
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Marina Machado

MODUS
Generation of Interfaces based on Models

October 2015

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Marina Machado

MODUS
Generation of Interfaces based on Models

Master dissertation
Master Degree in Computing Engineering

Dissertation supervised by
Supervisor José Creissac Campos
Co-supervisor Rui Couto

October 2015

Acknowledgements

With a few words, I wish to express my gratitude to everyone who helped and motivated
me throughout the completion of this thesis.

• To my supervisor, José Creissac Campos, and co-supervisor, Rui Couto, who always
helped me with both constructive criticism and friendly advices. For their availability
during the time passed and the share of their honest opinions on the issues faced.

• To Carlos, Damien, Dário, David, Hugo, Miguel, Nuno, Paulo, Ramon and Tiago who
contributed to my project. For their precious help without which I couldn’t get the
results I needed.

• To my family who kept on motivating me during the thesis completion. For the strength
they gave me to face all challenges, and all their love and caring.

• To all my friends who always gave me a smile when I most needed it and supported me
all the way throughout this year.

My most sincere and deepest gratitude.

i

Abstract

Nowadays the user interface is essential for making a successful application. However,
implementing a well thought interface requires a lot of time and effort. Advances have been
made for user interface development tools, but they require the explicit identification of every
interface element, not solving the issue.

Model-based methodologies have been proposed as a possible solution. To decrease de-
velopment costs, they reuse some artefacts, in this case models, of the application’s develop-
ment to automatically generate the user interface. The generation process should, however,
have a high level of automation to efficiently resolve the problem. Yet, in model-based ap-
proaches, this requires the use of detailed interface models, leading to an irregular interface
development process.

Following that concept, this dissertation explored an automatic creation process directly
based on structural models of the business logic, based on two main premises. First, for
specific domains, the interface can be generated from a description of the application data.
The identification of the domain replaces the need for including the interface models. Second,
the description is to be made in Unified Modeling Language, known as UML, where the class
diagram plays a key role.

The objective was to develop an Eclipse plugin MODUS (MOdel-based Developed User
Systems) to support the approach. It allows the generation of the application’s user inter-
face from its UML descriptions. Unlike other existing tools, MODUS promotes the iterative
refinement of the generated interfaces by exploiting the separation between the content and
form of the interface. Thus leading to the particular interest in browser based Web applica-
tions.

Once the plugin was built, tests were conducted to conclude about the viability of the
methodology. On the one hand, a survey based analysis was performed to study both validity
and efficiency of the MODUS approach itself. On the other hand, a case study was used to
evaluate the generated user interfaces, examining the degree of correctness, precision and
completion that can be achieved using the approach.

Keywords: Automated user interface design, Model-driven engineering, Model-Based User
Interface Development

ii

Resumo

Atualmente a interface de utilizador é essencial para o sucesso de uma aplicação, no
entanto a implementação de uma interface ponderada e correta requer muito tempo e esforço.
Avanços foram feitos ao nı́vel das ferramentas de desenvolvimento de interfaces, contudo
exigem a identificação explı́cita de cada elemento da interface, não resolvendo o problema.

Metodologias baseadas em modelos têm sido propostas como uma solução possı́vel. Para
diminuir os custos de desenvolvimento, reutilizam alguns artefactos do desenvolvimento da
aplicação, neste caso modelos, para gerar automaticamente a interface do utilizador. O pro-
cesso de geração deve, no entanto, possuir um elevado nı́vel de automação para solucionar efi-
cientemente o problema. Ora, nas abordagens baseadas em modelos seria necessário utilizar
modelos de interface detalhados, conduzindo a um processo irregular do desenvolvimento da
interface.

Seguindo essa ideologia, a dissertação explorou um processo de criação automático fo-
cado diretamente em modelos estruturais da lógica de negócio, baseado em duas premissas
principais. Em primeiro lugar, para domı́nios especı́ficos, a interface pode ser gerada a partir
de uma descrição dos dados da aplicação. A identificação do domı́nio substitui a necessidade
de incluir os modelos de interface. Em segundo lugar, a descrição deve ser feita em Unified

Modeling Language, conhecido por UML, onde o diagrama de classe desempenha um papel
fundamental.

O objetivo foi desenvolver um plugin do Eclipse MODUS (MOdel-based Developed User

Systems) o qual sustenta a abordagem, permitindo a geração da interface apropriada a partir
das descrições UML da aplicação. Ao contrário de outras ferramentas existentes, MODUS

promove o refinamento iterativo das interfaces geradas, tirando partido da separação entre o
conteúdo e a forma da interface. Apresentando assim um interesse particular em aplicações
Web baseadas em browsers.

Uma vez o plugin estabelecido, foram realizados testes de forma a concluir sobre a viabil-
idade da metodologia. Por um lado, uma análise baseada num inquérito foi estabelecida para
estudar a validade e a eficácia da abordagem MODUS. Por outro lado, um caso de estudo
foi usado para avaliar as interfaces de utilizador geradas, examinando o grau de correção,
precisão e cumprimento que pode ser conseguido utilizando a abordagem.

Palavras Chaves: Desenvolvimento automático de interfaces, Model-driven engineering,
Model-Based User Interface Development

iii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Document Structure . 4

2 User Interfaces 6
2.1 User Interface Generation Tools . 6
2.2 Models and User Interfaces . 9

2.2.1 Model Driven Engineering . 10
2.2.2 Model-Based User Interface Development 11
2.2.3 MBUID Development Tools . 13
2.2.4 Related Model Based Tools . 15

2.3 Application Domains in Web User Interfaces 16
2.3.1 The Forum Type . 19
2.3.2 The Blogging/Magazine Type . 20
2.3.3 The Advertisement/Product Placement Type 21
2.3.4 The eCommerce Type . 22

2.4 Conclusion . 23

3 The MODUS Approach 24
3.1 The Conceptual Approach . 24
3.2 The Front End Resources Configuration . 26
3.3 The Business Logic Model Analysis . 27
3.4 The Generic User Interface Deduction . 28
3.5 The User Interface Definition . 29
3.6 The Final User Interface Generation . 30
3.7 Conclusion . 30

4 The MODUS Prototype 32
4.1 The Prototype Architecture . 32
4.2 The Ecore Model Extraction . 33
4.3 The Standard Classes Identification . 36

iv

CONTENTS

4.4 The CSS Framework Manipulation . 39
4.5 The Content and Navigation Map Interpretation 42
4.6 The UI Intermediate Components Creation 46
4.7 The FUI Generation . 49
4.8 Conclusion . 50

5 Operating the MODUS Prototype 52
5.1 Starting the MODUS Tool . 52
5.2 Initializing the MODUS Project . 53
5.3 Confirming the Standard Classes Association 55
5.4 Manipulating the Content and Navigation Map 55
5.5 Managing Display Modes . 56
5.6 Managing Layout Sections . 58
5.7 Opening the Final User Interface . 59
5.8 Conclusion . 60

6 Testing the MODUS prototype 61
6.1 The Assumptions Validation . 61

6.1.1 The Study . 61
6.1.2 Setup of the Study . 62
6.1.3 Study Results . 63

6.2 The Survey Tests . 65
6.2.1 The Efficiency Results . 66
6.2.2 The Usability Results . 67
6.2.3 Threats to Validity . 67
6.2.4 Identifying the Levels of Automation 69

6.3 The Case Study Analysis . 69
6.3.1 Identifying the Levels of Automation 69
6.3.2 Understanding the Class Diagram 70
6.3.3 The ”Manual” User Interface Generation 70
6.3.4 The ”Fully Automated” User Interface Generation 73
6.3.5 The ”Partially Automated” User Interface Generation 73
6.3.6 Comparing the Case Study User Interfaces 76

6.4 Conclusion . 78

v

CONTENTS

7 Conclusion 79
7.1 Discussion . 79
7.2 Future Work . 81

Appendices 83
A.1 The Survey Standard Attributes Questionnaire 83
A.2 Survey Standard Classes Relationship Patterns 84
A.3 User Interfaces Generated for the Case Study 87

Bibliography 98

vi

List of Figures

2.1 Bridge between the representation of the UI Software Components (based on
Myers [1994b]) and the web interface development 7

2.2 V-model of the Systems Engineering Process [Osborne et al., 2005] adapted
to MDE . 10

2.3 The 4 Steps of the MBUID approach . 12
2.4 Examples of compliant/similar websites (cropped printscreens) 17
2.5 Examples of Forum web applications . 19
2.6 Examples of Blogging/Magazine web applications 20
2.7 Examples of Advertisement/Product Placement web applications 21
2.8 Examples of Blogging/Magazine web applications 22

3.1 Overview of the Approach Process . 24
3.2 Simplified representation of the Style Definition Mappings 26
3.3 UML state machine diagram of the association process between an entity and

a standard class . 27
3.4 Simplified representation of a View in MODUS 29

4.1 Overview of the Prototype Architecture . 33
4.2 Example of a UML class diagram of a eCommerce web application 34
4.3 UML class diagram for the ecore model extraction 35
4.4 Brief description of the Pure Inference Algorithm 37
4.5 Brief description of the Mixed Inference Algorithm 37
4.6 UML class diagram for the standard class association process 38
4.7 UML class diagram for the style definition interpretation process 42
4.8 Example of the content and navigation map (fragment) 44
4.9 Sequence diagram of the content and navigation map update 45
4.10 Evolution of a display mode in the MODUS prototype 49

5.1 Eclipse print screen - Starting the MODUS tool 52
5.2 Eclipse print screen - Error marking in ecore file 53
5.3 The MODUS tool : Project Setup . 53
5.4 Preview of a Mockup generated using MODUS (incomplete) 54
5.5 The MODUS tool : Domain Association . 55

vii

LIST OF FIGURES

5.6 The MODUS tool : Content and Navigation Map Manipulation 56
5.7 The MODUS tool : Display Modes Management 57
5.8 Preview of the display mode ”new” for the entity ”Address” 58
5.9 The MODUS tool : Layout Sections Management 58
5.10 The MODUS tool : Final User Interface . 59
5.11 The MODUS tool : Final User Interface . 60

6.1 Representation of the Address Pattern 64
6.2 User interfaces generated for the case study : Homepage View 77

1 Representation of the Product Pattern 84
2 Representation of the Order Patterns 84
3 Representation of the Category Pattern 84
4 Representation of the Shopping Cart Patterns 85
5 Representation of the Comment Pattern 85
6 Representation of the User Pattern . 85
7 Representation of the Address Pattern 86
8 User interfaces generated for the case study : Homepage View 87
9 User interfaces generated for the case study : Category View 88
10 User interfaces generated for the case study : Search View 89
11 User interfaces generated for the case study : Product View 90
12 User interfaces generated for the case study : Log In View 91
13 User interfaces generated for the case study : Sign In View 91
14 User interfaces generated for the case study : My Cart View 92
15 User interfaces generated for the case study : My Settings View 92
16 User interfaces generated for the case study : Checkout View 93
17 User interfaces generated for the case study : My Addresses View 94
18 User interfaces generated for the case study : My Orders View 94
19 User interfaces generated for the case study : My Profile View 95
20 User interfaces generated for the case study : FAQ View 95
21 User interfaces generated for the case study : About View 96
22 User interfaces generated for the case study : Contact View 96
23 User interfaces generated for the case study : My Wishlist View 97

viii

List of Tables

4.1 Description of the attributes in the Content and Navigation Map 43
4.2 Data attributes that define the layout sections templates 46
4.3 Data attributes that define the display modes templates 47

6.1 Percentage of use of each main entity in the modelings 64
6.2 Percentage of use of each attribute of the Order entity 65
6.3 Average Answers to Efficiency Questionnaire 66
6.4 Average Answers to the PSSUQ Items applied to the Survey 68
6.5 Number of CSS code lines complementary of the Bootstrap Framework . . . 71
6.6 Number of HTML code lines of the user interface 72
6.7 Content and Navigation Map Updates . 74
6.8 Number of updated code lines in display modes 75
6.9 Number of updated code lines in display modes 76

ix

List of Listings

4.1 Types of facts of the Prolog ontology . 36
4.2 Examples for facts of the Prolog ontology (based on 4.2) 36
4.3 An example of a relationship pattern in Prolog 37
4.4 DTD of the style definition document . 40
4.5 Style definition file for the ”squared” value of the overall radius 41
4.6 Example of a template for a bottombar layout section 48
4.7 Example of a template for a Category display mode 48
1 The Survey Standard Attributes Questionnaire 83

x

List of Acronyms

AUI Abstract User Interface. 12, 14

CRUD Create Read Update Delete. 2, 3, 13, 15

CSS Cascading Style Sheets. 8, 26, 32, 39, 40, 41, 46, 50, 53, 54, 71, 73, 76, 79, 81, 82

CUI Concrete User Interface. 12

DOM Document Object Model. 46, 47

DTD Document Type Definition. 40, 41

FUI Final User Interface. 12, 14, 25, 30, 31, 32, 33, 45, 48, 49, 50, 53, 54, 64, 70, 71

GUI Graphical User Interface. 1, 8, 45, 54

HTML HyperText Markup Language. 7, 45, 46, 48, 49, 50, 59, 71, 72, 73, 75, 76, 81

IDE Integrated Development Environment. 34, 44, 52, 55, 57, 75, 80

IFML Interaction Flow Modeling Language. 28, 82

MBUID Model-Based User Interface Development. 3, 11, 12, 13, 14, 15, 23

MDE Model Driven Engineering. 3, 4, 9, 10, 11, 13, 15

PaaS Platform as a System. 15

PSSUQ Post-Study System Usability Questionnaire. 67, 78

UI User Interface. 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 24, 25, 26, 28, 29, 30, 31, 32,
33, 41, 44, 49, 50, 52, 53, 55, 59, 66, 67, 70, 71, 73, 76, 78

UML Unified Modeling Language. 3, 4, 5, 24, 28, 33, 36, 41, 50, 52, 62, 63, 66, 80

WUI Web User Interface. 7, 8, 9, 16, 24

WYSIWYG What You See Is What You Get. 3, 8, 15

xi

List of Acronyms

XMI XML Metadata Interchange. 33

XML EXtensible Markup Language. 33, 38, 39, 41, 44, 50

xii

Chapter 1

Introduction

”Design can be art. Design can be aesthetics. Design is so

simple, that’s why it is so complicated.”

Paul Rand

1.1 Context
The first computers created were meant to complete difficult tasks in an efficient way.

The user interface was not a relevant asset, as they were used by trained technicians. Since
their appearance a lot of time has passed. From mechanical switches, punch cards, command
lines and the first Graphical User Interface (GUI) created, computers suffered a huge evolu-
tion. Nowadays, not only computers, but technology in general, is accessible to a diversified
audience, from different cultures, professions, economic backgrounds, and so on. People are
accustomed to using technology in their daily life.

The User Interface (UI) encompasses all aspects which allow the users to relate to an
application. They can see, listen and even touch the user interface, depending on it to com-
municate with the application [Myers et al., 2000]. The UI became one of the decisive factors
of the future of any application, would it be Desktop, Mobile, Web or even Hybrid. There-
fore, it should better reflect human-machine communications, enabling a more comfortable
interaction.

Studies carried out in the 1980’s and 1990’s have shown the that almost 50% of the de-
velopment effort was dedicated to the UI [Mittal et al., 1986; Bobrow et al., 1986; Myers
and Rosson, 1992]. User interfaces have kept increasing in complexity and features, requir-
ing innovative development solutions. These new challenges hamper the interface creation
process. In fact a huge amount of time is still spent in designing, implementing and main-
taining the UI. Moreover, web applications pose a particular challenge given their distributed,
dynamic and heterogeneous nature, respectively, in terms of browser and server code archi-
tecture, code generation (which involves interface aspects such as responsive design) and of
programming language for the code implementation.

A lot of effort was invested in the creation of user interface development tools, in order
to accelerate and facilitate the generation process. Currently, a rather diversified set of tools

1

1.2. MOTIVATION

exist. The UI development tools can be classified in many ways, according to their method-
ology, features, among others. However, in most of those categories, the tools need a detailed
specification of the user interface elements. Generation processes based exclusively on these
approaches remains still a time consuming process [Myers, 1992, 1994b; Myers et al., 2000;
Kennard and Steele, 2008].

A model-based approach may be the key to create the application’s UI in a fast and effi-
cient way. Model-based tools stand out by reducing the time spent in the implementation of
user interfaces. They use models, created in the first steps of development, to build the UI
[Myers, 1992, 1994b; Myers et al., 2000], thus reusing previous development efforts. Above
all, these tools allow a certain degree of automation in the generation process, as seen in
Model-Driven Engineering [Mohagheghi and Dehlen, 2008].

1.2 Motivation
The user interface is an essential asset of the application. Nonetheless, spending half of

the software development time in the UI is not a viable solution [Mittal et al., 1986; Bobrow
et al., 1986; Myers and Rosson, 1992]. Graphical Designers should dedicate their attention
to building a creative and unique design for the application. Instead, they tend to spend large
amounts of time repeatedly building the same layout for each UI they develop. Any form
of automation will be profitable, and model-based tools do provide a certain degree of au-
tomation. The inclusion of automation is even more relevant if it leads to the creation of high
quality user interfaces. Programmers, despite their small experience or little knowledge in
user interface design, could rely on the system’s implementation to build strong foundations
for the UI, supporting a usable way of communicating with the user [Myers, 1992, 1994b;
Myers et al., 2000].

Despite their unique advantages, model-based tools did not become a standard in the
generation of user interfaces. UIDE [de Baar et al., 1992], HUMANOID [Szekely et al.,
1993] and MECANO [Puerta et al., 1994] are examples of highly automated tools, focused on
the creation of applications with a Create Read Update Delete (CRUD) based interface. The
UI created with these tools are, however, limited in terms of Look & Feel, being composed
of simple widgets, and restricted to basic operations of insertion, edition and so on. Due to
the level of automation and the generalization of the creation process, the user interfaces end
up following the same structure, leaving little space for diversity. In general, model-based
tools with a high degree of automation are criticized for having a weak integration with the

2

1.3. OBJECTIVES

software development process. First, these tools tend to have problems in integrating the
creative process of the designers. This usually has a negative impact on the quality of the
UI [Molina, 2004]. Second, the models used tend to diverge from the business logic models
used in model driven approaches, raising coordination and productivity problems [Meixner
et al., 2011; Meixner and Calvary, 2014]. Some model-based tools try to address these issues
by lowering their level of automation, such as MARIAE [Paterno, 1999] and TERESA [Berti
et al., 2004]. In these tools, the developer has to manually add auxiliary information about the
models to compensate the loss in automation. The process of designing the models becomes
even more complex and time consuming [Meixner et al., 2011].

Over time, the model-based tools have evolved into platforms developed in the soft-
ware industry. In other words, tools adopting some of the more established concepts of this
paradigm were created. Nonetheless, these tools were intended to satisfy specific needs of the
developers. Examples are Outsystems [Resources, 2011] and Integranova Solutions [2005].
Outsystems aims to increase the productivity of the developers. Though it can create user in-
terfaces from a database model, the level of automation may be low, being the UI built within
a What You See Is What You Get (WYSIWYG) editor. The Integranova platform aims the
creation of all layers of the application: database, business and presentation. It generates a
CRUD based UI with a high level of automation, with no possibility of improvement during
the user interface creation.

