
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Luı́s Miguel Pereira Constantino Romano

File carving in practice

October 2015

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Luı́s Miguel Pereira Constantino Romano

File carving in practice

Master dissertation
Master Degree in Computing Engineering

Dissertation supervised by
Prof. Alcino Cunha

October 2015

AC K N OW L E D G E M E N T S

I would like to thank everyone who contributed, directly or indirectly, to this thesis, but would like to

make a special appreciation to:

My parents, Armando Romano and Margarida Constantino, for making this thesis possible.

My supervisor, Prof. Alcino Cunha, for all the time he spent on this thesis, and the invaluable help.

Prof. José Bernardo Barros, for the useful advices and comments.

Prof. Luı́s Barbosa and João Ferreira, for introducing me to my thesis theme.

All the Didáxis chess team, for all the enjoyable moments.

My girlfriend, Joana Faria, for so many things, that fitting them here would be too much of a

challenge.

a

A B S T R AC T

File carving is a technique used to recover erased files from a digital device, when there is no access to

their metadata. It is a branch of Digital Forensics, because it is often used to analyse data on a digital

device belonging to someone suspect of performing criminal activities.

When one wants to recover data, it’s important to take into account factors as performance, the

possibility that a file might be fragmented or that some data is corrupted. While many techniques to

recover fragmented files have been proposed, the carvers used in practice almost never recover them,

many of them not even trying it.

After a survey on the state of the art of file carving, two main research subjects were chosen. The

first one is to understand if multi-core programming can be used to increase performance on current

carvers. Most carvers and carving techniques were proposed around 10 years ago, when cheap multi-

cores were not widely available. Because of that, carvers don’t make use of all the potential of

modern computers, and we will research whether introducing parallelism on a carver can increase

its performance. The second topic is understanding why most carvers don’t even attempt to recover

fragmented files, when many techniques have been proposed. We will focus on context model carving,

which is one of these techniques, and try to understand why this technique was only tried as an

academic exercise. General conclusions on recovering fragmented files will also be drawn based on

the experiments.

b

R E S U M O

O file carving é uma técnica usada para recuperar ficheiros apagados de um aparelho digital sem

recorrer aos metadados. É um ramo da Informática Forense, porque é frequentemente usada para

analisar dados num aparelho digital de alguém suspeito de realizar actividades criminais.

Quando se pretende recuperar dados, é importante ter em conta factores como a eficiência, a pos-

sibilidade de um ficheiro estar fragmentado no disco ou de parte dos dados estarem corrompidos.

Apesar de muitas técnicas de recuperação de ficheiros fragmentados terem sido propostas, os carvers

usados na prática quase nunca os recuperam, e muitos deles nem sequer tentam fazê-lo.

Depois de um estudo sobre o estado da arte do file carving, dois pontos de estudo foram definidos.

O primeiro é tentar perceber se a programação multi-core pode ser usada para melhorar o desempenho

dos carvers actuais. A maior parte dos carvers e técnicas de carving foram propostos há cerca de 10

anos, quando os multi-cores ainda não eram tão comuns. Por causa disso, os carvers não usam todas as

potencialidades dos computadores modernos, e iremos investigar se a introdução de paralelismo num

carver pode aumentar o seu desempenho. O segundo tópico passa por tentar perceber porque razão

nem sequer tentam recuperar ficheiros fragmentados, quando muitas técnicas foram já propostas. Va-

mos focar-nos em modelos de contexto, uma dessas técnicas, criar carvers usando-a e tentar perceber

porque é que esta técnica não passou de um exercı́cio académico. Também são tiradas, baseadas nas

experiências, conclusões gerais sobre a recuperação de ficheiros fragmentados em geral.

c

C O N T E N T S

Contents iii

1 I N T RO D U C T I O N 3

1.1 Terminology 3

1.2 Notions on file carving 4

1.3 Goals of the thesis 5

1.4 Why Haskell? 6

1.5 Outline of the thesis 6

2 I N T RO D U C T I O N T O H A S K E L L 7

2.1 History 7

2.2 Haskell’s type system 8

2.2.1 Type classes 10

2.3 Haskell’s evaluation strategy 11

2.4 Haskell monads 14

2.5 Efficient Haskell strings 16

2.5.1 Motivation 16

2.5.2 Usage 19

2.6 Parallelizing Haskell programs 21

2.6.1 Profiling parallel Haskell programs 24

3 S TAT E O F T H E A RT 28

3.1 Carving techniques 28

3.1.1 Sequential carving 31

3.1.2 Graph based carving 32

3.1.3 Fragmentation point carving 38

3.1.4 Semantic carving 39

3.2 Carvers in practice 40

3.2.1 Foremost 40

3.2.2 Scalpel 41

3.2.3 PhotoRec 42

3.2.4 MIDI-carver 43

3.2.5 Others 43

3.2.6 DFRWS 2006 carving challenge 43

3.2.7 2007 DFRWS carving challenge 46

4 PA R A L L E L I Z I N G A S E Q U E N T I A L C A RV E R 49

iii

Contents

4.1 Haskell implementation 49

4.2 Result analysis 53

4.2.1 DFRWS 2006 data set 53

4.2.2 DFRWS 2007 data set 56

5 C A RV I N G U S I N G C O N T E X T M O D E L S 58

5.1 The Context Model module 58

5.2 The context model carvers 64

5.3 Result analysis 68

6 C O N C L U S I O N S A N D F U T U R E W O R K 71

iv

L I S T O F F I G U R E S

Figure 1 Statistics displayed by Haskell 25

Figure 2 Analysis of the parallel behaviour of the program, using the Threadscope

tool 26

Figure 3 Pixel values being compared when calculating candidate weights between

two fragments (image from Memon and Pal (2006)) 34

Figure 4 The sliding window is how the context model is used (image from Shanmu-

gasundaram and Memon (2003)) 34

Figure 5 Parallel Unique Path (PUP) algorithm proposed by Pal and Memon (image

from Poisel and Tjoa (2013)) 36

Figure 6 Graphic generated when only looking for headers 54

Figure 7 Graphic generated by the final program 55

Figure 8 Effect of piece size on program’s performance 56

Figure 9 An example of a visual representation of a 2-order context model 59

Figure 10 The context model, now showing probabilities 60

v

L I S T O F TA B L E S

Table 1 Results for the DFRWS 2007 data set 55

Table 2 Results of creating and storing JPEG context models 69

Table 3 Results of creating and storing DOC context models 69

vi

1

I N T RO D U C T I O N

A file carver is a tool that is able to retrieve deleted files from a digital device, even when there is

no meta data available for those files. It is a branch of Digital Forensics, because it is often used to

analyse data on a suspect’s device (e.g. look for child pornography material on a suspect’s computer).

This was the central theme of the 2006 and 2007 DFRWS (Digital Forensic Research WorkShop)

conferences (an annual conference focused on Digital Forensics). This might have been a consequence

of the release of Scalpel, a successful file carver presented at the 2005 DFRWS conference. Since

2007, the theme as fallen out of fashion, as there are more modern digital forensics techniques to

study. Therefore, file carving has not evolved much since, and some interesting ideas presented then

were not further explored.

When a file is deleted, traditional file systems do not delete its entry, but simply mark it as deleted.

Therefore, the easiest way to look for deleted files on a computer is to look for them in the file system

meta data. However, that information is not always present: the meta data can be physically damaged,

and the entry of a file might have been overwritten. In these cases, though, the file data can still be

present, as it is much more resilient than its meta data. Furthermore, modern file systems often store

and delete data in a different way, which makes traditional file recovery methods more difficult to

succeed. For all this, file carvers are still important tools to recover deleted files.

1.1 T E R M I N O L O G Y

Some terms might not be clear to the reader, especially since some of them are used in different

sources to describe different things. Therefore, we now present some definitions:

• sector - a disk is physically divided into sectors, usually of 512 bytes each, although this value

(the sector size) can change from disk to disk.

• chunk - a portion of the disk that cannot be allocated separately. Its size (the chunk size) depends

on the file system used, and usually consists of a few sectors. Chunks are often also known as

clusters.

3

1.2. Notions on file carving

• header - a sequence of bytes which is fixed at the beginning of each file of a given file type (e.g.

JPEG files always start with the same two bytes: 0xFF and 0xD8). Almost all file types have a

header (the exceptions are some primitive types, as, for instance, text files).

• footer - a sequence of bytes which is fixed at the end of each file of a given file type. Footers

are somewhat less common than headers, but are still present for some file types.

• fragmented file - a file whose content is not sequentially stored in the disk.

• file fragment - a portion of the file which is stored sequentially in the disk.

1.2 N OT I O N S O N F I L E C A RV I N G

File carvers typically use headers and footers (if present) to retrieve deleted files. It is worth noting

that a header is always at the beginning of a chunk, while the footer can appear at any point in the

disk, as the file might not need all the chunk space and, therefore, end in the middle of it.

One important aspect to take into account is the possibility of a file being fragmented. Fragmenta-

tion is a problem when carving files because the position of different fragments is not known unless

one has access to file system information. When this information is present, though, traditional file

recovery techniques can be used.

Fragmentation can occur for various reasons. The most obvious one is when a file is saved and later

modified (for example, when appending text to a text file). Depending on the situation and on the file

system, different scenarios can occur: the file system might save some space after the file, when it is

first saved, and this space might be sufficient to store the appended information; the file system might

rewrite the whole file in a new location, where it can be saved sequentially; the information appended

can be stored in a different location from the original file. This last situation leads to fragmentation.

Another scenario is when there is no sufficient sequential space to store a file, when it is first written.

The file will then be fragmented. This will typically only happen with very large files. Possible ways

to avoid this include periodic disk defragmentation and deletion of useless files.

Finally, there are devices which attempt to enhance their lifetime by writing to every chunk a

similar number of times. To achieve this, they have a controller which remaps logical block addresses

to different physical block addresses. This will highly fragment files on the physical memory.

This fragmentation scenarios are deeper explained in Pal and Memon (2009). Fragmented files

require a more subtle approach to carving, and different techniques will be studied.

File carvers can be divided into 4 different categories:

• Sequential file carver - having found a file header, a sequential file carver retrieves everything

from that point on until it finds the file’s footer or until it reaches some predefined maximum

file size. Sequential file carvers cannot correctly recover fragmented files.

4

1.3. Goals of the thesis

• Graph based file carver - a graph based file carver does not see the storing device as an ordered

sequence of chunks, but as a directed, weighted and complete graph, where nodes are chunks

and there is an edge from A to B with weight p if p is the probability of B following A. We

will look at different ways to get these probabilities. After finding the header, a graph based file

carver typically uses a greedy algorithm to find a path between the header and the end of the

file. This approach is aimed at recovering fragmented files.

• Fragmentation point file carver - a fragmentation point file carver is an attempt to merge the

best features of the two previous types of carvers. It sees the file system as a sequential list of

chunks, but assumes the files might be fragmented. When it finds a header, a fragmentation file

carver retrieves the chunks sequentially until it reaches one that “does not fit” (i.e. a fragmen-

tation point is reached). When that happens, it will look for a fragment that fits. The function

that decides if two chunks fit or not is a major component of the carver.

• Semantic file carver - in 2006, Garfinkel introduced the term semantic carving (more appealing

than bifragment gap carving, initially used), presenting a carver that, although showed some

limitations, produced very good results, achieving second place in the 2006 DFRWS challenge.

A year later, the technique was described by the same author in Garfinkel (2007). Basically,

it used file validators to deal with unfragmented files or a simple case of fragmentation: files

divided into two fragments.

1.3 G O A L S O F T H E T H E S I S

This thesis has three main goals, explained in the following paragraphs.

First, to survey existing carvers and carver techniques. Carving can be done in different ways, as

we will see, and each technique has its pros and cons. It is important to study the different techniques,

and see how they are implemented in practice, as, in carving, theory and practice are very distinct.

This survey should clarify the current state of the art of carving, and what areas are worth exploring.

Secondly, to research whether carving can be improved with parallelism. The biggest developments

in carving happened almost 10 years ago, when multi-cores were not nearly as frequent as today, so

this point was rarely, if ever, considered. As performance is a major concern of carvers, it is useful

to understand if we can take advantage of modern multi-core machines to improve the algorithms

proposed before.

Lastly, to research whether non sequential carving techniques can be deployed in an effective carver.

While many techniques have been proposed to recover fragmented files, and even tested in an aca-

demic environment, most carvers use simple sequential techniques. We will try to understand what

prevents non sequential techniques from being used in practice, when in theory they seem reasonable

techniques to carve fragmented files.

5

1.4. Why Haskell?

1.4 W H Y H A S K E L L ?

To explore the theme of this thesis, the language chosen was Haskell. This language presents some

features which are useful to explore the topics of this thesis. First of all, it presents an easy and

effective way of introducing parallelism. As we want to explore the power of parallelism in carvers,

this is a relevant factor when choosing the programming language. Another Haskell feature which

makes it appealing is the ease with which it deals with complex data structures. Haskell is designed

to work well with mapping functions and other operators over various data structures and, as we

will see, this will come in handy. Haskell also often presents “readable” code, which is easier to

understand than other programming languages. Hopefully, what is not clear enough on the code will

be sufficiently explained in the text.

1.5 O U T L I N E O F T H E T H E S I S

We will start, in Chapter 2, with an introduction to Haskell, the language used throughout this thesis.

It presents the language, its main features and two libraries used later: one for efficient strings of

bytes and one for parallelizing Haskell programs. Chapter 3 presents the state of the art in the field

of file carving. Haskell is already used to illustrate the techniques described. It will be explained how

sequential carving is done and the three main non sequential techniques introduced in Section 1.2

will be covered. Then, some open source carvers will be shown, and how their behaviour could be

mimicked by a Haskell program, using the definitions introduced. The chapter will end with a brief

analysis of the academic carvers presented at the 2006 and 2007 DFRWS conferences.

The following chapters show our contribution. Chapter 4 shows an implementation of a sequential

carver in Haskell and how to parallelize it. It focuses on the the used algorithms and the steps made

to parallelize the program. The two libraries introduced in Chapter 2 will be used. The results are

analysed, based on the difference in performance obtained when introducing parallelism and when

comparing with Scalpel, which is the fastest open source sequential file carver. Chapter 5 starts with

the implementation of a Haskell library, focused on context models, which are statistical models that

can be used by carvers to try to recover fragmented files. Using this library, a graph based carver and

a fragmentation point carver are built, and its results are analysed.

The thesis ends with some conclusion remarks on the work done, in particular regarding the two

main research subjects explained above: if parallelism can improve carving, and why so many non

sequential techniques resulted in so few actual carvers. Suggestions for possible future work are also

given.

6

2

I N T RO D U C T I O N T O H A S K E L L

In order to test and use the carving algorithms studied, we decided to implement them in the Haskell

programming language. Therefore, the language will now be introduced. This is by no means a

tutorial on the Haskell language, but a presentation of its main features, and some useful aspects that

make it valuable for the studies conducted afterwards.

2.1 H I S T O RY

Haskell is a purely functional, statically typed language. It was born in September of 1987, on a meet-

ing held at the conference on Functional Programming Languages and Computer Architecture (FPCA

’87). At that meeting, it was decided that a committee should be formed to design a functional lan-

guage named Haskell (after the logician Haskell B. Curry). According to Jones (2003), the language

should satisfy these constraints:

1. It should be suitable for teaching, research, and applications, including building large systems.

2. It should be completely described via the publication often formal syntax and semantics.

3. It should be freely available. Anyone should be permitted to implement the language and dis-

tribute it to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming languages.

This last constraint was what motivated the creation of a new functional language in the first place.

The first version (1.0) of the Haskell language was defined in 1990. Some upgrades were released

after that, until, at the 1997 Haskell Workshop in Amsterdam, it was decided that a stable variant of

Haskell was needed. This new version was named “Haskell 98”, and was released together with Jones

et al. (1999), a report on the language and its libraries.

Haskell is taught in many universities around the world and, in particular, a lot of University of

Minho students learn it as an introduction to functional programming.

In the following sections, some Haskell concepts will be explored. While doing this, it will be

shown how to program in Haskell (its syntax and semantics).

7

2.2. Haskell’s type system

2.2 H A S K E L L’ S T Y P E S Y S T E M

Haskell is a strongly typed language, so its type system is one of the most (if not the most) important

things to understand in order to understand the language itself. That is why this section is more

detailed than others.

Haskell is a statically typed language. This means that every Haskell expression has a type which

is determined early on (at compile time). Unlike other programming languages like C, if we try to

feed a function that receives a character with a number, the compiler will notice it and raise an error

at compile time.

This can be a limitation when writing programs, but it makes it much easier to find programming

errors at compile time. Haskell can infer a lot of function types, but, nevertheless, programmers

are encouraged to explicitly define function types, because it will then be easier to reason about the

program. Let’s see how to define function types in Haskell.

not :: Bool -> Bool

not is the boolean operator that negates its argument. :: is used to define the type of the function,

and -> is a function type constructor. So, not is a function that takes a boolean value as an argument

and returns another one (which is accordant with the idea we have of the negation operator).

The not function is defined in the Prelude library, which is the standard library for Haskell pro-

grams and contains some useful functions.

We should note that, from now on, we will use lhs2tex, a tool which transforms Haskell code into

LATEXcode. Therefore, some functions and Haskell key words might be printed in a different way than

the one they are written. In particular, not will be turned into ¬. We hope this makes for a more

readable code.

