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A B S T R AC T

Data warehouses and Online Analytical Processing (OLAP) systems are a critical part of any suc-

cessful enterprise, they provide essential insight to several aspects of a business, such as the cus-

tomers preferences or the revenue being generated. This reliance keeps getting stronger as data grows

and the tools that analyses it become more accessible and efficient Chen et al. (2014); Thusoo et al.

(2010). SQL fails on providing a formal semantics for the most common operations used on OLAP

systems that deal with the quantitative side of data (aggregating values with functions), unlike Online

Transaction Processing (OLTP) databases, that deal mostly with the qualitative side. While a formal

framework was defined in Lenz and Thalheim (2009), a novel approach based on linear algebra (LA)

Macedo and Oliveira (2014), deals with the qualitative side as well the quantitative side. Additional

this algebra is capable of expressing quantitative analysis solely in term of matrix operation such as

multiplication, transposition etc. As the parallelization theory of such operations is well acknowl-

edged, the purpose of this work is to benchmark the approach using realistic data on a distributed

environment. The main idea is to test whether the parallelism inherent in the LA scripts presented

in the paper materializes in real-life big-data analysis. From the developed work it seems there is an

increase of efficiency when the matrix operations can be computed lazily, however several topics both

in terms of algebra transformation and implementation are still open to be explored.
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R E S U M O

Data warehouses e Sistemas de processamento analı́tico Online (OLAP) fazem parte de todas as em-

presas com sucesso. Estas tecnologias fornecem informação essencial sobre vários aspetos do negócio,

tal como a preferência dos consumidores e o lucro que é gerado. A dependência das empresas nestas

tecnologias continua a crescer á medida que a quantidade de dados existente aumenta e as mesmas fer-

ramentas ficam mais acessı́veis e eficientes Chen et al. (2014); Thusoo et al. (2010). SQL não possui

uma semântica formal para a maior parte das operações utilizadas em sistemas OLAP. Estes sistemas

são especializados para tratar com os dados de forma quantitativa, agregando valores com funções, ao

contrário de systemas de processamento de transações online (OLTP), que lidam principalmente co o

lado qualitativo dos dados. Existe uma framework formal que define o lado quantitativo em Lenz and

Thalheim (2009), mas no entanto uma ma nova abordagem a sistemas OLAP baseada em álgebra lin-

ear foi recentemente publicada, demonstrando como a análise quantitativa de dados pode ser expressa

unicamente com operações matriciais tais como multiplicação, transposição etc. Sendo a teoria da

paralelização de tais operações bem conhecida, este estudo tem como objetivo avaliar o desempenho

de uma solução baseada neste teoria utilizando dados realı́sticos num sistema distribuı́do. O objetivo

principal é verificar se o paralelismo inerente nos “scripts” de álgebra linear apresentados no referido

artigo se materializa de facto no terreno, num contexto de “big-data analysis”. Dos resultados obtidos

existe um ganho de performance quando as matrizes são computadas de uma maneira ´“Lazy”, no

entanto existe um vasto leque de questões que devem ser abordados quer em termos de tranformação

entre algebra quer em termos de computação de matrizes.
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Part I

I N T RO D U C T O RY M AT E R I A L



1

I N T RO D U C T I O N

1.1 C O N T E X T A N D M OT I VAT I O N

Data have grown tremendously in size over the last few years along with the importance of analyzing

them to obtain timely and relevant knowledge. If companies want to be competitive they have to be

able to harness all the information they can gather from their clients, competitors or any other relevant

sources, so as to decide what their best course of action is for the future. An example of success is Har-

rah’s Entertainment, a Las Vegas gaming corporation which has increased revenue by changing their

customer practices based on insights obtained from their customer-centric data warehouse (Watson

and Wixom, 2007).

The relevance of data analysis spreads to many aspects of our lives, back in 2009 an influenza

outbreak started in Mexico. It took several months until it was considered epidemic, in spite of the

government’s best efforts on controlling the affected areas the virus spread globally. Google was able

to gather timely information about the outbreak due to users entering different search terms during the

outbreak. From this experience they developed an important line of defense against future influenza

outbreaks, a monitoring system capable of detecting an outbreak with one day lag (Ginsberg et al.,

2009).

Data analyses centers around aggregating data, which is by definition any process that gathers

information and expresses it in a summary form. The first database systems were capable of handling

small amounts of data and calculating simple aggregations such as minimal, maximal or sums. As

enterprises started to use databases to store their data, the existing quantity of data grew significantly,

typically from some terabytes to petabytes. Accompanying the growth of data, querys submitted to

operational databases that would take a few minutes to analyze would then take hours or even days to

complete (Codd et al., 1993). Since the databases were no longer capable of handling this increase in

volume of data and by noticing that there were two types of operations commonly used in databases

two distinct kinds of application were defined:

• on-line transaction processing (OLTP) systems focusing on fast transaction processing that ad-

dresses day-to-day important information;

• Date Warehouses that store data from several different sources, that might be an OLTP, and

provide reports and analysis.
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1.1. Context and motivation

Inside a Warehouse there is usually another system encompassing so-called on-line analytical pro-

cessing (OLAP) applications. These are responsible for managing aggregated data, executing com-

plex long lasting queries and helping the data analyst when taking decision based on the summarized

information. OLAP gives this support to the analysts by answering questions about the data such as

“what-if” and “why” since they can easily query, skim and visualize a large quantity of information

(Chaudhuri and Dayal, 1997).

The amount of data that is being currently produced by companies such as Google or Facebook

led to a new concept, that of Big Data, a huge amount of data coming not only from direct human

activity but also from other autonomous sources of information, for instance sensors in smart grids,

that can not be captured, managed and processed by the traditional technology. With the advent of

Big Data enterprises are looking for new solutions able to handle and take advantage of the available

information to have an edge in business (Chen et al., 2014).

This scenario calls for parallel and distributed solutions. An emerging open-source solution, Hadoop

(Dean and Ghemawat, 2004), provides a framework capable of managing and interconnecting large

quantity of machines who cooperate to address Big Data challenges. Supposedly, in 2011 Facebook

had 2000 machines storing 21PB of data1, by creating a distributed file system (HDFS) on top of

such a network of machines. Hadoop also offers a computational abstraction, MapReduce (Dean and

Ghemawat, 2004) that allows software developers to analyze the data stored in HDFS in a simple and

distributed way to improve the overall computation performance.

As the success of companies become more dependent on these technologies it becomes increasingly

important to have a fast and correct solution. It becomes difficult to have a solution that can be trusted

when no formal semantics are being used to describe the quantitative side of data analytics. One

definition that works on top of relational algebra has been given in Lenz and Thalheim (2009) but they

still work on top of the relational algebra and do not provide a logical framework to prove the OLAP

operations with simple mathematical expressions. Another proposal to formalize this issue is tackled

in Macedo and Oliveira (2014) that provides a novel approach based on linear algebra (LA) capable

of not only executing the same operation on OLAP systems (data cube, roll up, cross tab) but also

provide formal proofs both on the quantitative side and qualitative side. This theory works by typing

matrices with the columns attributes and using matrix operations to compute the queries. Additionally,

it provides a theoretic distributed incremental framework for computing the queries. The approach

proposed by Macedo and Oliveira (2014) provides a new niche of solutions worth exploring in this

field concerning the practical viability of such new ideas. Thus the idea, central to the work reported

in this document, explore this new niche and benchmarking the findings on a cluster of distributed

machines.

1 Source: http://hadoopblog.blogspot.pt/2010/05/facebook-has-worlds-largest-hadoop.
html consulted December 15, 2015.
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1.2. Main aims

1.2 M A I N A I M S

This dissertation focus on applying the LA theory in a cluster of machines using the Hadoop frame-

work. For that, several steps have to be accomplished: first find efficient representation solutions for

the matrices based on the current state of the art on matrix computation; secondly apply the theory

defined in Macedo and Oliveira (2014) to more world scenarios based on the TPC-H queries, thirdly

use the Hadoop framework to create the benchmark experiments and finally assess the results. There

is an extra step, made in this work, which is just a small part of future work that is the conversion be-

tween SQL and typed Linear algebra. This step allow us to have a formal definition for implementing

the queries.

1.3 S T RU C T U R E O F T H E D I S S E RTAT I O N

Chapter 2, reviews state-of-the-art research in traditional database systems, warehouses, OLAP en-

gines and current developments on the Big data trend. Chapter 3 gives a quick introduction and

summary on how linear algebra can be used to solve some simple SQL queries. It also addresses the

important topic of how the matrices used to calculate aggregates can be effectively stored and what

algorithms can be used to calculate aggregates from these storage formats directly. Following this

introductory parts, we start tackling in Chapter 4 some existing representation for matrices and work

to improve them to our needs. Afterwards, in Chapter 5, we give a deeper understanding how the

Hadoop framework works, how it was used and the matrices are divided in the cluster. Before the last

chapter we provide the initial work to translate SQL to LA in Chapter 6 so that we can correctly trans-

late the queries used to benchmark. In the last Chapter 7 we present the results of two benchmarks on

the work developed.
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2

S TAT E O F T H E A RT

2.1 I N T RO D U C T I O N

This sections tackles several topics: first it starts by introducing the relational model with some of

the most elementary operations; afterwards it presents multiple solutions for a OLAP systems; next it

follows an overview of the emerging topic of Big Data and finally presents several industry standard

benchmarks that are used to evaluate the many broad systems.

In the early years, most database systems were applications made to solve a specific problem (Codd

et al., 1993), users had to know the internal structure of the application (Codd, 1970) and a large data

set was considered to go from several megabytes to many terabytes (Graefe, 1993). In 1970 E. F.

Codd set the standard by introducing relational algebra, (Codd, 1970) thus facilitating end users with

a language they could use without understanding the underlying technology. According to relational

algebra, data is stored in a table that represents a subset of the relation, each column designates

a domain and each line is a record containing a tuple of the relation. For instance the next table

represents the quaternary relation, Users, where the first value is the first name, the second the city he

lives in, the thirds contains the gender and the forth his age.

Name City Gender Age

Peter Dublin M 30

Kyle Manhatan F 32

John New York M 87

Kyle Manhatan F 24

John Perth M 50

John Lisbon M 28

Table 1.: Relation Users

Most Relational DBMS store the table in a row oriented format while others store column by col-

umn, usually known as Column-oriented database system. Row store architecture provide a better

performance for writing since with a single write it is capable of adding new records. Its opposite, col-

umn oriented, are based on the premise that most queries require only certain columns and by laying

out columns sequentially in memory (Stonebraker et al., 2005) they are capable of reading data more
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2.2. RDBMS algorithms

efficiently, thus they are read optimized. Column oriented databases always end up stitching together

the columns of a table to recreate the resulting rows and return it to the user. Even though some are

capable of joining tables without materializing the rows until the final result is obtained (late mate-

rialization) only some traditional algorithms used by RDBMS are explained below. The algorithms

explained, focus on joining tables and calculating aggregations since this are two of the most common

operations for summarizing information.

2.2 R D B M S A L G O R I T H M S

RDBMS rely on two main operations, sorting and hashing since most queries need to bring items that

are alike together. For instance joining two table is bringing rows that have a common value together

and can be done with merge-join or hash-join. The algorithms explained in this section take a naive

approach by discarding important implementation details such as main memory size, the time spent

in IO, page size, etc. For a more detailed explanation the literature review (Graefe, 1993) provides

a deeper explanation, and the third book of “The Art of computer programming” (Knuth, 1997/98)

analyzes some algorithms even more accurately. The Youtube channel of professor Jens Dittrich1

contains a visual explanation of most algorithms and the inner workings of a database. Much of this

section in respect to RDBMS is based on Graefe literature review. Three core algorithms used in

RDBMS will be presented and small variations depending on if it is a join query or a aggregation

query.

The first algorithm uses two Nested loop to perform a join of two tables with a common column.

This algorithm is known as Nested loop join when joining two tables that share a common domain,

for instance, table A with domain D as a foreign key to table B. The first loop, the outer loop iterates

through the elements from table A while the second loop, the inner loop, goes through table B. If an

element from the outer loop matches any of the inner loop then, join both tuples in the resulting table.

This simple algorithms has very few improvements, in one-to-one match operation the inner loop can

stop if a match is found, but aside from this specific improvement all other optimizations are made

in terms of memory access. One possible optimization might be in the inner loop if the column of B
is indexed, instead of searching the table sequentially, one can search in the index, thus reducing the

inner loop time. In the worst case, where no optimization is possible, if table A as N elements and

table B as M then this algorithm performance is OpN ˚ Mq, if both tables had the same size K this

would be OpK2q.

When aggregating values of different tables first a Nested loop join is performed. On the resulting

table, it is performed another nested loop that iterates through the table and whenever there is a match

between the item in the inner loop and outer loop then calculate the aggregate function and store it.

The algorithm must somehow keep track of the aggregation already calculated so that no aggregation

in computed multiple times.

1 https://www.youtube.com/user/jensdit
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2.2. RDBMS algorithms

The next algorithm is highly dependent on sorting and when joining tables, it is commonly known

as Merge-Join. Since sorting as a deep impact on the performance, a simple understanding of how it is

done is required. Most table sizes have always been and will always be bigger than the available space

in main memory, thus the actual algorithm used for sorting is external merge sort. External merge

sort starts by dividing the initial file in runs and afterwards merging this runs until the final sorted

file is obtained. The creations of runs can be done in two different ways the first is loading part of

the file that fits in memory, sorting it, usually with quick-sort and then write to disk again. Repeating

this process until all the file is read. Another method of generating runs is with replacement selection,

with this method items are organized in a priority heap with size N. Initially N items are read from

the file to the priority heap, afterwards the smallest item from the heap is written to a run. Then read

a new item from the original file to the heap. Again take take the smallest value from the heap, if this

item is bigger than the last item written to the run, write it in the run file too, otherwise take it of the

heap and put in a list for another run. Repeat this processes until the heap is empty, when this happen

take the elements from the list to the heap and start another run file. Continue with this algorithm until

all of the file is divided in runs. Afterwards merge the runs as usually. On the off chance the input

size is small enough to fit in memory an in memory algorithm can be used to sort the data, such as

quick-sort.

Merge-Join sorts both tables by the domain they have in common, afterwards, take the first values

of each table, a from table A and b from table B. If a is the same as b then there is a join, while a
is less or equal then b move through the elements in A, if the element a is bigger than the current

element in b then move to the next element in B and start comparing with the next elements in A. The

following pseudo code illustrate this algorithm.

10



2.2. RDBMS algorithms

Algorithm 1 Merge-Sort

Require: Table A, Table B, Merging Dimension D
Ensure: Merged tables

SA Ð sortpA, Dq
SB Ð sortpB, Dq
Q Ð Empty
i Ð 10
for a in SA do

b Ð headpSBq
while a ď b do

if a “ b then
Q.addpjoinpa, bqq

end if
a Ð headpSAq

end while
end for
return Q

The presented algorithm must be changed if multiple attribute values exist, requiring several passes

in the inner loop. Even though there are two loops as in the Nested-loops join, each table is scanned

only once. If the tables are pre-sorted maybe due to a previous operation or because an index is used

then the cost of the operation is just the cost of merging both tables. Nonetheless, in the most general

case the tables must be sorted and that makes the execution time being most used in sorting which

usually takes Opn ˚ log nq for each table (Mishra and Eich, 1992).

When aggregating using a sort based algorithm, first the table is sorted by the aggregation attributes

and then a simple sequential scan can easily calculate the aggregation result.

As an example of this algorithm take the following tables, the first is a projection of the original

table sorted by Name and City the second is the maximum aggregation grouped by name and city:

Name City Age
John New York 87
John Lisbon 28
John Perth 50
Peter Dublin 30
Kyle Manhattan 24
Kyle Manhattan 32

Table 2.: Table sorted for aggregation

Name City Age
John New York 87
John Lisbon 28
John Perth 50
Peter Dublin 30
Kyle Manhattan 32

Table 3.: Aggregation result

11



2.3. OLAP

As can easily be seen by this small example this aggregation has the same result as of running a

unique query on the same attributes. In traditional databases, aggregation and duplicate removal have

been implemented in the same module due to their close similarity.

Algorithm 2 Simple hash join

Require: Table A, Table B, Merging Dimension D
Ensure: Merged tables

Q Ð Empty
hashTable Ð empty
for a in A do

hashTable.putphashpa, Dq,aq
end for
for b in B do

keygetshashpb, Dq
if hashTable.getpkeyq “ b then

Q.addpjoinphashTable.getpkey, Dq, bqq
end if

end for
return Q

Lastly, the final algorithm is based

on Hashing and even though its imple-

mentation is conceptually easy, there

are some details that one has to be

careful when the hash table created

does not fit in memory and an Hash
table overflow occurs. This problem

is usually solved with Hybrid hash-
ing. In relational joins, Simple hash
join chooses one table from the join,

hashes the attributes of the domain

used to join the tables turning them to

the hash table keys and stores either

the full record or the record-id as the

value of the hash. For the table not

hashed, iterate through the elements

and probe the hash table when there is

an value match then create a join tuple.