A model-based approach that could balance the level of automation with the appeal of
the UI could be a solution for the development costs problem. The system models should be
the basis for the automation process, assuring solid foundations for the user interface. The
intervention of the developer shouldn’t impact the degree of automation. Instead, it should
benefit the quality of the UI by integrating the designer’s creative mind.

1.3 Objectives
This dissertation presents an approach for the automated generation of user interfaces.

Supported by the principles of Model Driven Engineering (MDE) and Model-Based User
Interface Development (MBUID), the proposal is to create the UI by resorting to the system’s
Unified Modeling Language (UML) descriptions. A high level of automation is assured by
complementing the model with the identification of the application domain.

The dissertation approach is supported by the ”MODUS” (MOdel-based Developed User
Systems) tool, implemented as an Eclipse [Foundation, 2001] plugin. In the context of model-

3

1.4. DOCUMENT STRUCTURE

based user interface generation, the approach proposes the following list of contributions:

• By focusing on browser based Web applications, it exploits the separation between
the definition of the content and form of the user interface. Such exploitation enables
the generation UI ”skeletons”, which can be personalized by designers. Therefore,
promoting the iterative refinement of the generated interfaces. Since the goal of the
approach is focused on developing an interface independently of any technology of
the business logic layer, this separation can allow future integration with back end
implementation.

• It is centered around one structural model of the system, a class diagram in UML
[Fowler, 2003]. By definition, the class diagram states all classes and respective rela-
tions required to develop the system, being essential in a MDE context. This model
is a suitable choice for this approach, since its composing entities are decisive in the
application’s content, being specific to it.

• Defining the application domain beforehand limits the need to resort to additional mod-
els. This enables a substantially more automated generation process. Indeed, for the
same domain, it can be observed that user interfaces tend to be similar in navigation,
structure and visual components.

• The concept of Evolutionary Prototyping [Davis, 1992] plays a key role in the method-
ology. The users of the tool can manipulate the result at any stage of the generation
process, hence refining the final interface. Due to its iterative nature, the generated
interface can be further manipulated, in order to comply with a greater number of user
requirements.

• It supports the definition of a number of interface appearance details, such as: front end
frameworks, responsive design for different devices, templates, among others. This
way, the user has greater control over the visual appearance of the final result.

1.4 Document Structure
The thesis document is composed of the following chapters:
Chapter 1, the current one, is an introductory chapter. It was dedicated to presenting the

context, motivation and objectives of the theme, thus introducing the main premises of the
dissertation.

4

1.4. DOCUMENT STRUCTURE

Chapter 2 explores the model-based approach in the field of user interface generation.
The chapter presents all relevant concepts of automatic generation based on models, serving
as the foundation of the proposed approach. It identifies some important tools fitting the
context of this work, providing some concrete examples. Besides reviewing model-based
approaches, it studies the application domain as a categorization for web applications.

Chapter 3 presents the MODUS conceptual process. It defines each step and procedure
that compose the approach, ideally analyzing both advantages and disadvantages within the
context of the generation of user interfaces. This conceptual approach will allow to establish
the main lines for the development of a reference implementation.

Chapter 4 features the implementation of the MODUS prototype. By developing each
stage of the approach, this chapter allows to validate the choices established in the Chapter
3. Concretely, it specifies what data formats to use, how to extract relevant information,
manipulate it and generate the output.

Chapter 5 covers simulations on the MODUS prototype from a case study example. This
chapter presents, step by step, the instructions on how to obtain the desired user interface
from a UML model.

Chapter 6 tests the MODUS prototype, through the analysis of a case study example
and a survey. With the results obtained, it studies the impact of the automatic generation
of interfaces based on a singular system model. This chapter mainly intends to validate the
approach, discussing the contributions of the MODUS approach in creating a consistent and
correct user interface.

Finally, Chapter 7 debates the impact of automatic generation of interfaces based on mod-
els. This chapter discusses the obtained results, withdraw conclusions, and explore future
work.

5

Chapter 2

User Interfaces

”I have this hope that there is a better way. Higher-level

tools that actually let you see the structure of the software

more clearly will be of tremendous value.”

Guido van Rossum

The user interface of an application manages the output displayed to the user as well as the
user’s input. It includes everything that is designed into the software to enable the interaction
between the person and the machine. Which means every interface object that can be seen,
heard or touched trough the application. Being the only means of communication with the
user, it becomes one of the most important aspects of the application. Programs with a poor
UI are difficult to operate, learn, remember, hence failing in human interaction. Thus a good
application should be supported by a strong user interface.

Building a strong UI, in other words a usable, responsive and beautiful interface, is a com-
plex task. Despite the existence of usability design principles, such as [Nielsen, 1993], there
is no standard technique that will guarantee the success of a user interface. Furthermore, as
the time passes, the user interfaces become easier to use and understand, being more complex
to build. They are complemented with an increasing number of elements to provide a more
comfortable interaction with the user, such as run-time validation or help messages in UI
forms [Myers, 1994a; Cerny et al., 2012]. Besides, not only creating the application’s UI is a
difficult task, it is also a long process. Studies have showed that the average time dedicated to
the user interface can reach near 50% of the application’s code development time [Schlung-
baum and Elwert, 1996; Kennard and Steele, 2008; Cerny et al., 2012]. Consequently, it is
not surprising that developers wished to accelerate and facilitate UI development.

2.1 User Interface Generation Tools
Researchers worked hard to find a solution for an efficient UI development, inventing

the user interface generation tools. As the name suggests, these tools create or help in the
creation of the application’s interface. Their main goal is to make the process of developing
user interfaces easier, faster and cheaper, while ensuring the quality of the UI produced.
Although each user interface is unique in terms of graphical details, such as color patterns,

6

2.1. USER INTERFACE GENERATION TOOLS

visual design, among others, in general (either on different platforms or devices) they tend to
follow patterns, having a familiar appearance and a similar mode of operation. Due to this
homogeneity, user interface generation tools were able to refine their work, reaching a high
level of sophistication.

Different layers of UI software components exist to create the user interface of an applica-
tion. Understanding these layers is essential to debate what the advantages and disadvantages
of the various levels of abstraction of the user interface tools. Note that, in this dissertation,
there is a particular interest for the generation of user interfaces for web applications. Figure
2.1 maps the generic architecture proposed by [Myers, 1994b] to the specific case of Web
User Interface (WUI)’s. The establishment of this bridge helps to ponder on how to possibly
integrate the layers and define the most efficient methods of development.

Figure 2.1: Bridge between the representation of the UI Software Components (based on
Myers [1994b]) and the web interface development

Window Managers [Myers, 1992, 1994b; Myers et al., 2000] provide a basic program-
ming model for the creation of the display screen’s output, as well as for the recognition of
the user’s input. A Windowing System divides processes into a set of distinct regions of the
screen, commonly known as windows. Creating interfaces at this level requires that every
interface component must be built from scratch. Not only can this lead to various inconsis-
tencies throughout the interface, it reveals to be a slow and annoying process [ROSENTHAL,
1987]. The development of a WUI does not offer direct support for window management.
This can however be achieved by explicitly addressing the interface divisions as if they were
equivalent to windows. These divisions are displayed by the browser from interpreting the

7

2.1. USER INTERFACE GENERATION TOOLS

HyperText Markup Language (HTML) files. Each division can be defined either as a single
page, a part of a page or even an HTML tag defining a specific area of the page, depending
on the degree of intended detail. This approach does not solve the main problem, since it still
leads to inconsistency and development delays in the generation of the UI.

Toolkits [Myers, 1992, 1994b; Myers et al., 2000] provide libraries of widgets1. They
establish a framework which allows the manipulation of their interactions with the user. Since
the UI components are predefined, they only require instantiation. The creation process of
the user interface becomes easier and quicker. However, being dependent on the toolkit
framework, the UI is restricted to the widget’s library. In the development of a WUI there are
a lot of front end framework and toolkits which impact the generation of the interface, such
as the Bootstrap Cascading Style Sheets (CSS) framework [Otto, 2011]. Resorting to these
front end helpers to create the WUI is not an optimal solution as a standalone. Nevertheless,
it could reveal to be helpful as a complementary component of the generation tool.. A front
end framework would be responsible to define the style of all widgets and other interface
elements, assuring the overall consistency of the WUI.

As can be understood, programming at these levels reveals to be a humongous and diffi-
cult task. This contributes to the idea that high-level tools are, without a doubt, an asset in UI
development. Different categories of high-level tools have been created to help develop user
interfaces, each with its own specific approach. They can be classified in many ways, based
on the techniques they use, the paradigm they belong to or even the style of interfaces they
create, among others. Taking into account the context of this dissertation, the user interface
generation tools are categorized into two main groups, model based tools and direct graphical
specification tools [Myers, 1992, 1994b; Myers et al., 2000]:

• Direct graphical specification tools include prototyping tools, data visualization tools,
editors for application-specific graphics and interface builders such as the Netbeans
GUI builder [Oracle, 2011]. With these tools, the UI is partially or fully created by
placing objects directly on canvas, by dragging them with a pointing device. The gen-
eration process is long and repetitive, leaving very little margin for automation whatso-
ever. Furthermore, they do not provide any guidance on creating good and strong UI’s.
One of the most predominant subcategory of the direct graphical specification tools are
user interface builders. The interface builders provide a “drag and drop” WYSIWYG
editor to generate the interface. One of the biggest advantages of using any interface

1A widget is an interactive component of a GUI responsible to display the input data of the user, such as
menus, buttons and text fields.

8

2.2. MODELS AND USER INTERFACES

builders, whether they are intended for web design or not, is that the developer can ob-
serve the final result while operating the tool. When developing code, not always ”what
you write is what you get”. Relevant examples of interface builders in the development
of WUI are: Adobe Dreamweaver and LayoutIt. Adobe Dreamweaver [Macromedia,
2012] is a web development tool featuring a code editor, thus allowing the programmer
to assure the readability and cleanliness of the code. LayoutIt [Katz et al., 2015] is an
interface builder supported by a CSS framework, proving that different software com-
ponents can be united to create an improved tool. Once again, it is shown that uniting
different approaches can converge to a better solution.

• Model Based Tools use high level specification models of the system to generate the
user interface. Model-based tools are mostly known for trying to reduce the UI devel-
opment costs, which is a recurrent problem found in other tools, by integrating automa-
tion in their creation process. They can resort to various numbers and variety of mod-
els, have distinct levels of automation, build different types of user interfaces, among
others. Common known examples of model based tools, which can be used for the
development of WUI, are USIXML [Limbourg et al., 2004] and TERESA [Berti et al.,
2004]. Compared to the other categories of tools, they appear to be a valid solution for
the fast development of high quality user interfaces [Meixner et al., 2011].

2.2 Models and User Interfaces
Models are often associated with the concepts of ”example to be followed”, ”pattern”

and ”guideline”. Their purpose is to simulate an entity, helping its creator to understand and
analyze it. Herbert Stachowiak [Stachowiak, 1973] characterized that models must have the
following properties:

• Mapping: models are based on an original, the subject. They are representations or
mappings of something imaginary, which may or may not be built at some point.

• Reduction: models must not mirror all the properties of the subject, but the relevant
attributes in the context.

• Pragmatism: models should replace the subject in order to fulfill some purpose.

In the field of software engineering, software models help in the study and design of
programs. They allow the engineers to analyze the system before starting to develop, ide-

9

2.2. MODELS AND USER INTERFACES

ally realizing the specification that will lead to the final solution. However, these models are
usually created from a train of thought, which isn’t always straight forward. Some models
may become overspecified, others underspecified, and so on. Models are dependent on their
creator, the specifier. Acknowledging this fact, model quality can be obtained from the re-
formulation of the Seven Sins of the Specifier [Meyer, 1985]: noise, silence, contradiction,
overspecification, ambiguity, forward reference and wishful thinking . By not committing
the specifications sins, models could be ensured to be correct. Although a higher experience
reduces the likelihood of committing mistakes, human actions may not meet the expected
quality requirements. Despite this issue, models demonstrated to be a powerful resource to
help create but also to manage large and complex systems. Over time, the use of models as
primary elements in the development of applications has increased, and for many became a
habit. This has contributed to the establishment of the model-driven software engineering
paradigm, frequently known as MDE [Stahl et al., 2006; Rech and Bunse, 2008].

2.2.1 Model Driven Engineering
In MDE, high-level models are converted into lower-level models with the purpose of

converting them into running systems [Stahl et al., 2006; Rech and Bunse, 2008]. A v-model
of the systems engineering process [Osborne et al., 2005] was adapted to MDE in Figure 2.2.
The transformation process of the models can be either automated or manual. Using models
ensures consistency in software development, ensuring a better quality and correction of the
final result. Above all, resorting to an automatic transformation of the models, a reduction of
development time can be ensured [Meixner and Calvary, 2014; Schlungbaum, 1996].

Figure 2.2: V-model of the Systems Engineering Process [Osborne et al., 2005] adapted to
MDE

10

2.2. MODELS AND USER INTERFACES

In order to create high level models, teams and individuals (managers, developers and
designers) go through an extensive communication about the desired solution. This process
isolates the business logic from the technology and other implementation mechanisms, being
the models either representations of the problem or possible implementations of the solution.
The level of abstraction can be raised, which eases the handling of the inherent complexity
of the system by using standardized models. Compatibility between systems is increased,
allowing a harmonization of past, present and future technologies [Kidwell, 1996; Hailpern
and Tarr, 2006].

MDE is a powerful paradigm with proven results. Nonetheless, it is a target of some
criticisms [Mohagheghi and Dehlen, 2008]. The developers tend to have issues with the
models themselves. Discovering the exact type of models, and from those what amount of
models is required and in what degree of specification can be challenging. A norm established
beforehand would help to solve this problem. The developers would know what models they
need in order to specify the problem and find the solution. However, to be efficient, it is
necessary to ensure the quality of the models, from the higher to lower levels. As presented
earlier, the quality of the models depends on the creator. Introducing automation to the model
transformation process would assure the quality of the intermediate models, by removing the
variable that may lead to more inconsistencies and errors, the specifier. This would guarantee
a final result with better quality and less errors.

From the above discussion, one can deduce that MDE is a suitable paradigm for an ef-
ficient and sustainable software development. In the software engineering community, the
approach is typically applied to the creation of the business logic and data layers [Kidwell,
1996; Hailpern and Tarr, 2006] of the applications. The models developed in this context
could be reused to generate the UI, which is one of the premises of the proposed approach.

2.2.2 Model-Based User Interface Development
MBUID can be seen as the MDE of user interfaces. It uses high-level abstract declarative

models as the foundation for the creation of the UI [Schlungbaum, 1996; Da Silva, 2001;
Meixner and Calvary, 2014]. These models (domain model, task model or both) expose the
application’s problem. Besides them, some auxiliary interface models can be added to help
describe the user interface itself, the system to be developed or other aspects related to either.

The Cameleon Reference Framework is widely accepted as the standard architecture for
MBUID. It specifies four main levels of modeling, represented in Figure 2.3 [Calvary et al.,
2003; Vanderdonckt, 2005].

11

2.2. MODELS AND USER INTERFACES

Figure 2.3: The 4 Steps of the MBUID approach

1. Task and Domain Models - description of the end user tasks and domain concepts,
related to their accomplishment.

2. Abstract User Interface (AUI) - description of the user interface in terms of Ab-

stract Interaction Units or Abstract Interaction Objects and their respective relation-
ships [Vanderdonckt and Bodart, 1993]. Being the objects abstractions, the UI is rep-
resented independently of any technology and modality.

3. Concrete User Interface (CUI) - description of the user interface in terms of Concrete

Interaction Units or Concrete Interaction Objects [Vanderdonckt and Bodart, 1993],
determining the layout and the navigation of the interface. CUI are modality dependent
and describe the Look & Feel of the user interface.

4. Final User Interface (FUI) - description of the user interface in terms of source code.
The source code can be in either a programming or a mark-up language. The running
user interface can be interpreted or executed after code compilation.

The MBUID approach aims at development of user interfaces, in which the model is an
abstraction of the UI. More specifically, it intends to reduce the amount of time and effort
spent in the development of the user interfaces, while assuring their quality [Meixner and

12

2.2. MODELS AND USER INTERFACES

Calvary, 2014]. Yet, the user interface is somewhat heterogeneous, evolving through time
and cultures. It can be interpreted in different ways, depending on the computing platforms,
working environments, end users and programming languages. An MBUID generated UI
is generally criticized for having a poor life cycle and weak support for different platforms
and devices [Meixner et al., 2011; Meixner and Calvary, 2014]. A possible solution would
be complementing the MBUID approach with portability resources, such as front end frame-
works. However, the quality issue does not end here. The automation tends to have a negative
impact on the quality of the user interface. This is mostly due to the lack of integration with
the designer and the ”low ceiling” 2 of the tool [Molina, 2004]. Balancing the level of automa-
tion with the developer intervention could promote the iterative refinement of the interface,
thus improving the quality of the UI produced.

MBUID is a similar methodology to MDE aiming the creation of user interfaces. As
with MDE, the generation process is based on high-level models. Nevertheless, in MBUID
it is common to use detailed models to define different aspects of the UI. This dependency
to interface models limits the acceptance of the approach, since there is an increased cost
of modeling, whether it is in number of models or in the development effort [Schlungbaum,
1996; Da Silva, 2001; Meixner and Calvary, 2014].

2.2.3 MBUID Development Tools
Over time, MBUID development tools changed in order to face the new challenges brought

by the evolution of the user interfaces. Overall, four generations of MBUID can be identified
[Meixner et al., 2011; Schlungbaum, 1996; Paterno et al., 2009].

The first generation of MBUID tools focused on generating Desktop applications based
on CRUD operations. They emphasized the use of one universal declarative model, leaning
on a fully automated process de Baar et al. [1992]; Szekely et al. [1993]; Puerta et al. [1994].
The more automated is the process, the less it is time-consuming. An example of the first
generation tools is MECANO [Puerta et al., 1994]. Despite using interface models, in other
words models that describe either the interface as a whole or one or more of its components,
MECANO focuses on using domain models as the universal declarative model. It supports the
reuse of domain models, since some applications will have the same modeling prototype with
some minor changes. This fact contributes to the idea that common patterns can be found in
the modeling of the same application domains. In MECANO the domain and interface mod-

2The restriction on what and how much the tool can do, limiting the variety of widgets that can be produced.

13

2.2. MODELS AND USER INTERFACES

els are processed by the intelligent-designer tool, where an instance of the generic interface
model is created. That instance (representation of the domain specific interface design) is
generated by a series of mappings between the model’s characteristics. Then, the run-time
system generates the UI from a declarative language based specification of the instance. Af-
ter the user interface is finished the user can improve some details. It is noted that, although
the interface is generated automatically, the designer always has the possibility to apply some
changes according to his creativity.