Coming back to Haskell functions, what happens if we want to pass more than one argument as a

parameter? Let’s take a look at the type definition of the integer division function.

div :: Int→ Int→ Int

This function takes two integer values and returns another one. It is also possible to define it like

this:

div :: (Int, Int)→ Int

In this case, the function takes a pair of integers and returns their integer division. However, the

first definition is more flexible. The→ operator is right associative, which means that the definition

is equivalent to

div :: Int→ (Int→ Int)

8

2.2. Haskell’s type system

i.e. div is actually a function that takes an integer as an argument and returns a function. The

returned function takes an integer as an argument and returns another one. So, div 10, for example, is

a valid function. It receives an integer and returns the integer division of 10 over that number.

One very useful feature of Haskell is the possibility to write polymorphic functions, i.e., functions

that can be called with arguments of different types. Let’s take the fst function, that returns the first

element of a pair, as an example:

fst :: (a, b)→ a
fst (x,) = x

The type definition says that for any types a, b the function is valid. A polymorphic type must

always start with a lower case alphabetic character, since static types always start with upper case

ones. Also worth noticing is the use of the wild card character (’ ’) on the left-hand side of the

function definition, which means that the value is not important for the final result and therefore does

not need to be named.

Haskell is also a very good language to express inductively defined types. While many other pro-

gramming languages provide a built-in array type, which allows programmers to write sets of ordered

and possibly repeated values, one must import one of the many available array libraries in order to

use them in Haskell. Instead, we are encouraged to use Haskell’s built-in list type, which is defined as

follows:

data [] a = [] | a : [a]

The list type is parameterized by some polymorphic type a and is defined as either the empty list

([]) or one a value followed by a list of a values. This definition can be compared with the definition of

a linked list in C, for instance. The types are analogous, as they both contain values of the same type

and their values and size can be dynamically modified (in Haskell it is not that simple theoretically,

as we cannot define variables as in C). For example, 1 : (2 : (3 : [])) represents the list containing the

integers 1,2 and 3. Since this syntax can be a little confusing, it is possible to write this list simply as

[1, 2, 3]. The parenthesis, in the first definition, are also not needed, but they help to understand how

the list constructors are applied in order to represent the intended list.

Lists provide a flexible way for value storage, and it is very easy to write recursive functions over

them. On the downside, they can slow programs down, as they have no fixed size and the common

operations (as index accesses and changes) have linear complexity.

When processing inductively defined data types, recursive functions are often used, since that is

probably the most intuitive way to work on them. For example, the length function, which returns the

length of a list, can be defined like this:

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + (length xs)

9

2.2. Haskell’s type system

We use pattern matching to define the length function for two cases, depending on what constructor

was used to define the list to be analysed. It is possible to use overlapping patterns when defining

functions. The definition applied will then be the one that appears first on the code. Using recursion,

the definition is easy and intuitive.

Recursive functions seriously deteriorate program performance. Therefore, Haskell is often able to

optimize recursive functions, transforming them into more manageable operations. Also, it is possible

to process lists (and other data structures) using folds. Let’s take a look at Haskell’s foldl function:

foldl :: (b→ a→ b)→ b→ [a]→ b
foldl f s [] = s
foldl f s (x : xs) = foldl (f s x) xs

This function is recursive, but can be efficiently compiled as a loop, because it is tail recursive:

we process the first value and the recursion occurs on the tail of the list. It is a very good way of

processing lists. We just need to feed the function with a seed (the starting value) and a function,

that will process the data structure, iterating over the seed. For example, foldl (+) 0 is an easy and

elegant way of writing the function that sums the numbers on a list. We start with 0 and process the

list by summing each value to the starting one. Using such kind of higher-order functions to build data

structures is also possible, but that topic will not be covered here.

2.2.1 Type classes

Haskell gives a lot of importance to types. They are very useful for debugging and reasoning about

programs. In order to increase their expressiveness and usefulness, it is possible to define types as

instances of type classes (one type can be an instance of many type classes). Type classes indicate

properties over types. In a sense, it is pretty similar to an interface in an object oriented language. For

example, types belonging to the Show class are the ones that can be printed by Haskell. Let’s define a

new type in Haskell, with two possible values:

data Example = Example1 | Example2

If we ask Haskell to print Example1, it will simply output an error, complaining that the type does

not belong to the Show class and, therefore, cannot be printed. In order to do that, we must define this

new type as an instance of the class Show. This requires that we write a function show :: Example→
String, that indicates the string to be printed for an element of the type Example. For example:

instance Show Example where
show Example1 = "Example1"

show Example2 = "Example2"

This is the simplest definition, so we are not even required to write it. If we want to print the

values as we write them, simply adding deriving Show at the end of the type definition will do it.

10

2.3. Haskell’s evaluation strategy

If, however, we want to be more fancy, the show function must be defined. For example, it is nice

that Haskell prints lists in the [1, 2, 3] format, instead of the 1 : (2 : (3 : [])) one, which would be the

“default”. This is achieved by defining the show function accordingly.

Like the Show type class, there are many other provided by Haskell (for types that can be ordered,

read, types that represent numbers, etc.). It is also possible to define our own type classes.

It’s now time to see how type classes can be useful in practice. Let’s say we want to write a sorting

function over lists. Its type could be:

sort :: [a]→ [a]

We want the function to be polymorphic, so that, for example, both lists of integer and rational

(Float) numbers can be sorted. However, what if values of that type cannot be compared? A fix would

be to explicitly ask for a comparing function, thus the type would be:

sort :: [a]→ (a→ a→ Bool)→ [a]

The function receives the list to be sorted and a function that, receiving two elements, outputs, for

example, if the first one is “greater or equal” than the second one. This however, requires a function

to be passed every time sort is called, which is not appealing. With type classes, this problem is easily

solved. Ord is a type class that indicates that the type can be ordered. For a type to be an instance of

Ord, it must implement a function that compares any two values of the type. Using this, the type of

our sorting function would simply be:

sort :: (Ord a)⇒ [a]→ [a]

If a type is of the class Ord, it implements the functions (<), (6), (>) and (>). These functions

can be used freely in our sort function, and there is no need to pass them explicitly as parameters. If

this function is called with a list whose type is not of the class Ord, an error will be raised, at compile

time, explaining this issue.

Type classes provide us with a way of expressing bounded polymorphism, i.e. write generic func-

tions that only work for some types. In the previous example, a is a polymorphic type, but only types

belonging to the Ord type class can be used.

2.3 H A S K E L L’ S E VA L UAT I O N S T R AT E G Y

When we write a set of C instructions and run the code, we expect them to be evaluated sequentially.

This can be very intuitive if we just look at C’s syntax: an ordered set of instructions separated by

semicolons. As it is in C, so it is in many other programming languages. Haskell, however, uses a

different type of evaluation strategy: lazy evaluation. This means that expressions are not evaluated

until they are needed and repeated evaluations of the same expressions are avoided. Let’s see this at

work in the Fibonacci sequence:

11

2.3. Haskell’s evaluation strategy

fib :: Int→ Int
fib 0 = 1
fib 1 = 1
fib n = let n1 = fib (n− 1)

n2 = fib (n− 2)
in n1 + n2

It is well known that this naive definition presents serious problems regarding performance, but we

will not care about it now. These let . . in expressions are very common in Haskell. They allow us

to abbreviate expressions in the let section and use them later in the in section. It is not very useful

here, as we could just write fib n = (fib (n− 1)) + (fib (n− 2)), but can be if the expression to be

returned is very complex and/or repeats subexpressions.

So, what happens when we call the fib function with a value other than 0 or 1? Haskell will look at

the expression to return - n1 + n2 - and realise that it needs to evaluate this two expressions, which it

will do, sum them and return the result. Let’s now look at this example:

fib n = let n1 = fib (n− 1)
n2 = fib (n− 2)
n3 = fib (n− 3)

in n1 + n2

If something similar is written in a C like language, it will generate a lot of unnecessary calculus.

However, since n3 is not used in the expression to be returned, it will not be evaluated at all in Haskell.

It will have an expression attributed to it, but its value will never be calculated.

One nice benefit of using this evaluation strategy is the possibility to write infinite lists and work

over them. Let’s see an alternate definition of the Fibonacci sequence.

fib list :: [Int]
fib list = map fib builder [0, 1 . .]

fib builder :: Int→ Int
fib builder 0 = 1
fib builder 1 = 1
fib builder n = (fib list !! (n− 1)) + (fib list !! (n− 2))

fib :: Int→ Int
fib n = fib list !! n

We create an infinite list with numbers starting from 0 and incrementing 1 in each cell. Then we

build the list with mutually recursive functions: fib list will call fib builder which will look in the

fib list for the previous numbers in the Fibonacci sequence. It is impossible to evaluate this list, but

we can use its elements. When we write fib n, the function will take the nth element of the list. The

12

2.3. Haskell’s evaluation strategy

list will then be evaluated only until that point. Following values will not be calculated, since they are

not needed, and the list will remain infinite. Not only that, after calculating fib n all values under it

will be calculated and stored, so that if we need them later they do not have to be calculated again. To

make things even better, this definition performs better than the first one, since we build the list using

values already calculated.

Lazy evaluation presents obvious advantages. In particular, the possibility of writing infinite data

structures (such as lists) and the avoidance of needless calculations are very appealing. However, it

also presents some problems. If we are not careful and try to fully evaluate an infinite data structure,

the program will eventually crash. Memory usage can also be a problem, since evaluated expressions

are kept in memory in case they are needed later. Take the last example, for instance: if we calculate a

very big Fibonacci number, all the previous ones are stored in a list. If we frequently need them, this

might prove useful, but if we do not, then it is a waste of resources.

In general, lazy evaluation gives the programmer less control of the program and its resources. We

do not have a lot of control of memory usage or when evaluations take place. This sometimes causes

debugging to be a challenging task.

Since lazy evaluation is not always as good as it seems, programmers are allowed to sidestep its

negative effects by using strict evaluation when needed. There are a few ways to achieve it. First of

all, there is the seq :: a → b → b function. It forces the evaluation of its first argument to weak head

normal form and returns the second one. This means that it will make at least one iteration on the first

argument. For example, if it is a list, it will calculate if it is the empty list or has the form x : xs. If we

want to fully evaluate the expression, it is possible to use deepseq instead, which can be found in the

Control.DeepSeq library. Another strictness annotator is the $! operator. ($) :: (a → b) → a → b is

the function that applies a function to an argument. The addition of the exclamation mark will force

the evaluation of its second argument, when the function is called. For example, f $ g a applies f to

g a. If we know that f will need full evaluation of its argument in order to return a result, f $! g a
can be an improvement, because the evaluation of g a will be strict, avoiding unnecessary overhead

caused by the lazy evaluation.

It is possible to introduce strict annotations in data types. For example, the following definition

stores a pair of integer values.

data Pair = Pair ! Int ! Int

while the next function retrieves the first element of the pair

fstPair :: Pair→ Int
fstPair (Pair n1) = n1

The exclamation marks in the data constructor indicate that, when used, the integer values must

be fully evaluated. The difference to the “normal” constructor (not using exclamation marks) can be

spotted in this function call: fstPair (Pair (3 ∗ 2) (div 5 0)). In the “normal” case, this expression

13

2.4. Haskell monads

will output 6. In the strict one, however, it will produce an error. This is because, when using the Pair
constructor, both elements must be fully evaluated, and the second integer is a division by 0, which

will generate the error. If evaluation is lazy, then Haskell will only calculate the first expression, since

it is the only one needed, and ignore the second one.

2.4 H A S K E L L M O N A D S

We talked earlier about type classes. They allow types to be categorized according to their properties

and increase the expressiveness of polymorphism, by allowing us to write function that work for any

type within a type class.

One particular important type class is the Monad. The HaskellWiki says monads “can be thought

of as composable computation descriptions”1. Haskell already allows us to compose functions with

the (◦) operator. However, monads allow us to compose functions in a different way. Let’s look at

the Maybe example, which is probably the simplest. Maybe is a type which is defined as follows:

data Maybe a = Nothing | Just a

It is either Nothing or a value of some type. It is similar to a C pointer, in the sense that it can be

null or point to some value. Now imagine we have two functions, f and g, whose types are

f :: Char→ Maybe Int
g :: Int→ Maybe Float

The functions do not compose, but we could easily imagine, just by looking at the types, how to

process a Char in order to get a Float.

composition :: Char→ Maybe Float
composition c = case (f c) of

Nothing→ Nothing
Just i→ g i

If we want to use the output of g, we must again perform pattern matching in order to get its possible

value. Monads solve this problem, by providing a way to compose functions like these.

In order to define this type as an instance of the Monad type class, we must define some functions.

Let’s first see the definition of the Monad type class.

class Monad m where
(>>=) :: m a→ (a→ m b)→ m b
(>>) :: m a→ m b→ m b

1 https://wiki.haskell.org/Monad

14

https://wiki.haskell.org/Monad

2.4. Haskell monads

return :: a→ m a
fail :: String→ m a

Notice that, when defining function types, m is always followed by some lower case letter. This

is because instances of the class Monad must be type constructors, parameterized over some (usually

polymorphic) type. The functions we must define are (>>=) (the bind operator) and return. The other

two will be derived from these ones. We can define Maybe as an instance of Monad like this:

instance Monad Maybe where
return a = Just a
Nothing >>= f = Nothing
(Just a)>>= f = f a

The return function transforms a value into a monadic value (in this case, it simply adds Just
before the value). The binding operator is the most important one. It tells Haskell how two functions,

which receive simple values and return a monadic value (in this case, a value of type Maybe), can

be composed. This is the answer to the composition of f and g we saw before. Instead of using

pattern matching, we can now simply write (f >>= g) c, composing two seemingly “uncomposable”

functions.

Monads are very useful and important in Haskell, which is why they even have their own notation.

For example, if we wanted to write the composition of the f and g functions in this special monadic

notation (the do notation), it would look like this:

composition c = do {
fc← f c;
res← g fc;
return res
}

This might look like unnecessary complications when compared with the simple (f >>= g) c, but it

can be very useful for bigger programs. The← notation is similar to the let . . in one, but in this case,

the value we name can be used for monadic composition. Note that fc has type Maybe Int, but we use

it as a parameter for the g function, which receives an Int. What happens is that we write as many

operations as we want returning monadic values, and the bindings are done accordingly. It looks a lot

like imperative code, but it is worth noting that the ; operator is used to separate expressions (binding

them), instead of being used to mark the end of a statement, as in imperative languages. In practice,

this just means that the last expression does not end with a semicolon. The real “magic” is getting a

data structure (parameterized over some type a) and use it as a parameter to a function that receives a

single a value.

Monads are one of the most interesting features of Haskell, and a lot of information about them

can be found everywhere. In particular, Hudak et al. (1999) provides a quick but good look over the

Monad type class.

15

2.5. Efficient Haskell strings

2.5 E F F I C I E N T H A S K E L L S T R I N G S

Strings in Haskell, as in many programming languages, are implemented as sequences (in Haskell’s

case, lists) of characters. However, as was mentioned, operations on lists can slow programs down,

and other type definitions are available for working with sequences of characters (or bytes). One of

these is the ByteString type, which was specially designed for working with streams of bytes.

The Data.ByteString library is very useful for programs focusing on performance, as it provides

a time and space-efficient implementation of byte vectors using packed Word8 arrays. It was first

written by Bryan O’Sullivan, then rewritten by Simon Marlow, later by David Roundy and finally

polished and extended by Don Stewart. A bytestring is similar to a C array, but its elements are

Word8 values (bytes - values between 0 and 255). The definition is:

data ByteString = PS ! (ForeignPtr Word8) ! Int ! Int
A bytestring is defined as a pointer to a Word8 and two integers: the offset and the length. This

representation can avoid a lot of memory copies. For instance, the take and drop functions, which

are used quite frequently, work on constant time, since instead of copying all the intended elements

(as they do on a standard list), they just copy the pointer and change the offset and length values

accordingly. The length function, which is also often used, is trivial, since the length of the bytestring

is explicit in its constructor.

2.5.1 Motivation

The ByteString library was created in order to improve the performance of Haskell strings. The library

has been modified a few times. Its last upgrade so far was done by Don Stewart, who published an

article, Coutts et al. (2007), with two other authors. There, it was explained what are the advantages

of the ByteString over the String type, as well as some very interesting properties over the first one.

Although some of the features are not used for our goal, it is still interesting to know why and how

this new type was defined, so we will try to summarize it as well as possible.

Bytestrings attempt to improve over normal strings in Haskell by representing arrays of unboxed

bytes. Their constructors are a little more complicated than the string ones. Therefore, a large list

of operations over bytestrings is provided, so that the programmer does not feel the need to contact

directly with the constructors when defining functions.

The biggest contribution of the authors is, however, the fusion techniques enabled over bytestring

functions, which can greatly increase program performance. Bytestrings are a very good way to deal

with streams of bytes, for which the following definition is given:

data Step s = Done | Yield Word8 s | Skip s
data Stream = exists s ◦ Stream (s→ Step s) s Int

A stream is defined by an existentially wrapped seed and a stepper function which, in each step,

can indicate one of three possible results: no more elements will be produced (Done); a new element

16

2.5. Efficient Haskell strings

is produced together with a new seed (Yield); or a new seed is returned without producing an element

(Skip). The last alternative, while not strictly necessary, leads to more efficient code. Streams also

store a hint on the number of elements. This helps to reduce the number of costly array reallocations

in the write phase. The authors also mention extensive use of strictness annotations, which are omitted

for clarity. The stream yields Word8 values, but could easily be polymorphic.

The transformation from bytestring to stream can easily be achieved with this function:

readUp :: ByteString→ Stream
readUp s = Stream next 0 n

where
n = length s
next i | i < n = Yield (index s i) (i + 1)

| otherwise = Done

The inverse operations (writeUp :: Stream→ ByteString) is also straightforward. It is also possible

(and sometimes useful) to read (and write) bytestrings from right to left.

