeu a

pena, e que tenham em mim tanto orgulho como eu tenho neles.

Ao Professor Proença por tudo aquilo que me ensinou académica, profissional e pessoalmente. É

sempre um prazer conversar com alguém que sabe tanto sobre tudo e que uma simples observação é

sempre tão cheia de conteúdo. Ao Professor Luı́s Alves pela ajuda nesta ponte entre a Engenharia

Mecânica e a Informática, a sua colaboração foi essencial para que este trabalho fosse realizado. Ao

Ricardo pela amizade e companheirismo ao longo dos dois anos de mestrado, que culminou neste

trabalho desenvolvido com o Surface Evolver.

A todos os professores da Universidade do Minho que fizeram parte da minha vida académica.

Aos amigos que fiz na universidade. Todos eles me ensinaram que a amizade é a melhor lição que

levamos da universidade. Aos meus amigos de sempre, pela paciência e pela força que sempre me

deram, por sempre me mostrarem o caminho certo mesmo quando eu insistia no contrário.

Agradecimento à Bosch pelo apoio financeiro sob a forma de uma bolsa de investigação para de-

senvolver este trabalho e dissertação.

Trabalho desenvolvido no âmbito do projeto HMIExcel (no 36265/2013 (Projeto HMIExcel - 2013-

2015)), fica também o agradecimento pela confiança que depositaram no meu trabalho.

a

A B S T R AC T

The assembly of miniature electronic components requires an adequate scale of the size of the weld-

ing terminators in printed circuit boards to minimize the stresses due to deformation. An optimum

terminator layout minimizes the surface tension of the liquid solder, but requires efficient simulation

algorithms to compute the results in an acceptable time slot. Current Surface Evolver is a software

tool to study surfaces, shaped by surface tension and other energies, and its execution efficiency can be

improved to take advantage of shared memory systems based on multi-core and many-core computing

devices.

This dissertation aims to analyze the Surface Evolver, identifying the computational bottlenecks

and working on solutions to improve the overall performance of the application. Parallel algorithms

were developed to explore the architectural features of current multi-core and many-core computing

devices namely the Xeon Phi, and including the growing vectorization features of newer processing

devices.

After an analysis of the application and its profiling, the original data structure was identified as

the critical bottleneck for software performance: it is implemented with linked lists, which prevents

the use of the vectorization features of current devices and leads to inefficient parallel algorithms,

both key elements to improve the performance of the Surface Evolver. The modification of the data

structure was a key task in this dissertation.

The calculation force was identified as one of the most time consuming tasks of Surface Evolver and

it was the target function of this work. This algorithm iterates over all vertices, edges and faces so is

a good example to conclude how vectorization and parallelism affects the performance of simulation

software used in the variety fields of science and engineering. In the end of this work it is possible

to see that vectorization can greatly improve the performance of an application, bringing significant

speedups to Surface Evolver.

The measured execution times are presented and discussed, throughout the various development

stages of the application, aiming to analyze the impact of the application of high performance tech-

niques on the Surface Evolver, suggesting yet further future improvements that were well identified in

the end of this work.

c

R E S U M O

A montagem de componentes eletrónicos mais pequenos requer um tamanho adequado da solda nas

placas de circuito impresso para minimizar as tensões devido às deformações. Uma disposição ótima

do terminal minimiza a tensão superficial da solda lı́quida, mas requer algoritmos eficientes para cal-

cular os resultados num intervalo de tempo aceitável. O Surface Evolver é uma ferramenta de software

para estudar superfı́cies, moldadas pela tensão de superfı́cie e outras energias, e a sua eficiência pode

ser melhorada para tirar proveito dos atuais sistemas paralelos.

Esta dissertação tem como objetivo analisar o Surface Evolver, identificando os estrangulamentos

computacionais e trabalhando em soluções para melhorar o desempenho global da aplicação. Algo-

ritmos paralelos foram desenvolvidos para explorar as caracterı́sticas das arquiteturas multi-core e

dispositivos de computação many-core, nomeadamente Xeon Phi, e também as novas caracterı́sticas

de vetorização presentes nos dispositivos mais recentes.

Depois da análise da aplicação, a estrutura de dados original foi identificada como o principal

problema da aplicação: é implementada com listas ligadas, o que não possibilita o uso de vetorização

e leva a algoritmos paralelos ineficientes, dois elementos cruciais para o aumento de performance no

Surface Evolver. A alteração da estrutura de dados foi o trabalho mais importante ao longo desta

dissertação.

O cálculo das forças foi identificado como uma das tarefas mais pesadas do Surface Evolver e foi

por isso o alvo principal deste trabalho. O algoritmo itera sobre todos os vértices, arestas e faces,

sendo por isso um bom exemplo para se tirar conclusões sobre como a vetorização e o paralelismo

pode melhorar a performance de aplicações de simulação usadas nos vários campos da ciência e en-

genharia. No final deste trabalho será possı́vel constatar que a vetorização consegue trazer melhorias

de performance a uma aplicação, trazendo essas mesmas melhorias ao Surface Evolver.

Os tempos de execução foram medidos e discutidos, durante os vários perı́odos de desenvolvimento

da aplicação, tendo como objetivo analisar o impacto da aplicação das técnicas de alto desempenho

no Surface Evolver, sugerindo ainda futuras melhorias que foram identificadas e explicadas no final

deste trabalho.

e

C O N T E N T S

Contents iii

1 I N T RO D U C T I O N 3

1.1 Context 3

1.2 Motivation & Goals 4

1.3 Contribution 4

1.4 Dissertation outline 5

2 H I G H P E R F O R M A N C E C O M P U T I N G 7

2.1 Heterogeneous Computing Platforms 7

2.2 Vectorization 8

2.3 Accelerators 9

2.3.1 MIC - Intel Xeon Phi 9

3 M O D E L L I N G T H E L I Q U I D S U R F AC E 13

3.1 Surface Evolver 13

3.2 Testbed environment 14

3.3 Profiling the sequential code 15

3.4 Force calculation 17

3.5 Data structures 19

3.6 A shared memory implementation 22

3.7 A distributed memory implementation 24

3.8 Identified problems and decisions 24

4 A N E F F I C I E N T I M P L E M E N TAT I O N 27

4.1 Testbed environment 27

4.2 Improvements to the algorithm and data structures 27

4.3 Vectorization 30

4.4 Shared memory on multi-core 32

4.5 Distributed memory to many-core 33

5 I N T E G R AT E D A P P RO AC H 37

5.1 Testbed environment 37

5.2 Unified data structure 37

5.3 Results discussion 39

6 C O N C L U S I O N 43

iii

CONTENTS

i A P E N D I C E S 47

A C A L L G R A P H 49

B P RO F I L E R S U S E D A N D S O F T WA R E V E R S I O N S 51

C E X P E R I M E N TA L S E T U P 53

C.1 Node topology 54

D S P E E D U P A N D E F F I C I E N C Y 55

iv

L I S T O F F I G U R E S

Figure 1 Xeon Phi Coprocessor Core1 10

Figure 2 The Vector Processing Unit of Xeon Phi2 11

Figure 3 Ring system in the Interconnect of Xeon Phi3 12

Figure 4 Tilted view of the simulated slow case 14

Figure 5 Slow case after refinement 15

Figure 6 General view of call graph for the fast case 16

Figure 7 Zoom on some of the heaviest routines 17

Figure 8 Calc force function flow 18

Figure 9 The functions that search on data structures 21

Figure 10 Execution time in parallel with Named Quantities - Slow case 22

Figure 11 Speedups in parallel with Named Quantities - Slow case 23

Figure 12 Efficiency in parallel with Named Quantities - Slow case 23

Figure 13 Calculation force algorithm with new data structure but without vectorization

- Slow case 29

Figure 14 Comparison between with vectorization and without vectorization using dy-

namic scheduling - Slow case 31

Figure 15 Comparison between dynamic and static scheduling with OpenMP - Slow
case 32

Figure 16 Calc force function flow 34

Figure 17 Calc force function flow with directives to Xeon Phi 35

Figure 18 Comparison tests with Xeon Phi version and dynamic schedule in CPU de-

vice 36

Figure 19 Execution time with OpenMP in the unified version - Fast case 39

Figure 20 Execution time with OpenMP in the unified version - Slow case 40

Figure 21 Speedups with OpenMP in the unified version - Fast case 41

Figure 22 Speedups with OpenMP in the unified version - Slow case 42

Figure 23 General view of Profiling the slow case 50

Figure 24 Topology of used node 54

v

1

I N T RO D U C T I O N

1.1 C O N T E X T

The work in this dissertation aimed to solve an actual problem that engineers at Bosch Car Multimedia

face in the production of printed circuit boards: how small can be the welding bubbles of the BTC

(Bottom Terminated Components) devices, without failing during the life cycle of a product inside a

car.

To reduce the problems of electrical failure due to the thermo-mechanical fatigue of welded compo-

nents and to create conditions to increase their life cycle, the welding process can be optimized, using

adequate simulation software.

Under normal use, BTC components and PCBs (Printed Circuit Board) undergo successive thermal

cycles, which originate anomalies by gradients of thermal expansion coefficients of the various con-

stituent materials, namely polymers composites and copper in PCB, BTC encapsulating material and

brazing materials (Sun et al., 2013). The thermo-mechanical fatigue, when accumulated, leads to an

interruption of the electrical conductivity of the connection.