Both first and second generation tools are meant for Desktop applications. Like for the
first, the second generation of MBUID tools tries to solve the problem, each with a different
generic approach. By resorting to a more complex interaction with the developer, they man-
age to create a more flexible and specific user interface. These tools define the interface model
as a composition of declarative models, models which describe how and what the application
will accomplish to face the system’s problem. Although supporting some automation, the
generation of the FUI is a cumulative process. To increase the degree of automation it is
necessary to include auxiliary information about the user interface. An example of this issue
is TADEUS [Schlungbaum and Elwert, 1996]. This approach intends to generate complete
user interfaces by resorting to a lot of specific interface models. The UI layout and dynamic
behaviour is created from the dialogue model, dialogue graph and interaction tables, domain
and task model. The generation process itself is composed of seven steps and is similar to
GENIUS [Janssen et al., 1993]. The GENIUS approach [Janssen et al., 1993] is intended for
database oriented applications. It uses mainly the data model to generate the UI, comparable
to a first generation tool. However, being a second generation tool, it needs external data to
create the user interface. In this case in the form of Entity Relationship diagrams and Dia-
logue nets. Still, the data model is not enough to structure the information around the user
tasks. Views are defined, and for each view a window is created with a default layout. These
default properties help improve the consistency of the UI, speeding up the generation. This
demonstrates that resorting to default content created from the interpreted data can have an
overall good impact on the produced user interface. At the end, the final layout is created
with the proper arrangement of its different components.

As the time passes new interactive platforms and devices are invented, bringing new chal-
lenges in the field of the user interfaces. The third generation of MBUID tools is precisely
dedicated to dealing with these constraints. TERESA [Berti et al., 2004] is a typical example
of this generation. It uses high-level task models to generate the UI for different platforms/de-
vices. To solve the new challenges placed by the need to deploy an application on multiple

14

2.2. MODELS AND USER INTERFACES

platforms, the specification needs to address the multiple platforms of use, being context-
dependent. The developer has to create and adapt the task model for the various platforms.
Since TERESA is a web application oriented tool, it could resort to front end technologies,
such as Javascript and CSS3. They could significantly increase compatibility between dif-
ferent devices and platforms during run-time [Sampaio and Campos, 2014]. The integration
of these technologies may be an alternative to the context specification. The TERESA tool
analyses the task relationships, from the task model, to create the AUI. From the abstract
user interface and the target platform, the FUI is generated. This process features a range
of automatic solutions, from complete to low automation. The different levels of interaction
may allow to apply some highly relevant changes.

The fourth generation of MBUID tools focuses on two main issues: multipath develop-
ment [Limbourg et al., 2004] (with a particular attention to mobile devices) and the integra-
tion with pre-existing web services. The approach proposed in this dissertation is largely
orthogonal to these concerns. It focuses on providing an efficient solution for creating inter-
faces, taking as a starting point structural models of the business layer.

2.2.4 Related Model Based Tools
Although there are numerous MBUID tools, certain model-based approaches are suited

for the context of this dissertation. Two in particular can be emphasized due to their relevant
and distinctive features: the Ruby on Rails framework and the Outsystems platform.

Ruby on Rails [Team, 2005] is a full-stack open source framework for the quick creation
of Ruby web applications. This framework uses the business model to generate a rough appli-
cation with standard CRUD operations. It creates both front and back end implementations,
complemented with a simple functional interface. Ruby on Rails is one of many model-based
tools that can create a UI leaning only on one structural model. However, in this particular
case, it guides itself by acknowledging that for each entity, a set of web pages will be nec-
essary to fulfill the CRUD operations. Nonetheless Ruby on Rails is not enough to generate
good user interfaces. Despite each view having the appropriate content, their layout is ex-
actly the same for each web application created. Also, the Look & Feel of the generated user
interface is very simple, not taking advantage of any front end resource.

The Outsystems platform [Resources, 2011] is a MDE compliant Platform as a System
(PaaS) for implementing web applications. It produces not only the user interface, but also
back end code for Java and .Net programming languages. This platform provides a set of
tools to generate an overall fully functional application: tools for managing databases, gen-

15

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

erating back end implementation, creating user interfaces, among others. After adding some
database information, the developer must specify the UI navigation map. He is able to set
specific parameters, as for example the default view. In Outsystems the developer can select
a view, which already contains some minimal information, and start building the desired user
interface in the WYSIWYG editor. The developer can resort to a set of widgets generated
from the interpreted data. However, he is not limited to the resources provided by the editor,
being able to manually include additional design to the UI.

Analyzing these model-based perspectives was essential to define some of the main guide-
lines of the dissertation’s approach. From Ruby on Rails one can deduce that a certain set of
pages tends to exist for each entity of the application. It can also be extrapolated that some
specific pages tend to exist for each application area. Yet, there is a need to include some
methodology to increase the flexibility of the user interfaces. Furthermore, resorting to front
end resources would take advantage of the separation between content and structure of a
WUI. The Outsystems platform exploits the concept of a navigation map to define the set
of views. Despite having to be laid out manually, these configurations facilitate the connec-
tions between views, being a significant advantage. Acknowledging the conclusions drawn
on Ruby on Rails, one could assume that each domain view could be defined in a model, in
terms of default content and navigation.

2.3 Application Domains in Web User Interfaces
An application domain defines a set of applications with a common set of features, re-

quirements, objectives, among others. Retrospectively, the application domain is decisive in
the content of any application, influencing many of the aspects related to user interface. From
the interaction with the user, the displayed content, the navigation between pages and so on.

A key study to the achievement of the dissertation is understanding how application do-
mains can influence the user interface of web applications. It can be observed that most web
user interfaces belonging to the same application domain appear to follow patterns, whether
in terms of content, navigation or structure. They are made out of various combinations of
components, which are common among themselves. This can be seen in Figure 2.4, where
different eCommerce web applications feature comparatively the same visual structure. Since
the main components and interactions are the same, they should follow conventions. Even if
a browser-based web application wanted to escape the structural standards, the users always
look for a familiar interface. They should expect an output who matches previous situations

16

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

they’ve already faced. In other words, the user interface should be consistent [Tucker, 1997,
p. 132-134].

(a) Light in the Box (b) Amazon (c) Ebay

Figure 2.4: Examples of compliant/similar websites (cropped printscreens)

Web applications, because of their variety, can be categorized in many ways, as shown
in [Mcneil, 2008; McNeil, 2010]. In summary, the following forms of categorization can be
considered:

Type Categorization by website’s functionality or application area, such as e-commerce,
forums, search.

Design Categorization by the website’s visual aspect and widget’s style, such as modern,
sketchy, flat.

Color Categorization by the website’s dominant color or color pattern, such as blue, violet,
orange.

Structure Categorization by the website’s layout structure and its respective components,
such as one-page, horizontal scrolling, hybrid.

From the categorization methods mentioned above, the application domain is directly
related to the type categorization, defining the content and functionality displayed by the user
interface. While the structure is dependent on the website’s purpose, thus its application

17

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

domain, it is not enough to define the user interface as a whole. Both design and color can
actually be affected by the application domain, however, they are dependent on temporal and
cultural contexts. Above all, these aspects influence the uniqueness of the UI. It is more
important to integrate them with the designer creative process than the actual domain. The
type categorization could help identifying the main application domains related to web user
interfaces.

Following the conducted analysis, one can identify two major facts. First, the application
domain can be represented by the type categorization. Second, websites belonging to the
same type tend to share similar interface components. In order to identify application do-
mains one need to update the type categorization presented in [Mcneil, 2008; McNeil, 2010]
to also consider the user interface itself. It was decided to select, within all possible types
that can be identified, a small representative subset. This group will help to present groupings
of browser-based applications with the same domain. Selecting only a subset was a personal
choice made by the author, which believes that each of these types would get a higher contri-
bution from the MODUS tool. Namely, because the chosen categories tend to have a stricter
and more standardized structure, either in content and layout. Furthermore, this set unites
different research areas of interest for the author. Again, it is worth noting the fact that the se-
lected types depend on the temporal and social context in which the dissertation was written.
The identification of each of the types was inspired by the books mentioned above [Mcneil,
2008; McNeil, 2010; Eccher, 2008], the study of the most popular websites and the analysis
of the marketing template sites. The web application types identified can be described as
follows:

The Forum Type Web applications dedicated to online discussion between users on a spe-
cific topic or set of topics.

The Blogging/Magazine Type Web applications on which one or more users write about a
specific concept, opinion or other.

The Advertisement/Product Placement Type - Web applications dedicated to the presen-
tation and advertisement of a certain product, company, among others.

The eCommerce Type Sites dedicated to the trading of a specific product, group of products
or even services.

18

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

2.3.1 The Forum Type
The Forum type is composed of web applications dedicated to online discussion. Each

conversation is composed by a set of messages posted by the users. The conversation may be
about a particular subject or group of subjects, depending on the application. The range of
subjects may lead to a hierarchical structure, in which threads, conversations, are grouped in
topics, which are themselves grouped in subforums. a ”ZWAME”3 in Figure 2.5a, ”Ubuntu
Forums”4 in Figure 2.5b, ”Minecraft Forum”5 in Figure 2.5c, ”W3C Forum”6 in Figure 2.5d.

(a) ZWAME (b) Ubuntu Forums

(c) Minecraft Forum (d) W3C Forum

Figure 2.5: Examples of Forum web applications

3https://forum.zwame.pt - last visited on March 17, 2015
4http://ubuntuforums.org - last visited on March 17, 2015
5http://www.minecraftforum.net - last visited on March 17, 2015
6https://www.w3.org/community/forum/ - last visited on March 17, 2015

19

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

2.3.2 The Blogging/Magazine Type
The Blogging/Magazine type is composed of web applications on which one or more

users write about a specific concept, opinion or other, in the form of posted messages. The
main topic of discussion/information may vary from personal matters, specific subject or
area, branding of a company or an individual, editorials, among others. The messages them-
selves can have text, images, videos, being their content directly related to the topic they
approach. In most cases the applications belonging to this type allow visitors or followers to
comment on the published posts. The Blogging/Magazine type is similar to the Forum type,
however, unlike it, it is focused on the publishing of new content. Some commonly known
examples are: ”IGN”7 in Figure 2.6a, ”Metacritic”8 in Figure 2.6b, ”The Times”9 in Figure
2.6c, ”How-To Geek”10 in Figure 2.6d and so on.

(a) IGN (b) Metacritic

(c) The Times (d) How-To Geek

Figure 2.6: Examples of Blogging/Magazine web applications

7http://pt.ign.com - last visited on March 17, 2015
8http://www.metacritic.com - last visited on March 17, 2015
9http://www.thetimes.co.uk - last visited on March 17, 2015

10http://www.howtogeek.com - last visited on March 17, 2015

20

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

2.3.3 The Advertisement/Product Placement Type
The Advertisement/Product Placement type is composed of web applications dedicated

to the presentation or advertisement of a specific product, service or enterprise. Their main
goal is to provide information about a product to the customer. Most of these web applica-
tions contain the means of accessing a main or other sites related to the product itself, such
as e-store, blog, among others. Mainly they disseminate the information about the product,
in order to induce a possible consumer to have a favorable dynamic attitude towards it. This
can lead to a purchase, subscription or even a spread of the word of the product by the public
itself. Some commonly known examples are: ”Android”11 in Figure 2.7a, ”Outsystems”12 in
Figure 2.7b, ”Microsoft Office”13 in Figure 2.7c, ”Kaspersky”14 in Figure 2.7d and so on.

(a) Android (b) Outsystems

(c) Microsoft Office (d) Kaspersky

Figure 2.7: Examples of Advertisement/Product Placement web applications

11http://www.android.com - last visited on March 17, 2015
12http://www.outsystems.com - last visited on March 17, 2015
13https://products.office.com/pt-PT - last visited on March 17, 2015
14http://www.kaspersky.com/pt/ in Thursday March 17, 2015

21

2.3. APPLICATION DOMAINS IN WEB USER INTERFACES

2.3.4 The eCommerce Type
The eCommerce type is composed of web applications dedicated to the trading of a spe-

cific product, group of products or even services through the internet. Users can register to
acquire products, without having to access a physical intermediary. They can search, consult
and purchase goods. In some of these applications, users are also allowed to trade products,
either as a business, independent curator, or simply as a seller of unwanted or used articles.
The main goal of these applications is to make products more accessible, either nationally or
internationally, increasing the speed of search and the range of selection of products. Some
commonly known examples are: ”Ebay”15 in Figure 2.8a, ”LightInTheBox”16 in Figure 2.8b,
”Amazon”17 in Figure 2.8c, ”OLX”18 in Figure 2.8d and so on.

(a) Ebay (b) LightInTheBox

(c) Amazon (d) OLX

Figure 2.8: Examples of Blogging/Magazine web applications

15http://www.ebay.com - last visited on March 17, 2015
16http://www.lightinthebox.com/pt/ in Thursday March 17, 2015
17http://www.amazon.co.uk - last visited on March 17, 2015
18http://olx.pt - last visited on March 17, 2015

22

2.4. CONCLUSION

2.4 Conclusion
This chapter intended, above all, to analyze different user interface generation tools in

order to conclude on the model-based approach. The model-based methodologies reveal to
contribute to a fast and development of quality user interfaces, showcasing however, some is-
sues. The study of the generations of MBUID tools and other tools fitting this context allowed
to identify strengths and weaknesses of each perspective, contributing to the development of
the thesis approach. The analysis of web applications allowed to recognize their division
by domain, which is an essential aspect of the MODUS approach. It was deduced that, the
application domain itself, besides defining the functionality and content of an application,
influences many aspects related to its user interface. To demonstrate the categorization of
web applications by domain, a subset was presented complemented with concrete examples

23

Chapter 3

The MODUS Approach

”Logic will get you from A to Z. Imagination will get you

everywhere.”

Albert Einstein

This chapter enunciates the base concepts of the MODUS approach, focusing on the def-
inition of each step of the proposed process. The process consists of five stages: front end
resources configuration; business logic model analysis; generic user interface deduction; user
interface definition; final user interface generation.

3.1 The Conceptual Approach
The MODUS conceptual approach is portrayed in Figure 3.1. To initiate the process it is

necessary to provide the following input data:

A) the specification of the application domain;

B) the business logic model, represented as a UML class diagram;

C) the information about the front end resource configurations;

Figure 3.1: Overview of the Approach Process

24

3.1. THE CONCEPTUAL APPROACH

The MODUS process is composed of three main structural units (see Figure 3.1, center):
the Data Interpreter, the UI Resources Configurator and the UI Components Creator. These
units are responsible for the generation of the appropriate user interface, from the class di-
agram and the application domain. By integrating the concept of evolutionary prototyping,
the user is allowed to interact with the intermediate outcomes produced by each of the units.
The final user interface is expressed as a WUI, more specifically as a browser-based web
interface.

The Data Interpreter, responsible for extracting all relevant information from the user
input, is composed of several modules. One of the modules is the Business Logic Model
Analysis, presented in Section 3.3, which thoroughly analysis the business logic model. The
idea is to set a bridge between the concrete and generic representation of the application.
Another module is the Generic User Interface Deduction, presented in Section 3.4, which
determines a typical interface of the application domain. The definition of this interface
is made by balancing the data of the model and the generalizations of the domain. The
overall interpretation process should be designed to be solid and expandable. To achieve so,
it is necessary to define a generic interpretation mechanism, capable of being introduced and
applied unambiguously to various domains and user interface deductions.

The UI Resources Configurator is responsible for enhancing the overall visual appear-
ance of the UI. It supports the configuration of the front end resources, establishing the overall
design of the user interface. However, the configuration of this unit is intended to be optional.
The UI Resources Configurator is composed by a singular module, the Front End Resources
Configuration, presented in Section 3.2. This process is essential to integrate the aesthetic
choices of the designer in the creation of the FUI. The presented methodology should be
generic to all front end resources. The idea would be implementing a configuration mech-
anism independent to the associated front end resource, able to support different levels of
configuration, from general settings to detailed aspects of the UI.

The UI Components Creator is responsible for generating the user interface. At the
beginning there is a focus on the intermediate components of the user interface, by the User
Interface Definition module, presented in the Section 3.5. Each of the components is created
from the descriptions calculated by the Data Interpreter, according to the front end resources
established in the UI Resources Configurator. This module should promote the flexibility
of user interfaces, avoiding a rigid and repetitive automatic process. In order to do so, it is
mandatory to select an appropriate data format to serve as the basis for the creation mech-
anism. After the completion of this stage, all the elements are combined to originate the

25

3.2. THE FRONT END RESOURCES CONFIGURATION

final user interface. This is done by the Final User Interface Generation module presented in
Section 3.6.

3.2 The Front End Resources Configuration
The MODUS approach integrates the use of front end resources in the generation of the

UI. In the context of the approach, they are defined as all resources dedicated to enhancing
the front end experience with the application, more specifically the quality and the appeal of
its user interface. The resources are defined according to a CSS front end framework, such
as Bootstrap. These frameworks provide a collection of tools to facilitate and accelerate the
creation of browser-based web applications. They are mostly composed of pre-made code
and templates for different application widgets, such as buttons, forms, and so on. Usually,
they resort to a file or files for the easy definition of the user interface design. The idea is
to take advantage of these files to configure the framework, and thus define the front end
resources associated with the generated UI.

Figure 3.2: Simplified representation of the Style Definition Mappings

To allow the manipulation of the front end resources, the frameworks are registered with
a set of mappings (see Figure 3.2), from the style definition, as for example setting the border
radius to ”squared”, to the design updates, in this case the framework modifications that will
enable the border radius to be ”squared”. Each mapping value is defined in a file, enumer-
ating all actions that need to be applied to the framework files in order to enforce the style
definition. Once every style definition is set, all appropriate mapping values are interpreted,
registering all the actions to be executed. The actions are then grouped by framework file,
applied by ascending time of setup, giving privilege to the latest modifications. This will

26

3.3. THE BUSINESS LOGIC MODEL ANALYSIS

assure that the most specific configurations will override the most generic, in case that two or
more actions affect the same design specification.

3.3 The Business Logic Model Analysis
At this stage, the business logic model is analyzed in order to identify relevant information

that can be related to the domain. This process is mostly based on associating entities, in other
words, classes of the class diagram, to standard classes. A standard class represents a class
that usually exists in the modeling of a particular application domain, as for example the
Product standard class of the eCommerce domain.

The algorithm of associating an entity with a standard class, illustrated in Figure 3.3,
is based on the identification of relationship patterns. A relationship pattern defines a set
of common architectural relationships that typically exist between a standard class and the
others in a certain application domain. An example is considering that, for the eCommerce
domain, a Cart has many Products At the beginning of the process every entity is consid-
ered a possible solution for the association (A). When a pattern of a standard class is identified
on an entity (1), it is considered a valid solution for the association (B). If no association is
met for the pattern (or patterns), the standard class is ignored, considered as nonexistent in
the model.

Figure 3.3: UML state machine diagram of the association process between an entity and a
standard class

27

3.4. THE GENERIC USER INTERFACE DEDUCTION

Since different patterns can overlap, it is likely that for each standard class more than one
valid entity is identified. One asset that can be used to find the final solution is the identifier
of the entity, its name. It is known that programmers tend to name their classes according to
the subject they represent. The MODUS approach exploits this fact, setting the next step of
the analysis (see Figure 3.3 (B)) as an estimation of the compatibility between the entity and
the standard class name. Every standard class is linked to a dictionary, which contains a set of
synonyms, each with the probability to match the name of the standard class in question. The
name of the valid entity is looked up in the dictionary, being compared to each record (2).
The resulting probability is adjusted depending on the degree of similarity with the synonym
and the probability found in the document (3). The most probable solution is associated with
the standard class (C), and all other solutions are discarded (D).

