
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master in Informatics Engineering

João Tiago Araújo da Silva

Molecular dynamics simulation in hybrid systems

Master Dissertation

Supervised by: João Luı́s Ferreira Sobral

António Joaquim André Esteves

Braga, January 31, 2016



DECLARAÇÃO

Nome: João Tiago Araújo da Silva
Endereço eletrónico: pg25304@alunos.uminho.pt
Telefone: +351 252874027
Número do Bilhete de Identidade: 13853860

Tı́tulo da Tese:
Molecular dynamics simulation in hybrid systems.

Orientadores:

Professor João Luı́s Ferreira Sobral
Professor António Joaquim André Esteves
Departamento de Informática
Escola de Engenharia
Universidade do Minho
Ano de conclusão: 2016

Designação do mestrado: Mestrado em Informática

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS PARA
EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO,
QUE A TAL SE COMPROMETE

Universidade do Minho, 31/01/2016



AG R A D E C I M E N T O S

Antes de mais, gostaria de agradecer ao meu orientador Professor Doutor João Luı́s Sobral e
ao meu co-orientador Professor Doutor António Joaquim André Esteves pela disponibilidade
que sempre demonstraram na resolução de problemas e duvidas surgidas no desenvolvimento
desta tese e pela realização de reuniões semanais. Também gostaria de agradecer ao aluno de
doutoramento Bruno Silvestre Medeiros pela disponibilidade demonstrada e pelos seus conselhos
e sugestões. Finalmente gostaria de agradecer à minha famı́lia o apoio incondicional e pelo
incentivo que me deram a todos o nı́veis.

a



A B S T R AC T

The molecular dynamics simulation is a topic fairly investigated because it solves countless prob-
lems of physics, chemistry, or biology. From the computer engineering point of view it is an
interesting case study because it is a computationally complex problem. The complexity arises
when there are a high number of particles, thereby resulting in a high number of iterations to
compute on each iteration. Presently there are systems with millions of particles that need to
be simulated in the shortest time possible. This led to the development of molecular dynamics
packages that attempt to use all the resources available to improve the execution of simulations.

The main goal of this thesis is to run efficiently molecular dynamics simulations on hybrid sys-
tems. Instead of starting a molecular dynamics implementation from scratch, it was used the
MOIL package. Then it was developed an implementation based on MOIL with optimizations
that allow the code to be automatically vectorized by the compiler. These optimizations focused
on the calculation of forces and the data structures. New data structures were introduced to de-
compose the simulation domain into cells. The vectorization was used both in sequential and
parallel implementations. In both cases, vectorization allowed a higher performance when used
with cells. In order to achieve the best possible performance, the optimized code has been par-
allelized using different strategies, including shared memory, distributed memory, and a hybrid
solution. In the execution of the parallel code several combinations of processes and threads
were tested. Among all the developed versions, the one that achieved the best performance was
the hybrid version. All implementations were compared to Gromacs, the reference in terms of
performance of the molecular dynamics simulation.

b



R E S U M O

A simulação de dinâmica molecular é um tema bastante investigado porque permite resolver
inúmeros problemas da fı́sica, quı́mica, ou biologia. Do ponto de vista da engenharia informática
é um caso de estudo interessante por ser um problema computacionalmente complexo. A com-
plexidade surge quando se utiliza um elevado número de partı́culas, necessitando assim de se
calcular um grande número de interações em cada iteração. Atualmente há sistemas com milhões
de partı́culas que se pretende que sejam simulados no menor tempo possı́vel. Este facto levou ao
desenvolvimento de ferramentas de dinâmica molecular que procuram utilizar todos os recursos
disponı́veis para melhorar a execução das simulações.

O principal objetivo desta tese é executar eficientemente simulações de dinâmica molecular em
sistemas hı́bridos. Em vez implementar a simulação de dinâmica molecular desde o inı́cio, foi
utilizado a ferramenta MOIL. Depois foi desenvolvida uma implementação baseada no MOIL
com otimizações que permitem que o código seja vetorizado automaticamente pelo compilador.
As otimizações realizadas focaram-se no cálculo das forças e nas estruturas de dados. Foram
introduzidas novas estruturas de dados para decompor o domı́nio em células. A vetorização foi
utilizada nas implementações sequenciais e paralelas. Em ambos os casos a vetorização permitiu
obter um desempenho melhor quando usada em conjunto com células. Para obter o melhor de-
sempenho possı́vel, o código otimizado foi paralelizado usando diferentes estratégias, incluindo
memória partilhada, memória distribuı́da e uma solução hı́brida. Na execução do código paralelo
foram testadas várias combinações de processos e threads. De todas as implementações desen-
volvidas a que permitiu melhores resultados foi a versão hı́brida. Todas as implementações foram
comparadas com o Gromacs que é uma referência em termos de desempenho das simulações de
dinâmica molecular.

c



C O N T E N T S

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

I I N T RO D U C T O RY M AT E R I A L . . . . . . . . . . . . . . . . . . . . . . . . 1

1 I N T RO D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 S TAT E O F T H E A RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Parallelism exploitation . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Molecular Dynamics Packages . . . . . . . . . . . . . . . . . . . . . . . 12

II C O R E O F T H E D I S S E RTAT I O N . . . . . . . . . . . . . . . . . . . . . . . . 14

3 I M P L E M E N TAT I O N O F M O L E C U L A R DY N A M I C S O P T I M I Z AT I O N S . . 15
3.1 Development Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 MD Sequential Version . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 MD Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Code modifications . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 MD Shared Memory Implementation . . . . . . . . . . . . . . . 29
3.4.2 MD Distributed Memory Implementation . . . . . . . . . . . . . 30
3.4.3 MD Hybrid Implementation . . . . . . . . . . . . . . . . . . . . 31

4 R E S U LT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 MD Sequential Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Vectorized MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Parallelisation of MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Shared memory version . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.2 Distributed memory version . . . . . . . . . . . . . . . . . . . . 40

iii



Contents

4.5.3 Hybrid version . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Gromacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 C O N C L U S I O N S A N D F U T U R E W O R K . . . . . . . . . . . . . . . . . . . . 49

A A N N E X E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.1 Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.2 Vectorized MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.3 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3.1 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3.2 Distributed Memory . . . . . . . . . . . . . . . . . . . . . . . . 59
A.3.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



L I S T O F F I G U R E S

Figure 1 Example of interactions between atoms. . . . . . . . . . . . . . 7
Figure 2 Sequential optimizations. . . . . . . . . . . . . . . . . . . . . . 11
Figure 3 Profiling of the Argon simulation in MOIL with the dynaopt tool. 17
Figure 4 Nº instructions run in original MOIL and in code for vectorization 24
Figure 5 Nº instructions and clock cycles in MOIL and in code with cells . 27
Figure 6 Cache misses comparison between original and cells versions . . 28
Figure 7 Texec comparison between original, not vect. cells, and vect. cells 29
Figure 8 Sequential versions execution time. . . . . . . . . . . . . . . . . 35
Figure 9 Execution time with different OpenMP locking methods . . . . . 37
Figure 10 Execution time using static and dynamic scheduling in OpenMP 38
Figure 11 Comparing vectorized and non-vectorized OpenMP implementations 38
Figure 12 Speedup of non-vectorized OpenMP code for the 3 largest sizes . 39
Figure 13 Speedup of vectorized OpenMP code for the 3 largest problem sizes 39
Figure 14 MPI execution time in two nodes. . . . . . . . . . . . . . . . . . 41
Figure 15 Speedup of the non-vectorized MPI version, using 2 nodes. . . . 41
Figure 16 Speedup of the vectorized MPI version, using 2 nodes. . . . . . . 42
Figure 17 Comparison between hybrid implementations in a single node . . 43
Figure 18 Speedup without vect. hybrid version with one process per node 44
Figure 19 Speedup without vectorization of hybrid NUMA version in one node 44
Figure 20 Speedup with vectorization of hybrid version with 1 process per node 45
Figure 21 Speedup with vectorization of hybrid version with NUMA in 1 node 45
Figure 22 Comparison between hybrid implementations in 2 nodes . . . . . 46
Figure 23 Speedup with vect. hybrid version with 1 proc. in each of 2 nodes 47
Figure 24 Speedup with vect. of hybrid NUMA with 1 proc. in each of 2 nodes 47
Figure 25 Comparison between 4 developed versions and Gromacs. . . . . 48
Figure 26 Speedup without vect. of hybrid with 1 proc. in 1 node . . . . . 60
Figure 27 Speedup with vect. of hybrid NUMA with 2 processes in 1 nodes. 61

v



L I S T O F L I S T I N G S

3.1 For cycles that calculate the forces exerted on each particle by its neighbors. . . . 18
3.2 Conditional statements related with the simulation box size. . . . . . . . . . . . . 21
3.3 Conditional statement related with the cut-off distance. . . . . . . . . . . . . . . 22
3.4 Removing conditional statements present in listing 3.2 to allow vectorization. . . 23
3.5 Removing conditional statement present in listing 3.3 to allow vectorization. . . . 23
3.6 For cycles that calculate the forces using cells. . . . . . . . . . . . . . . . . . . . 25

A.1 Full For cycles that calculate the forces exerted on each particle by its neighbors. 54

vi



L I S T O F TA B L E S

Table 1 Tools used for development. . . . . . . . . . . . . . . . . . . . . 32
Table 2 Specifications of the nodes used in simulations. . . . . . . . . . 33
Table 3 Number of particles used in the MD simulations. . . . . . . . . . 33
Table 4 Execution time in seconds of the MD sequential versions. . . . . 34
Table 5 Execution time of sequential version, with and without vectorization 57
Table 6 OpenMP without vectorization. . . . . . . . . . . . . . . . . . . 58
Table 7 OpenMP with vectorization. . . . . . . . . . . . . . . . . . . . . 58
Table 8 Execution time in a single node and without vectorization. . . . . 59
Table 9 Exec. time using processes distributed by 2 nodes without vect. . 59
Table 10 Execution time using vectorization in a single node. . . . . . . . 60
Table 11 Exec. time using processes distributed by 2 nodes using vect. . . 60

vii



Part I

I N T RO D U C T O RY M AT E R I A L



1

I N T RO D U C T I O N

Molecular dynamics (MD) is a method for computer simulation of complex systems at atomic
scale. This method is used to understand and predict the properties of a system during a certain
time interval. The systems under evaluation are so complex that using experimental measure-
ments to fully quantify the energy of all the large number of atoms or molecules contained in a
system, is not possible and likely will never be. Computer simulations make it possible to study
these complex systems, through the use of methods and algorithms. This way we can simulate
the interactions close to reality.

MD Simulations can provide a fine detail on the motions of individual particles. This way it
is possible to know the properties of a system with great detail and on a time scale otherwise
inaccessible for this kind of complex systems. That is why MD methods have become an indis-
pensable tool to study the molecular processes by researchers in areas like fundamental statistical
mechanics, material science, and biophysics (Ruymgaart et al., 2011).

After the first MD simulation, realized in 1957, several algorithms that allowed improvements
in calculations made in this simulations were researched. These methods are now used in soft-
ware packages that try to simulate complex systems using the computational resources available.
Two of the most used packages in molecular dynamics are the NAMD (NAnoscale Molecular
Dynamics program) (Phillips et al., 2005) and GROMACS (GROningen MAchine for Chemical
Simulations) (Berendsen et al., 1995). These packages can solve a large number of molecular
dynamics problems efficiently, but because of the evolution of the hardware and technology there
was a need to make new implementations.

