
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Vitor Manuel Parreira Pereira

A deductive verification tool
for cryptographic software

September 2015

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Vitor Manuel Parreira Pereira

A deductive verification tool
for cryptographic software

Master dissertation
Master Degree in Computing Engineering

Dissertation supervised by
Manuel Bernardo Martins Barbosa
José Carlos Bacelar Almeida

September 2015

AC K N OW L E D G M E N T S

Two years have past since I enrolled my masters program. In the end, it all comes to this document:

this is the document that will be rated and that will define my final classification. But for me, this

thesis is much more than the realisation of a project. It is the culmination of two great years, that were

influenced by a very special set of people, to whom I am grateful for.

Primarily, I would like to thank my supervisors, Prof. Manuel Bernardo Martins Barbosa and Prof.

José Carlos Bacelar Almeida. I cannot imagine a better duo to supervise me! To Prof. Manuel

Barbosa, for all the patience, all the joy, all the guidance and all the opportunities that you provided

me. I really enjoyed our collaboration and I hope it lasts many years! To Prof. Bacelar, for all the

important and wise comments that helped to unlock many difficulties found in the project. Thank you,

thank you both very much!

I would like to thank the person that wakes me up every day with a hearty ”Good morning!”, my

dear girlfriend Filipa Cruz. Even though I could not count on you physically, you were always with

me and available for every thing that I wanted. You have the ability to cheer me up every time and

your presence is enough to make me win the day. We were made for helping, not for ruling, made for

love.

To all the MFES family, thank you! Thank you for your help integrating me in the university and in

the city. I cannot finish this paragraph without mentioning four people. To Paulo Silva, my dear Paulo

Silva, thank you for your energy, for your unconditional friendship and for many joyful moments you

gave me! I will never, but never, forget that lunch, where I heard your loud voice yelling ”Ó patrão,

senta aqui com a gente!”. If there are seconds that can change a lifetime, those were the seconds. To

Óscar Pereira, the Indian that is not Indian, thank you for your patience. I cannot imagine how many

patience is needed to endure me! I’m glad that we will continue to work together, side by side, at

least another year. To Victor Cacciari Miraldo, thank you for the most crazy moments you provided

me and the group and for all the nights spent in my couch, developing the most exoteric projects. It

is a pleasure to receive you every time you visit Braga and I hope you have a couch for me in the

Netherlands! Finally, to Jorge Lobo. You, literally, blasted my mind. I think in a different way, I see

in a different way and I live in a different way thanks to you. Thank you for your unlimited wisdom

and intelligence, for the most crazy conversations we had and for the friendship we developed. I don’t

know about you, but when I met you, I felt that you were friends for 10 years already!

I cannot forget those that are not with me right now, but that will never stop to be my friends. Tiago

Carvalho, Diogo Oliveira and Nuno Garcia, no one will ever replace you and wipe you out of my

memory. Tiago Carvalho, the laziest person I know, you may be quiet and shy, but you are there every

time I need you. For that, thank you. To Diogo Oliveira, thank you for 17 years of friendship. It is

interesting to see how our friendship evolved. You should try this mentar exercise some time! And,

to Nuno Garcia, thank you for being with me in the most important moments of my life in Covilhã. It

wouldn’t be the same without you. I sincerely hope that, somewhere in the future, we will be reunited

once more my friends!

I also thank to my lifetime friends Bruno Costa, Joana Diniz and Inês Martins. I know I can count

on you every time and that you will always support me, no mather how. Thank you all, for everything!

A special thank to all my family, that, one way or another, kept side by side with me during these

two years. Of course I need to individualise my dear cousin Xana, for being one of the most important

people of my life and for being my life mate!

A special gratitude to my godfather Paulo Fiadeiro, for being present in the good and in the bad

moments. It is not easy to express with words the thanks you deserve. I will be forever grateful for

what you have done for me and it is a privilege to be your friend!

To the person that will, for sure, write his name in the history of Computer Science, my brother

Mário Pereira, I leave here my great appreciation. Thank you for your availability, whenever I need,

no matter the distance. Keep it up, you will make history!

To my mother Ernesta Parreira, who does not know English, I still write her a paragraph. Of course

I do, it was impossible not to thank for supporting me in every new journey of my life, no matter how

much it will cost you. I will be there for you every time you need, because from now on, it is me who

will take care of you!

Finally, my last gratefulness belongs to my father Mário Pereira. I’m certain that you are reading

this letters I am writing and you are smilling on then, just like you did on everything. I’m sure that

all the strength I feel comes directly from you and that you will continue to be on my side every day.

Many thanks to you dad, for all that you though me.

a

A B S T R AC T

Security is notoriously diffcult to sell as a feature in software products. In addition to meeting a set

of security requirements, cryptographic software has to be cheap, fast, and use little resources. The

development of cryptographic software is an area with specific needs in terms of software development

processes and tools. In this thesis we explore how formal techniques, namely deductive verification

techniques, can be used to increase the guarantees that cryptographic software implementations indeed

work as prescribed.

CAO (C and OCCAM) is a programming language specific to the domain of Cryptography. Con-

trol structures are similar to C, but it incorporates data types that deal directly with the needs of a

programmer when translating specifications of cryptographic schemes (eg, from scientific papers or

standards) to the real world. CAO language is supported by a compiler and an interpreter developed

by HASLab, in a sequence of research and development projects.

The CAOVerif tool was designed to allow deductive verification programs written in CAO. This

tool follows the same paradigm as other tools available for high level programming languages, such

as Frama-C, according to which a CAO program annotated with a specification is converted in an

input program to the Jessie/Why3 tool-chain, where the specified properties are then analysed.

After the development of CAOVerif, a new tool, specific to the domain of Cryptography - named

EasyCrypt - was developed. The objective of this project is to evaluate EasyCrypt as a potential

backend for the CAOVerif tool, through the development of a prototype that demonstrates the advan-

tages and disadvantages of this solution.

b

R E S U M O

O software criptográfico possui requisitos especı́ficos para garantir a segurança da informação que

manipula. Além disso, este tipo de software necessita de ser barato, rápido e utilizar um número

reduzido de recursos. Garantir a segurança da informação que é manipulada por tais sistemas é um

grande desafio, sendo por isso de grande objecto de estudo actualmente. Nesta tese exploramos como

as técnicas formais, nomeadamente as técnicas de verificação dedutiva, podem ser utilizadas por forma

a garantir que as implementações de software criptográfico funcionam, de facto, como prescrito.

CAO (C and OCCAM) é uma linguagem de programação especı́fica para o domı́nio da crip-

tografia. As estruturas de controlo são semelhantes às da linguagem C, mas incorpora tipos de da-

dos e operadores que tratam de forma direta as necessidades de um programador na transposição de

especificações de esquemas criptográficos (e.g., de artigos cientı́ficos ou standards) para o mundo

real. A linguagem CAO é suportada por um compilador e por um interpretador desenvolvidos pelo

HASLab numa sequência de projetos de investigação e desenvolvimento.

A ferramenta CAOVerif foi concebida para permitir a verificação dedutiva de programas escritos

em CAO. Esta ferramenta segue o paradigma de outras ferramentas disponı́veis para linguagens de

programação de alto nı́vel, como por exemplo o Frama-C, de acordo com o qual um programa CAO
anotado com uma especificação é convertido num programa de input para a tool-chain Jessie/Why3,

onde as propriedades especificadas são depois analisadas.

Depois do desenvolvimento do CAOVerif surgiu uma nova ferramenta de verificação especı́fica

para o domı́nio da criptografia, denominada EasyCrypt. O objetivo desta proposta de dissertação é

a avaliação do EasyCrypt como potencial backend da ferramenta CAOVerif, através do desenvolvi-

mento que um protótipo de demonstre as vantagens e desvantagens desta solução.

c

C O N T E N T S

Contents iii

1 I N T RO D U C T I O N 3

1.1 The CAO language 4

1.2 Deductive program verification 5

1.3 Verification of cryptographic software 5

1.4 EasyCrypt 6

1.5 Motivation 7

1.6 Objectives 7

1.7 Document structure 8

2 T H E O R E T I C A L B AC K G RO U N D 10

2.1 Type systems 10

2.1.1 Judgements 10

2.1.2 Type rules 11

2.1.3 Type derivations 11

2.1.4 Well typing and type inference 12

2.2 While language 12

2.3 Hoare logic 14

2.3.1 Annotated While language 14

2.3.2 Specifications and Hoare triples 15

2.3.3 Hoare calculus 16

2.4 Probabilistic Hoare logic 17

2.4.1 A probabilistic While language - pWhile 18

2.4.2 Bounded Hoare triples 18

2.4.3 Probabilistic Hoare calculus 19

2.5 Probabilistic relational Hoare logic 20

2.5.1 Relational Hoare logic 21

2.5.2 Probabilistic relational Hoare calculus 21

2.5.3 Provable security 23

2.5.4 Verifiable security 24

2.6 Software formal verification 25

2.6.1 Safety properties 25

2.6.2 Extensions to Hoare logic for realistic programs 27

2.6.3 Focus on automation vs focus on interactivity 30

iii

Contents

2.7 State of the art tools for verification of cryptographic software 31

3 C AO S P E C I F I C AT I O N 33

3.1 CAO syntax 33

3.2 CAO type system 34

4 C AO - S L S P E C I F I C AT I O N 45

4.1 Logic expressions 45

4.1.1 Operator precedence 47

4.1.2 Semantics 47

4.1.3 Types in logic expressions 47

4.2 Function contracts 48

4.2.1 Constructors old and result 48

4.2.2 State and locations 49

4.3 Statement annotations 49

4.3.1 Assertions 49

4.3.2 Loop annotations 49

4.4 Logic specifications 51

4.4.1 Functions 51

4.4.2 Predicates 51

4.4.3 Lemmas 52

4.4.4 Axiomatic definitions 53

4.5 Ghost code 53

5 E A S Y C RY P T T O O L S E T 55

5.1 An example of EasyCrypt 55

5.2 Proving in EasyCrypt 59

5.2.1 Proof engine 60

5.2.2 Ambient logic 61

5.2.3 Program logics 62

5.2.4 A proof example: Correctness of BR93 63

6 A N E W C AOV E R I F 66

6.1 A new architecture for CAOVerif 67

6.2 An OCaml implementation of the CAO typechecker 67

6.2.1 CAO + CAO-SL: a new language 68

6.2.2 Additions to the CAO language 69

6.3 Formalisation of the CAO types in EasyCrypt 72

6.3.1 Integer type 72

6.3.2 Boolean type 73

6.3.3 Ring/field type 73

6.3.4 Register int type 77

iv

Contents

6.3.5 Bit string type 78

6.3.6 Extension field type 81

6.3.7 Vector type 84

6.3.8 Matrix type 87

6.4 CAO to EasyCrypt mapping algorithm 91

6.4.1 Preprocessing 92

6.4.2 Global integer constants 93

6.4.3 Type cloning 93

6.4.4 A CAO program as an EasyCrypt module 95

6.5 CAO-SL to EasyCrypt mapping algorithm 99

6.5.1 Logic specifications 99

6.5.2 Ghost code 101

6.5.3 Function contracts 101

6.5.4 Statement annotations 103

6.5.5 A proof script 103

6.6 Safety properties 104

6.6.1 The safe predicate in EasyCrypt 104

6.6.2 A safety-sensitive EasyCrypt scheme 109

6.6.3 Safety proofs 110

7 C O N C L U S I O N S A N D F U T U R E W O R K 112

7.1 Old CAOVerif vs. new CAOVerif 113

7.2 Future work 114

v

L I S T O F F I G U R E S

Figure 1 While language syntax. 13

Figure 2 Extension to the While language - annotations 15

Figure 3 Inference system of Hoare logic 16

Figure 4 Inference system of probabilistic Hoare logic 19

Figure 5 Relation Hoare logic calculus 22

Figure 6 Sampling rules for probabilistic relational Hoare logic 23

Figure 7 Safety-sensitive Hoare calculus 26

Figure 8 Safe predicate 27

Figure 9 Array assigment rule for Hoare logic 28

Figure 10 Array assigment rule for probabilistic Hoare logic 28

Figure 11 Array assigment rule for probabilistic relational Hoare logic 28

Figure 12 Safety-sensity array assignement rule 29

Figure 13 Procedure call rule for Hoare logic 29

Figure 14 Procedure call rule for probabilistic Hoare logic 30

Figure 15 Procedure call rule for probabilistic relational Hoare logic 30

Figure 16 CAO formal syntax 33

Figure 17 Definition of function ϕ∆ 35

Figure 18 Type translation 36

Figure 19 Typechecking rules for literals 37

Figure 20 Typechecking rules for variables, function calls and struct projections 38

Figure 21 Typechecking rules for boolean operations 38

Figure 22 Typechecking rules for arithmetic operations 39

Figure 23 Typechecking rules for bit string operations 40

Figure 24 Typechecking rules for vector operations 41

Figure 25 Typechecking rules for matrix operations 41

Figure 26 Type checking rules for CAO statements (Part I). 42

Figure 27 Type checking rules for CAO statements (Part II). 43

Figure 28 Typechecking rules for declarations 44

Figure 29 Logic expressions grammar in CAO-SL 46

Figure 30 Grammar for function contracts in CAO-SL 48

Figure 31 Grammar for assertions in CAO-SL 49

Figure 32 Grammar for loop annotations in CAO-SL 50

Figure 33 Grammar for logic specifications in CAO-SL 51

vi

List of Figures

Figure 34 Grammar for inductive predicates in CAO-SL 52

Figure 35 Grammar for axiomatics in CAO-SL 53

Figure 36 Grammar for ghost code in CAO-SL 54

Figure 37 BR95 encryption scheme 55

Figure 38 New CAOVerif architecture 68

Figure 39 Typechecking rule for the sampling operator 70

Figure 40 Typechecking rule for constant definitions 71

Figure 41 Constant mapping 93

Figure 42 Type mapping 94

Figure 43 Global variables mapping 95

Figure 44 Global variables initialisation mapping 96

Figure 45 Global variables with structure type initialisation mapping 96

Figure 46 Bit string literals mapping 97

Figure 47 Function header mapping 97

Figure 48 Local variables mapping 97

Figure 49 Statement mapping 98

Figure 50 Logic functions mapping 99

Figure 51 Predicates mapping 100

Figure 52 Inductive predicates mapping 100

Figure 53 Lemmas mapping 101

Figure 54 Function contracts mapping 102

Figure 55 Relation between CAO statements and EasyCrypt tactics 104

Figure 56 Safety of boolean operations 106

Figure 57 Safety of bit string operations 107

Figure 58 Safety of vector operations 108

Figure 59 Safety of matrix operations 108

Figure 60 Safety-sensitive functions mapping 109

Figure 61 Proof script for safety proofs 111

vii

1

I N T RO D U C T I O N

Cryptography, as the use of codes and ciphers to protect messages, began thousands of years ago.

In fact, one can find registers of the use of cryptography since the Old Kingdom of Egypt - where

hieroglyphs were used to obfuscate data - the ancient Greece - that used the scytale transposition cipher

in the Spartan military - or even in the Roman Empire - where the Caesar cipher and its derivations

were widely used.

However, the cryptographic techniques mentioned above were monoalphabetical, i.e., a key of the

form A → A (for some alphabet A) was fixed and every character of the input message was mapped

to some other character according to the substitution key. These cryptosystems were easily broken

with the invention of frequency analysis attacks. A frequency analysis attack consists in performing

an analysis on the number of times that each letter of the alphabet appears in the ciphertext and then

using a frequency table - containing the letters of A and the frequency with which each letter appears

in a common text written in that alphabet - to invert the substitution made during the encryption.

Therefore, cryptography advanced to the polyalphabetical ciphers. The main difference between

these encryption techniques and the previous ones is the key: instead of using a simple substitution

key A → A, keys of the form A → A∗ started to be used and the one letter from the alphabet A
could be mapped into any possible letter of A instead of just one. Nevertheless, these cryptosystems

were, one more time, broken with recurse to frequency analysis attacks.

It was until the XX century that cryptography suffered more major changes, with the invention of

the one-time pad. The one-time pad consists in using one key k ∈ {0, 1}∗, with the same size of the

message m ∈ {0, 1}∗ and perform the bitwise XOR operation in order to get a ciphertext c ∈ {0, 1}∗.
This is the only cryptosystem that can not be broken, if used correctly (one key is used to cipher one

and only one message). Yet, one-time pad has a lot of overheads that makes it impossible to use it in

practice, like the need for the key to be of the same size of the plaintext, the need to generate a new

key every time in order to cipher a new message and even the fact that it is only secure with respect to

passive adversaries.

During WWII, mechanical and electromechanical cipher machines were in wide use, as the Ger-

mans made heavy use of the well known Enigma machine. The Enigma machine was only broken

with recurse to reverse engineering that was made using mathematical methods. This event created

a major revolution in cryptography, which stopped to be a subject of linguistics sciences to become

a field of study in mathematics. This fact led to the creation of modern cryptography, where mathe-

3

1.1. The CAO language

matics assume a major importance in the construction of cryptosystems. The security of encryption

schemes started to be reduced to some mathematical assumptions that are believed to be hard to solve

in the existing computational context.

Nowadays, cryptography allows the construction of the most wide range of primitives. One can

use cryptographic primitives to ensure confidentiality over data, its integrity, authenticity, privacy, etc.

And with the proliferation of technology in modern society, cryptography started to be incorporated

in all possible devices, as there is the need to associate security properties to almost all computations

that are made.

The development of cryptographic software is clearly distinct from other areas of software engi-

neering. The design and implementation of cryptographic software draws on skills from mathematics,

computer science and electrical engineering. Also, since security is difficult to sell as a feature in soft-

ware products, cryptography needs to be as close to invisible as possible in terms of computational

and communication load. As a result, cryptographic software must be optimised aggressively, with-

out modifying the security semantics. Finally, cryptographic software is implemented on a very wide

range of devices, from embedded processors with very limited computational power and memory, to

high-end servers, which demand high-performance and low-latency. Therefore, the implementation

of cryptographic kernels imposes a specific set of challenges that do not apply to other system com-

ponents. For example, direct implementation in assembly language is common, not only to guarantee

a more efficient implementation, but also to ensure that low-level security policies are satisfied by the

machine code.

1.1 T H E C AO L A N G UAG E

The CAO language Barbosa et al. (2012) aims to change this state of affairs, allowing natural descrip-

tion of cryptographic software implementations, which can be analysed by a compiler that performs

security-aware analysis, transformation and optimisation. The driving principle behind the design of

CAO is that the language should support cryptographic concepts as first-class language features. Un-

like the languages used in mathematical software packages such as Magma or Maple, which allow

the description of high-level mathematical constructions in their full generality, CAO is restricted to

enabling the implementation of cryptographic components such as block ciphers, hash functions and

sequences of finite field arithmetic for Elliptic Curve Cryptography (ECC).

CAO preserves some higher-level features to be familiar to an imperative programmer, whilst fo-

cusing on the implementation aspects that are most critical for security and efficiency. The memory

model of CAO is, by design, extremely simple to prevent memory management errors (there is no

dynamic memory allocation and it has call-by-value semantics). Furthermore, the language does not

support any input/output constructions, as it is targeted at implementing the core components in cryp-

tographic libraries. In fact, a typical CAO program comprises only the definition of a global state

and a set of functions that allow performing cryptographic operations over that state. Conversely, the

4

1.2. Deductive program verification

native types and operators in the language are highly expressive and tuned to the specific domain of

cryptography. In short, the design of CAO allowed trading off the generality of a language such as C

or Java, for a richer type system that permits expressing cryptographic software implementations in a

more natural way.

CAO introduces as first-class features pure incarnations of mathematical types commonly used in

cryptography (arbitrary precision integers, ring of residue classes modulo an integer, finite field of

residue classes modulo a prime, finite field extensions and matrices of these mathematical types) and

also bit strings of known finite size. A more expressive type system would be expected from any

domain-specific language. However, in the case of CAO, the design of the type system was taken a

step further in order not only to allow an elegant formalisation of the type checking rules, but also

to allow the efficient implementation of a type checking system that performs extensive preliminary

validation of the code, and extracts a very rich body of information from it. This fact makes the CAO
type checker a critical building block in the implementation of compilation and formal verification

tools supporting the language.

1.2 D E D U C T I V E P RO G R A M V E R I F I C AT I O N

Program verification is the area of Formal Methods that aims to statically check software properties

based on the axiomatic semantics of programming languages. In this master thesis we focus on

techniques based on Hoare logic, brought to practice through the use of contracts – specifications

consisting of preconditions and postconditions, annotated into the programs. Verification tools based

on contracts are becoming increasingly popular, as their scope evolved from toy languages to realistic

fragments of languages like C, C#, or Java. We use the expression deductive verification to distinguish

this approach from other ways of checking properties of programs, such as model checking.

1.3 V E R I F I C AT I O N O F C RY P T O G R A P H I C S O F T WA R E

One may be tempted to define the verification of cryptographic software as a subset of software verifi-

cation and use deductive program verification in order to perform the desired proofs. However, cryp-

tographic software is not deterministic (as there are, for example, random samplings in key generation

algorithms or in encryption algorithms) and the Hoare logic does not deal with these probabilistic

states. Therefore, there is the need to extend the Hoare logic with means to perform probabilistic

reasoning, resulting in the probabilistic Hoare logic.