The optimization of the placement of the BTC components on PCB and brazing procedures and

parameters can lead to a substantial increase in the strength of electronic systems (Benabou et al.,

2013). The analysis of the welding material volume and the design of the PCB copper area to be

welded to the component, require careful studies to lower the error rate in line production and extend

the life of the weld joint (Ishikawa et al., 2013), which are the two paths that assist in the overall

quality of the brazing process, since the residual stresses resulting from thermal cycling depend on

the configuration of the PCB and on the amount of solder.

To improve the life cycle of the electronic components two lines of work can be explored: (i) to

optimize the design of the layout of the PCB to manage the local rigidity and thus minimize the effects

of thermal fatigue of the solders of the BTC components, thereby minimizing the residual stresses of

thermal origin, (ii) to optimize the procedures and parameters of brazing components of type BTC in

PCBs, to scale the size of the blisters welding so as to minimize the stress fields associated with the

deformation and buckling loads for the associated thermal cycling (Ishikawa et al., 2013).

For common components, not the type BTC, the lifetime of the PCBs are 2 DPMO (Defects Per

Million Opportunities) Fall-Off-Rate in the production line and estimated life - in reliability tests -

3

Chapter 1. I N T R O D U C T I O N

is longer than 15 years, or even longer than 30 years when using nominal values of solder paste

volume (Benabou et al., 2013). Results top class in the world, which is intended to maintain when

the intention is to use components with BTC type miniaturization - such as BGA (Ball Grid Array),

QFN (Quad Flat No-leads), LGA (Land Grid Array). The use of components other than the BTC type

- QFP (Quad Flat Package), SOIC (Small Outline Integrated Circuit) - are much easier to produce

and easily reach 30 to 40 in life cycle, due to the geometry of its terminals, and are easier to produce

with such quality levels. These traditional ingredients are more flexible and thus adapt better to the

deformations resulting from differences in the thermal expansion coefficients of the materials. Rather,

the new BTC components, the rigidity is more susceptible to problems associated with thermal fatigue

failure, thereby making it more difficult and demanding to maintain the defect level on 2 DPMO and

15 years lifetime. This means that with the introduction of the new BTC components it is necessary

to introduce new strategies to the new implications for durability (Benabou et al., 2013).

In order to accomplish the best size for the welding bubbles in this context of fluid mechanics, the

Bosch CM uses the software Surface Evolver, the application that will be deeply reviewed in this

dissertation.

1.2 M OT I VAT I O N & G O A L S

The motivation to do this work is to improve the software used for the study of surfaces shaped by

surface tension in a way that its execution times are more in line with the industry demands, improving

the efficiency of the application. The objective is to develop two parallel versions: in multi-core CPU

with shared memory and using the many-core Intel Xeon Phi, an accelerator. This work will take in

consideration the specificities of each of these paradigms to achieve better results. Some comparison

tests, like scalability and usability, between the paradigms will be presented to justify the choices

made through the process. In resume, the main goals are:

• To implement a new data structure to take advantage of new features present on devices

• To implement a parallel version for shared memory systems with multi-core CPU devices

• To implement a version to take advantage of a many-core computing accelerator, the Intel Xeon

Phi

1.3 C O N T R I B U T I O N

This dissertation aims to contribute to the two areas in question, Mechanical Engineering and Com-

puter Science. The contribution to Mechanical Engineering will be the implementation of a more

reliable and faster version of the Surface Evolver, this way the testing of electronic components will

be made more quickly, allowing these same components come faster to the market and with better

4

1.4. Dissertation outline

solutions in terms of welding of components. To the Computer Science, will be essentially the re-

structuring of data structures, by localization and resizing, to increase the computational efficiency in

order to contribute to new forms of data organization, which is a major area of work currently in High

Performance Computing and often - almost always - the difference between having a parallel version

with or without improvements.

1.4 D I S S E RTAT I O N O U T L I N E

This document contains six chapters. The first is an introduction with focus on explaining the problem

to solve with this work in the software. The chapter 2 briefly presents the state of the art of High

Performance Computing in terms of their architecture. The chapter 3 introduces the Surface Evolver

and analyses the original version of the software application. The chapter 4 presents a new data

structure to overcome the performance bottlenecks identified in a previous profiling of the application

code. In chapter 5 the fusion with the data structure presented in (Ribeiro, 2015) is explained and the

profiling of this unified version is discussed. The last chapter presents the conclusions and suggestions

for future work are presented.

5

2

H I G H P E R F O R M A N C E C O M P U T I N G

2.1 H E T E RO G E N E O U S C O M P U T I N G P L AT F O R M S

Manufacturers are moving from high-frequency designs to multi-core chips, instead of improving

single-threaded performance. Besides programming CPUs, general-purpose computation on graphics

processing units (GPGPUs) has become increasingly popular as computing accelerators. Studies show

that state of art multi-core CPUs are able to compete with accelerators, by exploring single instruction

multiple data processing, multi-threading and cache efficiency techniques. Upgrading a convolution

algorithm on a CPU, it was shown that the processing is only a little slower than on a GPU. Nowadays,

hardware designers have to design and implement a hardware architecture specific to the algorithm,

costly in terms of production time as compared to software engineering. This hardware design pro-

cesses has consider the problem of power consumption, situation where FPGAs has an advantage

because are powerful devices with low power consumption for certain applications.

Heterogeneous platforms consists of at least one multi-core CPU and one accelerator device that

typically is a GPU or an Intel Xeon Phi. These platforms raise several concerns like choose efficient

memory structures to run on GPU, share work between the CPU and GPU to have both working at

the same time - no device wait for the other - and assign the type work that each device can perform

better. The accelerators, for example, can improve the application efficiency performing the heaviest

computing tasks.

The challenge with the heterogeneous platforms is handling with the hardware constraints, the mem-

ory limitation of accelerators and the fact that CPUs and accelerators do not share the same memory

- which does not allow a traditional multi-threaded approach - raises problems that it must deal to get

maximum performance of these heterogeneous platforms - that it is the sum of the maximum perfor-

mance every device can provide. CPUs and accelerators not sharing the same memory is the key for

performance degradation in heterogeneous computing platforms because implies the communication

of data elements between devices. Some techniques as pipelined DMAs (Direct Access Memory) for

data transfer - it is extremely important to fully exploit the DMA engine capabilities to maximize

network bandwidth, specially in large transfers -, dynamic chunk sizing, and better asynchronous

progress, try to decrease communication latency as shown on the literature review (Vaidyanathan

7

Chapter 2. H I G H P E R F O R M A N C E C O M P U T I N G

et al., 2014), but these techniques are always specific to the algorithm in study and are not used as a

general purpose solution.

2.2 V E C T O R I Z AT I O N

Vectorization is implemented as the execution of a single instruction on multiple data objects, i.e.,

to apply operations to whole arrays instead of individual elements. It is the way to take advantage

of AVX or SSE in the Intel x86 line of processors. For example, the AVX instructions can perform

eight 32-bit or four 64-bit floating point operations per clock cycle. It is a huge improvement on

performance, beyond the capacity of task parallelism, this way we also have data parallelism.

To take advantage of vectorization and improve the efficiency of applications, it is important to

identify which type of loops can be vectorized (Corporation, 2012):

• Countable. The number of loop iterations must be known at the beginning of the loop at

runtime, though it need not be known at compile time. The loop count can be a variable, but the

variable cannot vary during the loop execution.

• Straight-line code. SIMD instructions perform the same operation on data elements from mul-

tiple iterations of the loop, so it is not possible have ’if’ conditions on those iterations because

different iterations cannot have different paths, they must not branch. As expected, ’switch’

conditions are not allowed. The ’if’ statements is allowed if they are masked assignments, i.e.,

the calculations is made for all elements, but the assignment is only performed for elements

whose mask returns true.

• The innermost loop. In a situation of nested loops, only the innermost is vectorized. The

exception is if the compiler - in compiling phase - transform an outer loop in a inner loop due

to optimization techniques such as loop unrolling or loop collapsing.

• No function calls. Call functions inside a loop can result in a unvectorizable loop. Some

exceptions are the known math functions - e.g. cos, sin, floor, sqrt, exp - and for inline functions.

Inline functions are only keywords to substitute the body of the function performing inline

expansion and can be intended as function replacing and not a function call.

On the other hand, to vectorize loops is crucial to avoid the most known inhibitors of this feature

(Corporation, 2012):

• Non-contiguous Memory Accesses. A single SSE instruction loads/stores from/into memory

sets of integer and real numbers; if these data elements are not adjacent in memory, multiple

instructions are required to access memory, causing a negative impact on performance. The

most common examples of non-contiguous memory access are loops that iterate through linked

lists, a data structure that scatter the data all over the memory without any sense of contiguous

8

2.3. Accelerators

data. The compiler seldom vectorizes such loops, unless the amount of work is large compared

to the cost of loading data from not contiguous locations.

• Data Dependencies. If the data elements that are written in one iteration do not appear in any

other iteration, this mean the loop are data independent and possible to be vectorized. When a

variable is written in one iteration and read in a subsequent iteration, there is a “read-after-write”

dependency, and when a variable is read in one iteration and written in a subsequent iteration,

this is a write-after-read dependency, resulting both in vectorization inhibitors.