3.4 The Generic User Interface Deduction
In order to create a user interface, it is required to define it in terms of content and nav-

igation. A browser-based UI is usually composed of a set of views, single pages of the
application, which can be considered as the user interface content. In its turn, the navigation
assembles all of the existing transitions between each of the application’s views.

The MODUS approach exploits the fact that user interfaces belonging to the same domain
are similar. It specifies UI generalizations that can be applied to all interfaces belonging to
a certain domain. The outline of the interface can thus be originated from the business logic
model and the assumptions taken from the application domain. It is necessary to find a way to
organize this information. A clever way was unifying all the generic data of both navigation
and content in a singular interface model, which represents a typical user interface belonging
to a certain domain. This model will be provided to the user, reducing the development effort
required.

To avoid having to prescribe a new form of modeling from scratch, an existing model
was adapted to the context. An appropriate choice is the UML state diagram, which portrays
the evolution of a runtime system, by displaying the transitions between its various states. In
this perspective, the changes in states can be compared to the transition between the pages
of a browser-based web application. The states can stipulate the content that needs to be
assumed by the interface in a specific moment of the execution. However the Interaction
Flow Modeling Language (IFML) model can also be a suited representation. This model is
focused on the front-end software of an application, portraying its behavior, the interaction

28

3.5. THE USER INTERFACE DEFINITION

with the user and even the displayed content. Due to time restrictions it was decided to use
the most acquainted approach by the author, selecting the UML state diagram as the base of
the interface model. Despite the IFML model being less expressive for the specific purposes
of the approach, adapting to a content and navigation map would be, in principle, a relatively
feasible process.

3.5 The User Interface Definition
The MODUS approach stipulates that each view (1), as presented in Figure 3.4, is com-

posed by a layout (2), which defines its structure, and a grouping of different entities (3),
which determine its content. The layout specifies the combination of sections that make out
the view, wherein a section is considered a view fragment common to other views, such as
a header, a footer, among others. The grouping of entities is implemented in the form of
display modes, portraying the various ways of presenting an entity in the application’s user
interface. Some common examples are:

• complete representation, which states all (or almost all) the information about an entity;

• miniature representation, which presents some information about an entity;

• hyperlink representation, which represents an interface hyperlink of an entity;

If a display mode is not associated with any entity, it describes a content independent from
any of the entities present in the business logic model, such as a slideshow of a page.

(a) View Definition (b) Example: Amazon

Figure 3.4: Simplified representation of a View in MODUS

29

3.6. THE FINAL USER INTERFACE GENERATION

During the content and the navigation map deduction process, the layout and content of
each view are determined. The creation of these UI intermediate components is based on
templates. More specifically, they are originated from the parsing of templates, according to
the front end resources and the application domain. The template approach for the gener-
ation process is suited for the field of user interfaces, in which aesthetic concepts are often
changed, undergoing a constant evolution. Furthermore, a creation based on templates allows
the establishment of a generation engine which is independent of the obtained results. The
addition, deletion or manipulation of the templates does not affect the implementation of the
process. The designer can even be allowed to import his own personal templates to further
personalize the interface. The variety of templates, with all possible combinations that can
be applied, increases the diversity of the solutions that are generated, thus having a positive
impact on the flexibility of the MODUS approach.

3.6 The Final User Interface Generation
The generic user interface deduction process establishes the outline of the user interface

views. It intends to determine the views that compose the UI as well as the navigation be-
tween each of the views. Then, the user interface definition process implements the defined
intermediate elements that are tangible, in other words, the layout sections and the entity dis-
play modes. By complementing the schema of the views obtained from the interface model
with these components, one can start the generation process of the final user interface.

As stated before, a browser-based application is made out of different views. One can
conclude that the FUI should contain a set static views to demonstrate the overall look & fell
of the application. However, it is necessary to take into account that the web pages of an
application tend to be generated or updated in response to an interaction with the user. At
programming levels, the views are created from the manipulation of different UI fragments,
being those in most cases the partials, which are view fragments, and the layouts. Therefore,
the FUI should also contain these fragments, in order to better integrate with the software
production.

3.7 Conclusion
This chapter was dedicated to exposing the architecture of the MODUS approach. The

architecture can be divided in three main units, the Data Interpreter, the UI Resources Con-

30

3.7. CONCLUSION

figurator and the UI Components Creator, grouping five different stages:

• the front end resources configuration, which sets up the look and feel of the application;

• the business logic model analysis, which associates the class diagram data of the appli-
cation to its domain;

• the generic user interface deduction, which defines the generic outline of the UI

• the user interface definition, which implements the base components of the UI;

• the final user interface generation, which creates the FUI;

All stages were conceived to produce a systematic approach, in order to stipulate the
foundations for the implementation of a MODUS prototype. The front end resources config-
uration resorts to mappings from the style definitions to the design updates associated with a
front end framework. The business logic model analysis is based on an inference mechanism
based on both relationship patterns of standard classes and the estimation of the probabil-
ity of matching their identifiers. The generic user interface deduction will stipulate a new
interface model, unifying all information about typical user interfaces of a certain domain.
The user interface definition will originate the intermediate UI components from the parsing
of templates. Finally, the final user interface generation defines the FUI as a set of views, to
simulate the interaction with the user, and a grouping of partials and layouts, to be to generate
the interface at programming levels.

31

Chapter 4

The MODUS Prototype

The presentation of the MODUS methodology premises serves as the foundation for es-
tablishing the main lines of the supporting tool, known as the MODUS prototype. The tool
should be understood as a reference implementation. In practice, the MODUS prototype will
be used to demonstrate the feasibility of the proposed approach.

This chapter is dedicated to presenting the architecture of the MODUS tool prototype.
It defines a concrete implementation for the conceptual stages presented in the Chapter 3.
Beyond the introduction of the prototype’s architecture, this chapter intends to validate all the
previously formulated decisions about the conceptual process, selecting an implementation to
fulfill the MODUS approach. The prototype architecture will be composed by the following
stages: the ecore model extraction, the standard classes identification, the CSS framework
manipulation, the content and navigation map interpretation, the UI intermediate components
creation, the FUI generation.

4.1 The Prototype Architecture
Figure 4.1 summarizes the prototype architecture for the implementation of the MODUS

approach. The architecture is composed of 6 intermediate stages. In Figure 4.1 every stage
is represented by numerically labeled arrows, displaying the occurring flow of information.
The input data is labeled alphabetically, in uppercase if provided by the user (specific to a
particular application) and in lowercase if provided by the tool (generic across applications).

The first stage is The Ecore Model Extraction (Figure 4.1 - 1), presented in Section 4.2.
In this stage, the business logic model is validated, and the data about the entities is extracted.

The second stage is The Standard Classes Identification (Figure 4.1 - 2), presented in
Section 4.3. In this stage, the entities’ data is interpreted with the help of a) relationship
patterns and b) semantic knowledge databases, in order to identify relevant entities of the
application domain.

The third stage is The CSS Framework Manipulation (Figure 4.1 - 3), presented in
Section 4.4. In this stage, the front end resource configurations are applied to the front end
framework of the user interface to be generated.

The fourth stage is The Content and Navigation Map Interpretation (Figure 4.1 - 4),

32

4.2. THE ECORE MODEL EXTRACTION

presented in Section 4.5. In this stage, an outline of the user interface is drawn from c) an
abstract interface model for the domain initially set.

The fifth stage is The UI Intermediate Components Creation (Figure 4.1 - 5), presented
in Section 4.6. In this stage, intermediate components of the interface are implemented,
namely the display modes and layout sections, through the use of d) templates.

The last stage is The FUI Generation (Figure 4.1 - 6), presented in Section 4.7. In this
stage, generates the final user interface.

Figure 4.1: Overview of the Prototype Architecture

4.2 The Ecore Model Extraction
The first stage of execution of the MODUS approach is the interpretation of the business

logic model. An example of a UML class diagram of the eCommerce domain is presented
in Figure 4.2. In this model, an ”Article” is defined by its ”Section” and may be carried out
on the specific types of ”Clothing”, ”Shoe” and ”Accessory”. In its turn, ”Clothing” can be
stated as a ”Dress”, ”Skirt”, ”Top” or ”Pants”. A ”Customer” has a ”WishList” and a ”Cart”,
both groupings of products. He can perform ”Order”’s associated with a ”Cart” and one of
its ”Address”’es. A ”Customer” can also make ”Review”’s about an ”Article”. Finally, the
”Customer” has a ”Contact” information to specify some personal details. This example will
be used throughout the presentation of the MODUS architecture for demonstration purposes.

33

4.2. THE ECORE MODEL EXTRACTION

Figure 4.2: Example of a UML class diagram of a eCommerce web application

In order to extract the relevant information from the class diagram, it is necessary to deter-
mine the interchange format expressing the UML model. The first choice in mind is the XML
Metadata Interchange (XMI) format. XMI is considered a standard for exchanging metadata
information in EXtensible Markup Language (XML), used mostly to represent UML dia-
grams. Another choice is resorting to ecore, a meta-model directed towards the description
of models [Steinberg et al., 2009]. The ecore format is serialized with XMI, representing
the canonical form of the ecore model itself [Steinberg et al., 2009]. Using the ecore format
allows one to work upon a known standard. Furthermore, ecore is the standard format for
Eclipse EMF. Considering this analysis, it was decided to work upon the ecore format for
representing class diagrams, in order to facilitate the implementation process.

As the MODUS prototype is an Eclipse plugin, it can exploit one of the Integrated Devel-
opment Environment (IDE) tools to create the business logic model. The ecore format ben-

34

4.2. THE ECORE MODEL EXTRACTION

efits from one particular visual diagram editor, the Ecore Tools [Foundation, 2014], which is
an appropriate candidate to support MODUS. The Ecore Tools plugin has many advantageous
features, being one of the most relevant its validation feature. This asset verifies the existence
of errors in the file, aiming to help the user create a correct model. However, it is necessary
to filter some inconsistencies specific to the MODUS generation process. Examples are: an
empty model, duplicate identifiers, references to non-existing elements, among others. Some
auxiliary validations were added to the extraction mechanism, as described in the Figure 4.3.

Figure 4.3: UML class diagram for the ecore model extraction

The main idea, is to read the ecore file and obtain all relevant information about the
model’s entities. In particular in the form of instances of EClass, a MODUS prototype Java

implementation for the class element of the class diagram. This process is divided into two
main steps. First, the document is visited to extract the class identifiers and data type ele-
ments. Despite some basic validations being applied, the main goal is to obtain basic infor-
mation, relevant for further verifications and data storage. Second, the document is deeply
checked and parsed to extrapolate the relevant knowledge in the model. If errors are detected,
the IResource object referencing the model in the Eclipse editor is injected with validation
markers. The file would display in detail the errors, so the user is able to correct the diagram
accordingly. At the end of this stage, all the relevant information on the class diagram was
extracted and validated according to the MODUS process, being the entities data stored for
further manipulation.

35

4.3. THE STANDARD CLASSES IDENTIFICATION

4.3 The Standard Classes Identification
The process of associating entities and standard classes is composed of two steps as dis-

played in Figure 3.3. The first step is the search for relationship patterns of the standard
classes. In this stage, the data present in the class diagram is converted to a Prolog ontol-
ogy. Choosing a logical programming language allows one to easily infer on the knowledge
contained in the extrapolated ontology. This way, the information about the entities can be
expressed in facts, as they represent true statements, and can be represented as predicates
about the diagram. Furthermore, the patterns can be described as rules, so they can be con-
sulted to calculate whether or not an entity matches the standard class. This inference process
is based on the approach presented in [Couto et al., 2012].

The knowledge base is composed of two types of facts, represented in Listing 4.1. The
fact from the first line states the existence of an entity called E (Entity). The fact from the
second line states the existence of a relationship between two entities, being: R (Relation)
the name of the relationship; F (From) the starting entity; T (To) the entity of arrival; L
(Lower Bound) the lower bound and, to conclude, U (Upper Bound) the upper bound
of the cardinality of T in the relationship. The example shown in Listing 4.2, based from the
UML model on Figure 4.2, specifies that there are two entities, ”Customer” and ”Address”,
in which the customer can have multiple addresses.

Listing 4.1: Types of facts of the Prolog ontology

entity(E).

relation(R,F,T,L,U).

Listing 4.2: Examples for facts of the Prolog ontology (based on 4.2)

entity(customer).

entity(address).

relation(addresses,customer,address,0,n).

During the inference process, a query verifies if a certain entity meets a relationship pat-
tern. This amounts to checking the truth value of the rule representing the pattern in question.
For example, Listing 4.3 describes the rule for the pattern of the standard class Address
of the eCommerce domain. It is defined that a class U (User) must have addresses and
that a class O(Order) must have at least one address, being A (Address) an entity of the
ontology. In the model of Figure 4.2 the entity ”Customer” has many ”Addresses” and the

36

4.3. THE STANDARD CLASSES IDENTIFICATION

entity ”Order” has one ”Address”. The entity ”Address” appears to match the relationship
pattern of the standard class Address. When interrogations for all patterns are conducted,
the next step of the analysis may start.

Listing 4.3: An example of a relationship pattern in Prolog

ecommerce_address_pattern(A):-

entity(A), % Address is an entity

relation(_R,U,A,_M,_N), % User has Address

has_at_least(O,A,1), % Order has at least 1 Address

different(A,U), different(A,O), different(O,U).

Since interrogating long Prolog queries in Java may reduce significantly the performance
in terms of time, it was decided to implement two variations of the inference process: the
Pure Inference Algorithm and the Mixed Inference Algorithm.

Figure 4.4: Brief description of the Pure Inference Algorithm

The Pure Inference Algorithm resorts only to Prolog queries for the first step of the anal-
ysis, as portrayed in Figure 4.4. Here, the relationship pattern is entirely represented in a
rule, contained in a Prolog file, which makes this algorithm highly maintainable. Updating a
pattern consists only in modifying the apropriate file.

Figure 4.5: Brief description of the Mixed Inference Algorithm

In the Mixed Inference Algorithm, the patterns were statically implemented in Java code,
as portrayed in Figure 4.5. Each rule was decomposed into small Prolog queries used to inter-
rogate the knowledge base and obtain intermediate results. Each query is shorter, thus faster

37

4.3. THE STANDARD CLASSES IDENTIFICATION

to execute. The Java code can exit the pattern quicker when an intermediate interrogation
returns an invalid value. Overall, this decomposition accelerates the inference process.

For the MODUS prototype it were established two inference engines for the standard
class association. However the methodology could be supplemented with new algorithms
that could meet future needs of the tool. It is necessary to take into account that each of these
engines should be applied to an application domain. Depending on the inference method,
its inclusion may or may not hinder the goal of having a generic and reusable implementa-
tion. For example, in the case of the Mixed Inference Algorithm the patterns are hard coded.
Not to mention that applications domains can vary over time or due to cultural and social
context changes. A deployment solution to solve this issue is required. If it is a recurring
problem in the field of software engineering, one of the options would be to use design pat-
terns [Gamma et al., 1995]. By analyzing the problem it is possible to conclude the following
premises. First, these inference algorithms can be considered as a family of objects following
the same pattern for calculating the association. Second, the specification of the concrete
classes that solve the association is not relevant for the prototype user. Acknowledging these
two premises, the Abstract Factory Design Pattern seems to be an appropriate choice for
structuring the implementation. This pattern was adapted to the problem’s context, so new
algorithms and inference sub-processes for each application domain could be easily created,
as portrayed in Figure 4.6.

Figure 4.6: UML class diagram for the standard class association process

38

4.4. THE CSS FRAMEWORK MANIPULATION

The objective is to build different inference engines that follow the same implemen-
tation structure. The inference engines will infer about all standard classes by interpret-
ing all EClass classes obtained from the ecore extraction. These engines are built with
the embodiments of InferenceBuilding abstract class. Each engine stipulates how
to infer in the knowledge database, following the associated algorithm. For example the
PureInferenceEngine class implements the Pure Inference Algorithm. The inference
engines are complemented with factories which are generally responsible of either loading
the relationship patterns or the synonym dictionaries. Each of the engines is then specified
for an application domain. For example, the ECommerceMixedInferenceEngine im-
plements the Mixed Inference Algorithm for the eCommerce domain, thus hard coding every
eCommerce pattern in its implementation. The Synonyms class is used to store and manip-
ulate the synonyms, and their probability. An instance of this class is obtained by reading
the appropriate dictionary, in the forms of an XML file. This class is used in all inference
engines, to realize the second step of the analysis as shown in Figure 3.3. Every engine is
complemented with a lowInference method, which updates the inference result if a low
match of association is met. If this is the case, the analysis is executed once again, skipping
its first stage.

Resuming the example of Figure 4.2, the name ”address” is the perfect synonym for the
standard class Address, thus having a 100% probability match. Since it is the most probable
entity, it is associated with the standard class. Once the standard class association is finished,
it is necessary to identify the entity’s standard attributes. This identification process is based
on the second step of the analysis, taking this time into account their respective types. Once
the desired inference engine has finished the association process, the entities data are labeled
according the standard classes and their attributes.

4.4 The CSS Framework Manipulation
To implement the CSS Framework Manipulation it was decided to focus on the CSS pre-

processor files which are often incorporated into the front end frameworks. CSS preprocessor
files such as Sass [Hampton Catlin and Eppstein, 2006] files, are used to facilitate the produc-
tion of CSS code, through the use of variables, nested structures, operations, among others.
The manipulation of those elements will be the base of the implementation of the design of
the interface.

As stated in Section 3.2, each resource configuration can be set to a specific value, which

39

4.4. THE CSS FRAMEWORK MANIPULATION

is the key of the style definition mappings registered with the front end frameworks. The
value assigned for the style definition matches a document in the XML format, determining
the according CSS preprocessor updates. In order to be able to define these actions, the style
definition file was structured following the represented in Listing 4.4.

Listing 4.4: DTD of the style definition document

<!DOCTYPE style-override [

<!ELEMENT style-override (action-set)+>

<!ELEMENT action-set (file,(replace-var|replace-inc|append)+)>

<!ELEMENT replace-var (variable,value)>

<!ELEMENT replace-inc (include,variable,value)>

<!ELEMENT append (selector,(line)+)>

<!ELEMENT variable (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT include (#PCDATA)>

<!ELEMENT selector (#PCDATA)>

<!ELEMENT line (#PCDATA)>

]>

The Document Type Definition (DTD) states that the style-override node is the
root of the document, containing only a non empty list of action-set nodes. An action-set
defines the set of actions to be applied to a preprocessor file. Thus, it contains the file node,
the path of the file relative to the framework main folder, and a group of at least one action.
An action can be determined by:

• a replace-var node, identifying the action of replacing the value of a variable; it
is composed by a variable and a value, exposing respectively the name of the
variable and its new value.

• a replace-inc node, identifying the action of replacing the value of an include; it
is composed by an include, a variable and a value, being the include node
the name of the include associated with the variable.