Additionally, when dealing with cryptography, developing functional correctness or safety proofs

is important but one must also prove that some scheme provides the desired security property. Typical

security proofs consist in reducing the security of some primitive to some mathematical assumption

that is believed hard in the existing computation model. At the end of the reduction, one may argue

5

1.4. EasyCrypt

that breaking the security property of the primitive is as hard as breaking the mathematical assumption

and that there are no polynomial time adversaries that are able to do so.

A reduction proof can be made using a game-based approach: one defines a cryptographic game

(a program where an adversary tries to break a security property), that represents the advantage that

an adversary has in breaking the security property of some given primitive. After, one can build a

sequence of indistinguishable games and prove the equivalence between all the games in the proof.

Obviously, one needs to have some form of reasoning about equivalences between programs. This is

done using probabilistic relational Hoare logic, which contemplates a calculus that allows the compar-

ison between two probabilistic programs. If an equivalence proof between two programs C and C′ is

successful, then C and C′ are computationally indistinguishable.

1.4 E A S Y C RY P T

EasyCrypt is a toolset for reasoning about relational properties of probabilistic computations with

adversarial code. Its main application is the construction and verification of game-based cryptographic

proofs. Initial applications of EasyCrypt focus on encryption and signature schemes.

EasyCrypt, as an interactive proof assistant, contemplates an ambient logic to deal with proposi-

tions, the original Hoare logic to deal with deterministic reasoning, the probabilistic Hoare logic to

allow one to reason about some probabilistic state and the probabilistic relational Hoare logic in order

to perform equivalence proofs.

The EasyCrypt tool incorporates some mechanisms that allow a better structuration of the proof,

like theories and modules. A theory allows the high-level description of some mathematical structure,

that can after be instantiated to some concrete implementation. For example, one can define a Monoid

theory, stating that a monoid is some algebraic structure with elements of some type τ, with an

operation ⊕ and with two axioms associated with τ and ⊕ - associativity of ⊕ (∀x, y, z : τ, (x ⊕
y)⊕ z = x ⊕ (y⊕ z)) and the existence of an identity element (∃y : τ, ∀x : τ, x ⊕ y = x). After,

the monoid structure can be instantiated with a concrete type. For example, one can instantiate it with

type τ = bool and with a concrete operation XOR, which verifies the previous axioms.

A module is a syntactic unit that allows the declaration of programs (procedures) and variables.

Later, it is possible to reason about properties over these programs using Hoare logic, probabilistic

Hoare logic or probabilistic relational Hoare logic, combined with the available reasoning tactics that

EasyCrypt incorporates.

Although it seems that EasyCrypt is limited to the scope of cryptography and to the development

of security proofs, it allows a lot of different reasonings. Using EasyCrypt’s simple while language

language, one can easily write programs and reason about their functional correctness or even their

safety. This is done by building Hoare triples and, using the Verification Condition Generator (VC-

Gen) that is embedded in EasyCrypt, creating a proof tree can be discharged using SMT solvers,

through the Why3 tool.

6

1.5. Motivation

1.5 M OT I VAT I O N

We have seen that cryptographic software is particularly different from other kinds of software and

that it interleaves a lot of distinct areas in its development. Consequently, its correct development can

turn out to be a very arduous process. Plus, it is also of great importance to be able to perform all the

necessary proofs around cryptographic software.

We have also seen that one can overcome the first identified problem using the CAO language and

overcome the second one using EasyCrypt. However, there is no way of connecting the two platforms

and, in some way, being able to write cryptographic code using a language close to standards and

perform proofs about it in a tool suited to cryptographic reasoning.

The project of this master thesis, and its subsequent tool, aims to connect the two worlds presented

in the previous paragraph. We present a translation between CAO and EasyCrypt that will permit to

write the desired code in a friendly language, annotate it, and then to be able to map their code into

an EasyCrypt script, where one can perform functional correctness proofs, safety proofs and security

proofs. After the proofs being completed, one can generate very efficient C code, that corresponds to

the CAO implementation.

1.6 O B J E C T I V E S

The main objective of this master thesis is to develop a deductive verification platform for CAO
programs, using EasyCrypt as a backend for the tool. The main idea is to map an annotated CAO
program to an EasyCrypt script, and be able to automatically generate all the proof scripts that are

necessary to prove functional correctness and safety of CAO programs.

More in detail, the objectives of this master thesis are the following:

• Investigate the state of the art of deductive verification of cryptographic software - studying

the different approaches that exist to deductive verification of cryptographic software, in order

know how to develop a tool that takes all the advantages of the existing tools but that try to

overcome their difficulties.

• Get involved with the CAO platform and with the EasyCrypt tool - since CAO and Easy-
Crypt are two essential components of the project, it represents an important objective to gain

proficiency with the two tools. Particularly, it is important to understand the semantics of CAO
programs, how to derive EasyCrypt scripts from CAO code and to understand the proof mech-

anisms of EasyCrypt.

• Investigate how EasyCrypt can be used to prove properties about CAO programs - EasyCrypt
was originally developed to support reasoning about probabilistic programs, with particular

focus in cryptography. Therefore, it is important to know how to use EasyCrypt to develop

functional correctness proofs and safety proofs.

7

1.7. Document structure

• Develop a mapping algorithm between a CAO program and an EasyCrypt scheme - the map-

ping between CAO programs and EasyCrypt scripts is of great importance for this work. This

mapping algorithm needs to be sound, so that one is able to fully trust the tool.

• Validate the developed prototype - in order to ensure the correctness and validity of the devel-

oped tool, it will be developed a battery of test.

• Evaluate the use of EasyCrypt as backend for the CAOVerif tool - the CAOVerif tool was de-

veloped before the existence of EasyCrypt and makes use of Frama-C Baudin et al. (2010) to

perform deductive verification of CAO programs. However, despite being a friendly platform to

use, it has some overheads in what concerns time and space efficiency, which can be completely

overcome if one uses EasyCrypt as a backend instead. The final goal of this thesis is to do a

benchmark analysis of the CAOVerif tool, using Frama-C as backend and using EasyCrypt
instead.

1.7 D O C U M E N T S T RU C T U R E

In the second chapter we introduce some theoretical background that form the basis of our contribu-

tions. In particular, we follow the pipeline of formal verification of software, starting by presenting

some concepts about type systems - the first step of the verification of software - and then revisiting

the notions of program reasoning through the presentation of the Hoare logic, used to reason about

functional properties of programs. We show two extensions of the Hoare logic - the probabilistic

Hoare logic and the probabilistic relational Hoare logic - that are more suitable to the work developed.

We end the chapter by introducing more specific concepts about software formal verification that were

followed in this thesis and by presenting some state of the art related to the objects of study of the

project.

In chapter three we present the CAO language, that was one central part of this project. We show

the formal syntax of the language and then present its type system. In this project, the CAO language

was extended with additional features and a deductive verification tool for the verification of programs

written in CAO was developed.

Chapter four focuses on the CAO-SL language, which is the specification language intended to be

used in annotations of CAO programs. Annotations have a central role in deductive verification of

software: together with program instructions, annotations allow one to prove functional properties

about a program. We present the possible annotations allowed by CAO-SL, as well as a formal

grammar for them.

Chapter five is concerned to the presentation of the EasyCrypt toolset. EasyCrypt is a toolset for

reasoning about relational properties of probabilistic computations with adversarial code. Its main

application is the construction and verification of game-based cryptographic proofs. EasyCrypt was

8

1.7. Document structure

used as a backend for the deductive verification tool for CAO. In this chapter, we introduce the basic

EasyCrypt proof mechanisms, as well a proof example.

In chapter six we present the main contributions of this thesis. We start by showing a new implemen-

tation of the CAO typechecker, resulting in an unified language that contemplates the CAO language,

extended with more features and syntactic domains, and the CAO-SL language. Next, we show our

formalisation of the CAO type system in EasyCrypt and we present our translation algorithm, that

maps an annotated CAO program into an EasyCrypt script. We end the chapter with an explanation

of how the tool deals with safety properties of CAO programs.

Finally, in the last chapter of the thesis we summarise our conclusions of the work done, review the

objectives initially proposed for this work and outlook some possible lines of future work.

9

2

T H E O R E T I C A L BAC K G RO U N D

2.1 T Y P E S Y S T E M S

Type systems are introduced in programming languages with the aim of providing a level of static

checking, with a type seen as a formal and concise description of the behaviour of some term (pro-

gram). The main purpose of a type system is to define interfaces between different parts of a computer

program and then check if the parts have been connected in a consistent way. Informally, a type sys-

tem assigns a type to some term (for example, a variable or a function) and then checks if, accordingly

to that type, the term is being used in a correct way. For example, given two variables x and y of the

type Int and the addition operation over the integers +, a new term can be formed combining the two

variables as x + y because both variables are of the correct type. The process of verifying if some

program is written in accordance to its type system is called typechecking. This checking can happen

statically (at compile time), dynamically (at run time), or it can happen as a combination of static and

dynamic checking.

Type systems are often specified as part of programming languages and built into the interpreters

and compilers for them, in order to prevent type errors (a certain kind of value being used with values

for which some operation does not make sense) or, for some programming languages, to prevent

memory errors (invalid accesses to some value in the memory of a computer).

In what follows this section, we provide a lightweight explanation about type systems, mainly

focused on its syntax, following the work of Luca Cardelli in Cardelli (1997).

2.1.1 Judgements

The description of the type system of a programming language is analogous to the description of the

programming language syntax using a formal grammar, since a type system specifies the type rules of

a programming language independently of particular typechecking algorithms.

Type systems are describe by a particular formalism called judgements, with the form

Γ ` Φ

10

2.1. Type systems

where Φ is an assertion and Γ is a type environment. A type environment is a structure that maps

distinct variables to their types, usually defined as a map. The collection of variables declared in Γ is

defined as dom(Γ), i.e., the domain of Γ. All free variables in the assertion Φ must be declared in Γ.

A typing judgement is used to assert that a term M has a type τ with respect to some environment

Γ. It has the form

Γ ` M :: τ

meaning that M has type τ in Γ. For example, [x :: Int] ` x + 1 :: Int means that the term x + 1
has type Int, provided that x has type Int.

One is able to reason about any judgement, by regarding it as valid or invalid, therefore formalising

the notion of well typed programs. In order to distinguish between valid and invalid judgements, we

introduce the notion of type rules, which allow a more suitable way for stating and proving technical

lemmas and theorems over type systems.

2.1.2 Type rules

A type rule is composed of judgements and it aims to assert the validity of some judgements on the

basis of other judgements that are assumed to be valid and has the following form

Γ1 ` Φ1 ... Γn ` Φn

Γ ` Φ

meaning that if the upper judgements (Γ1 ` Φ1 ... Γn ` Φn) - called premises - hold, then the lower

judgement (Γ ` Φ) - called conclusion - also holds.

Recall the previous example. Suppose two given variables, x and y, that are of type Int in some

well-formed environment Γ. The two variables can be combined to form a larger expression x + y,

which also has type Int. The following type rule describes this behaviour.

Γ ` x :: Int Γ ` y :: Int
Γ ` x + y :: Int

A collection of type rules is called a (formal) type system. Technically, type systems fit into the gen-

eral framework of formal proof systems: collections of rules used to carry out step-by-step deductions.

The deductions carried out in type systems concern the typing of programs.

2.1.3 Type derivations

A derivation is a tree of judgments with leaves at the top and the root at the bottom, where each

judgement is obtained from the one immediately above it by some rule. In a type system, a derivation

aims to prove that a root - containing a type judgement for a term - is valid and that the term is well

11

2.2. While language

formed in what respect to types. Naturally, a fundamental requirement on type systems is that it must

be possible to check whether or not a derivation is properly constructed, otherwise one would not be

able to perform any typechecking on any language.

A valid judgement is one that can be obtained by building a correct derivation in a given type

system, i.e., by correctly applying type rules. An example follows.

∅ ` �
∅ ` 1 :: Int

∅ ` �
∅ ` 2 :: Int

∅ ` 1 + 2 :: Int
In the presented derivation, the objective is to attest that the term 1 + 2 has type Int in the empty

environment ∅. Thus, to build the derivation, one starts by dividing the bottom judgment into two new

judgments, one for each term. The literal terms 1 and 2 have type Int in the empty environment and

the derivation is concluded by the following fundamental rule that states that the empty environment

is always well formed.

∅ ` �

2.1.4 Well typing and type inference

Informally, a term M is well typed if it can be given some type. Formally, this statement means that,

in an environment Γ, there is a type τ such that Γ ` M :: τ is a valid judgment.

The process of finding a derivation and a type for some term is called type inference. For the

example above, a type could be inferred for the term 1+ 2 because it was possible to build a derivation

tree for it. However, suppose there exists another judgement Γ ` true :: Bool. A type could not be

inferred for the term 1 + true because it was not possible to build a derivation for the term. We say

that 1 + true is not typeable. Nevertheless, if one adds a the rule

Γ ` M :: Int Γ ` N :: Bool
Γ ` M + N :: Int

, the previous term would be typeable. Hence, the type inference process is very sensitive to the type

system in question.

2.2 W H I L E L A N G UAG E

In this section, we describe the general structure of the simple imperative languages, which are usually

called While languages. These languages only contemplate simple constructions, such as the skip

command (do nothing command), assignments, sequential composition, while loops and conditional

executions. A more detailed syntax is of the While language is shown in Figure 1.

12

2.2. While language

Expτ 3 eτ ::= xτ

| f t(eτ1
1 , ..., eτn

n), for f τ ∈ F Exp, with τ 6= bool and rank(f τ) =
〈τ1, ..., τn〉

Expbool 3 b ::= true
| false
| ¬b
| b1 ∧ b2
| b1 ∨ b2
| e1 = e2
| e1 6= e2
| e1 < e2
| e1 ≤ e2
| e1 > e2
| e1 ≥ e2

Comm 3 C ::= skip
| C1 ; C2
| xτ := eτ

| if b then C1 else C2
| while b do C

Figure 1: While language syntax.

13

2.3. Hoare logic

We abstract the types of the While language since it can be instantiated for all types. For example,

one can define a Whileint language, which represents a While language that enables integer operations

or a Whileint array language, that contemplates operations over integers and integer arrays.

Despite being a very simple language, the While language is of a great interest for Computer Sci-

ence, mainly in the scope of deductive program verification, because one can define a set of rules and

axioms around it to be able to prove properties like functional correctness or safety. The derivation

rules are of the form
θ

{φ}C{ψ}

where C ∈ Comm, θ, φ, ψ are first-order logic predicates and the objective it to prove that, if θ holds,

then if φ holds at some state and C is executed in that state, ψ will hold at the resulting state of the

execution of C.

2.3 H O A R E L O G I C

The Hoare Logic Hoare (1969) is a formal system to reason about correctness of imperative programs,

building on first-order logic. For now, we will study Hoare logic for simple While programs.

The notion of correctness in Hoare Logic is expressed in terms of Hoare triples used to specify

the desired behaviour of the underlying programs. This specification consists of a precondition and

a postcondition. The correctness of a program with respect to a given specification is asserted by

constructing a derivation in the inference system of Hoare logic that attests the validity of the Hoare

triple. While doing so, one must identify an invariant for every loop in the program.

In what follows this chapter, we will introduce some theoretical concepts inherent to the formal

verification of software, having as reference the book Almeida et al. (2011).

2.3.1 Annotated While language

In order to able to correctly reason about programs written in While language, there is the need to

extend its syntax with the introduction of means to add annotations, i.e., pre- and postconditions

to functions, loop invariants and possible assertions in the middle of the code. Preconditions are

predicates that hold at the beginning of the execution of a piece of code and, inversely, postconditions

are predicates that hold at the end of the execution of a piece of code. A loop invariant is any property

that is preserved by executions of the loop’s body. Additionally, one may also provide a loop variant,

that represents some value that is used to prove the termination of the loop. These annotations are

typically introduced at the definition of a function, meaning that, given a function F, annotated with

the precondition φ and with the postcondition ψ - {φ}F{ψ} -, if φ is assumed to hold at the beginning

of the execution of F, ψ will hold at the end of the execution of F.

The While language is then extend as presented in Figure 2.

14

2.3. Hoare logic

Comm 3 C ::= ...
| while b do {θ} C
...

Assert 3 φ, ψ, θ ::= tbool

| true
| false
| ¬φ
| φ ∧ ψ
| φ ∨ ψ
| φ⇒ ψ
| φ⇔ ψ
| ∀xτ.φ
| ∃xτ.φ

Figure 2: Extension to the While language - annotations

2.3.2 Specifications and Hoare triples

The correction of a program is defined relatively to the specification of that program. The specification

of a program consists in a precondition - an assertion that is assumed to hold at the beginning of the

execution of the program - and a postcondition - an assertion that must hold at the end of the execution

of that program.

The notion of correctness in Hoare logic can be expressed in two ways:

• Total correctness - given a precondition φ, a postcondition ψ and some program C, such that φ

and ψ are specifications for C, if φ holds in a given state and C is executed in that state, then

the execution of C will stop, and moreover ψ will hold in the final state of execution;

• Partial correctness - given a precondition φ, a postcondition ψ and some program C, such that

φ and ψ are specifications for C, if φ holds in a given state and C is executed in that state, then

either execution of C does not stop, or if it does, ψ will hold in the final state;

To be able to reason formally about correctness, we introduce two new classes of formulas called

Hoare triples.

[φ]C[ψ] | {φ}C{ψ}

These formulas correspond to partial and total correctness respectively: the Hoare triple [φ]C[ψ]
is valid when the program C is totally correct with respect to the precondition φ and postcondition

ψ, and {φ}C{ψ} is valid when the program C is partially correct with respect to the precondition φ

15

2.3. Hoare logic

and postcondition ψ. In what follows this chapter, we wil use the partial correctness terminology to

describe the inference systems.

2.3.3 Hoare calculus

The theoretical tool that allow one to reason about Hoare triples and, therefore, reason about programs

and their specifications, is the Hoare calculus.

The Hoare calculus is an inference system for reasoning about Hoare triples. Its rules are given

in Figure 3. This system describes, in a formal way, the use of preconditions, postconditions, and

loop invariants in order to verify programs, and is usually described as an alternative semantics of the

underlying programming language.

(skip)
φ⇒ ψ

{φ}skip{ψ}

(assign)
φ⇒ ψ[e/x]
{φ}x := e{ψ}

(seq)
{φ}C1{θ} {θ}C2{ψ}
{φ}C1; C2{ψ}

(while)
{θ ∧ b}C{θ}

{θ}while b do{θ}C{θ ∧ ¬b}

(if)
{φ ∧ b}Ct{ψ} {φ ∧ ¬b}C f {ψ}
{φ}i f b then Ct else C f {ψ}

(conseq)
{φ}C{ψ}
{φ′}C{ψ′}

i f φ′ ⇒ φ and ψ⇒ ψ′

Figure 3: Inference system of Hoare logic

We provide a detailed explanation about each rule of the system.

• skip - we recall that skip is the do-nothing command. Thus, it preserves the truth of assertions.

Without any remaining command, the remaining prove goal is the implication between the

precondition and the postcondition.

16

2.4. Probabilistic Hoare logic

• assign - this rule states that a postcondition ψ can be ensured for an assignment x := e by

replacing every occurence of x by e in it.

• seq - analysing the seq rule, there is an intermediate assertion θ that is, simultaneously, precon-

dition for the last command and postcondition to the first command, working as the connection

between the two commands. Consequently, to deal with the axiom one needs to prove that there

exists an assertion that can be used as postcondition for C1 (with precondition φ) and also as

precondition for C2 (with postcondition ψ).

• while - the aim of this rule is to prove that θ is a loop invariant for the given while-loop. In-

formally, one needs to prove that θ holds at the beginning of the loop, during its execution and

after it.

• i f - the description of the rule comes along with the execution of the conditional statement

i f b then Ct else C f : if the condition b holds, then Ct is executed and the precondition can be

combined as φ ∧ b. Conversely, if b does not hold, then C f is executed and the precondition

can be combined as φ ∧ ¬b. The postcondition ψ needs to hold independently of the execution

flow.

• conseq - the conseq rule is not actually a program rule since it does not deal with any instruction

by itself. However, it can be extremely useful because it allows one to strengthen the precon-

dition or to weaken the postcondition in order to deal easily with some program or instruction.

Therefore, the conseq rule introduces some ambiguity to the Hoare calculus, since it can always

be applied to any Hoare triple to obtain another Hoare triple.

It is extremely important that the inference system of Figure 3 cannot be used to derive invalid

Hoare triples. It is obvious to see that, if one could do so, the system would be completely useless and

it would not serve the purposes of software verification.

The crucial step, when dealing with formal software verification and with Hoare logic, is to come

up with a well annotated program. One must find the specifications that correctly suit the program

and the purposes of the program.

2.4 P RO B A B I L I S T I C H O A R E L O G I C

We have shown an inference system to deal with deterministic programs. However, when dealing

with cryptographic software, we want to be able to reason about probabilistic programs, since crypto-

graphic software contains probabilistic states. For example, every key generation algorithm has some

randomness attached to it and random samplings are an important step of most of the cryptographic

primitives. Therefore, we need to extend the While language (Section 2.2) and the Hoare logic (Fig-

ure 2.3) in such way that enables reasoning about probabilistic states. In what follows this section, we

will follow the work of J. I. den Hartog in den Hartog and de Vink (2002).