The Intel C compiler (ICC) has some options in the compiling phase that allows to automatically

generate vector code, but this feature can not work in perfection by the variations of each code. To

help on this task, ICC has a helpful tool called vec-report that aids the developer find out which loops

were not vectorized, making a vectorization report and providing guidelines with the reason why such

loops were not vectorized. When this happens, it is necessary the intervention of the programmer to

modify the code in such a way to enable those loops to be vectorized.

2.3 AC C E L E R AT O R S

In recent years this area has evolved to computing with accelerators, GPU and MIC. The GPUs are

no longer only graphics processors, but are devices with a key role in high performance computing,

with high ability to perform calculations and are therefore a valuable ally to increase the efficiency

of applications. The GPU architecture may contain thousands of smaller and more efficient cores

designed to handle multiple tasks simultaneously, making it a massively parallel architecture.

As GPUs will not be explored in this dissertation, only the Intel Xeon Phi architecture will be

detailed in the next section. The architecture of GPU devices are further detailed in (Ribeiro, 2015).

2.3.1 MIC - Intel Xeon Phi

The Xeon Phi is Intel response to the dominance of Nvidia in the segment of accelerators for HPC. The

coprocessor is connected to an Intel Xeon processor, also known as the host, through a PCI Express

bus, and is under this PCIe bus that could be implemented a virtualized TCP/IP stack to access the

coprocessor as a network node and allowing the user to connect to the Intel Xeon Phi through a secure

shell (ssh) and run jobs interactively inside the device 1. It is also possible build applications wherein

a part of the application executes on the host while a part executes on the coprocessor.

In a single host system can be installed multiple Intel Xeon Phi coprocessors and they can commu-

nicate through the PCIe peer-to-peer interconnect, InfiniBand or Ethernet, without any influence from

the host, preventing further loss of performance in the communication process between coprocessors

and host, making a direct connection in all devices present in a single host.

1 https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

9

Chapter 2. H I G H P E R F O R M A N C E C O M P U T I N G

The Intel Xeon Phi comes with a private L2 cache in each core that is kept fully coherent by a

global-distributed tag directory a memory controllers that provide a direct interface to the GDDR5

memory on the coprocessor and a PCIe client logic that provide the connection with the PCIe bus

(Jeffers and Reinders, 2013). All these components are connected together by the ring interconnect.

This device contain 61 cores - most common - that run in low clock frequency (1.238 GHz), with

hardware support for 4 simultaneous threads in each core, equipped with 32KB L1 instruction cache

and 32KB L1 data cache, and shares 512KB of L2 cache, giving a total of approximately 30 MB for

the entire device(Jeffers and Reinders, 2013). These caches are fully coherent and implement the x86

memory order model and provide an aggregate bandwidth faster compared to the aggregate memory

bandwidth. Is designed to be power efficient while providing a high throughput for highly parallel

workloads(Jeffers and Reinders, 2013).

Figure 1.: Xeon Phi Coprocessor Core2

Xeon Phi has a Vector Processing Unit (VPU) that can execute 16 single-precision or 8 double-

precision operations per cycle. Since this unit supports Fused Multiply-Add (FMA) instructions, each

core can execute 32 single-precision or 16 double-precision floating point operations per cycle. The

VPU also supports gather and scatter instructions directly in hardware. This features helps in keeping

the code vectorized with sporadic or irregular access patterns(Jeffers and Reinders, 2013).

To help in complex math operations, such as square root, reciprocal and log, the VPU execute this

operation in a vector way calculating polynomial approximations of these functions(Jeffers and Rein-

ders, 2013). This feature is known as Extended Math Unit (EMU) and show how Intel designed a

device aiming to give efficiency to heavy computational software, bringing news ways to improve the

most common calculations of simulation applications in the variety of fields of Science and Engineer-

ing.

2 https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

10

2.3. Accelerators

Figure 2.: The Vector Processing Unit of Xeon Phi3

The communication between those many cores is implemented as a bidirectional ring. Each di-

rection is comprised of three independent rings: first, largest, and the biggest, the data block ring.

The first ring is the acknowledgement ring, the smaller, and is responsible to send flow control and

coherence messages(Jeffers and Reinders, 2013). The largest is address ring, used to send read/write

commands and memory addresses. The data block ring - the largest - is 64 bytes wide to support the

high bandwidth requirement due to the large number of cores(Jeffers and Reinders, 2013).

When a miss L2 cache occurs, an address request is sent to the tag directories. If the requested

block is found in L2 cache of another core, the request is sent to this L2 cache over the address ring

and request block is sent through the data block ring. If the requested block is not found in any L2

caches, a request is sent to the memory controller. This is the scheme of how a miss cache is treated

by the Interconnect of Intel Xeon Phi coprocessor(Jeffers and Reinders, 2013).

3 https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

11

Chapter 2. H I G H P E R F O R M A N C E C O M P U T I N G

Figure 3.: Ring system in the Interconnect of Xeon Phi4

The floating peak performance in Xeon Phi is given by:

• 16 (SP SIMD) x 2 (FMA) x 1.1 (GHz) x 61 (# cores) = 2 147,2 GFLOP/sec for single precision

• 8 (DP SIMD) x 2 (FMA) x 1.1 (GHz) x 61 (# cores) = 1 073,6 GFLOP/sec for double precision

Another great advantage of Xeon Phi is that it is not necessary to learn a new language, it is pos-

sible to use OpenMP code, MPI or PThreads - for example - to run. It also offers different ways to

run applications: native code, automatic offload or manual offload. Using native code, the code is

compiled to run entirely on Xeon Phi, while when using offload only some parts of the code are sent

to the device to run. In the case of offload, it is possible to delegate this task to the compiler or to

do it manually, task done by the programmer using directives defining which code regions to send to

the device. The two possibilities - native or offload code - have, expectedly, different results. For the

hardware memory architecture, a code that requires plenty of space to allocate data turns out to have

a worse performance when compiled as native code, being preferable in this case to use offload to

define the pieces of code to be sent to the device, selecting the heaviest computational routines, where

the Xeon Phi can really make a difference with the 61 cores that are at your disposal.

4 https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

12

3

M O D E L L I N G T H E L I Q U I D S U R FAC E

3.1 S U R F AC E E VO LV E R

The way to improve the life cycle of the electronic components is optimizing the layout of the PCB and

the procedures and parameteres of brazing components, through a better size of the welding bubble to

minimize the stress fields associated(Ishikawa et al., 2013).

To achieve these optimizations, it is essential to take advantage of available computational tools

(CAE) to support the new PCB design integrating components of type BTC, and generate additional

value by incorporating new technologies on manufacturing smaller integrated circuits - the new trend

of the market, miniaturization. It is also noted that according to the existing literature, the optimization

of the weld volume is a key factor and is still poorly explored. Another point that may help CAE is the

speed of the validation process, this time testing the experimental validation of a conceptual solution

(PCB) stand at about 4 months (Ishikawa et al., 2013), quickly reach the market if the time of these

tests is reduced.

In summary, the differentiation factor is attempting to virtualize the optimization process of brazing

procedures and parameters of BTC type components on PCB, through the study of the influence of

the quantity of liquid solder in the final geometry of the bond between the copper PCB and the legs

of the BTC component. This objective should be determined through optimization algorithms and

minimization of surface tension of the liquid solder to later be able to study the impact of the thermal

cycling stress fields generated and thus optimize the lifetime of the component.

Developed by Ken Brakke in University of Susquehanna, Surface Evolver (SE) is an interactive

program to model liquid surfaces shaped by various forces and constraints. SE evolves the surface

for a minimum of energy by a gradient descent method. The evolution is intended to be a computer

model of the process of evolution by mean curvature for energy surface tension. The energy in the SE

can be a combination of surface tension, gravitational energy, mean square curvature, surface integrals

defined by the user or nodal energy. SE can, also, handle arbitrary types, volume restrictions, border

restrictions, limit contact angles, gravity and restrictions as surface integrals. The surface may be an

arbitrary scale environment, which can have a Riemannian metric and the environment space can be a

space under a quotient group. The user can modify the interactive surface to change its properties or

to maintain a well-behaved evolution.

13

Chapter 3. M O D E L L I N G T H E L I Q U I D S U R F AC E

3.2 T E S T B E D E N V I RO N M E N T

All tests in this chapter were run on the Cluster SeARCH at the University of Minho. The computing

node used has the following characteristics:

• 2 x Intel Xeon CPU E5-2650 @ 2.00GHz

• 8 cores per device, each with 2-way Hyper-Threading

• L1 cache per core: 32KB for instructions and 256 KB for data

• L2 cache per core: 256KB

• L3 cache per device: 20MB (shared for all cores)

• Main memory: 64GB

Three case studies were selected to work on this project: a fast simulation with a small input data

set, a medium and a more complex and time consuming. Due to a version mismatch of the Surface

Evolver, the medium case introduces some errors during its execution and therefore could not be used

for these tests. The execution times for cases fast and slow will be shown later when proceeding

to the presentation of SE profiling. The methodology to measure the code execution time used the

k-best approach, where 6 executions for each test were made and chosen the best measure that had a

difference of not more than 5% in relation to the second and third best measurement. An overview of

simulations that are being addressed follows, where images of the slow case are shown, as well as the

object state at the end of the simulation and another image of the object after a few more iterations

and refinement.