The main advantage of converting bytestrings to streams is to efficiently perform operations over

them. For example, we can define a map function over bytestrings as follows:

mapS :: (Word8→ Word8)→ Stream→ Stream
mapS f (Stream next s n) = Stream next′ s n

where
next′ s = case (next s) of

Done → Done
Yield x s′ → Yield (f x) s′

Skip s′ → Skip s′

map :: (Word8→ Word8)→ ByteString→ ByteString
map f = writeUp ◦ (mapS f) ◦ readUp

In order to map a function over the Word8 values of a bytestring, it is first transformed into a stream

and the stream function is changed accordingly. Finally, the stream is converted back into a bytestring.

The definition of other processing functions in this way is also possible. Let’s take a look at the filter

example:

filterS :: (Word8→ Bool)→ Stream→ Stream
filterS p (Stream next s n) = Stream next′ s n

where
next′ s = case (next s) of

Done → Done
Yield x s′ | p x→ Yield x s′

17

2.5. Efficient Haskell strings

| otherwise→ Skip s′

Skip s′ → Skip s′

The filter function is analogous to the map one. Note that if an element of the stream does not

satisfy p, then the instruction is Skip. This means that some elements of the resulting stream will be

practically useless, as they merely transform the seed. It would be possible to remove these elements,

outputting a stream with no Skip nodes. However, that would prevent pipelines involving filter from

being optimised satisfactorily.

We will now show one last definition, the foldl function. It processes a stream but, instead of

returning another stream (and then converting it to a bytestring), it returns a single value. It is an

interesting function, as shown in Section 2.2, that can be defined for various data structures and be

very useful.

foldlS′ :: (a→ Word8→ a)→ a→ Stream→ a
foldlS′ f z (Stream next s n) = loop z s

where
loop z s = case (next s) of

Done → z
Yield x s′ → loop (f z x) s′

Skip s′ → loop < s′

foldl′ :: (a→ Word8→ a)→ a→ ByteString→ a
foldl′ f z = (foldlS′ f z) ◦ readUp

Since this function only returns a single value, there is no writeUp performed when the operation

over the stream is finished. Another similarly typed function (i.e. it also returns a single value) is find,

which outputs the first element (Word8, in this case) that satisfies a certain property. Its definition is

quite trivial.

We can now see how stream fusion can be used in order to get fast operations on bytestring. Let’s

say we want to perform the following operation on a bytestring:

(foldl′ f z) ◦ (map g) ◦ (filter h)

expanding, we get

(foldlS′ f z) ◦ readUp ◦writeUp ◦ (mapS g)
◦ readUp ◦writeUp ◦ (filterS h) ◦ readUp

and it is now time to use stream fusion, using a simple, obvious but nevertheless very important

rule: readUp ◦writeUp ≡ id, which states that reading up a bytestring after writing it is equivalent to

doing nothing. Applying this rule to the previous expression, we get

(foldlS′ f z) ◦ (mapS g) ◦ (filterS h) ◦ readUp

18

2.5. Efficient Haskell strings

a simple and elegant expression that can outperform even naive C code, according to Coutts et al.

(2007). The authors state that “Only by sacrificing clarity and explicitly manipulating mutable blocks

is the C program able to outperform Haskell”.

It is often useful to process bytestrings from right to left (for some reason, functions like these are

called “down loops”). We will not cover this theme extensively. The main point is that some functions,

as map and filter in this case, can traverse the stream in either direction and produce the same result.

This property can be used in order to reduce the number of reads and writes, as in the example shown

above. The nice thing about these fusion techniques is that they can be applied automatically.

There are two bytestring types available. The strict one, whose definition is shown in the beginning

of this section, and the lazy one, defined as

import qualified Data.ByteString as Strict
newtype ByteString = LBS [Strict.ByteString]

a lazy bytestring is essentially a list of chunks (in this case, “chunk” as its usual meaning, and should

not be confused with the “carving term”) of strict bytestrings. The authors used profiling in order to

find an optimal chunk size, stating that “a chunk size that allows the working set to fit comfortably in

the L2 cache has found to be best”. This representation can be very useful when the bytestring to work

on is very big, because, as Haskell uses lazy evaluation, only the chunks needed are evaluated. If the

bytestring to be analysed is bigger than the memory available, lazy bytestrings are the only solution.

2.5.2 Usage

Let’s take a look of useful functions from the bytestring API that are used in the carver.

• pack :: [Word8]→ ByteString - pack l constructs a bytestring from the elements of l.

• take :: Int→ ByteString→ ByteString - take n bs returns the prefix of n elements of bs (or bs,

if n > l where l is the length of bs).

• drop :: Int → ByteString → ByteString - drop n bs returns the suffix of bs after the first n
elements (or the empty bytestring if n 6 l, where l is the length of bs).

• null :: ByteString → Bool - null bs returns True if bs is the empty bytestring and False other-

wise.

• splitAt :: Int → ByteString → (ByteString, ByteString) - splitAt n bs is equivalent to

(take n bs, drop n bs).

• length :: ByteString→ Int - length bs returns the number of bytes packed in bs.

19

2.5. Efficient Haskell strings

• replicate→ Int→ Word8→ ByteString - replicate n w creates a bytestring of n elements, all

of which are w.

• findSubstring :: ByteString→ ByteString→ Maybe Int - findSubstring pat bs returns Just n
where n is the index where pat first occurs in bs or Nothing if it doesn’t occur.

• findSubstrings :: ByteString → ByteString → [Int] - similar to findSubstring, but returns all

the occurrences of pat.

• isPrefixOf :: ByteString→ ByteString→ Bool - isPrefixOf p bs returns True if p is a prefix of

bs and False otherwise.

• readFile :: FilePath→ IO ByteString - readFile fp reads the input from the file with file path fp
and transforms it into a bytestring, which is returned.

• writeFile :: FilePath → ByteString → IO () - writeFile fp bs writes bs to the file with the file

path fp (overwriting it if it exists).

And now see how one can use this library to easily write searching algorithms.

Suppose we have a file named hello.txt and we want to take everything between the words “Hello”

and “Goodbye” and copy it to a new file (let’s call it new hello.txt). We know that these two words

occur only once in the text, and that “Hello” comes before “Goodbye”. We want our main function to

be something like this:

import qualified Data.ByteString as BS
import System.IO

main :: IO ()

main = do {
text← BS.readFile "hello.txt";
let new text = search text "Hello" "Goodbye"
in BS.writeFile "new_hello.txt" new text
}

We should note that the import of the bytestring library must be qualified because a lot of its

functions share a name with functions from Prelude.

The algorithm goes like this: read the input from file hello.txt, perform some searching algorithm

and output the value to the file new hello.txt.

The function search is generic, in the sense that it will take any 2 strings and output everything

between the first and the second.

search :: BS.ByteString→ String→ String→ BS.ByteString
search bs pat1 pat2 = let toBS x = BS.pack (map (fromIntegral ◦ ord) x)

20

2.6. Parallelizing Haskell programs

pat1BS = toBS pat1
pat2BS = toBS pat2
i = BS.findSubstring pat1BS bs
f = BS.findSubstring pat2BS bs

in case (i, f) of
(Just ii, Just ff)→

BS.take ((ff − ii + 1) + (BS.length pat2BS)) (BS.drop ii bs)
→ BS.empty

The first step is to convert these strings to bytestrings, because we only want to deal with bytestrings.

This is achieved by the toBS function, defined in the let block. First, we transform every character

of the string to an Int (the ord function can be found in the Data.Char library), and then we use the

fromIntegral function, which transforms the Int into a general number. When using the function pack,

from the ByteString library, Haskell will assume these numbers are Word8 values and automatically

transform them into values from 0 to 255, by calculating the remainder of its division by 256.

Now we need to look for these patterns in the text. This is pretty easy if we use the functions

provided by the library. The indexes of the patterns “Hello” and “Goodbye” are given by the i and f
values in the let block. We simply use the findSubstring function. Notice that we assumed the patterns

occur only once.

The findSubstring function does not assume that the patterns occur in the text, so the situation

where one (or both) of them do not occur must be covered in the code. That is why we pattern match

the pair of indexes. Then, all we need is some arithmetic to cut the initial bytestring at the right

indexes. And, as mentioned, take and drop are extremely fast operations to perform on bytestrings.

2.6 PA R A L L E L I Z I N G H A S K E L L P RO G R A M S

In order to improve the performance of Haskell programs, it is useful to make maximum use of the

computer resources. Since, nowadays, more and more computers have multiple cores, it makes sense

to try to use multi-core programming to achieve better results.

The Control.Parallel.Strategies library introduces the Eval monad, that can be used to tell Haskell

how to evaluate an expression. This monad is very useful because it allows expressions to be evaluated

in parallel.

While this is not the only way to express parallelism, it is the one used in our case, as it is powerful

and highlights the advantages of the Haskell programming language: it can be introduced in the code

with little effort while giving the programmer some flexibility to define the parallel strategies. Its

downside is that it often does not control when the evaluations take place, something that is also very

typical of Haskell, since it uses lazy evaluation.

21

2.6. Parallelizing Haskell programs

A strategy is something that says how an expression should be evaluated. There are several strate-

gies available, but we will focus on the rpar strategy, which allows expressions to be evaluated in

parallel.

As an example, let’s take the split function:

split :: (a→ b)→ (a→ c)→ a→ (b, c)
split f g a = (f a, g a)

It simply takes two functions and applies them to the same argument. This function looks like a

good candidate for parallelism, as we can calculate f a and g a in different cores. Let’s see how this is

done.

p split :: (a→ b)→ (a→ c)→ a→ Eval (b, c)
p split f g a = do {

fa← rpar (f a);
ga← rpar (g a);
return (fa, ga)
}

As we are working on a monad (Eval), we use the monadic do notation, introduced in section 2.4.

We spark the expressions to be evaluated before the return statement. A spark is an expression that

can be evaluated in parallel. When a spark is created, it goes to the spark pool, which is where cores

that are not performing useful work will look for expressions to evaluate.

This function returns an Eval instance. When we call runEval (p split f g a), f a and g a will be

evaluated in parallel. What would happen if we write a useless expression that will not be returned?

p split :: (a→ b)→ (a→ c)→ a→ Eval (b, c)
p split f g a = do {

fa← rpar (f a);
ga← rpar (g a);
useless← rpar (map (+1) [1 . . 10]);
return (fa, ga)
}

We introduced a useless expression that will not have any effect in the result. When running this

evaluation, useless will not be evaluated, as Haskell will find that this expression is not needed. The

spark is then garbage collected. However, let’s suppose this expression is not needed for this result,

but will probably be needed later in the program, and it might be useful to evaluate it in parallel now.

The Control.Parallel.Strategies library allows us to evaluate these expressions, even when they don’t

affect the final result. We would just need to use a different strategy.

22

2.6. Parallelizing Haskell programs

p split :: (a→ b)→ (a→ c)→ a→ Eval (b, c)
p split f g a = do {

fa← rpar (f a);
ga← rpar (g a);
useful← (rparWith rdeepseq) (map (+1) [1 . . 10]);
return (fa, ga)
}

The rdeepseq strategy is used to fully evaluate its argument. rparWith encapsulates this strategy (or

any other) in order to say: “Fully evaluate this argument in parallel”. It is also possible to use rdeepseq
alone, when the argument is evaluated, but then the evaluation will not be parallel.

These are the basic techniques to build more complex strategies. Let’s take the example from the

previous section (the search function). Now, instead of looking for the “Hello” and “Goodbye” words,

we want to look for a large amount of pairs of words, i.e.

p search :: BS.ByteString→ [(String, String)]→ [BS.ByteString]

One possible approach is to divide the list in 2 (or n, in a n core machine) and spark their evaluation

like in the last example.

p search :: BS.ByteString→ [(String, String)]→ Eval [BS.ByteString]
p search bs l = let (l1, l2) = splitAt (div (length l) 2) l

in do {
fl1← rpar (map aux l1);
fl2← rpar (map aux l2);
return (fl1 ++ fl2)
}

where aux (x, y) = search bs x y

This is, however, not the most efficient way of distributing work for the 2 cores. If, for some reason,

the first part of the list contains harder work than the second one (for example, the key words appear

later on the file), than one of the cores will end its work while the other one still has to run search
some times. It would be much better to just spark every instance of search. We just need to define a

recursive function to map the function to every element of the list and spark it. In fact, that work is

not even needed, as the library provides the parMap function, which does exactly what we want.

parMap :: Strategy b→ (a→ b)→ [a]→ [b]

It even runs the runEval function automatically. The definition of the parMap function uses features

not covered here, and therefore is not shown, but its behaviour is similar to this:

myParMap :: Strategy b→ (a→ b)→ [a]→ Eval [b]
myParMap strat f [] = return []

23

2.6. Parallelizing Haskell programs

myParMap strat f (h : t) = do {
fh← rparWith strat (f h);
ft← myParMap strat f t;
return (fh : ft)
}

So, a better version of our parallel program is:

p search :: BS.ByteString→ [(String, String)]→ [BS.ByteString]
p search bs l = parMap rpar aux l

where aux (x, y) = search bs x y

Notice how easy it is to introduce parallelism on a list. We could introduce parallelism on an

Haskell program just by using the “Find & Replace” button to replace all occurrences of map with

parMap rpar (which is, of course, a very primitive approach).

In this case, we could use parMap with the rdeepseq strategy, as all elements of the list must be

evaluated to get the final result, but rpar works just fine.

2.6.1 Profiling parallel Haskell programs

After introducing parallelism, we would like to know what the result is. We can easily compare times

before and after its introduction, but we would like to know a little bit more than that. We will now

show how Haskell programs can be compiled and run while getting useful information back. When

compiling, there are four flags often used.

$ ghc search.hs -O2 -rtsopts -threaded -eventlog

The first flag (-O2) is the full optimisation flag, which should always be used when we are interested

in good performance. The compiler optimises the program as well as it can, at the cost of slowing the

compilation.

The second flag (-rtsopts) is used to specify other important (RTS) flags when actually running the

program. We will see later what RTS options are useful when running the program.

The third flag is used to allow Haskell to generate threads and must be included if we want to

generate parallel programs. However, it is not needed if we want a sequential program.

The last flag (-eventlog) is also very useful for situations where we have parallel programs. It

generates statistics about the behaviour of the program, as what each core was doing at a certain time,

when the sparks were created, etc. Once again, using this flag in a sequential program is somewhat

useless.

When running the program, we use other important flags.

$./search +RTS -N4 -s -l

24

2.6. Parallelizing Haskell programs

Figure 1: Statistics displayed by Haskell

The +RTS flag allows us to define useful run time options. The first one showed is the -N4 option,

which tells Haskell to use 4 cores. This value can be modified according to the number of cores we

want to use, and should be omitted if we want the program to run sequentially. The -s flag is used

to tell the program to print useful statistics when it is finished. In Figure 1, we can see what kind

of statistics Haskell displays once the program finishes (they are taken from an example we will use

later).

The number of bytes allocated in the heap or the allocation rate can be useful, but the most important

statistics, in which we will focus, are the sparks and the time spent by the program on different tasks.

If the program is run sequentially, the lines that show “Parallel GC work balance”, “TASKS” and

“SPARKS” are not shown, since they only make sense in parallel programs. In this case, however, we

can see that a parallel program was executed, and 58 sparks were created. Different things can happen

to a spark. They can be:

• converted - sparks that were evaluated in parallel at runtime.

• overflowed - the spark pool has a fixed size. Sparks that are created when the spark pool is full

fall into this category.

• dud - sparks whose expressions to be evaluated have already been evaluated.

25

2.6. Parallelizing Haskell programs

Figure 2: Analysis of the parallel behaviour of the program, using the Threadscope tool

• GC’d - sparks whose expressions were not used by the program, leading to the runtime system

removing them.

• fizzled - sparks whose expressions were unevaluated at the time they were sparked, but were

later evaluated independently by the program. Fizzled sparks are removed from the spark pool.

Haskell shows us how many sparks fall into each category.

Additionally, we can also see how much time the program spent executing different tasks. The

most notable are the MUT and GC time, that tell how much time the program spent actually running

and garbage collecting, respectively. The first time, in each line, represents the total CPU time, while

the second represents the real elapsed time. When we are talking about a sequential program, the

two times are very similar (the elapsed time might be a bit bigger, due to other tasks the computer is

performing). Here, however, we can see that the CPU time is about 3 times bigger than elapsed time.

That means that the program was parallel, executed with at least 3 cores (4 were used, which is not

surprising because achieving a speedup equal to the number of cores used is very hard, specially on

such small programs).

The -l flag activates the -eventlog one, creating a file with useful information about the behaviour

of the program when run.

The file generated (.eventlog extension), can be examined with the Threadscope tool. It will display

a file similar to the one in Figure 2. This is taken from the same example of the statistics shown

above. At the top, there is a time line, which corresponds to the elapsed time of the program. The first

26

2.6. Parallelizing Haskell programs

row (Activity), represents the overall activity of the system. Below, there are 4 lines, each of them

representing a Haskell Execution Context (HEC). Each core of the computer corresponds to a HEC (if

we are using them all). When the line is filled with green, it means the core is executing useful work.

When there is a small orange bar (which, in this case, is only present at the very end of the program,

on HEC0), it means the core is performing garbage collection. The blank sections represent the core

doing nothing. The small numbers inside the green lines simply represent the id of the thread. It is

possible to see that, in this example, there is a reasonable difference between the time at which the

cores finish their work. This means that either the work is not well distributed by the cores or that the

time spent to evaluate each parallel expression varies a lot.

Threadscope can also be used to see other interesting results, as when sparks are created and eval-

uated or the size of the spark pool throughout the program. The bottom menu also shows other infor-

mation gathered at run time, like, for example, spark stats - the ones we saw earlier that are outputted

to the command line - or information about the heap.