• an append node, identifying the action of appending new content to a selector; it is
composed by the selector, the CSS selector, and a non empty set line, represent-
ing the CSS code lines that will make out the appended content.

40

4.4. THE CSS FRAMEWORK MANIPULATION

An example is demonstrated in Listing 4.5, which represents the style definition for the
”squared” value of the border radius. This style definition means that every visual com-
ponent of the application will have no border radius, therefore appearing to be squared.
As can be observed, it contains only one action-set associated to the preprocessor file
” variables.scss”. In this example the border radius related variables will be updated with the
value ”0”.

Listing 4.5: Style definition file for the ”squared” value of the overall radius

<style-override>

<action-set>

<file>sass/bootstrap/_variables.scss</file>

<replace>

<variable>$border-radius-base</variable> <value>0</value>

</replace>

<replace>

<variable>$border-radius-large</variable> <value>0</value>

</replace>

<replace>

<variable>$border-radius-small</variable> <value>0</value>

</replace>

</action-set>

</style-override>

The interpretation process of the style definition resorts to the ActionSetReader

class, displayed in Figure 4.7 to create the necessary groupings, from preprocessor files to
their list of ActionSets. An ActionSet is generated by parsing the XML file with the
ActionSetHandler class, extending the default handler for SAX2 events. The ActionSet
and composing classes match the DTD structure presented in 4.4. The classes implement-
ing the abstraction Action, in other words, all actions of the style definition, contain an
exec methods, which will be applied the portrayed update to a textual content. This method
will be dispatched for all Actions when the groupings obtained from all files are orderly
merged. When the interpretation process is concluded, all the CSS preprocessor files have
been updated, the main file preprocessor file is compiled, generating the final CSS code that
will define the design of the user interface.

41

4.5. THE CONTENT AND NAVIGATION MAP INTERPRETATION

Figure 4.7: UML class diagram for the style definition interpretation process

4.5 The Content and Navigation Map Interpretation
The interface model was established as a content and navigation map, a variation of UML

state machine. In the content and navigation map, the views are defined as a composition of
partials. The assembling of every partial will build up to be the final content. Partials either
group other partials or contain the interface representation of one or more entities. An entity
interface representation, commonly know in the MODUS approach as a entity display mode,
is meant to draw on the UI a concrete rendering of the entity’s content, in terms of variables,
operations and references. The navigation would be represented as transitions between each
of the views. Due to the specifications of this methodology the state machine was adapted as
follows:

State Represents either a page, a partial, a section or an entity display mode. The types
associated with this component are distinguished by their identifiers or their location
in the diagram. If the state belongs to a region of another state, it represents a section
of the page, as shown in Figure 4.8 2). The partial identifiers are initiated with the
character ’ ’ and the display modes identifiers are delimited by ’<’ and ’>’, as
shown in Figure 4.8, respectively in 3) and 4). The remaining states identify views, as
shown in Figure 4.8 1). The states have attributes to represent auxiliary information, as
depicted in the Table 4.1.

42

4.5. THE CONTENT AND NAVIGATION MAP INTERPRETATION

Final State Indicates the exit of a transition due to a specific condition, as shown in Fig-
ure 4.8 5). Meaning that, the transition will only be applied if the state in which the
transition is sourced does not match one of the identifiers present in the condition.

Initial State Indicates the starting view of the user interface, as shown in Figure 4.8 6). Usu-
ally, this is the first view the user interacts with during the execution of the application.

Transition Indicates a transition, replacement or composition, depending on the target ele-
ment, as shown in of Figure 4.8 7). A transition to a page represents a page change. A
transition to a partial represents the content replacement of the source section. Finally,
a transition to a display mode represents a content composition.

Condition States the identifiers involved in a transition, as shown in Figure 4.8 8). They are
only used to complement the Final State.

Name State Description Operands

link partial/view It indicates the link’s relative path path

order partial/view It indicates the order of assembly identifier, position

repeat partial/view It indicates the number of repetitions identifier, number

redirect partial/view It indicates the navigation of a certain
element

identifier, CSS selector

name view It indicates the view’s name name

template view It indicates the view’s template template name

display display mode It indicates the name of the display
mode

name

type display mode It indicates the type of the display
mode

type

Table 4.1: Description of the attributes in the Content and Navigation Map

An example of the content and navigation map is portrayed in Figure 4.8. This map de-
picts that the system will have as a starting point, the homepage view. The homepage view,
despite the default body section assumed by the all states, has only one other section: the
#sidebar section. The index sidebar category contained in the previous partial,
is made out of a repetition of show sidebar category, which includes the sidebar

43

4.5. THE CONTENT AND NAVIGATION MAP INTERPRETATION

display mode of Category standard class. This combination of states is frequently used to
describe a list of a partial or an entity in a certain display mode. The homepage view is
composed of a list of Product elements in the min display mode. Each of these elements
forwards to the product view, only if the parent state is not index min product.

Figure 4.8: Example of the content and navigation map (fragment)

Since the content and navigation map is mostly based on generalizations about the user
interface of an application domain, it was decided to allow the the MODUS user, in other
words the developer, to personalize these assumptions. He can modify the model through the
use of the Yakindu Statechart Tools [itemis AG, 2014], a graphical editor for state machine
diagrams provided by the Eclipse IDE. Thus, the content and navigation map interpretation
is divided in two stages: the map update and the UI assumptions extraction. The map up-
date is a write and read process, being briefly described by the sequence diagram of Figure
4.9. In summary, while the process is reading the XML file, it applies the necessary updates
to adjust to the business logic model. The first step is validating the file, in order to assure
the correctness of the user interface assumptions taken from the content and navigation map.
Each node of the file is manipulated twice, in two separate cycles. The first time, the node is
updated to match the business logic model. For example, if a state relates to a standard entity
that does not exist in the business model, it is removed. In this cycle the node dependencies
are also calculated. The second time, the nodes are diagnosed to check if they are or not a

44

4.5. THE CONTENT AND NAVIGATION MAP INTERPRETATION

dependency of a deleted node. If it is the case, the node is removed. At the end, only a valid
and adjusted version of the map remains, which the developer may edit. Then the assump-
tions extraction process parses the map, in order to extract all the relevant information. This
step is similar to the algorithms represented in Figures 4.7 and 4.3. All information about the
content and navigation map is stored, grouping all instructions for the generation of the user
interface components.

Figure 4.9: Sequence diagram of the content and navigation map update

45

4.6. THE UI INTERMEDIATE COMPONENTS CREATION

4.6 The UI Intermediate Components Creation
Every intermediate component must be generated from the parsing of their according

template. The templates for both display modes and layout sections are expressed in the
final user interface technology, meaning HTML. The use of HTML as a GUI implementation
markup language is an appropriate choice to represent browser-based interface content. Being
HTML a standard, the templates are more maintainable at long term, being easier to construct
or update. Also, being HTML the technology of the FUI, the tool user can obtain intermediate
components more approximated to the final result, allowing more accurate modifications
during the prototyping process.

The content of the template is located inside the body Document Object Model (DOM)
element of the HTML file. Nevertheless the head tag can be used to refer stylesheets or other
library dependencies, to display the user a functional and accurate demonstration. Despite
the templates being defined as standard HTML files, they contain specific data attributes to
support the creation of the output. These attributes indicate actions to perform or encapsulate
elements of the business logic model, interface and navigation map. However, during the
final stage of the generation process, they are removed, so as not to pollute the final user
interface. The data attributes that define the template for the layout section and the display
mode are, respectively, presented in Table 4.2 and in Table 4.3.

Name Value Description

section String CSS selector that identifies the layout section.

element String CSS selector that identifies an element of the layout section.
A section element groups hyperlinks to other views.

link ”replace” Indicates a hyperlink to an existing navigation to a view.

link ”sample” Indicates a hyperlink template for a new navigation to a view.

linker Boolean Points to the hyperlink node. The boolean value indicates
whether it is possible or not to replace its content.

dependency String Indicates that the node is dependent on a standard class.

Table 4.2: Data attributes that define the layout sections templates

46

4.6. THE UI INTERMEDIATE COMPONENTS CREATION

Name Value Description

type ”class” A ”class” type is used to encapsulate the display mode of
an entity.

type ”attribute” An ”attribute” type contains the representation of an at-
tribute.

type ”reference” A ”reference” type points to a display mode of another
entity.

type ”container” A ”container” type indicates the node which will contain
repetitions of the display mode.

type ”action” A ”action” indicates that an action will be performed on
the node.

name String The name of the class diagram component.

mode String The name of the display mode.

container Boolean Points to the direct parent DOM element of the repetitions.

dependency String Indicates that the DOM element is dependent on a standard
class.

visible Boolean Indicates the visibility of the class diagram component.

action ”fill” Indicates that the DOM element will contain all the class
components missing from the display mode.

content List Indicates the type or types of class components related to
an action. The list can be composed by the following val-
ues can be either ”attribute”, ”operation” or ”reference”

Table 4.3: Data attributes that define the display modes templates

An example of a template for a bottombar layout section is expressed in Listing 4.6.
In this template the nav tag contains the representation for the layout section. The template
is composed only by simple DOM elements.

An example of a template for a a Category display mode of the eCommerce domain
is portrayed in Listing 4.7. The display mode ”breadcrumbs” is a list element, including
only ”name” attribute. The ordered list is a data-modus-container, thus responsible
to contain multiple ”breadcrumbs” representations.

47

4.6. THE UI INTERMEDIATE COMPONENTS CREATION

Listing 4.6: Example of a template for a bottombar layout section

<nav id="bottombar" class="navbar navbar-default"

data-modus-section="#bottombar">

<div class="container">

<div class="collapse navbar-collapse">

<p class="navbar-text">

<small>Copywright Universidade do Minho 2014-2015</small>

</p>

</div>

</div>

</nav>

Listing 4.7: Example of a template for a Category display mode

<ol class="breadcrumb" data-modus-type="container">

Homepage

<li data-modus-type="class" data-modus-name="category"

data-modus-mode="breadcrumbs">

<span data-modus-type="attribute"

data-modus-name="name">Category Name

The creation process, for both layout sections and display modes, is similar to content and
navigation map update process presented in Figure 4.9. The templates are searched by their
stipulated name in the interface model. Following the content and navigation map presented
in Figure 4.8, there is a display mode list for the Product standard class, in this case the
”Article” entity. The appropriate template is shown Figure 4.10a. However, if no name was
stipulated a default or generic template is selected. The file is then validated and copied, so
not to override the original template. During the reading process, the information is extracted
and retained by the tool. The file is updated according the business logic, thus dependencies
to non existing entities are removed, all template actions are executed, among others. Note
that the front end resources were previously configured, thus the design of the template was
set up. Since the ”Article” entity contains all the standard attributes featured in the template,
and since the template itself does not have any actionMODUS attribute, the ”list” template
was updated as presented in Figure 4.10b. However, the modifications applied are not final
as, for example, no nodes are removed, only hidden. This allows the tool to interpret the

48

4.7. THE FUI GENERATION

same document more than once, since the user should be able to manipulate the content as
he wishes, as shown in Figure 4.10c. After the user has personalized the template, the final
modifications are applied, removing unnecessary template elements that will not be part of
the user interface. At the end, all display modes and layout sections are stored in HTML
temporary files to serve as the base of the generation of the FUI.

(a) Original template for the Product class in dis-
play mode list of the eCommerce domain

(b) Template adapted
by the prototype

(c) Template modified
by the developer

Figure 4.10: Evolution of a display mode in the MODUS prototype

4.7 The FUI Generation
The final user interface can be generated, being this process the last step of the generation

of the MODUS prototype. As stated in the methodology, the FUI is made out of the views,
layouts and partials. The main objective is to materialize each of these components in HTML
files.

The first components to be created are the layouts. Each layout will group only its vis-
ible sections, as formulated in the creation of the of the UI intermediate components. The
layout will be built following a previously established order of sections: topbar, header,
left-sidebar, body, right-sidebar, footer, bottombar. From these sections,
the view’s content can only be further inserted in the left-sidebar, right-sidebar
and body. They can be considered as empty containers for display modes.

49

4.8. CONCLUSION

Before starting to elaborate the partials, it is necessary to update the display modes rep-
resentations. This is a recursive process, where the information about the references of entity
display modes is completed. Note that infinite recursion or incoherent processes are properly
managed during the generation. Once this stage is concluded, the partials containing only
display modes are created, followed by the remaining partials. In this process, the repetitions
will assure the insertion of the correct number of the same component, whether it is a display
mode or a partial, respecting the stipulated multiplicity. In case the component is associated
with a transition to a view, it is surrounded by a HTML hyperlink.

At this point of the generation, the views can be created. First, the HTML file is created
with all CSS stylesheets, to set the visual style, and Javascript library dependencies, to set
front end dynamism, related to the selected front end framework. Second, the file is com-
plemented with the layout associated with the view. Finally, for every section the content is
defined, by grouping all the appropriate partials.

4.8 Conclusion
This chapter focused on describing the implementation of a prototype for the MODUS ap-

proach. The idea was to develop each of the conceptual stages of the methodology presented
in Chapter 3, thus demonstrating the viability of the approach.

The Ecore Model Extraction defined the interchange format for the UML model as the
ecore format.

The Standard Classes Identification explored complex implementations in the inference
process, through the use of logic programming and software engineering design patterns.

The CSS Framework Manipulation established a generic process based on XML descrip-
tions to stipulate diverse degrees of specification for the front end resources.

The Content and Navigation Map Interpretation defined the variations of the UML state
machine necessary to portray a user interface model containing information of both content
and navigation.

The UI Intermediate Components Creation stipulated the templates as HTML files com-
plemented with specific data attributes to complement the generation process.

The FUI Generation determined the creation of the final user interface as an iterative
process, in which all intermediate interface components are combined to generate FUI.

Most of all this chapter demonstrated, with success, that it is possible to develop a refer-
ence implementation for the MODUS approach. The existence of a functional prototype is

50

4.8. CONCLUSION

the first step for corroborating the viability of the methodology. The prototype can thus be
further used to conduct detailed tests on the viability of the MODUS approach.

51

Chapter 5

Operating the MODUS Prototype

Throughout chapters 3 and 4, the MODUS conceptual methodology and its reference
implementation were presented. All the necessary premises were formulated to develop the
MODUS prototype as a plugin for the Eclipse IDE. This chapter introduces the MODUS

prototype, by demonstrating step by step how to generate the user interface from a UML
class diagram, namely the case study example presented in Figure 4.2.

5.1 Starting the MODUS Tool
To start the execution of the MODUS tool, it is required to have a ecore tools project,

which will be considered as the MODUS Project. This project is used to store the tool input,
in particular the business logic model (see Figure 4.2), and the generated user interface, as
well as some intermediate results obtained by the tool.

Figure 5.1: Eclipse print screen - Starting the MODUS tool

Once the class diagram is imported (or built) in the ecore tools project, one can select
in the context menu associated with the ecore format, the option to generate the appropriate
UI with the MODUS plugin, as shown in Figure 5.1. The selection triggers the reading and
validation of the file. If the validation fails, the IDE opens the document with the respective
error messages. Figure 5.2 displays an example where the cardinality of the ”articles” relation
between ”Cart” and ”Article” was modified to have a lower bound of 4 and an upper bound
of 3. As can be observed in the line numbers column of the IDE, the appropriate line is
highlighted with an error marker. In the Problems panel, the error is developed extensively to
explain in detail the warning to the user.

52

5.2. INITIALIZING THE MODUS PROJECT

Figure 5.2: Eclipse print screen - Error marking in ecore file

5.2 Initializing the MODUS Project
The first contact with the plugin’s user interface is dedicated to the setup of the MODUS

Project, as exposed in Figure 5.3a. In this menu the users states the tool’s input (besides the
business logic model): the application domain and the front end resources.

(a) Main Setup (b) Color Setup

Figure 5.3: The MODUS tool : Project Setup

The application domain can be chosen from a list of previously determined domains, as
shown in Figure 5.3a 1). The MODUS user can select, from a default set 2) , the CSS frame-

53

5.2. INITIALIZING THE MODUS PROJECT

work that will complement the generated user interface. If no framework is stipulated, the
FUI will be generated as if it was a user interface mockup. This feature allows to obtain
a simple outline of the UI, helping the designer to conceptualize the user interface in the
first stages of creation. An example is portrayed in Figure 5.4. Otherwise, the fieldset 3) is
enabled, allowing the setup of the front end framework. In this case the Bootstrap Frame-
work was selected to complement the user interface. An example of resource configuration
is demonstrated in a), where the style definition of the overall radius was set to ”squared”.

Figure 5.4: Preview of a Mockup generated using MODUS (incomplete)

For the CSS framework manipulation it was decided to add a specific configuration defi-
nition for the FUI colors. The button ”Update Color Palette” (see b) in Figure 5.3a), displays
an auxiliary window to set up the main colors of the application, displayed in Figure 5.3b.
Section 1) of the interface, allows the user to set the hexadecimal value for each color, either
manually or with the GUI selector. Undefined colors, meaning colors with no valid hexadec-
imal value, are ignored in the process. In Figure 5.3b the colors were set according to the
desired user interface color palette1. Meanwhile section 2) presents a search form to obtain
sets of color palettes from the COLOURlovers [IV, 2004] web service. This search will help
the user discover hue patterns that can match the web application style. Once the search is
finished, the result is displayed to the user in the fieldset b), each line representing a color
palette. The user can then copy the values for one or more color definitions.

1A combination of different colors.

54

5.3. CONFIRMING THE STANDARD CLASSES ASSOCIATION

5.3 Confirming the Standard Classes Association
Figure 5.5a presents the interface dedicated to the association of the entities of the busi-

ness model with the standard classes of the respective application domain. The result cal-
culated by the tool is presented to the user in a list of combo box fields set up with the
appropriate values. As can be observed, for the model 4.2, the Address standard class is
associated with the ”Address” entity in a). If the standard class was not associated, the ac-
cording field would display ”I don’t want to assign anything”. The combo boxes contain the
set of entities interpreted from the class diagram plus the empty value, allowing the user to
modify the result if intended. The ”attributes” buttons such as b), open a similar window
dedicated to the standard class attributes, as shown in Figure 5.5b. Note that both standard
classes and attributes are identified and estimated at runtime according to the application do-
main.

(a) Standard Classes Association (b) Standard Class Attributes Association

Figure 5.5: The MODUS tool : Domain Association

5.4 Manipulating the Content and Navigation Map
The MODUS tool looks up for the appropriate content and navigation map associated

with the application domain, and does a basic interpretation. Then the user is able to ma-
nipulate it to better suit the user interface to be built. These adjustments are performed at

55

5.5. MANAGING DISPLAY MODES

the interface portrayed in Figure 5.6a. First of all, this window of the MODUS tool presents
the name of the template, as well as a diagram to summarize its content. The diagram lists
the views that will be generated at the end of the process according to the content and nav-
igation map, namely: Homepage, Category, Search, Product, Log In, Sign In,
My Cart, Checkout, My Settings, My Addresses, My Orders, My Profile,
FAQ, About, Contact. This helps the user to have a brief understanding of the content
and navigation map used for the generation of the UI. If desired, the user can change the
interface model using the Update button a), which triggers the opening of the graphical editor
provided by the IDE, as shown in Figure 5.6b. As can be observed, the map was modified to
include a ”My Wishlist” view, to present the entity ”WishList” entity. The user can also im-
port a different content and navigation map from the plugin list, through the Upload button b).