Figure 4.: Tilted view of the simulated slow case

14

3.3. Profiling the sequential code

Figure 5.: Slow case after refinement

3.3 P RO F I L I N G T H E S E Q U E N T I A L C O D E

Currently the Surface Evolver has a fully functional sequential version. This version is not created

as a starting point for a parallel version and has some limitations when it wants to migrate the code

to a parallel version. This version in cases of relatively complexity, takes some time to complete its

execution, taking about 40 minutes in one case study that will be presented throughout this dissertation.

The sequential version does not have much to refine, and so in order to improve computing efficiency

a parallel version will be developed.

A call graph is a directed graph used to represent the relationship between the functions of a pro-

gram. With this graph we can identify the functions that take a larger share of the overall execution

time and the number of calls those functions.

15

Chapter 3. M O D E L L I N G T H E L I Q U I D S U R F AC E

Figure 6.: General view of call graph for the fast case

Heaviest routines:

• recalc 33%: the interpretation of commands has a relative weight increase in small case studies;

the main function responsible for this weight aims to recalculate and display the new results to

the user;

• calc energy 24%: is responsible for obtaining the total energy configuration;

• calc all grads 10%: used to recalculate the forces and/or restrictions gradients.

The other functions mainly compute energies, volumes and their gradients at the vertices.

16

3.4. Force calculation

Figure 7.: Zoom on some of the heaviest routines

The functions that search for edges, corners, facets and vertices belonging to the data structure

(including get facet verts, get facet body, get next edge containing, among other get fe edge) has a

weight of approximately 14%. This structure should be reconsidered to reduce the impact of these

functions on the overall performance.

An analysis of the resulting call graph of the slow case (details in Appendix Call graph) shows

that the recalc function, which accounted for 33% of the runtime now has a weight of 62%. This

significant increase in weight is due to the increase of the problem size. While in the case fast, all

data entirely fit into the cache, and miss rate in some of these routines less than 1% in L1 cache is

nearly 0% in L2 cache due to compulsory misses, these are always available in cache. In the slow
case, whose data occupy dozens of MB, the miss rates increase and the access to the main memory

are extremely costly.

3.4 F O R C E C A L C U L AT I O N

This function calculates the force caused by superficial tension and other constraints on vertices of

triangulation. Surface Evolver is a iterative application that calculate the evolution of the mesh over

time, but this function is only called in the end of each iteration - calc energy is called thousand

times each iteration - but still called thousand of times in the execution of the whole application. In

this particular case study is not heavy, but is a function that can be more time consuming on other

simulations.

This diagram shows the flow of calc force function:

17

Chapter 3. M O D E L L I N G T H E L I Q U I D S U R F AC E

Figure 8.: Calc force function flow

The function has three main loops - that runs on all vertices, edges and facets - and apply various

functions to every elements. In the original data structure, to find the elements is mandatory to search

on the linked list and it is necessary start the search at the beginning of the list, making this routine

computationally expensive due to the large number of elements for each type. This is a common

problem when using linked lists with a large number of elements.

Inside each main loop, the working element needs to be applied to various functions - some func-

tions are quite heavy - that are expecting pointers to do their work. On a task to change the data

structure of Surface Evolver, this functions need to be fully rewritten to maintain the functionality of

the application.

Besides this functions applied inside major loops, between those loops other functions are applied to

some elements of the web that need the elements updated with the functions applied inside the loops.

This restriction invalidate any attempt of parallelism between those calculations - functions inside

loops and functions outside loops - or change the order of execution because the need of updated

elements implies that wait by the finish of the previous major loop. These strategies could be very

effective for accelerators - explained in detail on next chapter of many-core devices.

Calc force is one of the main functions related to computational work. It is strictly related with

calculations and do not have IO (input-output) work, so it is a good candidate to deliver an effort to

18

3.5. Data structures

improve the efficiency of the function. As a calculation function, it is always possible to implement

strategies from High Performance Computing to gain performance, and without IO operations it is

possible to implement a version that targets on heterogeneous platforms.

3.5 DATA S T RU C T U R E S

The original data structure of the web - the mesh of the elements - is based on linked lists. This type

of data structure is very useful for dynamic allocation of data - probably the reason of the choice

- because it can easily append and remove elements from the list. The linked lists have θ(1) for

insertion - when last member is known -, θ(n) for searching and θ(n) for removing assuming that

search is needed. The main disadvantages are: a linked list must be read in order from the beginning

as linked lists are inherently - sequential access; are stored incontiguously, greatly increasing the time

required to access individual elements within the list.

In Surface Evolver, an element called web is defined by a data structure responsible for all the mesh

- the webstruct. This struct has various properties about the mesh, like lagrange order, dimension,

number of elements and so on. Inside this struct, has an array of struct of type skeleton that will be

explained next. This array of structs has five positions, the indices are 0 for vertices, 1 for edges, 2 for

facets, 3 for bodies and 4 for facetedges. These indices have a pointer to the respective list of elements.

Besides this, the webstruct has some fields to manage the size of elements in the list to reallocation

proposes.

Part of webstruct data structure:

struct webstruct {

struct skeleton skel[NUMELEMENTS];

int sizes[NUMELEMENTS]; /* allocated space for element structure */

int usedsizes[NUMELEMENTS]; /* used space for element structure */

struct element **elhashtable; /* id hash list of element pointers */

int elhashcount; /* actual number of live entries */

int elhashmask; /* for picking off index bits of id hash */

int elhashsize; /* size of hash table; power of 2 */

int sdim; /* dimension of ambient space */

int dimension; /* where tension resides */

int representation; /* STRING, SOAPFILM, or SIMPLEX */

int modeltype; /* QUADRATIC, LINEAR, or LAGRANGE; */

int lagrange_order; /* polynomial order of elements */

int headvnum;

...

}

The struct skeleton is the responsible to manage the linked list of each element. It has a field to

identify the type of element - vertex, edge, facet, body or facetedge - the dimension in bytes of the

19

Chapter 3. M O D E L L I N G T H E L I Q U I D S U R F AC E

element, the first element and pointers to free positions. This struct was well designed in terms of

memory allocation, but for strategies used in High Performance Computing this structure does not

fit and with the evolution of devices, this type of data structure will be responsible for performance

degradation because do not help the new features present on newer CPU and accelerators.

Part of skeleton data structure:

struct skeleton {

int type; /* type of element*/

int dimension; /* dimension of element */

int ctrlpts; /* number of control points */

INDIRECT_TYPE *ibase; /* to indirect list */

int ialloc; /* number elements allocated to ibase */

long maxcount; /* elements allocated */

int alloc; /* number actually in use */

element_id free; /* start of free list */

element_id freelast; /* end of free list */

int sparse_spot; /* used by sparse_ibase_flag */

struct element *freehead; /* start of freelist

...

}

To validate these assumptions about the original data structure, the functions that works directly

with this data structure will be analyzed above:

20

3.5. Data structures

Figure 9.: The functions that search on data structures

The functions responsible for search and maintenance of data structures has a significant weight.

As mentioned earlier, this data structure should be changed.

The search by edges, vertices and facets are quite heavy. This difference is even more clear when

we are running in parallel and even more pronounced in environments with Non-Uniform Memory

Accesses (NUMA), as the environment where these case studies have been performed. One of the

largest bottlenecks in the performance of the Surface Evolver involves memory accesses. Such ac-

cesses should be minimized studying a data partition algorithm and allocate threads to run on the data

that are allocated to your device or a data structure that minimizes the time to find an element, that

can be a structure based in arrays by the fact that have θ(1) as search complexity, very different of

θ(n) in linked lists, which means that with this change memory accesses will be largely decreased.

21

Chapter 3. M O D E L L I N G T H E L I Q U I D S U R F AC E

The SE data structures are also a source of problems because it is based on linked lists. This

structure dispersed the data throughout memory preventing the vectorization, which could greatly

improve the application efficiency. So it is important to think in a structure which favors the allocation

of contiguous data and in that way take advantage of vectorization features of newer devices.

3.6 A S H A R E D M E M O RY I M P L E M E N TAT I O N

The only parallelized functions in the original SE version belong to the class Named Quantities, using

PThreads. It is a class that aims to give a more systematic way to add new energy and constraints.

When using the flag -q, everything is converted to Named Quantities and this is the only class whose

functions use parallel computing. The goal of parallel SE includes working with other functions and

not just with this Named Quantities, will therefore be a more robust and more specific version of

Surface Evolver.

As mentioned, the implementation of parallel calculation is made through the Named Quantities

using PThreads. Then, the scalability analysis of this implementation will be studied for the slow case.

Those tests only was performed at 14 threads. The application have problems with this shared memory

version and never finish with more than 14 threads. This is another concern with Surface Evolver,

build a robust and clean version in shared memory maintaining the functionality of the application

with consistent outputs and also improving the parallel version bringing speedups.

The use of parallel computation by the Named Quantities bring improvements, but only 10 threads.

Figure 10.: Execution time in parallel with Named Quantities - Slow case

Average CPU time per thread remains low but the difference between the total execution time and

by thread does not compensate the use of 8 threads or more.

22

3.6. A shared memory implementation

Figure 11.: Speedups in parallel with Named Quantities - Slow case

The speedups show the execution times and as mentioned are the maximum possible distance given

by Amdahl’s Law.