For selecting the table to create the hash table, the algorithm could use the table with the least

number of distinct values, but since such information is not always available algorithms usually choose

the smallest table. This is especially efficient if the hash table fits in main memory. Hash tables

performance depends mostly on how evenly the hash function distributes the keys so if table A as n
size and table B as m size the join operation has a complexity of Opn ˚mq. Simple hash join is not

the only hash based algorithm, other possible variations are Hash-Partitioned Joins, Grace Hash Join

method, etc (Mishra and Eich, 1992). An algorithm based on Hashing for computing an aggregation

iterates through the input, hashing the values and inserting them in the hash table. If an element

is already present in the hash table when inserting them it is possible to perform the aggregation

function.

2.3 O L A P

As databases became widely used in enterprises, their data sets in 1990 went from terabytes to

petabytes. Not only the size of information grew but business become more dependent on the analysis

provided by them to the point of making or breaking enterprises (Watson et al., 2001).
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2.3. OLAP

Name City Gender Age
Peter Dublin M 30
Kyle Manhattan F 56
John New York M 87
John Perth M 50
John Lisbon M 28
Peter Dublin all 30
Kyle Manhattan all 56
John New York all 87
John Perth all 50
John Lisbon all 28
Peter all M 30
Kyle all F 56
John all F 24
John all M 78
all Dublin M 30
all Manhattan F 56
all New York M 87
all Perth M 50
all Lisbon M 28

Peter all all 30
Kyle all all 56
John all all 165
all Dublin all 30
all Manhattan all 56
all New York all 87
all Perth all 50
all Lisbon all 28
all all M 195
all all F 56
all all all 251

Table 4.: Data cube sum of 1

The existing technology could not cope with the increasing com-

plexity, so a division started to appear, a database with the most up

to date information where several transactions were executed per

second and another database with the historical information of the

Enterprise where the only operations made were loading of data

and reading it. The warehouses contained the data but were still

based on the traditional RDBMS that weren’t capable of handle

the complex multidimensional queries being issued.

In 1993 E.F.Codd published a new paper that defined an emerg-

ing tool, OLAP, that did not replace the existing databases but com-

plemented them by working with the historical data and respond to

the questions “what-if” and/or “why” (Codd et al., 1993). Not only

did he defined what a OLAP tool is but set twelve rules to evaluate

an OLAP solution.

Grafae (Gray et al., 1997) defines a new format to view aggre-

gates and helped shape data analyses by introducing the concept of

Data Cube and the operations possible to do in it. In addition it

categorized three types of aggregation functions and provided the

first yet naive algorithm to compute the Data cube. The cube is the

power set of a N-dimensional aggregation. For instance the Cube

of a sum aggregation of table 1 grouping on the three columns

Name, City, Gender generalized to the domains A,B,C produces

the following aggregations ABC, AB, AC, BC, A, B, C and all, where all is the empty group-by. This

cube is represented in table 4 where the group-bys follow the enumerated order.

Two distinct solutions came to calculate and implement the data cube (Chaudhuri and Dayal, 1997),

one based on DBMS and is known as ROLAP, other took a different approach and store the a N-Cube

as a N-dimensional array and are known as MOLAP (Multidimensional OLAP). ROLAP servers

were placed between the warehouse end server that contained all the data usually in a Star-schema

or snowflake and the Client. ROLAP takes advantage of the mature and efficient RDBMS but since

OLAP queries do not always translate nicely to SQL queries these are not the most efficient engines.

On the other hand MOLAP servers provide a multidimensional view of the data by mapping multi-

dimensional queries to a multidimensional storage engine. These are usually seen as having a better

performance than ROLAP but have a more complex process of extracting, transforming and loading

(ETL) data. Additionally MOLAP storage is naturally sparse by growing exponentially with the num-

ber of dimensions and the situation becomes worse when the original data is itself sparse thus leading

to a significant waste of memory (Hasan et al., 2007). Another OLAP strand exists called Hybrid

OLAP that aims to use the best of both solutions.
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Regardless of the underlying storage there is one concept similar to both, the cube lattice. The

group-bys that make the cube can be partially ordered in a directed acyclic graph (DAG). Every node

in the graph represents a group-by queries and each node is linked by a direct edge with every other

node that contains a similar group-by but without one grouping attribute.

ABC

ACAB BC

A B C

All

Figure 1.: Cube lattice

The highest node is usually called the root, it has the highest detail and by going down the lattice the

queries become more specialized until arriving to t he lowest query ALL. As the number of dimensions

increase so does the cost of computing the total cube and independently of the technology this is a

costly process, hence it is common to select a proper subset of the data cube, precomputed it and store

it for further use. This process is called “data cube implementation” and is divided in two subjects,

computing the cube and selection of the cube (Morfonios et al., 2007). Since on this dissertation the

focus is on an alternative way of computing the cube, the following subsections give an overview of

some algorithms used in ROLAP and only one algorithm for MOLAP.

2.3.1 ROLAP algorithms

The first algorithm for computing the data cube 2D was presented in (Gray et al., 1997) and was

based on a RDBMS. The algorithm simply calculated each group-by independently, thus scanning

the original fact table each time. After all queries are calculated then unite each result and create

the cube. This algorithm is highly inefficient, grows exponentially with regards to the number of

grouping dimensions. A cube with N dimensions would take 2N´1 scans and aggregations from the

original data. Additionally no advantage is taken from results, sorts or hash tables made from other

aggregations.

This algorithm was only proposed as a presentation of the data cube. All of the following algorithms

create a execution tree T of the cube lattice that is used to compute each node (Morfonios et al., 2007).

Different algorithms may generate the execution tree differently by considering different metrics or

algorithms, but in all of them, every node of the final execution tree but the root has only one link to

another node (the parent), from which it is computed.
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ABC

ACAB BC

A B
C

All

Figure 2.: Example of an execution tree

The first algorithm with this approach of creating an execution tree was PipeSort (Agarwal et al.,

1996). The algorithm starts by creating the cube lattice and in each edge attribute two costs, the cost

of computing the edge from another edge in a upper level if it has to sort and if it does not. Afterwards

the algorithms transverses the lattice from bottom to the top level by level. The first step replicates

each vertex in the k ` 1 level k times and the replicated edges contain the same set of edges as the

original and contain the cost if it has to sort. Before preceding to the next level, the altered graph is

used to identify the edges that minimizing the sum of edges cost by doing a weight bipartite matching.

After going through all levels the original lattice tree is pruned and the execution tree is created. The

final step of the algorithm takes the execution tree and transforms it in a set of paths (pipelines), where

an edge appears in only on one path and only the first edge of each path has to be sorted. According

to the authors this algorithm complexity is OpppK ` 1qMk`1q
3q, Mk`1 is the number of group-bys

in level k` 1. This algorithm is illustrated in the Figure 3a where it presents the execution tree after

pruning the lattice and the parent of a dashed connection must be first sorted to compute the children.

Raw Data

ABC

AB

B

all

BC

A

CD

C

(a) Example of PipeSort execution tree

Raw Data

ABC

AB

B

all

ABC

BC

ABC

CD AB

A

CD

C

(b) The pipelines that are executed

Figure 3.: Illustration of PipeSort

The next algorithm Overlap takes advantage of a property that PipeSort does not. Overlap is based

on the idea of partially-matching sort orders which decreases the number of necessary sorts. Given

a aggregation sorted by ABC, then the aggregations of AB, AC, BC, A, B and C can be computed

from the first aggregation without having to re-sort since they are a subset of the original. The first

step of the algorithm chooses a sort order that defines the root of the lattice and this selection is based
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on heuristics. With the initial sort order defined, the algorithm transverse the lattice created from that

order and in each node chooses just one parent, the one which shares the longest prefix. With the

execution tree created, each node is attributed a cost, the memory size required to compute it from

its parent. This attribution of the cost constitutes the final execution tree. Afterwards the algorithm

loops until all nodes are calculated, in each step of the loop, a set of aggregation that have not been

processed are selected in a top-down/breadth-first traversal where aggregations with a greater number

of attributes and small estimated memory have priority. This selection ends according to memory

constraints. The rest of the nodes are put in a “Sort Run” class that are sorted while the selected nodes

are computed.

ABC

BCAB CD

A B C

all

31

1

1

1

10

1

(a) Example of Overlap execution tree

ABC

BCAB CD

A B

A

31

1

1

10

1
CD

C
1

(b) Example of subtrees selection

Figure 4.: Illustration of Overlap

Figure 4a represents the pruned lattice into a execution tree with the costs of computing a node

from its parent. It can be seen in the children of ABC that the costs increase from left to right due

to not being able share a prefix. The other figure 4b presents the two subtrees selections that fit in

memory to be computed. The node with a gray background represents the aggregation that has to be

first sorted and does not fit in memory.

Another algorithm presented at (Agarwal et al., 1996) is based on hashing to place tuples that

aggregate together on continuous memory positions. PipeHash firsts calculates a minimum spanning

tree (MST) from the cube lattice, where a node is connected to its parent that has the smallest estimated

total size. Since in general all the aggregations in MST cannot be computed in memory the tree must

be partitioned. PipeHash started by putting the MST in a work list, then if the entire MST is too big to

be able to compute it in memory it divides the original MST in to smaller subtrees. The division into

smaller subtrees is made by choosing a subset of the attributes from the root group-by that create the

largest partitions that still fit in memory. The partitions are then inserted at the work list and computed

using an Hash based aggregation algorithm.
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Raw Data

ABC

AB

B

all

BC

A

CD

C

10

1

3

4

2 2

2

(a) Example of Minimum Spanning tree created

Raw Data

ABC

AB

B

all

BC

ABC

CD

C

BC

A

(b) Partitions created by dividing on attribute B

Figure 5.: Illustration of PipeHash

Figure 5a contains a MST calculated by PipeHash that can not fit in memory, then the algorithm

divides the tree into three subtrees 5b that do fit by partitioning by the attribute B of the root query.

From the three subtrees only one contains all the aggregation that contain the attribute B while the

others have the rest of the aggregations. The nodes with a gray background represent aggregations

that have already been computed when the first subtree that contains B was computed.

There is a modification to the traditional data cube commonly known as the Iceberg-Cube, con-

taining group-by tuples with an aggregate value greater than a predefined minimum (minsup).

BottomUpCube (BUC) computes the cube by transversing the lattice in a bottom up fashion as the

name suggests. ALL is the first node computed containing just one tuple and if the value is smaller

than the minsupp the no other node needs to be computed since they would all be smaller. If the

values is greater than minsupp, it partition the original table on each dimension of the aggregation.

Any aggregation that passes the minimum support condition is passed as input to a recursive call

to BUC where it is further partitioned on the remaining dimensions. This type of lattice pruning is

possible since if a less detailed aggregation thus not pass the predefined minimum then a more detailed

one can not either.

all

BA C

AB CD

ABC

Figure 6.: Example of a possible BUC execution

Figure 6 illustrates a possible execution of a BUC algorithm where almost all nodes are possible

to be calculated, the aggregation BC is not present thus the aggregation B thus not pass the minimum

support condition.
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2.3.2 MOLAP algorithm

MOLAP is inherently different from ROLAP due to the data structure used to store the information

(Zhao et al., 1997). As mentioned previously, while ROLAP uses the same approach as RDBMS to

store information, MOLAP uses a multidimensional array which is conceptually similar to the data-

cube. Table 1 contains three dimensions name, city, gender and one measure, Age, in a MOLAP

engine only the measure of each row would be stored and its position in the multidimensional array

would indicate its relation with the dimensions. Due to this type of storage some of the common

strategies used on ROLAP algorithms can not be used, such as sorting or hashing to bring tuples alike

together. Nonetheless it is still possible to compute an aggregate from another previously computed

aggregated instead of the original multidimensional array. The techniques used on the algorithm that

will be presented consist on computing as many aggregates as possible while transversing each value

of the array just once. In fact due to memory constraints the multidimensional array has to be searched

multiples times but the order in which is transversed has a great impact on efficiency.

Common array storage techniques, row major order or column major order, have a different perfor-

mance when transversing the array, depending on the transversing order. Since browsing the array can

be made in many different ways, multidimensional arrays are divided in chunks (Sarawagi and Stone-

braker, 1994) thus acquiring uniform treatment in all dimensions. Chunking splits a n-dimensional

array into n-dimensional chunks where each chunk has n dimensions. Suppose a table with three di-

mensions A, B, and C each with 16 elements in each dimensions was imported to a MOLAP engine.

This would generate a three dimensional array with the size 16ˆ 16ˆ 16. This array can be stored

with 64 chunks where each one are of size 4ˆ 4ˆ 4 as illustrated in Figure 7.
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Figure 7.: Three dimensional array extracted from (Zhao et al., 1997)

The numbers in the image represent the chunk number. With the referred image it becomes easy

to visualize that to compute the AB group-by, the array is aggregated along the C dimension, for AC

group-by it is aggregated on dimension B and for BC it is aggregated along A.

A algorithm to compute the cube of the array, Singl-Pass Multi-Way Array Algorithm assumes

there is unlimited memory to compute all of the 2n aggregations. In real systems no such assumption

can be made, thus the Multi-Pass Multi-way Array Algorithm must be used, but only the first is

presented since the second algorithm is very similar to the first but only computes aggregates that fit

in memory in each pass.

Since it is assumed that main memory is no problem a naive algorithm could allocate memory for

every chunk and as it reads then it would calculate the group-bys required. Nonetheless a smarter

algorithm can be used which allocates only the minimum memory required to compute each group-by.

The memory required to compute multiple group-bys in one-pass depends on the order in which the

input array is scanned, dimension order is a row major logical order that indicates how the array will

be transversed independently on how it is stored. Suppose then that the array in figure 7 is going to be

read in the dimension order ABC meaning it goes from 1 to 64. By reading the first four chunks from 1

to 4 the aggregation of the chunk b0c0 is completed. After computing the chunk b0c0 this can be write

out and reassigned to b1c0. By following this train of thought only one chunk is required to compute

the BC group-by. To compute AC group-by since there are four different possible combinations when

going by ABC order, only four chunks are required to compute the AC group-by. For instance from 1
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to 4 parts of the four chunks can be computed a0c0, a1c0, a2c0, a3c0. When the first 16 chunks those

aggregates are done and another four can take their place, a0c1, a1c1,a2c1,a3c1. The AB group-by is

the one requiring more memory, a total of 16 chunks and the aggregation of each chunk is completed

only when all the 64 chunks are read. An optimization can be made to compute the aggregates of A,

B and C by computing each aggregation from the previously computed chunks of AB, BC and CD.

To understand the real importance of the dimension order suppose there is a four dimensional array

ABCD, where the size of each dimension is 10, 1000, 1000 and 10000. The original article claims

that if the cube was transversed in ABCD order it would require only 4MB to compute the entire cube

but if it was computed with the dimension order of DBCA then 4GB would be required.

2.3.3 A Minimal Cubing Approach

A completely different approach to computing the cube was taken in (Li et al., 2004) which can be

seen as an instance of the theory presented at (Macedo and Oliveira, 2014) as they create the LA

projections functions but in a different format and instead of working with matrix multiplications they

do set intersections on their storage formats. Thus the computations carried out are very similar but

have the same purpose. The authors observed that in the scientific domain such as Bioinformatics,

most data-sets contain a high number of dimensions but a smaller number of tuples than in enterprises

environments. Such data-sets may contain over 1000 dimensions with 106 tuples while in traditional

databases the norm is around 10 dimensions with a higher number of tuples such as 109. As an exam-

ple consider a data-set with 100 dimensions each with 10 unique attributes, the entire data cube may

have up to 11100 aggregated cells. This amount of aggregations becomes impracticable to compute

and store with the algorithms presented until now mainly due to the storage requirements. Not only it

is unreasonable to compute so many aggregations but also most OLAP queries use just a small number

of dimensions each time since it becomes hard for analysts to understand a high-dimensional space.

The solution proposed, shell-fragments, pre computes and stores off-line a small disjoint set called

fragments in a different format from all those previously presented until now and for those queries

that don’t have its aggregation precomputed it computes them using the precomputed fragments in

a timely manner. Thus making it a cost-efficient solution by saving space while still having a good

response time.