There are many ways to improve performance in an execution, but in most cases to use new
architectures it is necessary to recode completely the original algorithms to make use of the new
hardware and software resources. One important recent hardware evolution is the proliferation of

2



multi-core systems, where each core supports vector processing. Vectorization make it possible
to obtain a great improvement in an execution. This improvement is almost given to the developer
when it is made automatically by the compiler.

The objective of this thesis is to use an existing implementation, namely the MOIL package (El-
ber et al., 1995), as the guideline for the development of our code. The MOIL code was changed
with various optimizations in the calculation of forces and its structures. The optimizations per-
formed have the purpose of exploiting the automatic vectorization by the compiler. Based on the
vectorized implementation we developed other versions that exploit parallelism. These imple-
mentations use two different ways of managing the memory, one uses shared memory (OpenMP
(Dagum and Enon, 1998)) while the other uses distributed memory (MPI (Forum, 1993)). Both
were developed with the objective of producing a hybrid implementation that takes advantage of
both to increase its performance.

As already mentioned, it was decided to work on the MD implementation available in the MOIL
package. This implementation has brought some challenges to this thesis. This happened prin-
cipally because of the validations present in MOIL and data structures in the base code resulted
from a conversion from Fortran to C, which are sometimes hidden and not accessible. This limits
some of the development because there is a need to pay attention to the way validations are made
and where they are done by looking some times at the Fortran implementation. Another problem
is related to the organization of the code, which is disorganized in its main execution. This exe-
cution is not divided into different steps but written in a single file using only a single routine that
has many interrelated if conditions. This makes it difficult to look for most of the important vali-
dations and the variables used for those validations. For this various reasons the implementation
used in this thesis was substantially altered, only ensuring that the forces are calculated in the
same way as in MOIL. The main changes made were (i) a new organization of particles, which
allows to take advantage of the vectorization and (ii) to avoid some data structures included in
MOIL, which are sometimes confusing. Thus, future developments will produce efficient code
more easily.

The thesis is organized by two major parts: the introductory material and the core of the dis-
sertation. In chapter 2 it is presented the investigation and preparation to the development of
the implementation. In this chapter is documented the basic molecular dynamics algorithm and
the notions used to make its different calculations. The principal objective was to have the ba-
sic knowledge needed to understand the calculation made in MOIL package and the purpose of
the simulation. After the domain analysis, it was carried out a literature review on works that

3



developed MD improvements and on works that describe methods to perform the most relevant
MD calculations. The principal focus was to find improvements made to existing packages, for
example NAMD. After the state of art it is described the core of the dissertation, consisting of the
chapters 3, 4 and 5. Chapter 3 describes the several steps of building efficient implementations
of the MD simulation. This chapter is divided in the explanation of the general implementation,
each implementation strategy and decisions made during its development, presentation of the
employed optimization techniques, such as vectorization and parallelization with shared mem-
ory, distributed memory and a hybrid solution. In chapter 4 are presented and discussed all the
results obtained with the different implementation strategies. The thesis is completed in chapter
5, where we discuss the main achievements and present some ideas for future work.

4



2

S TAT E O F T H E A RT

This chapter addresses the molecular dynamics method, introducing its origins, the application
domain, the basic algorithm and main optimizations. It is also introduced the most relevant
molecular dynamics packages and the ones that will be used in this thesis.

2.1 D O M A I N

The molecular dynamics method was originally conceived within the theoretical physics commu-
nity and first introduced by Alder and Wainwright in the late 1950’s. The first MD simulation
was performed by Alder and Wainwright in 1957 (Alder and Wainwright, 1957) to study the in-
teractions of hard spheres. The next major advance was carried out by Rahman (Rahman, 1964),
using a realistic potential for liquid argon. The first MD simulation of a realistic system was
done by Rahman and Stillinger in 1974 with the simulation of liquid water. As the computers
became widespread, MD simulations were developed for more complex systems, culminating in
1976 with the first simulation of a protein (McCammon, 1976). Nowadays it is possible to make
million-atoms simulations. This evolution brought even more attention to this method because
of the information it allows to retrieve from the system.

There are many fields in which MD methods are applied, including structural biochemistry, bio-
physics, enzymology, molecular biology, pharmaceutical chemistry, and biotechnology (Adcock
and McCammon, 2006). MD simulations are indispensable for these fields because of the detail
they can provide concerning individual particle motions as a function of time. With this detail
it is possible to address specific questions about the properties of a model system, often more
easily than with experiments on the actual system (Karplus and McCammon, 2002). MD is used
for example in physics to observe ion sub-plantation which cannot be observed directly. It is also

5



2.1. Domain

used in simulations of structural biology in biophysics. It also allows new drugs and materials
design, for example for aerospace industry.

In MD simulations there is an approach that is frequently used to model the system, which is
known as molecular mechanics (MM). MM refers to the use of a potential energy function to
model molecular systems. Some authors call this function force field. There are various force
fields formulated. Two fairly typical and widely applied force fields are the CHARMM (Brooks
et al., 1983) and AMBER (Pearlman et al., 1995) force field.

Force field (FF) is a molecular function generally tailored and calibrated in an empirical way.
The function can be split into a sum of functionally simple and physically meaningful energetic
terms. The terms are used to represent/model the potential energies and their derivative, the
forces. Common terms of a FF are bonds, angles, dihedrals, van der Walls and electrostatic
interactions (eq. 1).

ETotal = Ebond + Eangle + Edihedral + Evan der Walls + EElectrostatic (1)

These terms can also be divided in two types of terms, bonded (eq. 2) and non-bonded terms (eq.
3) (figure 1):

Ebonded = Ebond + Eangle + Edihedral (2)

Enon−bonded = Evan der Walls + EElectrostatic (3)

There are several alternatives to compute each term/interaction. The bond interactions include
bond stretching (Ebond), angle bending (Eangle) and torsional or bond twisting (Edihedrals). Bond
stretching is the energy required to stretch or compress a bond between two atoms. This is a
2-body type interaction. Examples of potentials that can be used to compute Ebond are harmonic,
fourth power, Morse and cubic bond stretching potentials. Angle bending is the energy required
to bend a bond from its equilibrium angle. It is a 3-body type interaction type. The following
potentials can be used to model angle bending: harmonic, cosine-based angle and Urey-Braley
potentials. The bond stretching and angle bending interactions require a great amount of sub-
stantial energies to cause significant deformations. Most of its variations are related to the non-
bonded and torsional contributions. A FF must be able to model flexible molecules in which

6



2.1. Domain

Figure 1.: Example of interactions between atoms.

they occur changes in conformations due to rotations. In order to simulate these interactions
the FF needs torsional terms to properly represent energy profiles of the changes. The torsional
term is a 4-body type interaction. Torsional potentials are, in most cases, expressed as a cosine
series expansion. Examples of its potentials are: periodic type, Ryckaert-Bellemans and Fourier
potentials.

The non-bonded terms represent the van der Waals and electrostatic two-body interactions. As
the name suggests, a non-bonded interaction is made between atoms which are not connected
by covalent bonds. Usually these interactions are used when (i) two atoms are separated by a
distance larger than 3 bonds and (ii) some times when there are two atoms, at the ends of a
torsion configuration, which are separated by a 3-bond distance.

The van der Waals term represents the interactions between electron clouds around two non-
bonded atoms. Depending on the distance between atoms, the resultant forces can be repulsive or
attractive. The van der Waals interaction is strongly repulsive at short range distances, attractive
at intermediate range distances, and considered zero at long range distances. The dispersion
forces, responsible by the attractive contribution, can be explained in quantum terms by the
London dispersion forces. The common potential used to model the van der Waals interactions
are the Lennard-Jones and the Buckingham potentials. From these potentials the less expensive
to compute and most used is the Lennard-Jones potential (eq. 4).

VLJ(rij) =
C(12)

ij

r12
ij
−

C(6)
ij

r6
ij

(4)

where Cij = 4εσ represents the particle properties, ε represents the potential well depth, and σ is
the collision diameter, r12

ij is the repulsive term and r6
ij the attractive long range term for particles

i and j. The 12 exponent in equation 4 was chosen exclusively to simplify the computations.

7



2.2. Algorithms

The electrostatic interactions are one of the most important interactions and also one of the
major challenges in MD modeling. These interactions are described by the Coulomb law and
can expresses by equation 5.

VC(rij) = f
qiqj

εrrij
(5)

where qi and qj are the atomic charges in electron units, rij is the distance between atom i and j,
εr is the dielectric constant and f is the conversion factor.

2.2 A L G O R I T H M S

A computer simulation can generate accurate values for the structural properties of a system
within a practical amount of time. It is possible to adjust a simulation, for different environments
or lengths, changing only the simulation input parameters. This flexibility can be accomplished
using MD simulations.

MD simulations follow a basic algorithm that imitates the steps done experimentally:

1. Initialize the system

2. Compute the potentials and forces

3. Compute the next positions

4. Increase time by a time step

5. Repeat steps 2-4, the desired number of simulation steps.

This algorithm is a basic representation of the steps that are made in an MD simulation. It starts
by the system initialization, which defines the initial velocities and positions of the atoms and, in
some cases, adjustments of parameters. The positions are generally defined in a file that contains
information obtained by empirical experiments. After the initialization, the force field is used to
compute the potential energy that will be used to derive the forces among particles. In step 3 it
is calculated the next position of all particles and then it is increased the simulation time. This is
a basic MD algorithm. In a real implementation, most of these steps comprise several sub-steps
such as energy minimization, temperature and pressure regulation (Leach, 2001).

8



2.2. Algorithms

Usually the most time consuming task is the calculation of forces, especially the computation of
non-bonded interactions. In bonded interactions the number of bonds terms is proportional to the
number of atoms in the system, but the number of non-bonded terms increases as the square of
the number of atoms for the pairwise model. This means that the complexity of the non-bonded
term calculation is O(N2). In theory, the non-bonded interaction is calculated between every pair
of atoms. This kind of approach is easy to implement, but is not feasible for large systems. For
example, the Lennard-Jones potential gives very small values at long distances until it reaches
zero: at 2.5σ the Lennard-Jones potential has just 1% of its value at σ (Leach, 2001). One way
to speed up the computation of the Lennard Jones interaction is to consider that the potential is
zero beyond a specified cutoff distance, where atoms out of the cutoff distance are ignored.

There are two ways to calculate the long range electrostatic contributions, one is using lattice-sum
methods and the other is based on cut-off methods. The lattice-sum methods consist in using pe-
riodic boundary conditions and Ewald summation. These methods replicate the cells (container),
where the particle are in, through all sides to allow the calculation of the bulk properties. This
is done to ignore the surface effects in a simulation. Lattice-sum methods can give good results
for highly charged system but since periodicity is enforced upon the system it is problematic in
bio-molecular systems, resulting in over stabilization of the bio-molecules. The reaction field is
an example of a cut-off method, where it is assumed that the molecule is surrounded by space
of finite radius. Outside this space the system is treated as a dielectric continuum, which re-
sponds with a counter charge distribution and interacts with the molecule. This method does not
introduce periodicity and is computationally fast, but can originate artifacts at the boundary in
charged bio-molecular system and systems heating.