(a) Map Setup (b) Eclipse cropped print screen : Map

Figure 5.6: The MODUS tool : Content and Navigation Map Manipulation

5.5 Managing Display Modes
When the plugin interprets the interface model, it generates the required set of display

modes, and other intermediate components, to fulfill the generation of the final user interface.
Figure 5.7 exposes the interface dedicated to the entities display modes.

The drop down 1) located at the top, allows the developer to select an entity. In the pre-
sented example, the ”Address” entity is selected. This selection triggers the listing 2) on the

56

5.5. MANAGING DISPLAY MODES

Figure 5.7: The MODUS tool : Display Modes Management

left side of the interface, of the display modes associated with the entity. Each mode is listed
as a button to enable its selection. Choosing a mode, fills the right side of the interface 3) with
the respective information. The tabs 4) provide access to the types of representation available
for the selected display mode, which can be either exhibition (Show), which displays the en-
tity in the application according to a given mode, or form (Form), which portraits the mode’s
form in the application. In the example of Figure 5.7, the display mode ”new” of the entity
”Address” is composed only by the type Form.

The Modify Template button a) lets the user associate a new template, either by selecting
it from a predefined list or by loading it from and external source. In addition to the template
information, the allowed entity’s components, whether attributes, operations or references,
are displayed. Each component is accompanied with a checkbox field, to allow the user
to modify its visibility. The reference components have also a combo box field listing the
display modes that can be associated with it. In the example of Figure 5.7 operations are not
allowed and references are non existing, thus not being present in the list.

The Update Display Mode File button, allows the edition of the mode, in the HTML ed-
itor of the IDE. A preview of the display mode is shown in Figure 5.8. The ”new” display
mode portrays a creation form for the ”Address” entity. As can be observed, only the visible
elements of the entity (see Figure 5.7) are instantiated, namely the attributes ”street”, ”zip-
Code”, ”city”, ”state” and ”country”. Each of these attributes is translated as a pair label and
input field in the display mode.

57

5.6. MANAGING LAYOUT SECTIONS

Figure 5.8: Preview of the display mode ”new” for the entity ”Address”

5.6 Managing Layout Sections
As previously mentioned, the MODUS tool contains a window for the management of the

layout sections, as shown in the preview of Figure 5.9. This window is highly similar to the
display modes interface in terms of structure and interaction with the user. In listing 2), the
sections are associated with a checkbox field, to define its visibility in the layout. As can be
observed, for the template ”default”, the right sidebar was omitted.

Figure 5.9: The MODUS tool : Layout Sections Management

58

5.7. OPENING THE FINAL USER INTERFACE

5.7 Opening the Final User Interface
After the configuration of the layouts is complete, the final user interface is built. A

”modus” folder is created in the root of the ecore tools project and is then opened by the file
manager of the Operative System. This folder, as displayed in Figure 5.10b, will store the
final user interface composed by:

• ”layouts” folder, containing all HTML layout files.

• ”partials” folder, containing all HTML partials files.

• ”views” folder, containing all HTML partials files.

• ”src” folder, containing the front end framework files.

Furthermore, the starting view of the content and navigation map is opened in the browser,
as pictured in Figure 5.10a. The MODUS user can then observe the interface, testing the
simulated user interface interaction. For example, while observing the Homepage view
(see Figure 5.10a) it can be noted that the design of the UI was adapted to the front end
configurations defined initially.

(a) Browser Result (b) Folder Result

Figure 5.10: The MODUS tool : Final User Interface

By opening the ”views” folder, as shown in Figure 5.11b, one can confirm the views de-
termined by the content and navigation map, including the view ”My WishList” added to the
interface model. In particular, the view My Addresses (see Figure 5.11a) will be used to
demonstrate the impact of the intermediary results obtained in the MODUS prototype. First

59

5.8. CONCLUSION

of all, this view exists due to the Address standard class associated to the ”Address” en-
tity. The ”User Section” element, a common component of User related views, has a My
Addresses hyperlink. Moreover, the view features a listing and a form for the ”Address”
entity. In terms of the views’ content, the creation form matches the ”new” display mode of
the ”Address” entity as previously previewed in Figure 5.8. In terms of structure, the view
does not feature the right sidebar section, which is consistent with the modifications
applied to this view layout, in this case the ”default” layout. A ”My WishList” hyperlink was
also included in the topbar section.

(a) Browser Result (My Addresses view) (b) Folder Result (”views”)

Figure 5.11: The MODUS tool : Final User Interface

5.8 Conclusion
This chapter was dedicated to presenting the operation mode of the MODUS prototype.

It presented, with a demonstrative example, the achievement of the appropriate user inter-
face, by explaining every stage of the generation process. Therefore, it was shown how to
manipulate each intermediate result obtained by the prototype.

60

Chapter 6

Testing the MODUS prototype

This chapter is dedicated to the validation of the MODUS process. Three types of anal-
ysis were performed. The first analysis focused on validating the main assumptions of the
proposal. In particular, it intended to demonstrate that the domain shapes the architectural di-
agram of an application. The second analysis focused on simulating the generation of the user
interface in real life conditions, by testing the approach among a group of different people.
The main goal of these two phases was to establish the viability of the MODUS approach.
The third analysis focused on the evaluation of the user interface generation process. It stud-
ied and compared different versions of the same user interface created with different levels of
automation, in order to estimate the gains in development costs and to analyze the obtained
results.

6.1 The Assumptions Validation
One of the main assumptions of the thesis approach is that different applications of the

same domain tend to follow navigational, structural and content patterns. More specifically,
one can identify elements within the class diagrams that are strictly related to the application
domain. To demonstrate and corroborate that assumption a survey was performed where a
group of people had to develop UML models for a given domain. This survey was later on
used to validate the MODUS approach, as seen in Section .

6.1.1 The Study
At the beginning of the development of the MODUS approach it was decided to focus

the attention on one application domain, the eCommerce domain. Two main reasons led to
selecting eCommerce. First, it is a domain with a reasonably complex level in terms of content
and functionality. This makes it possible to demonstrate that the approach is applicable to
challenging applications and allowing the collection of more interesting results. Second,
it is a relatively well-known domain to web application developers. This should allow the
collection of more accurate results in investigations and inquiries to be made.

Considering that, in the MODUS process, the main idea is to bind the application domain
to the class diagram, it was decided to conduct a survey about eCommerce class diagrams.

61

6.1. THE ASSUMPTIONS VALIDATION

The data collected helped diagnose how people perceive this particular web application do-
main, contributing to the development of the approach.

The main objective of the survey was then to identify how web application developers
conceptualize a default model of the eCommerce domain. The survey required that the par-
ticipants create a class diagram of a generic eCommerce application. It was intended to gather
data about the class diagrams’ content, in terms of classes and their relationships, between
different representations of the same application. The main survey was composed of two dif-
ferent surveys, whose results were later combined for further analysis. The first survey was
meant to study the standard classes and relationship patterns. The second survey was meant
to identify the common attributes present in standard classes.

6.1.2 Setup of the Study
The study was conducted among a group of 10 participants. The surveys were conducted

either online or face to face with the participants, being the results delivered either by email or
paper. Participants did not contact each other during the study, and responses were developed
independently. However the attainment of the answers was not isolated from any source of
external information, such as the Internet.

The attendees were classified according to different characteristics: age range, degree of
experience with UML, academic and professional background.

• In terms of Age Range: 40% were aged between 21 and 23 years old and 60% were
aged between 24 and 26 years old.

• In terms of UML’s Degree of Formation/Experience: 50% had formal education in
UML, 10% had knowledge of UML and 40% had no knowledge of UML.

• In terms of Academical Background: 20% had a Bachelor Degree in Computer Sci-
ence with no Master Degree, 50% had both Bachelor and Master Degree in Computer
Engineering, 20% had a Bachelor Degree in Computer Science and a Master Degree
in Computer Engineering and 10% had a Master Degree in Industrial Electronics and
Computer Engineering.

• In terms of Professional Background: 70% had professional background and 30%
had no professional background.

62

6.1. THE ASSUMPTIONS VALIDATION

The first survey required the creation of a class diagram consisting of only classes and
their relationships. The second survey was created as a questionnaire, see Appendix A.1, for
the identification of both attribute names and types for a set of presented classes. To comple-
ment both surveys, the author developed class diagrams to represent eCommerce applications
known as standard trading applications, namely ”Amazon”1 and ”LightInTheBox”2. This
would help to compare the assumptions taken upon a generic and standard application for the
presented domain.

6.1.3 Study Results
By analyzing the content of the various models, it was possible to recognize certain re-

curring patterns regarding the application domain. The occurrence frequency was first calcu-
lated for each pattern identified. Only results achieving an occurrence frequency higher than
or equal to 40% were considered. After filtering the entities and grouping them in a single
class, a set of standard of classes was defined:

User - a person registered in the application, which uses/intends to use it;

Product - any good or service that can be traded in the application;

Order - the transaction of acquiring one or more products in the application;

Shopping Cart - a collection of products, which the user intends to purchase;

Category - a specific division of products;

Comment - a written statement, criticism or opinion;

Address - description of a user location;

The percentage of use of each standard class is presented in Table 6.1. Note that almost
30% of the standard classes in the models have a frequency of 100%, and above 85% of the
standard classes in the models have a frequency higher than 50%. The results do corroborate
the existence of recurring generic classes for a certain domain, as assumed in the MODUS

approach.

1http://www.amazon.com - last visited on April 6, 2015
2http://www.lightinthebox.com - last visited on April 6, 2015

63

6.1. THE ASSUMPTIONS VALIDATION

Standard Class Frequency (%)

User 100

Product 100

Order 90

Shopping Cart 80

Category 70

Comment 60

Address 40

Table 6.1: Percentage of use of each main entity in the modelings

Studying the models also allowed to detect a vast set of relationships patterns, common
relations between standard classes of the same domain, for each class. The relationship
patterns are presented in the form of a modified UML class diagram. In this version of the
model, regular expression operators are allowed on the cardinality of the relationships to
display alternative values in the same relation. Once again it can be observed that there are
common relationship patterns for the same domain.

All relationship patterns between standard classes are listed in Appendix A.2. As an
example, the Address Pattern depicted in Figure 6.1 can be described as follows: an
Order has one Address; a User has one or has at least one Address.

Figure 6.1: Representation of the Address Pattern

Once the standard classes were identified, the second survey was carried out to identify
for each standard class a set of common attributes, matched by name and type, as presented
in Table 6.2.

64

6.2. THE SURVEY TESTS

Standard Class Standard Attribute Type Frequency(%)

Category Name String 92

Comment Date String 50

Comment Name String 92

Comment Rating String 42

Order Total Integer/Float 75

Product Name String 92

Product Description String 75

Product Price Integer/Float 83

Product Quantity Integer 42

Shopping Cart Total Integer/Float 50

User Birthday Date 50

User Email String 75

User Name String 58

User Password String 67

User Username String 83

Address Street String 100

Address Country String 75

Address City String 75

Address Zip Code String 67

Address County String 42

Table 6.2: Percentage of use of each attribute of the Order entity

6.2 The Survey Tests
The survey was reused to further prove the viability the MODUS approach. This study

involved testing the generation process on each of the models obtained by complementing the
information about the classes with the data about the attributes. Each participant generated,
from the class diagram, the desired user interface using the MODUS prototype. Then, the

65

6.2. THE SURVEY TESTS

attendees answered two different questionnaires about the FUI produced: a questionnaire,
to qualify the efficiency of the approach and an additional questionnaire, to quantify the
usability of the user interface generated with MODUS.

6.2.1 The Efficiency Results
The first questionnaire intended to test the efficiency of the MODUS approach. It essen-

tially intended to examine if the user interface was produced according the provided UML
business logic model. This was achieved by quantifying the degree of satisfaction of the par-
ticipants with the results. The questionnaire was made of 5 items and was answered on a
scale from 1 (strongly disagree) to 5 (strongly agree), or ”N/A” (no answer). The results are
displayed in Table 6.3, reaching an average result of 4.4 in 5.

Questionnaire Item Answer ”N/A”

The UI achieved the user expectations considering the provided UML
model

4.5 0%

The UI allowed to identify issues and inconsistencies in the provided
UML model

4.6 20%

The UI efficiently simulated a typical user interface for the defined
application domain

4.5 0%

The UI is comprehensive in terms of content according to the provided
UML model

4.5 0%

The UI is comprehensive in terms of navigation according to the pro-
vided UML model

4.4 0%

Table 6.3: Average Answers to Efficiency Questionnaire

Rounding up, the participants tended to completely agree that the produced user interface
met the requirements matching the UML model, whether in terms of user expectations, UI
content and navigation. They also tended to completely agree that the user interface effi-
ciently portrays a common UI for a specific domain. Thus proving the validity of the user
interface generation process based on a singular architectural model of the business logic and
the definition of the application domain. Moreover, 80% of the participants tended to com-
pletely agree that, the MODUS prototype allowed the validation of the UML model itself.

66

6.2. THE SURVEY TESTS

The MODUS prototype can be used as a complementary tool for the software developers.
This would help to diagnose potential problems of the solution for the application’s imple-
mentation, and thus would accelerate the development process.

6.2.2 The Usability Results
Usability was tested with a Post-Study System Usability Questionnaire (PSSUQ) [Lewis,

2002], applied in the UI produced for each model. A PSSUQ is composed of 19 different
items, which are answered using 1 (strongly disagree) to 5 (strongly agree) or ”N/A” (no
answer). The results, presented in Table 6.4, estimated an average of 4.15 (4 if rounded) in 5,
which indicates that developers tend to agree to a usable interface. Complementing this data
with the efficiency test, one can deduce that the developers are positively satisfied with the
MODUS approach.

6.2.3 Threats to Validity
In the course of the survey, factors may have influenced the validity of the results. First,

each inquiry was not run simultaneously. Although the participants did not interact with each
other while answering the survey, there was no surveillance regarding posterior and anterior
contacts. The study could have been better monitored and contained, in order to ensure
pristine results. A greater control of the interaction and a limitation of external sources,
would have been necessary. Second, the survey was conducted with a representative sample
of software developers. A larger number of participants could have provided more accurate
results. Furthermore, testing the prototype among UI experts could have derived more severe
results.

67

6.2. THE SURVEY TESTS

PSSUQ Item Answer ”N/A”

Overall, I am satisfied with how easy it is to use this system 4.9 0%

It was simple to use this system 4.5 0%

I could effectively complete the tasks and scenarios using this system 4.4 0%

I was able to complete the tasks and scenarios quickly using this sys-
tem

4.5 0%

I was able to efficiently complete the tasks and scenarios using this
system

4.4 0%

I felt comfortable using this system 4.6 0%

It was easy to learn to use this system 4.6 20%

I believe I could become productive quickly using this system 4.5 0%

The system gave error messages that clearly told me how to fix prob-
lems

3.7 30%

Whenever I made a mistake using the system, I could recover easily
and quickly

4.5 40%

The information (such as on-line help, on-screen messages, and other
documentation) provided with this system was clear

4.4 20%

It was easy to find the information I needed 4.3 0%

The information provided for the system was easy to understand 4.4 0%

The information was effective in helping me complete the tasks and
scenarios

4.6 10%

The organization of information on the system screens was clear 4.2 0%

The interface of this system was pleasant 4.4 0%

I liked using the interface of this system 4.3 0%

This system has all the functions and capabilities I expect it to have 4.1 0%

Overall, I am satisfied with this system 4.2 0%

Table 6.4: Average Answers to the PSSUQ Items applied to the Survey

68

6.3. THE CASE STUDY ANALYSIS

6.2.4 Identifying the Levels of Automation
The third analysis conducted for the validation of the MODUS approach was focused on

a case study. Using the model presented in Figure 4.2, the goal was to test the quality of the
output produced using different levels of automation:

• manual, a user interface fully coded by the developer;

• fully automated, a user interface generated by the prototype without any developer
intervention

• partially automated, a user interface generated by the prototype with some developer
intervention;

This analysis intended to compare the three perspectives balancing the pros and cons of
each one, drawing conclusions about the level of automation. For the partially automated
solution, meaning the desired final user interface, usability tests were performed.

All versions of the case study user interface were produced by the author, which has strong
design skills in the development of browser-based user interfaces and experience in working
with Bootstrap. Furthermore the author is, obviously, accustomed to using the MODUS

prototype to generate user interfaces. Note that these factors influence the development costs
estimated for the case study, especially in terms of time spent and produced code.

6.3 The Case Study Analysis

6.3.1 Identifying the Levels of Automation
The third analysis conducted for the validation of the MODUS approach was focused on

a case study. Using the model presented in Figure 4.2, the goal was to test the quality of the
output produced using different levels of automation:

• manual, a user interface fully coded by the developer;

• fully automated, a user interface generated by the prototype without any developer
intervention

• partially automated, a user interface generated by the prototype with some developer
intervention;

69

6.3. THE CASE STUDY ANALYSIS

This analysis intended to compare the three perspectives balancing the pros and cons of
each one, drawing conclusions about the level of automation. For the partially automated
solution, meaning the desired final user interface, usability tests were performed.

All versions of the case study user interface were produced by the author, which has strong
design skills in the development of browser-based user interfaces and experience in working
with Bootstrap. Furthermore the author is, obviously, accustomed to using the MODUS

prototype to generate user interfaces. Note that these factors influence the development costs
estimated for the case study, especially in terms of time spent and produced code.

6.3.2 Understanding the Class Diagram
The class diagram of the case study was presented in Figure 4.2. This model represents the

intended implementation of the web application ”eClothing” for the online retail of clothing
for women. The application was created so it could follow common patterns found in the
eCommerce domain, but also so it could specify some particular features of the Fashion

sub-domain. There was an interest in creating a challenging example, in terms of modeling
and expected result. The expected result should be a modern site with a ”flat” visual style,
following the themes available on website templates’ marketplaces such as ”Themeforest”3.
In terms of its content and functionality, the user interface was based on ”Amazon” and
”LightInTheBox”.

The model itself was designed to be fairly complex, demonstrating inheritance between
classes, a wide range of attributes, a strong presence of operations, among others. In ad-
dition, it was structured attempting to hinder the standard element recognition processes, at
both class and attribute levels. For example, introducing elements that follow the same rela-
tionship patterns, mixing attributes and operations, having elements with similar names, and
so on. The inclusion of non standard classes also allowed to test the creation of brand new el-
ements of the prototype, from views to display modes. Overall, the case study class diagram
allowed the analysis of the extent to which the interface can be complete, and to estimate the
development efforts required to create the desired UI.

6.3.3 The ”Manual” User Interface Generation
The ”manual” user interface represented the expected final user interface. It was the

basis for the comparison with the interfaces generated by the MODUS prototype in terms
3http://themeforest.net - last visited on April 6, 2015

70

6.3. THE CASE STUDY ANALYSIS

of development effort. Furthermore, it was the point of reference for testing the levels of
resemblance between the desired FUI and either the fully or partially automated interfaces.