17

2.4. Probabilistic Hoare logic

2.4.1 A probabilistic While language - pWhile

A deterministic state is a function that maps a variable to a value. A probabilistic state gives the prob-

ability of being in a given deterministic state. Thus, a probabilistic state can be seen as a (countable)

weighted set of deterministic states ρ1 · σ1 + ρ2 · σ2 + ...+ ρn · σn, for some probabilities ρ1, ρ2, ..., ρn

and some deterministic states σ1, σ2, ..., σn. The probability of being in the deterministic state σi is

ρi ∈ [0, 1]. The sum of all probabilities is always greater than zero and at most one. A probability ρ

less than one indicates that this execution point may not be always reached.

Consequently, we can also define a probabilistic state as being a probabilistic distribution, that

maps every possible deterministic state to its probability of happening. Therefore, the occurence of

deterministic steps in a program can be defined as samplings from some probabilistic distribution.

To deal with this additional feature, the While language described in Section 2.2 is, then, naturally

extended as follows, resulting in a new language - pWhile:

Comm 3 C ::= ...

| xτ := $dτ

| ...

It is obvious to note that the Hoare logic is not suitable to reason about programs written in pWhile.

Recalling the Hoare calculus of Figure 3, there is no program rule that deals with probabilistic sam-

plings. We introduce in the following sections an extension to the original Hoare logic, called prob-

abilistic Hoare logic, and a new inference system that is extended with the new sampling command

and with probabilistic reasoning.

2.4.2 Bounded Hoare triples

Similarly to what happens in Hoare logic, to be able to formally reason about the correctness of a

probabilistic program, one uses Hoare triples. The only difference is that these are now bounded to

some probability.

[{φ}C{ψ}] ≤ δ

The above present bounded Hoare triple means that, if φ holds at a given state and C is executed in

that state, then ψ will hold at the resulting state with probability at most δ.

18

2.4. Probabilistic Hoare logic

2.4.3 Probabilistic Hoare calculus

To reason about deterministic states and programs, we have shown a derivation system in Figure 3

- the Hoare calculus. In this section, we introduce the probabilist Hoare calculus, that contemplates

the use of probabilities, as well as introduces a new program rule to deal with probabilistic samplings.

This inference system is presented in Figure 4.

(skip)
φ⇒ ψ δ = 1

[{φ}skip{ψ}] ≤ δ

(assign)
φ⇒ ψ[e/x] δ = 1
[{φ}x := e{ψ}] ≤ δ

(seq)

[{φ}C1{θ}] ≤ δ1 [{θ}C2{ψ}] ≤ δ2
[{φ}C1{¬θ}] ≤ δ3 [{¬θ}C2{ψ}] ≤ δ4

δ1 · δ2 + δ3 · δ4 ≤ δ

[{φ}C1; C2{ψ}] ≤ δ

(while)

[{φ}C′{θ ∧ ∀M.(θ ∧ 0 ≤ e⇒ ¬b) ∧ (θ ∧ ¬b⇒ φ)}] ≤ δ
∀k.[{θ ∧ b ∧ e = k}C{θ ∧ e < k}] = 1
[{φ}C′; while b do{θ}C{ψ}] ≤ δ

(if)
[{φ ∧ b}Ct; C{ψ}] ≤ δ [{φ ∧ ¬b}C f ; C{ψ}] ≤ δ

[{φ}i f b then Ct else C f ; C{ψ}] ≤ δ

(sample)

δ1 · δ2 + δ3 · δ4 ≤ δ
[{φ}C{θ}] ≤ δ1

θ ⇒ µ d v ≤ δ2 ∧ (∀v, v ∈ supp d⇒ ψ[v/x]⇒ p v)
[{φ}C{¬θ}] ≤ δ3

¬θ ⇒ µ d p ≤ δ4 ∧ (∀v, v ∈ supp d⇒ ψ[v/x]⇒ p v)
[{φ}C; x := $d{ψ}] ≤ δ

(conseq)
[{φ}C{ψ}] ≤ δ

[{φ′}C{ψ′}] ≤ δ
i f φ′ ⇒ φ and ψ⇒ ψ′

Figure 4: Inference system of probabilistic Hoare logic

We provide a detailed explanation about each rule of the system.

19

2.5. Probabilistic relational Hoare logic

• skip - we state that this rule is similar to the one of the Hoare logic: being the do-nothing

command, one is left to prove that the precondition implies the postcondition with probability

δ = 1 - meaning that the implication is always true.

• assign - the explanation of this rule follows the same paradigm as the previous one: one needs

to prove that the precondition continues to imply the postcondition, when all the occurrences of

x are replaced by e in the postcondition.

• seq - the seq probabilistic rule contemplates all the possible scenarios in the execution of a

probabilistic program, with the middle assertion θ also presented in the seq deterministic rule.

From top to bottom and left to right, the first bounded Hoare triple corresponds to the execution

of C1 that produces θ with probability at most δ1, the second one corresponds to the execution of

C2 (now with θ as a precondition) that produces ψ with probability at most δ2 and remaining two

are similar to the previous ones, but when θ does not hold. Finally, the sum of the probabilities

of each execution must be a valid probability, i.e., must be at most δ.

• while - in this formula, M stands for the set of variables that may be modified by C, θ is the

loop invariant and e is the variant expression, used to prove termination. This rule is also similar

to the while rule for the original Hoare calculus in Figure 3, with the slightly fact that one adds

variant reasoning to it: the expressions 0 ≤ e, e = k and e < k are used with that objective,

combined with all the variables from the set M.

• i f - the i f rules are similar in both systems (Figure 3 and Figure 4), except that the Hoare triples

are now bounded.

• sample - in this rule, θ is the intermediate assertion between C and x := $d, being $d the

operation of sampling a value from the distribution d. The predicate supp checks if some value

v is in the support of a distribution d - v is defined in the distribution - and µ d p is the probability

of sampling some value v from d such that p v holds, for some predicate p. Therefore, the

sample rule can be seen as mix of the seq and assign rule: it combines the probability of

the value extracted from d to follow the predicate p, replaces all the occurrences of the variable

being assigned in the postcondition and then continues the reasoning to the following command.

The same principle applies when the value sampled from d does not follows the predicate p.

Similar rules hold by substituting every occurrence of the comparison operator ≤ by the operators

=, <, > or ≥.

2.5 P RO B A B I L I S T I C R E L AT I O N A L H O A R E L O G I C

In cryptography, security proofs are usually structured using sequences of games Shoup (2004). In-

formally, the principle behind this concept is that one is able to builds a reduction proof by proving

20

2.5. Probabilistic relational Hoare logic

indistinguishability between games. One starts by defining the original game, that corresponds to the

desired cryptographic property, and then build a sequence of games that differ from the previous ones

in some indistinguishability step. At the end of the sequence, one is able to reduce the security break

of the scheme to some assumption.

2.5.1 Relational Hoare logic

Relational Hoare logic Benton (2004) is a variant of the original Hoare logic that reasons about two

programs. Instead of assertions that denote predicates on states and judgements which say that ter-

minating execution of a command in a state satisfying a precondition will yield a state satisfying a

postcondition, we are now dealing with a pair of commands, that if a precondition holds before the

execution of both commands in different programs, then the postcondition will hold at the end of the

execution of both commands. The assertions in relational Hoare logic need to specify to which of the

commands some variable belongs.

The calculus for this logic follows directly from the one of the original Hoare logic, showed in

Section 2.3, and can be consulted in Figure 5. Informally, one can take the two commands to whom

some rule is being applied and separately apply an Hoare logic rule to the two commands.

We introduce the notation C1 ∼ C2 to denote the comparison between two programs and a new

style for Hoare triples {φ}C1 ∼ C2{ψ} that denote that if a precondition holds before the execution

of both commands in different programs, then the postcondition will hold at the end of the execution

of these commands. We will denote program C1 as left program, with memory {1} - and program C2

as right program, with memory {2}.
We presented the inference system for the relational Hoare logic by showing one side rules - when

the rule is only applied to just one program, independently of the instruction of the other program -

and both side rules - when the same instruction appears in both programs.

Relational Hoare logic is mostly used when proving equivalence between programs. For example,

one could define a program and prove it correct with respect to some definition. After, one could

iterate over it in order to produce a more efficient program. Therefore, in order to prove that the

efficient program behaves as the original program, one would perform an equivalence proof between

the two programs and use relational Hoare logic to discard that proof. In cryptography, this kind of

interpretation is used to prove equivalences between cryptographic games, so that one is able to reduce

the security of some cryptographic primitive to some mathematical assumption.

2.5.2 Probabilistic relational Hoare calculus

We showed, in the previous section, a relational Hoare logic to reason about relations between two

deterministic programs. However, we have seen in Section 2.4 that deterministic programs do not

encompass the necessary means to deal with cryptographic programs, since these are probabilistic

21

2.5. Probabilistic relational Hoare logic

(skip)
φ⇒ ψ

{φ}skip ∼ skip{ψ}

(seq)
{φ}C1 ∼ C′1{θ} {θ}C2 ∼ C′2{ψ}

{φ}C1; C2 ∼ C′1; C′2{ψ}

(assign - one side)
φ⇒ ψ[x/e]

{φ}x := e ∼ skip{ψ}

(assign - both sides)
φ⇒ ψ[x, x′/e, e′]

{φ}x := e ∼ x′ := e′{ψ}

(if - one side)
{φ ∧ b}Ct ∼ C{ψ} {φ ∧ ¬b}C f ∼ C{ψ}

{φ}i f b then Ct else C f ∼ C{ψ}

(if - both sides)

φ⇒ b⇔ b′
{φ ∧ b ∧ b′}Ct ∼ C′t{ψ} {φ ∧ ¬b ∧ ¬b′}C f ∼ C′f {ψ}
{φ}i f b then Ct else C f ∼ i f b′ then C′t else C′f {ψ}

(while - one side)
{θ ∧ b}C ∼ C′{θ} ∀k, {θ ∧ b ∧ e = k}C{θ ∧ e < k}

{θ}while b do{θ}C ∼ C′{¬b ∧ θ}

(while - both sides)
φ ≡ b⇔ b′ ∧ θ {b ∧ b′ ∧ θ}C ∼ C′{θ}

{θ}while b do{θ}C ∼ while b′ do{θ}C′{¬b ∧ ¬b′ ∧ θ}

(conseq)
{φ}C ∼ C′{ψ}
{φ′}C ∼ C′{ψ′}

i f φ′ ⇒ φ and ψ⇒ ψ′

Figure 5: Relation Hoare logic calculus

22

2.5. Probabilistic relational Hoare logic

programs. Consequently, the relational Hoare logic can not be used in order to reason about relations

between two probabilistic programs.

Similar to what was done for the probabilistic Hoare logic (Section 2.4), we extend the relational

Hoare logic with probabilistic reasoning, ending up with a probabilistic relational Hoare logic.

The only difference between this calculus and the previously presented in Figure 5 is the addition

of the sampling rule. We stick to the presentation of that rule in Figure 6. In contrast to what was

presented for the Hoare logic (Section 2.3) and probabilistic Hoare logic (Section 2.4), the probabilis-

tic relational Hoare logic does not introduce bounds to relational Hoare logic. The predicate lossless

attests if all the probabilities of a given distribution sum up to 1.

(sampling - one side)
φ = lossless d ∀v ∈ supp d, Q[x1/v]

{φ}x = $d ∼ skip{ψ}

(sampling - both sides)
φ = ∀v ∈ supp d.ψ[x1, x′2/v, f v]
{φ}x := $d ∼ x′ := $d′{ψ}

Figure 6: Sampling rules for probabilistic relational Hoare logic

2.5.3 Provable security

Provable security Goldwasser and Micali (1984) is a paridgm that aims to provide a new methodology

to verify rigorously the security of cryptographic systems. A provable security argument is developed

in three steps:

1. Define the security goal - i.e., what is the security that one aims to achieve - and an adversary

model - i.e., what are the adversary capabilities.

2. Define the cryptographic system - i.e., implement the cryptographic scheme - and the security

assumptions in which the primitive relies on.

3. Prove that any attack to the cryptographic system can be used to efficiently break the security

assumption. This proof is done by reduction.

A direct consequence of provable security is practice-oriented provable security Bellare and Rog-

away (1993). The central goal of practice-oriented provable security is the analysis of efficient cryp-

tographic systems that can be used for practical purposes and to prove its security in what respects

some security parameter and assumption.

An important realisation of practice-oriented provable security is the code-based approach Bellare

and Rogaway (2004). This paradigm makes use of programming languages techniques to organise

23

2.5. Probabilistic relational Hoare logic

proofs in a systematic way. The security hypotheses and security goals are defined in terms of the

probability of some event with respect to some implementation and specification of a probabilistic

program, called games. These programs are written in pWhile.

Formally, a cryptographic game is a probabilistic program that takes as input an initial memory , i.e.

a mapping from variables to values, and returns a sub-distribution on memories. A sub-distribution

on a memory is a map d : M 7→ [0, 1], such that ∑m∈M d m ≤ q, between elements of the memory

and some probability.

In the provable security setting, proofs are made by reduction. A reduction argument develops in the

following way. Assume that there is a cryptographic system that is secure under some mathematical

assumption. LetA be an adversary against the security of the system. The goal of the reduction proof

is to show that there exists an adversary B such that the success probability of A in the attack of the

system is upper bounded by a function of the success probability of B in breaking the security of

the assumption. The adversary B invokes A as a subprocedure and both of them are also defined as

probabilistic programs.

In the code-based approach, proofs are structured as sequences of games, so that transitions between

games are simple and easy to justify. There are two kinds of transitions:

• Transitions based on indistinguishability - a small change is made such that, if detected by the

adversary, would imply an efficient method of distinguishing between two distributions that are

indistinguishable (either statistically or computationally).

• Transitions based on failure events - two games i and i + 1 proceed identically unless a certain

“failure event” occurs.

A transition between two games G1 and G2 establishes an inequality of the form

Pr[G1, m1 : A] ≤ Pr[G2, m2 : B] + ε

where Pr[G, m : E] denotes the probability of the occurence of the event E in the execution of

game G with initial memory m and ε is a negligible arithmetic expression. The proof concludes by

combining the inequalities proven for each transition to bound the success probability of the reduction.

2.5.4 Verifiable security

Verified security Bellare and Rogaway (2004); Halevi (2005) is a new approach to perform security

proofs of cryptographic systems. It follows the same principles as practice-oriented provable security

but revisits its realisation from a formal verification perspective. In the verified security approach,

proofs are built and verified using verification tools, such as CertiCrypt Barthe et al. (2009) or Easy-
Crypt.

24

2.6. Software formal verification

2.6 S O F T WA R E F O R M A L V E R I F I C AT I O N

Software formal verification is the act of proving the correctness of a given program with respect to

a certain formal specification. There are a lot of techniques that provide means to formally verify

properties over programs. For example, model checking techniques decompose a program in all its

possible states and prove the desired property for all states of the program. Verification can also be

labeled as dynamic or static. In the first case, verification is performed at run-time, i.e., properties

about programs are verified when the program is executing. As for the second case, verification is

carried out before the code is executed and has obvious performance and reliability advantages.

In this work, we follow an approach that uses deductive reasoning based on Hoare logic, called

deductive software verification. In deductive verification, properties of programs are specified by

terms of contracts - pre- and postconditions - that are annotated into programs. Therefore, the main

purpose of software deductive verification is to, given a precondition φ, a postcondition ψ and a

program P such that φ and ψ are contracts of P, build a derivation tree using the inference systems

previously shown to check if P has the desired property accordingly to its contract.

Briefly, the architecture of a deductive verification infrastructure consists of a verification condition

generator (VCGen) and a proof tool, which may be either an automatic theorem prover (SMT solver)

or an interactive proof assistant (like, for example, COQ The Coq development team (2004)). The

workflow is as follows. The VCGen starts by reading the annotated code and producing a set of

verification conditions that are generated according to the inference system being used. After, these

verification conditions are sent to the proof tool to be discharged. If all the verification conditions

(or proof obligations) are proved correct, then the annotated program is correct with respect to its

specification.

2.6.1 Safety properties

Correctness properties are of extreme importance for Computer Science: they assure that some pro-

gram behaves in accordance to some desired behaviour. However, one can specify a program, annotate

it and prove it correct in respect to some specification but, if the program was to be executed, it would

not finish its execution because it will end in some error statement due to some bug in the code. For

example, assume the following CAO program P

def safety_error () : vector[10] of int {

def a : vector[10] of int;

seq i := 0 to 11 {

a[i] := 1;

}

25

2.6. Software formal verification

return a;

}

which declares a function that changes the elements of an integer array, of size 10, to the value

1. Suppose that this function is annotated with the precondition φ = true and postcondition ψ =

∀x, 0 ≤ x < 10⇒ a[i] = 10. The Hoare triple {φ}P{ψ} would be valid and one was able to prove

it. Nevertheless, the execution of the program would result in an out of bounds error - the program

would try to access memory that does not belong to the memory allocated by the array. This is the

problem that safety conditions aim to solve.

The safety properties of programs can be captured by safety-sensitive Hoare triples. In Figure 7, we

extend the original Hoare logic to deal with the safety of expressions, using the predicate sa f e, defined

in Figure 8. A safe expression e is one that does not result in some error state. For example, e is safe

if it does not contain invalid accesses to elements of an array or invalid operations (like divisions by

zero).

(skip)
φ⇒ ψ

{φ}skip{ψ}

(assign)
φ⇒ ψ[e/x]
{φ}x := e{ψ}

i f φ⇒ sa f e(e)

(seq)
{φ}C1{θ} {θ}C2{ψ}
{φ}C1; C2{ψ}

(while)
{θ ∧ b ∧ sa f e(b)}C{θ ∧ sa f e(b)}
{φ}while b do{θ}C{ψ}

i f φ⇒ (θ ∧ sa f e(b)) ∧ (θ ∧ sa f e(b) ∧ ¬b⇒ ψ)

(if)
{φ ∧ b}Ct{ψ} {φ ∧ ¬b}C f {ψ}
{φ}i f b then Ct else C f {ψ}

i f φ⇒ sa f e(b)

(conseq)
{φ}C{ψ}
{φ′}C{ψ′}

i f φ′ ⇒ φ and ψ⇒ ψ′

Figure 7: Safety-sensitive Hoare calculus

Besides being presented only for the Hoare logic, the safety-sensitive Hoare calculus can easily be

applied in the context of probabilistic Hoare logic or probabilistic relational Hoare logic. For example,

a safety-sensitive i f − bothsides rule for the probabillistc Hoare logic could be rewritten as follows

26

2.6. Software formal verification

sa f e(true) = true
sa f e(f alse) = true

sa f e(b) = true
sa f e(e) = true

sa f e(e1 ◦ e2) = sa f e(e1) ∧ sa f e(e2), where ◦ ∈ {+,×,−, ∗∗,<,>,≤,≥,=, ! =}
sa f e(e1 † e2) = sa f e(e1) ∧ sa f e(e2) ∧ e2 6= 0, where † ∈ {/, mod}

Figure 8: Safe predicate

(if - both sides)

φ⇒ b⇔ b′
{φ ∧ b ∧ b′}Ct ∼ C′t{ψ} {φ ∧ ¬b ∧ ¬b′}C f ∼ C′f {ψ}
{φ}i f b then Ct else C f ∼ i f b′ then C′t else C′f {ψ}

i f φ⇒ sa f e(b) ∧ φ⇒ sa f e(b′)

Finally, we extend the safety predicate to reason about probabilistic distributions and provide a

safety-sensitive rule for probabilistic samplings. We state that a probabilistic distribution is safe if the

weight of the distribution is 1.

sa f e(d) = lossless d

A safety-sensitive sampling rule can be defined as follows

(sample)

δ1 · δ2 + δ3 · δ4 ≤ δ
[{φ}C{θ}] ≤ δ1

θ ⇒ µ d v ≤ δ2 ∧ (∀v, v ∈ supp d⇒ ψ[v/x]⇒ p v)
[{φ}C{¬θ}] ≤ δ3

¬θ ⇒ µ d p ≤ δ4 ∧ (∀v, v ∈ supp d⇒ ψ[v/x]⇒ p v)
[{φ}C; x := $d{ψ}] ≤ δ

i f φ⇒ sa f e(d)

2.6.2 Extensions to Hoare logic for realistic programs

In the previous sections we have presented, a simple imperative language - While language - and an

extension to it, that includes probabilistic operations in it - pWhile language. Both languages support

simple commands, that allow the description of somewhat complex programs. However, they lack the

support of some operations and commands in order to be used in more realistic contexts.

27

2.6. Software formal verification

2.6.2.1 Arrays

The inclusion of the array type is very important in every programming language: they provide a

container type, that encompasses one or more values indexed by integers, and the access operation

over arrays has time complexity O(1).
We extend the languages with the a new expression (an array element) and a new command (array

modification).

Expτ 3 eτ ::= ...

| aτ[xint]

Comm 3 C ::= ..

| aτ[eint
1] = eτ

2

| ...

The Hoare logic, probabilistic Hoare logic and probabilistic relational Hoare logic rules for array

assignment can be found in Figure 9, Figure 10 and Figure 11, respectively. In these rules, given an

array a, of type τ array, an integer expression e1 and a τ expression e2, the operation a[e1 ← e2]

returns a new array in which the value indexed by e1 has been replaced by e2.