The calculation of the forces is used to compute the next position of the particles in the system.
After computing the forces it is necessary to integrate the new position of every particle. The
most frequently used integration algorithm in MD simulations is the Verlet algorithm, which is
used to integrate Newton’s equation of motion (eq. 6).

r(t + h) ≈ −r(t− h) + 2r(t) +
h2F(t)

m
(6)

where t is the time, h is the time step, F(t) is the second derivative of r(t), r is the position of
the particle and m is the particle mass. The advantages of this algorithm are its simplicity and
low space requirements. The disadvantage is its moderated precision.

9



2.3. Optimizations

The force field calculation is essential in MD simulations and it is the most time consuming task.
To reduce this time we need to optimize the calculation of the particles interactions, in order to
take advantage of the computational resources.

After analyzing the application domain, we have a basic understanding of the calculations in-
volved in MD simulations and we own an overview of the methods commonly used on these
calculations. It is now possible to use the theoretical methods to understand the existing imple-
mentations and investigate the methods that can be applied in a molecular dynamics simulation.
In the next sections it will be presented some of the principal optimizations related to the cal-
culation of forces. There are many other improvements that can be made in various sections of
the code. For example, one can optimize the way the position of particles is updated after the
calculation of forces, but this type of optimization is not addressed in this thesis.

2.3 O P T I M I Z AT I O N S

The are two common optimizations that are based on Newton’s third law and the cut-off radius
mentioned above. The Newton’s third law says that when a body exerts a force on another body
this body exerts a force with the same magnitude and opposite direction on the first body. This
means that by calculating the forces exerted on a certain particle, it is possible to know the
influence of this particle over all the others, and there is no need to recalculate the influence of
this particle on the others. This reduces the computation complexity from O(n2) to O(n2)/2.

The cut-off based optimization can be used in cell division and neighbors list (figure 2). The
basic implementation calculates all-to-all interactions. The cell division method partitions the
particles in space, the particles move across cells but the calculation is partitioned. In most cases,
this results in a reduction in calculations and an improvement in the locality of memory accesses.
The neighbors list method maintains a list of the neighbors of a particle that are located in a
determined radius (cut-off distance). To calculate the forces exerted on a particle, the method
only needs to go through the list of its neighbors. The neighbors lists may be updated only after
a certain number of iterations, to reduce the overhead necessary to keep the lists updated. After
some interactions the lists have to be updated with the new neighbors of each particle.

10



2.3. Optimizations

(a) All pairs (b) Cell division (c) Neighbors list

Figure 2.: Sequential optimizations.

The optimization presented here are mostly related to how we can improve the calculation of
forces using the knowledge from the domain, for example the use of the cut-off radius. These
optimizations can improve the execution time for sequential implementation but they cannot
address code parallelization. In the next section we address stategies to explore parallelism.

2.3.1 Parallelism exploitation

Parallel implementations are based in a system decomposition. A system can be decomposed in
three ways:

1. Particle decomposition

2. Force decomposition

3. Space/cells decomposition.

Particle decomposition associates a subset of the particles to each process, or thread, and each
process calculates the interactions over its subset of particles. In this method every process
needs to know the position of every particle on the system, which requires global communication.
Force decomposition, instead of particles, it assigns a subset of pairwise force computations
to each process or thread. It also suffers from global communication in the same way as the
decomposition of particles. Space decomposition is based on the already mentioned cell division
method, where the domain of the simulation is divided in parts. In this case, the calculations
of the cell forces are associated to a process, or thread, and each one calculates the forces on a
different cell. To calculate the forces in a cell, a process, or thread, needs to know the position of
the particles from its neighbors cells. The communication complexity of these methods is O(N)

11



2.4. Molecular Dynamics Packages

for particle decomposition, O(N)√
P

for force decomposition, and O(N)

P
2
3

for space decomposition,

where N is the number of particles on P processors (Griebel et al., 2007).

2.4 M O L E C U L A R DY N A M I C S PAC K AG E S

There is a diversity of molecular dynamics packages that aim to have a broad number of capa-
bilities. Every package has its advantages and features that set it apart from the others. Some of
these packages are used on a regular basis for MD studies. Three of the most known packages
are GROMACS (Berendsen et al., 1995), NAMD(Phillips et al., 2005) and LAMMPS (Plimp-
ton, 1995). These are all rich of features and large in code size. All of them have advantages
and disadvantages including, the number of features they implemented, the way they implement
computations, and the time they take in simulations.

The MD field is greatly researched and improved and there are many studies using the pack-
ages already mentioned. One example is the LAMMPS molecular dynamics package, whose
developers implemented a module to accelerate the neighbors lists building and the short-range
calculations (Brown et al., 2011). Most of the actual studies are related to the use of accelera-
tors as a way to improve execution. This happens because it is possible to greatly improve the
executions time of a package using accelerators depending on the implementation.

The development done in this thesis is based on an existing implementation of a software pack-
age named MOIL. MOIL was chosen as a reference package because of a previous work with
the package and because it was already tested. This package will be used as a reference for the
development of all the implementations and to validate the obtained results. MOIL has all the
features that are needed by this thesis. It will also be used the Java Grand Forum (JGF) bench-
mark (?), which provides a simple MD simulation code, ideal for to be altered and optimized.
Another package that will be used in this thesis is Gromacs. Gromacs has top level performance
and it is one of the most used packages. This package will be used to have an overall assessment
of the code improvements made in present thesis.

The MOIL package has CPU, GPU and CPU/GPU hybrid implementations (Ruymgaart and
Elber, 2012). They use OpenMP, CUDA, FORTRAN and C code. We will focus on the MOIL
version written in C. MOIL is composed of various tools that are responsible for validating and
changing the input data to use in its execution. For example, there is a tool to convert coordinates
from PDB to CHARMM format. The MOIL implementation tries to speed up the calculation of

12



2.4. Molecular Dynamics Packages

non-bonded interactions using different types of lists, which are selected according to the number
of particles, the type of atoms or molecules, and the selected execution platform. MOIL has the
following working modes (Ruymgaart et al., 2011):

1. Does not use lists and computes all-against-all interactions. This mode is aimed to non-
uniform particle densities;

2. Uses space lists based on grid partitioning for GPU execution. The space is partitioned
into boxes.

3. Uses neighbors list based on chemical grouping.

4. Uses lists based on atoms for systems smaller than 100,000 atoms.

The evaluation and modification of the MOIL code is presented in the next chapter, where it will
be presented the motivations behind each optimization done on MOIL.

13



Part II

C O R E O F T H E D I S S E RTAT I O N



3

I M P L E M E N TAT I O N O F M O L E C U L A R DY NA M I C S O P T I M I Z AT I O N S

This chapter will explain in detail the actions taken to implement different modifications of
MOIL, the MD simulation code chosen as the starting point in the present work. The analysis of
MOIL and the motivations behind each modification, which resulted in a different sequential or
parallel version, will be presented.

3.1 D E V E L O P M E N T O U T L I N E

The thesis is focused on the analysis of the MOIL implementation and the proposal of methods
to optimize its computations. The development work can be subdivided in the following phases:

• Research of both theory and development in Molecular Dynamics.

• Analyse and select a software package to use as starting point in our work.

• Evaluate a case study to find the most time-consuming parts.

• Investigate and implement ways of optimizing the code, and measure the gains of the
optimizations.

• Adapt the implementation to take advantage of parallelism in a shared memory model.

• Adapt the implementation to take advantage of parallelism in a distributed memory model.

• Implement a hybrid version using both shared and distributed memory parallelism.

• Evaluate all the implemented versions.

15



3.2. MD Sequential Version

The research made initially aimed to understand the MD technique and algorithms, in order
to perceive what was being computed by the existing code. This allowed us to have a basic
understanding of the domain. The next step was the research of existing MD packages to know
what is already done in this field. The MOIL package was selected, as stated before. After
the selection of MOIL, it was necessary to choose one or more case studies to test the package.
The choice of case studies was grounded on the reviewed literature. It were chosen case studies
involving the calculation of short-range forces (Brown et al., 2011). Having chosen a simulation
package and the case studies, it was possible to profile the MD simulation execution to identify
the most time-consuming routines and the corresponding source code.

The cases studies evaluated were the Dihydrofolate reductase (DHFR)(Ruymgaart et al., 2011),
available in the MOIL package, and a cube filled with Argon atoms. These two systems were
simulated with MOIL and their execution was profiled. After the measurement and profiling
of both case studies, the Argon example was selected for rest of the thesis. This case study
was chosen because it only requires computing the van der Waals forces, which is one of the
two most computational intensive tasks in MD simulations. Excluding the other forces, is a
conscious strategy to focus our effort on improving the computation of the van der Waals forces.
The decision of using Argon is also due to the fact that the MOIL execution flow is much more
complex when using the other forces. After choosing the case study, it were created simulation
inputs with different sizes, which require different memory resources. The next step, was to
initiate the development, implementation and assessment of several MOIL modifications. The
following sections will present these modifications.

3.2 M D S E Q U E N T I A L V E R S I O N

The development and implementation of improvements to the sequential version of MOIL was
the first step made in this thesis after the previous study. To make this implementation it was first
analyzed and profiled the code of the MOIL package using the Argon case study. The profile of
the code inform us which are the most time-consuming routines. After having a profile of the
sequential version and after identifying the most time-consuming routine, there was a need to
study this routine and the data structures it uses and what changes they suffer along the execution
of code. This step proved important to improve the code to enable the automatic vectorization
by the compiler.

16



3.2. MD Sequential Version

Figure 3 presents the profile of the sequential MOIL execution when simulating the Argon case
study. It is possible to observe that the most time consuming routine is the CalcCpuEForceNB-
ParallelListNW jGTi Energy. This routine is responsible by the calculation of the van
der Waals forces that are exerted on a particle by the other particles, and takes 56.60% of the
global execution time. The second most time-consuming routine is the GetCPUParNBNbrLis-
tNW which builds the neighbors lists. In this case, the size of the problem is small, which means
that the calculation of the forces finishes faster, which implies a smaller ratio between the time
spent in calculations and the time necessary to build the neighbors lists. In bigger problems this
ratio would be larger, resulting in a larger percentage of time used to calculate forces. The other
routines in the execution are much less time-consuming and only spend about 10% of the global
execution time. Thus, CalcCpuEForceNBParallelListNW jGTi Energy routine is the
only one that needs to be improved for the biggest gain in performance.

main
100.00%
(0.14%)

CalcEForceNonBonded(int, bool, bool)
57.07%
(0.46%)
10001×

57.07%
10001×

GBoxLists(int)
34.85%
(0.00%)
1252×

34.85%
1252×

Boundary(bool, int, bool)
6.14%

(6.13%)
1252×

6.14%
1252×

VerletVelocityStep(int, int)
0.54%

(0.54%)
20000×

0.54%
20000×

CalcCpuEForceNBParallelListNW(int, int, int, bool, float*, float*)
56.60%
(0.00%)
10001×

56.60%
10001×

GetCPUParNBNbrListNW(int, int)
34.88%

(34.88%)
1253×

34.85%
1252×

CalcCpuEForceNBParallelListNW_jGTi_Energy(int, int, int)
56.60%

(56.60%)
10001×

56.60%
10001×

Figure 3.: Profiling of the Argon simulation in MOIL with the dynaopt tool.

Before the execution of the main steps of the MD simulation, MOIL performs several initial-
ization steps. The initialization steps include reading two files, one with the coordinates of all
particles in the system and the other with the characteristics of the particles and the simulation
parameters, such as the total number of simulation steps and the number of steps between the
neighbors list update of each particle.