Given a table with n dimensions these are vertical partitioned into disjoint sets, the fragments. A

fragment can have any number of dimensions in any order but no two fragments can have a common

domain. For each fragment the entire data cube is precomputed and an inverted index is stored. Take

for instance a table with 60 dimensions, A1, A2, ..., A60, this can be partitioned in groups of three,

pA1, A2, A3q, pA4, A,5 , A6q, ..., pA58, A59, A60q, making a total of 20 fragments. The data cube in

each fragment is computed by intersecting the inverted indexes in a bottom-up depths-first order in

the cuboid lattice. Using table 1 and using a fragment of size 2, the resulting fragments would be

(Name,City) and Gender since Age just contain measures then it would be stored in a ID measure
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array where its positions in the array corresponds to the positions stored in the inverted indexes as

seen in the following table:

Attribute TID list
Peter 1
Kyle 2 4
John 3 5 6

Table 5.: Name Inv. index

Attribute TID list
Dublin 1
Manhattan 2 4
New York 3
Perth 5
Lisbon 6

Table 6.: City Inv. index

Attribute Intersection TID List
(Peter, Dublin) 1 X 1 1
(Peter, Manhattan) 1 X 2 4 H

... ... ...
(Kyle, Dublin) 2 4 X 1 H

(Kyle, Manhattan) 2 4 X 2 4 2 4
... ... ...
(John, Dublin) 3 5 6 X 1 H

(John, Manhattan) 3 5 6 X 2 4 4
... .. ...

Table 7.: Fragment (Name,City)

The previous tables exemplifies a part of the process of creating the fragments by showing the

inverted index of the domains Name, City and how these are used to compute the cuboid (Name, City)

which itself can be used to intersect with other cuboids such as Gender. The computed shell fragment

cubes facilitate Online computation and have a nice property of being able to discard tuples that have

empty sets. Online computation is in itself a simple algorithm that also intersects the tid list to obtain

the tuples that correspond to the aggregation query, once the tuples are recreated, these can be passed

to any cubing algorithm to calculate the local data cube. An important aspect of the fragments is

in the decision to group dimensions, since it is possible based on the semantics of the data to group

dimensions that are frequently used so that their cubes are already precomputed.

2.4 B I G DATA

Information just keeps on growing (Chen et al., 2014), in 2011 the world created and copied around

1.8 ZB data, mostly unstructured. Once again the existing technology in 2000 when this phenomenon

had its beginnings was overwhelmed (Russom and IBM, 2011).

This technology gives business a new opportunity to learn more about themselves, how the business

is changing and how to plan for the future by recognizing sales, market opportunities or having a better

targeted marketing for instance.

Enterprises are not the only sector taking advantage of Big Data, behind the many people that are

using it are governmental organizations, educational institutions and health care (Groves and Knott,

2013). The world urges for a solution capable of managing an enormous amount of raw data and

extract valuable information out of it in an acceptable time frame. Hadoop is a possible solution by

providing a framework of tools to store and analyze large datasets by using at its core a distributed

file system, HDFS and a computation model, MapReduce. The framework was developed with the

following ideas (Lin and Dyer, 2010):
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H O R I Z O N TA L S C A L I N G The workload generated from the large data sets are too much for just one

machine thus it is required to have many machines working in cooperation. Two options are

available when considering multiple machines, either have a small number of high end servers,

Scaling up, or have large amount of commodity machine, Scaling out. When application are

more data-intensive than processing-intensive it has been shown (Barroso et al., 2013) that low-

end machine have a comparable performance to the high-end ones, thus not justifying the price

of better hardware.

H A R D WA R E F A I L U R E When there is a high number of machine the probability of one of them

to fail increases and in the real world hardware failure should be considered the norm. The

detection of failure and recovery of a machine without interrupting the other machines must be

achieved in order to provide a seemingly stable system.

DATA L O C A L I T Y Since Hadoop is targeted to data-intensive application it is cheaper to move the

computation than to move data between the nodes. By moving computation closer to where the

data is instead of moving the data, network congestion is minimized and the system throughput

increases.

B AT C H P RO C E S S I N G One of the problem in computing is the bottleneck caused by the slow hard-

ware storage. While CPU performance and disk size have increased over time and this trend

seems to keep up, the the time it takes to read, seek and store information on disk does not.

Since random access to data is not efficient it is better for computation to be made in such a way

it can read data sequentially.

A B S T R AC T I O N Writing software is complex and a distributed system is even harder due to several

intricacies such as starvation and deadlock. If the developer is not concerned with system-level

details he can focus on the important aspects of computation, more on what computation needs

to be done and less on how these will actually be performed.

S C A L A B I L I T Y If a jobs takes one hour to be completed in one machine it is to be expected that if

the same job is divided by two machines it will take half of its time. Even though this is clearly

far from reality due to several constraints, a significant improvement is still expected.

The next subsections give an overview of the inner workings of HDFS and MapReduce. Another

subsection explain the usefulness of some tools build on top of Hadoop.

2.4.1 HDFS

On of the core of the Hadoop framework is the Hadoop Distributed File System (HDFS), made to be

deployed on low-cost machines where faults are considered the norm, as such it was developed to be

highly tolerant to them.
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In order to keep the system coherent two type of entities are used in HDFS, the NameNode and

DataNode which have a client/master architecture. There is one DataNode for each machine that is

in HDFS, this entity is responsible for keeping track of the block stored in the corresponding machine

and responding to request given by either the NameNode or a client. The NameNode is the master

and contains the meta-data of the files, which is where each block of the file is located, user access

permissions and additional options such as replication factor. Now it becomes clear that as block sizes

decreases the meta-data in the NameNode increases.

Figure 8.: HDFS Architecture (Source: https://goo.gl/1zmtCq)

A common operation such as reading a file or writing a file uses the NameNode to either know

which DataNodes contain the block of the file or if it is possible to create a new File and which

DataNodes to use to store. All of the actual reading and writing is made directly between the client

and the DataNodes. The fact that the data is read directly from the DataNodes is what makes it very

scalable.

A file in HDFS is divided in blocks, usually 64MB each which are spread among the several ma-

chines that belong to the system. The reason for such a large size. lies in characteristic of traditional

storage systems, Hard Disk Drives. They have a slow seek time compared to the transfer rate, thus by

having large blocks , the seek time is reduced while taking advantage of transfer rate. Another reason

for such large blocks is that each block has an overhead of the associated meta-data and if a large file

is divided in small blocks then the overhead increases. The abstraction of a block not only allows to

distribute a file through several machines but simplifies the storage system by reducing the amount of

meta-data required by block since each block size is fixed and can be easily replicated, so if a block

of a file is corrupted only that block must be replaced instead of the whole file.
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A problem that hasn’t been addressed is that the division of blocks is made by a fixed size and not

logically. Thus if a file contains data in comma separated value (CSV) half of a line can be in a block

and the other half in another. This is an issue that MapReduce works upon and is discussed in the next

subsection.

2.4.2 MapReduce

MapReduce is a programming model and implementation based on functional programing that allows

writing parallel code that can be executed in a large cluster without the developer having to know

anything about distributed systems. This programing model divides the computation in two functions

Map and Reduce. The input data is divided by key and value that are fed to one or many parallel map

functions. The map function thus has as input the key and value in which operates and returns a pair

of key and value. The result of running a map over all the input data is joined and sorted according

to the keys thus gathering in a list all elements that have the same key. The final function, reduce,

operates on top of key and list of values that resulted from joining. The result of reduce is another pair

of key and value. This is the core of the computation and the user is only required to write the map

and reduce function, since the function of joining is optional.

map :: k1 -> v1 -> (k2,v2)

join :: [(k2,v2)] -> [(k2,[v2])]

reduce :: k2 -> [v2] -> (k3,v3)

Suppose there is a file in HDFS that contains a new word in each line. To count how many alike

there are a map function could take as key value pair, an empty key and the value of the word in each

line. The map function would then emit as key the word and value the number 1. Afterwards the join

function would join all the words with the same name and would create a list of ones for each word.

The last function, reduce, simple has to go through the list and sum all the ones and obtain the total of

words that are similar.

Algorithm 3 Map Word Count

Require: Key, Value
return pValue, 1q
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Algorithm 4 Reduce Word Count

Require: Key, Values
total Ð 0
for n in Values do

total` “ n
end for
return pKey, totalq

In the concrete Hadoop implementation, a MapReduce job is composed of three tasks, map, join

and reduce, which are controlled by the TaskTracker. Every machine in the cluster can have one

TaskTracker that contains slots for tasks to be executed when commanded from the JobTracker. This

last entity is responsible to accept and handle job submissions from clients, communicate with the

NameNode to find where the input data is and coordinate with the TaskTrackers to complete the job.

As mentioned in the previous subsection the file is divided by blocks in a physical manner thus

MapReduce needs some mechanist to be able to provide a logical key and value to the map function.

The solution was to divide the original file in a logical fixed-size pieces called splits that are indepen-

dent from the logical files. The splits are responsible for making a logical division and if a line for

instance is divided in two HDFS blocks then both of these blocks will belong to the split. The split

is then further divided into records that divided the split in key and values fed to the maps. An input

split is made of its length in bytes and a set of storage locations that contain the logical data thus it is

just a reference to the data.

2.4.3 Hadoop Related Projects

MapReduce is considered a low-level abstraction since the usual analysis task demand many MapRe-

duce jobs. As such, many projects aim to take advantage of the Hadoop benefits by building on top

of it. Apache Pig builds upon Hadoop by providing a high-level language, Pig Latin, used to express

data flows able to analyze the data. The programs written in Pig Latin are compiled to a sequence

of MapReduce jobs to be executed. Pig was originally developed by Yahoo. Another similar project,

Apache Hive simulates a traditional database on top of Hadoop by providing a SQL like query lan-

guage, HiveQL. Hive allows the creation of tables such as a normal database and loads the data that is

usually in text format to HDFS. Hive was created by Facebook when they started to explore Hadoop

for their analyses needs and were able to have jobs that took a day to complete in their old system to

be completed in a few hours with Hadoop (Thusoo et al., 2010).

HBase, modeled after BigTable (Chang et al., 2008), is a distributed key value store on top of

HDFS but unlike previous projects does not use MapReduce. It it designed to provide real-time,

random read/write access to the data unlike MapReduce. Even though it is not a RDBMS it still has

the concept of table but there isn’t a rigid schema since a row in a table can have different columns.
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Tables rows are sorted by rows keys which are sorted in a byte-oriented fashion since keys and values

are byte arrays. By having keys and values has a byte array, anything can be a key and anything can

be stored. HBase automatically shards the data in regions. Initially a table only has one region that is

divided in equal sized partitions has the size grows. Each new region is then attributed to a new node

on the cluster. In the same line as MapReduce and HDFS, HBase uses a client/slave architecture. The

master is responsible for managing regions and regionservers. The region-servers keep track of their

own regions, attend requests from clients and the master. Additionally they are the ones responsible

to create new splits and inform the master.

None of the existing projects provide a full fledged analytical system capable of answering complex

SQL queries nor compute the entire data cube in a short time.To fill this gap the Apache project Kylin,

still in the incubator provides a OLAP engine based on HBase and Hive. Kylin can be considered

an HOLAP system, it works by storing the data in Hive tables and precomputes Cubes based on the

meta-data of those tables and according to dimensions of interest. In case a certain query cannot be

answered by a data-cube then it will be redirected to a hive query.

2.5 B E N C H M A R K S

Many different solutions have been developed by a diverse number of companies over the years for

databases or OLAP servers but without a common ground it becomes difficult to compare which sys-

tem is best, for what they are better suited, most importantly on how and why they behave differently.

Benchmarks provide the grounds for comparison, by creating a common tool-set that can be used by

anyone to calculate a relative performance usually used to answer the question of which system is best

and at what tasks. While enterprises use benchmarks to showcase or improve their products, clients

are able to use the results obtained to select the most adequate solution for their needs (Nambiar et al.,

2009).

TPC is a non-profit organization formed by many members of respectable companies such as Or-

acle, IBM, Intel, etc, that creates and maintains several strands of benchmarks aimed at database

applications. Aside from the provided benchmarks, enterprises that want to assess their products and

publish them must write a report according to the guideline also set by TPC. Additionally the reports

must be verified and certified by an independent auditor. Furthermore TPC is the first organization to

require a price/performances comparison in all benchmarks (Nambiar et al., 2009).

Over time many benchmarks have been developed by TPC for different systems, some are now

obsolete while others are being created. TPC-C (TPC, 2009) and TPC-E (TPC, 2014a) target OLTP

databases by creating the database and loading it with data that can grow according to a parameteriz-

able factor.

The database is evaluated with a workload simulating a complex OLTP environment through a

mixture of read-only and update intensive transactions. The performance metric used in reports in
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both benchmarks is a “business throughput”. For TPC-C the main measure is transaction-per-minute-

C (tmpC) while in TPC-E it is transactions-per-second-E (tpsE).

Decision support systems (DSS) such as OLAP servers can use TPC-H for benchmarking (Pöss

and Floyd, 2000). Similar to the previous benchmarks TPC-H provides a data generator to create and

load a 3rd normal schema where the entries of the table grow according to a scale factor. One of the

main differences is the workload that consists of 22 complex ad-hoc, read-only queries that examine a

large volume of data and answer real-world business questions (TPC, 2014b). The main performance

metric used in this benchmark is TPC-H Composite Query-per-hour(QphH@Size) where size is the

database size chosen for the measurement.

This measure manifests the system capability to process queries. As mentioned in the OLAP sub-

section current DSS do not store the information in a traditional 3rd normal schema but in a snowflake

or star schema. Furthermore the number of tables and rows are much larger and most warehouses have

to do maintenance operations. Due to the many problems (Nambiar and Poess, 2006) of TPC-H a new

benchmark was created TPC-DH. This benchmarks focus on a snowflake schema, with 24 columns

plus 18 columns on average. Additionally the workload is composed of a set of 99 SQL queries and

12 data maintenance operations. The performance metric used in TPC-DS, QphDS@SF, is similar to

TPC-H but relies more on the scale factor instead of the database size.

TPC currently contains three more benchmarks, for energy consumption, virtual databases and Big

Data (TPCx-HS), this last one even though it just sounds interesting it seems to just benchmarks

HDFS.

2.6 S Y N O P S I S

To provide a visual illustration of some topics reviewed on this section, a simple measure on how

these topics are explored and how this dissertation relates with those topics, figure 9 depicts a concept-

lattice that contains the relationship between the several topics and how many articles address such

topics. The lattice was created using the tool Concept explorer (Yevtushenko, 2004) that has its basis

in formal concept analysis. To understand the lattice it is enough to know that each reference was

tagged with keywords that are the gray boxes and the number within the white boxes represent the

number of articles with those keywords what percentage they represent on the total of all articles.

For instance in the lattice it is possible to see that seven articles are related to benchmarks and they

represent sixteen percent of all articles. Thus the circles with a blue top and black bottom represent

the relation between keyword and quantities. The other circles with a white top and black bottom

represent the quantities of article that have multiple keywords, for instance 2 articles focus on Data-

Warehousing and OLAP. For this lattice few keywords that focus on the main topics were chosen,

different keywords could have been used that related the articles in a different format. For instance

no distinction could have been made between ROLAP and MOLAP and aggregate those articles in

OLAP. But i choose to separate them so that OLAP represents general concepts while ROLAP and
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MOLAP are a specific implementation. Nonetheless every article about Hadoop was tagged with the

Keyword Big Data since there are no other solutions explored in this review. One important detail

from looking at the lattice is that it seems that MOLAP has been more explored then ROLAP due to

having a higher number of articles, but this is not true, the only motive for a higher number is that the

ROLAP articles referred are big literature reviews themselves unlike the MOLAP articles that discuss

separate topics. The focus of this dissertation is the implementation of a linear algebra approach to

OLAP (LAOLAP) and as seen from the lattice it hasn’t been deeply explored nor does it relate with

any other topic.

Figure 9.: Concept lattice of the most important topics

2.7 S U M M A RY

This chapter summarizes the evolution of databases, from simple relation storage engines to powerful

applications capable of handling the ever increasing size of information, while putting on the spotlight

knowledge that will be useful throughout the dissertation. A brief introduction to the relational model

is given which is essential to an understanding of some algorithms used in RDBMS. Then it quickly

explains the need for OLAP engines, how data is commonly viewed (Data Cube) and then goes on

presenting some algorithms for two different types of OLAP engines, OLAP and MOLAP. The topic

of Big data is addressed next as well as how Hadoop is used in this context. This review would be

incomplete without presenting tools commonly used to assess performance of different solutions, for

instance the benchmarks provided by the TPC organization.

From all the topics presented we gather that even though there are well known solutions to OLAP

systems but without any arithmetic properties to guide this systems. Furthermore with the new chal-

lenges of big data and due significant value of this systems we must rethink how these are developed.

The benchmarks are used as beacon to these new solutions, by providing significant metrics on their

performance.
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3

T H E P RO B L E M A N D I T S C H A L L E N G E S

3.1 I N T RO D U C T I O N

This chapter follows a running example of how to calculate data aggregates in OLAP using the linear

algebra encoding of data by Macedo and Oliveira (2014). This example serves to explain how the the-

ory is applied to practical situations. Consider the following table recording the sales of a conjectured

car shop. Sale records include car model, sale year, car color, quantity sold, month and season.