27

3

S TAT E O F T H E A RT

This chapter shows the state of the art of file carving, and is divided into two main sections: the

first one shows carving techniques that have been proposed, with Haskell being used to illustrate

the concepts. We will start by defining a generic carver and continue by showing how different

types of carvers can be instantiated from it. The second part presents some carvers: the first are,

to some extent, used in the real world. The second ones are the submissions of the 2006 and 2007

DFRWS conferences, some of which became important to develop the theory of file carving, either by

producing good results, showing new techniques, or both.

3.1 C A RV I N G T E C H N I Q U E S

In order to better understand what a file carver is, we will now look at some Haskell definitions, whose

intention is to model a carver’s domain. As explained, a carver is simply a program that retrieves a set

of files from a digital device, hence the following definition:

import Data.List
import Data.Word

type Carver = [Chunk]→ [File]

The device to be analysed is abstracted, and only the set of chunks is considered. Still, the Chunk
and File types must be defined.

type Byte = Word8
data FileType = FileType {

extension :: String,
header :: [Byte],
footer :: Maybe [Byte]
} deriving Eq
data File = File {

fileType :: FileType,
chunks :: [Chunk],

28

3.1. Carving techniques

partial :: Bool
} deriving Eq
data Chunk = Chunk {

serial :: Int,
bytes :: [Byte]
} deriving (Eq, Show)

instance Ord Chunk where
c1 6 c2 = (serial c1) 6 (serial c2)

jpeg :: FileType
jpeg = FileType {extension = "jpg", header = [255, 216], footer = Just [255, 217]}

The File contains its file type (every carved file must have a file type associated to it), the ordered set

of chunks carved so far (it must be converted into a stream of bytes when the file is written), and the

partial field, which does not indicate if the file is indeed complete, but simply if the carver marks it as

so. The file type must have an extension associated to it, which can also be seen as its name/identifier.

The header is the initial bytes for a file of that type, and the footer is a Maybe type, since not all file

types have a fixed footer.

The Chunk contains two fields. The sequence of bytes that define the chunk, and the serial number,

which indicates its position on the storing device.

The jpeg file type is given as an example.

Now that the domain is defined, the actual carver’s algorithms and techniques can be modeled. A

carver can be seen as set of building blocks, glued by a carving algorithm. All file carvers start by

identifying one (or more) file headers, so that’s the first building block to be defined:

type IsHeader = Chunk→ [FileType]→ Maybe FileType

There was a technique proposed by Sencar et al. in Sencar and Memon (2009) where a JPEG header

is created in order to recover JPEG file fragments that match no header. In that case, one must find

these loose fragments and glue them with a manually created header. That case will not be covered

now.

The way to find if a chunk is an header is always the same: check if any file type header is a prefix

of the bytes of the chunk. While different file carvers may have different string matching algorithms

(in order to improve performance), the behaviour is always the same, and is captured by the next

function:

matchHeader :: IsHeader
matchHeader c [] = Nothing
matchHeader c (h : t) = if (isPrefixOf (header h) (bytes c)) then Just h

else matchHeader c t

29

3.1. Carving techniques

After getting the headers, a file carver must analyse the remaining chunks. An important point is to

find out if a chunk can belong to a file of a specific file type (for example, if it can be a fragment of a

JPEG file), hence the following definition:

type GetType = Chunk→ [FileType]

A chunk c will only be appended to a file of type f if the carver’s GetType function, when fed with

the chunk c, returns a list that contains f. Carvers that don’t differentiate chunks like this can just

return all the file types, whatever chunk is passed as a parameter.

The next building block is the function that compares two chunks. This is what makes the carving

happen, since it will be used to define what chunks will be appended to the file.

type CompareC = File→ Chunk→ Chunk→ Int

The CompareC function receives two chunks as input, but also a file, in order to know how to

compare the chunks. The output says how likely it is that the second chunk follows the first on the file

given. To simplify, let’s assume a lower value means a better match.

The carver must also decide when to finish the carving process. This decision making process is

simulated by this function type:

type IsFooter = Chunk→ File→ Bool

The function receives a chunk that will be appended to a file (the other parameter), and returns True
if it thinks the chunk is the footer of the file.

With these definitions, a new type can be defined, that represents the set of building blocks of a

carver.

data CarverE = CarverE {
getType :: GetType,
compareC :: CompareC,
isFooter :: IsFooter,
supported :: [FileType]
}

The final field (supported) indicates the file types supported by the carver, which can differ a lot

from one to another.

As stated, these are only the building blocks for the carver. Then, they must be glued together in

order to form the actual carver. This will be done by the carving algorithm.

type BuildCarver = CarverE→ Carver

A function of this type uses the carver specifications to instantiate the carving algorithm. For

instance, we can have a greedy algorithm that always appends the better match to a file until it finds

the footer. This algorithm can be instantiated with different CompareC functions, generating different

carvers.

30

3.1. Carving techniques

3.1.1 Sequential carving

As explained in Chapter 1, a file carver simply carves anything between an header and a footer (or, if

they can’t find a footer, until the maximum file size is reached). If the size of the file is present on its

header, that information can (and should) be used.

The GetType function of a sequential file carver always returns all the supported file types.

The compare function always returns one of two values: 0 if the second chunk’s serial equals the

first chunk’s serial plus one; 1 otherwise. This function is not explicit on a real carver, but can be

modeled like this in this context.

sequentialCompare :: CompareC
sequentialCompare x y = if ((serial y) ≡ ((serial x) + 1)) then 0

else 1

There are two basic cases when the carving process is stopped: when a footer is found, or when the

file reaches is maximum size defined by the carver/user.

matchFooter :: Int→ IsFooter
matchFooter n c f = case footer (fileType f) of

Nothing→ (length (chunks f)) ≡ (n− 1)
Just ft→ (isInfixOf ft (bytes c)) ∨ ((length (chunks f)) ≡ (n− 1))

The carver often allows the user to define the maximum file size for each file type. Since the user

is abstracted in this model, the carver’s specifications are forced to fix a number. This number is set

by the n parameter of the matchFooter function.

Some file types store the length of the file in its header, and that information is used by some file

carvers to know when to stop the carving process. That case is covered on the next definition.

type GetLength = File→ Maybe Int

matchFooter2 :: Int→ GetLength→ IsFooter
matchFooter2 n g c f = case (g f) of

Just x→ ((length (chunks f)) ≡ (x− 1)) ∨ matchFooter n c f
Nothing→ matchFooter n c f

Note that this function can be used on all file carvers. If the carver does not use any information of

the header, it simply uses the GetLength function that always returns Nothing.

The carving algorithm of a carver is pretty straightforward: find a header, append chunks as long

as the compare function finds a match, repeat the process until the data is exhausted.

The first part of the algorithm is to find the headers.

setFileWith :: (Chunk, FileType)→ File
setFileWith (c, ft) = File {fileType = ft, chunks = [c], partial = True}

31

3.1. Carving techniques

sq headers :: [FileType]→ [Chunk]→ [File]
sq headers fts [] = []

sq headers fts (h : t) = case (matchHeader h fts) of
Nothing→ sq headers fts t
Just ft→ (setFileWith (h, ft)) : (sq headers fts t)

For every header found, a file is set up with the necessary information. The next step is to append

chunks to the files until they are complete.

sq match :: CarverE→ File→ [Chunk]→ Maybe Chunk
sq match [] = Nothing
sq match c f (h : t) = if (((compareC c) f (last (chunks f)) (h)) ≡ 0) then Just h

else sq match c f t

sq file carve :: CarverE→ [Chunk]→ File→ File
sq file carve c l f = case sq match c f l of

Nothing→ f
Just chunk→ if (isFooter c) chunk f

then f {chunks = (chunks f) ++
[chunk], partial = False}

else sq file carve c (delete chunk l)
(f {chunks = (chunks f) ++ [chunk]})

sequentialCarve :: CarverE→ Carver
sequentialCarve c l = let headers = sq headers (supported c) l

in map (sq file carve c l) headers

The sequentialCarve function creates a sequential carver when given the carver’s specifications.

3.1.2 Graph based carving

The graph based file carving technique sees the disk memory as a randomly distributed collection

of chunks. As explained above, it does not take advantage of the fact that the files are very often

sequentially distributed. Pal et al. (2003) was one of the first papers to introduce this notion, proposing

a smart carving architecture (smart carving is a general term to characterize carvers which use more

information than just headers and footers), divided in three steps: the preprocessing, in which the

data is decompressed and/or decrypted, taking its original form; the collating, when the chunks are

grouped by their file type; and the reassembling, that “glues” the previous fragments, originating a

set of files. It can be seen that the Haskell specifications written are well prepared to deal with this

architecture. Later, the architecture was further explored, as well as other carving techniques, in Pal

and Memon (2009).

32

3.1. Carving techniques

In Pal et al. (2003), the authors propose a graph based technique in order to recover fragmented

images. In order to reassembly the fragments, a tree is built, and the trace with the lowest weight

should be the correct one. In order to improve performance (although reducing accuracy), an alpha-

beta pruning technique is used. For the adjacency weights, the authors write: “(...) one way to assess

the likelihood that two image fragments are indeed adjacent in the original is to compute prediction

errors based on some simple linear predictive techniques (...) this is, prediction errors are computed

for pixels in the last row of the first fragment and the pixels in the first row of the second fragment.

The number of pixels for which a prediction error is computed hence is equal to the width in pixels

of the image.” This process of assigning adjacency weights can be seen in Figure 3. The width of the

image is obtained through its header. The following Haskell code is based on these ideas.

type GetWidth = Chunk→ Int
type Pixel = (Int, Int, Int)
type GetPixels = Chunk→ [Pixel]

compareImage :: File→ Chunk→ Chunk→ GetWidth→ GetPixels→ Int
compareImage f c1 c2 get rgb = let w = get (head (chunks f))

ps1 = reverse (take w (reverse (rgb c1)))
ps2 = take w (rgb c2)

in sum (zipWith cmpaux ps1 ps2)
where cmpaux (r1, g1, b1) (r2, g2, b2) =

abs (r1− r2) + abs (g1− g2) + abs (b1− b2)

This function receives two other functions as input: one that gets the width (w) of the image from the

header chunk (GetWidth) and one that gets the pixel values (in RGB format) of a chunk (GetPixels).

With these functions, it takes the last w pixels of the first chunk, the last w of the second, and sums the

difference of RGB values for each pair of pixels. If the result is lower, the two chunks form a smoother

transition and are more likely match. It can be a part of a CompareC function (e.g. a comparing

function can call this one if the file is a JPEG image). Having assigned the adjacency weights, a

greedy algorithm is used to reassemble the chunks into a set of files. Some of these algorithms are

shown below.

The same authors proposed in Shanmugasundaram and Memon (2003) a technique to recover all

type of fragmented files. This is less accurate than the specific case of image recovery, but the results

were still encouraging. In order to assign adjacency weights, a context-based statistical model is

extrapolated from loose chunks. The first step is to build a n-order context model for a given file

type. Given n ordered symbols, the model will give, for each symbol, the probability that it follows

the n previous symbols. Let’s take the english language as an example, where each letter represents a

symbol. If a random letter is chosen, the probability that it is the letter u is low (below 3%). However,

if we know that the previous letter is a q, that probability rises to almost 100%. Instead of just looking

at the previous letter, we can look at the previous n letters, getting the n-order context model for the

english language.

33

3.1. Carving techniques

Figure 3: Pixel values being compared when calculating candidate weights between two fragments (image
from Memon and Pal (2006))

Figure 4: The sliding window is how the context model is used (image from Shanmugasundaram and Memon
(2003))

The authors propose a method where the statistical model is extrapolated from the loose chunks,

which is interesting for academic purposes, but a more convincing way to get it is to just take some

example files. With this knowledge, the adjacency weight is calculated by using a “sliding window”

of n symbols, as is shown in Figure 4. The window is placed in the last n (4, in this case) characters of

the first chunk (’cada’), and the probability of the first character of the second chunk (’b’) is calculated,

using the model explained above. Then, the window moves one character to the right (now using the

first character of the second chunk, saying the probability that ’r’ follows ’adab’) and the process is

repeated until the window only covers characters from the second chunk (’brac’), when the context

model does not need to be used. From this analysis, the likelihood that the second chunk follows the

first can be calculated by simply multiplying the probabilities.

The following sections describe some algorithms that can be used to reassemble a set of chunks,

when their adjacency weight (given by a CompareC function) can be calculated.

Non Unique Path algorithm

The NUP algorithm is a reassemble algorithm that can be used in graph-based file carvers, as shown

in Memon and Pal (2006). It works by finding the best match to a chunk and append it immediately.

34

3.1. Carving techniques

Here, a chunk can be used in different files (if this happens, at least one of the files will not be

reconstructed properly). The first step is to get the headers from the set of chunks.

getHeaders :: [Chunk]→ [FileType]→ [(Chunk, FileType)]
getHeaders [] = []

getHeaders (h : t) fts = case (matchHeader h fts) of
Nothing→ getHeaders t fts
Just ft→ (h, ft) : (getHeaders t fts)

Then, the carver will set up a file for every header and call, for each one, a function that reconstructs

a single file (greedyCarveS).

best match :: Chunk→ Chunk→ [Chunk]→ (Chunk→ Chunk→ Int)→ Chunk
best match c match [] comp = match
best match c match (h : t) comp = if ((comp c h)< (comp c match)) then best match c h t comp

else best match c match t comp

greedyCarveS :: CarverE→ File→ [Chunk]→ File
greedyCarveS c f [] = f
greedyCarveS c f (h : t) = let b = best match (last (chunks f)) h t ((compareC c) f)

others = delete b (h : t)
f new = f {chunks = ((chunks f) ++ [b])}

in if (isFooter c b f) then f new {partial = False}
else greedyCarveS c f new others

greedyCarveNUP :: CarverE→ Carver
greedyCarveNUP c chunks = let headers = getHeaders chunks (supported c)

new chunks = chunks \\ (map fst headers)
in map (λh→ greedyCarveS c (setFileWith h) chunks) headers

Sequential Unique Path algorithm

This algorithm is similar to the previous one (NUP). The difference is that a chunk can only be used in

one file. This implies that the reconstruction depends on which file is reconstructed first. Once again,

this algorithm was shown in Memon and Pal (2006).

sup aux :: CarverE→ [(Chunk, FileType)]→ Carver
sup aux [] = []

sup aux c (h : t) cks = let f = greedyCarveS c (setFileWith h) cks
new chunks = cks \\ (tail (chunks f))

in f : (sup aux c t new chunks)

greedyCarveSUP :: CarverE→ Carver

35

3.1. Carving techniques

Figure 5: Parallel Unique Path (PUP) algorithm proposed by Pal and Memon (image from Poisel and Tjoa
(2013))

greedyCarveSUP c chunks = let headers = getHeaders chunks (supported c)
new chunks = chunks \\ (map fst headers)

in sup aux c headers chunks

This function also calls the greedyCarveS function, but the difference is that the blocks used by the

carved file are removed from the list, so that other files will not use them.

Parallel Unique Path algorithm

This algorithm reconstructs the files at the same time. After identifying the headers in the disk image

and setting up a file for each of them, the algorithm goes like this: for all files, get the last chunk and

calculate the best “better chunk” for each of them (getting a list of pairs of chunks). Get the pair of

chunks with the best (lowest) match value, and append the chunk to the file. Repeat the process until

all files are complete (reach the size specified in the header). This process can be seen on Figure 5:

three headers are found. In step (A), the best matches for each header are found, and it turns out that

the best pair is header (H2) with chunk 6 (which is why it is marked with a dashed line). The chunk

is appended to the file and we reach step (B), where the best match for chunk 6 is calculated. Notice

that chunk 4 is the best match for both header (H1) and chunk 6. The better pair is header (H1) with

chunk 4, so this is appended to the file. Since chunk 4 is now used, the best match for fragment 6 is

recalculated, as shown in step (C). The process continues until the three files are complete.

gbInsert :: Eq b⇒ a→ (a→ b)→ [[a]]→ [[a]]
gbInsert a [] = [[a]]
gbInsert a f (h : t) = if ((f a) ≡ (f (head h))) then (a : h) : t

else h : (gbInsert a f t)

spGroupBy :: Eq b⇒ (a→ b)→ [a]→ [[a]]
spGroupBy [] = []

spGroupBy f (h : t) = let res = spGroupBy f t
in gbInsert h f res

The spGroupBy function is a general function to group a list of elements according to some function

passed as a parameter. In practice, it will be used to group headers by their file type.

36

3.1. Carving techniques

getBestMatch :: [(File, Chunk)]→ (Chunk→ Chunk→ Int)→ (File, Chunk)
getBestMatch [p] = p
getBestMatch ((f1, c1) : (f2, c2) : t) f = if ((f (last (chunks f2)) c2) > (f (last (chunks f1)) c1))

then getBestMatch ((f1, c1) : t) f
else getBestMatch ((f2, c2) : t) f

The getBestMatch function receives a list containing the best chunk to be appended to each file. It

decides what is the best file-chunk match. It will be used to decide what chunk to append, according

to the PUP algorithm.

replace :: Eq a⇒ a→ a→ [a]→ [a]
replace old new (h : t) = if (old ≡ h) then new : t

else h : (replace old new t)

parallel carve :: CarverE→ [File]→ [Chunk]→ [File]
parallel carve [] = []

parallel carve c fs (h : t) = let matches = map (λx→ best match (last (chunks x))
h t ((compareC c) f)) fs

matches2 = zip fs matches
(f , match) = getBestMatch matches2 (compareC c (head fs))
f new = f {chunks = (chunks f) ++ [match]}
new chunks = delete match (h : t)

in if ((isFooter c) match f)
then f new : (parallel carve c (delete f fs) new chunks)

else parallel carve c (replace f f new fs) new chunks

parallel carve implements the PUP algorithm, when fed with the starting files (only containing the

headers, at the beginning) and the possible chunks to be appended.

pup aux :: CarverE→ FileType→ [Chunk]→ [Chunk]→ [File]
pup aux c ft hs chunks = parallel carve c (map (λh→ setFileWith (h, ft)) hs) chunks

greedyCarvePUP :: CarverE→ Carver
greedyCarvePUP c chunks = let headers = getHeaders chunks (supported c)

new chunks = chunks \\ (map fst headers)
headers2 = spGroupBy snd headers

in concat (map (λl→ pup aux c (snd (head l))
(map fst l) new chunks) headers2)

The greedyCarvePUP function groups the headers by file type, and applies the PUP algorithm for

each set of file headers of the same file type, using the parallel carve function.