(array assign)
φ⇒ ψ[a[e1 ← e2]/a]
{φ}a[e1] := e2{ψ}

Figure 9: Array assigment rule for Hoare logic

(array assign)
φ⇒ ψ[a[e1 ← e2]/a] ∧ δ = 1

[{φ}a[e1] := e2{ψ}] ≤ δ

Figure 10: Array assigment rule for probabilistic Hoare logic

(array assign - one side)
φ⇒ ψ[a[e1 ← e2]/a]
{φ}a[e1] := e2 ∼ skip{ψ}

(array assign - both side)
φ⇒ ψ[a[e1 ← e2], a′[e′1 ← e′2]/a, a′]
{φ}a[e1] := e2 ∼ a′[e′1] := e′2{ψ}

Figure 11: Array assigment rule for probabilistic relational Hoare logic

We also extend the safety-sensitive Hoare calculus to provide a definition for what is a safety array

operation. Naturally, one will check if the access of the array does not result in some out of bounds

error and if the index expression is also safe. The rule can be consulted in Figure 12.

28

2.6. Software formal verification

(array assign)
φ⇒ ψ[a[e1 ← e2]/a]
{φ}a[e1] := e2{ψ}

i f φ⇒ sa f e(a[e1]) ∧ φ⇒ sa f e(e2)

Figure 12: Safety-sensity array assignement rule

The safe predicate is also extended in the following way.

sa f e(a) = true

sa f e(a[e]) = sa f e(a) ∧ sa f e(e) ∧ 0 ≤ e < len(a)

where a is an array variable and len(a) is the operation that returns the size of the array a.

2.6.2.2 Procedure calls

A procedure is a sequence of program instructions that performs a specific task, packaged as a unit.

Procedures are very important in the context of Computer Science because they allow the development

of modular code, since one can program different procedures, with different objectives and then invoke

then as many times as needed. Particularly, in cryptography, procedures are important because they

allow the complete and formal description of cryptographic primitives, as well as the invokation of

adversaries and oracles.

However, procedures are very challenging from a verification point of view. The challenges include,

for example, the treatment of recursive calls, the reasoning about parameters of the functions and the

inclusion of multiple function calls on expressions. In the context of this project, we are only interested

in procedures that have their own specifications and that are not recursive. Additionally, we do not

allow the definition of function calls as expressions.

Informally, what one needs to ensure is that the parameters that are being used to call the procedure

match its precondition, prove the validity of the Hoare triple composed of the body of the function

and its annotations and then procede with the analysis of the original function. The rule that denotes

this behaviour is showed in Figure 13, where −→y are the concrete parameters with which the function

f is being invoked, −→p are the formal parameters of f , res f is the result variable of f and −→m is the

efect of f , i.e., the set of variables modified by f .

(proc call)

{φ}C{φ f [
−→y /−→p] ∧ ∀v, ∀−→z , ψ f [v,−→z /res f ,

−→m]⇒ ψ[v,−→z /x,−→m]}
{φ f } f {ψ f }

{φ}C; x := f (−→y){ψ}

Figure 13: Procedure call rule for Hoare logic

29

2.6. Software formal verification

With respect to probabilistic Hoare logic, the rule is similar, with the addition of the bound to the

function being called.

(proc call)

{φ}C{φ f [
−→y /−→p] ∧ ∀v, ∀−→z , ψ f [v,−→z /res f ,

−→m]⇒ ψ[v,−→z /x,−→m]}
[{φ f } f {ψ f }] ≤ δ

[{φ}C; x := f (−→y){ψ}] ≤ δ

Figure 14: Procedure call rule for probabilistic Hoare logic

Finally, we present the rule for probabilistic relation Hoare logic in Figure 15.

proc call

{φ f } f ∼ f ′{ψ f } φ⇒ φ f [
−→p f ,
−→
p′f /−→y ,

−→
y′]

∀v v′, ∀−→z
−→
z′ , ψ f [v, v′,−→z ,

−→
z′ /res f , res f ′ ,

−→m ,
−→
m′]⇒ ψ[v, v′,−→z ,

−→
z′ /x, x′,−→m ,

−→
m′]

{φ}x := f (−→y) ∼ x′ := f ′(
−→
y′){ψ}

Figure 15: Procedure call rule for probabilistic relational Hoare logic

2.6.3 Focus on automation vs focus on interactivity

In what comes to program verification, there are a lot of ways to deal with it. One can define a

recursive procedure wp, like defined in [Dijkstra (1997)], develop a VCGen using it and then rely on

SMT solvers to discard all the generated proof obligations. Note that this method would imply the

removal of the conseq tactic, since it introduces ambiguity on the system. In constrast to this approach,

one can define an interactive VCGen, in which the user specifies which tactic is to be used next, until

he ends up with an empty program, which can then be transformed into a first-order logic implication,

that can after be proved using first-order logic reasoning or even be sent to some SMT solver.

In the context of this project, we analyse two different approaches to the verification of crypto-

graphic software, by having the CAOVerif tool [Almeida et al. (2014)] to operate with two different

backends: one that relies on the Frama-C platform and one that relies on EasyCrypt.
The first approach is already developed and can be consulted in [Almeida et al. (2014)]. An anno-

tated CAO program is translated into C code, annotated accordingly to ACSL [Baudin et al. (2010)].

After, the annotated C code is parsed by Frama-C, with the Jessie plug-in, to generate all the proof

obligations (including safety properties) that could be discharged using the Why tool, by relying on

one or more SMT solver or by using the Coq proof assistant. Besides having some clear advantages

(like automation), this approach could be painful when dealing with bigger programs, as the amount

of proof obligations could turn the tool impractical.

30

2.7. State of the art tools for verification of cryptographic software

The second approach - developed in the context of this project - consists in mapping an annotated

CAO code into an EasyCrypt script and then perform all the necessary proofs there. EasyCrypt
has an internal VCGen that relies on the probabilistic relation Hoare logic, that is used to build proof

trees and discharge proof obligations interactivly and/or using SMT solvers. Using this approach,

the problem of the explosion of proof obligations would be eliminated, the CAOVerif tool would be

relying of a platform specific to the domain of cryptography, but the degree of automation would be

lower.

2.7 S TAT E O F T H E A RT T O O L S F O R V E R I F I C AT I O N O F C RY P T O G R A P H I C S O F T WA R E

Cryptographic domain specific languages gained a lot of interest recently. Nowadays, for crypto-

graphic software, there is the need to program at a high level fixture (more suitable to cryptography)

and be able to reason about high level implementations, as well as to generate code from those imple-

mentations. In the context of this work, the domain specific language being used in CAO, but one can

find more cryptographic domain specific languages, like the Cryptol language Erkök and Matthews

(2009), developed by Galois.

There are some important differences between CAO and Cryptol. Cryptol is a functional language,

which contrasts with the imperative style of CAO. This can be seen as an advantage for the CAO lan-

guage, since most of the cryptographic primitives are described in an imperative style and contemplate

some features that are hard to replicate in functional languages. Additionally, Cryptol incorporates

a proof system that allows one to perform proofs on the specified algorithms. However, this proof

system is not ideal, since it makes use of model checking techniques, which leads to several ineffi-

ciency problems. The CAOVerif tool - suject of this project - allows one to annotate CAO programs

and perform proofs about CAO programs with respect to those annotations. This tool makes use of

the Jessie plug-in for Frama-C and still has some overheads that this project aims to solve. Both

languages allow code generation: Cryptol contemplates Haskell and C code extraction, while CAO
is able to generate only C code.

As cryptographic proofs became essentially unverifiable, there was a migration to computer-aided

proofs by cryptographers. Therefore, some tools were developed to assist the construction and ver-

ification of cryptographic proofs. EasyCrypt Barthe et al. (2011b) is an SMT-based verification

framework for building and verifying security proofs of cryptographic constructions, following a

language-based approach. Its main application is the construction and verification of game-based

cryptographic proofs. In order to do so, EasyCrypt admits probabilistic computations with adver-

sarial code, and makes use of the probabilistic relational Hoare logic (Section 2.5.2) to reason about

those computations.

ZooCrypt Barthe et al. (2013) is a tool for automatically analyzing and synthesizing secure in-

stances within a well-defined class of cryptographic constructions, such as padding-based encryption

31

2.7. State of the art tools for verification of cryptographic software

schemes (public-key encryption schemes that are built from one-way trapdoor permutations and ran-

dom oracles) or public-key encryption schemes based on bilinear pairings.

CryptoVerif Blanchet (2005) is an automatic protocol prover sound in the computational model. It

can prove secrecy and correspondences (e.g. authentication). The generated proofs are by sequences

of games. Essentially, CryptoVerif allows one to perform more ”high-level” proofs: for example,

one is not able to prove that a given encryption scheme is IND-CPA secure but can prove that if that

encryption scheme is IND-CPA secure and if it is combined with a MAC scheme and is UF-CMA

secure, both originate an IND-CCA encryption scheme.

Recently, a new approach was made in order to perform cryptographic proofs. F∗ Swamy et al.

(2011) is a new ML-like functional programming language designed with program verification in

mind. It has a powerful refinement type-checker that discharges verification conditions using the Z3

SMT solver. F∗ has been successfully used to verify cryptographic protocol implementations. Again,

one is not able to perform security proofs like in EasyCrypt, however, one can use F∗ to automatically

prove important security properties of implementations.

32

3

C AO S P E C I F I C AT I O N

CAO Barbosa et al. (2012); Barbosa (2009) is a programming language developed towards the auto-

matic production of highly efficient target code, subjected to security-aware optimisations. Therefore,

it does not encompass some high-level features of other imperative languages but has features specific

to the development of cryptographic software like its type system (that contemplates, for example, the

ring Zn type) as well as a close syntax to the one used in the cryptographic standards.

3.1 C AO S Y N TA X

The formalisation of the CAO syntax is presented in Figure 16.

e ::= L | x | −e | e1+e2 | e1−e2 | e1∗e2 | e1 / e2 | e1 % e2 | e1∗∗ e2 | e.fi | (t) e |
fp(e1, . . . , en) | e1 == e2 | e1 ! = e2 | e1 < e2 | e1 > e2 | e1 <= e2 | e1 >= e2 |
e1‖e2 | e1 && e2 | ! e | e1ˆˆ e2 | e1[e2] | e1[e2..e3] | e1[e2, e3] | e1[e2, e3..e4] |
e1[e2..e3, e4] | e1[e2..e3, e4..e5] |∼ e | e1 & e2 | e1ˆ e2 | e1|e2 | e1 � e2 |
e1 � e2 | e1 < |e2 | e1| > e2 | e1 @ e2

l ::= x | l[e] | l[e1..e2] | l[e1, e2] | l[e1, e2..e3] | l[e1..e2, e3] | l[e1..e2, e3..e4] | l.fi
c ::= dv | l1, . . . , ln := e1, . . . , em; | return e1, . . . , en; | fp(e1, . . . , en); | if (e) { c1; . . . ; cn } |

if (e) { c11; . . . ; c1n } else { c21; . . . ; c2m } | while (e) { c1; . . . ; cn } |
seq x := e1 to e2 by e3 { c1; . . . ; cn } | seq x := e1 to e2 { c1; . . . ; cn }

dt ::= typedef tid := t; | typedef sid := struct [def fi1 : t1; . . . ; def fin : tn;];
dv ::= def x : t; | def x1, . . . , xn : t; | def x : t := e; | def x : t := { e1, . . . , en };
dfp ::= def fp (x1 : t1, . . . , xn : tn) : rt { c1; . . . ; cm }

rt ::= void | t1, . . . , tn
t ::= int | bool | unsigned bits [e] | signed bits [e] | mod [e] | mod [t/pol] |

vector [e] of t | matrix [e1, e2] of t | tid | sid
pg ::= dv | dt | dfp | pg1 pg2

Figure 16: CAO formal syntax

Most the CAO binary operators are the same as their C equivalents. However, note that CAO
contemplates some operators that are widely used in cryptography: multiplicative exponentiation for

integers, residue class groups and fields (∗∗), bit-wise operators such as conjunction (&), inclusive-

disjunction (|) and exclusive-disjunction (ˆ), shift (<< and >>) and shift-rotate (< | and | >) opera-

33

3.2. CAO type system

tors for bit strings and vectors, concatenation operation (@) for bit strings and vectors and the boolean

logic exclusive-disjunction (ˆˆ). Additionally, note also that the CAO syntax is very similar to the C
language.

3.2 C AO T Y P E S Y S T E M

The CAO type system was developed with two main focuses. On one hand, to be able to check whether

a program was written according to the syntactic rules of Figure 16 and that it does not violate any

type checking rule, thus ensuring that no invalid program would be evaluated. On the other hand, the

type checker collects important information about expressions in a CAO program, that can then be

used by other features of the CAO tool chain, like the C code extraction.

CAO is a dependently typed language Paulin-Mohring (2014). This means that the CAO type

checker is aware of type parameters in the data types of the language. Concretely, the CAO type

system explicitly includes as type parameters the sizes of containers such as vectors, matrices and

bit strings. Consequently, typing of complex operations over these containers, including concatena-

tion and extensional assignment, statically checks the compatibility of these parameters. Dependent

types are also present in the mathematical types contemplated by CAO. The type system stores infor-

mation about the values that define the moduli types (integer or polynomial) so that it is possible to

validate the consistency of complex mathematical expressions. This important feature of CAO makes

it possible to detect several common run-time errors, like invalid accesses to some vector. However,

the language looses some flexibility, since the type parameters (sizes of container types and integers

and polynomials that define rings, fields or extension fields) need to be fully determined, implying

that type declarations in CAO can depend on arithmetic expressions using constants stored in the

environment ∆, described next.

In this section, we will provide a detailed explanation of the CAO type system. We will follow the

same syntax as the one presented in Section 2.1.

P R E L I M I N A R I E S In its typechecking mechanism, CAO makes use of two environments:

• Γ - environment that associates all the identifiers (like variables’ names or functions’ names) to

their types. This environment is divided into two environments ΓG and ΓL that store information

about global and local identifiers, respectively. This distinction is important in order to keep

track of the scope and visibility of identifiers when typing.

• ∆ - environment that collects all integer constants and that associates them with their value.

Notation Γ[x :: τ] is used to extend the environment Γ with a new variable x of type τ, providing

that x is not in the original environment (i.e., x /∈ Γ). Similarly, ∆[x := n] is used to extend

the environment ∆ with a new constant x with value n, also provided that x is not in the domain

34

3.2. CAO type system

Void The empty type
Int Arbitrary precision integers
Bool Booleans
UBits[i] Unsigned bit strings of length i
SBits[i] Signed bit strings of length i
Mod[n] Ring or field defined by n
Mod[τ / pol] Extension field defined by τ / pol
Vector[i] of τ Vector of size i with elements of type τ
Matrix[i, j] of α Matrix of size i× j with elements of type α

A = {Int, Mod[n], Mod[τ / pol], Matrix[i, j] of α, α ∈ A}

Table 1: CAO types formalisation

of environment ∆. Notation Γ(x) and ∆(x) represent, respectively, the type and the integer value

associated with identifier x, assuming that x belongs to the domain of the respective environment.

DATA T Y P E S We start by first presenting the CAO types (Table 1) that are used in the type

checking rules. Note that these types are different from the ones used in type declarations of CAO
programs, as the laters are mapped into the ones of Table 1, that refer to the formalisation of the CAO
types. For example, when an int type appears in CAO syntax, it will be mapped into an Int type.

We denote by A the set of algebraic types - types for which addition, multiplication and symmetric

operators are closed.

Syntactic types are translated into formal types accordingly to a judgment of the form ∆ `t t
τ, where t is a syntactic type and τ is a formal type. Note that this judgement only depends on

environment ∆, since the type checker needs to be able to evaluate all the integer expressions in the

type declarations. Thus, the type checker makes use of a partial function ϕ∆, that computes the value

of an integer expression e in the context of ∆. Naturally, if e is not able to be determined, then the

type checking will fail because it will not be able to correctly define a type. The function is defined in

Figure 17.

φ∆(n) = n φ∆(x) = ∆(x), x ∈ dom ∆
φ∆(−e) = −φ∆(e) φ∆(e1 † e2) = φ∆(e1) † φ∆(e2)

φ∆(e1 ∗∗ e2) = (φ∆(e1))
(φ∆(e2)) φ∆(e1 % e2) = φ∆(e1) mod φ∆(e2)

for † ∈ {+,−, ∗, /}.

Figure 17: Definition of function ϕ∆

The definiton of the type translation can be found in Figure 18.

Note that algebraic types are the only ones that can be used to construct matrices, since algebraic

operations are defined in the matrix type.

35

3.2. CAO type system

∆ `t int Int ∆ `t bool Bool

φ∆(e) = n
∆ `t unsigned bits [e] UBits[n]

n ≥ 1
φ∆(e) = n

∆ `t signed bits [e] SBits[n]
n ≥ 1

φ∆(e) = n
∆ `t mod [e] Mod[n]

n ≥ 2
∆ `t t τ

∆ `t mod [t/pol] Mod[τ/pol]

φ∆(e) = n ∆ `t t τ

Γ, ∆ `t vector [e] of t Vector [n] of τ
n ≥ 1

φ∆(e1) = n φ∆(e2) = m ∆ `t t α

∆ `t matrix [e1, e2] of t Matrix [n, m] of α
α ∈ A, n ≥ 1, m ≥ 1

Figure 18: Type translation

F U N C T I O N C L A S S I F I C AT I O N CAO type checker classifies functions with respect to their in-

teraction with global variables:

• Pure - do not depend on global variables in any way, i.e., no global variable value is read or

modified. In order to be considered pure, a function must only call other pure functions.

• Read-only - can read values from global variables but can not modify them. Again, a read-only
function can only call other read-only or pure functions.

• Procedures - can read and assign values from/to global variables.

This classification is also applied when type checking expressions.

T Y P E C O E R C I O N S Type coercions are implicit type conversions, that allow a programmer to use

terms of some type when other type is expected, providing that the type of the term being used can be

converted into the expected type. An example of a type coercion in CAO can be found when dealing

with bit strings of a given size, that can be coerced to the integer type, and thus one can use the integer

operators when dealing with bit strings. Essentially, one type τ1 can be coerced into another type τ2

if the set of all values of τ1 can be seen as a subset of the set of all values of τ2.

To deal with coercions, the CAO type system defines a reflexive coercion relation ≤ and a new

judgement `≤. This relation is summarised in Table 2.

Additionally, it may be the case when two terms with different types are being used in some expres-

sion but are coercible to a common type. To capture the situation, CAO defines a new operator on

types ↑ that finds the least upper bound of the types to which its arguments are coercible.

τ1 ↑ τ2 = min{τ|τ1 ≤ τ ∧ τ2 ≤ τ}

Having this operation requires the ≤ relation to be reflexive, transitive and anti-symmetric.

36

3.2. CAO type system

t1 t2 Condition
UBits[n] Int
SBits[n] Int
τ Mod[τ′/pol] `≤ τ ≤ τ′

Vector[n] of τ1 Vector[n] of τ2 `≤ τ1 ≤ τ2
Matrix [i, j] of α1 Matrix [i, j] of α2 `≤ α1 ≤ α2 and α1, α2 ∈ A

Table 2: Type coercion relation, `≤ t1 ≤ t2t1 t2 Condition
Int Bits [i]
Int Mod [n]
Vector [i] of τ1 Mod [τ2/pol] `c τ1 ⇒ τ2 and i = degree(pol)
Mod [τ1/pol] Vector [i] of τ2 `c τ1 ⇒ τ2 and i = degree(pol)
Matrix [1, j] of α Vector [j] of τ `c α⇒ τ and α ∈ A
Vector [i] of τ Matrix [i, 1] of α `c τ ⇒ α and α ∈ A
Vector [i] of τ1 Vector [i] of τ2 `c τ1 ⇒ τ2
Matrix [i, j] of α1 Matrix [i, j] of α2 `c α1 ⇒ α2 and α1, α2 ∈ A

Table 3: A few cases for the cast relation, `c t1 ⇒ t2.

C A S T S A cast is a mechanism that allows a programmar to explicitly convert values from one

type into another. Casts are similar to coercions, except that now it is the programmer that indicates

to which type he/she wants some value to be converted, instead of leaving this job to the type checker.

However, not all casts are possible: the set of admissible type cast operations has been carefully

designed to account for those conversions that are conceptually meaningful in the mathematical sense

and/or are important for the implementation of cryptographic software in a natural way.

Similar to what was done for coercions, the CAO type checker contemplates a cast relation ⇒ -

Table 3 - and the associated judgement `⇒. The typing rule for the cast relation is the following

`≤ τ1 ≤ τ2

`c τ1 ⇒ τ2

∆ `t t τ Γ, ∆ ` e :: (τ′, c) `c τ′ ⇒ τ

Γ, ∆ ` (t) e :: (τ, c)

L I T E R A L S In CAO, one can specify integer, ring, boolean and bit string literals. The typecheck-

ing rules for these literals are very simple and can be found in Figure 19.

Γ ` true :: Bool Γ ` false :: Bool Γ ` b(0|1)i :: Bits[i]

Γ ` (0..9)∗ :: Int Γ ` [(0..9)∗] :: Mod[n]

Figure 19: Typechecking rules for literals

37

3.2. CAO type system

VA R I A B L E S , F U N C T I O N C A L L S A N D S T RU C T P RO J E C T I O N S In expressions, only side-

effects free functions (pure and read-only) can be used. When typechecking a struct projection, there

is the need to check the expression that defines the struct and the field that is being projected (see the

type checking rules in Figure 20).