Model Year Color Sales Month Season

Chevy 1990 Red 5 March Spring

Chevy 1990 Blue 87 April Spring

Ford 1990 Green 64 August Summer

Ford 1990 Blue 99 October Autumn

Ford 1991 Red 8 January Winter

Ford 1991 Blue 7 January Winter

Table 8.: Car sales

Suppose the shop owner needs to know which models sell better per season. This information can

be straightforwardly obtained from the data using the SQL query language with the query 1.

Listing 1 Best selling model per season query.
SELECT Model, Season, sum (Sales)
FROM T
GROUP BY Model, Season

The result of the query is present at table 9.
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(Chevy,Spring) 92
(Ford, Summer) 64
(Ford, Autumn) 99
(Ford, Winter) 15

Table 9.: Result of query 1

Thus this query yields nothing but a slice of the data cube with the features Season and Model
having Sales as measure.

Following (Macedo and Oliveira, 2014), the previous query can be also described in linear algebra

by the following matrix term:

tModel˚Season ¨ JTKSales ¨ !
˝ (1)

where

• tModel˚Season — is the projection function associated to the product of dimensions Model and

Season

• JTKSales — is the measure matrix (diagonal matrix representing the Sales column)

• !˝ — is the column vector wholly filled with 1s indicating that all data is to be selected in the

consolidation.1

According to the theory behind this LA encoding of data,

tModel˚Season “ tModel Ź tSeason

where the joint projection is shown to be the same as the Khatri-Rao product (Ź) of the projection

functions of each dimension attribute, in this case of Model and Season. The projection function

tA of an attribute A is a matrix that records the relation between the attribute values and the record

numbers where these can be found. Such matrices represent functions because each record is bound

to hold one and only one value per attribute.2

0 1 2 3 4 5
Chevy 1 1 0 0 0 0
Ford 0 0 1 1 1 1

Table 10.: Projection function of Model (tModel)

0 1 2 3 4 5
Spring 1 1 0 0 0 0
Summer 0 0 1 0 0 0
Autumn 0 0 0 1 0 0
Winter 0 0 0 0 1 1

Table 11.: Projection function of season (tSeason)

1 Row vector ! is usually referred to as the “bang” vector (Macedo and Oliveira, 2014).
2 These projections can be identified with the bitmaps of (Wu et al., 2006), regarded as matrices.
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The standard definition of the Khatri-Rao product (KHP) requires two matrices with the same num-

ber of columns. For each column number, the corresponding column vectors are multiplied by the

standard Kronecker product.

For instance, take column number 1 from both tModel and tSeason. The corresponding column vec-

tors are r1, 0s and r1, 0, 0, 0s, respectively written in transposed format to save space. The Kronecker

product of such vectors will be (again transposed for space economy): r1, 0, 0, 0, 0, 0, 0, 0s, c.f. column

1 in Table 12.

In essence, this KHP operation simply computes the columns where the cross product of both at-

tributes exist, for instance the attribute-pair pChevy, Springq appears both in column 1 and 2 which

are the lines 1 and 2 in the original table. Thus the first matrix of the formula 1 is calculated,

ptModel˚Seasonq. The matrices are presented with 0 based index similar to an array.

0 1 2 3 4 5
(Chevy, Spring) 1 1 0 0 0 0
(Chevy, Summer) 0 0 0 0 0 0
(Chevy, Autumn) 0 0 0 0 0 0
(Chevy, Winter) 0 0 0 0 0 0
(Ford, Spring) 0 0 0 0 0 0
(Ford, Summer) 0 0 1 0 0 0
(Ford, Autumn) 0 0 0 1 0 0
(Ford, Winter) 0 0 0 0 1 1

Table 12.: Khatri-Rao product tModel˚Season “ tModel Ź tSeason

There are still two matrices in (1) calling for an explanation: the first is the measure matrix (JTKsales),

a diagonal matrix keeping all the values of the Sales column; the other is denoted by ! and is commonly

referred to as the “bang” vector. Its converse is present in the formula (!˝) meaning that all records

are to be taken into account. In general, this vector will be smaller than ! (but still Boolean) capturing

a selection predicate typically implicit in SQL where clauses. In the example above all lines are

selected and therefore the vector only contains 1s. But, should only sales over 15 be selected, this

vector would have zeros in the first, fifth and sixth lines.

Once the projection function resulting from the Khatri-Rao product is multiplied by the measure

matrix one obtains:
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3.2. “Divide and conquer” step

0 1 2 3 4 5
(Chevy, Spring) 5 87 0 0 0 0
(Chevy, Summer) 0 0 0 0 0 0
(Chevy, Autumn) 0 0 0 0 0 0
(Chevy, Winter) 0 0 0 0 0 0
(Ford, Spring) 0 0 0 0 0 0
(Ford, Summer) 0 0 64 0 0 0
(Ford, Autumn) 0 0 0 99 0 0
(Ford, Winter) 0 0 0 0 8 7

Table 13.: Result of multiplying the Sales measure by
tModel˚Season

1
1
1
1
1
1

Table 14.: Bang vector(!˝)

Then the previous matrix and “bang converse” must be multiplied to obtain the final result:

(Chevy,Spring) 92
(Chevy,Summer) 0
(Chevy, Autumn) 0
(Chevy, Winter) 0
(Ford, Spring) 0
(Ford, Summer) 64
(Ford, Autumn) 99
(Ford, Winter) 15

Table 15.: Result of query 1 computed by LA

3.2 “ D I V I D E A N D C O N Q U E R ” S T E P

Matrix composition (aka multiplication) in linear algebra can be performed using the following prop-

erty,

”

M N
ı

¨

«

P
Q

ff

“ M ¨ P` N ¨Q (2)

which allows us to divide matrices in two or more blocks, e.g. M and N in (2), to compose them

separately and then to add up such intermediate results to obtain the final one. This is an instance of

a generic, algorithmic process known as “divide and conquer” (Knuth, 1997/98). Formula (2) adopts

the “block notation” proposed by (Macedo and Oliveira, 2014).

Bearing this principle in mind, our conjectured car-shop owner might have decided to buy two

computers A and B and divide Table 8 horizontally in two halves, so that computer A holds the first

three lines (records) of data and computer B holds the other three. Upon receiving their part of the

data set, both machines will have to calculate the projection functions of the records they hold, as
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well as the corresponding measure matrices. As in (Macedo and Oliveira, 2014), it is assumed that

each machine has global knowledge of every possible attribute value and its position (index) in the

projection matrices. For instance, both know that Summer is in the second position of the projection

function of Season. Assuming this, the projection function for Model and Season and the Measure

in each machine is as follows:

tModel
Chevy 1 1 0
Ford 0 0 1

tSeason
Spring 1 1 0
Summer 0 0 1
Autumn 0 0 0
Winter 0 0 0

Measure
5 0 0
0 87 0
0 0 64

Table 16.: Matrices in machine A

tModel
Chevy 0 0 0
Ford 1 1 1

tSeason
Spring 0 0 0
Summer 0 0 0
Autumn 1 0 0
Winter 0 1 1

Measure
99 0 0
0 8 0
0 0 7

Table 17.: Matrices in machine B

As in the previous section, each machine has to calculate the Khatri-Rao product of their projection

matrices, leading to the following results:

0 1 2
(Chevy, Spring) 1 1 0
(Chevy, Summer) 0 0 0
(Chevy, Autumn) 0 0 0
(Chevy, Winter) 0 0 0
(Ford, Spring) 0 0 0
(Ford, Summer) 0 0 1
(Ford, Autumn) 0 0 0
(Ford, Winter) 0 0 0

Table 18.: Khatri-Rao product of
two projection matri-
ces in machine A

3 4 5
(Chevy, Spring) 0 0 0
(Chevy, Summer) 0 0 0
(Chevy, Autumn) 0 0 0
(Chevy, Winter) 0 0 0
(Ford, Spring) 0 0 0
(Ford, Summer) 0 0 0
(Ford, Autumn) 1 0 0
(Ford, Winter) 0 1 1

Table 19.: Khatri-Rao product of
two projection matri-
ces in machine B

To obtain the final result, two steps must still be accomplished which corresponds to the two LA

formulas presented thus far. Firstly, the multiplication of the Khatri-Rao result by the measure matrix

and then by the bang vector, as was done in the previous section. This multiplication of the three

matrices corresponds to (1) restricted to the information that each machine holds. The same formula
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is also present in the multiplication of matrices in (2) where the
”

M N
ı

corresponds to the Khatri-

Rao product and

«

P
Q

ff

is the result of the measure matrix multiplied by the bang vector.

Secondly, joining the results of each machine to obtain the final result corresponds to the sum of the

last formula. With this, if M ¨ P is the result in table 20 and N ¨Q is the result in table 21, the result

of multiplying the three matrices in each machine and then summing them is present in the following

tables:

(Chevy, Spring) 92
(Chevy, Summer) 0
(Chevy, Autumn) 0
(Chevy, Winter) 0
(Ford, Spring) 0
(Ford, Summer) 64
(Ford, Autumn) 0
(Ford, Winter) 0

Table 20.: Result vector in A

(Chevy, Spring) 0
(Chevy, Summer) 0
(Chevy, Autumn) 0
(Chevy, Winter) 0
(Ford, Spring) 0
(Ford, Summer) 0
(Ford, Autumn) 99
(Ford, Winter) 15

Table 21.: Result vector in B

(Chevy, Spring) 92
(Chevy, Summer) 0
(Chevy, Autumn) 0
(Chevy, Winter) 0
(Ford, Spring) 0
(Ford, Summer) 64
(Ford, Autumn) 99
(Ford, Winter) 15

Table 22.: Sum of the two vectors
in machines A and B

The processes of joining both results is an instance of a reduce step. There is, however, a problem

to address in the strategy presented above. Several solutions to such a problem are presented next and

are further address in a chapter 7.

3.3 T H E AT T R I B U T E R A N G E P RO B L E M .

Divide and conquer requires a strong assumption to be able to work in a distributed environment: each

machine has somehow access to global knowledge of each attribute value position in the projection

matrices. That is, when different entities create a projection matrix they do not assign the same

attribute a different matrix row number. Should this not happen, the final sum of the results of each

machine would not return a correct result.

Four solutions were considered to solve this problem: the first uses a central server, the second

modifies the way the sum of the results is carried out by not needing the central server but leaves

the realm of linear algebra; the third solution has to be further explored to see if it is possible to be

implemented and consists on requesting the original database the index of the columns; the fourth

uses a base 64 encoding to translate an attribute to a unique id and vice-versa.

C E N T R A L C O O R D I N AT O R . A central server can easily solve this problem, by keeping a global

mapping from attribute-values to row numbers, for every attribute (column in the raw data). Each

machine could still parse and create a projection matrix individually, but when a new attribute was

first encountered it would synchronize with the central coordinator. If that attribute already had a
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corresponding row number then the central server would return its line position otherwise it would

simply assign a new line number and keep it stored.

Should the central coordinator be multi-threaded, the process of assigning a new row number has to

be atomic so that no two different threads assign a different line number to an attribute. Each machine

after synchronizing with the coordinator could keep a cache of the central coordinator.

( K E Y, VA L U E ) S O L U T I O N . One can view the formula (2) in a different light, if we see the final

result of each machine as key value pair where the key is the attributes cross product and value is the

local result. When summing the results of the matrices instead of doing a simple matrix sum, it is

feasible to join the results by its keys and sum the values in the case of Sum aggregation. Using table

20 and 21 if the key pFord, Springq had value five in machine A and five in machine B the result of

the sum could be achieved by summing the results obtained individually if the key was the same. This

solution is similar to a MapReduce job.

C O L U M N I N D E X . If the original dataset resides in a OLTP database then it it might be possible

to request an inverted index to the database which would contain a mapping from attribute to the line

numbers where it appears. This solution has to be further analyzed since the index might point to

memory address and not to line numbers, additionally not all columns are indexed and the original

data source might not be a database, but the dump of one.

AT T R I B U T E E N C O D I N G . A common process takes place when Hashing attributes, where an

attribute can uniquely be hashed to a line number. Nonetheless hashing has collisions which can

result in invalid results and hash functions are not generally reversible. However hash functions are

meant to work with a finite number of addresses, if a matrix has as many rows as necessary, where the

rows are not relevant contain only zero, then a solution can be obtained through Attribute encoding.

By encoding the attributes by base 64 it is possible to obtain an unique id for each attribute in every

machine and reverse the id to the original attribute.

3.4 S U M M A RY

This chapter exposed the theory behind the overall strategy which the experiments must apply in

a efficient way. The example given in the first section will be used throughout the dissertation to

illustrate the application of linear algebra to the algorithms presented to solve some problems. From

this small example we can divide the problem in several parts, the first being generating projection

functions and measure matrices from the original data set. Once these are generated, the matrices

must be stored in a compact format (since they are very sparse) and the mapping between matrix lines

and attributes must be kept consistent.
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Finally, in the “divide-and-conquer” strategy recommended for a distributed environment the orig-

inal table must be divided in a set of chunks of data rows (as many as the processing units available)

and the projection functions must be located in the same machine to reduce data transfer and keep the

matrices consistent.

The following chapters will proceed to explaining two widespread sparse matrix storage formats,

presenting their advantages and shortcomings and explaining candidate algorithms to solve such short-

comings. Afterwards different implementations are discussed depending on the solution for the

attribute-range problem and how Hadoop might be used to help the development of the final appli-

cation framework.
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4

S T O R AG E S O L U T I O N S

4.1 I N T RO D U C T I O N

Matrix computations have been thoroughly researched in computer science due to their direct influ-

ence into the performance of scientific applications, computer graphics, etc. This can also be observed

in the Google page ranking algorithm, for instance.

The matrices used to encode the OLAP requirements will in general be very big and sparse. A pro-

jection matrix with n lines and m rows will have in the worst case a quadratic growth if n and m are the

same, with a total of n2 ´ n zeros, since each column has at most one element. Therefore, they must

be compressed to take advantage of their mathematical structure. For instance, the projection func-

tions have very specific characteristics when regarded as Boolean matrices. Their converses, however,

remain Boolean but become relations rather than functions. Considering these characteristics several

improvements can be made on the matrix operations depending on the storage format. For instance, a

correct Khatri-Rao product can easily be calculated without having to compute all the possible zero

value results. Thus when possible the operations work with a compressed format in order not to waste

time on decompressing them. This technique is similar to that used in column-store databases (Abadi

et al., 2006, 2008). The storage formats that will be presented in the sequel are modified versions

of the default formats Compressed Sparse Column (CSC) and Coordinate Format (CF) addressed by

(Silva, 2005). In CSC, columns are stored sequentially which as it is demonstrated, are ideal for stor-

ing projection functions and Measures. On the other hand. the CF provides a simple solution to solve

the attribute range problem within MapReduce when joining the results from different machines.

4.2 C O M P R E S S E D S PA R S E C O L U M N

As the name suggests, this format compresses a given matrix by laying out the elements of a column

sequentially in memory. In the standard format used by MKL four arrays are used. The first is the

Values array, which contains the non-zero values from the matrix in a top-down, left to right fashion.

The second array, Rows, contains the row number for each value. The last two arrays, pointerB (“B”

stands for “begin”) and pointerE (“E” stands for “end”) indicate the values that belong to a row.
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4.2. Compressed Sparse Column

The following matrix will be used as an example to understand the MKL compressed format. It

is just a simple example, where the sparsity is in fact very low and would occupy more space once

compressed than decompressed.

¨

˚

˚

˚

˚

˝

0 1 2 3 4 5

0 22 33 4 0 0 0
1 0 4 5 0 8 0
2 1 62 0 9 10 11
3 0 0 25 0 0 3

˛

‹

‹

‹

‹

‚

Figure 10.: Example Matrix

The following table contains the previous matrix in CSC format plus an additional index row to

help visualizing the matrix:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
Values 22 1 33 4 62 4 5 25 9 8 10 11 3
Rows 0 2 0 1 2 0 1 3 2 1 2 2 3
PointerB 0 2 5 8 9 11
PointerE 2 5 8 9 11 13

Table 23.: Example matrix in CSC format

From the first position of pointerB it is possible to know that the first column starts in the index 0

and from the PointerE that the first column ends in index 2. From this information it is possible to

know that the first column has non-zero values 22 and 1, respectively in rows 0 and 2. It follows that

rows 1 and 3 of this column are empty, i.e. hold 0. There is also a 3-array variation where PointerB

and PointerE are grouped in just one array.

4.2.1 Modified Compressed Sparse Column (MCSC)

A possible modification to the CSC format can be made which reduces size considerably, thanks

to a property of the specific matrices that are used. As pointed out before, projection matrices are

functions, and therefore hold only one value (number 1) per column. Measure matrices hold at most

one non-zero value per column.