37

3.1. Carving techniques

Shortest Path First algorithm

This algorithm uses the NUP algorithm to reconstruct all files. When this is done, only the one with

the lowest average weight is chosen. Then, the chunks used in this file become unavailable and the

NUP is calculated for the remaining files, and the process is repeated until all files are recovered.

Although this algorithm must be slower than the NUP one, its complexity is the same as the NUP,

SUP and PUP ones: O(n2log(n)), n being the number of chunks.

get min :: Ord b⇒ [a]→ (a→ b)→ a
get min [a] = a
get min (h1 : h2 : t) f = if ((f h1)> (f h2)) then get min (h2 : t) f

else get min (h1 : t) f

total weight :: [Chunk]→ (Chunk→ Chunk→ Int)→ Int
total weight [c] = 0
total weight (h1 : h2 : t) f = (f h1 h2) + (total weight (h2 : t) f)

avg weight :: [Chunk]→ (Chunk→ Chunk→ Int)→ Float
avg weight cs f = if ((length cs)< 2) then 0

else (fromIntegral (total weight cs f)) / (fromIntegral ((length cs)− 1))

greedyCarveSPF :: CarverE→ Carver
greedyCarveSPF c cs = let files = greedyCarveNUP c cs

weights = map (λf → avg weight (chunks f) ((compareC c) f)) files
fw = zip files weights
file = fst (get min fw (snd))
new chunks = cs \\ (chunks file)

in file : (greedyCarveSPF c new chunks)

The greedyCarveSPF function explicitly calls the NUP algorithm and then calculates the image

with the lowest average weight and discards the remaining ones, as explained above.

3.1.3 Fragmentation point carving

The fragmentation point technique was introduced in Pal et al. (2008). It tries to combine the ad-

vantages of the sequential and graph based carvers. One of the examples presented uses the PUP

graph based carving algorithm, but instead of associating nodes to chunks, it associates nodes to file

fragments. This type of carver must have a function that finds the end of the fragments (i.e. a frag-

mentation point). A fragmentation point is considered to occur when one of these two cases happens:

a chunk belongs to a different file type (if it contains byte sequences typical of another file type) or

the append of the chunk will cause the (partial) file to be, in some way, invalid. To cover this second

cause, the file type must have some specific structure that allows it to be decoded and validated.

38

3.1. Carving techniques

The next function shows how a fragmentation point carver builds the fragments that can be used by

the PUP algorithm to reconstruct files.

type Validator = [Chunk]→ FileType→ Bool

validates :: [Chunk]→ Validator→ FileType→ [Chunk]
validates c v ft = if (v c ft) then c

else validates (init c) v ft

buildFragment :: [Chunk]→ FileType→ GetType→ Validator→ [Chunk]
buildFragment c ft g v = validates (takeWhile ((elem ft) ◦ g) c) v ft

In order to build a fragment, the function takes all chunks until the file types don’t match. The

result is passed to the validator, that will complement the previous step by only taking chunks as long

as they validate. A validator can be a function that tests if a file is indeed valid, but can also use the

same comparing functions as in the graph based carvers, estimating a fragmentation point when the

comparing function returns a value above a certain threshold (remember we assumed the lower the

value, the better the match). This means that deriving a fragmentation point carver from a graph based

carver is almost trivial, something we will use in Chapter 5

3.1.4 Semantic carving

Semantic carving was a concept introduced in Garfinkel (2007). The idea is to carve files that can be

validated by first attempting a sequential carve. If the file is validated, then the carving is complete.

Otherwise, it is assumed that the file is fragmented in two parts, and that there is a gap somewhere

between the header and the footer. This gap can have any size and start at any point (between the

header and the footer). Therefore, all these gaps are tested, until the file is validated. In order to

improve performance, at the cost of possibly reducing the number of files carved, it is possible to limit

the values that the gap size and its initial point can take.

gaps aux :: Int→ Int→ Int→ [(Int, Int)]
gaps aux max size i f = if ((f − i)< (max size− 1)) then []

else (i, i + max size− 1) : (gaps aux max size (i + 1) f)

gaps :: Int→ Int→ Int→ [(Int, Int)]
gaps 0 = []

gaps n i f = (gaps aux n i f) ++ gaps aux (n− 1) i f

removeIs :: [a]→ (Int, Int)→ [a]
removeIs l (i, f) = (take i l) ++ (drop (f + 1) l)

validate single aux :: [Chunk]→ FileType→ Validator→ [(Int, Int)]→ Maybe [Chunk]
validate single aux [] = Nothing
validate single aux cs ft v (h : t) = let test = removeIs cs h

39

3.2. Carvers in practice

in if (v test ft) then test
else validate single aux cs ft v t

validate single :: [Chunk]→ FileType→ Validator→ Int→ Int→ Int→ Maybe [Chunk]
validate single c ft v max gap size i point f point =

if (v c ft) then cs
else validate single aux c ft v (gaps max gap size i point f point)

validate single is an example of a function which carves a single file, using semantic carving, when

a header and a footer are found. The chunks passed as parameters are the ones between the header

and the footer. The other parameters are the file type associated with the header, the validator to

use and 3 integer values, which can be used to limit the number of gaps to be tested (they represent

the maximum gap size, where the gap can start and where it can end). When called, the function

attempts to validate the file retrieved, and, if it fails, it will test every possible gap (taking into account

the limitations imposed for the gap). If one of the gaps generates a valid file, that will be the result,

otherwise Nothing is returned.

This technique might seem like a small improvement, as it only deals with very simple cases of

fragmentation. However, as the statistical analysis shown in Garfinkel (2007) demonstrate, the type of

fragmentation covered by this carver is by far the most common. The practical results were also very

good, as the second place on the 2006 DFRWS carving challenge show. One of the main advantages

attributed to this method is that it can be performed very fast, when compared with other techniques

which attempt to recover fragmented files.

3.2 C A RV E R S I N P R AC T I C E

In this section, we will start by presenting some open source file carvers, in order to understand

how the theoretical foundations explained above are used in practice. Then, the carvers submitted in

the DFRWS conferences will be presented, the techniques used explained, and their contribution to

carving theory explained.

3.2.1 Foremost

Foremost is an open-source file carver created in 2001, and updates have been released since then.

Besides its documentation, an explanation on how to use this carving tool, and its supported file types

can be consulted in the project’s web page1.

Foremost is a sequential file carver, and its behaviour is purely sequential: for every header found,

carve everything until it reaches its matching footer or until the maximum file size is reached. There-

fore, a general definition of a sequential file carver is used to model Foremost’s behaviour.

1 http://www.myfixlog.com/fix.php?fid=60

40

http://www.myfixlog.com/fix.php?fid=60

3.2. Carvers in practice

sqGT :: GetType
sqGT = allFT

allFT :: [FileType]
allFT = [jpeg]

sqCarverE :: CarverE
sqCarverE = CarverE {getType = sqGT, compareC = sequentialCompare,

isFooter = matchFooter 1000, supported = allFT}

sqCarver :: Carver
sqCarver = sequentialCarve sqCarverE

The GetType function will just return all the possible types. The whole list of supported types can

be consulted in the project’s web page. As an example, only the JPEG file type is used.

In this example, Foremost defines a maximum file size of 1000 chunks. Foremost (and other se-

quential file carvers) allows the user to define this size (in bytes), but in this context, this example

value works fine.

3.2.2 Scalpel

Scalpel is an open-source sequential file carver based on Foremost and presented at DFRWS 2005.

In Richard III and Roussev (2005), the authors start by explaining the motivation for this carver: their

primary goal was to have a carver that presents very high performance, even when running on low

resources machines.

Scalpel is a sequential file carver, which means that it basically looks for headers and footers and

carves everything that is between a header and a footer of the same file type. In a settings file, the

user can specify which file types to look for. Additionally, he can specify the “block size”. The block

size is used by Scalpel to divide the image to carve into blocks with the same size (in bytes). Scalpel

analyses these blocks sequentially for headers and footers. The paper provides no explanation as to

why this technique is used. After scanning the whole disk image for headers and footers, a second

scan is done. In order to know what to carve, each block has a set of work queues associated to it. The

block will have at most one work queue associated to one file (F), as follows:

• STARTCARVE: if file F has its header on this block, then this work queue is used. It must

indicate where the carving must start, create the file, and carve everything from the initial point

on (until the block ends). The file remains open.

• STARTSTOPCARVE: used if file F begins and ends in this block. It must indicate where the

file begins and where it ends. The entire file is carved.

• CONTINUECARVE: write everything from this block on file F. The file remains open.

41

3.2. Carvers in practice

• STOPCARVE: the file ends in this block. Everything is carved until its end, and the file is

closed.

• if this block contains no portion of file F, no work queue related to this file is associated to it.

Scalpel’s results are compared with Foremost’s. When looking for the same file types with the same

maximum file size, they recover exactly the same files (which is to be expected, since the same headers

and footers are used). Scalpel proved to be almost always more efficient than Foremost, especially

on large sets of files. On one particular test case, Scalpel took 1h33m10s to carve the same files as

Foremost, that took 6h21m54s.

One other interesting case was the carving of 1 single Outlook file with a size close to 600 MB.

Scalpel was able to recover it, while Foremost crashed with segmentation fault. Although this is not

directly stated in the paper, it might be because Scalpel carves the file block by block, while Foremost

attempts to carve it at once, causing the segmentation fault.

Scalpel’s behaviour can be modeled by the same definitions given to Foremost. Scalpel supports

more file types than foremost, but the main difference between the two is really performance, which

this model is not supposed to cover.

3.2.3 PhotoRec

PhotoRec is an open-source file carver that, as opposed to what its name suggests, recovers files from

many file types (not only photos/images). The whole list can be consulted in the project’s web page2.

Since this tool recovers a lot of different file types, it is to be expected that it can only recover the

whole file if there is no data fragmentation (there is an exception, as explained below). This means

that PhotoRec, as Scalpel, is a sequential file carver. PhotoRec is also not a pure file carver, since it

tries to use file system metadata, if present, to recover files, and only then uses carving techniques.

This is, however, the practical approach for a generic file recovery software.

There is one case where PhotoRec is able to recover fragmented files. When a file indicated its

size on its header, PhotoRec will carve the specified size. However, PhotoRec performs file content

validation, which means that if the file is fragmented or corrupted, it will not be carved. When a file

is successfully carved, it is checked if there was an incomplete file before this successfully carved file,

and if that is the case, it is checked if the incomplete file continues after the recovered file. This seems

a little far-fetched, but in practice, it can be a reasonable try. Some tests can be run in order to find out

if this is a good idea.

2 http://www.cgsecurity.org/wiki/File_Formats_Recovered_By_PhotoRec

42

http://www.cgsecurity.org/wiki/File_Formats_Recovered_By_PhotoRec

3.2. Carvers in practice

3.2.4 MIDI-carver

MIDI-carver is a carver written in C that only recovers MIDI files (a file type that stores music tracks).

MIDI files start with an header that presents information on its playlist. However, every music track

also has its own header. MIDI carver looks for both headers. When the playlist header is found, it

carves the music tracks that follow it (checking every music track header). If the number of tracks

or its length does not match, it carves the complete tracks and warns the user. When the carver finds

an orphaned track (without any playlist header), it creates an artificial playlist header and inserts the

track there.

MIDI-carver is a sequential file carver, so it is not able to fully recover fragmented files. However,

since it recovers loose tracks, a lot of information is recovered from these (fragmented) files. In order

to match file headers, it uses the compare function provided by the C string library.

This carver has almost no importance in digital forensics, and was created for users who acciden-

tally lose their MIDI files.

3.2.5 Others

Other open source file carvers are also sequential, and are not referenced since they are less known and

do not add anything new to the ones presented. This section shows that, on practice, file carvers restrict

themselves to the sequential carving technique. Still, it is possible that they will recover fragmented

files, but their capacity to do that is severely limited (MIDI-carver does not reassemble fragments and

PhotoRec only recovers fragmented files on a very specific case). However, techniques for recovering

fragmented files have been studied, as shown before. It is worth studying why they have not been

implemented on a real carver.

Some commercial file carvers (like Adroit Photo Forensics) advertise that they can also recover

fragmented files. Since they are protected by law, it is not possible to know what technique they use

to do that.

3.2.6 DFRWS 2006 carving challenge

As explained, the 20063 and 20074 DFRWS conferences were focused on file carving. For this reason,

many new carving ideas sprang during these conferences. The first one challenged the participants

to develop a file carver which identifies more files and reduces the number of false positives, when

compared with existing carvers. The data set used was a 50 MB raw file, containing JPEG, ZIP,

HTML, text and Microsoft Office files (32 files total), some of them fragmented. There was no file

system present, but the sector size was known to be 512 bytes. The results are resumed below.

3 http://www.dfrws.org/2006/
4 http://www.dfrws.org/2007/

43

http://www.dfrws.org/2006/
http://www.dfrws.org/2007/

3.2. Carvers in practice

Phil Turner

Phil Turner developed a carver in the Delphi 7 programming language. The program searches for

sequences of “text characters” (defined by the programmer), generating text files with it, makes head-

er/footer matching for html files, and performs “dumb file carving” for jpeg and doc files (it is not

clear what that means, but probably it carves everything between a header and the next header). For

zip files, the carving process is more elaborate: parts of zip files are marked when carving, and, in the

end, zip files are reconstructed. So, in this case, fragmented files can be recovered.

Timothy Morgan

Timothy Morgan created CRM114 scripts to classify blocks according to their file type, and retrieve

files using machine learning techniques, where the computer makes decisions based on past experi-

ence. Due to lack of time, these techniques were only used in the HTML and text files.

Blocks marked as text or HTML are ordered by using Kolmogorov distances. However, this did not

produce neither good or fast results and the author had to perform a lot of manual work to recover the

files.

Zip files are recovered using the sequential header/footer technique, because the author does not

believe machine learning techniques would be successful here, as compressed files should have very

high entropy.

Due to lack of time to develop more sophisticated techniques, JPEG and MSOffice files were re-

covered by simply starting to carve when a header is found and continuing sequentially until another

header is found (the standard technique in a sequential carver when a footer is not known).

Joachim Metz and Robert-Jan Mora

Joachim Metz and Robert-Jan Mora presented the tool Revit, which performs smart carving. This tool

can take into account more particularities of file types to be carved than just the header and footer, and

classify the recovered files as complete (when the start and end characteristics of the file are found),

partial (where the start, end or some other characteristics are found) or embedded (possible in files

such as JPEG and PDF).

For instance, JPEG files are found not only by looking at the header and footer but also at its

markers. These are typical bytes of JPEG files used to define various information about the file (as its

size, for example), and can even contain embedded files.

The Revit tool was intended to be a proof of concept of smart carving, but the authors claim it

already produces better results than Scalpel and Foremost, although they do not specify if this is

regarding performance, accuracy or both.

For more detailed information about this carving tool/method, consult their submission to the chal-

lenge5.

5 http://sandbox.dfrws.org/2006/mora/

44

http://sandbox.dfrws.org/2006/mora/

3.2. Carvers in practice

Glenn Henderson, David Horvath, Jeff Jones, and Florian Buchholz

FragMend is semi-manual file carving tool. It provides a GUI, but the interaction from the program

to the user is done via console. It finds file headers and footers, and provides ways for the user to test

different block combinations, but it appears that most of the work is done manually, and their results

in the 2006 DFRWS carving challenge were not impressive.

John Goalby

John Goalby wrote 3 perl scripts which go trough an image and extract files, using sequential and

smart carving techniques. It also works on a semi manual way.

Christophe Grenier

PhotoRec, a tool already presented in the last section, was the tool submitted by Christophe Grenier.

It is an open-source semi-manual file carving tool, which finds headers and footers. It carves files se-

quentially, but also presents a feature for semi manual carving, for the case where files are fragmented.

It produced good results, but still wasn’t awarded any prize, probably for lack of originality. For more

information on this tool, consult the tool’s web site6.

Daniel Dickerman

Daniel Dickerman presented a paper7 explaining how he used smart carving techniques for recovering

the files presented in the 2006 DFRWS challenge.

Although the results were good, the work was done manually.

Garfinkel

Garfinkel presented S2, which performs what he calls semantic carving. As explained in Section 3.1.4,

this technique finds headers and footers and uses validators to verify if the carved file is valid. If that is

not the case, then it tries to validate the same file, but assuming a gap, somewhere in the middle of the

file, with data not related to the main file. It will test for all possible gaps (a maximum gap size can be

defined). Therefore, it will only recover files that are split in two fragments. Since the 2006 DFRWS

carving challenge did not focus so much on fragmented files, the tool produced good practical results,

being awarded with the second place for this challenge. One of the main advantages of this method is

that it can carve a relatively large amount of files (as bifragmentation is very common) very fast.