17



3.2. MD Sequential Version

After identifying the initialization steps performed in MOIL, the most important data structures
were analyzed. The structures are used to store forces, velocities and positions. These three
vector quantities are saved in nine arrays, since each one has three components: (Qx, Qy, Qz).
These arrays are filled after certain validations and are obtained from data structures implemented
in Fortran that are shared by several MOIL tools. In the Argon case study, the neighbors list of
all particles is updated every three steps. All the MOIL data structures, such as the neighbors
lists, are built from the mentioned nine arrays.

The code of the routine that calculates the forces exerted on each particle uses a neighbors list,
as it can be seen in listing 3.1 (full for in listing A.1). The list of neighbors of a given particle
includes all the particles that are within a certain radius around that particle. The routine iterates
over this list to obtain the index of a neighbor particle. This index is then used to get the neighbor
particle coordinates from the array of coordinates. With the coordinates of two particles, it is then
computed the force exerted between them. This means that there are two steps to get a particle
coordinates: first it is obtained the index of the particle and later are read the coordinates of the
neighbor particle. Next, the routine checks if the particle is inside the given radius. If true, the
force between the particles is calculated and its value is stored in the forces array, on the position
corresponding to the particle being processed.

The calculation of a force is always done between two particles: (i) the principal particle, the one
that accumulates the forces exerted by all its neighbors, and (ii) the neighbor particle, the one
that calculates only the force exerted by the principal particle. Because this implementation uses
the third law of Newton, while the principal particle is accumulating the force exerted on it by
all its neighbors, the force exerted by the principal particle on the neighbor is also updated. This
reduces the number of forces calculated by the routine, but it introduces an additional complexity
due to the necessity to exclude the principal particle from the neighbors list of its neighbors.

// Iterate over all particles

for (int a=0; a<pend; a++)

{

//Number of neighbors for particle a

nnbrs = nrNbrAtomsPar[a];

...

// Iterate over the particle neighbors

for (int n=0; n<nnbrs; n++)

{

// Get neighbor information from the structure

struct NBPair nbr = NBPair[a*MAX_NR_NB_NBRS + n];

18



3.2. MD Sequential Version

// Index of the neighbor in the array of coordinates

j = nbr.x;

...

if (r2 < UCell.dMaxInnerCut2)

{

// Calculate vdW force using LJ

r =sqrt(r2); invr2=1.0f/r2; invr6=(invr2*invr2*invr2)*valid;

FLJ=-12.0f*nbr.y*invr6*invr6*invr2+6.0f*nbr.z*invr6*invr2;

// Calculate energy

Evdw = (nbr.y * invr6*invr6 - nbr.z * invr6);

float df = FLJ - Fe;

// Accumulate forces exerted on a particle

AtiFx += df*rx; AtiFy += df*ry; AtiFz += df*rz;

// Subtract particle force of the neighbor particle

StoreXDP[j + cpuForceSpacing*tid] -= df*rx;

StoreYDP[j + cpuForceSpacing*tid] -= df*ry;

StoreZDP[j + cpuForceSpacing*tid] -= df*rz;

ELJ += Evdw;

EElec += Eel;

}

...

}

Listing 3.1: For cycles that calculate the forces exerted on each particle by its neighbors.

After the code analysis it was decided to extract the core code of the MD simulation to a simpler
and separated implementation. This decision was taken because, as it was mentioned before,
MOIL was first developed using Fortran language and only afterwards ”converted” to C. This
resulted in a mixed implementation using Fortran and C, where the main routine does a lot of
validations and becomes disorganized. Such an example of code disorganization is the branch
that tests what is the current iteration before relocating the particles and rebuilding the neighbors
lists. Therefore, to facilitate the implementation of code optimizations it was used the JGF MD
benchmark (Smith et al., 2001). This benchmark is used in the university and provides an easier
infrastructure for development. The JGF MD benchmark does not use neighbors lists or any
domain division. This code uses third law of Newton to reduce the computations of forces. The
purpose of the JGF version is to execute the MD simulation without using neighbors lists and to

19



3.3. MD Vectorization

allow us making modifications more easily. The changes made to JGF were in the computation
of forces and the type of arrays to use a structure similar to the MOIL package. The values of
the coordinates in JGF were saved as doubles while MOIL uses floats. After these changes the
development with the JGF MD benchmark was similar to the one performed with MOIL. First we
analyzed the code, identifying the most time-consuming routine, and then the code was changed
to improve its performance.

3.3 M D V E C T O R I Z AT I O N

Vectorization is a process of converting a scalar instruction, which process a single pair of
operands at a time, to one where a single operation is applied to multiple elements (SIMD
paradigm). This form of parallelism is called data parallelism. The processors that support these
type of operations are called vector processors. One of the first processors supporting these op-
erations was the Cray 1 (Russell, 1978). Recently, there was a growth of new technologies, such
as AVX and AVX2, that support vectorization. The vectorization extension used in this thesis is
AVX, which was introduced with the Intel Sandy Bridge micro-architecture. The AVX instruc-
tion set extension increased the width of the registers from 128- to 256-bit. This means that
AVX made it possible to execute 4 double precision FLOP per cycle or 8 single precision FLOP
per cycle. These operations increase the number of operations per cycle, reduce the number of
cycles, and reducing the best case execution time by 8 times.

The process of transforming sequential to vectorized code is a hard task to be done manually.
That is why it is so important that compilers automatically do this transformation. This depends
on the calculations and the used data structures, but most of the essential changes are related with
conditional expressions and arrays. The conditional expressions, like if conditions, have to be
removed to allow the compiler to apply vectorization. Arrays are important and essential. Using
arrays will allow multiple array elements to be processed in a single cycle. The changes related
to arrays accesses are dictated by (i) the way arrays are aligned in memory, (ii) the knowledge
the compiler has over the pointers to arrays, and (iii) how arrays are accessed by the application.
If an array is not aligned, or the pointer to that array has the possibility of being an alias for
other array, then the compiler cannot use vectorization. In this case there is a need to manually
specify that the alias is restricted to that array and it is not used in another array. The way we
access arrays also has to be known by the compiler. All accesses have to be aligned, the array
positions have to be known at compile time, and have a stride 1 access with being depending on

20



3.3. MD Vectorization

conditions. For example, considering a for cycle that increases its counter by one, if we access
an array based on this counter then the compiler will know the accessed array positions and it
will be able to vectorize the calculations involving the array.

3.3.1 Code modifications

The code used in the present dissertation had the problems explained above. The if conditions
present in the code were used to verify if the coordinates of a particle are still inside of the sim-
ulation box and if that particle is within a distance (or radius) valid to calculate forces. The first
conditions alter the coordinates of the particle in a way that if its outside the simulation box it is
replaced inside the box, by applying the periodic boundary conditions (PBC). This can be seen in
the listing 3.2 that shows three if conditions that compare the distance between both particles co-
ordinates (rx,ry,rz) with the limits of the simulation box (±cellxhlf, ±cellyhlf,
±cellzhlf). The condition present in listing 3.3 is used to test if the neighbor particle is
inside the cut-off radius of the particle being calculated. This condition has to exist because the
update of the neighbors lists positions is only done after a few iterations, which means that while
the lists are not updated, the neighbor particle can move to outside the radius. Both conditions
explained before produce many conditional jumps, which can be seen in the associated assembly
code. This prevents the compiler to do automatic vectorization.

if (rx > cellxhlf)

rx -= cellxhlf*2.0f

else if (rx < -1.0f*cellxhlf)

rx += cellxhlf*2.0f;

if (ry > cellyhlf)

ry -= cellyhlf*2.0f;

else if (ry < -1.0f*cellyhlf)

ry += cellyhlf*2.0f;

if (rz > cellzhlf)

rz -= cellzhlf*2.0f;

else if (rz < -1.0f*cellzhlf)

rz += cellzhlf*2.0f;

Listing 3.2: Conditional statements related with the simulation box size.

21



3.3. MD Vectorization

r2 = rx*rx + ry*ry + rz*rz;

if (r2 < UCell.dMaxInnerCut2)

{

... // Force and energy calculation

}

Listing 3.3: Conditional statement related with the cut-off distance.

The solution to perform vectorization was to remove both sets of conditional statements from
the code. To remove these conditions we took advantage of two aspects: (i) the evaluation of
a boolean expression in C is 0 or 1, and (ii) the calculations controlled by the conditions are
accumulative, which allow us to multiply the result of the boolean condition evaluation by the
value that must be accumulated in the variables. The condition removal, using this technique,
can be seen in the listing 3.4. It is possible to see in this listing that the conditions are converted
in calculations that were further split in two smaller calculations. The division of the calculations
had to be done because if these calculations were done in a single instruction, the compiler would
produce the same assembly code as in the original conditions. In such case the compiler would
interpret the calculation as a conditional statement and it will not vectorize the code. The same
approach was used to remove the condition present in listing 3.3. In this case the unique differ-
ence is the condition evaluation result (0 or 1) being stored directly in the variable valid that is
used in all calculations inside the removed if statement. If the result is 0 the particle is outside
the cut-off radius and if is 1 the particle is inside of it. The first set of conditions (listing 3.2)
does not introduce new calculations, because the adjustment made inside each condition only
alters a single variable in a single calculation. In contrast, the replacement of the conditional
statement present in listing 3.3 introduces more calculations because in this original code the
condition body instructions are only executed when the condition is true, and in the replacement
code (listing 3.5) the the condition body instructions are always executed. This means that when
the result of the condition evaluation is false the condition body instructions cannot alter the re-
sult of the simulation. Since in listing 3.5 the calculations made inside the condition body are
always accumulated, when the condition is evaluated to false the calculations of the force and
energy must be both zero. This is true because the expressions that compute the force and energy
are both multiplied by valid=0, which ensures the necessary null result that will not change
the accumulated values of the force and energy.

22



3.3. MD Vectorization

cellxhlfm=-1.0f * cellxhlf;

cellyhlfm=-1.0f * cellyhlf;

cellzhlfm=-1.0f * cellzhlf;

...

rx += (rx > cellxhlf) * (cellxhlfm*2.0f);

rx += (rx < cellxhlfm) * (cellxhlf*2.0f);

ry += (ry > cellyhlf) * (cellyhlfm*2.0f);

ry += (ry < cellyhlfm) * (cellyhlf*2.0f);

rz += (rz > cellzhlf) * (cellzhlfm*2.0f);

rz += (rz < cellzhlfm) * (cellzhlf*2.0f);

r2 = rx*rx + ry*ry + rz*rz;

valid = (r2 < UCell.dMaxInnerCut2)

Listing 3.4: Removing conditional statements present in listing 3.2 to allow vectorization.

valid = (r2 < UCell.dMaxInnerCut2)

// Calculate vdW force using LJ

r = sqrt(r2); invr2 = 1.0f/r2; invr6 = (invr2*invr2*invr2) * valid;

FLJ = -12.0f * nbr.y * invr6*invr6*invr2 + 6.0f * nbr.z * invr6*invr2;

// Calculate the energy

Evdw = (nbr.y * invr6*invr6 - nbr.z * invr6);

Listing 3.5: Removing conditional statement present in listing 3.3 to allow vectorization.

After having a modified code that is prepared for vectorization, it was analyzed using the PAPI.
Figure 4 presents the number of executed instructions, with and without the if conditions. It is
possible to observe that when a set of if conditions is removed the total number of instruction
increases, while the number of branch instruction reduces. This happens because with the re-
moval of both sets of if conditions, the calculations are always done, even if the if conditions
are evaluated to false.