Figure 12.: Efficiency in parallel with Named Quantities - Slow case

This case study makes use of the threads most effective using parallel computing in Named Quanti-

ties. Most reuse of cached data in cores where the threads are running, makes possible this efficiency

increase.

23

Chapter 3. M O D E L L I N G T H E L I Q U I D S U R F AC E

3.7 A D I S T R I B U T E D M E M O RY I M P L E M E N TAT I O N

On the SE website there is an MPI version available. This version was tested and we came to the

conclusion that it is not even consistent on the outputs, giving different results with different number

of processes, making it not reasonable to use because this version not even preserve the application

functionality. On the webpage there has a warning to use this version with care as it is an experimental

version. Since it was decided that the aim of this work was to build a version of shared memory, the

MPI version will not be improved, and the work will be invested in developing a OpenMP version.

3.8 I D E N T I F I E D P RO B L E M S A N D D E C I S I O N S

The Surface Evolver, as explained above, is one of the solutions to the problem, but as a solution it

brings with it, as expected, new problems and challenges. One of the situations that we need to deal

with is the computational weight of such simulations. In more complex cases, the Surface Evolver

can take hours to calculate this same simulation, something completely unacceptable in a factory

environment.

Another problem arises from the parallel calculation used in Named Quantities, where sometimes

the result when running with multiple threads is inconsistent with the sequential version, which proves

that is not well implemented. One more time, this type of problem can not be acceptable in a business

environment, an application without consistent and trustful results, is an application that not does its

purpose.

The solution proposed is to parallelize the application. The strategy will depend almost exclusively

the result of Profiling SE, with the results and the analysis of what are really bottlenecks during run-

time, the way forward will be completely different. First it is necessary to understand if the application

is memory or CPU bound. Next is to realize if communication affects the overall performance. The

solutions are essentially in parallel using CPU or through the use of accelerators. In order to use

accelerators is necessary a further study of the application, because the impact of communication af-

fects the performance when using accelerators. What is gained in computing performance is often

lost only in communication. The ideal solution is, in many cases, to use a hybrid solution: pieces of

code run in parallel in the CPU while others run in the accelerator. When the goal is to run parts of

the application in Xeon Phi, and by its specificity, it is necessary a deeply study of the data structures.

As current Xeon Phi has 61 cores with 4 threads per core - which makes a total of 244 threads - this

architecture gives applications a breakthrough in computing power. But as L1 cache has only 32 KB

per core and 512 KB of L2 cache per core, in turn, requires some adaptation of applications to really

take advantage of this architecture, because the volume of data can not be very high due to the less

space of caches of each core.

After the profiling made and analyzed in this chapter, it was identified that the data structure based in

linked lists is a huge problem of Surface Evolver. This type of structure is a inhibitor of vectorization

24

3.8. Identified problems and decisions

and do not benefit a parallel version for multi-core CPU and many-core devices. To benefit of those

features and strategies is crucial to implement a data structure that works well in this context. The

choice was to implement a version of this data structure with static arrays. With this type of structure

the data will be contiguous in memory - very useful for vectorization - and the search for elements is

in constant time when using the index of each element. In addition to these improvements, arrays is

more used in the context of High Performance Computing because is easily implemented in parallel

version for multi-core CPU and many-core devices, unlike the linked lists that does not fit well in

CPU and accelerators approaches, because it brings many problems and in most cases it can not be

implemented for these platforms.

This software has years of development and probably several developers, increasing the complexity

of the application and unreadability code. The code is very large - above hundred of thousand lines

of code - and not very well commented and documented. This is a problem to take in account before

start implementing a new data structure, because the original version of data implement is present

in all application, so changes are required in all source code. As starting point, the application was

divided in three large stages: parsing, computation and graphic user interface (GUI). The heaviest

and more important stage is computation, so the focus of this work will be on the functions strictly

computational and calc force raises as good candidate to this work. It is a heavy function with three

large loops that iterates through all elements and fits in the intention of test vectorized loops with

new data structure based in static arrays and also a good case to run the loops in parallel on CPU and

many-core devices.

As mentioned earlier, the MPI version of the SE has some problems. After analyzing the applica-

tion code it has been decided that it was not worth the effort to rewrite this version, but work in a

completely new solution. It would be much more costly trying to work on a experimental version and

nothing stable, with only a few commented code, than starting a new version in which all decisions to

parallelize the software is already taken with knowledge of what is the application, therefore a specific

parallel version for SE: taking into account all types of data used, the size of the structures and target

architectures.

25

4

A N E F F I C I E N T I M P L E M E N TAT I O N

4.1 T E S T B E D E N V I RO N M E N T

Due the necessity of a Intel Xeon Phi device to perform some comparisons, the tests in this chapter

were run on a node with this type of device and have the following characteristics:

• 2 x Intel Xeon CPU E5-2670 v2 @ 2.50GHz

• 10 cores each with 2-way Hyper-Threading

• L1 cache per core: 32KB for instructions and 256 KB for data

• L2 cache per core: 256KB

• L3 cache per device: 25MB (shared for all cores)

• Advanced Vector Extensions (AVX)

• Intel Xeon Phi with 61 cores @ 1.238 GHz (total of 244 simultaneous threads)

• Main memory: 64GB

4.2 I M P ROV E M E N T S T O T H E A L G O R I T H M A N D DATA S T RU C T U R E S

To improve the efficiency of Surface Evolver - as already explained before - it was decided that the

best solution would be working on an array version of the data structure. In this way, the application

can take advantage of the vectorization and also the constant memory access to an element of the

array when needed. The first version of this implementation was built through running loops for all

the vertices, edges and faces and copy the elements data for the arrays. The loops would be done prior

to every iteration of calc force function. This process is extremely heavy and costly, which would

not bring great results in terms of efficiency. The choice for this approach was made because it was

the quickest way to implement and it would be important to take some initial results of using arrays

and make comparative tests with the linked lists version. All application depend on the linked lists -

27

Chapter 4. A N E F F I C I E N T I M P L E M E N TAT I O N

parsing input file, GUI and computation functions - thus also important to work with this first version

to determine which were the side effects of changing a complex data structure present throughout the

application execution. With the results obtained in this first version, it was easier to leave it for a

more robust version that does not imply copying the linked list content to arrays at every calc force

iteration.

The second and closer to the end version, to extend the functions of insert, remove and update of

application elements, thereby allowing each time a new element was added, removed or modified, to

happen at the same time in the new data structure, avoiding the weight of always copying the data

of linked lists for arrays on all calc force iterations. This modification is more efficient, readable and

logical to use in this specific situation.

The implementation of this version caused some problems in software functionality, making the

simulations not to end in both case studies. After some research work and code tests, some problems

have been discovered in the original implementation of the Surface Evolver. Contrary to what would

be expected, the Surface Evolver does not update the properties of the elements through functions

specific to it: the application has a get force function that returns the force of a element, but does not

have a function to update the force, i.e., a set force function. Along the code, whenever the force of an

element is updated, this is done by going directly to the element and not with a function, which makes

this complex work of changing the data structure more difficult, because all the code has to be revised

to find which functions are updating the force to make this also happen in the new data structure. This

caused problems in Surface Evolver functionality because the force was not conveniently maintained

in the two structures, requiring the rewriting of various functions that were not expected to be changed

in the first place. The next step was to find all the functions that were directly updating the value of

force to create the set function to update the force on both structures and, therefore, the application

is more consistent with good practices of programming. After all this work to find and change the

functions, the Surface Evolver was able to execute all the simulations without errors or problems with

outputs, giving consistent results.

After these changes, and according with vec-report that the ICC displays, some loops continued

without being vectorized. The reason has to do with the fact that some functions present within the

major loops that iterate the arrays, are still using elements present in the linked list. Despite the major

loops that run the vertices, edges and faces are in contiguous memory spaces, some functions used

inside the loop still use the original structure. This forced the rewriting of more functions were needed

to change the code in order to use only arrays inside the loops that run all the elements.

The original version with linked lists took, in all iterations of the application, 68 seconds to calculate

the force. Then, it will be shown a chart presenting the calc force execution times using the new

version of the data structure with arrays but still without vectorization.

28

4.2. Improvements to the algorithm and data structures

Figure 13.: Calculation force algorithm with new data structure but without vectorization - Slow case

In the sequential version with arrays, to calculate the force, Surface Evolver takes 67 seconds, only

one second less than the version with linked lists. The difference between them – in code terms –

refers to the fact that one is using arrays and the other one is using linked lists. In this chart it is not

possible to compare the two versions because the original version with linked lists is not prepared to

run in parallel, only sequentially, so this results are only for the new version with OpenMP version

implemented, but still without vectorization. It was expected to gain some performance with the

change of linked lists for arrays, because with arrays the access to an element is constant and not

linear O(n). But, in fact, this did not happen, instead only a minimum gain was identified, practically

insignificant. The expectation to increase performance goes to the vectorization and parallelization of

main loops, which is expected to bring more encouraging results.