6 http://sandbox.dfrws.org/2006/grenier/
7 http://sandbox.dfrws.org/2006/dickerman/Dickerman%20DFRWS%202006%20Challenge%
20Final%20Submission.pdf

45

http://sandbox.dfrws.org/2006/grenier/
http://sandbox.dfrws.org/2006/dickerman/Dickerman%20DFRWS%202006%20Challenge%20Final%20Submission.pdf
http://sandbox.dfrws.org/2006/dickerman/Dickerman%20DFRWS%202006%20Challenge%20Final%20Submission.pdf

3.2. Carvers in practice

Klayton Monroe, Andy Bair and Jay Smith

The first prize went for these authors, who used FTimes to semi manually carve files. Their method-

ology was to use the program to look for headers and footers and carve files automatically. These

carved files were then manually inspected. If they turn out to be valid files, their carving is considered

complete. If that is not the case, the program is run again, but with different parameters, in order to

try to carve the files correctly. For example, the 2006 DFRWS carving challenge contained a JPEG

file with an embedded thumbnail. The thumbnail is carved by any sequential carver, but the bigger

figure is not, since the carving is stopped at the footer of the thumbnail. By running their program in

the first time, the authors saw that and were able to set different parameters in the second run, which

made the program recover the original JPEG.

3.2.7 2007 DFRWS carving challenge

The 2007 DFRWS carving challenged had some differences with the previous one:

• The file image was bigger (300MB), contained more files (118) and more file types (JPEG, ZIP,

Microsoft Office, MP3, MPG, WMV, PDF, MP4, AVI, MOV, FLV, MBOX and EXEC).

• It had a much higher focus on fragmentation. A larger variety of fragmentation scenarios (and

more complex ones) were present. Very few files were unfragmented.

• Some files were only partial, simulating the case where part of a file is overwritten.

• Only fully automatic file carvers were allowed.

• To compare different submissions, an objective method was used, taking into account what and

how many files were recovered and how many false positives were produced.

This challenged forced the authors to focus on how to fully automatically recover fragmented files.

There were 5 submissions to this challenge, which are resumed below.

Christophe Grenier

Christophe Grenier presented TestDisk, which is some sort of new version of PhotoRec, the tool he

used for the 2006 challenge. The tool had no major improvement, and could only recover some very

basic cases of fragmentation, therefore being relegated to 5th (last) place.

Joachim Metz, Bas Kloet, and Robert-Jan Mora

After carefully analysing the techniques used in the previous challenge, the authors decided to use

some kind of smart carving. First, they developed an initial version of a domain specific language to

describe file formats. The smart carving of different file types was built on that, and validators were

46

3.2. Carvers in practice

used to verify if the files were valid. Still, the results for fragmented files were not good. The judges

also claim that the use of generic validators limited accuracy, one of the reasons why it finished in 4th

place.

Kristofer Munsterhjelm

Kristofer Munsterhjelm used different techniques to deal with different file types. For complex files,

like ZIP, puzzle solving was used: get parts of ZIP (or other complex file type) files and treat each

one of them as an independent chunk. Then, use rules to reconstruct the file in the correct order. For

files with large areas of unstructured and high entropy data, but where the header can be easily found,

like JPG, use normal sequential techniques, and then try to validate the carved file trough an external

validator. For files with no recognizable structure, use a 3-order context model. To recover PDF files,

\Title headers were looked for, followed by a web search, which looked for the PDF whose header

was found. Actually, this last technique was the only one that was able to recover fragmented files.

While the results were not strong, the combination of techniques was considered innovative, and the

author got 3rd place.

More detailed information on this carver can be consulted in their submission to the 2007 DFRWS

challenge 8.

Omar Al-Dahir, Joseph Hua, Lodovico Marziale, Jaime Nino, Golden G. Richard III, and Vassil

Roussev

The authors used a smart carving approach. For AVI, ZIP, email, JPEG, MP3 and PDF files, new

algorithms were developed, taking into account file structures. For DOC, BMP, MPG, WMV and

PNG files, they just ran Foremost (it is not clear if this was due to lack of time or to the files not being

sufficiently well structured). The carving of MP3 files was particularly successful, and scored better

than the other submissions. For other file types, the results were worse, but the judges considered they

showed promise. A large number of false positives were generated, but they were still awarded 2nd

place.

Michael Cohen

Michael Cohen formally described the carving process as the generation of a mapping function, which

maps chunks in the disk image to files to be carved. The number of possible mapping functions

is absurdly large, but the author uses discriminators to reduce the number of possibilities. These

discriminators use validators to eliminate mapping functions that are not possible (i.e. they are able

to identify beforehand sequences of chunks that generate invalid files). A good discriminator may be

able to tell if a file is corrupted and where the corruption occurs, which is a very good start to carve

the correct file.

8 http://sandbox.dfrws.org/2007/munsterhjelm/

47

http://sandbox.dfrws.org/2007/munsterhjelm/

3.2. Carvers in practice

As the discriminators are built using file validators, the author classifies his carver as a semantic

carver. Even though Cohen did not focus on image and office file formats, which are less structured

than other file types, the judges state that his results still ended up very high, with the lowest false

positive score. They add that the high quality of the results from this approach shows promise, and

awarded it with 1st place.

48

4

PA R A L L E L I Z I N G A S E Q U E N T I A L C A RV E R

The Haskell carvers implemented in Chapter 3 are good for illustrative purposes, but their performance

was sacrificed in order to achieve clarity and to explain the concepts associated with a file carver.

Besides, non sequential file carvers were incomplete, as some function parameters were missing, when

they were not needed to explain the concept.

In this chapter, we will now define a carver which can be run and tested. We will show a sequential

carver implemented in Haskell, and introduce parallelism, in order to try to understand if this is a

possible way to improve its performance. The results of the carver are compared with Scalpel, but,

more important, we analyse the results of introducing parallelism, using the techniques presented in

Chapter 2.

4.1 H A S K E L L I M P L E M E N TAT I O N

A sequential carver’s concept is relatively simple: look for headers, look for footers, match them

and carve the files. There are, however, some nuances that must be taken into account: if we know

the sector size (or, preferably, the chunk size), we only need to look for headers at the start of each

sector (chunk). Otherwise, we must look for headers starting at any point in the disk image. It is also

necessary to be careful with algorithms that can unnecessarily reduce the program’s performance, as

this is a major issue when building a file carver.

First, we built a sequential carver that can look for headers in the two cases described above (when

we know the sector (chunk) size, and when we do not) and, when it was finished and tested, parallelism

was introduced, in order to improve its performance. To better show how this transition was done, the

two carvers will be presented in parallel, and the focus will be on the introduction of parallelism, as

the implementation of a non parallel sequential carver in Haskell is pretty straightforward.

The implementation of parallelism is often trickier than it looks. One must know where and how

to parallelize the operations. The Haskell programming language presents some particular problems

as it uses lazy evaluation. Therefore, the order by which the evaluations take place is not always clear.

In fact, some expressions written by the programmer will never be evaluated if they are not necessary

for the final result.

49

4.1. Haskell implementation

Our carver’s definition is the following: first, search for headers throughout the entire disk image

(a file passed as a parameter). For each header, look for the first matching footer. In the end, write the

carved files to disk. To improve our carver’s efficiency, the parallelism is implemented on two crucial

parts of the program: the search for headers and the search for matching footers. The writing to disk

cannot be parallel, but, as we will see, this is not a problem. Let’s look at the functions that look for

headers on the sequential version of the program. There are two different definitions, according to

what we know about the disk image to be analysed. If we know the sector size, then we only need to

look for headers starting at the beginning of each sector. However, if we do not have that information,

we must look for headers starting at any point (byte) of the disk (this approach has other advantages,

as we will see in Section 4.2). We will start with the case where we don’t know the disk sector size.

findHeadersNS :: BS.ByteString→ [FTI]→ [(Int, FTI)]
findHeadersNS bs fts =

concat (map (λx→ [(i, x) | i← BS.findSubstrings ((header ◦ fst) x) bs]) fts)

As can be seen, the function is very simple. It is a map over the file types, running the findSubstrings
function for all of them and returning a list of indexes, associated with the file type that starts at that

point. In order to use the findSubstrings function, which is a fast way to match substrings, we must

accept the drawback of running this function as many types as the number of file types requested

(which will process the bytestring that many times). As we will see, that is not needed in the case

where the sector size is known.

Following the example of the search function, shown in Section 2.6, we could simply replace map
by parMap rpar. This is not, however, the best approach , the reason being that it is too likely that

there are few file types to be searched for, possibly making the cores work unevenly or not even using

some core(s) at all (in fact, this approach is used, but combined with the next one). A much more

reliable strategy is to divide the bytestring to be analysed into small pieces and apply parMap over

them. The size of each piece can be user definable. Let’s see how this can be done.

type Range = (Int, Int)

expand :: Int→ Int→ (Int, Int)
expand n ep = ((ep ∗ n), ((ep + 1) ∗ n)− 1)

breakInto :: Int→ Int→ [(Int, Int)]
breakInto bs n = let l = (div (bs− 1) n)

in map (expand n) [0 . . l]

fromTo :: BS.ByteString→ Range→ BS.ByteString
fromTo bs (i, f) = BS.take (f − i + 1) (BS.drop i bs)

findHeadersNS aux :: BS.ByteString→ Range→ FTI→ [(Int, FTI)]
findHeadersNS aux bs (i, f) ft = let h = header (fst ft)

bs aux = fromTo bs (i, f + (BS.length h)− 1)

50

4.1. Haskell implementation

in map (λx→ (x + i, ft)) (BS.findSubstrings h bs aux)

findHeadersNS :: BS.ByteString→ Int→ [FTI]→ [(Int, FTI)]
findHeadersNS bs size fts =

let ranges = breakInto (BS.length bs) size
in concat (parMap rpar (uncurry (flip (findHeadersNS aux bs)))
[(ft, range) | ft← fts, range← ranges])

In this case, some auxiliary functions are useful to understand what is going on.

The Range type is syntactic sugar to indicate in a function type what the arguments represent. It is

a pair of integer values that typically indicate a range of indexes to process on a bytestring.

The function breakInto is used to break a number (in this case, the length of a bytestring) into ranges,

using expand as an auxiliary function. For example, breakInto 12 4 outputs [(0, 3), (4, 7), (8, 11)].
The function fromTo bs r cuts the bytestring bs according to the range r.

The function that actually looks for headers (findHeadersNS) starts by breaking the length of the

bytestring received in ranges of the size passed as a parameter. Then, a list is constructed, constituted

by all combinations of ranges and file types (i.e. the Cartesian product of those lists). The result

is passed as an argument to a parMap function, together with the findHeadersNS function, and all

elements of the list will (likely) be sparked.

The only detail left is to extend every range by the length of the header of the file type associated

to it. Otherwise, a header that starts in one range and ends on the next will not be captured.

We will now move on to the case where we know the sector size. It is similar to the previous one,

but with some nuances. The sequential version is as follows:

findHeadersS aux :: BS.ByteString→ Int→ Int→ [FTI]→ [(Int, FTI)]
findHeadersS aux bs i sec size fts =

if (BS.null bs) then []

else let types = filter (λx→ BS.isPrefixOf (header (fst x)) bs) fts
in [(i, ft) | ft← types] ++
(findHeadersS aux (BS.drop sec size bs) (i + sec size) sec size fts)

findHeadersS :: BS.ByteString→ Int→ [FTI]→ [(Int, FTI)]
findHeadersS bs sec size fts = findHeadersS aux bs 0 sec size fts

The algorithm basically works like this: given a bytestring, check what headers are prefixes of it.

Jump the number of bytes specified in the sector size and repeat the process until the bytestring is fully

consumed.

Notice that, unlike in the previous case, the bytestring is processed only once. Since the findSubstrings
function is not used, we can match all headers of all file types at the same time, and therefore it makes

no sense to map any function over file types.

The parallelization strategy used here is the same as in the last case. The bytestring is broken into

pieces of user definable sizes and each one is sparked with the searching function.

51

4.1. Haskell implementation

findHeadersS aux :: BS.ByteString→ Int→ [FTI]→ Range→ [(Int, FTI)]
findHeadersS aux bs sec size fts (i, f) =

if (i > f) then []

else let bs aux = BS.drop i bs
types = filter (λx→ BS.isPrefixOf (header (fst x)) bs aux) fts

in [(i, ft) | ft← types] ++ (findHeadersS aux bs sec size fts (i + sec size, f))

findHeadersS :: BS.ByteString→ Int→ Int→ [FTI]→ [(Int, FTI)]
findHeadersS bs sec size size fts =

let ranges = breakInto (BS.length bs) size
in concat (parMap rpar (findHeadersS aux bs sec size fts) ranges)

There is a slight difference in the algorithm to the sequential version: instead of cutting the bytestring

in order to make the recursive call, it is the range that is shortened, while the bytestring remains the

same. The behaviour is the same, but the code becomes shorter.

The difference between this case and the one where we don’t know the sector size is that we don’t

need to use the Cartesian product of file types and ranges. Since the search for different file types is

done in one single function, the mapping is only over the ranges.

In the previous version, where we don’t know the sector size, a change in the “piece size” (the value

that defines the size of the pieces of the bytestring, when it is broken to generate parallelism) will not

have any effect on the result (only on the performance). In this case, however, this “piece size” must

be a multiple of the sector size, so that the start of each piece is also the start of a sector.

The introduction of parallelism on the search for footer is as simple as it gets. The definition of the

sequential version is:

findFooterS :: BS.ByteString→ (Int, FTI)→ (String, Range)
findFooterS bs (i, (ft, max size)) =

let bs aux = BS.take max size (BS.drop i bs)
ext = extension ft

in case (footer ft) of
Nothing→ (ext, (i, i + max size− 1))
Just fter→ let l = BS.length fter

in case BS.findSubstring fter bs aux of
Nothing→ (ext, (i, i + max size− 1))
Just n→ (ext, (i, i + n + l− 1))

findFooter :: BS.ByteString→ [(Int, FTI)]→ [(String, Range)]
findFooter bs headers = map (findFooterS bs) headers

The findFooterS function carves a single file. Besides the bytestring to search in, it receives the

index where the file starts and its file type. Using the findSubstrings function, it will carve the file

until a footer is found. If none is found (or none is specified in the file type), then it just copies

52

4.2. Result analysis

max size bytes to the carved file, max size being the maximum file size defined for the specific file

type. It makes no sense to try to parallelize this function. We could divide the bytestring (like in the

headers case) and spark a search for the footer in every piece, but that would probably lead to a lot of

useless work, since most likely a core will be looking for a footer when another one has already found

one earlier on the bytestring. Therefore, the solution adopted is the simpler one: replace the map in

the findFooter function by a parMap rpar, which leads to all individual footer searches being sparked.

4.2 R E S U LT A N A LY S I S

In order to better understand how the program works, we can try to execute different versions of the

program and see how it behaves.

The experiments described below were conducted on a laptop running a 64-bit version of Ubuntu

13.10, with 6GB RAM and using 4 Intel 1.8GHz cores. All other applications were closed when the

tests were being performed and the internet connection shut down. The program was only looking for

two types of files (both JPEG images, but with different header-footer correspondences).

When compiling and running sequential programs, only the full optimisation flag is used. The time

Linux command is used to measure the time spent by the program.

For the parallel cases, compiling and running the program is done with the commands shown in

the 2.6.1 Section. The bytestring to be analysed is broken into 1 MB pieces.

For every example, the program was executed at least 3 times. More if there were time discrepancies

in the first executions.

4.2.1 DFRWS 2006 data set

Let’s first analyse the behaviour of the program on the 50 MB data set of the DFRWS 2006 challenge.

It contains 14 JPEG files (some of which contain embedded thumbnails). Their size vary between 100

KB and 1 MB, except for two files, with sizes 7.1 MB and 24.5 MB.

The disk image is divided into 512 bytes sectors, which means that we only need to search for

headers on the beginning of each sector. However, this will not yield relevant results, since the data set

is relatively small and the carving is performed extremely fast in this case. Therefore, we will pretend

we don’t know which sector size is used and look for headers throughout the entire image. This can

be useful even when we know the sector size: big JPEG images can contain embedded thumbnails,

which share the header and footer of its “parent”. Sometimes, the image itself is fragmented, and will

not be recovered by the sequential file carver, but the thumbnail can be completely recovered, which

is very useful. Since the thumbnail does not mark the beginning of the file, most likely, it will not

coincide with the beginning of a sector, and only a look throughout the whole disk image will recover

it.

53

4.2. Result analysis

Figure 6: Graphic generated when only looking for headers

The first operation is reading the disk image, which takes approximately 0.03 seconds to perform.

The second one is finding the headers, and this operation is already parallel. In order to make sure

that Haskell will search for the headers, the program must print the number of headers found. The

operation takes around 1.2 seconds to perform sequentially, but, when introducing parallelism, this

value decreases to 0.65 seconds. Figure 6 shows the graphic generated in this case. When analysing

this graphic, it is possible to see the four cores executing useful work during almost all of the time.

The exception is at the beginning, when the program is copying the disk image content, an operation

that cannot be parallel, and at the very end, which is to be expected, since there are always slight

unbalances on the amount of work performed by each core. Because the cores are shown to work for

so long, one could expect the speedup to be almost 4 (as opposed to the 2 we get), but the introduction

of parallelism also costs some time, which is why we get these values.

The next case is carving the files (i.e. finding the indexes that mark the beginning and end of the

files), but not actually writing them to disk. The previous operations - reading the disk image and

searching for headers - are also performed, so the only difference from this case to the final program

is writing the carved files. This is useful because we can then compare these values with the ones

from the final program, and estimate how much (or what percentage) of the time the program is just

writing the files. The operation takes approximately 1.6 seconds to finish on the sequential case. When

introducing parallelism, this value decreases to 1 second. The graphic generated is very similar to the

one shown next.