23



3.3. MD Vectorization

#Instruc)on	 #Clock	Cycles	 #Intruc)ons	Load	 #Instruc)ons	Store	 #Intruc)ons	Branch	
Original	 7324301	 6042425	 2150288	 393927	 541405	

Without	if	Valid	 8954085	 6893777	 2588598	 522508	 495608	

Without	if	rx,ry,rz	 8278997	 7144699	 2657639	 391846	 176314	

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

8000000	

9000000	

10000000	

Figure 4.: Number of instructions run in the original MOIL code and in the code modified for vectoriza-
tion.

The original routine used to compute the forces had several problems related to the used data
structures. To access arrays it was used an alias that the compiler did not know if it belongs to
another array. This prevents vectorization. The problem was solved by applying the keyword
restrict. Another problem came from the way arrays were accessed to update the forces.
The positions within the arrays were accessed in an irregular way inside a cycle. The irregular
array accesses occurred when MOIL uses neighbors lists and the index of the next neighbor point
to a random position in the array of coordinates. In this case, the simpler way to enable automatic
vectorization is to access the arrays according to a cycle counter.

Both the modifications to MOIL and JGF MD benchmark, to enable vectorization, resulted in
no gains. The main reason was the small number of instructions that could be vectorized by the
compiler in comparison with the added instructions overhead resulting from the removal of the
conditional statements. To overcome this overhead it was decided to develop an organization of
particles in cells which will be explained bellow.

Implementation of cells

The cells are implemented using an array of structures, where the structure is a cell and has the
information of all particles in that cell and each index of the array is a cell. It is also necessary to

24



3.3. MD Vectorization

create an array for each cell that has the index of its neighbors. Using an array of structures and
neighbors we need to iterate through 4 different arrays to compute the forces. These arrays are,
(i) array of cells, (ii) array of particles in the cell, (iii) array of the neighbors cells and (iv) the
array of the particles of the neighbor cell. To iterate over all these arrays it is needed four loops,
one for each array. With the introduction of these loops the compiler can apply vectorization to
a larger number of instruction, if the accesses to these arrays are stride 1.

The first step was to create a data structure to store the particles of the cells and to distribute
the particles by the created cells. After creating the cells, it was necessary to create a list of
neighbors cells. This list is necessary to compute forces among particle that are close to the
limits of a cell. Concretely, accessing neighbor cells is necessary when there are particles in
different cells separated by a distance smaller than the cut-off radius. In this case, to compute the
force exerted on such a particle we have to access some particles located in neighbor cells. To
construct the list of neighbor cells we have to identify all cells that are adjacent to each cell in
three-dimensional space. Since the cells are cubes, one cell has a maximum of 26 neighbor cells.
Building the list of neighbor cells has to be done carefully because of two reasons. First, to find
the neighbors of a cell located in the limits of the simulation box we have to apply PBC. Consider
that a cell is identified by a 3D coordinate (cidZ,cidY,cidX). If the coordinate has a component
with the maximum or minimum allowed value, for example cidX is equal to cidmax or cidmin, the
PBC means that there is a neighbor cell with a X coordinate equal to the minimum (cidmin) or
maximum (cidmax) allowed value. Second, as we use Newton’s third law, it implies that if a cell
B is in the neighbor list of cell A, then A can not be on the neighbor list of B. This means that
the particles of cell A need not be used explicitly to calculate the forces exerted on the particles
of B, because these forces have already been calculated when the particles of A were processed.

When the cell data structure was designed, the function responsible for calculating the forces had
to be modified to use this new structure. In the listing 3.6 we can see the introduction of new
cycles to iterate over the different cells and particles. The new cycles made it possible to have a
greater number of vectorized instructions.

for ( Iterate over all cells ) // (C)

{

for ( Iterate over all particles of the cell ) // (CP)

{

// Read cell particles and forces arrays

...

for ( Iterate over all neighbor cells ) // (CN)

{

25



3.3. MD Vectorization

// Read neighbor cell particles and forces arrays

...

for ( Iterate over the neighbor cell particles) // (CNP)

{

// Calculate forces exerted on the particle

...

// Store component X,Y,Z of force

ForceX[CNP] -= (Calculated Force X);

...

// Accumulate component X,Y,Z of force

AccumulateForceX+= Calculated Force

...

}

}

// Store component X,Y,Z of force

ForceX[CP] += AccumulateForceX;

...

}

}

Listing 3.6: For cycles that calculate the forces using cells.

After having the first MD implementation with cells, the next phase was to vectorize the code
that uses the cell data structures. When using cells we have 4 different cycles that access arrays
and make calculations with data from these arrays. Vectorizing the inner cycles will allow the
conversion (vectorization) of a large number of instructions. The principal problem of the cells
version is when the accesses to the array of forces, in the inner loop, is not stride 1. This happened
in the application of the third law of Newton. The problem was solved by storing the forces
in an array local to each cell, in the position corresponding to the neighbor particles. When
all calculations are finished, the local forces are added to the respective position in the three
global arrays of forces. With these modifications a large number of instructions was vectorized
automatically by the compiler, in the same way as explained in previous section.

With all optimizations implemented in the version using cells, this version was compared with
the original one using PAPI. Figure 5 shows that the number of instructions executed in the
non-vectorized version using cells is much larger than in the code without cells. The code with
vectorization has a number of instructions close to the original version, since the increase in in-
structions is compensated by the use of vector instructions. The number of executed instructions

26



3.3. MD Vectorization

increases strongly when we use cells due to (i) removing the cut-off conditional statement in-
troducing additional calculations made for particles that are inside a cell but outside the cut-off
radius and (ii) the additional allocations that we had to do. It is also possible to observe that the
number of clock cycles using vectorization is smaller than in the original code, which means that
the vectorized cell version is faster than the original.

#Instruc)ons	 #Clock	Cycles	 #Load	Intruc)ons		 #Store	Instruc)ons		 #Branch	
Intruc)ons	

Original	 6942192	 5887021	 2194490	 392563	 543503	

Cells	(Vectorized)	 7400699	 5212980	 2233031	 475954	 147213	

Cells	(Not	Vectorized)	 11932015	 8469841	 2895153	 416929	 138026	

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

Figure 5.: Number of executed instructions and clock cycles in original MOIL code and in code with cells.

Using cells increases the number of instructions but the difference is reduced by using vectoriza-
tion. Figure 6 presents the cache misses for both the original and cells versions. It is possible to
see that with the introduction of cells the number of misses increases. This happens because the
original code calculations only need a neighbors list of particles for each particle, while the code
using cells needs a list of cells, a list of the particles inside the cell and a list of neighbor cells.
This increases the size of the data that has to be loaded into the cache, resulting in misses in the
first level of cache. However, the misses in the second level of cache reduces and it is even less
that the original code. This reduction in cache misses is due to the cells being loaded as a block
to the cache.

27



3.3. MD Vectorization

#L1	 #L2	 #L3	
Original	 5127	 1506	 280	

Cells	(Not	Vectorized)	 12825	 798	 25	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	
#M

is
se
s	

Figure 6.: Cache misses comparison between the original version and the version using cells.

Figure 7 presents the execution time for a single iteration over the whole simulation box. It is
possible to see that using cells without vectorization slows down the execution, but with vector-
ization we actually improve performance. This performance gain results from the fact that using
vectorization we reduce the computation time needed for the calculation of forces.

28



3.4. Parallelization

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

0.003	

0.0035	

0.004	

Original	 Cells	(Vectorized)	 Cells	(Not	Vectorized)	

Ti
m
e	
(s
)	

Figure 7.: Execution time comparison between original, not vectorized cells, and vectorized cells versions.

3.4 PA R A L L E L I Z AT I O N

3.4.1 MD Shared Memory Implementation

The first parallel version developed in this thesis used the shared memory model, via OpenMP.
The objective was to parallelize the calculations done in the different cells but respecting the
critical sections present in the code. To achieve this objective, it was necessary to introduce a
change in the code presented in listing 3.6. Inside the routine that computes forces there are two
sections that need to be locked in order to avoid multiple thread accesses at the same time. One
section is where the forces, calculated by the Newton laws, are written in the arrays. The other
section is where the accumulated force of the principal particle is written in the arrays. These two
sections are critical and should therefore be executed by a single thread at a time. The sections
have to be locked because, even if every thread calculates only one cell, the calculation in that
cell will need to read the particles of its neighbor cells and write the forces calculated into its
neighbors cells particles, due to the third law of Newton. This means that every change to the
cells arrays of forces, occurring inside the parallel region, must be locked to ensure that only one

29



3.4. Parallelization

thread can write in the arrays of forces at a time. Since we only want to lock the critical regions
there are two ways to do it. The first way is to implement a lock by cell. Thus, a thread can
write into a cell only if that cell is free. The second method implements a lock by particle. Here
we lock the particle forces while a thread is writing. Both locking methods were implemented,
using an array of locks, and tested. But the implementation using locks by particle prevented the
compiler to perform vectorization. The lock by particle had to be implemented inside the cycle
that calculates the forces, which means that it had to write in the array of locks in a calculated
position that was not aligned. For this reason it was used locks by cell instead of particle.

3.4.2 MD Distributed Memory Implementation

Message Passing Interface (MPI) allows the developers to write portable message-passing code.
MPI allows the data from one process to be moved to other processes in a high level and abstract
way. The communication between processes is known as a distributed memory communication
environment.

When using OpenMP, for example, there is a limitation in the available resources because it only
allows to create threads inside a single machine, but MPI expands the available resources because
it allows the processes to communicate between different nodes in a easy and abstract way. This
means that if there are no bottlenecks, the performance of a program can be improved by using
more nodes.

Comparing with the previously presented MD versions, the development of the MPI version
placed less challenges. This is due to the fact that all forces are accumulative, which creates
no problems to the task of writing the forces in the arrays. The approach followed in the MPI
implementation consisted in having several cells allocated to each process. This way, one process
calculates the forces in different cells and adds them to its local array of forces, in the same way
as referred before. After this, all processes communicate their forces to the other processes
that add them to their own arrays. Using MPI this operation can be done using a reduction of
the forces followed by a broadcast of the result (all-reduce). This approach avoids several
problems of the shared memory model such as the necessity to block the critical sections.

30



3.4. Parallelization

3.4.3 MD Hybrid Implementation

The MD hybrid version consisted in using both the shared and distributed memory models in the
implementation. This implementation eliminates the main limitation of the OpenMP code since
the available resources are not limited to a single node. The MPI implementation had already
solved this limitation, but an hybrid implementation allows a much higher performance in some
cases. For example, when there is a lot of communication between processes and when there are
few critical sections. In our code we benefit a little from each model. We can reduce the time
spent in communication, because we have less processes that need to communicate, we also use
less memory space because with threads it uses shared memory and because we have few critical
sections the execution seldom blocks in these sections.

The hybrid implementation simply combines the OpenMP with the MPI implementation, while
ensuring that the critical sections and the cell organization are respected.

There are many ways to assess an hybrid implementation in order to reach the best performance.
It is possible to test the code with different combinations of the number of threads, the number
of processes, and how to distribute processes and threads by nodes. Different combinations were
tested in this work. The alternatives that resulted in best performance will be documented in the
next chapter.

31



4

R E S U LT S

In this chapter it is presented the results obtained with the different implementations. The results
in this section are obtained using the Argon case study with different numbers of particles.