For a fast development and easy maintenance it was decided to implement the desired
user interface with the front end framework Bootstrap. The main front end specifications
defining its design were listed as follows:

• ”flat” theme for the user interface, including all of its elements, from forms to widgets;

• responsive design for the user interface;

• squared borders for the overall design of the user interface;

The Bootstrap main website allows the download of a custom version of the framework,
where the developer is able to set a number of different resource configurations. Thus, two
versions of the framework have been used to implement the ”manual” interface: the default
version, a pristine version of the framework, and a custom version, personalized according
to the front end specifications of the case study. Working with these two different releases
of the framework helped to study, in greater detail, the gains in design customization. Table
6.6 portrays the number of CSS code lines used to configure Bootstrap, in order to obtain the
desired design for the UI. Note that only the CSS code lines that influenced the visible design
of the application’s interface were considered. As Table 6.6 demonstrates, the custom ver-
sion of Bootstrap requires less amount of CSS code lines, however the improvement barely
reaches 16%. Still, establishing the design from scratch allows the developer or designer to
have more control over the CSS styles, specially if the user interface requires a very specific
appearance. Besides, the creator of the user interface has a greater feeling of creative freedom.

Framework Number of CSS Code Lines

Pure Bootstrap 758

Custom Bootstrap 637

Total Gain in terms of CSS Code Lines 121

Table 6.5: Number of CSS code lines complementary of the Bootstrap Framework

To build the overall user interface, from the front end framework manipulation to the
creation of the views it was necessary to spend approximately 40 hours. The prototyping of

71

6.3. THE CASE STUDY ANALYSIS

the user interface was not taken into account since it would be applied to the FUI generated
from all degrees of automation. Due to the freedom of creativity, the user interface was
iteratively changed to obtain the desired result. The problem being that these changes need
to be singularly updated throughout the views. Some inconsistencies may even end up not
being resolved, leaving and incoherent UI. To develop the desired user interface 16 views
were developed, 15 of which are standard in the MODUS generation process. Table 6.6
presents the number of HTML code lines required to develop each view, reaching a total of
7385 lines. Note that the HTML code was written according to the Bootstrap framework, thus
influencing the total number of lines. Using a different framework or even no framework at
all may interfere with the amount of HTML code lines needed to produce the required result.

User Interface Page Number of HTML Code Lines

About 307

Cart 332

Category 1018

Checkout 446

Contact 255

FAQ 239

Homepage 1150

Log In 256

My Addresses 317

My Profile 266

My Settings 341

Orders 303

Product 607

Search 1025

Sign In 252

My WishList 271

All 7385

Table 6.6: Number of HTML code lines of the user interface

72

6.3. THE CASE STUDY ANALYSIS

6.3.4 The ”Fully Automated” User Interface Generation
The ”fully automated” user interface demonstrated the absolute default UI that can be

obtained from the MODUS prototype without any interaction with the developer. This inter-
face is to be compared, in terms of visual aspect (design, structure, content), with the result
achieved with a smaller degree of automation. This comparison allows the study of the level
of detail that can be achieved trough iterative manipulation. Note that the generation of this
user interface was almost immediate, only requiring to set up the front end framework as
Bootstrap. No other modification was applied in any of the stages of the generation process.
Therefore, no relevant data was collected, besides the final user interface itself.

6.3.5 The ”Partially Automated” User Interface Generation
The ”partially automated” user interface was achieved by balancing the automated result

with the developer interaction. The goal was to recreate, as much as possible, the expected
interface using the MODUS prototype. Overall, the generation of the final user interface
required less than 30 minutes of development time, which is 1% of the time spent in the
creation of the ”manual” version. It appears that there are significant gains in the production
time of the user interface. Nonetheless, to study the development efforts in detail it was
necessary to analyze the generation process step by step.

Despite the reduced number of style definitions provided by prototype, the manipulation
of the CSS framework allowed to set up all desired front end configurations. Only a small
amount of CSS code (less than 5%) was added to complement the framework. One can
consider that there is almost a 95% gain in terms of CSS development costs. If few style
definitions allow the prototype to produce these great results, adding new definitions would
certainly have a meaningful impact on the level of detail of the generated user interfaces.

To set the correct structure of the expected user interface, in terms of views and their con-
tents, some modifications in the content and navigation map were required. These modifica-
tions are identified in Table 6.7, and can be classified as: ”create”, creating a new component;
”update”, updating an existing component; ”remove”, removing and existing component. In
this context a component is an element of the content and navigation map, being either a
view, partial, display mode or navigation. A total of 25 modifications were applied, which,
taking into account the complexity of the user interface model, can be considered a relatively
small number. Furthermore, the shared components will ensure an uniform upgrade of the
map, ensuring its consistency.

73

6.3. THE CASE STUDY ANALYSIS

User Interface View Number of Actions Action Interface Model Component

Account 1 create Display Mode

Checkout 1 create Display Mode

Checkout 3 create Navigation

Checkout 1 create View

Checkout 1 update Display Mode

Checkout 1 update Partial

Checkout 1 update View

WishList 1 create Display Mode

WishList 2 create Partial

WishList 1 create View

WishList 3 create Navigation

Homepage 1 create Display Mode

Homepage 1 create Partial

Homepage 2 create Navigation

Homepage 1 remove Navigation

Homepage 1 update View

Search 1 update Partial

Product 1 remove Navigation

Product 1 update View

All 25

Table 6.7: Content and Navigation Map Updates

To achieve the visual outlook of the final user interface, it was necessary to apply changes
to the display modes and layout sections. In order to update each of the UI intermediate
components, the developer used mostly HTML templates with the appropriate CSS classes
associated with the selected front end framework. The modifications for the display modes
and layout sections are respectively presented in Table 6.8, listing each entity/standard class
display mode updates, and Table 6.9, listing the layouts sections updates. In general there are

74

6.3. THE CASE STUDY ANALYSIS

three reasons that have led to the need for these changes:

• the original template may differ from the desired output;

• the original template may limit the insertion of some class elements, meaning attributes,
operations or references;

• the original template was generic, requiring more thorough changes;

Entity Class Display Mode Number of Code Lines

Customer simple 1

Contact panel 1

Contact complete 25

Article wish 15

Article sort 1

Article filter 11

Article row 5

Article complete 12

Article daily deal 5

Article best sellers 3

No Standard Class app team 15

No Standard Class app brands 10

No Standard Class contact info 2

No Standard Class checkout register 6

No Standard Class promotion grid 5

No Standard Class shipping 5

No Standard Class user nav 15

No Standard Class tag grid 7

All 144

Table 6.8: Number of updated code lines in display modes

75

6.3. THE CASE STUDY ANALYSIS

Section Number of Code Lines

Bottombar 3

Header 12

Topbar 8

All 23

Table 6.9: Number of updated code lines in display modes

As previously discussed the intermediate components are limited to the existing tem-
plates, which limits the designer control over the user interface. Still, the tool is expansible
and allows the developer to upload external templates during the generation. Above all, there
is a huge gain in development time. In fact, the adjustment of the templates allowed a quicker
creation process. It required only a total of 167 HTML line updates, which is 2% of the
HTML code lines (2% from display modes and almost 0% from layout sections) that had
to be written in the ”manual” user interface version. The preview in the IDE editor of the
current state of the intermediate component allows the developer to easily identify changes,
thus also accelerating the generation process. At last, as for the content and navigation map,
every change will be applied to all dependent elements.

6.3.6 Comparing the Case Study User Interfaces
Summing up, there was a gain of 99% on development time, 98% and 95% of develop-

ment efforts, respectively in terms of produced HTML and CSS code lines. It is however
necessary to keep in mind that, in the case study, a lot of different factors influence the re-
sults: from the framework and templates used to the developer skills and habits. Overall, one
can easily conclude that the MODUS approach does facilitate and accelerate the development
of user interfaces for the domain in question.

After identifying the gains in terms of development costs, the potential of the generation
process was analyzed. In other words, it was necessary to investigate how advanced the user
interface generated using the prototype can be. All three versions of each user interface’s
view are compared side by side. The Homepage view, pictured in Figure 6.2, was used as
the basis for the comparison of the case study interfaces. Appendix A.3 contains all compar-
isons for each of the 15 views generated for the user interface.

76

6.3. THE CASE STUDY ANALYSIS

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 6.2: User interfaces generated for the case study : Homepage View

Let’s start the analysis by comparing the ”fully automated” and the ”partially automated”
versions. The first aspect that immediately catches the attention is the design. The ”fully
automated” user interface almost looks like a website template provided by the Bootstrap

framework. The style definitions applied in the ”partially automated” UI had a huge impact
on the visual aspect of the output created. Then one can notice that the order of the elements
of the user interface has changed. For example, one of the promotional banners was replaced
by the promotional grid of images. Only 6 modifications to the content and navigation map
were needed to create the desired structure for this view. Finally, the view’s content was
changed: the layout is different and many elements were amended. Still, only a total of 73
code line updates of the UI intermediate components were required to produce the expected
content of this view. One can observe that these versions share similarities as a whole, nev-
ertheless the ”partially automated” version has some unique and detailed features, particular

77

6.4. CONCLUSION

to its design. By comparing the ”partially automated”’ with the ”manual” user interfaces one
can notice that the versions are highly similar in terms of look & feel, structure and content.
Actually, the main difference in the two UI was the images used.

6.4 Conclusion
The chapter was centered around testing the viability of the MODUS prototype. At first,

a survey was run among a set of participants for the domain in the study, to demonstrate
the viability of the approach. The results corroborated with many assumptions taken in the
methodology. By resorting to PSSUQ tests, it was also evidenced that a positively usable UI
can be obtained using MODUS. Furthermore, an additional inquiry related to the prototype
results was conducted, contributing to validate the efficiency of the approach. A case study
was then used to evaluate the generation process, by comparing the same user interface gen-
erated with different levels of automation: with no automation, fully automated and partially
automated. Overall, it was proven that the approach could create with significant precision
the expected user interface, with a very small amount of development effort. A PSSUQ test
was also applied to the partially automated user interface, demonstrating a positively usable
user interface, this time in more contained conditions of testing.

78

Chapter 7

Conclusion

This chapter discusses the work carried in this dissertation. It presents a general overview
of the MODUS approach, from the outline process to the implementation of a supporting
prototype. Then, it describes the future work, to be developed in order to further complete or
improve the approach.

7.1 Discussion
In nowadays technology, the User Interface is essential for the success of any application,

being the bridge of interaction with the user. And yet the implementation of an interface
implies heavy development costs for software developers. Model-based Tools are designed
to ensure the quality of the user interface, while reducing production time, through the intro-
duction of automation in their generation process. These tools usually resort to many detailed
user interface models, limiting the acceptation of the model-based approach. Furthermore,
the use of automation tend to have a negative impact on the user interface produced and, more
specifically, a weak integration with the software development process.

The main goal of this dissertation was to develop a model-based tool for the generation
of Web User Interfaces, exploring an automatic creation process directly based on structural
models of the business logic: the MOdel-based Developed User Systems approach, known
as MODUS. In this approach, an high level of automation was assured by assumptions taken
from the identification of the application domain. Thus, exploring the fact that user interfaces
of applications belonging to the same domain tend to follow patterns, in terms of content,
structure and navigation. The degree of automation can however be balanced with the devel-
oper intervention, in order to create more appealing and flexible user interfaces. To further
increase the appearance of the user interface, the generation process integrates the configu-
ration of front end resources. These unique features presented by MODUS intend to differ-
entiate it from the several approaches presented in the thesis’s state of the art, on Chapter
2.

The manipulation of a CSS Framework enables the developer to easily configure the
visual appearance of the user interface. Each setting is represented as a style definition, from
the style to be applied to the code updates to be executed in the front-end framework to

79

7.1. DISCUSSION

enforce the style.
The identification of standard classes enables the recognition of relevant entities of the

application domain, in the forms of classes and their attributes present in the class diagram.
The identification process is based on checking relationship patterns of those classes, comple-
mented by semantic matching of their names using dictionaries of synonyms. In the inference
process the relationship patterns were implemented as either independent Prolog patterns or
hard coded Java patterns. Resorting only to Prolog patterns allows an easy update of the
inference mechanism, assuring a quicker integration of new patterns from the same or other
application domains. Resorting to Java patterns proved a faster inference mechanism but
difficult to maintain over time.

The establishment of a content and navigation map supports the definition of a typical
user interface for a certain application domain, unifying this information in a single user
interface model. This map was implemented as a modified version of the UML state machine
diagram, to allow to express both content and navigation. As it is provided by the tool, it
greatly reduces the development time of the outline of the user interface. Still, resorting to
the Yakindu StateChart Tools, revealed in the long term to be an inefficient solution.

The creation of the user interface intermediate components originates, from domain based
templates, all pieces that will be composed to create the final user interface. A template based
creation mechanism establishes a generic implementation process for every application do-
main and front-end framework selected. This mechanism also proves to be easily maintain-
able and extensible, being a good solution for the field of user interfaces. However, to assure
the flexibility of the generated results, it must support a vast and varied set of templates.

The generation of the final user interface assembles the intermediate components in order
to create the desired interface. It iteratively interprets each component to create each element
of the final user interface, namely the views, partials and layouts. The production of the views
allows to simulate the user interface as a whole. By isolating the partials and layouts from the
views, it improves integration between software back-end and front-end implementations.

MODUS was implemented as a plugin for the Eclipse IDE, being developed in the Java

programming language. The development of a functional reference implementation for MODUS

has demonstrated the viability of the approach. Besides being a proof of concept, the proto-
type was also essential for testing the approach with real life users. A survey was applied to
a set of participants, composed by two distinct type of inquiries: usability tests to comple-
ment the previous analysis and efficiency tests to validate the MODUS approach itself. The
usability of the produced user interface was proved positive through the use of a Post-Study

80

7.2. FUTURE WORK

System Usability Questionnaire. Finally, the efficiency questionnaire returned an overall sat-
isfactory outcome. The prototype was also tested with an extensive case study to analyze the
generation the user interface from an architectural model and the domain of an application.

While developing the MODUS prototype, the author wrote the scientific article ”MODUS:
uma metodologia de prototipagem de interfaces baseadas em modelos” [Marina Machado,
2015] for the INFORUM 2015 symposium in Portugal. The article presents the approach as
a suitable tool for the fast development of user interfaces. Furthermore, it was essential to
promote the MODUS potential as a model-based tool by its unique features.

7.2 Future Work
The implementation of the MODUS approach demonstrated a great potential for the

model-based generation of user interfaces. The MODUS prototype can, however, benefit
from the implementation of some improvements. By studying the results obtained from the
prototype one can decide to either upgrade or add new features in order to overall perfect the
tool. It is hoped that, in the future, the MODUS tool might be published as a fully functional
Eclipse plugin, available to the open source software community.

The first step to improve the tool would be integrating more application domains. To ease
this process, the tool should focus on an inference engine based solely on Prolog patterns.
One needs to investigate a solution to accelerate the engine deduction process. The data
about the application domains should be collected on a large scale to assure more detailed
information about the standard classes. This might be achieved by either a survey applied to
a large group of people or by elaborating an engine for automatic data collection for a given
set of sites for a domain.

Furthermore, the MODUS tool could integrate more CSS frameworks, like Foundation

[Foundation, 1998], UIKit [YOOtheme, 2007] among others. Above all, it should define
more style definitions, in terms of settings and values. This would greatly increase the level
of detail in which one can configure the design of the interface to be generated. To fulfill this
improvement it would be required to develop or update the files provided by the tool, such
as the HTML templates for the intermediate components. In a future in which the tool is
complete and stable, it would be interesting to introduce the concept of sub-domain in certain
application domains, to produce even more accurate results.

The integration of front-end frameworks tends to have issues in the generation of user
interface forms, due to their unique HTML templates and CSS classes. The automated gen-

81

7.2. FUTURE WORK

eration of forms needs to be improved to suit every front-end framework used. To do so,
one could incorporate one or more template defining the structure of a form associated with
each framework. In terms of templates in general, one could also implement a mechanism to
import valid community made templates, to increment the diversity of the tool. This could
only be achieved if MODUS would be associated to some site featuring a fan community,
providing an API to access the template files.

The content and navigation map could be further improved, to solve some issues pre-
viously presented. The first solution would be dividing the content and navigation maps per
view, in order to reduce the size of the user interface model. Yet, this would decrease the level
of element reuse of the model, and would also hinder the definition of the navigation between
views. The second solution would be replacing the format of the state machine model by a
IFML diagram. In view of the studies conducted on IFML during this dissertation, the user
interface model would become shorter and more readable. Since, in this context, the IFML
diagram is less expressive, there would be loss of information. Some complementary data
could contained in another file, however this would diverge from the concept of a singular
interface model.

The MODUS approach was meant to focus on the development of the user interface for
web applications, not converging to any specific technology in terms on either front and
back-end implementation. Nevertheless the approach was developed to easily be prepared to
integrate business logic, in particular front-end business logic. The approach could optionally
resort to front-end technologies such as AngularJS, which tend to be compatible with the CSS
frameworks used in the generation process.

82

Appendices

A.1 The Survey Standard Attributes Questionnaire

Listing 1: The Survey Standard Attributes Questionnaire

For each of the presented classes , i n d i c a t e the name and type
of a t t r i b u t e s
t h a t usua l l y tends to e x i s t f o r a gener ic eCommerce web a p p l i c a t i o n .
Please answer as f o l l o w s :

CLASS NAME

” a t t r i b u t e name” − ” a t t r i b u t e type ”
. . .

Do not worry i f the a t t r i b u t e s names are w r i t t e n i n e i t h e r
Portuguese or Engl ish .
Please save the ques t ionna i re f i l e as f o l l o w s : survey ”name ” . t x t ,
eg ” survey marina . t x t ” .
I thank you f o r your p a r t i c i p a t i o n :) .

USER

PRODUCT

CART

ORDER

ADDRESS

CATEGORY

COMMENT

83

A.2. SURVEY STANDARD CLASSES RELATIONSHIP PATTERNS

A.2 Survey Standard Classes Relationship Patterns
In definition the Product Pattern depicted in Figure 1 can be described as fol-

lows: a Product has many Comments; a Product has one or at least one Category; a
Category has many Products; a Shopping Cart has many or at least one Product.

Figure 1: Representation of the Product Pattern

The Order standard class has two different patterns, depicted in Figure 2. In defini-
tion the first Order Pattern can be described as follows: a User has many Orders;
a Order has one Shopping Cart. In definition the second Order Pattern can be
described as follows: a User has many Orders; a Order has at least one Product.

Figure 2: Representation of the Order Patterns

In definition the Category Pattern depicted in Figure 3 can be described as follows:
a Category has at least one Product. A Product has one or at least one Category.

Figure 3: Representation of the Category Pattern

The Shopping Cart standard class has two different patterns, depicted in Figure 4. In
definition the first Shopping Cart Pattern can be described as follows: a User has

84

A.2. SURVEY STANDARD CLASSES RELATIONSHIP PATTERNS

one Shopping Cart, which has many Products. In definition the second Shopping
Cart Pattern can be described as follows: a user has many shopping carts, which have
at least one product.

Figure 4: Representation of the Shopping Cart Patterns

In definition the Comment Pattern depicted in Figure 5 can be described as follows:
a Comment has one User; a Product and a User have many Comments.