The final program takes 1.6 seconds to run on the sequential case and 1.06 on the parallel one.

Comparing to the values shown on the last case, we can see that writing the files to disk is not a

problem, as it is done extremely fast. The graphic generated by the program is show in Figure 7.

As is evident in the figure, the parallelism is lower in this case when compared with the headers case.

The reason is that, when looking for headers, the whole range must be analysed and, therefore, the

sparks will contain balanced amounts of work. In this case, however, a spark represents the carving

54

4.2. Result analysis

Figure 7: Graphic generated by the final program

Sectors
(non
parallel)

Sectors
(parallel)

No Sectors
(non parallel)

No Sectors
(parallel)

Headers 0.22 0.2 8.28 4.7
No Disk Write 0.24 0.22 8.55 4.95
Carver 0.24 0.22 8.4 4.7

Table 1: Results for the DFRWS 2007 data set

of one file (by this we mean finding the final index, not actually writing the file to disk), and the

DFRWS 2006 data set presents a problem in this aspect. There are only 19 JPEG files, and while,

in general, the file sizes vary between 100 KB and 1 MB, there is one file of 7 MB and another of

almost 25 MB. That is the reason why it is very likely that some cores will do much more useful work

than others. Here, there is also the “luck” factor, because if these big files are the first to be carved,

then the discrepancy should be smaller, as opposed to the case where they are carved last, when there

should be big differences in the work performed by different cores. If, for example, one core starts

immediately carving the bigger file, the other ones will have time to carve the remaining files while

this happens. However, if all of the cores start by the smaller files and the big ones are left for the end,

then the cores that carve this 2 big files will be working while the other ones already finished their

jobs, as there are no more sparks to be evaluated. There is no workaround to help fixing this problem,

as there is no way to know a priori which files are bigger.

It is also worth noting that parallel disk writes are not allowed, but, as we saw, the time spent to do

this is too small for this to make any difference.

55

4.2. Result analysis

Figure 8: Effect of piece size on program’s performance

4.2.2 DFRWS 2007 data set

The 2007 DFRWS data set is bigger (330 MB) and presents a higher focus on fragmented files, which

this program is not supposed to recover. However, it still presents relevant results, as the larger set of

files makes the parallelism work better.

Once again, the disk is divided into 512 bytes sectors. It contains 18 JPEG files. Because of the

focus on fragmented files, none of the images is correctly recovered, and their sizes are all below 500

KB. For this data set, we will look at the results presented by both programs: the one that assumes the

disk is divided into sectors and the one that does not.

Reading the disk image takes approximately 1.6 seconds.

The other results (for finding headers, carving but not writing to disk, and running the final program,

which actually writes the carved files to disk) can be seen in Table 1. Looking for headers is the

operation that takes longer, which is to be expected, as the whole disk must be analysed twice. Carving

files only processes very small parts of the disk, and writing the files to disk is a very fast operation.

However, it is unexpected that the final carver takes less time to finish than the one that does not

write the carved files to disk. In order to force the carving, in the case where the carved files are

not written to disk, the length of each file is written on the screen. Getting the length of a bytestring

is, as mentioned, trivial, and it is difficult to believe that writing it to the screen takes longer than

actually writing the carved files to disk. It might be that the final program makes better optimisations,

in particular regarding I/O buffering, but that is just a guess, and there is no definite answer.

In all the tests presented above, the parallel program breaks the bytestring to be analysed into 1 MB

pieces. This variable should somehow affect the performance, so it is probably a good idea to test

what happens when we use different values.

Figure 8 show what happens when we change piece size on the 2007 DFRWS data set. The best

value, from the ones tested, was 20, which is a little over 1/16 of the disk image’s size. If the ratio

56

4.2. Result analysis

is too small, the disk will unnecessarily be divided into too much pieces. If it is too big, the work

will be unevenly distributed (for a 1/7 ratio, the program’s execution time already starts to increase

dangerously). More tests would be needed to understand if this (1/16) ratio is the best one for any

general disk image.

As a final remark, it is worth noting that the recovered files are exactly the same as the ones re-

covered by Scalpel, a well known sequential file carver. Still, Scalpel presents a better performance,

with 0.45s in the 2006 DFRWS data set (1.06 is the value of our parallel carver) and 3.06s in the 2007

DFRWS data set, better than our 4.7s.

57

5

C A RV I N G U S I N G C O N T E X T M O D E L S

One of the possible attempts to recover fragmented files is the use of a context model, as explained

in Section 3.1.2. This technique was proposed in Shanmugasundaram and Memon (2003), as a pos-

sible way to recover fragmented files from any file type. The general idea is to use a database that

stores recurring patterns within a certain file type, and use it to find file fragments and reassembly

them. In practice, this is done by building a n-order context model, which looks at the last n charac-

ters and makes predictions on the probabilities of each character appearing next. To estimate these

probabilities, the context model is fed with some example files.

We were interested in investigating why non sequential carving techniques are so rarely used in

practice, and context model carving is just one of these techniques. While this will not yield conclu-

sive results, since we are only investigating one technique, it will hopefully shed some light upon this

question. The reason we chose this case was that it allows us to carve any file type we want, there-

fore providing a universal solution to non sequential file carving, as opposed to other more specific

techniques, which often work on a limited set of file types or fragmentation scenarios.

In this chapter, we will start by writing a library for context models, which can be used by file

carvers. The library will be used to write two file carvers: a graph based and a fragmentation point

one. We will see that, as stated before, the transition from the first to the latter is almost trivial.

5.1 T H E C O N T E X T M O D E L M O D U L E

If the above explanation is not clear enough, hopefully the next definitions will help.

data ContextModelU = CMU Int (M.Map Word8 ContextModelU)

| FinalU Int deriving (Show, Read, Eq)

data ContextModel = CM Int (M.Map Word8 ContextModel)
| Final Float deriving (Show, Read, Eq)

Both definitions describe a context model recursively as a trie - a tree-like data structure which

works as a Map and where the keys are usually strings - but with different types for the nodes. In

order to illustrate this concept, Figure 9 shows one of the ways of visualising this data structure. This

is a 2-order context model, created using a single example file whose content was “abcacbcaaabca”.

58

5.1. The Context Model module

1 1 2 1 3 1 1 1

a b c

a b c c a b

a b c b a a c a

(2)

(1)

(0)

Figure 9: An example of a visual representation of a 2-order context model

The databases used in practice will be created using various files, with thousands of bytes each, but

this serves as a good example. The top node is the 2-order context model, and it branches on three

different 1-order context models, each one associated to a different character. These ones then branch

in 0-order context models. A 0-order context model only tells how many times a character appears.

For instance, if we derived a 0-order context model from the same sequence of characters presented

above, we would get a single node, branching in 3 different leaves: 6, associated to a; 3, associated

to b; and 4, associated to c. Because, in the sequence, the character a appears 6 times, b 3 times,

and c 4 times. However, as this is a 2-order context model, the 0-order ones are not derived from

the text itself, but from some subsequences of it (for instance, the 0-order context model furthest to

the left, is derived from the subsequences of the text with 3 characters that start with the sequence

aa). Using this, we can, for example, see that the sequence bca appears 3 times on the text, while the

sequence cac only appears one time. To do it, we just need to follow the tree branches, according to

the characters in the sequence. If the sequence of characters is not present in the tree, then the final

value is 0.

The context model with Float leaves (instead of Int), can be seen in Figure 10. Instead of showing

the number of times a certain sequence of characters appears, it shows probabilities. For instance,

if we follow the left branches, we can learn that the probability of an a appearing, knowing the last

two characters were aa, is 50% (there is another 50% probability a b appears). However, if the last

two characters were ab, then there is a 100% probability the next character will be c. These are not

59

5.1. The Context Model module

0.5 0.5 1 1 1 0.5 0.5 1

a b c

a b c c a b

a b c b a a c a

(2)

(1)

(0)

Figure 10: The context model, now showing probabilities

actual probabilities, but estimations based on the sequence provided. Providing more and bigger files

will make the tree grow, but there is a maximum size, since the number of sequences of 3 characters

is finite. Once again, if a sequence of characters is not represented in the tree, a probability of 0 is

assumed. This data structure was preferred precisely because there is no need to store “0 values”, as

opposed to what would happen if a n+1-dimension matrix was used (n being the order of the context

model).

The reason why the two data structures were used is that the one showing probabilities is better

to use in the final program, as the interest is to get the probabilities. However, if we want to add

information to this tree, it is not easy, as we have new files, with new information, but it is not clear

how to combine it with the probabilities previously calculated. The other context model solves this

problem, as, with new files, the only operation to do is to add the number of times each sequence

of characters appears to the tree (adding the final values). Therefore, context models are created and

expanded using integer values, but these are converted to probabilities if the context model is to be

used by a program.

Some useful functions over context models are now displayed.

getSizeU :: ContextModelU→ Int
getSizeU (CMU n) = n

getMapU :: ContextModelU→ M.Map Word8 ContextModelU
getMapU (CMU m) = m

60

5.1. The Context Model module

getSize :: ContextModel→ Int
getSize (CM n) = n

getMap :: ContextModel→ M.Map Word8 ContextModel
getMap (CM m) = m

insertSingle :: [Word8]→ ContextModelU→ ContextModelU
insertSingle (v : vs) (CMU 0 m) = CMU 0 (M.insert v (FinalU 1) m)

insertSingle (v : vs) (CMU n m) = CMU n (M.insert v (insertSingle vs (CMU (n− 1) M.empty)) m)

updateCMUFinal :: [Word8]→ ContextModelU→ ContextModelU
updateCMUFinal (FinalU n) = FinalU (n + 1)
updateCMUFinal (v : vs) cmu = case (M.lookup v (getMapU cmu)) of

Nothing→ insertSingle (v : vs) cmu
Just cmu2→ CMU (getSizeU cmu) (M.insert v (updateCMUFinal vs cmu2) (getMapU cmu))

updateCMUSingle :: [Word8]→ ContextModelU→ ContextModelU
updateCMUSingle l cmu = if ((length l) 6 (getSizeU cmu)) then cmu

else updateCMUSingle (tail l) (updateCMUFinal l cmu)

updateCMU :: [[Word8]]→ ContextModelU→ ContextModelU
updateCMU [] cmu = cmu
updateCMU (x : xs) cmu = updateCMUSingle x (updateCMU xs cmu)

buildCMU :: [[Word8]]→ Int→ ContextModelU
buildCMU l n = updateCMU l (CMU n M.empty)

fupdateCMUSingle :: FilePath→ ContextModelU→ IO ContextModelU
fupdateCMUSingle fp cmu = do {

s← BS.readFile fp;
return (updateCMUSingle (BS.unpack s) cmu)
}

fupdateCMU :: [FilePath]→ ContextModelU→ IO ContextModelU
fupdateCMU [] cmu = return cmu
fupdateCMU (f : fs) cmu = do {

cmu2← fupdateCMUSingle f cmu;
fupdateCMU fs cmu2
}

fbuildCMU :: [FilePath]→ Int→ IO ContextModelU
fbuildCMU fps n = fupdateCMU fps (CMU n M.empty)

writeCMU :: FilePath→ ContextModelU→ IO ()

writeCMU fp cmu = writeFile fp (show cmu)

readCMU :: FilePath→ IO ContextModelU

61

5.1. The Context Model module

readCMU fp = do {
cmu← readFile fp;
return (read cmu)
}

The first functions are simple get functions to ease the contact with the context model file type.

Following them, various functions are defined, to create and expand context models, reading and

writing them to files.

Not all syntactically correct context models make sense. For a n-order context model to be valid, all

sub context models must be (n-1)-order valid context models. A 0-order context model is only valid

if it only branches in leaves (Int values). The valid function tests the validity of any context model.

final :: ContextModelU→ Bool
final (FinalU) = True
final (CMU) = False

valid :: ContextModelU→ Bool
valid (FinalU) = False
valid (CMU 0 m) = all final (map snd (M.toList m))

valid (CMU n m) = all (λx→ ((getSizeU x) ≡ (n− 1)) ∧ (valid x)) (map snd (M.toList m))

We are only interested in using valid context models, but it is possible to write invalid ones. There-

fore, the context models should only be created using the buildCMU function, and expanded using

the updateCMU one. By only using these functions, the context models will always be valid. We

decided to test this property using QuickCheck, a tool designed to test Haskell code.

QuickCheck is easy to use and useful to test properties about Haskell programs. It works by re-

ceiving a function which outputs a Bool value, and generates multiple (100 by default) random input

values, and verifying whether the function always returns True for these randomly generated cases.

For instance, the reflexive property over strings can be tested like this: quickCheck ((λx → x ≡
x) :: String→ Bool). This property passes all tests generated by QuickCheck, as expected. To test the

validity of the above statement (context models created using only the buildCMU and updateCMU
functions are valid), the following tests were run:

*ContextModel> quickCheck (\x y -> (y>=0) ==> valid (buildCMU x y))

+++ OK, passed 100 tests.

*ContextModel> quickCheck (\x y z -> (z>0) ==> valid (updateCMU y (buildCMU x z))

)

+++ OK, passed 100 tests.

The first property states that a context model built by using buildCMU is always valid, while the

second one states that a context model built in the same way and later expanded by using updateCMU
is still valid. In both of them, we first state that the order of the context model must be positive,

62

5.1. The Context Model module

otherwise the program would crash, because calling the buildCMU function with a negative value

would raise an error. As can be seen, the property passed all tests. This is no formal proof, but shows

the property probably holds for all input values.

The above definitions were applied to context models using integers. Now we will look at the ones

using probabilities. It may happen that some probabilities are so small that they can be discarded. The

next functions help in this case.

prune2 aux :: Float→ ContextModel→ Bool
prune2 aux f (Final n) = n > f

prune2 :: Float→ ContextModel→ ContextModel
prune2 ar (CM 0 m) = let l = M.toList m

new l = filter ((prune2 aux ar) ◦ snd) l
in CM 0 (M.fromList new l)

prune2 ar (CM n m) = CM n (M.map (prune2 ar) m)

prune aux2 :: ContextModel→ Int→ ContextModel
prune aux2 (CM n m) l = if (l < (n− 1)) then CM n (M.map (λx→ prune aux2 x l) m)

else CM n (M.filter ((6≡ []) ◦ (M.toList) ◦ getMap) m)

prune aux :: ContextModel→ Int→ ContextModel
prune aux cm l = if (l ≡ (getSize cm)) then cm

else prune aux (prune aux2 cm l) (l + 1)

prune :: Float→ ContextModel→ ContextModel
prune ar cm = prune aux (prune2 ar cm) 0

The prune2 function removes all leaves under a given probability. The prune function first calls the

previous one, and then goes up the tree, removing “dead” nodes (i.e. nodes that lead to no leaves).

As explained, the context models are first created (and expanded) using integer values, that represent

the number of times a sequence of characters appears in the example files, and only when probabilities

are needed - to perform the file carving - are the integers converted into probabilities. To deal with

this transformation, the following functions are presented:

toFloat aux :: Int→ (Word8, ContextModelU)→ (Word8, ContextModel)
toFloat aux s (w, FinalU n) = (w, Final ((fromIntegral n) / (fromIntegral s)))

toFloat :: [(Word8, ContextModelU)]→ [(Word8, ContextModel)]
toFloat l = let s = cmuSum (map snd l)

in map (toFloat aux s) l

toCM :: ContextModelU→ ContextModel
toCM (CMU 0 m) = CM 0 (M.fromList (toFloat (M.toList m)))

toCM (CMU n m) = CM n (M.map toCM m)

writeCM :: FilePath→ ContextModel→ IO ()

63

5.2. The context model carvers

writeCM fp cm = writeFile fp (show cm)

readCM :: FilePath→ IO ContextModel
readCM fp = do {

cm← readFile fp;
return (read cm)

}

The toCM function transforms the Int values into Float ones, that represent probabilities. The next

functions write and read context models (the ones using probabilities) from files.

The final Haskell definitions are the ones that actually compare two chunks based on a context

model.

usingCM :: [Word8]→ ContextModel→ Float
usingCM [] (Final n) = n
usingCM (w : ws) (CM m) = case (M.lookup w m) of

Nothing→ 0
Just cm→ usingCM ws cm

compareCM aux :: [Word8]→ [Word8]→ ContextModel→ Float
compareCM aux [] = 1
compareCM aux l1 l2 cm = let l = length l1

r = take ((getSize cm) + 1− l) l2
in (usingCM (l1 ++ r) cm) ∗ (compareCM aux (tail l1) l2 cm)

compareCM :: [Word8]→ [Word8]→ ContextModel→ Float
compareCM l1 l2 cm = let n = getSize cm

in compareCM aux ((reverse ◦ (take n) ◦ reverse) l1) (take n l2) cm

The algorithm used is the one explained in Section 3.1.2, and is implemented in a simple fashion,

using the functions defined above: for the two ordered chunks, test all sequences of characters with

size n+1 where characters from both chunks are present (from n characters from the first chunk + 1

from the second one, to 1 character from the first chunk + n from the second one), multiplying the

probabilities got from each test.

5.2 T H E C O N T E X T M O D E L C A RV E R S

We will now see how the context model library can be used to create non sequential carvers easily.

First, we will implement a graph based file carver based on the NUP algorithm, presented in Sec-

tion 3.1.2.

type FTIunread = (FileType, Int, FilePath, Float)

64

5.2. The context model carvers

data FTI = FTI {
filetype :: FileType,
maxSize :: Int,
contextModel :: ContextModel
}

These type definitions are designed to join each file type with a context model associated to it. The

first definition stores the file path to the context model, while the second one stores the actual context

model. The first one uses far less space than the second one, while the second one is the only one

that can be actually used to carve files. The strategy used is to define the file types with the file paths

to the respective context models, and these are converted into actual context models at run time. It is

possible to convert the file paths to context models at compile time, but this would generate very large

programs, which is not needed, as this conversion is performed fast.