4.1 T E S T E N V I RO N M E N T

In order to evaluate the development made in this thesis the Services and Advanced Research
Computing with HTC/HPC (SeARCH) cluster was used (University of Minho, 2015). It was
also used various tools (table 1). The specifications of the nodes used in the simulations are in
table 2.

Table 1.: Tools used for development.
Tool Version Description
GNU gprof 2.25 Used to obtain the profiles of the code with the correspond-

ing weights of of each routine.
GCC 4.9.0 The compiler used in most of the implemented code.
OpenMPI 1.8.2 MPI version.
PAPI 5.4.2 Used to obtain measurements of the hardware counters.

32



4.2. Case Study

Table 2.: Specifications of the nodes used in simulations.
Node compute-662

Processor
Model: Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz
Thread(s) per core: 2
Core(s) per socket: 12
CPU socket(s): 2
NUMA node(s): 2
CPU MHz: 2400.000
L1 data cache: 32K
L1 instruction cache: 32K
L2 cache: 256K
L3 cache: 30720K

Other
Ram Size 64GB

OS
Rocks 6.1
CentOS 6.3

4.2 C A S E S T U DY

The case of study used in all presented results is a cube of Argon atoms. The measurements
were made using cubes with different number of particles, while keeping the same cut-off in all
versions. The number of used particles are presented in table 3.

Table 3.: Number of particles used in the MD simulations.
Number of particles Memory space to save the coordinates of particles
864 20.25KB
2058 48.23KB
8788 205.96KB
19562 458.48KB
256000 5.86MB
500000 11.44MB
1000000 22.88MB

The utilization of different numbers of particles aimed to have data sizes that could fit in different
levels of cache. The domain (simulation box) size of the input increases when the number of
particles increases, given that the density of particles is maintained constant.

33



4.3. MD Sequential Versions

4.3 M D S E Q U E N T I A L V E R S I O N S

The simulation results documented in this section were obtained with a developed sequential
code that is similar to MOIL.

In table 4 are presented the measurements of three versions of the sequential code. The first
two differ on how the coordinates are saved, one uses floats to save the particles positions
while the other version uses doubles. The reasons for this measurements are, that MOIL uses
floats to save its coordinates while in JGF they are saved as doubles and also because with
coordinates as doubles there are limitations in vectorization. These two reasons brought the
need to use floats instead of doubles to see their performance differences. The third version
is also implemented with floats and cells.

Table 4.: Execution time in seconds of the MD sequential versions.

# Particles Sequential version (floats) Sequential version (doubles) Sequential with cells

864 0.0116 0.0072 0.0146
2048 0.064 0.0396 0.0821
8788 0.6932 0.5188 1.4745

19652 2.4564 1.9834 7.2932
256000 258.6384 236.6036 155.0428
500000 936.1647 870.1428 250.9159
1098500 4317.2459 4089.8578 621.1615

The floats version has a small overhead due to the conversion between floats and doubles.
While the coordinates could be converted to float, the forces cannot be converted to float
because they are calculated and need to have double precision. This means that the calculations
of the distance between particles are done with floats, which are then used in the calculation
of forces, being the results saved in double precision.

The performance improvement that results from using cells can only be seen when we increase
the number of particles to 256000. This increase in performance only happens because with the
input used, the particles are close to each other forming a dense system which means that only
after reaching this number of particles it is possible to have more than 27 cells with the used
cut-off distance. When the domain can only be subdivided in 27 cells or less, the calculation of
forces is done in the same way as the other versions, without cells, but with a time overhead due
to cell construction.

34



4.4. Vectorized MD

4.4 V E C T O R I Z E D M D

Vectorization solves most problems of the sequential versions. The conversion between floats
and doubles can be completely ignored because the compiler, after calculating the floats in
a single instruction, can store all results (as doubles) without extra instructions for data type
conversion.

The implementation of celss with vectorization outperforms all other versions for all the input
sizes. Without using cells the compiler can only vectorize a small number of instructions because
of the way the forces are calculated. The results obtained with the vectorized version without
cells, as they did not allow performance improvement, are not presented. With cells, the compiler
can produce a larger number of vectorized instructions achieving a greater performance improve-
ment. In figure 8 it is possible to see that for the largest domain size, the vectorized version with
cells is about 29 times faster than the sequential version with doubles (original one) and it is
about 4 times faster than the non-vectorization version using cells.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

256000	 500000	 1098500	

Ti
m
e(
s)
	

#Par-cles	

Sequen0al	Version				(floats)	 Sequen0al	Version				(doubles)	 Sequen0al	with	Cells	 Vectorized	with	Cells	

Figure 8.: Sequential versions execution time.

We have seen that the code with cells, but without vectorization, was slower than the original
version for smaller domain sizes. When we vectorize the code with cells, we get better perfor-
mance than the original one, for all input sizes. We can then conclude that vectorization is quite
advantageous if we use cells.

35



4.5. Parallelisation of MD

4.5 PA R A L L E L I S AT I O N O F M D

In this section we present and discuss the results of all parallel implementations. All these imple-
mentations are based in the developed version with cells.

4.5.1 Shared memory version

As mentioned before, the shared memory version of the MD simulation was implemented using
OpenMP. The development with OpenMP enabled us to make some decisions, which resulted
in different implementation alternatives. The first decision to be made was how to manage the
critical regions in the code. Two different ways of locking were tested: lock by cell and lock
by particle. When using locks by particle the compiler cannot vectorize the code. For this
reason, it was expected that the performance of locking by particle was worse than locking by
cell. Figure 9 shows the differences in performance, without vectorization, of the two ways of
locking the critical sections and without any type of lock. From this figures we can conclude
that with locking by particle the performance is worse than with all other versions. We can also
conclude that the best wasy of locking the critical sections is using locks by cell. With locks by
cell we approach the execution time without any locks (NO LOCKS).

36



4.5. Parallelisation of MD

0	

50	

100	

150	

200	

250	

300	

1	 2	 4	 8	 12	 24	

Ti
m
e	
(s
)	

Lock	by	Cell	 NO	LOCKS	 Lock	by	Par9cle	

Figure 9.: Execution time with different OpenMP locking methods (500000 particles).

After selecting the form of locking critical sections, we had to decide how to schedule the parallel
threads. Considering the code with cells, there is a possibility of having cells that finish faster
because they have less particles to process. Therefore to achieve load balancing the best approach
is to use dynamic scheduling of threads. It was also tried the static scheduling, which divides the
loop iterations into chunks with the same size, or as similar as possible. The dynamic scheduling
adds overhead to the computations, because when a thread finishes processing a chunk of work,
has to get another one. With static scheduling the work load for the different threads is static and
already allocated when the execution begins, which means that it does not have the overhead of
obtaining new chunks of work. However this overhead can be neglected if the execution is not
balanced or when the overhead is small. When using static scheduling, if the execution of threads
is not balanced we will have threads that complete their work faster than others, resulting in a
performance degradation. This does not occur in the dynamic scheduling, which allows all the
threads to be working while there is work to be assigned. Both scheduling methods were tested
to verify the difference between them. The difference between dynamic and static scheduling is
small (figure 10). So it was decided to use in all the following tests the most versatile scheduling,
which is the dynamic.

37



4.5. Parallelisation of MD

1	 2	 4	 8	 16	 24	
Sta*c	 250.71	 130.08	 67.05	 35.30	 19.21	 13.33	

Dynamic	 251.86	 130.16	 66.42	 34.24	 18.32	 13.43	

0.00	

50.00	

100.00	

150.00	

200.00	

250.00	

300.00	
Ti
m
e	
(s
)	

Sta*c	 Dynamic	

Figure 10.: Execution time using static and dynamic scheduling in OpenMP (500000 particles).

After analyzing the implementation alternatives allowed by OpenMP, it was possible to assess
the performance gain achieved by the parallelization with OpenMP.

0	

50	

100	

150	

200	

250	

300	

1	 2	 4	 8	 12	 24	 48	

Ti
m
e	
(s
)	

#	Threads	

OpenMP	Without	Vectoriza:on	 OpenMP	With	Vectoriza:on	

Figure 11.: Comparison between vectorized and non-vectorized OpenMP implementations (500000 parti-
cles).

Figure 11 compares the performance of the vectorized and non-vectorized OpenMP implemen-
tations, as a function of the number of threads. The execution of the vectorized OpenMP code is

38



4.5. Parallelisation of MD

more than two times faster than the non-vectorized OpenMP code, being almost six times faster
for some domain sizes. More detailed results can be seen in tables 6 and 7 of annex A.

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	

#Threads	

256000	 500000	 1098500	

Figure 12.: Speedup of the non-vectorized OpenMP code for the three largest problem sizes.

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Threads	

256000	 500000	 1098500	

Figure 13.: Speedup of the vectorized OpenMP code for the three largest problem sizes.

39



4.5. Parallelisation of MD

Figure 12 shows the speedup of the non-vectorized OpenMP code for the three largest problem
sizes, as a function of the number of threads. It is possible to see that the speedup is close to the
number of threads. Only when the number of threads reaches 48, the speedup does not scale so
well. This happens because the physical cores in the node is 24, while the number of threads is
48. This means that for 48 threads we have two threads running on each core.

Figure 13 presents the speedup of the vectorized OpenMP code for the three largest problem sizes,
as a function of the number of threads. In this case, the values are much different from the version
without vectorization. While we obtained a performance improvement in the two largest domain
sizes and the speedup scales well, it does not scale as well as the version without vectorization.
The speedup almost does not scale when we use a domain with 256000 particles. The reason for
this non scalability, when using the smallest domain size, results from the calculations being very
fast when using vectorization. This means that most of the execution time does not correspond
to calculations but overheads.

4.5.2 Distributed memory version

The distributed memory implementation was built with the objective of testing the viability of
using processes instead of threads. It was also developed with the purpose of building an hybrid
implementation using MPI and OpenMP.

Two approaches were adopted in MPI code to assign processes to nodes. In the first approach
the processes were evenly distribution between two different nodes and in the other approach
processes run on a single node. Through this test scenario, it was possible to check whether
is advantageous to use two nodes instead of one, i.e., the capability provided by two nodes
compensates for the communication cost that this entails.

In figure 14 it is shown the execution time of the MPI implementation, as a function of the
number of processes, when the processes are distributed by two nodes. The behaviour is similar
to the code using OpenMP, with the vectorized code being faster than the non-vectorized.

40



4.5. Parallelisation of MD

1	 2	 4	 8	 12	 24	 48	
MPI	without	vectoriza5on	 255.29	 130.93	 68.01	 36.09	 24.71	 14.83	 10.44	

MPI	with	vectoriza5on	 59.18	 30.95	 16.58	 9.86	 7.39	 6.44	 6.71	

0.00	

50.00	

100.00	

150.00	

200.00	

250.00	

300.00	
Ti
m
e	
(s
)	

#Processes	

MPI	without	vectoriza5on	 MPI	with	vectoriza5on	

Figure 14.: Execution time of the MPI version when the processes are distributed by two nodes (500000
particles).

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Processes	

256000	 500000	 1098500	

Figure 15.: Speedup of the non-vectorized MPI version, using 2 nodes.

41



4.5. Parallelisation of MD

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Processes	

256000	 500000	 1098500	

Figure 16.: Speedup of the vectorized MPI version, using 2 nodes.