After rewriting all these functions, the loops were finally vectorized and some simulations could be

executed to test if this vectorized version of the loops brings performance improvement. Meanwhile,

tests were done to identify possible false sharing between threads(Liu and Berger, 2010). False sharing

is a well-known performance issue on SMP systems, where each processor has a local cache. It oc-

curs when threads on different processors modify variables that reside on the same cache line and this

invalidates the cache line and forces a memory update to maintain cache coherency(Liu and Berger,

2010). This circumstance is called false sharing because each thread is not actually sharing access to

the same variable. Access to the same variable, or true sharing, would require programmatic synchro-

nization constructs to ensure ordered data access. To ensure data consistency across multiple caches,

multiprocessor-capable Intel processors follow the MESI (Modified/Exclusive/Shared/ Invalid) proto-

29

Chapter 4. A N E F F I C I E N T I M P L E M E N TAT I O N

col. On first load of a cache line, the processor will mark the cache line as ‘Exclusive’ access. As

long as the cache line is marked exclusive, subsequent loads are free to use the existing data in cache.

If the processor sees the same cache line loaded by another processor on the bus, it marks the cache

line with ‘Shared’ access. If the processor stores a cache line marked as ‘S’, the cache line is marked

as ‘Modified’ and all other processors are sent an ‘Invalid’ cache line message. If the processor sees

the same cache line which is now marked ‘M’ being accessed by another processor, the processor

stores the cache line back to memory and marks its cache line as ‘Shared’. The other processor that is

accessing the same cache line incurs a cache miss. There are some techniques to avoid this problem

of false sharing, one of them consists in adding a padding to the data structures of the elements of 64

bytes (a typical size of nowadays processors cache line), so that the different threads do not overlap

an element in the cache (Liu and Berger, 2010).

4.3 V E C T O R I Z AT I O N

A vector or SIMD enabled-processor can simultaneously execute an operation on multiple data operands

in a single instruction. An operation performed on a single number by another single number to pro-

duce a single result is considered a scalar process1. An operation performed simultaneously on N

numbers to produce N results is a vector process (N ¿ 1). This technology is available on Intel pro-

cessors or compatible, non-Intel processors that support SIMD or AVX instructions. The process of

converting an algorithm from a scalar to vector implementation is called vectorization2.

1 https://www.nersc.gov/users/computational-systems/edison/programming/vectorization/
2 https://computing.llnl.gov/?set=code&page=intel vector

30

4.3. Vectorization

Figure 14.: Comparison between with vectorization and without vectorization using dynamic scheduling - Slow
case

After finishing the vectorization of the three major loops, it is possible to have performance gains in

Surface Evolver. As seen in the chart, there was a gain of around 13%, and this is how a function, that

in this case study only takes 68 seconds running in original version with linked lists, can be considered

as a significant gain. With a case study needing more intense calculations of force it is expected that

vectorization still has a greater impact on application performance, bringing further improvements.

Although this case study only occupies 7% of the time to run the calc force, this function is compu-

tationally heavy as it is a function that gets called much less than the other exclusively computational

functions. And this is because the calculation of the force is only done at the end of each iterative

process, while the energy - for example - is calculated thousands of times in each of those iterations.

Still, is possible to see the improvements that vectorization brought to the Surface Evolver, without

looking for the parallel implementation. Vectorization improves performance because more opera-

tions are made to the same loaded data, thereby taking advantage of the AVX - these tests were run on

an Intel Xeon Processor E5-2695 containing AVX - using all loaded line of 256 bits. This is a major

reason for the change of linked lists to arrays, taking advantage of this line loaded by the Intel Xeon

processor. Is necessary that all the data is in contiguous memory locations, which does not happen

in the linked lists, because the data are scattered throughout the memory and, because of that, the

vectorization is not possible using linked lists.

In resume, Single Instructions Multiple Data (SIMD).

31

Chapter 4. A N E F F I C I E N T I M P L E M E N TAT I O N

4.4 S H A R E D M E M O RY O N M U LT I - C O R E

Another goal of this work with the Surface Evolver was to take advantage of parallelization and also

have improve performance through this way. With the original data structure, it was not possible

to take advantage of parallelization, for, among other things, the linked lists are unfriendly to cache.

Adjacent items in a list tend to be scattered in memory. With cache misses costing on the order of

100x a cache hit, this can be a significant performance issue. The specific problem with parallel

programming is that traversing a linked list is inherently serial.

With this in mind, it was also important to change the data structure for arrays to be able to paral-

lelize the loops. Thus, each iteration of major loops that run all the vertices, edges and faces, could

divide the array by multiple threads and thus run simultaneous work on the same array, which is ex-

pected to bring higher performance of those loops. With the paralellized loops iterating over the array

and the functions inside these same loops completely changed to the new structure, building the com-

bination of vectorization together with parallelization, brought interesting results when was measured

the performance of calc force function.

Again, it was not possible to get more out of parallelization because, in this case study, the function

that calculates the forces does not have an extremely high computational weight - that will be different

with other case studies - and so the overhead of creating threads and parallelization of loops, mitigates

the improvements with the parallelization. Still, the parallelization can bring positive results, although

not very efficient in a cold analysis of the parallel version.

Figure 15.: Comparison between dynamic and static scheduling with OpenMP - Slow case

32

4.5. Distributed memory to many-core

Once implemented and tested the version of OpenMP of calc force, tests were made with static

and dynamic schedules. Static schedule means that iterations blocks are mapped statically to the

execution threads. With static scheduling is that OpenMP runtime guarantees that if you have two

separate loops with the same number of iterations and execute them with the same number of threads

using static scheduling, then each thread will receive exactly the same iteration range in both parallel

regions. This is quite important on NUMA systems: if you touch some memory in the first loop, it

will reside on the NUMA node where the executing thread was. Then in the second loop the same

thread could access the same memory location faster since it will reside on the same NUMA node. On

the other hand, dynamic schedule uses the internal work queue to give a chunk-sized block of loop

iterations to each thread. When a thread is finished, it retrieves the next block of loop iterations from

the top of the work queue.

In this case, the dynamic scheduling has better performance results and that happens by the fact

that some threads receive less work to do, because several indices of the arrays are empty due to the

elimination of edges, vertices and faces by refinements or functions added by the end user of Surface

Evolver. As some threads have parts of the array that have less elements to work, they finish their

work faster and thus are available to work with other parts of the array. This does not happen in the

static scheduling, because each thread gets a percentage of specific work and in the end is still waiting

for all the other threads to finish without getting back to work again.

The dynamic schedule seems at the outset a very good solution for all cases, but this is not always

true. That is because the overhead of job switches between threads also has to be taken into account,

which also causes delays in computing. In the case of Surface Evolver, there is a slight gain because

there are some contiguous areas of the array that have enough unallocated elements making the trade-

off, between work reallocation overhead and threads always working, positive.

4.5 D I S T R I B U T E D M E M O RY T O M A N Y- C O R E

The development of this work with Surface Evolver also aims to implement a version in distributed

memory to many-core, namely the Intel Xeon Phi. With a software based in pointers, a version of Sur-

face Evolver in native mode was not in question because Intel Xeon Phi does not allow to copy structs

with pointers (Jeffers and Reinders, 2013) and, besides that, Surface Evolver has a lot of IO operations

that cannot be used in this type of platform(Corporation). With these informations, the solution used

for this version of Surface Evolver was a hybrid solution with large part of the application executed

in CPU device and calc force function in Intel Xeon Phi. As strictly computational function and with

the new structure with elements in arrays, calc force is the best fit for this tests with the accelerator of

Intel.

Before explain the offload version of calc force to Xeon Phi it is important to remind the algorithm

of the function.

33

Chapter 4. A N E F F I C I E N T I M P L E M E N TAT I O N

Figure 16.: Calc force function flow

To compute the function in Xeon Phi is mandatory to copy the necessary data to the device, in

this case the arrays of elements. Normally, this task of communication is the source of problems

with the applications executed in Xeon Phi due to the PCIe bus - explained in Chapter 2. To get

improvement of performance using this device is crucial to minimize data communications between

host and coprocessor to decrease the impact of the overhead of communications between devices.

Looking at the calc force, the way to avoid those large communication overheads is to copy all the

data in the beginning of the function to the coprocessor and copy data back to the host in the end

of all computation, but this is not possible due to the functions between the three major loops in

algorithm. To copy structs to Xeon Phi that must be bitwise copyable, and a struct is bitwise copyable

if it meets some conditions, such as: members are either scalars, arrays or aggregate members that

are themselves bitwise copyable, the size of the struct is the same between host and coprocessor or

the offset of each member is the same between host and coprocessor; and not bitwise copyable if:

contains a pointer, contains a bit-field, defines a virtual function, any of its base classes defines a

virtual function, contains a user-written constructor or copy constructor or contains a “static” data

member; the problem with those in-between functions is that they keep working with structs with

pointers and bit-fields to identify the type of element, not allowing to run those functions in Xeon Phi

(Jeffers and Reinders, 2013). The only computation present in calc force that can be executed in the

34

4.5. Distributed memory to many-core

accelerator is the three major loops because all the functions inside those loops are using the new data

structure and therefore are bitwise copyable.

In this case, the version of calc force for the Intel Xeon Phi was implemented in that way:

Figure 17.: Calc force function flow with directives to Xeon Phi

This implementation implies various communications between host and coprocessor, but due to the

original implementation of calc force function is the only way to maintain the functionality of Surface

Evolver.

In Intel Xeon Phi it is possible to use persistent data between offloads to maintain data in the

coprocessor and avoid the weight of communication between devices, useful to use when the data does

not change between offloads. This feature of persistent data cannot be used in this function because

some elements can be updated in between the major loops with the additional functions presents in

the code, implying the various send and receive of all arrays in every use of offload.