The Float value in the first definition is used to prune the tree as explained in the previous section.

If no pruning is intended, the value can be set as 0.

removeS :: [a]→ Int→ [a]
removeS (x : xs) 1 = xs
removeS (x : xs) n = x : (removeS xs (n− 1))

remove :: [a]→ [Int]→ [a]
remove l [] = l
remove l (n : ns) = remove (removeS l n) ns

bestFrom aux :: [(Int, [Word8])]→ [Word8]→ (Int, [Word8])→ FTI→ Int
bestFrom aux [] best = fst best
bestFrom aux (x : xs) matching best fti =

if ((compareCM matching (snd x) (contextModel fti))>
(compareCM matching (snd best) (contextModel fti)))
then bestFrom aux xs matching x fti
else bestFrom aux xs matching best fti

bestFrom :: [(Int, [Word8])]→ [Word8]→ FTI→ Int
bestFrom (h : t) matching fti = bestFrom aux t matching h fti

The bestFrom function is used to determine the best match for a given chunk, using the context

model specified in the file type definition. This is the function used to append chunks until a footer is

found. It will return the position of the best match in the list of possible “next chunks”.

calc next :: [BS.ByteString]→ [Int]→ FTI→ Int
calc next bs is fti = let n = head is

word8 = map BS.unpack bs
in bestFrom (remove (zip [1, 2 . .] word8) is) (word8 !! n) fti

65

5.2. The context model carvers

completeFileNF :: [BS.ByteString]→ [Int]→ FTI→ (String, [Int])
completeFileNF bs acc fti =

let next = calc next bs acc fti
in if ((length acc) > (maxSize fti))

then (extension (filetype fti), reverse acc)
else completeFileF bs (next : acc) fti fter

completeFileF :: [BS.ByteString]→ [Int]→ FTI→ BS.ByteString→ (String, [Int])
completeFileF bs acc fti fter =

let next = calc next bs acc fti
footerSearch = BS.concat (reverse (map (bs!!) (take 2 (reverse (drop 1 (reverse acc))))))

in if ((length acc) > (maxSize fti) ∨ BS.isInfixOf fter footerSearch)
then (extension (filetype fti), reverse acc)
else completeFileF bs (next : acc) fti fter

completeFile :: [BS.ByteString]→ [Int]→ FTI→ (String, [Int])
completeFile bs l fti = case footer (filetype fti) of

Nothing→ completeFileNF bs l fti
Just fter→ completeFileF bs l fti fter

completeFiles :: [BS.ByteString]→ [(Int, FTI)]→ [(String, [Int])]
completeFiles bs pointers = map (λ(i, cm)→ completeFile bs [i] cm) pointers

The function completeFiles receives, as input, an ordered list of chunks and a list of headers, which

contains the position of the header and to what file type it is associated. For each file, it is checked

whether it contains a fixed footer. Depending on the answer, it will look for the footer when it appends

a chunk to the file. Regardless of whether there is a fixed footer, the size of the file is always checked,

and the file is considered complete if it reaches its maximum size.

The collection of chunks that form the file are identified by an Int, which represents its position in

the list of chunks available. New chunks are appended using the calc next function, which removes

the used chunks from the list of available chunks, and then calls the bestFrom function to find the

better match. New chunks are appended until the file is complete.

findHeadersS :: [BS.ByteString]→ Int→ [FTI]→ [(Int, FTI)]
findHeadersS [] = []

findHeadersS (bs : t) i fts = let types = filter (((flip BS.isPrefixOf) bs) ◦ header ◦ filetype) fts
in [(i, ft) | ft← types] ++ (findHeadersS t (i + 1) fts)

getHeaders :: [BS.ByteString]→ [FTI]→ [(Int, FTI)]
getHeaders bs fts = findHeadersS bs 0 fts

The getHeaders function is similar to the one presented in 3.1.2, but the types are altered to match

the ones used in this carver. The behaviour, however, is essentially the same: given a list of chunks,

check which ones represent header chunks of what file types.

66

5.2. The context model carvers

sectorize :: BS.ByteString→ Int→ [BS.ByteString]
sectorize bs n = if (BS.null bs) then []

else let (first, rest) = BS.splitAt n bs
in first : (sectorize rest n)

buildFiles :: [BS.ByteString]→ [(String, [Int])]→ Int→ [File]
buildFiles [] = []

buildFiles bs ((ext, cs) : t) n =

let res = map ((!!) bs) cs
in (File {name = (show n) ++ "."++ ext, content = BS.concat res}) : (buildFiles bs t (n + 1))

wrtFile :: File→ IO ()

wrtFile f = (BS.writeFile (name f) (content f))

wrtFiles :: [File]→ IO ()

wrtFiles l = sequence (map wrtFile l)

carve aux :: [BS.ByteString]→ [FTI]→ [(String, [Int])]
carve aux bs fts = let headers = getHeaders bs fts

in completeFiles bs headers

carve :: [BS.ByteString]→ [FTI]→ [File]
carve bs fts = buildFiles bs (carve aux bs fts) 1

toFTI :: FTIunread→ IO FTI
toFTI (a, b, fp, d) = do {

cm← readCM fp;
return FTI {filetype = a, maxSize = b, contextModel = cm}
}

carver :: FilePath→ Int→ [FTIunread]→ IO ()

carver fp sec size cms = do {
text← BS.readFile fp;
cms2← sequence (map toFTI cms);
wrtFiles (carve (sectorize text sec size) cms2)
}

The definition of the carver uses some auxiliary functions: sectorize divides the disk image on a

list of bytestrings, in which each element represents a sector; buildFiles builds the files carved by

transforming the list of indexes in one bytestring, and assigns different names to each one, but always

using the extension of the file type. wrtFiles writes the files to disk. The final carver function simply

reads the disk image and sectorizes it, i.e. transforms it into a list of bytestrings of equal size, reads

the context models of each file type, carves the files and writes them to the disk. Not necessarily in

this order, as it uses lazy evaluation and, for example, a context model might not be read if it turns out

not to be needed.

67

5.3. Result analysis

The above definition defines a graph based carver, using the NUP algorithm for reassembly and

context models to compare different chunks. A function for comparing chunks can also be used to

build a fragmentation point carver. We just define a certain “acceptance rate”, and if testing two se-

quential chunks outputs a value above this threshold (i.e. we guess there is no fragmentation point),

then the second chunk is appended to the file, and there is no need to look for a match throughout the

entire disk image. This might make the results better, as it takes advantage of the fact that fragmen-

tation points do not occur that often, and certainly makes it faster. A more detailed explanation of

the algorithm is given in Section 3.1.3. The difference is the use of a comparing function instead of

a validator, which can be seen as only a nominal difference (the function works as an unsophisticated

validator).

To build a fragmentation point carver, we change the definition of the calc next function, which

calculates the next chunk to append.

check :: [BS.ByteString]→ [Int]→ Float→ FTI→ Bool
check bs ns ar fti = let word8 = map BS.unpack bs

n = head ns
bs1 = BS.unpack (bs !! n)
bs2 = BS.unpack (bs !! a (n + 1))

in (¬ (elem (n + 1) ns)) ∧ ((compareCM bs1 bs2 (contextModel fti))> ar)

calc next :: [BS.ByteString]→ [Int]→ Float→ FTI→ Int
calc next bs is ar fti = let n = head is

word8 = map BS.unpack bs
in if (check bs is fti) then n + 1

else bestFrom (remove (zip [1, 2 . .] word8) is) (word8 !! n) fti

By simply adding an if clause, we introduce the fragmentation point carver, which also uses context

models to compare different chunks.

5.3 R E S U LT A N A LY S I S

The following test were run in the same conditions specified in 4.2.

The first thing to be tested was the context model library. For this purpose, some 3-order context

models were created, for two different file types: JPEG and DOC. It was analysed, for each con-

text model created, how many example files were provided, their combined size, the size of the file

containing the context model created, and the time spent to create and store the context model. The

results for JPEG files can be seen in Table 2, while Table 3 shows the results for DOC files. For 15

DOC files, the two last columns show question marks because the program was stopped after more

than two hours and a half running. As can be seen, the time of creating and storing context models

increases dramatically with the input size. The number of files is almost irrelevant, as we are inserting

68

5.3. Result analysis

Number
of files

Total size
(KB)

Context
Model size
(MB)

Total time
(s)

4 43.2 2.2 1.7
10 158.5 6.9 13.7
25 913 33.6 660

Table 2: Results of creating and storing JPEG context models

Number
of files

Total size
(KB)

Context
Model size
(MB)

Total time
(s)

4 166.9 1.1 18
10 888.8 13.3 663
15 4505.6 ? ?

Table 3: Results of creating and storing DOC context models

sequences of 4 characters in the tree, which means we are much more interested in the size than in the

number of files.

One of the first things that seems to be worth investigating is that for 4 files, although the input

size is much bigger in the DOC case, the file to where the context model is written is half the size of

JPEG context model file. The most plausible explanation for this is the fact that DOC files are well

structured documents, and the ones used as examples all contained english text (although they could

also contain figures, tables, mathematical symbols and so on). JPEG files, on the other hand, use

Huffman tables to compress images, which typically produces high entropy data. As these context

models only store sequences of characters found in the files, this means that, as could be expected,

sequences repeat themselves much more often on DOC files than in JPEG ones. This should also

mean that carving DOC files will produce better results than carving JPEG files, as the first ones are

more predictable.

The next step was to test the carvers by running them and examining the results. Unfortunately, both

the graph based carver and the fragmentation point carver showed terrible results. While using context

models to recover JPEG files should produce weak results, given the high entropy data referred above,

DOC files might produce better results. In practice, the carving of both file types produced files built

almost randomly. The chunks used to reconstruct the files and their order had no relation to the actual

file. This analysis is valid for both graph based and fragmentation point carver, the only difference

being that in the fragmentation point case, some sequential blocks were correctly recovered.

The carver was tested with 10 DOC files, which are not many. However, as explained, for 15 files,

which is still not a lot, the program takes longer than two and a half hours to finish. The time spent to

create and store context models is much less relevant than the time spent reading and using them, as

the first operations can be done only once, while the last ones will be performed every time we run the

carver. Still, given the times got for the tests on the context model library, and the rate at which they

69

5.3. Result analysis

increase, creating and storing a context model using a significant set of example files would probably

take days or weeks. Parallelism could make this faster, but would not be enough to compensate for

the exponentially growing times we get. Space could also be an issue, as the default heap size of 8MB

had to be increased to run the larger tests.

One other problem that arose was the number of chunks to be compared. Comparing two chunks is

very fast, using a context model, but a 300 MB disk, divided into 512 bytes sectors, already presents

hundreds of thousands of chunks (assuming 1 chunk = 1 sector). When we want to compare a chunk

to (almost) all other chunks in the disk, the process can be very time consuming, taking minutes

to perform. For fragmentation point carving, if there are not many fragmentation points, it is very

reasonable, but it makes graph based techniques almost impracticable. Today, carvers may want to

analyse an input with several GB or even some TB, which makes this issue become even more relevant.

70

6

C O N C L U S I O N S A N D F U T U R E W O R K

We can now end this thesis by summing up the work done, drawing some conclusions and explaining

how the work done here can be further explored.

Regarding sequential carving, the main contribution of this thesis was the implementation of a

sequential carver in Haskell and the introduction of parallelism. On the negative side, Haskell’s per-

formance was still slightly worse than Scalpel’s one, even after parallelism is introduced. On the

positive side, the introduction of parallelism improved the performance of the program. Therefore,

we can finally state that introducing parallelism can indeed be used to improve performance, one of

the main subjects of study of this thesis. Using more than 4 cores, the maximum used in the tests, will

likely lower the program’s execution time below the values presented by Scalpel. As future work, fur-

ther attempts to reduce performance can be tried, as, for instance, the introduction of faster algorithms

to search multiple substrings in the bytestring library. Other ideas to improve performance, even if

just slightly, are worth exploring.

We can also conclude that parallelism can be introduced in Haskell code with ease, and the Glasgow

Haskell Compiler (GHC) gives useful feedback trough the command line and, specially, trough log

files, which can be analysed using the Threadscope tool, providing a very nice way to profile Haskell

programs. The only downside is that, as Haskell uses lazy evaluation, when things go wrong, it is not

always clear where the problem lies. So far, however, that has not been a major obstacle to writing

and parallelizing programs, and the profiling tools provided proved to be enough.

On the topic of non sequential carvers, we can say that, unless serious performance increasing

techniques appear, on hardware and/or software, these techniques risk not being up to the challenge

of dealing with the constantly increasing sizes of storing devices nowadays.

While context models look like a very promising technique to compare chunks, as they can be

applied to any file type, they are probably ineffective on some of them. Even in the best cases, setting

up a context model can be very time consuming, and using it will not guarantee good results. The

idea was presented in Shanmugasundaram and Memon (2003), and the authors claim it produces

encouraging results. In practice, however, as far as we know, the only use of this technique was on

a carver presented at DFRWS 2007, whose brief summary can be seen in Section 3.2.7. The results

got from the examples above might explain why this technique was very rarely used in practice. The

difference in results is, to some extent, due to the fact that, in Shanmugasundaram and Memon (2003),

71

the authors focused on file types with little importance in Digital Forensics, as log files and source

code, while images, videos, documents, and other more important file types were not covered. Even

with these less important file types, some file fragments are put together, but the number of completely

recovered files should still be very low. This is a bigger issue today than it was then, as semi-manual

techniques are becoming less and less atractive with the increase of big data.

Other techniques to compare chunks can still be tried, and are left as possible future work, but apart

from being fast and accurate, they must face the task of how to compare millions of chunks in an

acceptable amount of time (“acceptable” looks like a very abstract term, but the time demands for

carvers will always depend on the requirements of the users, in particular law enforcement agencies,

and can vary between hours and days). Some have been proposed and tested, but there is still not any

one with clear positive results, which was one of the main reasons why the 2007 DFRWS conference

focused on carving fragmented files. Still, the results of the carvers from this conference cannot be

placed that high, and that is why non sequential carvers are mostly an academic subject.

The final conclusion is that sequential carving, although only retrieving unfragmented files, can be

performed fast, and parallelism can be used to build very high performing carvers. In the other hand,

non sequential file carvers are still far from combining accuracy and performance in such a way that

they can be regularly used in practice.

72

B I B L I O G R A P H Y

Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting haskell strings. In Practical

Aspects of Declarative Languages, pages 50–64. Springer, 2007.

Simson L Garfinkel. Carving contiguous and fragmented files with fast object validation. digital

investigation, 4:2–12, 2007.

Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to haskell 98, 1999.

S Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, B Boutel, Warren Burton, J Fasel,

Kevin Hammond, Ralf Hinze, Paul Hudak, et al. Report on the programming language haskell 98,

1999.

Simon L Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge University

Press, 2003.

Nasir Memon and Anindrabatha Pal. Automated reassembly of file fragmented images using greedy

algorithms. Image Processing, IEEE Transactions on, 15(2):385–393, 2006.

Anandabrata Pal and Nasir Memon. The evolution of file carving. Signal Processing Magazine, IEEE,

26(2):59–71, 2009.

Anandabrata Pal, Kulesh Shanmugasundaram, and Nasir Memon. Automated reassembly of frag-

mented images. In 2012 IEEE International Conference on Multimedia and Expo, volume 1, pages

625–628. IEEE, 2003.

Anandabrata Pal, Husrev T Sencar, and Nasir Memon. Detecting file fragmentation point using se-

quential hypothesis testing. digital investigation, 5:S2–S13, 2008.

Rainer Poisel and Simon Tjoa. A comprehensive literature review of file carving. In Availability,

Reliability and Security (ARES), 2013 Eighth International Conference on, pages 475–484. IEEE,

2013.

Golden G Richard III and Vassil Roussev. Scalpel: A frugal, high performance file carver. In DFRWS,

2005.

Husrev T Sencar and Nasir Memon. Identification and recovery of jpeg files with missing fragments.

digital investigation, 6:S88–S98, 2009.

73

Bibliography

Kulesh Shanmugasundaram and Nasir Memon. Automatic reassembly of document fragments via

context based statistical models. In Computer Security Applications Conference, 2003. Proceedings.

19th Annual, pages 152–159. IEEE, 2003.

74

	Contents
	1 Introduction
	1.1 Terminology
	1.2 Notions on file carving
	1.3 Goals of the thesis
	1.4 Why Haskell?
	1.5 Outline of the thesis

	2 Introduction to Haskell
	2.1 History
	2.2 Haskell's type system
	2.2.1 Type classes

	2.3 Haskell's evaluation strategy
	2.4 Haskell monads
	2.5 Efficient Haskell strings
	2.5.1 Motivation
	2.5.2 Usage

	2.6 Parallelizing Haskell programs
	2.6.1 Profiling parallel Haskell programs

	3 State of the art
	3.1 Carving techniques
	3.1.1 Sequential carving
	3.1.2 Graph based carving
	3.1.3 Fragmentation point carving
	3.1.4 Semantic carving

	3.2 Carvers in practice
	3.2.1 Foremost
	3.2.2 Scalpel
	3.2.3 PhotoRec
	3.2.4 MIDI-carver
	3.2.5 Others
	3.2.6 DFRWS 2006 carving challenge
	3.2.7 2007 DFRWS carving challenge

	4 Parallelizing a sequential carver
	4.1 Haskell implementation
	4.2 Result analysis
	4.2.1 DFRWS 2006 data set
	4.2.2 DFRWS 2007 data set

	5 Carving using context models
	5.1 The Context Model module
	5.2 The context model carvers
	5.3 Result analysis

	6 Conclusions and future work