The behavior of the vectorized implementation is similar to the one without vectorization. In
tables 10 and 11 of annex A, it can be seen in more detail the same increase in execution time
when using more processes. There is however a difference when it is used more than 500000
particles. In such cases, the execution with 2 nodes, non-vectorized code and 48 processes, still
presents speedup (figure 15), but when we use vectorized code this does not happen. Instead we
observe a decrease in speedup for 48 processes (figure 16). This happens because the execution
of vectorized code is faster, which means the calculations of forces take less time and the com-
munication overhead is higher. It is also possible to see a decrease in performance for the largest
problem at 48 processes. This is mainly due to the size of problem being replicated through all
processes resulting in not being possible to fit all on cache. This means that it is using the ram
to access to the data. Because with vectorization the execution is so fast it has to fetch data from
memory constantly, resulting in a decrease in speedup.

4.5.3 Hybrid version

The hybrid MD implementation tries to increase performance using both OpenMP and MPI. To
obtain the best hybrid version several tests were conducted. In the first test all processes were

42



4.5. Parallelisation of MD

assigned to a single node and every process used 2 threads. This test was the worst hybrid version.
Given this poor result it was necessary finding adequate ways of distributing processes by nodes
and how many threads should be created by each process.

It was decided to keep the number of processes in the minimum necessary to fully explore the
computational resources of the nodes and each process would increase its number of threads
until they have filled the node. There were two ways to do this, the first is simply to create
a single process that launches threads and the other is to map the processes using the a non-
uniform memory access (NUMA) MPI mapping, which assigns a single process to a different
socket present in the node. With NUMA every node has one process running on each processor
and each process creates the threads that fill that processor.

1	

2	

4	

8	

16	

32	

64	

128	

256	

1	 2	 4	 8	 16	 24	 48	

1P	(1	Node)	 Numa	(1	Node)	 1P	(1	Node)	(Vec)	 Numa	(1	Node)	(Vec)	

Figure 17.: Comparison between hybrid implementations in a single node (1P = one process; 500000
particles).

Figure 17 shows the difference in the execution time between (i) using one process with many
threads (1P/1Node in fig. 17) and (ii) using two processes, NUMA mapping, and half the
threads per process (Numa/1Node in fig. 17). We can see that the performance is almost the
same in both these approaches. However, there is a small performance improvement using 2
processes with NUMA instead of a single process. This improvement is more noticeable using
vectorization and a larger number of processes.

43



4.5. Parallelisation of MD

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 18.: Speedup without vectorization of the hybrid version with only one process per node
(1P/1Node).

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 19.: Speedup without vectorization of the hybrid version using NUMA in the node
(Numa/1Node).

Figures 18 and 19 show the speedup of the hybrid versions without vectorization. As it occurs in
the sequential an parallel versions, the speedup of non-vectorized code is higher than vectorized
code. As explained before this happens because the vectorized computations are much faster,
reducing the chances of getting the same speedup that is achieved with slower code.

44



4.5. Parallelisation of MD

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 20.: Speedup achieved with the vectorization of the hybrid version with one process and one node
(1P/1Node/Vec).

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 21.: Speedup achieved with the vectorization of the hybrid version with NUMA in one node
(Numa/1Node/Vec).

Figures 20 and 21 present the speedups of the hybrid versions with vectorization. Without the
NUMA mapping the execution scales well until it reaches 24 threads where the speedup starts
to decrease. With NUMA mapping the speedup increases for all numbers of tested threads,

45



4.5. Parallelisation of MD

i.e., until 48 threads. This difference in scalability is related to the affinity of threads to the
respective processes. Every thread has access to the data available from the process that created
it. With NUMA mapping there is a process on each socket, while in other case there is only
one process per node. So in NUMA, each process shares data only with threads assigned to the
same processor, while in the other case the process has to share data with threads in two different
processors. This way, the NUMA version reduces the communication time between processors,
making it faster than using a single process.

The hybrid version was also tested with two nodes instead of a single node. In one simulation
scenario, we create two processes and each one is allocated to a different node. While in the other
scenario it was used NUMA mapping to assign 4 processes to two nodes, one process per socket
of each node. In figure 22 it is shown that the execution with NUMA mapping (Numa/2Nodes)
is faster than the other scenario (2P/2Nodes). The way the processes are allocated is using 2
nodes is similar with the one using a single node. Considering only the vectorized code without
NUMA, the main difference between using a single node and 2 nodes is: with one node (fig. 20)
the speedup starts decreasing after 24 threads while using 2 nodes it decreases after 48 threads
(fig. 23), which is the number of physical cores on two nodes. Based of the results of the hybrid
version, the NUMA mapping allows a better performance. We can also conclude that the perfor-
mance of hybrid version, for the considered domain sizes, it scales with number of threads but
not with number of nodes.

1	 2	 4	 8	 16	 24	 48	 96	
2P	(2	Nodes)	 256.026762	 131.396061	 67.21814	 34.855595	 18.531219	 12.966958	 7.478152	 6.460033	

Numa	(2	Nodes)	 256.026762	 136.630945	 67.051184	 34.207714	 18.111519	 9.812456	 7.05457	 5.834349	

2P	(2	Nodes)	(Vec)	 59.246292	 30.940154	 16.485949	 9.288858	 5.426223	 4.170411	 3.115032	 3.168841	

Numa	(2	Nodes)	(Vec)	 59.246292	 30.733132	 16.366408	 8.903454	 5.228101	 3.312358	 2.663297	 2.268793	

1	

2	

4	

8	

16	

32	

64	

128	

256	

512	

Ti
m
e	
(s
)	

#Total	Threads	

2P	(2	Nodes)	 Numa	(2	Nodes)	 2P	(2	Nodes)	(Vec)	 Numa	(2	Nodes)	(Vec)	

Figure 22.: Comparison between hybrid implementations in 2 nodes (2P=2 processes; 500000 particles).

46



4.5. Parallelisation of MD

1	

2	

4	

8	

16	

32	

64	

128	

1	 2	 4	 8	 16	 32	 64	 128	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 23.: Speedup with vectorization of the hybrid version with one process in each of the two nodes.

1	

2	

4	

8	

16	

32	

64	

128	

1	 2	 4	 8	 16	 32	 64	 128	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 24.: Speedup with vectorization of the hybrid version using NUMA with one process in each of the
two nodes.

47



4.6. Gromacs

4.6 G RO M AC S

After developing all the presented MD versions we decided to compare them with Gromacs.
Gromacs is one of the fastest MD packages available. For these reason, it was interesting to
compare our work with the reference in terms of MD simulation performance.

Figure 25 compares 4 versions developed in this thesis with Gromacs. In the comparison Gro-
macs ran in a single node and used MPI only. All the compared versions used vectorization and
the two hybrid versions used NUMA mapping. This figure shows that by using MPI, with the
same computational resources than Gromacs, the developed versions become competitive with
Gromacs only when more than 8 processes are used. When we consider less processes, Gromacs
is 2 times faster than the versions developed in this thesis, even with vectorization.

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	 2	 4	 8	 12	 24	 48	 96	

Ti
m
e(
s)
	

#Threads	

Gromacs	 MPI	 OMP	 Hybrid	-	1	Node	 Hybrid	-	2	Nodes	

Figure 25.: Comparison between 4 developed versions and Gromacs (256000 particles; vectorized code).

48



5

C O N C L U S I O N S A N D F U T U R E W O R K

The work realized in this thesis began with the study of the molecular dynamics domain, with
its methods, algorithms and theory. The work also included reviewing the optimizations of the
molecular dynamics simulation, the analysis of the existing molecular dynamics packages, and
the development of code that could improve the performance of the simulation. This allowed the
author to gain a deeper insight of what is and how it is done a MD simulation and facilitated the
development all the implementations.

One of the investments made in this thesis was the development of a vectorized version of the
MOIL code. This was accomplished and applied to the development of parallel versions that take
advantage of more computational resources. This task was successfully fulfilled since the perfor-
mance of developed parallel implementations was greatly improved when we combine parallel
implementations with vectorized code. This improvement was possible with the implementation
of a structure of cells as it was demonstrated by the different comparisons. Without cells the
vectorization did not produce the desirable results.

Another objective of this thesis was to develop a shared and distributed memory implementation
with the objective of developing an hybrid implementations. The development of the hybrid
version granted further performance improvements by increasing the amount of resources that
can be used, in case of shared memory, and allowing to reduce the communication between
processes, in case of distributed memory.

All improvements made to the original sequential code, made it possible to reach a performance
comparable to that of Gromacs in some scenarios. This improvements were mainly due to the
successful implementation of vectorization. The gains in performance were larger than expected.

49



Modifying the MOIL code revealed to be a hard task because of the utilization of a mixed C and
Fortran code and due to code be poorly structured.

The data structures used in MD developed versions were not thoroughly optimized, nor to reduce
the occupied memory space neither for better exploring memory affinity.

The future work could be to integrate the developed code in MOIL, a much more complete MD
package, in order to allow vectorization. This would improve the performance of MOIL, since it
does not support vectorization.

The development of a better memory management would also permit performance improvements
as it is shown in the MPI execution for many processes.

Another topic to explore in the future would be to include in the calculation of forces other
components besides van der Waals, especially the electrostatic component.

50



B I B L I O G R A P H Y

Stewart A Adcock and J Andrew McCammon. Molecular dynamics: survey of methods for
simulating the activity of proteins. Chemical reviews, 106(5):1589–1615, 2006.

B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. The

Journal of Chemical Physics, 27(5):1208–1209, 1957. doi: http://dx.doi.org/10.1063/1.
1743957. URL http://scitation.aip.org/content/aip/journal/jcp/27/

5/10.1063/1.1743957.

Herman JC Berendsen, David van der Spoel, and Rudi van Drunen. Gromacs: A message-
passing parallel molecular dynamics implementation. Computer Physics Communications, 91
(1):43–56, 1995.

Bernard R Brooks, Robert E Bruccoleri, Barry D Olafson, David J States, S Swaminathan, and
Martin Karplus. Charmm: A program for macromolecular energy, minimization, and dynam-
ics calculations. Journal of computational chemistry, 4(2):187–217, 1983.

W Michael Brown, Peng Wang, Steven J Plimpton, and Arnold N Tharrington. Implementing
molecular dynamics on hybrid high performance computers–short range forces. Computer

Physics Communications, 182(4):898–911, 2011.

Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

Ron Elber, Adrian Roitberg, Carlos Simmerling, Robert Goldstein, Haiying Li, Gennady
Verkhivker, Chen Keasar, Jing Zhang, and Alex Ulitsky. Moil: A program for simulations
of macromolecules. Computer Physics Communications, 91(1):159–189, 1995.

The MPI Forum. Mpi: A message passing interface, 1993.

Michael Griebel, Stephan Knapek, and Gerhard Zumbusch. Numerical simulation in molecular

dynamics: numerics, algorithms, parallelization, applications, volume 5. Springer Science &
Business Media, 2007.

51

http://scitation.aip.org/content/aip/journal/jcp/27/5/10.1063/1.1743957
http://scitation.aip.org/content/aip/journal/jcp/27/5/10.1063/1.1743957


Bibliography

Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of biomolecules.
Nature Structural & Molecular Biology, 9(9):646–652, 2002.

Andrew R. Leach. Molecular modelling: principles and applications. Pearson Education, 2001.

JA McCammon. Molecular dynamics study of the bovine pancreatic trypsin inhibitor. Models

for Protein Dynamics, page 137, 1976.

David A Pearlman, David A Case, James W Caldwell, Wilson S Ross, Thomas E Cheatham III,
Steve DeBolt, David Ferguson, George Seibel, and Peter Kollman. Amber, a package of com-
puter programs for applying molecular mechanics, normal mode analysis, molecular dynamics
and free energy calculations to simulate the structural and energetic properties of molecules.
Computer Physics Communications, 91(1):1–41, 1995.