Since these are the only types of matrices that are needed to calculate a Cube, both PointerB and

PointerE can be removed. In the case of the projection functions the value array can also be removed

due to all non-zero values being the same, number 1. In the case of measure matrices, each value is

in the matrix diagonal. Therefore, its position in the column is also its position in the line. So, only
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the values array is needed in the case of measure matrices. If we are to use a matrix multiplication

Library which requires matrices to be in the default format, the missing arrays can easily be created.

The following tables illustrate the compression of the Sales measure matrix and of the projection

function for dimension Season:

Values 5 87 64 99 8 7

Table 24.: Measure Matrix

Rows 0 0 1 2 3 3

Table 25.: Season projection function

There is, however, something missing from this example: the relation between row number and

attribute value. This can be recorded by another array which contains the values of the attributes in

their position, for instance: Spring would reside in the first position of the array, Summer in the

second, Autumn in the third and finally Winter in the fourth position.

4.2.2 Generating the projection function for MCSC

Generating projection functions from raw data must ensure that (a) attribute values are in a one-to-one

relationship with lines and that (b) their positions in the column must correspond to the same line

number in the original table. Shall one of these requirements be not fulfilled, the Khatri-Rao of two

projection functions cannot ensure valid information. One could be tempted to sort the columns of the

original table separately and then generating the projection function but this would not give a correct

result after the Khatri-Rao product.

To solve these problems, an algorithm can either browse the original table row-wise and create the

projection function of each dimension, or split the table in the different dimensions and generate each

projection function. Assuming the second option and that the input is a list or an array of values

ordered by their original positions it is relatively easy to generate the projection functions.

A possible algorithm for generating the projection function takes the array of values and has three

variables, the result array, a mapping structure (variable map) that holds the attribute-line relationship,

and the last line given to an attribute (variable Line) which starts at zero. For each element of the

array, verify if its attribute already has a corresponding line in the map and if not then put a new

entry in it where the key is the attribute and the value is the current number stored in the variable

Line. Afterwards increment Line variable by 1. Additionally in each position of the attributes array it

also writes the line number chosen to the resulting array. A possible implementation of the previous

algorithm can be found in 7, that has the lines of the table starting in zero base index and creates a

projection matrix in MCSC format.
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4.2.3 Calculating the Khatri-Rao product in MCSC

The Khatri-Rao product can be calculated in the MCSC format without deserializing the matrix in a

simple way since each column only has 1 value. Given matrix A of type 3Ð 5 and matrix B of type

5Ð 5, the resulting matrix A Ź B “ C will be of type 15Ð 5.

The result of multiplying two lines with the Khatri-Rao product will fall in a position determined

by the position of each line and the size of array B(K). Therefore the multiplication of every element

in line m of matrix A and line n of matrix B will be in the position kˆm` n.

To calculate the Khatri-Rao the number of attributes of each matrix is required to calculate the

length of the resulting array. With a simple loop from 0 to the length of the arrays, for each position

simply apply the formula and put it in the result in the corresponding column since the column does

not change, just the line number as can be seen in 8.

The next table exemplifies this algorithm for the function projection of season and model, where K

equals to 4 since there are 4 lines in Season, M is the value of Model at index X and N the value of

Season in index X.

Index 0 1 2 3 4 5
Model Row 0 0 1 1 1 1
Season Row 0 0 1 2 3 3
Result Row 0 0 5 6 7 7

Table 26.: Khatri-Rao product of tSeason and tModel

4.2.4 Final result in MCSC

To obtain the final result, there are two operation that need to be done: multiply the result of the

Khatri-Rao product by the Measure and then by the selection vector, which in this case is “bang”

(!˝). It is important to ensure that the index number of the Khatri-Rao product array correspond to

the index number of the measure array, and that elements with the same row number sum together in

the sum aggregation. Meaning that the value of the column at position N in the Khatri-Rao product

array has its corresponding value at the measure array at position N. The presented operations take

into account the special features of the matrices being multiplied (projections matrices are functions

and measure matrices are diagonal). Therefore, matrices that do not exhibit the same characteristics

can not be used in this multiplication operation. As such, the following algorithm is a special case of

three matrix multiplication.

Once again the final result is easily obtained with a loop that iterates through the arrays length. The

proposed algorithm takes as input: (a) the number of lines of the original projection functions; (b) the

result of the Khatri-Rao; (c) the measure array; (d) the selection (!˝) array. First the result array is

created with the size of multiplying the number of lines of both projections, every entry being zero.
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The reason for this array size was already presented in the previous section. The next loop goes from

0 to the length of one of the input arrays. For position I of the loop, take the value of the selection

array in position I in the variable B, the same for Measure but store it in the variable M, and again for

the Khatri-Rao product and store it in K. Afterwards if B has value 1 then add M to the result array in

position K. The Java snippet 9 contains the proposed algorithm.

The following table presents the final result, the missing corresponding records names can be ob-

tained with a simple cross product, and the bang is omitted since it contains only 1 in the running

example:

KH result 0 0 5 6 7 7
Measure 5 87 64 99 8 7
Final result 92 0 0 0 0 64 99 17

Table 27.: Result of the Final Multiplication

4.2.5 Converse in MCSC

An operator of Linear Algebra has not been discussed, even though it is commonly used in (Macedo

and Oliveira, 2014). The converse of a projection function will represent the attributes in the columns

and the lines numbers by the lines, making a column to possibly have more than one element which

goes against the initial assumption. Using Season projection function in table 11 as an example the

next table shows its converse and its representation in CSC.

Lines Spring Summer Autumn Winter
0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 0 0 0 1

Table 28.: Converse of tSeason

Index 0 1 2 3 4 5
Values 1 1 1 1 1 1
Rows 0 1 2 3 4 5
PointerB 0 2 3 4
PonterE 2 3 4 6

Table 29.: tSeason˝ in CSC

No possible optimization can be made with this matrix aside from removing the Values array since

it just contains the same value repeatedly and merging both pointer arrays.

To generate the converse of a MCSC matrix a simple algorithm can iterate through the Rows array

and create an inverted index where the key is the line number contained in the array and the values

are the column position of the line. Afterwards a simple iteration through the index can create the

converse matrix in CSC. Table 30 represents the index created after browsing 25. This index can be

used to create the converse matrix present in table 29.
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Spring 0 1
Summer 2
Autumn 3
Winter 4 5

Table 30.: Converse index of tSeason

The operations presented in the previous sections, Khatri-Rao product and matrix multiplication

which took advantage of the matrices properties can no longer be used if one of the matrix is conversed.

The Khatri-Rao product can still be used because until now nowhere in LA theory there has been a

Khatri-Rao product with a converse.

4.3 C O O R D I N AT E F O R M AT

One of the most straightforward formats, Coordinate Format, stores only the non-zero values and their

corresponding positions within the matrix. Additionally the values are not required to be in any order

within the arrays. Unlike others formats, this only contains a three array variation, one to hold the

values, another holding the row corresponding to the value and a last one regarding to the columns as

illustrated in figure 31.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
Values 22 33 4 4 5 8 1 62 9 10 11 25 3
Rows 0 0 0 1 1 1 2 2 2 2 2 3 3
Columns 0 1 2 1 2 3 0 1 3 4 5 2 3

Table 31.: Example matrix 10 in CSC format

This format uses far more space than CSC and does not have any room from improvement without

becoming identical to CSC. Nonetheless its simplicity allows us to easily do matrix multiplication of

matrices with different origin tables on MapReduce by having the key as one coordinate while the

value contains a pair with the other coordinate and the value. To demonstrate the application of CF

within MapReduce let us suppose we have two projection functions ta and tb that reside in separate

machines. In a cluster where the matrices have a consistent state, the operation ta ¨ t˝b can be carried by

running a similar but yet different Map depending on the projection function. If it is ta then the keys

of map output are the row numbers while the values are a tuple with columns and their corresponding

entries On tb the process is reversed, the keys are the rows and the values are a tuple of line number

and the column number. Additionally each Map output value contains within the tuple the projection

function of origin. Then the reduce part of the process simply has to do the multiplication and sum of

the values depending on the origin of the tuple. This idea is illustrated in the following pseudo code.
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Algorithm 5 Map Matrix Multiplication

Require: ta

for row in ta do
for column in tarrows do

value Ð tarrowsrcolumns
reduce ð prow, pcolumn, value, taqq

end for
end for

Algorithm 6 Reduce Matrix Multiplication

Require: Key, Values, NumberO f Lines
result Ð 0
for i Ð 0 to NumberO f Lines do

val Ð Valuesrtasris ˚Valuesrtbsris
result Ð result` val

end for
return result

4.4 S U M M A RY

In this chapter two storage formats for sparse matrices were presented, CSC and CF. While in fact

only one is actually used as a storage format, the others are also used to carry out specific operations.

Both formats have a wide acceptance and have a long research history. As such, their typical usage in

computer science was also addressed. Additionally, the CSC format had to be modified in order to use

even less space. This was possible thanks to some properties inherent to the matrices used by the LA

approach to data processing. Furthermore, it was shown how to carry out typical matrix operations

without having to decompress this new format. Finally, an explanation was given on the usefulness of

the CF format in computing matrix multiplication over a MapReduce Cluster.
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5

S Y S T E M A R C H I T E C T U R E

5.1 I N T RO D U C T I O N

Our benchmarks work on top of the Hadoop framework, as such we present in this section the sev-

eral components of this system and how they are used. This framework was elected as it provides

open-source technology with a distributed file system (HDFS) alongside a computational abstraction

(MapReduce). The combination of these two technologies meets the requirements of having a clus-

ter where each machine holds part of the total data and works as much as possible on its data part

independently of the others. Moreover, some applications are built on top of this framework, with the

goal of providing efficient data analysis. Thus there are several possibilities concerning the choice

of a comparison engine, many of which are already used by industry (Facebook, HP and others are

currently working to provide far more features). Note in passing that it is important to understand that

while MapReduce might require a file system, HDFS can be used by other applications, independently

from MapReduce. Such an example is a HBase that provides a Distributed Key-Value Store on top of

HDFS.

The experiments built on top of this framework will have to deal with several limitations related to

certain requirements from the LA theory for OLAP. The LA theory requires that a database table is par-

titioned horizontally, each part divided by the host machines, the generation of the matrices executed

on each machine concurrently with the available data and that the matrix operations are also executed

distributively according to their semantics. Alongside these objectives there is the requirement to keep

every matrix consistent across the cluster. A problem that is not tackled in this work, is how to keep

a set of related matrices replicated in the same machine so as to save transferring information across

the cluster. Nonetheless, nearly identical issue has been address in (Floratou et al., 2011) by using a

custom block management policy.

5.2 H A D O O P F R A M E W O R K

The Hadoop framework has four key modules, on its core there is the Hadoop Common that provides

the abstraction from the underlying operating systems, the local file system and the scripts required to
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start the applications. On top of this module there is the Hadoop Distributed File System (HDFS) that

abstracts the user from all the details of a file system divided in several hosts. With this application, it

is possible to store large files and read them without noticing any difference from a local file system.

HDFS by it self is already a very useful application, but it does not provide any way to carry out

computation on the stored files without having to load them to the local machine and work on the entire

file. To fill this gap we now have two different options, the first is the original MapReduce application

and the other is an improvement on the previous version of MapReduce. The first application is a

specific application of the MapReduce Model while the second iteration raises the level of abstraction

and provides a more general framework capable of executing different computational models where

the MapReduce is just a possible application.

Figure 11.: Overview of theHadoop Cluster used in the Benchmarks

The cluster of the benchmarks uses two main components of the Hadoop Framework, the HDFS

and the YARN Resource manager which is the improved version of the classic MapReduce. This

selection was made because, not only are these two systems the current standard implementation of a

Hadoop Cluster but because each one provides several key aspects for our solution. The Hadoop file

systems by default already divides a file in several blocks and spreads this blocks evenly by the hosts.

This aspect will facilitate the process of creating the matrices is a concurrent manner and divide their

parts through the several computational hosts, as suggested by Macedo and Oliveira (2014). YARN

and MapReduce provides a the abstraction to carry out the distributed computation of the LA theory

and have a fine control on the resource usage of the cluster. The computation are carried out as jobs

that the cluster must execute. Figure 11 depicts the system used to run the benchmarks, the Data

Nodes control the blocks of the files stored in the HDFS while the Node Managers run the computing
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tasks. There are four servers with these daemons, there is another server that contains the entities that

manage the entire cluster, the Name Node contains all the meta data of the HDFS and the Resource

Manager that oversees the resources available in the cluster, how many jobs are being executed and

the scheduling of this jobs. Some details on the HDFS are given in Subsection 2.4.1 and Section 3.3

addresses the implementation of matrix storage on the HDFS. Furthermore, Section 3.3 gives a deeper

understanding of the difference between the implementations of the original MapReduce Application

and The Yarn Application.

5.3 M AT R I X G E N E R AT I O N

The first step in order to generate the matrices, is to load in some way the data to the File System.

TPC-H was elected as the benchmark to use in this research and on the generation of the data, several

“tbl” files are created, one for each table. Thus the different files are loaded into the HDFS and by

doing this they are automatically divided in blocks. Each host then holds a set of the blocks and these

blocks are replicated amongst the machines according to certain properties that define the number of

replicas and which policy to use when replicating. This division by blocks is done on a fixed size, for

instance 64MB, thus it possible for a line of the “tbl” file to remain in different blocks.

Figure 12.: Example of HDFS Block Partition

Following the storage of the matrices, comes the generation of matrices, but in order to accomplish

this, there are three issues to tackle: if possible the generation of matrices has to be done where

the block of files are stored: there has to be a coherent set of data to create a correct matrix and a

unique line number for each attribute when the matrices are being generated concurrently. The first

and second problem are tackled by Yarn and MapReduce, respectively. The other problem will be

addressed in a following section.
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5.3.1 Yarn - The Resource Manager

To deploy any MapReduce job on the cluster there must be a resource manager capable of executing

a MapReduce request. Until the moment there are two iteration on this type of applications. The

first, the classic MapReduce, is only capable of executing MapReduce jobs and is composed of two

entities, the Job Tracker and the Task Traker. The first service is the central coordinate of the cluster,

its responsibilities are to initializing a job, obtain the required input files, computing the input splits,

divide the job in several task, assign those tasks to the taskTraker, oversee the job completion and

update the client of the job progress. The TaskTrackers, one in each machine, usual in the same

nodes of the HDFS data nodes, must execute the assigned tasks and trough a heartbeat, signal the

Job Tracker of the task progress and possible errors. As expected the number of concurrent tasks is

limited by the cluster resources, thus the task tracker must manage how many tasks can be executed at

any given time. This management is done by slots, each task-tracker has a maximum number of slots

for Maps and Reduces that are available. The amount of tasks can run in parallel in each is related

to the number of processors available. Since the MapReduce is I/O Bound it is ideal to have more

tasks then processors so that CPUS are used as much as possible. Thus if a machines has 4 CPUS,

then 3 slots for Maps and 3 slots for Reduces is the recommended setting. The reason for being 3

slots instead of four is that the host usually contains the data node and task tracker which typical use

as much resources as one slot. One JobTracker to oversee every job in the cluster makes this entity a

single point of failure, furthermore the notion of slots to manage the cluster resource does not provide

a fine grain control. Furthermore it has been noted that a cluster with more than 4000 nodes start to

have scalability issues.

All of this issues are addressed by Yarn (Yet another resource manager). The JobTracker respon-

sibilities are divided amongst the Resource Manager and the Application Manager. The Resource

Manager tracks the cluster resources by having a deeper insight to the available resources, rather than

keeping track of the available slots on each machine. In this solution each hosts dictates how much

memory and virtual cores it has available at any given moment and tasks are assigned to these hosts

depending on resource requirements of each task. For instance on task might require 2GB of main

memory and 1 VCPU to run while another task might need 1GB of main memory but 4 VCPUS. The

Application Manager, negotiates resources with the resource manager and schedules the tasks to be

executed on the Cluster. Furthermore it keeps track of the running jobs and their overall state. There

is another entity also added, the Application Master which oversees the flow of a single Job, thus for

each MapReduce Job there is a dedicated Application Master. This separation of concerns turns the

Map Reduce application an instance of an Application Manager, making it possible to have different

types of applications running in the cluster. The task tracker is now called Node manager and handles

the machine resources by providing the available number of virtual cups and memory available. With

this new feature, a Map task is executed in a container that requires a certain number of CPUs and
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memory. With this minutiae in the system resources, the resource manager is capable of doing a fair

use of the cluster and avoid under utilization of the total resources.

Figure 13.: Classic MapReduce and Yarn (Source: http://goo.gl/FF3Yq0)

5.3.2 File Splits

When the MapReduce application launches a Map container it must calculate the input split previously.

An input split is a logic representation of the data since the blocks in HDFS are broken apart by a

predetermined size. If the Map tasks worked directly with blocks then either some of the data would

be corrupted or it would be developer job to retrieve the rest of the data residing in other HDFS block.