ΓG(x) = τ

ΓG, ΓL, ∆ ` x :: (τ,ReadOnly)
x ∈ dom(ΓG)

ΓL(x) = τ

ΓG, ΓL, ∆ ` x :: (τ,Pure)
x ∈ dom(ΓL)

ΓG(f) = ((τ1, . . . , τn)→ τ, c)
ΓG, ΓL, ∆ ` e1 ≤ (τ1, c1) . . . ΓG, ΓL, ∆ ` en ≤ (τn, cn)

ΓG, ΓL, ∆ ` f (e1, . . . , en) :: (τ, max(c, c1, . . . , cn))
c < Procedure, f ∈ dom(ΓG)

ΓG(fi) = (τ1 → τ2,Pure) ΓG, ΓL, ∆ ` e :: (τ1, c)
ΓG, ΓL, ∆ ` e.fi :: (τ2, c)

fi ∈ dom(ΓG)

Figure 20: Typechecking rules for variables, function calls and struct projections

B O O L E A N O P E R AT I O N S Operations over booleans are define by the typechecking rules of Fig-

ure 21.

Γ, ∆ ` e1 :: (τ1, c1) Γ, ∆ ` e2 :: (τ2, c2) τ1 ↑ τ2 = τ

Γ, ∆ ` e1 ⊕ e2 :: (Bool, max(c1, c2))
⊕ ∈ {==, ! =}

Γ, ∆ ` e1 ≤ (Int, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 ⊕ e2 :: (Bool, max(c1, c2))
⊕ ∈ {<,≤,>,≥}

Γ, ∆ ` e1 ≤ (Bool, c1) Γ, ∆ ` e2 ≤ (Bool, c2)

Γ, ∆ ` e1 ⊕ e2 :: (Bool, max(c1, c2))
⊕ ∈ {||, && , ˆˆ}

Γ, ∆ ` e ≤ (Bool, c)
Γ, ∆ `!e :: (Bool, c)

Figure 21: Typechecking rules for boolean operations

A R I T H M E T I C O P E R AT I O N S Arithmetic operations are defined to the set of algebraic type de-

fined in Table 1. However, there are some subtleties that need to be taken into account for some

specific types. For example, the division operation for modular types is not defined if the integer that

parametrises the structure is not prime and thus does not construct a field. The program type checking

rules for arithmetic operations can be found in Figure 22.

38

3.2. CAO type system

Γ, ∆ ` e1 :: (α1, c1) Γ, ∆ ` e2 :: (α2, c2) α1 ↑ α2 = α

Γ, ∆ ` e1 ⊕ e2 :: (α, max(c1, c2))
α, α1, α2 ∈ A ⊕ ∈ {+,−}

Γ, ∆ ` e1 :: (α1, c1) Γ, ∆ ` e2 :: (α2, c2) α1 ↑ α2 = α

Γ, ∆ ` e1 ∗ e2 :: (α, max(c1, c2))
α, α1, α2 ∈ A

Γ, ∆ ` e1 :: (Matrix[i, j] of α1, c1) Γ, ∆ ` e2 :: (Matrix[j, k] of α2, c2) α1 ↑ α2 = α

Γ, ∆ ` e1 ∗ e2 :: (Matrix[i, k] of α, max(c1, c2))

where α, α1, α2 ∈ A

Γ, ∆ ` e1 :: (τ1, c1) Γ, ∆ ` e2 :: (τ2, c2) `≤ τ1 ≤ Int `≤ τ2 ≤ Int

Γ, ∆ ` e1 ⊕ e2 :: (Int, max(c1, c2))
⊕ ∈ {+,−}

Γ, ∆ ` e1 :: (τ1, c1) Γ, ∆ ` e2 :: (τ2, c2) `≤ τ1 ≤ Int `≤ τ2 ≤ Int

Γ, ∆ ` e1 ∗ e2 :: (Int, max(c1, c2))

Γ, ∆ ` e1 :: (α, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 ∗∗ e2 :: (α, max(c1, c2))
α ∈ A

Γ, ∆ ` e1 :: (τ, c1) `≤ τ ≤ Int Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 ∗∗ e2 :: (Int, max(c1, c2))
τ 6∈ A

Γ, ∆ ` e1 :: (Matrix[i, i] of α, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 ∗∗ e2 :: (Matrix[i, i] of α, max(c1, c2))
α ∈ A

Γ, ∆ ` e1 ≤ (Int, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 / e2 :: (Int, max(c1, c2))

Γ, ∆ ` e1 :: (Mod [m1], c1) Γ, ∆ ` e2 :: (Mod [m2], c2)
Mod [m1] ↑ Mod [m2] = Mod [m]

Γ, ∆ ` e1 / e2 :: (Mod [m], max(c1, c2))

where m1, m2 can be of the form n or t/pol

Γ, ∆ ` e :: (α, c)
Γ, ∆ ` −e :: (α, c)

α ∈ A

Γ, ∆ ` e1 ≤ (Int, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 % e2 :: (Int, max(c1, c2))

Figure 22: Typechecking rules for arithmetic operations

39

3.2. CAO type system

B I T S T R I N G O P E R AT I O N S All the bit string operation are closed over the same representation,

i.e., one can not mix signed and unsigned bit strings unless through an explicit cast. The bit-wise

operations can only be used with bit strings of the same size. The concatenation, selection and range

selection operators work in the natural way by construction of a bit string with the appropriate size.

Figure 23 describes the rules for type checking bit string operations.

Γ, ∆ ` e1 :: (Bits[i], c1) Γ, ∆ ` e2 :: (Bits[i], c2)

Γ, ∆ ` e1 ⊕ e2 :: (Bits[i], max(c1, c2))
⊕ ∈ {|, &, ˆ}

Γ, ∆ ` e :: (Bits[i], c)
Γ, ∆ ` ∼ e :: (Bits[i], c)

Γ, ∆ ` e1 :: (Bits[i], c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ ` e1 ⊕ e2 :: (Bits[i], max(c1, c2))
⊕ ∈ {�,�,< |, | >}

Γ, ∆ ` e1 :: (Bits[i], c1) Γ, ∆ ` e2 :: (Bits[j], c2)

Γ, ∆ ` e1 @ e2 :: (Bits[i + j], max(c1, c2))

Γ, ∆ ` e1 :: (Bits[i], c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1[e2] :: (Bits[1], max(c1, c2))

Γ, ∆ ` e :: (Bits[k], c) φ∆(e1) = i φ∆(e2) = j
Γ, ∆ ` e[e1..e2] :: (Bits[j− i + 1], c)

k > j, j ≥ i ≥ 0

Figure 23: Typechecking rules for bit string operations

V E C T O R O P E R AT I O N S Vectors are the generic container type and they contemplate a series of

operations. As for bit strings, one can perform shifts, concatenations, selection and range selection.

These operations are defined similar to how they were defined for bit strings. The type checking rules

to be applied in vector operations are presented in Figure 24.

M AT R I X O P E R AT I O N S We have seen the description of arithmetic operations over matrices in

Figure 22. Yet, it is missing the formulation of the typechecking rules for matrix access and range

selection, formalised in Figure 25.

S TAT E M E N T S There is one important aspect that needs to be considered when typechecking state-

ments of the CAO language: some statements may modify the environments. For example, the dec-

laration of a constant retrieves not only a typed statement but also a new type environment (extended

with the new constant and its associated type) and a new constant environment (extended with the new

constant and its associated value). To account this issue, we introduce a new operator that denotes

type judgments of statements that may change the environment relations. We include statement rules

in Figures 26 and 27.

40

3.2. CAO type system

Γ, ∆ ` e1 :: (Vector[i] of τ, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1 ⊕ e2 :: (Vector[i] of τ, max(c1, c2))
⊕ ∈ {�,�,< |, | >}

Γ, ∆ ` e1 :: (Vector[i] of τ1, c1) Γ, ∆ ` e2 :: (Vector[j] of τ2, c2) τ1 ↑ τ2 = τ

Γ, ∆ ` e1 @ e2 :: (Vector[i + j] of τ, max(c1, c2))

Γ, ∆ ` e1 :: (Vector[i] of τ, c1) Γ, ∆ ` e2 ≤ (Int, c2)

Γ, ∆ ` e1[e2] :: (τ, max(c1, c2))

Γ, ∆ ` e :: (Vector[k] of τ, c) φ∆(e1) = i φ∆(e2) = j
Γ, ∆ ` e[e1..e2] :: (Vector[j− i + 1] of τ, c)

k > j, j ≥ i ≥ 0

Figure 24: Typechecking rules for vector operations

Γ, ∆ ` e1 :: (Matrix[i, j] of α, c1) Γ, ∆ ` e2 ≤ (Int, c2) Γ, ∆ ` e3 ≤ (Int, c3)

Γ, ∆ ` e1[e2, e3] :: (α, max(c1, c2, c3))

where α ∈ A

Γ, ∆ ` e :: (Matrix[u, v] of α, c) φ∆(e1) = i φ∆(e2) = j φ∆(e3) = k φ∆(e4) = n
Γ, ∆ ` e[e1..e2, e3..e4] :: (Matrix[j− i + 1, n− k + 1] of α, c)

where u > j, j ≥ i ≥ 0, v > n, n ≥ k ≥ 0, α ∈ A

Γ, ∆ ` e :: (Matrix[u, v] of α, c) Γ, ∆ ` e1 ≤ (Int, c1) φ∆(e2) = k φ∆(e3) = n
Γ, ∆ ` e[e1, e2..e3] :: (Matrix[1, n− k + 1] of α, max(c, c1))

where v > n, n ≥ k ≥ 0, α ∈ A

Γ, ∆ ` e :: (Matrix[u, v] of α, c) φ∆(e1) = i φ∆(e2) = j Γ, ∆ ` e3 ≤ (Int, c3)

Γ, ∆ ` e[e1..e2, e3] :: (Matrix[j− i + 1, 1] of α, max(c, c3))

where u > j, j ≥ i ≥ 0, α ∈ A

Figure 25: Typechecking rules for matrix operations

41

3.2. CAO type system

∆ `t t τ

Γ, ∆ |=ρ def x : t :: (•,Pure, Γ[x :: τ])
x 6∈ dom(Γ)

∆ `t t τ

Γ, ∆ |=ρ def x1, . . . , xn : t :: (•,Pure, Γ[x1 :: τ, . . . , xn :: τ])

where x1, . . . , xn 6∈ dom(Γ), xi 6= xj for 1 ≤ i ≤ n and 1 ≤ j ≤ n

∆ `t t τ Γ, ∆ ` e ≤ (τ, cc)
Γ, ∆ |=ρ def x : t := e :: (•, cc, Γ[x :: τ])

x 6∈ dom(Γ)

∆ `t t Vector [n] of τ Γ, ∆ ` e1 ≤ (τ, cc1) . . . Γ, ∆ ` en ≤ (τ, ccn)

Γ, ∆ |=ρ def x : t := {e1, . . . , en} :: (•, max(cc1, . . . , ccn), Γ[x :: Vector [n] of τ])

where x 6∈ dom(Γ)

∆ `t t Matrix [i, j] of α Γ, ∆ ` e1 ≤ (α, cc1) . . . Γ, ∆ ` en ≤ (α, ccn)

Γ, ∆ |=α def x : t := {e1, . . . , en} :: (•, max(cc1, . . . , ccn), Γ[x :: Matrix [i, j] of α])

where α ∈ A, x 6∈ dom(Γ), i× j = n

Γ, ∆ ` l1 :: (τ1, cl1) . . . Γ, ∆ ` ln :: (τn, cln)
Γ, ∆ ` e1 ≤ (τ1, c1) . . . Γ, ∆ ` en ≤ (τn, cn)

Γ, ∆ |=τ l1, . . . , ln := e1, . . . , en :: (•, max(cl1 . . . , cln, c1, . . . , cn), Γ)

Γ, ∆ ` l1 :: (τ1, cl1) . . . Γ, ∆ ` ln :: (τn, cln) Γ, ∆ ` e ≤ ((τ1, . . . , τn), c)
Γ, ∆ |=τ l1, . . . , ln := e :: (•, max(cl1, . . . , cln, c), Γ)

ΓG(fp) = ((τ1, . . . , τn)→ (τn+1, . . . , τm),Procedure)
ΓG, ΓL, ∆ ` ln+1 :: (τn+1, cl1) . . . ΓG, ΓL, ∆ ` lm :: (τm, clm)

ΓG, ΓL, ∆ ` e1 ≤ (τ1, c1) . . . ΓG, ΓL, ∆ ` en ≤ (τn, cn)

ΓG, ΓL, ∆ |=τ ln+1, . . . , lm := fp(e1, . . . , en) :: (•,Procedure, ΓG, ΓL)
fp ∈ dom(ΓG)

ΓG(fp) = ((τ1, . . . , τn)→ (),Procedure)
ΓG, ΓL, ∆ ` e1 ≤ (τ1, c1) . . . ΓG, ΓL, ∆ ` en ≤ (τn, cn)

ΓG, ΓL, ∆ |=τ fp(e1, . . . , en) :: (•,Procedure, ΓG, ΓL)
fp ∈ dom(ΓG)

Γ, ∆ ` e1 ≤ (τ1, cc1) . . . Γ, ∆ ` en ≤ (τn, ccn)

Γ, ∆ |=(τ1,...,τn) return e1, . . . , en :: ((τ1, . . . , τn), max(cc1, . . . , ccn), Γ)

Γ, ∆ |=τ c1 :: (•, cc1, Γ′) Γ′, ∆ |=τ c2; . . . ; cn :: (ρ, cc2n, Γ′′)
Γ, ∆ |=τ c1; . . . ; cn :: (ρ, max(cc1, cc2n), Γ′′)

ρ ∈ {τ, •}

Γ, ∆ |=τ c1 :: (τ, cc1, Γ′) Γ′, ∆ |=τ c2; . . . ; cn :: (ρ, cc2n, Γ′′)
Γ, ∆ |=τ c1; . . . ; cn :: (τ, max(cc1, cc2n), Γ′′)

ρ ∈ {τ, •}

Figure 26: Type checking rules for CAO statements (Part I).

42

3.2. CAO type system

Γ, ∆ ` b ≤ (Bool, cb) Γ, ∆ |=τ c1 :: (τ, cc1, Γ′) Γ, ∆ |=τ c2 :: (•, cc2, Γ′′)
Γ, ∆ |=τ if b {c1} else {c2} :: (•, max(cb, cc1, cc2), Γ)

Γ, ∆ ` b ≤ (Bool, cb) Γ, ∆ |=τ c1 :: (•, cc1, Γ′) Γ, ∆ |=τ c2 :: (τ, cc2, Γ′′)
Γ, ∆ |=τ if b {c1} else {c2} :: (•, max(cb, cc1, cc2), Γ)

Γ, ∆ ` b ≤ (Bool, cb) Γ, ∆ |=τ c1 :: (•, cc1, Γ′) Γ, ∆ |=τ c2 :: (•, cc2, Γ′′)
Γ, ∆ |=τ if b {c1} else {c2} :: (•, max(cb, cc1, cc2), Γ)

Γ, ∆ ` b ≤ (Bool, cb) Γ, ∆ |=τ c1 :: (τ, cc1, Γ′) Γ, ∆ |=τ c2 :: (τ, cc2, Γ′′)
Γ, ∆ |=τ if b {c1} else {c2} :: (τ, max(cb, cc1, cc2), Γ)

Γ, ∆ ` b ≤ (Bool, cb) Γ, ∆ |=τ c :: (ρ, cc, Γ′)
Γ, ∆ |=τ if b {c} :: (•, max(cb, cc), Γ)

ρ ∈ {τ, •}

Γ, ∆ ` b ≤ (Bool, cb) Γ, ∆ |=τ c :: (ρ, cc, Γ′)
Γ, ∆ |=τ while b {c} :: (•, max(cb, cc), Γ)

ρ ∈ {τ, •}

φ∆(e1) = i φ∆(e2) = j φ∆(e3) = k
∀n∈{i,i+k,...,j}ΓG, ΓL[x :: Int], ∆[x := n] |=τ c :: (ρ, cc, Γ′G, Γ′L)

ΓG, ΓL, ∆ |=τ seq x := e1 to e2 by e3 { c } :: (•, cc, ΓG, ΓL)

ρ ∈ {τ, •}, x 6∈ dom(ΓL), i ≤ j, k ≥ 1

φ∆(e1) = i φ∆(e2) = j φ∆(e3) = k
∀n∈{i,i−k,...,j}ΓG, ΓL[x :: Int], ∆[x := n] |=τ c :: (ρ, cc, Γ′G, Γ′L)

ΓG, ΓL, ∆ |=τ seq x := e1 to e2 by e3 { c } :: (•, cc, ΓG, ΓL)

ρ ∈ {τ, •}, x 6∈ dom(ΓL), i > j, k ≥ 1

φ∆(e1) = i φ∆(e2) = j
∀n∈{i,i+1,...,j}ΓG, ΓL[x :: Int], ∆[x := n] |=τ c :: (ρ, cc, Γ′G, Γ′L)

ΓG, ΓL, ∆ |=τ seq x := e1 to e2 { c } :: (•, cc, ΓG, ΓL)

ρ ∈ {τ, •}, x 6∈ dom(ΓL), i ≤ j

φ∆(e1) = i φ∆(e2) = j
∀n∈{i,i−1,...,j}ΓG, ΓL[x :: Int], ∆[x := n] |=τ c :: (ρ, cc, Γ′G, Γ′L)

ΓG, ΓL, ∆ |=τ seq x := e1 to e2 { c } :: (•, cc, ΓG, ΓL)

ρ ∈ {τ, •}, x 6∈ dom(ΓL), i > j

Figure 27: Type checking rules for CAO statements (Part II).

43

3.2. CAO type system

P RO G R A M S As shown in Figure 16, a CAO program consists of procedure, function, variable,

constant and struct declarations. When analysing a program, the type checker follows a non-lazy

approach, meaning that it will proceed immediately to type check the contents of the declaration. The

type checking rules for declarations can be found in Figure 28

∆ `t t1 τ1 . . . ∆ `t tn τn ∆ `t t τ
ΓG, ε[x1 :: τ1, . . . , xn :: τn], ∆ |=τ c :: (τ, cc, Γ′G)

ΓG, ε, ∆ |= def fp(x1 : t1, . . . , xn : tn) : t {c} :: (•, ΓG[fp :: ((τ1, . . . , τn)→ τ, cc)])
where t 6= void and fp 6∈ dom(ΓG)

∆ `t t1 τ1 . . . ∆ `t tn τn
ΓG, ε[x1 :: τ1, . . . , xn :: τn], ∆ |=() c; return() :: ((),Procedure, Γ′G)

ΓG, ε, ∆ |= def fp(x1 : t1, . . . , xn : tn) : void {c} :: (•, ΓG[fp :: ((τ1, . . . , τn)→ (),Procedure)])
where fp 6∈ dom(ΓG)

∆ `t t τ

Γ, ∆ |= typedef tid := t :: (•, Γ)

∆ `t t1 τ1 . . . ∆ `t tn τn

ΓG, ΓL, ∆ |= typedef sid := struct[fi1 : t1; . . . ; fin : tn] ::
(•, ΓG[fi1 :: (sid→ τ1,Pure), . . . , fin :: (sid→ τn,Pure)], ΓL)

where sid, fi1, . . . , fin 6∈ dom(Γ) where fii 6= fij for 1 ≤ i ≤ n and 1 ≤ j ≤ n

ε, ε, ε |= d1 :: (•, ΓG1) . . . ΓGn−1 , ε, ε |= dn :: (•, ΓG)

ε, ε, ε |= d1; . . . ; dn :: (•, ΓG)
main :: ()→ () ∈ Γ

Figure 28: Typechecking rules for declarations

44

4

C AO - S L S P E C I F I C AT I O N

CAO-SL Barbosa (2009) is a specification language intended to be used in annotations of CAO pro-

grams. This specification language is strongly inspired by ACSL Baudin et al. (2010) and, similarly

to ACSL, it aims to provide means that can be used to reason about behavioural properties of CAO
programs. CAO-SL allows one to annotate a CAO program with pre- and postconditions, as well as

the necessary invariants. Additionally, it also permits the definition of logical specifications, that can

then be used in the annotation of functions.

4.1 L O G I C E X P R E S S I O N S

Logic expressions are a very important component of CAO-SL, since these are the expressions that

are to be used in annotations. CAO-SL logic expressions correspond to boolean CAO expressions,

with some additional constructors, like quantification. The grammar of logic expressions that are

considered in CAO-SL are summed up in Figure 29.

The following operators were introduced:

• Connectives - the CAO boolean operators &&, || and ! are seen as logic connectives in CAO-SL.

Additionally, the implication ==> and equivalence <==> constructors were added.

• Quantification - one is able to reason about universally and existentially quantified variables in

CAO-SL.

• Conditional - CAO-SL incorporates a conditional logic expression b ? e1 : e2, that is equiva-

lent to (b⇒ e1) ∧ (!b⇒ e2).

• Logic functions - it is important to distinguish between logic functions and normal CAO func-

tions. The first, are restricted to logic functions and predicates defined using CAO-SL and can

not be called by CAO functions. Normal CAO functions are functions defined in the CAO
program and can be called by the logic functions.