With this version implemented the execution times are:

35

Chapter 4. A N E F F I C I E N T I M P L E M E N TAT I O N

Figure 18.: Comparison tests with Xeon Phi version and dynamic schedule in CPU device

When implementation calc force in the MIC device, this degradation of performance was expected.

The overhead of communication is very high because the three arrays sent to the device have a very

large size and delays all the computation, resulting in a worst execution time when compared with the

version in arrays executed in CPU device. In computation terms, by the fact of this function has low

weight in this simulation, the overhead of creation of the threads do not compensate the use of this

type of device.

After some dig in the source of Surface Evolver to change the data structure, this results were - in

some way - expected by the implementation of this function, but this work was important to develop

a first version to run on MIC and take a real notion of the limitations in the architecture analyzing the

results. In conclusion, it was an important work for future improvements on the application.

36

5

I N T E G R AT E D A P P ROAC H

5.1 T E S T B E D E N V I RO N M E N T

To make a fair comparison, the tests in this chapter were run on the same computing node as the tests

of the original version of Surface Evolver presents on chapter 3. The node used has the following

characteristics:

• 2 x Intel Xeon CPU E5-2650 @ 2.00GHz

• 8 cores each with 2-way Hyper-Threading

• L1 cache per core: 32KB for instructions and 256 KB for data

• L2 cache per core: 256KB

• L3 cache per device: 20MB (shared for all cores)

• Main memory: 64GB

5.2 U N I F I E D DATA S T RU C T U R E

At same time of this work with calc force function, a work with another computational function

was developed by José Ricardo Ribeiro, namely with calc energy (Ribeiro, 2015). In that work,

another data structure was implemented in Surface Evolver to take advantage of vectorization, data

localization and heterogeneous platforms - as the work present in this dissertation - also based in static

arrays. The data structure implemented in that work has some similarities with the data structure

presented in this dissertation. The data was allocated in static arrays separated by type of element

and with the properties specific of each element, also with paddings to benefit the vectorization and

avoid problems with false sharing, previously explained. The major difference was in the variables of

control the last index inserted and the size of memory allocation, one approach with global variables

and other with all information inside the struct of element.

The two solutions were analyzed and discussed to came to the best solution to fit on Surface Evolver,

in terms of code maintainability, readability and performance. In performance both solutions are very

37

Chapter 5. I N T E G R AT E D A P P R OAC H

similar and therefore the choice was for the solution with better readability. The global variables to

control the size of memory allocation and number of elements stored were replaced to variables inside

the struct of each element and the structs were separated by type of element in files.

Each element has a file with the respective structs and functions to help on debugging and to avoid

mix the code related to data with functions that do not directly interact with data structures. This

was a problem with the original code, data structures of all elements and functions are mixed, which

does not help on understanding the way the data was structured, situation that delayed this work with

Surface Evolver.

Content of ds vertices.h file

#ifndef INIT_CAPACITY

#define INIT_CAPACITY 10000

#endif

typedef struct {

struct vertex val;

int index;

} Vertex_Node;

typedef struct {

int alloc_lista;

int alloc_indices;

int size_lista;

int size_indices;

Vertex_Node *lista;

int *indices;

} Vertices_List;

extern Vertices_List vertices_list;

void initVertices_List(Vertices_List *l);

void resetVertices_List(Vertices_List *l);

void setVertices_List(Vertices_List *l, int index, struct vertex val);

void unsetVertices_List(Vertices_List *l, int index);

To better maintain the code in future, this approach was followed to all elements.

This unified version of data structures resulted also in a version of Surface Evolver with calc force

and calc energy functions using the list of elements based in arrays. The two functions were also

adapted to the slight changes of the structures but only for the functions inside the three major loops,

that where the vectorization and parallelism can bring more efficiency to the code. This means that

in the functions between the loops the original data organization of Surface Evolver was maintained.

38

5.3. Results discussion

The relation between effort and possible gains in performance do not compensate the change of those

functions, taking in account the time frame to finish this changes in the software.

5.3 R E S U LT S D I S C U S S I O N

With this unified version with calc force and calc energy using the arrays, improvements in perfor-

mance are expected because in the case studies used in this work the function calc energy occupies

60% of the execution time and, when working with heavier functions, the weight of overhead in

parallelization will be less noticed.

Figure 19.: Execution time with OpenMP in the unified version - Fast case

With the two functions using arrays and not linked lists, the execution time of the application have

a considerable drop, even in the fast case. With sequential version - exemplified in graph with one

thread - the drop of execution is caused by the vectorization, so is possible to see the importance of

this feature. The results with OpenMP are not very positive, but this is explained with the overheads

caused by parallelization in a case that last a second to execute, so it is more vulnerable to those

overheads.

39

Chapter 5. I N T E G R AT E D A P P R OAC H

Figure 20.: Execution time with OpenMP in the unified version - Slow case

In slow case the vectorization result, also, in performance improvement. Grabbing the example of

four threads, the original version of Surface Evolver last almost seventeen minutes to execute, with

unified version this execution time drop to less than fourteen minutes. A significant improvement

achieved by the vectorization and parallelization of the major loops on both functions, calc force and

calc energy.

This is the average difference of times between original and unified version.

40

5.3. Results discussion

Figure 21.: Speedups with OpenMP in the unified version - Fast case

To compute the Amdahl’s Law curve of maximum speedup that can be achieved, the factor of

sequential code was 54%. This factor comes from the analysis of the call graph in fast case and the

knowledge of each parallelized function, resulting in 46% of parallel code.

As can be seen, from 16 threads the performance substantial decreases and this is due to the SMT

(Simultaneous Multi-Threading). These tests were executed in a node with two Intel Xeon with eight

cores each, so from 16 threads they are using the same core and therefore the same caches, resulting

in a degradation of performance.

The scalability of application is a little far of the maximum speedup given by Amdahl’s Law, but

this can be explained by the overheads of threads creation that are more noticed in an application that

executes in less that one second.

41

Chapter 5. I N T E G R AT E D A P P R OAC H

Figure 22.: Speedups with OpenMP in the unified version - Slow case

To compute the Amdahl’s Law curve of maximum speedup that can be achieved, the factor of

sequential code was 30%. In this test case, the percentage of parallel code is higher because other

functions are used that were updated with parallel loops, e.g. vertex average function.

The application scales very well until sixteen threads, always very close to the expected speedup

given by Amdahl’s Law. After the sixteen threads the same problem of SMT is noticed as seen in

the fast case, being more prevalent in this slow case because the data stored is a lot higher, mak-

ing the sharing of same caches between threads more critical and resulting in a high degradation of

performance.

The efficiency of parallelization can be considered high because the results obtained are close to the

expected in theorical maximum speedup, resulting in that way in a efficient parallel implementation.

In resume, the peak performance of Surface Evolver is with sixteen threads and automatically put

aside any execution that use SMT.

42

6

C O N C L U S I O N

Surface Evolver is an application with several years of development and with various developers,

where some obsolete development methodologies that do not help the code maintenance. Not using

functions to update some properties of elements is one of those cases, forcing the change dozens

of functions over the code to be more readable and easier to maintain in the future. It was not an

application developed with High Performance Computing in mind, and the linked lists are a good

example, fact that limits the application when is intended to take advantage of new features that

appear on processors. It was a long job to get into the code and understand some of the functions and

algorithms, but without this task it was impossible to change the data structures and rewrite functions.

This work with Surface Evolver can be analyzed from two different points of view: scientific con-

tribution and the results for the industry.

In the scientific point of view, the work ends with an extremely positive balance because it was pos-

sible to get results and analyses from vectorization, parallelization and many-integrated core devices.

In vectorization, it was possible to have a real perception that it is something that should be further

explored and looked carefully at the High Performance Computing field because it is a feature that

when it is possible to take advantage of it, greatly increases the efficiency of applications that require

a large computational weight. With the parallelization good results were also achieved, which were

noted speedups until the use of SMT. With this feature present in the Intel processor, performance

considerably drops, mainly because the two threads present in the same core share the same caches,

and this is most noticeable in an application like Surface Evolver where the need for loads and stores

is extremely high, working with a lot of data. With the accelerator from Intel, the Xeon Phi, this work

do not take performance increases, but it was possible to take good notes for future work with the

Surface Evolver, namely with the change of all data structure, which will drop the communication

between the host and the coprocessor, currently the largest limitation of the Intel Xeon Phi. This was

explained earlier in detail.

Still in the scientific field, it was possible to see which points to future explore in the Surface

Evolver. A change to the whole data structure is one of the strongest possibilities, to take advantage

of vectorization throughout the application and not only in calc force and calc energy. By the results

obtained, it was concluded that vectorization can greatly accelerate the application and so is the point

that should be explored. To be able to take advantage of vectorization, it is necessary to change all

43

Chapter 6. C O N C L U S I O N

linked lists into arrays, which will also make it possible to parallelize many more loops over the

application and not only the loops that were in the updated functions. As seen in the results obtained,

OpenMP was efficient and so it is also a point to explore as future work. With data structures in arrays

instead linked lists, it will be possible to use the Xeon Phi to offload the most computational parts of

the application - the 244 threads present in this device also can help increase application performance -

and also to use the Intel Math Kernel Library (MKL) to calculate some functions and reorder the mesh

of Surface Evolver. This purely mathematical library is highly optimized for this type of simulation

software and is therefore also a candidate to invest some work in the future.