To simplify this process, when a input split is calculated, depending on the file format that can be

customized, the MapReduce client calculates how many blocks a split is composed of and stores that

information. When calculating the file split, if one records starts in a HDFS block and ends in another

then both blocks will compose the FileSplit. A input split might have a size bigger than a HDFS

block, thus being composed of several blocks. When the tasks are assigned to a Node Manager the

scheduler attempts to allocate the input splits based on their location, preferring to run task where the

data resides, which reduces the overhead of data transfer. If it is not possible to allocate the jobs where

the data resides then it prefers to assign to a machine in the same rack. This is one of fundamental

principles, rack awareness, that make Hadoop so efficient, moving computation instead of data.

5.3.3 Attribute Range Problem

Two problems have already been solved by the Hadoop framework, partition the data horizontally in

each machine and the matrices must be generated where the data resides. The next step is to generate

the matrices and assign to each attribute a unique id. From all the options presented at Subsection 3.3

only two are used. The first option, a central coordinator, has the worse performance when compared

to others, as is confirmed by testing the time it took to generate a small projection function far exceed

the time it would take to generate the matrices with other options. Additionally by having a HBase

in the same cluster, the resources that were available to execute MapReduce jobs diminished, since

HBase uses a lot of memory and this would tend to increase has the attributes got bigger. Experiments
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were also made with a Nodejs application and a MySQL database but the time it took attribute a unique

id to each attribute via a central coordinator is too large. After exploring the TPC-H Benchmarks it

was clear that some columns do not have a fixed number of attributes such as dates while others do in

fact have a small number of attributes. Also the data was generated to “tbl” files which meant that if it

was desirable to use an index we would have to create one from the files. All of these factors aligned

with the ongoing development of index in Hadoop applications such as Hive and since not all columns

in a database are indexed, option three, using database indexes to associate an attribute to an id, was

discarded.

From all of the option only the following are left, Attribute encoding and the key value solution.

These solutions provide a simple and fast mechanism to not only generate the matrices concurrently

but also to decode and perform computation. The attribute encoding can be made in several ways, if

the attribute is a String then it is encoded in 64 base that will return a number, this number will be

unique for every attribute and will map to the line in the matrix. This number can also be later decoded

to obtain the corresponding attribute. If the attribute is a date or an Hour then this can be converted to

their numerical representation in seconds, thus creating again a connection between the number and

the attribute. There are some cases where no encoding is necessary, for instance when dealing with

id column, which already contain unique numerical ids that serve as attribute and line number. All

of this encoding mechanisms are used only in projection functions and are not required for Measures.

Additional they create empty lines between attributes since some of the numbers generated although

unique are not sequential, nonetheless this do not cause any problem if the matrices never have to

be fully materialized and computation can be computed in a sparse format, otherwise it can lead to

matrices that have many more elements then if the ids were generated sequentially. Table 32 contains

a segment of table column and 33 the resulting MCSC by a process similar to the ones presented

at subsection 4.2.1 but using attribute encoding. Note that since the attributes are encoded into row

number there is no longer the need for a attribute array. In this example Peter is encoded to 25, Kyle

to 100 and John to 100, as it can be noticed there would be several gaps if the matrix were directly

decoded from this format.

Name Peter Kyle John Kyle John John

Table 32.: Database column with User names

Index 0 1 2 3 4 5
Rows 25 100 2 200 2 2

Table 33.: MCSC of the User names column

This solution is ideal when there are an infinite number of possible attributes and the matrix opera-

tion can be carried out without matrix materialization. This format is also very similar to a dictionary

encoding used in column oriented databasesAbadi et al. (2008).

The Key value solution while not used for storage is used when after executing the matrix multipli-

cation on the map side there is the need to aggregate results from different tables. It becomes natural

to express in this case the matrix in a coordinate format where, for instance the key is the line number
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and the Value contains a tuple with both the column and the value in the matrix if there is any. An

example of this usage has been portrayed in section 4.3

5.4 S U M M A RY

Hadoop provides many of the features required to build a usable, generic Linear Algebra OLAP data

analysis system by creating a custom Application Master, one of the core elements presented at this

section. To have a working implementation several problems still have to be addressed that were not

fully solved, such as a generic mechanism to distribute the matrices once stored or how to replicate

the files in a congruent manner. The problems of distributing the data evenly among the data is solved

by the MapReduce File Split abstraction and the requirement to have the matrices consistent across

the cluster is solved using 64 base encoding and a coordinate matrix format. The issue of carrying

out matrix computations concurrently in each machine is dictated by mathematical properties and not

addressed here but gives rises to another path worth exploring of query execution plans for linear

algebra equations.
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T R A N S L AT I N G R E L AT I O N A L G E B R A T O L I N E A R A L G E B R A

The typed LA approach to OLAP proposed by Macedo and Oliveira (2014) does not address how

to translate relational algebra (RA) queries into linear algebra (LA) counterparts in a systematic and

thorough way. When benchmarking this LA approach to data analytics we were faced with the fact

that the analytical queries used in TPC-H are not just ‘rollups’ or ‘cross tabs’, but rather compute

complex sub-cubes of the data, composed of several relational algebra operations.

By experience, from the analysis of some of the complex TPC-H OLAP queries it has become clear

that the typed linear algebra must be extended to support all the operations commonly found in such

queries. Clearly, it is necessary to have a complete transformation from relational algebra to linear

algebra so that we may run any benchmark that uses standard SQL. Throughout this chapter we follow

the definitions of relational operations proposed by Codd et al. (1993), that were later reviewed and

extended by Pirotte (1982). As such, every relation is defined as a n-tuple where each element i as

the Set Si. This chapter will provide definitions for the most important operators and will show how

to convert them to LA scripts.

6.1 P RO J E C T I O N

Data projection is an elementary operation both in relational algebra and in SQL, where it is incorpo-

rated in the “SELECT” statement. In very simple terms, a projection takes a relation, any number of

attributes to be projected and creates another relation with the values of the initial relation but only

for the projected attributes. Furthermore, it removes all duplicated tuples of the final relation. This

last part is not the same in traditional databases, as they only remove duplicated tuples if such an

instruction is given.

In the LA approach, attributes are divided into dimensions and measures, both represented by matri-

ces: projection functions in the first case and diagonal matrices in the second. Where the typical case

of a database would be to remove certain columns of a table, in the LA approach the process consists

of joining the projection functions of the selected attributes. The process to achieve this must produce

a final result with the same information as in a relational projection, ie. holding all possible combina-

tions of the projected attributes and no duplicated tuples. As such, the easiest process to achieve this
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is by doing several Khatri-Rao products of the projection matrices. This poses a problem when we

want to glue database columns which are seen as a measures. One way to solve this is by converting

them into projection functions, but since the target of this LA encoding is to perform OLAP and this

is not a typical use case, this situation will not be further addressed. Thus we assume that relational

projections only involve dimension attributes.

Starting from the definition given by Codd (1970) for relational projection, let R be a n-ary relation

and K “ tA, B, ...u be the set of its attributes. The L-projection of R, for L Ď K, is denoted by πLpRq
and defined by πLpRq “ RpA, B, . . . , Kq in standard relational algebra.

The corresponding LA encoding of this operation is obtained by the Khatri-Rao product of the

projection functions corresponding to each attribute of the intended selection. Let rX denote the

projection matrix associated to attribute X P K in R. Then the LA outcome of projecting R by L is

given by equation (3).

πLpRq “
h

XPL

rX (3)

6.2 R E S T R I C T I O N

Restricting (or selecting) a relation R is the process of creating a sub-relation S that contains all the

tuples of R that meet a certain condition. In the database language SQL this operation is embodied

in the “WHERE” clause, which can be composed by several conditions. This section presents two

formal definitions, one that restricts a relation on a single attribute and another definition that allows

us to work with multiple restrictions.

In a formal definition along the lines of (Pirotte, 1982), a restriction on relation RpKqwith attributes

in |K| is the sub-relation S “ σϕpRq defined by

σϕpRq “ tt P R | ϕptqu (4)

where ϕ is defined as ϕ “ X θ c in which c is a constant of the domain DX associated with X and θ is

any binary comparison operation defined on that domain. The result S thus is a subset of R (S Ď R)

in which degreepSq “ degreepRq.
This definition can be further extended to have multiple restrictions on a single relation by com-

posing them with binary logical operators (θ). For ϕ “ αθβ, we have σϕpRq “ σαpRqpX{ YqσβpRq
depending on the logical binary operator θ being _ or ^.

We start by addressing restrictions composed by the logical connector ^, leaving the logical con-

nector_ for the end of this section. Below we present two methods to achieve a restriction on a single

matrix. The first method works directly by transforming a projection function row-wise, turning en-

tries to zeros wherever the attributes do not pass the given criteria.
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In what follows we use the notation of (Oliveira, 2012) for elements of a matrix M y M x indicates

the value of the cell of M addressed by row y and column x. Let projection function tA : n Ñ |A|
be given and ϕ : |A| Ñ Bool be a restriction predicate on attribute A. Define rϕs : 1 Ñ |A| as the

column vector uniquely determined by ϕ the fragment of !˝ : 1 Ñ |A| which indicates which values

a P |A| satisfy ϕ:

a rϕs “ i f ϕpaq then 1 else 0

Then we define the restriction of tA by ϕ as follows:

σϕptAq “ tA ˝ prϕs ¨ !q (5)

where ˝ denotes the Hadamard product (Million, 2007), i.e. the cell-wise multiplication between

two matrices of the same type. Thus ! : n Ñ 1 in (5). It is then possible to define that when ϕ is a

predicate formula as the form ϕ “ α^ β, then σϕptAq can be extended to σαptAq ˝ σβptAq.

Any form of restriction on projection functions according to this definition returns a matrix with

the same dimensions and attributes as the arguments of the operations, the only difference being the

values that the matrix holds. (That is, the type of σϕptAq is always the same as that of |A| tA
ÐÝ n.) Let

us check this by calculating the point wise meaning of (5):

apσϕptAqqi “ aptA ˝ prϕs ¨ !qqi

“ pa tA iq ˆ pa prϕs ¨ !q iq

“ i f a “ tApiq then pa prϕs ¨ !q iq else 0

“ i f a “ tApiq ^ ϕpaq then 1 else 0

Consider as example the query 2 on table 8, which translates into LA script:

csModel Ź csYear Ź σColor“BluepcsColorq “ csModel Ź csYear Ź csColor ˝ prColor “ Blues ¨ !q (6)

This will produce the table found in 34.

Listing 2 Restriction Query
SELECT Model, Year, Color
FROM Car_sales as CS
WHERE CS.Color = Blue

A similar result can be obtained with equation (6) which uses the Khatri Rao product to calculate

all the possible results and a restriction on the Color projection function. The result is illustrated in

the table 35.
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Model Year Color
Chevy 1990 Blue
Ford 1990 Blue
Ford 1991 Blue

Table 34.: Relational result of query 2

0 1 2 3 4 5
Chevyˆ 1990ˆ Red 0 0 0 0 0 0
Chevyˆ 1990ˆ Blue 1 0 0 0 0 0

Chevyˆ 1990ˆ Green 0 0 0 0 0 0
...

...
Fordˆ 1990ˆ Blue 0 0 0 0 1 0

...
...

Fordˆ 1991ˆ Blue 0 0 0 0 0 1

Table 35.: Result of equation (6)

However, the previously defined operation has one limitation: it becomes hard to express restric-

tions on an attribute that is not supposed to show up in the final result. One example of such a query

can be found in listing 3.

Listing 3 Restriction Query
SELECT Model, Year
FROM Car_sales as CS
WHERE CS.Color = Blue
AND CS.Month = January

As anticipated earlier on, there is another way to carry out a restriction on a projection function

that solves this problem. It involves constructing a different type of matrix, a binary diagonal matrix

similar to a measure matrix that holds the values which are valid according to a certain criteria and

then multiply the projection function by it. This matrix is defined in equation (7), where T is the

original table, M an attribute of that table and ϕ is a predicate formula.

jrTsϕMi “

$

&

%

1 i “ j^ ϕpTpM, jqq

0 otherwise
(7)

Unlike the other restriction the matrix produced is of type n
rTsϕM
ÐÝÝÝ n. In this way, a predicate

formula composed by ^ can be achieved by simply generating as many matrices (7) as conjuncts and

then multiplying them using the Hadamard product, or simply chaining them by composition.1 Thus

we define the operation σϕptAq for ϕ “ α^ β:

rTsα^β
M “ rTsαM ¨ rTs

β
M

1 It is a well known result in relational and linear algebra that composition of Boolean diagonals is the same as their Hadamard
product.
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Following this approach, query 3 can be translated to the script (8). Its outcome in relational format

is given by table 36. The corresponding matrix is given by 37.

pcsModel Ź csYearq ¨ rCSsColor“Blue
Color ¨ rCSsMonth“January

Month (8)

Ford 1991

Table 36.: Relational result of query 3

0 1 2 3 4 5
Chevyˆ 1990 0 0 0 0 0 0

...
...

Fordˆ 1991 0 0 0 0 0 1

Table 37.: Result of equation (8)

Finally, we address selections in which ϕ “ α _ β. Following Oliveira (2012) we define the

following operation on Boolean diagonal matrices:

MY N “ M` N ´M ¨ N (9)

This performs set union (predicate disjunction) on diagonal representation of sets (predicates).Then

we define

rTsα_β
M “ rTsαM Y rTs

β
M

6.3 J O I N S

Joining tables is the most important operation on relational algebra as it provides a way to relate

information that is spread out over different tables. To relate this information there must be a column

on both tables with the same domain, so as to navigate between them. Relational databases provide

many ways to execute a join; amongst them, there are natural joins, θ-joins, semi joins and so on.

Even though the θ-joins may be a common operation, they pose a difficult task in converting to typed

LA as they work on tables of the same type but different domains. When this is translated to LA, it

means that the matrices will have a different number of rows, which makes it hard to operate on them.

Thus this section will tackle the natural joins and semi joins, as they work on columns of the same

domain. These joins already provide a solid foundation to create complex queries and develop further

work on top of them.

6.3.1 Natural join

A natural join concatenates every tuple from a relation R with every tuple on a relation B through one

or more attributes with common domains, as long as the values of such attributes are equal. Using as

56



6.3. Joins

example tables 38 and 39, the natural join of both tables can be found in table 40. As can be seen by

the examples, the resulting relation is the Cartesian product of all the tuples that have the same year.

Model Year

Chevy 1990

Ford 1990

Ford 1991

Table 38.: Example Relation R

Year Month People

1990 June 10

1991 April 19

1991 July 20

Table 39.: Example relation S

Model Year Month People

Chevy 1990 June 10

Ford 1990 June 10

Ford 1991 April 19

Ford 1991 July 20

Table 40.: Natural Join result of R ’ S

Let RpLq be a relation with schema L and t P R be a tuple of R. For X Ď L, we denote by trXs the

sub-tuple of t which contains only the values for the attributes in X. Following the more restrictive

formal definition of (Pirotte, 1982), given two relations RpLq and SpKq such that some A P L and

some B P K share the same domain of values, we define their natural join as the Cartesian product

of both relations where condition A “ B holds. The formal definition of this operation is given in

equation (10).

R ’ S “ tt1Y t2 | t1 P R, t2 P S, t1rAs “ t2rBsu (10)

To convert the natural join to its linear algebra counterpart, the following steps have to be per-

formed:

• From R generate projection matrices rA : n Ñ D and rL´tAu : n Ñ D1 where n is the

number of records in R and D and D1 are the data domains of the corresponding attributes. NB:

The iteration of the projection notation to a set of attributes is defined by Macedo and Oliveira

(2014), that is:

rL “
h

XPL

rX (11)

• From S generate projection matrices sB : m Ñ D and sK´tBu : m Ñ D2 where m is the number

of records in S. Note the same data domain D.
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• Build

R ’ S “ prL´tAu ¨ r˝Aq Ź psL´tBu ¨ s˝Bq (12)

of type D Ñ D1 ˆD2. This formula is equivalent to

R ’ S “ prL´tAu b sL´tBuq ¨ pr˝A Ź ¨s˝Bq

where b denotes matrix Kronecker product. This formula helps in grasping the meaning of a

join in LA semantics, and how multiplicities are taken into account: pd1, d2qpR ’ Sqd tells the

number of occurrences of tuple ppd1, d2q, dq in R ’ S, calculated as follows:

pd1, d2qpR ’ Sqd “ xΣi, j : d1 “ rL´tAui^ d” “ sL´tBu j^ d “ rAi “ sB j : 1y

where i and j are row indices.

Yet another formula for R ’ S is given by

R ’ S “ prL´tAu Ź idq ¨ r˝A ¨ sB ¨ psL´tBuq
˝ (13)

of the isomorphic type D2 Ñ D1 ˆ D. (Note the term “r˝A ¨ sB, which is where the join effect”

takes place.) All these alternatives contain the same information and are useful depending on “which

attributes one wants on which side of the type arrow” (Ñ), in order to compose with the environment

in which the join takes place.