• Consecutive comparison operators - in CAO-SL, one can specify comparisons by using expres-

sions of the form e1 R1 e2 R2 e3, with R1, R2 ∈ {<,≤,>,≥,==, ! =}.

45

4.1. Logic expressions

〈expr〉 :: true | false boolean constants
| 〈ident〉 identifier
| (〈expr〉)
| 〈expr〉 ? 〈expr〉 : 〈expr〉
| 〈const expr〉 constant expression
| 〈ident〉 〈{ 〈label list〉 }〉? () function call
| 〈ident〉 〈{ 〈label list〉 }〉? (〈expr〉 (,〈expr〉)*) function call (arguments)
| 〈expr〉 [〈expr〉]
| 〈expr〉 [〈expr〉 , 〈expr〉]
| 〈expr〉[〈range〉] vector/bits range accesses
| 〈expr〉[〈range〉,〈range〉] matrix range accesses
| 〈expr〉 〈binop〉 〈expr〉
| 〈unop〉 〈expr〉
| old (〈expr〉)
| result

〈range〉 :: 〈int〉 .. 〈int〉

〈const expr〉 :: 〈int〉 | 〈bool 〉

〈binop〉 :: - | + | * | / | % | ** | ## | | & | \ | ˆ | >> |
|> | << | <| | \ \ | ˆˆ

〈unop〉 :: ! | ∼ | + | -

〈relation〉 ::= < | <= | > | >= | == | !=

〈predicate〉 :: 〈expr〉
| (〈predicate〉)
| 〈expr〉 〈relation〉 〈expr〉
| 〈expr〉 〈relation〉 〈expr〉 〈relation〉 〈expr〉
| ! 〈predicate〉 negation
| 〈predicate〉 && 〈predicate〉
| 〈predicate〉 || 〈predicate〉
| forall binders ; 〈predicate〉 universal quantification
| exists binders ; 〈predicate〉 existential quantification
| 〈predicate〉 ==> 〈predicate〉 implication
| 〈predicate〉 <==> 〈predicate〉 equivalence

Figure 29: Logic expressions grammar in CAO-SL

46

4.1. Logic expressions

class associativity operators
unary right ! + − &
multiplicative left * % ** ## @ Y
additive left + -
shift left >> <<
comparison left < <= > >=
comparison left == ! =
bitwise and left &
bitwise xor left ˆ
bitwise or left |
connective and left &&
connective xor left ˆ ˆ
connective or left | |
connective implies left ==>
connective equiv left <==>
ternary connective right ..?.. : ..
binding left \ f orall \exists

Table 4: Operators precedence

4.1.1 Operator precedence

The precedence of CAO operators is maintained in CAO-SL. The precedence of the additional op-

erators can be found in Table 4, such that operators that appear at the top of the table have higher

precedence than those that appear at the top of the table.

4.1.2 Semantics

The semantics of the logic expressions are based on mathematical first-order logic. They are evaluated

to true or f alse and functions are always total.

4.1.3 Types in logic expressions

CAO-SL adopts the sames types as CAO and, therefore, there is no need to add some built-in types.

However, one is able to define new logic types and use them in the specification language. Note that,

in CAO, the integer type already corresponds to Z and this is why CAO types can be adopted by

CAO-SL.

47

4.2. Function contracts

4.2 F U N C T I O N C O N T R AC T S

In CAO-SL, a function contract consists exclusively of a specification of a precondition (requires),

a postcontions (ensures) and the parts of the sate that are modified by the function (assigns). The

grammar of contracts can be found in Figure 30.

〈contract〉 :: requires 〈predicate〉 〈contract〉
| assigns nothing
| assigns 〈location list〉 〈contract〉
| ensures 〈predicate〉 〈contract〉

Figure 30: Grammar for function contracts in CAO-SL

A simple function contract has the form:

requires P1 && ... && PN

assigns L1, ..., LN

ensures E1 && ... && EN

where the order in which the clauses appear is irrelevant. The semantics of such contract is defined

directly from the Hoare logic:

• P1 && ... && PN, as a precondition, must hold in state from which the function is being

called.

• E1 && ... && EN, as postcondition, must hold in a state where the function returns.

• L1, ..., LN must refer to global variables that are modified by the function during its execution.

• When no requires or ensures clause is provided, it will be assumed true as precondition or

postcondition, respectively.

• The assigns clause can be omitted even if there are some side-effects in the function.

• In the postcondition clause, it is mandatory to reference local variables in the pre-state. One can

also reason about variables inside the function boundaries using assertions (assert).

4.2.1 Constructors old and result

In most of the specifications, postconditions will refer to the old value of the preconditions values,

i.e., to the value that they had when the function was called, or to the result of the function, i.e., its

output. These constructions can be found in CAO-SL: old(e) denotes the value of expression e in the

pre-state and result denotes the value returned by the function. Note that they can only be used in

postcondition (ensure) clause.

48

4.3. Statement annotations

4.2.2 State and locations

Locations are the parts of the state that are modified by the function. As presented previously, one can

define the set of locations of some block of code using the assigns clause. Therefore, a location can

be seen as set of expressions that denote the modifiable left-values. These left-values can be specified

in CAO-SL the same way they are written in CAO code and their grammar can be found in Figure 16

(LValues syntactic domain).

4.3 S TAT E M E N T A N N OTAT I O N S

CAO-SL allows two type of statement annotations:

• Assertions - that can be introduced before any CAO statement and after block statements.

• Loop annotations - that are allowed before any loop statement.

4.3.1 Assertions

An assertion, of the form assert p, means that the predicate p must hold in the current state (typically

before some CAO statement). When an assertion is proved, it becomes part of the context and can be

used to prove the subsequent proof obligations of the proof tree. The grammar for assertions is given

in Figure 31.

〈statement〉 :: 〈assertion〉 〈statement〉

〈assertion〉 :: /*@ assert 〈formula〉 */

Figure 31: Grammar for assertions in CAO-SL

4.3.2 Loop annotations

Loops may be annotated with invariant and variant expressions and with some assigns clause. The

grammar for loop annotations can be found in Figure 32.

L O O P I N VA R I A N T S A loop invariant annotation has the following form:

/*@

invariant I

assigns L

*/

49

4.3. Statement annotations

〈statement〉 :: 〈loop annotation〉*
for (〈assignment〉 ; 〈expr〉 ;〈assignment〉) 〈statement〉

| 〈loop annotation〉*
while (〈expr〉) 〈statement〉

| 〈loop annotation〉*
do 〈statement〉 while (〈expr〉)

| 〈loop annotation〉*
seq 〈ident〉 := 〈expr〉 to 〈expr〉 〈by node〉? 〈statement〉

〈loop annotation〉 :: /*@ 〈node〉* */

〈node〉 :: invariant 〈formula〉
| assigns 〈location〉
| variant 〈formula〉

〈assigment〉 :: 〈expr〉(, 〈expr〉)* := 〈expr〉(, 〈expr〉)*

〈by node〉 :: by 〈expr〉

Figure 32: Grammar for loop annotations in CAO-SL

We recall the semantics of loop invariants, already mentioned in Section 2.3. Informally, the pred-

icate I must hold before, during and after the execution of the loop. More formally, I is an inductive

invariant. Consequently, it must hold for some base case (before the execution of the loop) and, if I is

assumed true in some state where the loop condition holds, and if the execution of the loop does not

abruptly terminate, I is true in the resulting state.

The assigns clause for loop annotations has the same semantic as the assigns clause for function

contracts.

L O O P VA R I A N T S A loop variant is a condition that is used to prove that the loop, in fact, termi-

nates. It has the form variant V, where V must be a non-negative integer expression.

The semantics of this construction expresses the fact that, for each loop iteration that does not

terminates abruptly, the value V must decrease. At some point, the value of the variant will match to

the value of the loop condition and termination for the given loop will be proved.

C O N S T RU C T O R at When annotating loops, it is sometimes necessary to refer to the value of

some expression in some particular state. We have seen that CAO-SL contemplates the use of the

constructors o l d and resul t in function contracts. In loop annotations, one can use the constructor

at(e , id), that denotes to the value of the expression e in some state labeled as id.

CAO-SL allows the declaration of labels as a statement annotation / ∗ @ l abe l id ∗ /. Neverthe-

less, in CAO-SL there are four predefined logic labels, that can only be used inside function contracts

and function statement annotations:

50

4.4. Logic specifications

• H ere - visible in all statement annotations and it refers to the current state where an annotation

appears. It is also visible in function contracts: in requires, it refers to the pre-state, whereas

in assi gns and ensures it refers to the post-state.

• Ol d - visible in assin gs and ensures clauses and refers to the pre-state of the function. It is

equivalent to write o l d(e) and at(e , Ol d).

• Pre - visible in all statement annotations and refers to the pre-state of the function.

• Post - visible in assi gns and ensures clauses and refers to the post-state of the function.

4.4 L O G I C S P E C I F I C AT I O N S

CAO-SL supports the definiton of logic specifications which allows the declaration of new types,

logic functions, predicates and lemmas. The grammar for these declarations is presented in Figure 33.

〈logic-decl 〉 : : predicate 〈ident 〉 〈label-decl 〉? predicate
(〈parameters 〉?) = 〈predicate 〉 ;

| logic 〈type 〉 〈ident 〉 〈label-decl 〉? logic function
(〈parameters 〉?) = 〈expr 〉 ;

| lemma 〈ident 〉 〈label-decl 〉? : 〈predicate 〉 lemma
| logic def 〈ident 〉 : 〈type 〉 ; logic variable
| logic 〈ident 〉 ; logic type

〈label-decl 〉 : : { 〈label list 〉 }

Figure 33: Grammar for logic specifications in CAO-SL

4.4.1 Functions

Logic functions can be defined using the keyword l o gic, preciding its return type and its definition.

For example, a logic function that computes the result of the addition of two values a and b can be

specified as follows

/*@ logic int sum{L} (a,b : int) = a + b;

*/

4.4.2 Predicates

A predicate can be seen as function that evaluates in some boolean value. One example of a predicate

is the following

51

4.4. Logic specifications

/*@ predicate equal{L1,L2}(u,v : unsigned bits[10]) =

forall l:int; 0 <= l < 10 ==> at(u[l],L1) == at(v[l],L2);

*/

where equal tests if two vectors are equal in two different states L1 and L2.

I N D U C T I V E P R E D I C AT E S One can also define inductive predicates in CAO-SL, like shown in

Figure 34. For a better understanding of the semantics of a logic predicate, consider the following

example

〈inductive predicate 〉 : : inductive 〈ident 〉 〈label decl 〉? (〈parameters 〉?)
{ 〈case 〉* }

〈case 〉 : : case 〈ident 〉 〈label decl 〉? : 〈predicate 〉

Figure 34: Grammar for inductive predicates in CAO-SL

/*@ inductive isfib(n,r : int) {

case isfib_zero : isfib(0,0);

case isfib_one : isfib(1,1);

case isfib_ind :

forall n,r1,r2 : int;

isfib(n,r1) && isfib(n+1,r2) ==> isfib(n+2,r1+r2);

}

*/

that defines the Fibonacci property. This inductive definition expresses that, for zero and one (base

cases), the Fibonacci number is always the same and, for values greater than one (inductive cases), the

computation of the Fibonacci number is based on two immediatly prior iterations.

4.4.3 Lemmas

Lemmas are prepositions defined with the intent to make it easier to prove the validity of some speci-

fication. Note that, contrarly to axioms, lemmas need to be proved and, therefore, a proof obligation

related to it is also generated. A lemma can be defined as in the following example, that represents

the transitivity relation for equality over unsigned bit strings.

/*@ lemma transitivity{L1,L2,L3}:

forall u,v,z: unsigned bits[10];

equal{L1,L2}(u,v) && equal{L2,L3}(v,z) ==>

equal{L1,L3}(u,z);

*/

52

4.5. Ghost code

4.4.4 Axiomatic definitions

An alternative way to define predicates, logic functions and logic types is by the use of axiomatics.

An axiomatic is a logic definition that contemplates logic types, predicates and operators over those

types. Figure 35 shows the grammar rules to specifiy these kinds of annotations. An example of an

axiomatic follows.

/*@ axiomatic lists_axiomatic {

logic list;

logic def nil:list;

logic list append(l1:list, l2:list);

logic list cons(n:int, l:list);

axiom append_nil{L}: forall l:list; append(l,nil) == l;

axiom append_cons{L}: forall l1,l2:list, n:int;

append(cons(n,l1),l2) == cons(n,append(l1,l2));

}

*/

In this example, there is the definition of a logic function a p pend, that concatenates two lists. We

recall that axioms do not need to be proved, as their are assumed true, and, thus, a new proof goal is

not generated for them.

〈axiomatic decl 〉 : : axiomatic 〈ident 〉 { 〈axiomatic pred list 〉 }

〈axiomatic pred 〉 : : axiom 〈ident 〉 〈label-decl 〉? : 〈predicate 〉;
| predicate 〈ident 〉 〈label-decl 〉? (〈parameters 〉?) (= 〈predicate 〉)?;
| logic 〈type 〉 〈ident 〉 〈label-decl 〉? (〈parameters 〉?) (= 〈expr 〉)? ;
| logic def 〈ident 〉 : 〈type 〉 ;
| logic 〈ident 〉 ;

Figure 35: Grammar for axiomatics in CAO-SL

4.5 G H O S T C O D E

Ghost code Filliâtre et al. (2014) is a very powerfull tool that helps validating proof obligations. This

type of code is invisible to the compiler and does not interfere with the actual code written. However,

it can enhance the code with additional information that help proving some property of the code by

only being visible to the proof tool.

Ghost code, in CAO-SL, is similar to CAO code (in fact, one can define any CAO statement in

ghost code), with the subtlety of being inside annotations and to start with the keyword ghost. The

grammar for ghost code in CAO-SL can be found in Figure 36.

53

4.5. Ghost code

There are some important aspects that need to be taken into account when dealing with ghost code.

Ghost code must not interfere with the memory and the states of the CAO program and the locations

of the ghost code must be disjoint form the ones associated with the real program. Therefore, every

execution of ghost code - even if some non-ghost block of code is called - must not change any CAO
variable or struct field. Summing up, the control-flow graph of a CAO function must not be altered by

ghost code.

〈ghost-type 〉 : : 〈CAO-type 〉 | logic-type types declaration

〈declaration 〉 : : 〈CAO-declaration 〉
| /*@ ghost 〈ghost-decl 〉 */ ghost declarations

〈statement 〉 : : 〈CAO-statement 〉
| /*@ ghost 〈ghost-statement 〉+ */ ghost statements

〈ghost-selection-statement 〉 : : 〈CAO-selection-statement 〉
| if (〈expr 〉) 〈statement 〉

/*@ ghost else 〈CAO-statement 〉+ */
extended
if-else

〈struct-declaration 〉 : : 〈CAO-struct-declaration 〉
| /*@ ghost 〈CAO-struct-declaration 〉+ */ ghost fields

Figure 36: Grammar for ghost code in CAO-SL

54

5

E A S Y C RY P T T O O L S E T

EasyCrypt Barthe et al. (2011a) is a toolset for reasoning about relational properties of probabilis-

tic computations with adversarial code. Its main application is the construction and verification of

game-based cryptographic proofs. EasyCrypt allows one to formalize types, operators, distributions,

algebraic properties, schemes, parametric games and adversaries in order to develop cryptographic

proofs.

We already described the tool, informally and with few details, in Section 1.4. In this chapter, we

provide a more detailed description of EasyCrypt, showing its possible applications, as well as a

typical usage of EasyCrypt when performing proofs.

5.1 A N E X A M P L E O F E A S Y C RY P T

Consider the Bellare and Rogaway Bellare and Rogaway (1994) (BR95) encryption scheme. LetM
be the type of message and R the type of randomness. Let (K f , f , f −1) be a family of trapdoor

permutations on R and G : R → M a hash function. The BR95 scheme is composed of:

kg() = (pk , sk) ← $K f ; return (pk , sk)
enc(pk, m) = r ← $R; return (f pk r , m ⊕ G r)

dec(sk, c) = (s , t) = c; r = f −1 sk s; return t ⊕ G r

Figure 37: BR95 encryption scheme

S P E C I F I C AT I O N O F B A S I C T Y P E S A N D O P E R AT I O N S A typical proof in EasyCrypt starts

by defining the types that will be involved in the definition of the scheme and in the desired proof.

EasyCrypt comes with a set of theories that already define some basic types like integers, booleans

or bit strings. However, one is always able to define new types to help structuring proofs.

In the case of the BR95 encryption scheme, and analysing its specification in Figure 37, there is no

concrete definition of what the sets K, M and R are. In the EasyCrypt model of the scheme, we

keep these types abstract also. One can declare types and operators like:

type pkey, skey.
type keys = pkey ∗ skey.

55

5.1. An example of EasyCrypt

type plain.
type rand.
type cipher = rand ∗ plain.

op zero : plain.
op (+) : plain→ plain→ plain.

op G : rand→ plain.

EasyCrypt also allows one to deal with polymorphic types.

type α list.

op (::) : α→ α list→ α list.

The syntax () defines an infix operation.

P RO P E RT I E S O F B A S I C O P E R AT I O N S We have defined in the previous section a new type -

plain -, an operation over that type - (+) - and an element which value is of type plain - zero. In

order to the cryptosystem to be correct, the operation (+) needs to have a certain behaviour, i.e., needs

to behave like the xor operation. The properties of the xor operation are well known:

• Identity element - ∃y : plain, ∀x : plain, x + y = x.

• Commutativity - f orallx, y : plain, x + y = y + x.

• Associativity - ∀x, y, z : plain, x + (y + z) = (x + y) + z.

• Cancelation - ∀x : plain, x + x = zero.

One can specify this behaviour through a set of axioms, like described bellow.

axiom xor0p (x:plain): zero + x = x.

axiom xorC (x y:plain): x + y = y + x.

axiom xorA x y z : x + (y + z) = (x + y) + z.

axiom xorN x : x + x = zero.

56

5.1. An example of EasyCrypt

After, one can start by performing some proofs over the operation.

lemma xorp0 x : x + zero = x.
proof.

rewrite xorC.
apply xor0p.

qed.

lemma xorAN x y : (x + y) + y = x by smt.

In the example above, we prove simple properties, that combine the axioms already defined. The

first lemma combines the xor0p and xorC axioms and the second lemma combines the xorA and

xorN axioms.

Additionally, we have introduced two ways of dealing with proofs: either by using a tactic lan-

guage - similar to COQ- and perform the proof interactively or by using SMT solvers (tactic smt) to

discharge proofs. Note that, in a more complex proof script, one is always able to combine the two

styles.

S P E C I F I C AT I O N O F R A N D O M O P E R AT O R S Random operators are of extreme importance to

cryptography. They allow the definition of random samplings from probabilistic distributions and are

the core of key generation algorithms. Random operators are defined using a special polymorphic

type - distr - and an operator mu - which returns the probability of an event in a given discret sub-

distribution. The mu operator was briefly introduced in Section 2.4 as the µ operator. The following

example is extracted from the EasyCrypt Distr theory.

type α distr.

op mu : α distr→ (α → bool)→ real.

As mentioned in Section 2.4, the operator mu d E should be understood as

Pr[x = $d : E x]

For the BR95 encryption scheme, on can specify the random operators as follows

op drand : rand distr.

axiom drand lossless : mu drand True = 1.

axiom drand uniform : is uniform drand.

57

5.1. An example of EasyCrypt

The predicate is uni f orm attests if a some probabilistic distribution is uniform (the probabilities

of the possbile values in it are the same).

S P E C I F I C AT I O N O F f A N D f −1 To complete the formalisation of the parameters of the BR95

encryption scheme, it is missing the declaration of the functions f and f −1. One possible formalisa-

tion of these components is the following:

op keygen : keys distr.

op f : pkey→ rand→ rand.
op finv : skey→ rand→ rand.

axiom finvof pk sk x: in supp (pk,sk) keygen⇒ finv sk (f pk x) = x.

axiom fofinv pk sk x: in supp (pk,sk) keygen⇒ f pk (finv sk x) = x.

Again, there is no explicit realisation of function f or f−1. Its behaviour is modeled according to

the two axioms f invo f and f o f inv, that act like cancelation axioms and that, informally, specify that

one function is the inverse of the other.

T H E B R 9 5 E N C RY P T I O N S C H E M E The formalisation of the BR95 encryption scheme can be

done using an EasyCrypt module. We have already explained with little detail this component of

the toolset in Section 1.4. Modules are a keystone of EasyCrypt. They allow the specification -

using the pWhile language - of encryption schemes, oracles, adversaries, cryptographic assumptions

or game-based properties, in the form of probabilistic programs.

module BR95 = {
proc kg() : keys = { var ks : keys; ks = $keygen; return ks; }

proc enc(pk:pkey, m:plain) : cipher = {
var r : rand;

r = $drand;

return (f pk r, m + G r);
}

proc dec(sk:skey, c:cipher) : plain = {

58

5.2. Proving in EasyCrypt

var s : rand;
var t : plain;

(s,t) = c;

return (t + G (finv sk s));
}
}.

The definition presented above declares a module BR95 with three procedures (kg, enc and dec).