James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth
Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and Klaus Schulten. Scalable
molecular dynamics with namd. Journal of computational chemistry, 26(16):1781–1802,
2005.

Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of compu-

tational physics, 117(1):1–19, 1995.

A Rahman. Correlations in the motion of atoms in liquid argon. Physical Review, 136(2A):A405,
1964.

Richard M Russell. The cray-1 computer system. Communications of the ACM, 21(1):63–72,
1978.

A Peter Ruymgaart and Ron Elber. Revisiting molecular dynamics on a cpu/gpu system: Water
kernel and shake parallelization. Journal of chemical theory and computation, 8(11):4624–
4636, 2012.

A Peter Ruymgaart, Alfredo E Cardenas, and Ron Elber. Moil-opt: Energy-conserving molecular
dynamics on a gpu/cpu system. Journal of chemical theory and computation, 7(10):3072–
3082, 2011.

Lorna A Smith, J Mark Bull, and J Obdrizalek. A parallel java grande benchmark suite. In
Supercomputing, ACM/IEEE 2001 Conference, pages 6–6. IEEE, 2001.

52



Bibliography

University of Minho. Search - services and advanced research computing with htc/hpc clusters,
2015. URL http://www4.di.uminho.pt/search/pt/.

53

http://www4.di.uminho.pt/search/pt/


A
A N N E X E S

A.1 C O D E S N I P P E T S

// Iterate over all particles

for (int a=0; a<pend; a++)

{

//Number of neighbors for particle a

nnbrs = nrNbrAtomsPar[a];

// Get particle coordinates

ix = CoorX[i];

iy = CoorY[i];

iz = CoorZ[i];

// Initialize Force and Energy variables

double AtiFx = 0.0, AtiFy = 0.0, AtiFz = 0.0;

double ELJ = 0.0, EElec = 0.0;

// Iterate over the particle neighbors

for (int n=0; n<nnbrs; n++)

{

// Get neighbor information

struct NBPair nbr = NBPair[a*MAX_NR_NB_NBRS + n];

// Index of the neighbor

j = nbr.x;

float Evdw = 0.0;

// Test if the current particle is inside the cut-off

// and adjust the particle if it is outside the domain

rx = ix - CoorX[j];

54



A.1. Code Snippets

ry = iy - CoorY[j];

rz = iz - CoorZ[j];

// applying periodic boundary condition

if (rx > cellxhlf)

rx -= cellxhlf*2.0f

else if (rx < -1.0f*cellxhlf)

rx += cellxhlf*2.0f;

if (ry > cellyhlf)

ry -= cellyhlf*2.0f;

else if (ry < -1.0f*cellyhlf)

ry += cellyhlf*2.0f;

if (rz > cellzhlf)

rz -= cellzhlf*2.0f;

else if (rz < -1.0f*cellzhlf)

rz += cellzhlf*2.0f;

r2 = rx*rx + ry*ry + rz*rz;

if (r2 < UCell.dMaxInnerCut2)

{

// Calculate vdW force using LJ

r =sqrt(r2); invr2=1.0f/r2; invr6=(invr2*invr2*invr2)*valid;

FLJ=-12.0f*nbr.y*invr6*invr6*invr2+6.0f*nbr.z*invr6*invr2;

// Calculate energy

Evdw = (nbr.y * invr6*invr6 - nbr.z * invr6);

float df = FLJ - Fe;

// Accumulate forces exerted on a particle

AtiFx += df*rx; AtiFy += df*ry; AtiFz += df*rz;

// Subtract particle force of the neighbor particle

StoreXDP[j + cpuForceSpacing*tid] -= df*rx;

StoreYDP[j + cpuForceSpacing*tid] -= df*ry;

StoreZDP[j + cpuForceSpacing*tid] -= df*rz;

ELJ += Evdw;

EElec += Eel;

}

// Add accumulated forces exerted on a particle

StoreXDP[i + cpuForceSpacing*tid] += AtiFx;

StoreYDP[i + cpuForceSpacing*tid] += AtiFy;

StoreZDP[i + cpuForceSpacing*tid] += AtiFz;

55



A.1. Code Snippets

// Store the calculated energies

StoreX[a + cpuForceSpacing*tid] = ELJ;

StoreY[a + cpuForceSpacing*tid] = EElec;

}

Listing A.1: Full For cycles that calculate the forces exerted on each particle by its neighbors.

56



A.2. Vectorized MD

A.2 V E C T O R I Z E D M D

Table 5.: Execution time in seconds of sequential versions, with and without vectorization.

# Particles Sequential version (doubles) Sequential with cells Vectorized with cells

864 0.0072 0.0146 0.0037
2048 0.0395 0.0821 0.0204
8788 0.5189 1.4746 0.3462

19652 1.9834 7.2933 1.6482
256000 236.6037 155.0428 34.9592
500000 870.1428 250.9159 57.4275

1000000 4089.8579 621.1615 142.0364

57



A.3. Parallelism

A.3 PA R A L L E L I S M

A.3.1 Shared Memory

Table 6.: OpenMP without vectorization.
Threads 1 2 4 8 12 24 48

864 0.0147 0.0148 0.0148 0.0149 0.0151 0.0153 0.0189
2048 0.0822 0.0822 0.0823 0.0824 0.0827 0.0830 0.0870
8788 1.4758 0.8408 0.5161 0.4527 0.4677 0.4539 0.4641

19652 7.3983 4.1002 2.5137 2.2619 2.3388 2.2145 2.4566
256000 155.8701 80.2344 40.9097 21.2081 11.2517 8.1294 6.7187
500000 250.3708 129.7339 66.5046 34.1582 18.2753 13.6791 10.5522

1098500 622.9440 319.7720 163.3502 83.8392 44.8257 32.0778 26.7143

Table 7.: OpenMP with vectorization.
Threads 1 2 4 8 12 24 48

864 0.0038 0.0040 0.0039 0.0040 0.0047 0.0043 0.0074
2048 0.0207 0.0207 0.0208 0.0209 0.0210 0.0212 0.0245
8788 0.3472 0.2050 0.1261 0.1136 0.1102 0.1132 0.1190
19652 1.6505 0.9500 0.5789 0.5062 0.5155 0.5197 0.5244

256000 34.9906 18.1692 9.4675 5.0042 2.9218 2.4104 2.3651
500000 57.5471 30.5700 16.0529 8.6894 5.3652 4.4143 4.3553

1098500 142.2847 75.2901 39.8999 21.7349 13.6179 11.8125 10.3134

58



A.3. Parallelism

A.3.2 Distributed Memory

Table 8.: Execution time in a single node and without vectorization.
Processes 1 2 4 8 12 24 48

864 0.0141 0.0145 0.0143 0.0145 0.0145 0.0151 0.2468
2048 0.0789 0.0789 0.0795 0.0798 0.0798 0.0802 0.0829
8788 1.4487 0.8165 0.4976 0.3388 0.3393 0.3423 0.3518

19652 7.2529 4.0906 2.4979 1.7025 1.8723 1.7046 1.7542
256000 155.6923 79.8065 40.9352 21.0577 15.2849 8.2304 6.6735
500000 253.6548 131.0393 67.5781 36.2946 25.2909 14.6522 17.0238
1098500 639.8329 324.9159 168.1529 88.7116 63.1664 76.8695 121.1999

Table 9.: Execution time using processes distributed by 2 nodes without vectorization.
Processes 1 2 4 8 12 24 48

864 0.0141 0.0146 0.0147 0.0146 0.0146 0.0147 0.0150
2048 0.0798 0.0799 0.0803 0.0798 0.0797 0.0798 0.0803
8788 1.4491 0.8202 0.5297 0.3411 0.3410 0.3438 0.3449

19652 7.2539 4.0889 2.5024 1.7670 1.7070 1.7075 1.7079
256000 155.6163 79.9845 41.1101 21.2432 15.2803 8.2685 4.6374
500000 255.2944 130.9260 68.0146 36.0947 24.7070 14.8324 10.4403

1098500 640.9793 329.2739 168.5545 89.8829 60.8151 39.0355 37.7743

59



A.3. Parallelism

Table 10.: Execution time using vectorization in a single node.
Processes 1 2 4 8 12 24 48

864 0.0033 0.0033 0.0035 0.0037 0.0037 0.0038 0.0407
2048 0.0175 0.0176 0.0183 0.0177 0.0183 0.0192 0.0412
8788 0.3229 0.3037 0.1107 0.0761 0.0764 0.0769 0.0836
19652 1.5980 0.9010 0.5486 0.3767 0.3740 0.3748 0.3742

256000 34.8899 17.9883 9.2859 4.8522 3.5628 1.9780 1.7022
500000 59.1605 30.8997 16.5459 9.9376 8.0299 5.6929 8.1389

1098500 151.5489 78.9740 42.2401 25.4459 21.4807 24.2048 41.5795

Table 11.: Execution time using processes distributed by 2 nodes using vectorization.
Processes 1 2 4 8 12 24 48

864 0.0033 0.0036 0.0038 0.0037 0.0039 0.0038 0.0057
2048 0.0175 0.0190 0.0191 0.0185 0.0191 0.0186 0.0188
8788 0.3233 0.1835 0.1129 0.0782 0.1093 0.0787 0.0812
19652 1.5973 0.9037 0.5552 0.3812 0.3776 0.3781 0.3780

256000 34.8764 18.0514 9.3603 5.0225 3.5826 2.1430 1.9410
500000 59.1848 30.9478 16.5833 9.8641 7.3911 6.4350 6.7135

1098500 151.4328 79.0744 42.2098 24.2887 18.9638 17.6650 81.2250

A.3.3 Hybrid

1	

2	

4	

8	

16	

32	

64	

128	

1	 2	 4	 8	 16	 32	 64	 128	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 26.: Speedup without vectorization of the hybrid version with only one process in one node.

60



A.3. Parallelism

1	

2	

4	

8	

16	

32	

64	

128	

1	 2	 4	 8	 16	 32	 64	

Sp
ee
du

p	

#Total	Threads	

256000	 500000	 1098500	

Figure 27.: Speedup with vect. of hybrid NUMA with 2 processes in 1 nodes.

61


	Contents
	Introductory material
	1 Introduction
	2 State of the art
	2.1 Domain
	2.2 Algorithms
	2.3 Optimizations
	2.3.1 Parallelism exploitation

	2.4 Molecular Dynamics Packages


	Core of the dissertation
	3 Implementation of Molecular Dynamics Optimizations
	3.1 Development Outline
	3.2 MD Sequential Version
	3.3 MD Vectorization
	3.3.1 Code modifications

	3.4 Parallelization
	3.4.1 MD Shared Memory Implementation
	3.4.2 MD Distributed Memory Implementation
	3.4.3 MD Hybrid Implementation


	4 Results
	4.1 Test Environment
	4.2 Case Study
	4.3 MD Sequential Versions
	4.4 Vectorized MD
	4.5 Parallelisation of MD
	4.5.1 Shared memory version
	4.5.2 Distributed memory version
	4.5.3 Hybrid version

	4.6 Gromacs

	5 Conclusions and future work

	A Annexes
	A.1 Code Snippets
	A.2 Vectorized MD
	A.3 Parallelism
	A.3.1 Shared Memory
	A.3.2 Distributed Memory
	A.3.3 Hybrid