Looking at these alternative definitions, equation (13) provides a clear separation that can be used

to calculate the operation in a distributed environment. The multiplications regarding the projections

matrices r can be computed in a set of machines while the the another set of machines computes

the matrices on s. On each set, these computations can also be computed concurrently according to

“divide and conquer” matrix multiplication, and by noting that rL´tAu “
`

XPL´tAu rX (11).

The step that forces the two sets of machines to synchronize is the “join term” r˝A ¨ sB. The join of

the matrices on the left side of the join is calculated with a LA projection similar to the one presented

above and multiplied by the matrix dot product of the matrix that joins the tables. This operation is

given by the following equation rL ¨ r˝A where the joining column is A and L are all the columns, A
included. When applying this equation to the example of table 38, the result would be prModel Ź rYearq ¨

r˝Year that is equivalent to rModel Ź imgprYearq.

Since the Khatri-Rao product on projection functions is a commutative operation then it is possible

to define it as
`
ptL, imgptCqq “

`
L t Ź imgptCq

˝. This equation has the following type
`
ptL, imgptCqq :

|L| t
ÐÝ C. Has can be seen by the type this operations relates every possible attribute combination with

the column that is used to join the tables. This matrix has to be the last being multiplied and transposed

so that the number of columns of the resulting matrix is equal to the number of rows to the matrix that

will contain the right side of the join.
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June April July
Chevyˆ 1990 10 0 0
Chevyˆ 1991 0 0 0
Fordˆ 1990 10 0 0
Fordˆ 1991 0 19 20

Table 41.: Result of equation (15)

Now to tackle the right side of the join, it is already known that the resulting matrix must have on

its rows the type B, has the natural join is made with a standard matrix multiplication. In the columns

type there must be types of the columns of the Table S, which is obtained by another projection but

with its result transposed. Additionally since the attributes are already on the Left side of the join

multiplication then the right side does not need to include its type on the projection. Thus we arrive

at the definition of the right side of the join, sB ¨ psL´tBuq
˝. The right side of the joins has the type

sB ¨ psL´tBuq
˝ : B t

ÐÝ |L ´ B|. Using the table 39 the resulting equation would be sYear ¨ s˝Month if

the People columns was not required, if it was, and since it a measure matrix then definition has to

be slightly different has it would require a multiplication by the measure at the end, such as sYear ¨

psMonth ¨ JsKPeopleq
˝. Thus the final formula for the right side is tC ¨ p

`k
t ¨
śM

JtKq
˝ where M are the

measure matrices of the right side of the table. Subsequent to this addition the formula for the left side

of join also must be update to
śM

JtK ¨
`
ptK, imgptCqq. The types of either formula does not change.

After every definition, the transformation from a natural join to Linear algebra is given by equation

(14) Where k are the required projection function regarding each table and M are the Measure matrices

respectively.

R ’ S : |L| Ð |K|

R ’ S “
M
ź

JrK

¨rL´tAu ¨ r˝A ¨ sB ¨ psL´tBu ¨

M
ź

JsK

q˝
(14)

By applying this transformation to the tables 38 and 39 we get equation (15) that outputs the result

in 41. As can be seen from these small examples, the same information is present in both algebras but

represented in a different format.

Model ˆYear Ð Month

rModel Ź rYear ¨ r˝Year ˆ sYear ¨ psMonth ¨ JsKPeopleq
˝

(15)
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Year Month People
1990 June 10
1992 April 19
1990 July 20

Table 42.: Updated example of relation B

Model Year
Chevy 1990
Ford 1990

Table 43.: Result of the left side join of table 39 and 42

6.3.2 Semi-Joins

A semi-join is a one side natural join. What this means is that when joining two tables the end result

is a subset of one of such tables where attributes match in a way defined below. The result will be

taken from the left table of the join in case of the left semijoin (˙) or from the right table in case of

the right semi-join (¸).

We give the definition for the left semi-join only, as the definition for the right semi-join is very

similar. In relational algebra, the left semi-join of a relation R with S as in definition (10) is the sub

relation T Ď R which has all tuples in R for which there is a tuple in S that is equal on their common

attribute names (A “ B):

R˙ S “ tt1 P R | Dt2 P S, t1rAs “ t2rBsu (16)

Using as example table 42 (a different version version of table 39) the outcome of A˙ B is given by

table 43.

In order to translate this operator to LA we recall definition (13):

R ’ S “ prL´tAu Ź idq ¨ r˝A ¨ sB ¨ psL´tBuq
˝

The case R˙ S corresponds to the above once we ignore sL´tBu, which can be done by replacing it

by ! : m Ñ 1:

R˙ S “ prL´tAu Ź idq ¨ r˝A ¨ sB ¨ !˝ (17)

Note the type 1 Ñ D1 ˆD, isomorphic to that of R.

There is another method to calculate a semi join, with different operations and a different purpose.

The purpose of this method is to filter the right side matrix by the left side matrix so that the left

side matrix type remains the same and is still a projection function. For this there will be a new

operation similar to the matrix multiplication but instead of summing the products of multiplication it

will multiply them. The definition for this operation is given in equation (18) where i is a row of r, j a
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0 1 2
1990 1 0 0
1991 0 0 0
1992 0 0 0

Table 44.: AYear projection function left joined with B

column of s and k are the columns of r. Following the definition of this operation the position x00 of

the resulting matrix is obtained by r00 ¨ s00 ¨ r01 ¨ s10 . . . r0k ¨ sk0.

rd s “
m
ź

k“1

rik ¨ skj (18)

What this operation allows to do is to multiply any projection function by a vector and instead of

summing how many elements there are for each attribute we simply get which attributes are present

in that projection function. Now we can provide an equation that translate any semijoin into the linear

algebra domain that produces a matrix that contains the same information as a relational join. Hence

this translation is given in equation (19).

r˙ s : |L| Ð n

r˙ s “ pr˝ ¨ psd !˝qq˝
(19)

If the equation is not analyzed step by step it might seem convoluted. The transpose of A simply

makes the attributes go to the top so that when the multiplication is carried out the types matches

with the right side of the multiplication, hence the number of columns of A is equal to the number of

rows of the product pBd !˝q. The inner part of the equation filter the A matrix and puts zeros in the

attribute lines that do not show up in the projection function B. The outer converse serves to return the

projection function to its original format where the attributes are on the row. By applying the same

semijoin as the one presented at the beginning of this subsection, the result of A˙ B in Linear algebra

is in table 44.

The right side semi join can is in Linear Algebra is nothing more than the left semi join but with

the arguments switched as defined in equation 20.

r¸ s “ s˙ r (20)
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6.3.3 θ-Join

Finally, concerning θ-joins we rely on the same definition (13), which we extend by inlining the

Boolean matrix which encodes relational operator θ, for simplicity represented by the same symbol:

R ’AθB S “ prL´tAu Ź idq ¨ pr˝A ¨ θ ¨ sBq ¨ psL´tBuq
˝ (21)

This extends R ’ S, which corresponds to the special case θ “ id representing A “ B. Whith this

we obtain a final equation (22) to carry out most join operations.

R ’θ S : L Ð K

R ’θ S “
M
ź

JrK

¨rL´tAu ¨ r˝A ¨ θ ¨ sB ¨ psL´tBu ¨

M
ź

JsK

q˝
(22)

6.4 S U M M A RY

This chapter contributes with some first steps required to enhance the application of typed LA ap-

proach to OLAP, making it usable to more complex queries similar to the ones used in OLAP bench-

marking. In this sense it complements the LA encoding of GROUP BY queries given in chapter 3.

Note however that not all relational operations (e.g. Antijoin and innerjoin). have been addressed.

Although far from a complete study, together with chapter 3 this chapter presents what may be

regarded as the first steps towards a quantitative semantics of SQL, a kind of semantics required by its

increasing use as a data analytical language.

62



7

B E N C H M A R K S

7.1 I N T RO D U C T I O N

This chapter is the apex of everything described thus far in this dissertation, from the sparse matrix

formats to the SQL-LA conversion. It aims to assess whether the LA approach to data querying has

potential or not to be an efficient solution in practice. To achieve this, we rely on the data formats

described and apply the SQL-LA conversion rules to two derived queries from the TPC-H benchmark.

This is followed by their implementation and execution on top of the Hadoop cluster, leading to an

assessment of their performance both in terms of job latency and resource usage. Additionally, the

performance of each query is compared to the results obtained in Hive, a system best suited to carry

out the OLAP operations.

Throughout all the experiments the same system was used, under the same assumptions. One of the

assumptions is that there are no failures on the system and as the experiments were built on top of the

Hadoop framework this is not a unreasonable assumption, as the framework already deals with many

failures. These include handling nodes which become unavailable, losing data either to corruption or

a node failing; and also the failure of a task of a Job. Additionally, the scheduling of the resources

in the cluster is not of special interest in these experiments as it is a controlled environment that runs

only the tasks that we assign them. Furthermore, as the cluster has no multi tenancy we do not aim

to evaluate the job throughput. As such and as mentioned above, we aim to just evaluate how long it

takes to run each job, how large do the VM containers of the Hadoop tasks need to be and how many

resources each node uses in terms of CPU, memory and disk.

All benchmarks were carried out in five machines, each with Ubuntu 14.04 64 bit running on Intel

Core i3-3240 @ 3.40 Ghz, 3K cache and 8GB of RAM. One of these machines keeps the HDFS

name nodes, the YARN resource manager and the Hive server. Every other machine contains both the

HDFS data node and the YARN node manager. Each resource is given a 1GB JVM. In each machine,

4GB are made available to YARN which makes a cluster with a total amount of 16GB of RAM with

32 virtual cores. Each HDFS block has size 64MB.

Both approaches for every experiment distribute a database table horizontally through the nodes and

both require a pre computation to convert the text files to their optimized format. In the experiments,

Hive will be assessed with text file and optimized row format (ORC) without compression as our
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approach does not use any compression either. Every experiment consists of only one reduce step,

over as many maps as data splits. The job latency was retrieved from the YARN job tracker that

records several aspects of a job and the resource usage of every node was obtained using the Dstat

tool.1

7.2 Q U E RY 1

For the first experiment we used a simpler version of TPC-H Query 1, as this query focuses on a single

table, much like in the original paper Macedo and Oliveira (2014) and has a single filtering condition

allowing us to apply the translations defined in previous chapter, and it has multiple aggregations that

could be computed independently.

However, as first exercise this query (listed as query 10 in appendix A) is too complex: it involves

averaging, a type of consolidation not yet implemented in our experimental framework. So we start

from something simpler and just calculate one aggregation without averages. We also simplify the

schema of the table, given below for immediate and easy reference.

Listing 4 TPC-H Query 1 (simplified schema)
CREATE TABLE LINEITEM (

QUANTITY DECIMAL(15,2) NOT NULL,
RETURNFLAG CHAR(1) NOT NULL,
LINESTATUS CHAR(1) NOT NULL,
SHIPDATE DATE NOT NULL;

The query itself is given in listing 5. It involves a projection, an aggregation and a double-condition

selection.

Listing 5 TPC-H Query 1 (simplified)
SELECT RETURNFLAG, LINESTATUS, sum(QUANTITY)
FROM LINEITEM
WHERE SHIPDATE >= 1998-08-28 AND SHIPDATE <= 1998-12-01
GROUP BY RETURNFLAG, LINESTATUS

The first step of the translation of this query to LA is to convert it into an relational algebra expres-

sion. For this, since “group-by” is not defined in standard relational algebra we assume a function

SUM that, given a relation, aggregates the values over one of its columns. Then the query can be

seen as a restriction on the relation Lineitem (below abbreviated to L) in the column Shipdate which

is then projected on the columns Return f lag, Linestatus and Quantity. This relational algebra

expression of this SQL query is as follows:

1 http://dag.wiee.rs/home-made/dstat/
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Figure 14.: Query1S Job Latency

SUMQuantitypπpReturnFlag,LineStatus,Quantityqprestrictionq where
restriction “ σShipdateą“1998´08´28^Shipdateă“1998´12´01pLq

(23)

By applying the definitions presented in chapter 6 and knowing that a group-by is achieved in LA

by the Khatri Rao and a bang vector to aggregate, we get LA script (24) that neatly expresses the

pipeline of the operations involved.

pLReturnFlag Ź LLineStatusq
loooooooooooooomoooooooooooooon

projection

¨ rLsShipdateą“1998´08´28
Shipdate ¨ rLsShipdateă“1998´12´01

Shipdate
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

selection

¨ JLKQuantity ¨ !
˝

looooooomooooooon

aggregation
(24)

The query execution plan for both approaches are similar: most of the computation is carried out

in the map phase, whereupon values are aggregated in the reduce phase. In the linear algebra case,

the map reads the matrix lazily, filters the elements according to the condition and sends them to

the reduce step to be aggregated. The experiment was executed with data generated by the TPC-H

LineItem table with different scale factors generating tables of an increasing size. The scale factor

2 generates a table with an approximate size of 1.5GB while scale factor 32 yields a table with size

23.50GB.
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Figure 14 presents the average time it took to complete a job in the cluster. As can be observed,

our approach exhibits an improvement on the time it takes to compute the results. This is expected,

as our approach has the columns of the table divided and only needs to read the projection functions

that contain the data of those columns — while the other approaches must read files that contain extra

information. These results are in line with the ones found at Floratou et al. (2011) which also presents

and explains some of the problems we had in the Hadoop implementation.
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Figure 15.: CPU User
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Figure 16.: IO wait

The results presented in Figure 15 and 16 are a CDF (cumulative Distribution function) from all

the experiments of the CPU usage using the “dstat” tool on the nodes that carries out the computation.

From these plots we gather that the ORC format does a much better job at using the CPU as its usage

percentage is between 96 and 100 while spending less time waiting for I/O operations. On the other

hand our approach has the CPU usage more distributed between 90 and 100 which means that it spends

more time waiting on I/O operations as can be seen in image 16. In the same plot it cant be perceived

but there is a slight difference on the I/O time from the LA approach and the ORC, as the first, never

has a waiting percentage higher than 7% while the max waiting percentage of LA is 30%; meaning

that in none of the approaches the wait time is worrisome but the ORC format spends considerably

less time on I/O wait.
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Figure 17.: Data read

As Hadoop either reads a block of a file locally if available or reads it through the network when

not, we decided to aggregate the values from both channels to see which approach needs to read the

least amount of bytes. From figure 16 it becomes clear that the textual format used in Hive is the least

efficient while a distinct pattern can’t be found in the other approaches. Nonetheless the Hive ORC

on average seems to use less data on smaller sizes while our approach seems to use less data as scale

factors increases. These results relate nicely with the latency time, which explains why our approach

terminates much faster: it needs to read far less information.

7.3 Q U E RY 3

For the last experiment we have a more complex query involving a table join, which is a simplified

version of TPCH-H Query3 (cf. listing 11). Unlike the previous query, this one works on multiple

tables and aggregates data from both of them with a single join. The original TPC-H Query3, on the

other hand, only aggregates data from a single table but has multiple joins to filter the results and some

selections on different tables, a pattern already addressed in the first query. Furthermore, the original

query has an ORDER BY operation that is not relevant in the current setting. (This does not seem a

complex operation; it can be easily added in the future as it seems at first sight a simple permutation

on the order of the matrix rows in the final result.) The query that will be evaluated in this section is

presented in listing 6.