One is also able to define global variables on modules, call external modules, parametrize modules by

other modules, define high order modules, perform quantification - f orall and exists - and to define

restrictions on which procedures from a module can be called.

5.2 P ROV I N G I N E A S Y C RY P T

We have previously mentioned that one can follow two styles when dealing with formal verification of

programs: one with more focus on automation and another one with more focus on interactivity. The

first one relies on automated external proof tools that try to discharge proof obligations without inter-

vention of the user. Clearly, the work is limited to the correct annotation of the program and then the

calling of external provers. However, it may be the case that a program and its respective annotations

create a valid Hoare triple but the external provers are not able to prove this property, for example, due

to time requirements or ambiguity in some proof goal that prevents the tool from continuing. This last

difficulty can be completely overcame with the use of an interactive proof assistant like COQ. Even

if there are two or more tactics that would suit the proof goal, it is the user that chooses which one is

to be applied. One can also argue that, by using an interactive proof assistant, one is able to perform a

larger set of proofs than using an SMT solver. Nevertheless, the degree of automation in an interactive

proof assistant is very limited and, for some proof goal, a call to an SMT solver would close it but,

following the nature of interact proofs, one needs to perform it all.

In this section we introduce how EasyCrypt can be used to perform proofs over programs. Easy-
Crypt is supported by two logics: an ambient logic to reason about logic operators and first-order

logic predicates and a probabilistic relational Hoare logic (which includes the probabilistic relational

Hoare logic and the Hoare logic) to reason about properties over programs. Informally, the objective

is to, using the probabilistic relational Hoare logic, transform some Hoare triple into a first-order logic

goal and then discharge it using the ambient logic. Therefore, EasyCrypt introduces a new style in

program verification - a semi-automated style - where the user is always free to call an SMT solver to

discharge proofs, instead of performing them step-by-step. Naturally, some SMT calls will not be able

to discharge the proof goal (due to its complexity or due to lack of context), which would require the

59

5.2. Proving in EasyCrypt

user to refine the it - using the EasyCrypt logics - in order to be able to call the external prover again

and succeed with the proof. In what follows this section, we will describe how EasyCrypt can be

used to perform deductive program verification, by showing its proof engine, some important tactics

and an example of a correctness proof. For a more complete description of the tool, we refer to the

EasyCrypt Reference Manual The EasyCrypt development team (2015).

5.2.1 Proof engine

Judgments in EasyCrypt are of the form

ε; Γ ` φ

where ε is the global environment, Γ is the context and φ is the proof objective. The global environ-

ment ε is composed of EasyCrypt theories, like the integer theory or the array theory. The context Γ
is a set of assertions that are known to be true and are used to prove the goal φ. Typically, the interac-

tion between the context and the proof goal works by implication: being ass(Γ) the set of assertions

of Γ, ass(Γ)⇒ φ. For example, the judgement

Int; x, y, z : int, x ≤ y ` x + z ≤ y + z

states that in the global environment solely composed of the theory of integers (Int), having three

local variables x, y and z of type int along with the fact that x ≤ y (the context Γ), we are interested

in proving x + z ≤ y + z.

Additionally, a set of deduction axioms is given. These deduction rules are the same as described

in Chapter 2 and have the form

P1, ..., Pn

ε; Γ ` φ

which declares that if P1, ..., Pn are derivable, then ε; Γ ` φ is also derivable.

We have also previously mentioned that the objective, when performing proofs, is to build a tree

rooted by some judgement and with leaves composed of deduction rules. If a tree can be built for

some judgement, then it holds in respect to the premises. The EasyCrypt proof engine helps the user

to build such proofs. At each step of the proof construction, the system presents to the user the set of

goals that have to be proved. The user can then apply a tactic to one of them, each tactic corresponding

to a deduction rule. If the conclusion of the rule corresponding to the applied tactic matches the goal

to which it is applied, the proof engine replaces it with the set of the premises of the applied rule - the

subgoals. This application may generate zero, one or several subgoals depending on the rule. This

process is repeated iteratively, up to the point where no goals remain. At this point, the proof is closed.

60

5.2. Proving in EasyCrypt

5.2.2 Ambient logic

Ambient logic is used to reason about first-order logic proof goals. The tactics that support it are

similar to COQ tactics that provide means to reason with propositional and first order logic lemmas.

We provide description of some important tactics of the ambient logic.

M O V E => π1 . . .πn | M O V E : π1 . . .πn Moves the assumptions π1 . . .πn from the proof

goal to the context in the first case and from the context to the proof goal in the second case.

A P P L Y p Considering the formula ∀(x1 : τ1) . . .(xn : τn) , P1 ⇒ . . . ⇒ Pn ⇒ G, apply

p tries to match G with the representation of p. If it succeeds, it generates n subgoals P1 , . . . , Pn .

A S S U M P T I O N Search in the context for an hypothesis that is convertible to the goal and applies

it.

One can also use exact p to refer to the exact hypothesis that is to be applied.

C U T id : φ Logical cut. Generates two subgoals: one for the cut formula φ, and one for φ ⇒ G
where G is the current goal.

R E W R I T E π1 . . .πn Rewrites the rewrite-pattern π1 . . .πn from left to right, where the π i are

proof-terms.

S P L I T Breaks an intrinsically conjunctive goal into its component subgoals.

L E F T Reduces a disjunctive goal to its left member.

R I G H T Reduces a disjunctive goal to its right member.

E L I M /φ π1 . .πn Applies the elimination principle φ to the top assumption after having gen-

eralised π1 . .πn .

R E F L E X I V I T Y Solves goals of the form t = t.

T R I V I A L Tries to solve the goal by using a mixture of low-level tactics.

S M T Tries to solve the goal using SMT solvers. The goal is sent along with the local hypotheses

plus selected axioms and lemmas.

61

5.2. Proving in EasyCrypt

5.2.3 Program logics

Program logics are to be applied when the goal assumes the shape of a Hoare triple, wether one is deal-

ing with a Hoare logic judgement (Section 2.3), a probabilistic Hoare logic judgement (Section 2.4)

or a probabilistic relational Hoare logic judgement (Section 2.5).

Using program logics, EasyCrypt allows the usage of three classes of tactics: those that operate at

the level of specifications - strengthening, combining or splitting goals without modifying the program

-, those that actually reason about the program in Hoare logic style and those that correspond to

semantics-preserving program transformations or compiler optimisations. In this section, we will

present a set of relevant tactics that fit in these classes.

5.2.3.1 Reasoning about specifications

C O N S E Q (: φ ⇒ ψ) Applies the conseq rule.

C A S E φ Split the current goal by doing a case analysis in the precondition.

5.2.3.2 Reasoning about programs

The tactics presented in this section have been introduced when the derivation systems for Hoare logic,

probabilistic Hoare logic and probabilistic relational Hoare logic were explained. Most of the tactics

introduced bellow have the behaviour of the rules showed in Chapter 2.

P R O C Derive a specification for a concrete procedure from a specification on its code.

I N L I N E p When a given program has a procedure call to procedure P, inline P expands

the code of P replacing it by its invokation.

S K I P Applies the ski p rule.

S E Q θ Applies the seq rule, using θ as the middle assertion.

W P Computes the weakest precondition of a straightline deterministic suffix of the program(s) that

implies the current postcondition. Also consumes deterministic i f statements (when both branches

are deterministic straightline code without procedure calls).

R N D Applies the rnd tactic.

I F Applies the i f tactic. Only works if the condition is in the first line of the program.

62

5.2. Proving in EasyCrypt

W H I L E i | W H I L E i v Applies the whi l e tactic using i as the loop invariant in the first case

and applies the whi l e tactic using i as the loop invariant and v as loop variant in the second case.

C A L L (: φ ⇒ ψ) | C A L L (: i) Applies the cal l tactic using φ ⇒ ψ as spec-

ification for the procedure to be called in the first case and applies the cal l tactic using I as invariant

of the procedure to be called.

5.2.3.3 Transforming programs

S W A P l1 l2 l3 Swaps the code between lines l1 and l2 with the code between lines l2 and l3,

assuming that these are syntactically independent.

5.2.3.4 Automated tactics

EasyCrypt also provides a set of tactics that automate the process of reasoning about program instruc-

tions. We provide explanation of two of those tactics.

A U T O Tries to apply, as much as possible, the program tactics described above. If it founds some

instruction that introduces ambiguity, it stops.

S I M Only works for probabilistic relational Hoare logic goals. Simulates the execution of the two

programs being compared. If the executions are the same, it discharges all the associated proof goals.

5.2.4 A proof example: Correctness of BR93

In this section we provide an example of how EasyCrypt can be used to perform proofs over (proba-

bilistic) programs. We exemplify it by showing two possible ways of performing a correctness proof

for the BR93 encryption scheme: one without using automatic tactics and SMT calls and another with

great focus on automation on the built of the proof tree.

The first step is to write a new module Correctness, that is parameterised by a cryptographic

encryption scheme and that executes by initialising the scheme with the key generation, encrypts a

given message and then decrypts the resulting ciphertext. It returns a boolean, stating that the result

of the decryption algorithm should be equal to the original message.

module Correctness(S: Scheme) = {
proc main (m: plain) : bool = {

var sk : skey;
var pk : pkey;
var c : cipher;
var d : plain;

63

5.2. Proving in EasyCrypt

(pk,sk) = S.kg();
c = S.enc(pk,m);
d = S.dec(sk,c);

return (m = d);
}
}.

Scheme is a modul e ty pe, i.e., is a module that only contains the header of the functions, instead

of its explicit definitions, and that defines a class that other modules can inherit. For example, the

module BR93 inherits Scheme, meaning that it will contain procedures with the exact same header

of the ones defined in the module type.

module type Scheme = {
proc kg() : keys
proc enc(pk:pkey, m:plain) : cipher
proc dec(sk:skey, c:cipher) : plain
}.

The correctness of the scheme can, at this point, be modeled as a simple Hoare triple, of the form

{ true}Correctness(BR93) .main{res}

where res is the result of the function, and it is written in EasyCrypt as follows.

lemma Correctness : hoare [Correctness(BR93).main : trueV res].

P ROV I N G C O R R E C T N E S S I N T E R AC T I V E LY The proof is developed in two steps:

1. Apply program tactics to reason about each instruction, until reaching the empty program,

where skip tactic transforms it in an first-order logic implication, between the precondition

and the postcondition.

2. First-order logic reason, to prove that the implication hold and, consequently, prove the validity

of the Hoare triple.

The proof is presented bellow.

64

5.2. Proving in EasyCrypt

lemma Correctness interact : hoare [Correctness(BR93).main : trueV res].
proof.

proc⇒ //.
inline∗.
do(wp;rnd).
skip.
move⇒ &hr HT ks Hks r Hr.
rewrite finvof.
cut→ : (ks.‘1, ks.‘2) = (fst ks, snd ks).

rewrite /fst /snd.
reflexivity.

rewrite pairS.
exact Hks.
rewrite xorAN.
reflexivity.

qed.

P ROV I N G C O R R E C T N E S S W I T H F O C U S O N AU T O M AT I O N The same proof can be done

with a one-line proof script if one takes advantage of the full capabilities of EasyCrypt. Since we

are dealing with a program made of simple instructions - mostly random samplings and assignments -

one can apply the auto tactic and avoid the instruction-by-instruction analysis of the program. At the

end, instead of developing a first-order logic proof, an external solver can be called to discharge the

resulting proof goal. The proof script is presented bellow.

lemma Correctness auto : hoare [Correctness(BR93).main : trueV res].
proof.

proc; inline∗; auto; smt.
qed.

65

6

A N E W C AOV E R I F

The CAO language allows the extraction of highly efficient C code, that corresponds directly to some

implementation of a cryptographic primitive made in CAO. Therefore, one could use state-of-art tools

to reason about the C code generated. For example, some user could use the Frama-C platform, using

the Jessie or WP, to perform deductive verification or even use some bounded model checker to verify

more lightweight properties.

However, analysing the C code extracted from a CAO implementation can be a very hard process.

Consider, for example, that one has no control over the code generated or what data structures will

be used. The solution is, thus, to perform verification over the CAO code and then generate C code

that is correct by construction. This was the aim of CAOVerif Almeida et al. (2014): to develop a

domain-specific deductive verification tool, allowing for the same verification techniques and with a

high degree of automation.

CAOVerif follows the same approach used in other scenarios for general-purpose languages such

as Java and C Filliâtre and Marché (2007). The tool architecture itself fundamentally relies on the

Jessie plug-in, which itself uses Why as a back-end and is one of the components integrated into the

Frama-C framework. The workflow of CAOVerif is the following:

1. An annotated CAO program (which can be processed without change by the CAO compiler,

since annotations are included in the code as comments) is first checked for syntactic and typing

errors. The resulting Abstract Syntax Tree (AST) is then translated into Jessie input language.

2. Most of the CAO types are not Jessie native types (e.g. extension fields, bitstrings, etc), thus

the translation includes the axiomatic model of the CAO type system in first-order logic plus

the translation of the CAO annotated program.

3. The proof obligations are generated by running the Jessie plug-in, which uses Why as a back-

end. The proof obligations can then be discharged with some existenting automatic prover or

proof assistant.

In this chapter, we describe a new CAOVerif tool, that relies on EasyCrypt as a backend. When

CAOVerif was developed, there was no tool specific to the domain of cryptography that could be used

as a backend for CAOVerif and, consequently, the tool needed to rely on state-of-the-art tools that

66

6.1. A new architecture for CAOVerif

did not aimed to provide means to reason about cryptographic properties. With the development of

EasyCrypt, it makes sense to evaluate its behaviour as a backend for a cryptographic domain specific

deductive verification tool.

6.1 A N E W A R C H I T E C T U R E F O R C AOV E R I F

The principle behind the conception of the new CAOVerif tool is the same of the previous version.

An annotated CAO program is first analysed by our implementation of the typechecker but, instead

of translating it into a Jessie input language program, we produce an EasyCrypt script that matches

the original specification of the CAO program.

In the old CAOVerif version, most of the CAO types were not Jessie native types. In fact, only

the integers and booleans CAO types could be directly mapped into the integers and booleans Jessie
types. However, since EasyCrypt is a toolset specific to the domain of cryptography, it already has

the definition of important cryptographic types. Therefore, our formalisation of the CAO types relies

almost all in the formalisation of EasyCrypt types.

EasyCrypt does not provide the same degree of automation that one was able to achieve by rely-

ing on the Frama-C/Jessie toolchain. More precisely, we will not be able to match the automatic

generation of proof obligations feature of the old CAOVerif, neither the convenience of being able to

discharge the generated proof goals with some existent SMT solver or proof assistant in a graphical

way. Nevertheless, one can argue that the architectures of both versions of CAOVerif are the same,

considering that EasyCrypt uses the Why3 Bobot et al. (2011); Filliâtre and Paskevich (2013) as

backend in order to communicated with automatic provers.

A graphical description of architecture of the new CAOVerif tool can be found in Figure 38.

6.2 A N O C A M L I M P L E M E N TAT I O N O F T H E C AO T Y P E C H E C K E R

As one is able to observe in Figure 38, the first step of the CAOVerif toolchain is to parse the CAO
file and to typecheck it. Since the new CAOVerif tool relies on EasyCrypt (that was developed in

OCaml) the first step when developing the new CAOVerif was to implement the typechecker in the

OCaml language, so that the interoperability between the two platforms would be potentialised to the

maximum.

The main purpose of the CAO typechecker is to analyse the code in such a way that the code trans-

formation and C code generation is optimised. Providing that the typechecker was to be implemented

from scratch and that the aim of the CAOVerif tool is to formally verify CAO programs, our OCaml
implementation of the CAO typechecker was developed with the objective of maximising the effi-

ciency of the typechecker complex verifications (like array accesses) and of generating an AST from

which the generation of an EasyCrypt script would be a direct translation.

67

6.2. An OCaml implementation of the CAO typechecker

Figure 38: New CAOVerif architecture

In what remains this thesis, everytime we refer to CAO, we will be referring to the extended version

of the language that we present in this section.

6.2.1 CAO + CAO-SL: a new language

The typical approach when building deductive verification platforms similar to CAOVerif is to develop

an annotation language - that is to be written inside comments - such that this language is only readable

by the deductive verification tool. This way, there is always some degree of independency between

the language and all the toolset associated to it and the verification tool. In this project, we gathered

the CAO language and the CAO-SL language together, resulting in a new language - that supports

program descriptions and annotations - and in a new toolset - that allows one to use the capabilities of

the CAO compiler along with the capabilities of the verification tool we present.

A natural implication of the combination of CAO and CAO-SL is the extension of the syntactic

domains of the language. A CAO program can now be composed by global variables declarations,

new types declarations, functions and procedures declarations and by logic specifications, axiomatic

definitions, global invariants specifications and by ghost code definition. The grammar and syntax

rules for CAO-SL elements can be found in Chapter 3.

68

6.2. An OCaml implementation of the CAO typechecker

pg ::= . . .
| ld
| ad
| gi
| gc

. . .
Functions and procedures now support the specification of contracts. Therefore, the syntax is ex-

tended as follows.

dfp ::= [ctr] def fp (x1 : t1, . . . , xn : tn) : rt { c1; . . . ; cm }

The statements syntactic domain also gets extended in order to support statement annotations - loop

invariants and assertions.

c ::= . . .
| assert(e)
| [linv] while (b) c
| [linv] seq x := e1 to e2 c
| [linv] seq x := e1 to e2 by e3c
. . .

Finally, expressions are also extended in order to support expressions defined by the at, old and

result constructors and by logic functions calls.

e := . . .
| old(e)
| result
| at(la, e)
| l f (e1, . . . , en)

. . .

6.2.2 Additions to the CAO language

Besides the available commands and operators, the CAO language (and its typesystem) was extended

with two additional features, that are important to cryptographic implementations.

69

6.2. An OCaml implementation of the CAO typechecker

S A M P L I N G O P E R AT O R The CAO language presented in Chapter 3 does not contemplates a

sampling operation. This limitation of the language makes impossible, for example, the complete

specification of key generation algorithms and, consequently, the formal definition of a cryptographic

encryption scheme (which contemplates always three algorithms - a key generation algorithm, an

encryption algorithm and a decryption algorithm).

The syntax of the language is, therefore, extended as shown below.

c := . . .
| l := $
. . .

The new statement means that a value of the type of l will be sampled and stored in l. For example,

the following function body

def r : mod[7];

r := $;

return r;

will return a random value of the field Z7, i.e., a value between 0 and 6.

The corresponding typechecking rule can be found in Figure 39.

Γ, ∆ ` l :: (τ, cl)
Γ, ∆ |=ρ l := $:: (•, cl)

Figure 39: Typechecking rule for the sampling operator

C O N S TA N T S D E F I N I T I O N CAO, being a cryptographic domain specific language, aims to pro-

vide an elegant way to write cryptographic programs. Thus, it is very important to provide a syntax

that is very close to standards, as well as a set of types that eases the description of structures used in

cryptography. Many cryptographic schemes, specially those who rely on number theory assumptions,

contemplate the use of parameters. These parameters are constant numbers that usually depend on

each other. Hence, we added the support to define constants in the CAO language. This represents an

extension to the CAO syntactic domains.

dc := de f const x1 : τ1, . . . , xn : τn | de f const x1 : τ1, xn, . . . , xn : τn := e1, ..., en

Consequently, a CAO program may now be also composed by constant definitions.

70

6.2. An OCaml implementation of the CAO typechecker

pg := . . .
| dc
. . .

We also add the ability to define constants inside functions or procedures.

c := . . .
| dc
. . .

The typechecking rule that deals with constant definitions can be found in Figure 40.

∆ `t t τ

Γ, ∆ |=ρ def const x : t :: (•,Pure, Γ[x :: τ])
x 6∈ dom(Γ), x 6∈ dom(∆)

∆ `t t τ

Γ, ∆ |=ρ def const x : t := e :: (•,Pure, Γ[x :: τ], ∆[x := e])
x 6∈ dom(Γ), x 6∈ dom(∆)

∆ `t t τ

Γ, ∆ |=ρ def const x1, . . . , xn : t :: (•,Pure, Γ[x1 :: τ, . . . , xn :: τ])

where x1, . . . , xn 6∈ dom(Γ), x1, . . . , xn 6∈ dom(∆), xi 6= xj for 1 ≤ i ≤ n and 1 ≤ j ≤ n

∆ `t t τ

Γ, ∆ |=ρ def const x1, . . . , xn : t := e :: (•,Pure, Γ[x1 :: τ, . . . , xn :: τ], ∆[x1 := e, . . . , xn := e])
where x1, . . . , xn 6∈ dom(Γ), x1, . . . , xn 6∈ dom(∆), xi 6= xj for 1 ≤ i ≤ n and 1 ≤ j ≤ n

Figure 40: Typechecking rule for constant definitions

R E F I N E M E N T S O F F U N C T I O N PA R A M E T E R S Since CAO required all sizes to be statically

known, implementing algorithms which were designed to handle arguments with variable size was

not possible. In order to circumvent this restriction, one had to define multiple versions of the same

function, each of them instantiated with a different possible size. This restriction is clearly scalable

in most situations, despite reasonable for cryptographic implementations whose parameters are taken

from a set of usual values (e.g., size of the key).