The starting point for future work is to change all data structures to arrays, so that the application

can take advantage of three major ways explored in this work: vectorization, parallelization and accel-

erators. Change all data structures to arrays implies almost changing the entire application, updating

the parser that processes the input file, all the computational functions and even the graphical interface

of Surface Evolver, used to show the elements in the final of computation.

As this work was carried out in a collaborative project with the Bosch Car Multimedia, it is also

important to analyze the results from another point of view. For the industry, these results are positive

because there was a decrease of execution time maintaining the full functionality of the software.

These are the most important points to show, also the fact that several paths were left open for future

work and therefore the application can still be improved in the future.

44

B I B L I O G R A P H Y

L. Benabou, Z. Sun, and P.R. Dahoo. A thermo-mechanical cohesive zone model for solder joint

lifetime prediction. International Journal of Fatigue, Volume 49, 2013.

Hu Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn. MPIPP: An Automatic Profile-guided Par-

allel Process Placement Toolset for SMP Clusters and Multiclusters. international Conference on

Supercomputing (ICS), (c):353–360, 2006.

Intel Corporation. Is Intel Xeon Phi Coprocessor right for you?

Intel Corporation. A Guide to Vectorization with Intel R© C ++ Compilers. Intel Corporation, 2012.

Jianbin Fang, Ana Lucia Varbanescu, Henk Sips, Lilun Zhang, Yonggang Che, and Chuanfu Xu. An

Empirical Study of Intel Xeon Phi. arXiv preprint, (Section III):137–148, 2013.

Leslie Greengard, Kenneth L. Ho, and June-Yub Lee. A fast direct solver for scattering from periodic

structures with multiple material interfaces in two dimensions. Journal of Computational Physics,

258:738–751, 2014.

Shoho Ishikawa, Hironori Tohmyoh, Satoshi Watanabe, Tomonori Nishimura, and Yoshikatsu Nakano.

Extending the fatigue life of pb-free sac solder joints under thermal cycling. Microelectronics

Reliability, Volume 53, 2013.

Jeffers and Reinders. Intel Xeon Phi Coprocessor High-Performance Programming. Morgan Kauf-

mann, 2013.

Seid Koric, Qiyue Lu, and Erman Guleryuz. Evaluation of massively parallel linear sparse solvers on

unstructured finite element meshes. Computers and Structures, 141:19–25, 2014.

Bo Li, Hung-ching Chang, Shuaiwen Leon Song, Chun-yi Su, Timmy Meyer, John Mooring, Kirk

Cameron, and Virginia Tech. The Power-Performance Tradeo ff s of the Intel Xeon Phi on HPC

Applications. Parallel Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE Inter-

national, pages 1448–1456, 2014.

Tongping Liu and Emery D Berger. Sheriff : Detecting and Eliminating False Sharing. Science, pages

1–11, 2010.

Murat Manguoglu. A domain-decomposing parallel sparse linear system solver. Journal of Computa-

tional and Applied Mathematics, 236:319–325, 2011.

45

Bibliography

Rolf Rabenseifner. Hybrid Parallel Programming on HPC Platforms. 5th European Workshop on

OpenMP, pages 185–194, 2003.

José Ricardo Ribeiro. Improving the performance of liquid surfaces modelling in multicore devices.

Master’s thesis, University of Minho, 2015.

Marcin Sieniek. Fast graph transformation based direct solver algorithm for regular

three dimensional grids. 14th International Conference on Computational Science, 2014.

doi:10.1016/j.procs.2014.05.092.

Z. Sun, L. Benabou, and P.R. Dahoo. Prediction of thermo-mechanical fatigue for solder joints in

power electronics modules under passive temperature cycling. Engineering Fracture Mechanics,

Volume 107, 2013.

Hari Sundar, Rahul S. Sampath, Santi S. Adavani, and George Biros Christos Davatzikos. Low-

constant parallel algorithms for finite element simulations using linear octrees. University of Penn-

sylvania, Philadelphia, PA, 2007. Tech Report.

Tiankai Tu and David R. OHallaron. Balance refinement of massive linear octrees. Carnegie Mellon

University, Computer Science Department, 2004. Tech Report.

Karthikeyan Vaidyanathan, Kiran Pamnany, Dhiraj D Kalamkar, Alexander Heinecke, and Mikhail

Smelyanskiy. Improving Communication Performance and Scalability of Native Applications on.

pages 1083–1092, 2014.

Chenhan D. Yu and Weichung Wang. Performance models and workload distribution algorithms for

optimizing a hybrid cpu–gpu multifrontal solver. Computers and Mathematics with Applications,

67:1421–1437, 2014.

Q.K. Zhang and Z.F. Zhang. Thermal fatigue behaviors of sn–4ag/cu solder joints at low strain ampli-

tude. Materials Science and Engineering: A, Volume 580, 2013.

46

Part I

A P E N D I C E S

49

Appendix A. C A L L G R A P H

A
C A L L G R A P H

Figure 23.: General view of Profiling the slow case

50

B
P RO F I L E R S U S E D A N D S O F T WA R E V E R S I O N S

The profilers used were gProf and Valgrind Tools - Valgrind, Callgrind and PAPI counters.

The versions of software used were:

• GCC - Version 4.9

• Intel Composer 2013 SP1 (package 2013.1.117)

• ICC - Version 13.0.1

• gProf - Version 2.20.51.0.2-5.34.el6

• Valgrind - Version 3.8.1

• Level 3 of optimization

51

C
E X P E R I M E N TA L S E T U P

In chapter 3 and 5 were used one node with:

• 2 x Intel Xeon CPU E5-2650 @ 2.00GHz

• 8 cores each with 2-way Hyper-Threading

• L1 cache per core: 32KB for instructions and 256 KB for data

• L2 cache per core: 256KB

• L3 cache per device: 20MB (shared for all cores)

• Main memory: 12GB

In chapter 4 were used one node with the following characteristics and with one Intel Xeon Phi

device:

• 2 x Intel Xeon CPU E5-2670 v2 @ 2.50GHz

• 10 cores each with 2-way Hyper-Threading

• L1 cache per core: 32KB for instructions and 256 KB for data

• L2 cache per core: 256KB

• L3 cache per device: 25MB (shared for all cores)

• Main memory: 12GB

These node has two Xeon processors with Intel Hyper-Threading functionality capable of support-

ing two virtual threads in hardware. Memory accesses are not uniform in these 2 processors (NUMA).

53

Appendix C. E X P E R I M E N TA L S E T U P

C.1 N O D E T O P O L O G Y

Figure 24.: Topology of used node

As mentioned, there are 2 NUMA Nodes, each one with half of the Main Memory available and each

core has its own L1 and L2, with a shared L3 for all cores of each processor. This have a great impact

on Memory and Processor Affinity since Processor Units from one NUMA Node often needs to access

data from the other Node. Another impact is the cache conflicts that Hyper-Threading causes in L1

and L2 since these caches are shared by the 2 hardware threads.

54

D
S P E E D U P A N D E F F I C I E N C Y

Speedups were calculated for each scalability test performed according to:

Sp = T1
Tp

where:

• S is the speedup

• p is the number of processors

• T1 is the execution time of the sequential algorithm

• Tp is the execution time of the parallel algorithm with p processors

Also, to evaluate the maximum speedup we can obtain, we calculate according to Amdahl’s Law:

Sp = 1
B+ 1

n (1−B)

where:

• S is the speedup

• p is the number of processors

• n is the number of threads of execution

• B ∈ [0, 1] is the weight of the sequential part of the algorithm

Another performance metric used - Efficiency - was computed to estimate how well-utilized the

processors are in the execution of the program.

Ep =
Sp
p = T1

pTp

where:

55

Appendix D. S P E E D U P A N D E F F I C I E N C Y

• E is the efficiency

• p is the number of processors

• S is the speedup

• T1 is the execution time of the sequential algorithm

• Tp is the execution time of the parallel algorithm with p processors

56

Projeto HMIExcel (no 36265/2013 (Projeto HMIExcel - 2013-2015))

	Contents
	1 Introduction
	1.1 Context
	1.2 Motivation & Goals
	1.3 Contribution
	1.4 Dissertation outline

	2 High Performance Computing
	2.1 Heterogeneous Computing Platforms
	2.2 Vectorization
	2.3 Accelerators
	2.3.1 MIC - Intel Xeon Phi

	3 Modelling the liquid surface
	3.1 Surface Evolver
	3.2 Testbed environment
	3.3 Profiling the sequential code
	3.4 Force calculation
	3.5 Data structures
	3.6 A shared memory implementation
	3.7 A distributed memory implementation
	3.8 Identified problems and decisions

	4 An efficient implementation
	4.1 Testbed environment
	4.2 Improvements to the algorithm and data structures
	4.3 Vectorization
	4.4 Shared memory on multi-core
	4.5 Distributed memory to many-core

	5 Integrated approach
	5.1 Testbed environment
	5.2 Unified data structure
	5.3 Results discussion

	6 Conclusion
	Apendices
	A Call graph
	B Profilers used and software versions
	C Experimental Setup
	C.1 Node topology

	D Speedup and Efficiency