By following the same structure and conventions as in the previous sections, first we transform the

SQL query 6 to a relational algebra expression and then to a typed linear algebra equation. In this

case we will suppose that it exists a function SUM that takes a relation and aggregates the tuples on

the columns shipmode and orderstatus and returns a new relation that joins the values of the Sets

totalprice and quantity according to the expression totalprice ˚ quantity. Then the query is simply
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Listing 6 TPC-H Query 3 (simplified)
SELECT L_SHIPMODE,

O_ORDERSTATUS,
SUM(O_TOTALPRICE * L_QUANTITY)

FROM LINEITEM AS L, ORDERS AS O
WHERE L_ORDERKEY = O_ORDERKEY
GROUP BY L_SHIPMODE, O_ORDERSTATUS.

the application of the function SUM to the result of natural join between two projected relations. On

the left side the relation line item is projected on shipmode, quantity and orderkey while on the

right side the relation orders is projected on orderstatus, totalprice and orderkey. This expression is

found in equation 25.

pLineItem “ πpshipmode,quantity,orderkeyqpLineItemq

pOrders “ πporderstatus,totalprice,orderkeyqpOrdersq

SUMppLineItem ’orderkey pOrdersq

(25)

Using the equations presented to go from relational algebra to typed linear algebra the result of

this transformation is equation 26. To understand the resulting equation one must not forget that the

projection on LA work only on projection functions and even thought not explained in the chapter 6

the converse of square diagonal matrix M is M itself, meaning M˝ “ M.

pLshipmode ¨ JLKquantity ¨ L˝orderkeyq ¨ pOorderkey ¨ JOKtotalprice ¨Oorderstatusq (26)

Similar to the previous query, the execution plan for both approaches are similar, the query is

divided in two Stages, the first stage divides the computation on the two sides of the join. In each side

it is calculated concurrently the projections and aggregated the values of each tables. The last phase

is the final aggregation of all the results and creation of the result. Each phase is also further divided

into as many map tasks as required and a single reduce to keep similar across all the experiments. The

line item table is also the same as the one used in the previous benchmark. The other table, Orders,

has on the scale factor 2 an approximate size of 330MB and on the scale factor 32 a total amount of

5.3GB.
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Figure 18.: Query3S Job Latency aggregated Stages

Figure 18 contains the average total amount of time it takes to complete a job with both stages for

each scale factor. One thing that stands out is the average time it takes to complete the queries is

much higher than the previous queries which shows the increased complexity of the query. Unlike

the other query our approach is not as efficient as any of the other approach. I attribute this decrease

in efficiency to the fact that the matrix multiplications can not be computed in a lazy manner as in

the Khatri Rao. This leads to the fact that each multiplication must be computed in memory, which

requires more memory for each map task. While our approach requires at most a total of 2GB of main

memory the other approaches only use at most 1GB. This means that our approach can only have at

most 12 map tasks running concurrently on the cluster while the other approaches can have up to 24.
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Figure 20.: Latency Stage2
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The Figures 19 and 20 show the jobs latency divided by stage one and stage two respectively. From

this plots it can be derived that most of the computational effort in either approach is on the first

stage which corresponds with the expectations as in both of them is when the original data is read and

aggregated as much as possible. The final Stage on both hive formats does not have a high impact

on the overall latency time, but in the case of the LA approach the fact that it has to multiply two big

matrices causes the overall time to have a slight increase. At the early scale factors of Stage 1 our

approach has a slight advantage, maybe due to the fact that the the number of concurrent map tasks in

the cluster is small and is only reading the required columns for each matrix.
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Figure 21.: CPU User
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Figure 22.: IO wait

From the Figures 21 and 22 that have the CPU usage of the Query with all the stages in the same

way that was presented in the previous benchmark. And much like in the previous benchmark the

Hive approaches have a better CPU utilization. In this case the typed linear algebra approach actually

spends more time in I/O wait than the previous benchmark.
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Figure 23.: Data read
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Figure 24.: Data written

Once more, similar to what was done in the previous section the amount of data that was read on

each machine was aggregated on by what was read from disk and network. In this case we also did the

same process for the quantity of data that was written. Figure 23 contains the amount of data that was

read for each scale factor while 24 has the amount written for each scale factor. It is worth mentioning

that this is the total amount from both Stage one and two on both plots. Our Linear Algebra approach

read far more information than the both Hive approaches which goes against our expectation that by

dividing by matrices we read far less data. Thus we also analyzed the total amount of data that each

approach writes. This information correlates with the CPU usage plots 21 and 22 where the Linear

Algebra approach spends a reasonable amount of time with I/O. However this results are not similar

to the benchmark Query1 has they are aggregated of two stages where each one has several maps and

one reduce. From these results Hive is capable of aggregating much more information on the map

tasks and the on the first stage which also explains why its second stage has an almost constant time

over the several factor. Moreover has the multiplication on both sides of the join form a dense matrix

with a far bigger sizes that must also be multiplied and form another one make the total amount of

data being read by our approach significantly higher.

7.4 S U M M A RY

Three approaches to two benchmarks have been evaluated, each one having a different storage for-

mat and behaving with slight differences. These experiments provide not only an insight into the

performance of a Linear Algebra approach to OLAP but also into the performance of a state of the

art application. Each query had a special purpose, focused on tackling a particular aspect of the LA

implementation. The first query evaluates the computation of a sub-cube made of a single table, as

handled in (Macedo and Oliveira, 2014) with the addition of some constraints. The second query
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7.4. Summary

focused on the computation of a sub-cube also, but composed of several tables that were joined by

columns of the same domain. Furthermore, for each query we applied the strategy developed in chap-

ter 6 for translating SQL queries to LA scripts. For each trial, the latency of the job execution time

was evaluated together with several statistics on the computational requirements in terms of resources.

Altogether, from the experiments with the first query we conclude that a lazy computation of ma-

trices (which is similar to the processing of columns) seems to have clear advantage over the Hive

implementation by having a lower latency time and by reading much less information. On the other

hand, query 3 presents a challenge to our approach as we witness a slight decrease in performance due

to creation of dense matrices that require far more resources in terms of the amount of data written /

read, which in turn lead to the CPU spending more time in I/O wait.
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8

C O N C L U S I O N

8.1 C O N C L U S I O N S

A novel approach to the computation of OLAP queries (Macedo and Oliveira, 2014) has opened up

a new research niche with many open questions on both the formalization of the quantitative side of

OLAP operations using LA, and on efficient (typed) sparse matrix representation required by such an

approach. This work was set up with the main goal of tackling these questions and benchmarking the

performance of this approach in contrast to the existing, standard solutions.

This dissertation gives an account of the ingredients of the overall approach and its benchmark-

ing, starting by providing a simple state-of-the-art understanding of database systems, their recent

evolution towards big data, and some of the existing technologies shaping up for the future. This is

followed by introducing the main ideas presented by Macedo and Oliveira (2014) and anticipating

potential difficulties that a possible implementation of this algebraic approach might face up in a dis-

tributed setting. This includes very big and sparse matrix storage solutions and a possible system

architecture for a distributed application. Furthermore, efforts have also been made towards creating

a consistent transformation scheme from relational algebra to typed linear algebra so that LA scripts

can be automatically generated from standard SQL queries. Finally, the last chapter of the core of the

dissertation sets up a number of experiments which put to trial the solutions developed beforehand by

assessing their performance.

At the beginning of this research we expected that matrix computations would be performed on top

of very efficient, off-the-shelf low level libraries. However, such libraries did not meet such expecta-

tions as, for instance, most of them do not handle sparse matrices as we had expected; operations on

sparse matrices always return dense matrices; and some operations (such as Khatri-Rao matrix mul-

tiplication) are not provided. For these reasons we implemented a custom format and the operations

that were required for the LA encoding and experimentation.

To keep our experiments close to the goals of the original paper by Macedo and Oliveira (2014), the

computations were carried out in a distributed environment with the help of the Hadoop framework. In

this implementation we also met some adversities on keeping the data distributed horizontally through

the nodes with replication. However, since this problem was not among the initial requirements and
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8.2. Future work

has been studied elsewhere through the usage of replication policies, we did not give a high relevance

to this topic. The transformation between SQL and LA still leaves many doors open to explore, even

though it provides a first, significant step.

8.2 F U T U R E W O R K

The benchmarks presented in this dissertation provide a first assessment of an LA approach to data

analytics. However, this assessment is not thorough enough in the sense that many other LA scripts

should be put to test, covering more and more complex situations in data analytics. The main reason

for not having done such experiments thus far has to do with the rather laborious process of creating

them, which is far from being automatic. As such, we regard the implementation of a complete set of

rules for encoding SQL queries into LA scripts as a first and foremost need.

Besides its practical usefulness for benchmarking, such a set of rules will open other branches

of this research. First, one can start studying the optimization of the SQL-LA transformation in a

distributed data setting. Second, and independently of any performance gains on the implementation,

the transformation will provide a complete formalization and verification of OLAP querying in the

rich mathematics of linear algebra. Thus verification becomes possible and OLAP databases will be

provided with the capability to ensure the data analyst that the operations taking place are correct.

Third, the LA background of (Macedo and Oliveira, 2014) will be challenged with the likely need to

provide new LA combinators able to cover the real needs of a practical implementation of an OLAP

system where datasets become matrices.

Armed with all this knowledge, it will be easier to fine tune our research in the area of efficient

matrix representation. Indeed, this novel application of linear algebra can help this field by adding

new operations and/on new formats that handle particularly sparse matrix multiplications efficiently.

In fact, there is a well organized taxonomy of binary relations (Oliveira, 2008) which will surely reflect

on a similar taxonomy of (sparse) matrices, as first steps in this direction already indicate (Desharnais

et al., 2014).

Once such formats are (hopefully) developed and efficient matrix computations are implemented for

them, a well structured repository of experiments can be set up covering the full spectrum of the TPC-

H benchmarks, giving a deeper understanding of where the LA theory has advantages or disadvantages

in terms of resource usage, and finally applying the benchmarks in a system with several concurrent

users.

Even if matrix multiplication remains not as efficient as expected we can always implement the

approach in a columnar setting (Floratou et al., 2011), which our first benchmark in a sense suggests

as a viable alternative.

Summing up, we suggest for future work the following broad tasks: complete the SQL to LA

encoding, implement a corresponding low level matrix library, develop a real, fully operational imple-

mentation and finally carry out a thorough benchmark of the system.
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J. Desharnais, A. Grinenko, and B. Möller. Relational style laws and constructs of linear algebra.

Journal of Logical and Algebraic Methods in Programming, 83(2):154–168, 2014. ISSN 2352-

2208. doi: http://dx.doi.org/10.1016/j.jlap.2014.02.005.

A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-oriented storage techniques for

mapreduce. PVLDB, 4(7):419–429, 2011. URL http://www.vldb.org/pvldb/vol4/

p419-floratou.pdf.

J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant. Detecting

influenza epidemics using search engine query data. Nature, 457(7232):1012–1014, 2009.

G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv., 25(2):73–170, 1993.

doi: 10.1145/152610.152611. URL http://doi.acm.org/10.1145/152610.152611.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pi-

rahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub

totals. Data Min. Knowl. Discov., 1(1):29–53, 1997. doi: 10.1023/A:1009726021843. URL

http://dx.doi.org/10.1023/A:1009726021843.

P. Groves and D. Knott. The “ big data ” revolution in healthcare. M, (January), 2013.

K. M. A. Hasan, T. Tsuji, and K. Higuchi. An efficient implementation for MOLAP basic data struc-

ture and its evaluation. In Advances in Databases: Concepts, Systems and Applications, 12th In-

ternational Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok,

Thailand, April 9-12, 2007, Proceedings, pages 288–299, 2007. doi: 10.1007/978-3-540-71703-4

26. URL http://dx.doi.org/10.1007/978-3-540-71703-4_26.

D.E. Knuth. The Art of Computer Programming : (1) Fundamental Algorithms, (2) Seminumerical

Algorithms, (3) Sorting and Searching. Addison/Wesley, 2nd edition, 1997/98. 3 volumes. First

edition’s dates are: 1968 (volume 1), 1969 (volume 2) and 1973 (volume 3).

Hans-Joachim Lenz and Bernhard Thalheim. A formal framework of aggregation for the OLAP-OLTP

model. J. UCS, 15(1):273–303, 2009. doi: 10.3217/jucs-015-01-0273. URL http://dx.doi.

org/10.3217/jucs-015-01-0273.

76

http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.vldb.org/pvldb/vol4/p419-floratou.pdf
http://www.vldb.org/pvldb/vol4/p419-floratou.pdf
http://doi.acm.org/10.1145/152610.152611
http://dx.doi.org/10.1023/A:1009726021843
http://dx.doi.org/10.1007/978-3-540-71703-4_26
http://dx.doi.org/10.3217/jucs-015-01-0273
http://dx.doi.org/10.3217/jucs-015-01-0273


Bibliography

X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP: A minimal cubing approach. In

(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto,

Canada, August 31 - September 3 2004, pages 528–539, 2004. URL http://www.vldb.org/

conf/2004/RS14P1.PDF.

J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Synthesis Lec-

tures on Human Language Technologies. Morgan & Claypool Publishers, 2010. doi:

10.2200/S00274ED1V01Y201006HLT007. URL http://dx.doi.org/10.2200/

S00274ED1V01Y201006HLT007.

H.D. Macedo and J. N. Oliveira. A linear algebra approach to OLAP. Formal Aspects of Computing,

pages 1–25, 2014. ISSN 0934-5043. doi: 10.1007/s00165-014-0316-9. URL http://dx.doi.

org/10.1007/s00165-014-0316-9.

Elizabeth Million. The hadamard product. 2007. URL http://buzzard.ups.edu/courses/

2007spring/projects/million-paper.pdf.

P. Mishra and M. H. Eich. Join processing in relational databases. ACM Comput. Surv., 24(1):63–

113, 1992. doi: 10.1145/128762.128764. URL http://doi.acm.org/10.1145/128762.

128764.

K. Morfonios, S. Konakas, Y. E. Ioannidis, and N. Kotsis. ROLAP implementations of the data cube.

ACM Comput. Surv., 39(4), 2007. doi: 10.1145/1287620.1287623. URL http://doi.acm.

org/10.1145/1287620.1287623.

R. O. Nambiar and M. Poess. The making of TPC-DS. In Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 1049–1058,

2006. URL http://www.vldb.org/conf/2006/p1049-othayoth.pdf.

R. O. Nambiar, M. Lanken, N. Wakou, F. Carman, and M. Majdalany. Transaction processing perfor-

mance council (TPC): twenty years later - A look back, a look ahead. In Performance Evaluation

and Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon, France, August 24-

28, 2009, Revised Selected Papers, pages 1–10, 2009. doi: 10.1007/978-3-642-10424-4 1. URL

http://dx.doi.org/10.1007/978-3-642-10424-4_1.

J.N. Oliveira. Transforming Data by Calculation. In GTTSE’07, volume 5235 of LNCS, pages 134–

195. Springer, 2008. doi: 10.1007/978-3-540-88643-3 4.

J.N. Oliveira. Towards a linear algebra of programming. Formal Aspects of Computing, 24(4-6):

433–458, 2012. URL http://dx.doi.org/10.1007/s00165-012-0240-9.

Alain Pirotte. A precise definition of basic relational notions and of the relational algebra. SIGMOD

Record, 13(1):30–45, 1982. doi: 10.1145/984514.984516. URL http://doi.acm.org/10.

1145/984514.984516.

77

http://www.vldb.org/conf/2004/RS14P1.PDF
http://www.vldb.org/conf/2004/RS14P1.PDF
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://dx.doi.org/10.1007/s00165-014-0316-9
http://dx.doi.org/10.1007/s00165-014-0316-9
http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf
http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf
http://doi.acm.org/10.1145/128762.128764
http://doi.acm.org/10.1145/128762.128764
http://doi.acm.org/10.1145/1287620.1287623
http://doi.acm.org/10.1145/1287620.1287623
http://www.vldb.org/conf/2006/p1049-othayoth.pdf
http://dx.doi.org/10.1007/978-3-642-10424-4_1
http://dx.doi.org/10.1007/s00165-012-0240-9
http://doi.acm.org/10.1145/984514.984516
http://doi.acm.org/10.1145/984514.984516


Bibliography
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A
L I S T I N G S

Listing 7 Generating the projection function,
public ArrayList<Integer> generatePF(ArrayList<String> attributes){

TreeMap<String, Integer> map = new TreeMap<>();
ArrayList<Integer> rows = new ArrayList<>();
int line = 0;

for(String attr: attributes){
if(map.containsKey(attr)){

rows.add(rowsMeaning.get(attr));
}else{

map.put(name, line);
rows.add(line);
line++;

}
}

return rows;
}
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Listing 8 Khatri-Rao product in MCSC
public ArrayList<Integer> khp(ArrayList<Integer> A,

ArrayList<Integer> B,
int attributesA,
int attributesB){

ArrayList<Integer> res =
new ArrayList<Integer>(attributesA*attributesB);

K = B.length;
for(int i = 0; i < K; i++){

M = A.get(i);
N = B.get(i);
result.add(K*M + N);

}
return res;

}

Listing 9 Final Multiplication
public ArrayList<Integer> finalResult(Int projLinesA,

Int projLinesB,
ArrayList<Int> khr,
ArrayList<Int> measure,
ArrayList<Int> bang){

int khrLines = projLinesA*projLinesB;
ArrayList<Int> result = new ArrayList<Int>(khrLines);

for(int i = 0; i < khrLines; i++)
{

khrLines.add(i,0);
}

for(int i = 0; i< measure.length; i++)
{

int B = bang.get(i);
int M = measure.get(i);
int K = khr.get(i);
if(B == 1){

int old = result.get(K);
result.add(k,old+M);
}

}
}
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Listing 10 Query 1
select

l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from
lineitem

where
l_shipdate <= date ‘‘1997-12-01’’ - interval ‘‘95’’ day

group by
l_returnflag,
l_linestatus

order by
l_returnflag,
l_linestatus
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Listing 11 Query 3
select

l_orderkey,
sum(l_extendedprice * (1 - l_discount)) as revenue,
o_orderdate,
o_shippriority

from
customer,
orders,
lineitem

where
c_mktsegment = "MACHINERY"
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date "1995-03-10"
and l_shipdate > date "1995-03-10"

group by
l_orderkey,
o_orderdate,
o_shippriority

order by
revenue desc,
o_orderdate;
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