Figure 5: Representation of the Comment Pattern

In definition the User Pattern depicted in Figure 6 can be described as follows: a
User has many Orders; a Comment has one User, and a User has many Comments; a
User as one or at least one Address; a User has one or many Shopping Carts.

Figure 6: Representation of the User Pattern

In definition the Address Pattern depicted in Figure 7 can be described as follows:
an Order has one Address; a User has one or has at least one Address.

85

A.2. SURVEY STANDARD CLASSES RELATIONSHIP PATTERNS

Figure 7: Representation of the Address Pattern

86

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

A.3 User Interfaces Generated for the Case Study

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 8: User interfaces generated for the case study : Homepage View

Figure 8 displays the Homepage view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

87

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 9: User interfaces generated for the case study : Category View

Figure 9 displays the Category view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

88

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 10: User interfaces generated for the case study : Search View

Figure 10 displays the Search view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

89

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 11: User interfaces generated for the case study : Product View

Figure 11 displays the Product view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

90

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 12: User interfaces generated for the case study : Log In View

Figure 12 displays the Log In view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 13: User interfaces generated for the case study : Sign In View

Figure 13 displays the Sign In view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

91

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 14: User interfaces generated for the case study : My Cart View

Figure 14 displays the My Cart view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 15: User interfaces generated for the case study : My Settings View

Figure 15 displays the My Settings view for, respectively the ”manual”, ”fully auto-
mated” and ”partially automated” generated user interfaces for the case study.

92

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 16: User interfaces generated for the case study : Checkout View

Figure 16 displays the Checkout view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

93

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 17: User interfaces generated for the case study : My Addresses View

Figure 17 displays the My Addresses view for, respectively the ”manual”, ”fully au-
tomated” and ”partially automated” generated user interfaces for the case study.

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 18: User interfaces generated for the case study : My Orders View

Figure 18 displays the My Orders view for, respectively the ”manual”, ”fully auto-
mated” and ”partially automated” generated user interfaces for the case study.

94

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 19: User interfaces generated for the case study : My Profile View

Figure 19 displays the My Profile view for, respectively the ”manual”, ”fully auto-
mated” and ”partially automated” generated user interfaces for the case study.

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 20: User interfaces generated for the case study : FAQ View

Figure 20 displays the FAQ view for, respectively the ”manual”, ”fully automated” and
”partially automated” generated user interfaces for the case study.

95

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 21: User interfaces generated for the case study : About View

Figure 21 displays the About view for, respectively the ”manual”, ”fully automated” and
”partially automated” generated user interfaces for the case study.

(a) ”manual” (b) ”fully automated” (c) ”partially automated”

Figure 22: User interfaces generated for the case study : Contact View

Figure 22 displays the Contact view for, respectively the ”manual”, ”fully automated”
and ”partially automated” generated user interfaces for the case study.

96

A.3. USER INTERFACES GENERATED FOR THE CASE STUDY

(a) ”manual” (b) ”partially automated”

Figure 23: User interfaces generated for the case study : My Wishlist View

Figure 23 displays the My Wishlist view for, respectively the ”manual” and ”partially
automated” generated user interfaces for the case study.

97

Bibliography

Silvia Berti, Francesco Correani, Giulio Mori, Fabio Paternò, and Carmen Santoro. Teresa:
A transformation-based environment for designing and developing multi-device interfaces.
In CHI ’04 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’04,
pages 793–794, New York, NY, USA, 2004. ACM. ISBN 1-58113-703-6. doi: 10.1145/
985921.985939. URL http://doi.acm.org/10.1145/985921.985939.

D. G. Bobrow, S. Mittal, and M. J. Stefik. Expert systems: Perils and promise. Commun.

ACM, 29(9):880–894, September 1986. ISSN 0001-0782. doi: 10.1145/6592.6597. URL
http://doi.acm.org/10.1145/6592.6597.

Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon, and
Jean Vanderdonckt. A unifying reference framework for multi-target user interfaces. IN-

TERACTING WITH COMPUTERS, 15:289–308, 2003.

T. Cerny, V. Chalupa, and M.J. Donahoo. Impact of user interface generation on maintenance.
In Computer Science and Automation Engineering (CSAE), 2012 IEEE International Con-

ference on, volume 2, pages 621–625, May 2012. doi: 10.1109/CSAE.2012.6272847.

Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. Mapit: A model based
pattern recovery tool. In Model-Based Methodologies for Pervasive and Embedded

Software, 8th International Workshop, MOMPES 2012, Essen, Germany, September 4,

2012. Revised Papers, pages 19–37, 2012. doi: 10.1007/978-3-642-38209-3 2. URL
http://dx.doi.org/10.1007/978-3-642-38209-3_2.

Paulo Pinheiro Da Silva. User interface declarative models and development environments:
A survey. In Proceedings of the 7th International Conference on Design, Specification, and

Verification of Interactive Systems, DSV-IS’00, pages 207–226, Berlin, Heidelberg, 2001.
Springer-Verlag. ISBN 3-540-41663-3. URL http://dl.acm.org/citation.

cfm?id=1756227.1756245.

Alan M. Davis. Operational prototyping: A new development approach. IEEE Softw., 9
(5):70–78, September 1992. ISSN 0740-7459. doi: 10.1109/52.156899. URL http:

//dx.doi.org/10.1109/52.156899.

Dennis J. M. J. de Baar, James D. Foley, and Kevin E. Mullet. Coupling application design
and user interface design. In Proceedings of the SIGCHI Conference on Human Fac-

98

http://doi.acm.org/10.1145/985921.985939
http://doi.acm.org/10.1145/6592.6597
http://dx.doi.org/10.1007/978-3-642-38209-3_2
http://dl.acm.org/citation.cfm?id=1756227.1756245
http://dl.acm.org/citation.cfm?id=1756227.1756245
http://dx.doi.org/10.1109/52.156899
http://dx.doi.org/10.1109/52.156899

BIBLIOGRAPHY

tors in Computing Systems, CHI ’92, pages 259–266, New York, NY, USA, 1992. ACM.
ISBN 0-89791-513-5. doi: 10.1145/142750.142806. URL http://doi.acm.org/

10.1145/142750.142806.

Clint Eccher. Professional Web Design: Techniques and Templates (CSS & XHTML).
Charles River Media, Inc., Rockland, MA, USA, 3rd edition, 2008. ISBN 1584505672,
9781584505679.

The Eclipse Foundation. Eclipse, 2001. URL https://eclipse.org/.

The Eclipse Foundation. Ecore tools, 2014. URL http://www.eclipse.org/

ecoretools/.

ZURB Foundation. Foundation, 1998. URL http://foundation.zurb.com.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition, 2003. ISBN
0321193687.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995. ISBN 0-201-63361-2.

B. Hailpern and P. Tarr. Model-driven development: The good, the bad, and the ugly. IBM

Syst. J., 45(3):451–461, July 2006. ISSN 0018-8670. doi: 10.1147/sj.453.0451. URL
http://dx.doi.org/10.1147/sj.453.0451.

Natalie Weizenbaum Hampton Catlin and Chris Eppstein. Sass, 2006. URL http://

sass-lang.com.

itemis AG. Yakindu statecharts tools, 2014. URL http://statecharts.org.

Darius A. Monsef IV. Colourlovers, 2004. URL http://www.colourlovers.com/.

Christian Janssen, Anette Weisbecker, and Jürgen Ziegler. Generating user interfaces from
data models and dialogue net specifications. In Proceedings of the INTERCHI ’93 Con-

ference on Human Factors in Computing Systems, INTERCHI ’93, pages 418–423, Ams-
terdam, The Netherlands, The Netherlands, 1993. IOS Press. ISBN 90-5199-133-9. URL
http://dl.acm.org/citation.cfm?id=164632.164964.

99

http://doi.acm.org/10.1145/142750.142806
http://doi.acm.org/10.1145/142750.142806
https://eclipse.org/
http://www.eclipse.org/ecoretools/
http://www.eclipse.org/ecoretools/
http://foundation.zurb.com
http://dx.doi.org/10.1147/sj.453.0451
http://sass-lang.com
http://sass-lang.com
http://statecharts.org
http://www.colourlovers.com/
http://dl.acm.org/citation.cfm?id=164632.164964

BIBLIOGRAPHY

Jonathan Katz, Martin Capeletto, and Hernan Berroja Albiz. Layoutit, 2015. URL http:

//www.layoutit.com.

Richard Kennard and Robert Steele. Application of software mining to automatic user in-
terface generation. In New Trends in Software Methodologies, Tools and Techniques -

Proceedings of the Seventh SoMeT 2008, October 15-17, 2008, Sharjah, United Arab

Emirates, pages 244–254, 2008. doi: 10.3233/978-1-58603-916-5-244. URL http:

//dx.doi.org/10.3233/978-1-58603-916-5-244.

P. Kidwell. The mythical man-month: Essays on software engineering. IEEE Ann. Hist.

Comput., 18(4):71–, October 1996. ISSN 1058-6180. doi: 10.1109/MAHC.1996.539925.
URL http://dx.doi.org/10.1109/MAHC.1996.539925.

James R. Lewis. Psychometric evaluation of the pssuq using data from five years of usability
studies. International Journal of Human-Computer Interaction, pages 463–488, 2002.

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and Vı́ctor
López-Jaquero. Usixml: a language supporting multi-path development of user interfaces.
pages 11–13. Springer-Verlag, 2004.

Macromedia. Adobe dreamweaver, 2012. URL http://www.adobe.com/.

José Creissac Campos Marina Machado, Rui Couto. Modus: uma metodologia de prototi-
pagem de interfaces baseada em modelos. Proceedings of the 7th National Informatics
Symposium, September 2015.

Patrick Mcneil. The Web Designer’s Idea Book: The Ultimate Guide To Themes, Trends &

Styles In Website Design. How-To Primers, 2008. ISBN 1600610641, 9781600610646.

Patrick McNeil. The Web Designer’s Idea Book, Vol. 2: More of the Best Themes, Trends

and Styles in Website Design. How to Books, United Kingdom, 1st edition, 2010. ISBN
160061972X, 9781600619724.

Gerrit Meixner and Gaelle Calvary. Introduction to model-based user interfaces. W3C note,
W3C, January 2014. http://www.w3.org/TR/2014/NOTE-mbui-intro-20140107/.

Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past, present, and future of model-
based user interface development. i-com, 10(3):2–11, 2011. doi: 10.1524/icom.2011.0026.
URL http://dx.doi.org/10.1524/icom.2011.0026.

100

http://www.layoutit.com
http://www.layoutit.com
http://dx.doi.org/10.3233/978-1-58603-916-5-244
http://dx.doi.org/10.3233/978-1-58603-916-5-244
http://dx.doi.org/10.1109/MAHC.1996.539925
http://www.adobe.com/
http://dx.doi.org/10.1524/icom.2011.0026

BIBLIOGRAPHY

B. Meyer. On formalism in specifications. IEEE Softw., 2(1):6–26, January 1985. ISSN
0740-7459. doi: 10.1109/MS.1985.229776. URL http://dx.doi.org/10.1109/

MS.1985.229776.

Sanjay Mittal, Clive L. Dym, and Mahesh Morjaria. Pride: An expert system for the de-
sign of paper handling systems. Computer, 19(7):102–114, July 1986. ISSN 0018-
9162. doi: 10.1109/MC.1986.1663284. URL http://dx.doi.org/10.1109/MC.

1986.1663284.

Parastoo Mohagheghi and Vegard Dehlen. Where is the proof? - a review of experi-
ences from applying mde in industry. In Proceedings of the 4th European Confer-

ence on Model Driven Architecture: Foundations and Applications, ECMDA-FA ’08,
pages 432–443, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-69095-
5. doi: 10.1007/978-3-540-69100-6 31. URL http://dx.doi.org/10.1007/

978-3-540-69100-6_31.

Pedro J. Molina. A review to model-based user interface development technology. In MBUI

2004, Making model-based user interface design practical: usable and open methods and

tools, Proceedings of the First International Workshop on Making model-based user inter-

face design practical: usable and open methods and tools, Funchal, Madeira, Portugal,

January 13, 2004, 2004. URL http://SunSITE.Informatik.RWTH-Aachen.

de/Publications/CEUR-WS/Vol-103/molina-moreno.pdf.

Brad Myers. Challenges of hci design and implementation. interactions, 1(1):73–83, January
1994a. ISSN 1072-5520. doi: 10.1145/174800.174808. URL http://doi.acm.org/

10.1145/174800.174808.

Brad A. Myers. State of the art in user interface software tools. Technical report, Pittsburgh,
PA, USA, 1992.

Brad A. Myers. User interface software tools. Technical report, Pittsburgh, PA, USA, 1994b.

Brad A. Myers and Mary Beth Rosson. Survey on user interface programming. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’92, pages
195–202, New York, NY, USA, 1992. ACM. ISBN 0-89791-513-5. doi: 10.1145/142750.
142789. URL http://doi.acm.org/10.1145/142750.142789.

101

http://dx.doi.org/10.1109/MS.1985.229776
http://dx.doi.org/10.1109/MS.1985.229776
http://dx.doi.org/10.1109/MC.1986.1663284
http://dx.doi.org/10.1109/MC.1986.1663284
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://SunSITE.Informatik.RWTH-Aachen.de/Publications/CEUR-WS/Vol-103/molina-moreno.pdf
http://SunSITE.Informatik.RWTH-Aachen.de/Publications/CEUR-WS/Vol-103/molina-moreno.pdf
http://doi.acm.org/10.1145/174800.174808
http://doi.acm.org/10.1145/174800.174808
http://doi.acm.org/10.1145/142750.142789

BIBLIOGRAPHY

Brad A. Myers, Scott E. Hudson, and Randy F. Pausch. Past, present, and future of user
interface software tools. ACM Trans. Comput.-Hum. Interact., 7(1):3–28, 2000. doi: 10.
1145/344949.344959. URL http://doi.acm.org/10.1145/344949.344959.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993. ISBN 0125184050.

Oracle. Lesson: Using the NetBeans GUI Builder. 2011. URL http://download.

oracle.com/javase/tutorial/javabeans/nb/.

L. Osborne, J. Brummond, M. Zarean R. Hart, and S. Conger. Clarus: Concept of operations.
Technical report, USA, 2005.

Mark Otto. Bootstrap, 2011. URL http://getbootstrap.com.

Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, London, UK, UK, 1st edition, 1999. ISBN 1852331550.

Fabio Paterno, Carmen Santoro, and Lucio Davide Spano. L.d.: Maria: A universal, declar-
ative, multiple abstraction-level language for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact, 2009.

Angel R. Puerta, Henrik Eriksson, John H. Gennari, and Mark A. Musen. Beyond data mod-
els for automated user interface generation. In Proceedings of the Conference on People

and Computers IX, HCI ’94, pages 353–366, New York, NY, USA, 1994. Cambridge Uni-
versity Press. ISBN 0-521-48557-6. URL http://dl.acm.org/citation.cfm?

id=211382.211411.

Jorg Rech and Christian Bunse. Model-Driven Software Development: Integrating Quality

Assurance. Information Science Reference - Imprint of: IGI Publishing, Hershey, PA,
2008. ISBN 160566006X.

IT Resources. Outsystems, 2011. URL http://www.outsystems.com/

itresources/.

D. S. H. ROSENTHAL. A simple x11 client program, or, how hard can it really be to write
“hello world”. pages 229––233, 1987.

Ana Isabel Sampaio and José Creissac Campos. Towards a framework for adaptive web
applications. In HCI International 2014 - Posters’ Extended Abstracts - International

102

http://doi.acm.org/10.1145/344949.344959
http://download.oracle.com/javase/tutorial/javabeans/nb/
http://download.oracle.com/javase/tutorial/javabeans/nb/
http://getbootstrap.com
http://dl.acm.org/citation.cfm?id=211382.211411
http://dl.acm.org/citation.cfm?id=211382.211411
http://www.outsystems.com/itresources/
http://www.outsystems.com/itresources/

BIBLIOGRAPHY

Conference, HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014. Pro-

ceedings, Part I, pages 240–245, 2014. doi: 10.1007/978-3-319-07857-1 43. URL
http://dx.doi.org/10.1007/978-3-319-07857-1_43.

Egbert Schlungbaum. Model-based user interface software tools current state of declarative
models. Technical report, GRAPHICS, VISUALIZATION AND USABILITY CENTRE,
GEORGIA INSTITUTE OF TECHNOLOGY, GVU TECH REPORT, 1996.

Egbert Schlungbaum and Thomas Elwert. Automatic user interface generation from declar-
ative models. In Computer-Aided Design of User Interfaces I, Proceedings of the Second

International Workshop on Computer-Aided Design of User Interfaces, June 5-7, 1996,

Namur, Belgium, pages 3–18, 1996.

Integranova Software Solutions. Integranova, 2005. URL http://www.integranova.

com/.

Herbert Stachowiak. Allgemeine Modelltheorie. Springer, Wien[u.a.], 1973.

Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software Devel-

opment: Technology, Engineering, Management. John Wiley & Sons, 2006. ISBN
0470025700.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Model-

ing Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009. ISBN 0321331885.

Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface builders: Model-based in-
terface tools. In Proceedings of the INTERCHI ’93 Conference on Human Factors in

Computing Systems, INTERCHI ’93, pages 383–390, Amsterdam, The Netherlands, The
Netherlands, 1993. IOS Press. ISBN 90-5199-133-9. URL http://dl.acm.org/

citation.cfm?id=164632.164954.

Rails Core Team. Ruby on rails, 2005. URL http://rubyonrails.org/core/.

Allen B. Tucker, editor. The Computer Science and Engineering Handbook. CRC Press,
1997. ISBN 0-8493-2909-4.

Jean Vanderdonckt. A mda-compliant environment for developing user interfaces of informa-
tion systems. In Proceedings of the 17th International Conference on Advanced Informa-

tion Systems Engineering, CAiSE’05, pages 16–31, Berlin, Heidelberg, 2005. Springer-

103

http://dx.doi.org/10.1007/978-3-319-07857-1_43
http://www.integranova.com/
http://www.integranova.com/
http://dl.acm.org/citation.cfm?id=164632.164954
http://dl.acm.org/citation.cfm?id=164632.164954
http://rubyonrails.org/core/

BIBLIOGRAPHY

Verlag. ISBN 3-540-26095-1, 978-3-540-26095-0. doi: 10.1007/11431855 2. URL
http://dx.doi.org/10.1007/11431855_2.

Jean M. Vanderdonckt and François Bodart. Encapsulating knowledge for intelligent auto-
matic interaction objects selection. In Proceedings of the INTERACT ’93 and CHI ’93

Conference on Human Factors in Computing Systems, CHI ’93, pages 424–429, New
York, NY, USA, 1993. ACM. ISBN 0-89791-575-5. doi: 10.1145/169059.169340. URL
http://doi.acm.org/10.1145/169059.169340.

YOOtheme. Uikit, 2007. URL http://getuikit.com.

104

http://dx.doi.org/10.1007/11431855_2
http://doi.acm.org/10.1145/169059.169340
http://getuikit.com

NB: place here information about funding, FCT project, etc in which the work is framed. Leave empty
otherwise.