In our OCaml implementation of the CAO typechecker, we add the ability of declaring symbolic

constants as parameters of functions. Consider the following signature of a function:

def f(const n : int { 0 < n }, v : vector[n] of int) : vector[2*n] of

int

71

6.3. Formalisation of the CAO types in EasyCrypt

The parameter v is a vector of integers whose size depends on the symbolic constant n, declared as

a (positive) symbolic parameter. The return type may also depend on the symbolic parameters of the

function; in our example, the size of the return vector must be twice the size of the input vector.

The joint conditions of the symbolic parameters of a function can be seen as its precondition: they

are assumed to always hold in the body of the function, and only instantiations that satisfy them are

accepted in function calls.

6.3 F O R M A L I S AT I O N O F T H E C AO T Y P E S I N E A S Y C RY P T

Before applying the translation algorithm between CAO and EasyCrypt, the types of the CAO lan-

guage need to be correctly formalised in EasyCrypt, so that the there are no lost of semantics during

the mapping phase. In order to formalise the CAO types in EasyCrypt, the strategy chosen consisted

in developing new EasyCrypt theories - one for each CAO type - and then to clone (instantiate) the

corresponding theory with the parameters of the type. For example, supposing that some CAO pro-

gram uses some variable of type vector[10] o f int, the CAO vector theory would be cloned with

type = CAO int and with size = 10, so that elements of the type defined by the instantiated theory

refers uniquely to vectors with size 10 and with elements of type int.
In this section, we describe how every type available in the CAO language is translated into an

EasyCrypt theory. The theories have the following form. First, there is the definition of the parame-

ters of the type and its constrains - for example, in the case of bit strings, the parameter is the size of the

bit string and its condition is that the size must be greater than 0. Next, there is the explicit definition

of the logic type that matches the CAO type. Then, the theory specifies all the available operations

over that type, as well as an axiomatisation of their behaviour. Finally, a probability distribution is

defined for the type.

6.3.1 Integer type

The CAO int type is directly mapped into the EasyCrypt int type (type CAO int = int). The Int
theory from EasyCrypt already defines the expected behaviour of a CAO integer. However, there is

the need to extend this theory with three new operations/predicates:

• op is prime : CAO int→ bool - defines the primality test for some integer.

• op gcd : CAO int→ CAO int→ CAO int - greatest common divisor between two integers.

• op inverse mod n : CAO int→ CAO int→ CAO int - modular inverse of an integer modulo an-

other integer.

72

6.3. Formalisation of the CAO types in EasyCrypt

One axiom is provided to describe the interaction between the previous operations: axiom prime gcd

(x p : CAO int): is prime p ∧0 < x < p⇒ gcd x p = 1, that states that the greatest common divisor of

any number and a prime number is always one.

These operations are kept abstract. Nevertheless, suppose that one is using the type mod[7] in his

program and that he wants to perform some proof around the division operation. Since 7 is a prime

number, the mod[7] type defines a field and, therefore, the division operation is defined. One can

annotate the program with the precondition /*@ requires is prime 7 = true */ in order

to discharge all the desired proofs.

6.3.2 Boolean type

Similarly to the integer type, the CAO boolean type is directly mapped to the EasyCrypt boolean

type - type CAO bool = bool. There is no need to extend the Bool EasyCrypt theory since it defines

every operation needed to correctly model the boolean type and the bit string type (that, in our model,

is seen as an array of boolean values).

Considering that set of boolean values B has only two possible values (true or f alse), the boolean

sampling probability distribution is easy to define: the probability of true and f alse is 1/2. We define

this probability using the mu EasyCrypt operation, which gives us the necessary lemmas to reason

about boolean distributions.

∀p : CAO bool → CAO bool, µ bool distr p = 1/2

∀b : CAO bool, in supp b bool distr

∀b : CAO bool, µ x bool distr b = 1/2

is lossless bool distr

6.3.3 Ring/field type

The ring and field CAO type mod[n] corresponds to the Zn construction. The formalisation of the

CAO mod type begins with the definition of the n parameter: it should be a CAO int and it should

always be greater than 0. Otherwise, it is impossible to define any algebraic structure.

We could specify the CAO mod type as a bounded integer and reuse what was defined for the

CAO int type. However, we defined the new type CAO mod and defined all the operations (addition,

subtraction, multiplication, division, modulo and exponentiation) for it, as well as provided an axioma-

tisation to reason about them. In addition, we also defined the additive inverse and the multiplicative

73

6.3. Formalisation of the CAO types in EasyCrypt

inverse as operations, as well as mapping operations between the CAO mod type and the CAO int

type.

Providing that we are building the CAO mod theory from scratch, we fixed two important values

of CAO mod, that are used when defining the properties of the elements of the type: the zero element

(CAO mod zero) and the one element (CAO mod one).

The conversion to integers captures the homomorphism mapping a residue class into the correspond-

ing least residue, whereas the converse operation represents the homomorphism mapping an integer

into its residue class. We provide two logic functions

op ofint : CAO int→ CAO mod.
op toint : CAO mod→ CAO int.

and a set of axioms around them

o f int 0 = CAO mod zero

∀x : CAO int, 0 ≤ x ⇒ o f int (x + 1) = (o f int n) + CAO mod one

∀x : CAO int, o f int (−x) = −(o f int x)

∀x : CAO mod, 0 ≤ tointx < n

∀x : CAO mod, o f int (toint x) = x

∀x : CAO int, toint (o f int x) = x%n

∀x : CAO int, x ≥ n⇒ toint (o f int x) = toint (o f int (x− n))

∀x : CAO int, x < 0⇒ toint (o f int x) = toint (o f int (x + n))

The above axioms ensure that the mapping operations operate as expected. The functions ofint and

toint are the inverse of one another and, naturally, follow the cancelation rules bellow.

∀x : CAO mod, o f int (toint x) = x

∀x : CAO int, 0 ≤ x < n⇒ toint (o f int x) = x

The residue operations are defined abstractly.

op (∗): CAO mod→ CAO mod→ CAO mod. (∗ multiplication modulo n ∗)
op (+): CAO mod→ CAO mod→ CAO mod. (∗ addition modulo n ∗)

74

6.3. Formalisation of the CAO types in EasyCrypt

op [−]: CAO mod→ CAO mod. (∗ the additive inverse ∗)
op inv: CAO mod→ CAO mod. (∗ the multiplicative inverse ∗)

op (−) : CAO mod→ CAO mod→ CAO mod. (∗ subtraction modulo n ∗)
op (%) : CAO mod→ CAO mod→ CAO mod. (∗ division modulo n for y <> 0

∗)
op (%%) : CAO mod→ CAO mod→ CAO mod. (∗ modulo modulo n for y <>

0 ∗)
op (ˆ) : CAO mod→ CAO int→ CAO mod. (∗ exponentiation ∗)

Again, we could make use of the ofint and toint functions to rely on the EasyCrypt Int theory

and explicitly define the arithmetic operations. For example, the addition operation could be written

as op (+)(x y : CAO mod): CAO mod = ofint (toint x + toint y). Note that, considering the previously

defined axioms, the two definitions for the operations are equivalent and this statement can be proved

using a simple SMT call. We provide an example for the addition operation.

∀x, y : CAO mod, x + y = o f int (toint x + toint y)

The properties of the ring or field operations are also axiomatised. If Zn defines a ring, then the

following properties will hold for the addition and multiplication operations:

• Commutativity of the addition - ∀x, y : CAO mod, x + y = y + x

• Associativity of the addition - ∀x, y, z : CAO mod, x + (y + z) = (x + y) + z

• Identity element of the addition - ∀x : CAO mod, x + CAO mod zero = x

• Additive inverse - ∀x : CAO mod, x +−x = CAO mod zero

• Associativity of the multiplication - ∀x, y, z : CAO mod, x ∗ (y ∗ z) = (x ∗ y) ∗ z

From the properties above, we are able to define the subtraction x− y as the addition of x with the

additive inverse of y: axiom sub def (x y:CAO mod): x y = x + y.. If Zn defines a field, it will inherit

all the properties of the ring algebraic structure with some additional ones:

• Commutativity of the multiplication - ∀x, y : CAO mod, is prime n⇒ x ∗ y = y ∗ x

• Identity element of the multiplication - ∀x : CAO mod, is prime n⇒ x ∗CAO mod one = x

• Multiplicative inverse - ∀x : CAO mod, is prime n ⇒ x 6= CAO mod zero ⇒ (x ∗
(invx)) = CAO mod one

75

6.3. Formalisation of the CAO types in EasyCrypt

• Distributivity of the multiplication over the addition - ∀x, y, z : CAO mod, is prime n ⇒
x ∗ y + x ∗ z = x ∗ (y + z)

Notice that we add the condition is prime n to restrict the property to instantiations of the CAO mod

theory that define fields.

The modeling of the operations concludes with the definition of the division operation. The division

is always defined when Zn is a field but is also defined for some cases when Zn is a ring. More

concretely, the division operation is defined if the denominator is co-prime with n, i.e., if the greatest

common divisor between the denominator and n is 1. The division is, therefore, defined by the axiom

axiom div def (x y:CAO mod): gcd n (toint y)= 1⇒ x /% y = x ∗ (inv y).

Our model also contemplates two axioms to reason about the greatest common divisor operation

combined with the multiplicative inverse of some number.

∀x : CAO mod, gcd (toint x) n = 1⇒ toint x ∗ toint (inv x) = 1

∀x : CAO mod, y : CAO int, toint x ∗ y = 1⇒ toint (inv x) = y

The probability distribution mod distr over the CAO mod type is defined in the obvious way. Seeing

the elements of Zn as the set [0, n[, with n elements, the probability of an element of this set being

sampled is 1/n, in constrast to the probability of sampling an element outside of the set, which is

0 - is not in the support of the distribution. This distribution is, naturally, lossless and uniform. The

following lemmas model mod distr.

∀x : CAO mod, 0 ≤ toint x < n⇒ µ x mod distr x = 1/n

∀x : CAO mod, !(0 ≤ toint x < n)⇒ µ x mod distr x = 0

is lossless mod distr

is uni f orm mod distr

The CAO mod theory finishes with a set of lemmas that we were able to prove about the CAO mod

type. These lemmas do not correspond to properties of the ring or field algebraic structures but can be

important auxiliary lemmas when performing more complex proofs.

76

6.3. Formalisation of the CAO types in EasyCrypt

∀x : CAO mod, 0 ≤ toint x < n

∀x : CAO int, 0 ≤ x < n⇒ toint (o f int x) = x

∀x : CAO mod, (x− x) = CAO mod zero

∀x : CAO mod, CAO mod zero + x = x

∀x : CAO mod, is prime n⇒ x ∗ CAO mod zero = CAO mod zero

∀x, y : CAO mod, (−x) ∗ y = −(x ∗ y)

∀x, y : CAO mod, y ∗ (−x) = −(y ∗ x)

∀x : CAO mod, − (−x) = x

∀x, y, z : CAO mod, x ∗ y− x ∗ z = x ∗ (y− z)

∀x : CAO mod, is prime n⇒ (−CAO mod one) ∗ x = −x

∀x, y : CAO mod, (−x) + (−y) = −(x + y)

∀x : CAO mod, 0 ≤ toint x

∀x : CAO mod, toint x < n

∀x : CAO mod, toint x ≤ n− 1

∀x : CAO int, 0 ≤ x < n⇒ toint (o f int x) = x

o f int 1 = CAO mod one

6.3.4 Register int type

The register int CAO type corresponds to machine bounded integers. The semantics of register in-

tegers is similar to the semantics of mod[2w], with w defined by the machine. Therefore, we could

define a CAO register int using the CAO mod theory. However, this representation would create a ma-

jor overhead in the translated code, since we would require a lot of unecessary conversions between

the CAO int and the CAO mod type in, for example, loop control variables. Thus, we define a new

theory, CAO reg int that describes the behaviour of the CAO register int type.

Similarly to the CAO mod theory, the CAO reg int theory starts by defining of a constant parameter

w that will be used to represent the bound of a register int. The CAO reg int type will then be specified

as being equal to the CAO int. Next, we define the possible values of the inhabitants of the CAO reg int

type by the following axiom

∀x : CAO reg int, 0⇐ x < 2w

We also provide the characterisation of an uniform probability distribution over the CAO reg int

type. The representation of this probability distribution is equal to the CAO mod probability distribu-

77

6.3. Formalisation of the CAO types in EasyCrypt

tion. The only difference is that, instead of considering the elements of the type are bounded by the

interval [0, n[, they are bounded by the interval [0, 2w[

6.3.5 Bit string type

A bit string in CAO is parametrised by its size and one is not able to define a bit string of arbitrary

length. Thus, the definition of the theory for the bit string type starts by define the size of the bit string

as a constant of type CAO int and by restricting its size to values greater than 0.

const size : CAO int.
axiom size pos : CAO bits.size→ 0.

The CAO bit string type is directly mapped into the EasyCrypt bitstring type.

type CAO bits = bitstring.

We define two initial values for CAO bits: a bitstring of elements 1 and a bitstring of elements 0.

We rely on the zeros and ones operations already defined in the Bitstring EasyCrypt theory. These

operations generate zero bit strings and one bit strings, respectively.

op CAO bits zero = zeros size.
op CAO bits one = ones size.

To model the available bit string operations we add two auxiliary logic functions to our model: shift

and blit. Informally, the first takes as input a bit string, starting in position 0, and produces the bit

string that starts at position i. The second involves two vectors, source s and destination d, an index

i and a length parameter l. It produces the vector with the contents of d for indices 0 to i − 1, and

from i + l onwards; the l positions in between contain the region 0..l − 1 of s. We rely on the blit

EasyCrypt function to the define our blit function. The behaviour of these functions is modeled by

the axioms given bellow.

∀v : CAO bits, o f s, i : CAO int, 0 ≤ i < size⇒ (shi f t v o f s).[i] = v.[o f s + i]

∀src, dst : CAO bits, o f s, len : CAO int), 0 ≤ o f s⇒ 0 ≤ len⇒ o f s + len ≤ length dst⇒

o f s + len ≤ length src⇒ blit src dst o f s len =

blit dst o f s src 0 len

78

6.3. Formalisation of the CAO types in EasyCrypt

We do not provide a concatenation operation in our model. Instead, we rely on the concatenation

operation || that is already defined and axiomatised in EasyCrypt for container types. The bit string

operations are modeled as follows. Note that the range selection is defined with recursion to the sub

EasyCrypt function.

∀v : CAO bits, i, j : CAO int, rsel v i j = sub v i j

∀src, dst : CAO bits, i, j : CAO int, rass src i j dst = blit dst src i (j− i + 1)

∀v : CAO bits, i : CAO int, v < |i =

((rsel v (length v− i) (length v− 1)) || (rsel v 0 (length v− i− 1)))

∀v : CAO bits, i : CAO int, v| > i = ((rsel v i(length v− 1)) || (rsel v 0(i− 1)))

∀v : CAO bits, i : CAO int, v << i = (blit (shi f t v 0) (zeros (length v)) i ((length v)− i))

∀v : CAO bits, i : CAO int, v >> i = (blit (zeros (length v)) (shi f t v 0) ((length v)− i)i)

The bitwise operations are defined explicitly in our model. We define them with recursion to the

EasyCrypt map2 function. Intuitively, the map2 is similar to the map function, except that it takes

two container types and performs the mapping of the given function element-wise. The negation of

a bit string (negation of all the elements of the bit string) is defined using the simple map operation.

The following piece of EasyCrypt code defines all the available bitwise operations.

op (ˆˆ) (bs0 bs1: CAO bits): CAO bits = map2 (Bool.(ˆˆ)) bs0 bs1. (∗ Bitwise
XOR ∗)

op (&&) (bs0 bs1: CAO bits): CAO bits = map2 (∧) bs0 bs1. (∗ Bitwise AND ∗)
op (||) (bs0 bs1: CAO bits): CAO bits = map2 (∨) bs0 bs1. (∗ Bitwise OR ∗)
op [!] (bs : CAO bits): CAO bits = map ([!]) bs. (∗ Negation of a bitstring ∗)

To finish the formalisation of the operations over bit strings, we define the cast to/for the integer

type and we add the corresponding cancelation axioms.

op bits of int : CAO bits→ CAO int.
op int of bits : CAO int→ CAO bits.

∀x : CAO int, bits o f int; (int o f bits x) = x

∀x : CAO bits, int o f bits (bits o f int x) = x

79

6.3. Formalisation of the CAO types in EasyCrypt

The probability distribution bits distr is established with two axioms: when the length of the bit

string corresponds to the size parameter, the probability of sampling some bit string is 1/(2size),

whereas when the length does not correspond to the size parameter there is no probability of sampling

any bit string. The definition of the distribution is concluded with the lemmas that reason about the

support of the distribution and about its weight.

∀s : CAO bits, length s = size⇒ µ x bits distr s = 1/(2size)

∀s : CAO bits, length s <> size⇒ µ x bits distr s = 0

∀s : CAO bits, in supp s bits distr ⇐⇒ length s = size

0 ≤ size⇒ is lossless bits distr

size < 0⇒!(is lossless bits distr)

We conclude the CAO bits theory with the inclusion of some lemmas that were taken from the

previous CAOVerif formalisation and we prove that they hold in our model.

80

6.3. Formalisation of the CAO types in EasyCrypt

∀v1, v2 : CAO bits, v1 == v2⇐⇒ length v1 = length v2

∧ ∀i : CAO int, 0 ≤ i < length v1⇒ v1.[i] = v2.[i]

∀len, i : CAO int, v : CAO bits, v == zeros len⇒ 0 ≤ i < len⇒ v.[i] = f alse

∀v1, v2 : CAO bits, i : CAO int, v1 == v2⇒ v1.[i] = v2.[i]

∀v : CAO bits, i : CAO int, x : CAO bool, 0 ≤ i < length v⇒ (v.[i← x]).[i] = x

∀v : CAO bits, i, j : CAO int, x : CAO bool, 0 ≤ i < length v⇒ 0 ≤ j < length v⇒ i 6= j⇒

(v.[i← x]).[j] = v.[j]

∀src, dst : CAO bits, o f s, len, i : CAO int, 0 ≤ o f s⇒ 0 ≤ len⇒ o f s + len ≤ length dst⇒

o f s + len ≤ length src⇒ i ≥ o f s ∧ i < o f s + len⇒

(blit src dst o f s len).[i] = src.[i− o f s]

∀src, dst : CAO bits, o f s, len, i : CAO int, 0 ≤ o f s⇒ 0 ≤ len⇒ o f s + len ≤ length dst⇒

o f s + len ≤ length src⇒ i < o f s ≤ i ≤ o f s + len⇒

(blit src dst o f s len).[i] = dst.[i]

∀b1, b2 : CAO bool, b1 = b2⇒ b1 ˆ̂ b2 = f alse

∀b1, b2 : CAO bool, b1 6= b2⇒ b1 ˆ̂ b2 = true

∀v1, v2 : CAO bits, i : CAO int, length v1 = length v2⇒ 0 ≤ i < length v1⇒

(v1 ˆ̂ v2).[i] = v1.[i] ˆ̂ v2.[i]

∀v1, v2 : CAO bits, i : CAO int, length v1 = length v2⇒ 0 ≤ i < length v1⇒

(v1 || v2).[i] = v1.[i] ∨ v2.[i]

∀v1, v2 : CAO bits, i : CAO int, length v1 = length v2⇒

0 ≤ i < length v1⇒ (v1&&v2).[i] = v1.[i] ∧ v2.[i]

∀b : CAO bits, i : CAO int, 0 ≤ i < length b⇒ (!b).[i] =!b.[i]

∀v1, v2 : CAO bits, length (v1||v2) = length v1 + length v2

6.3.6 Extension field type

Consider the following CAO type declarations

typedef GF2 := mod[2];

typedef GF2N := mod[GF2<X> / Xˆ8+Xˆ4+Xˆ3+X+1];

81

6.3. Formalisation of the CAO types in EasyCrypt

Take the field extension type GF2N. Types of this form are also algebraic types that model the

Galois field (finite field) of order nd, where n is a prime number and d is the degree of the irreducible

polynomial p(X). We emphasize that, in CAO, each such type represents a specific construction of

an extension field, whose representation is fixed as elements of the polynomial ring Zn[X], and the

semantics of operations is defined based on polynomial arithmetics modulo p(X). Furthermore this

type is only valid when n is prime and p(X) is irreducible.

We rely on the Poly EasyCrypt theory to define the extension field type. We start by defining the

type of the coefficients of the polynomials - which can be elements of type Zn or elements of type

Zn[X] - and by defining the zero element of the type of the coefficients (important to define properties

over the exponentiation operation). After, the Poly theory is cloned giving the type of the coefficients.

clone Poly as Poly CAO mod q with
type R = coef type.

This cloning gives us a new type: the polynomials with coefficients of the type coef type and a set

of axioms and lemmas to reason about it. We define the type CAO exfield to be equal to the type that

results from the cloning and provide the zero and one elements of the CAO exfield.

We define the set and get operations to reason about CAO exfield coefficients, casts to and from list

and a function to get the degree of a polynomial. The last four functions are defined with recursion to

EasyCrypt functions.

op ” []” (p : CAO exfield, i : CAO int) = Poly CAO mod q.coeff p i.
op ” [<]” : CAO exfield→ CAO int→ coef type→ CAO exfield.
op tolist = Poly CAO mod q.toseq.
op fromlist = Poly CAO mod q.ofseq.
op deg = Poly CAO mod q.deg.

The get and set operations are defined by the following lemmas.

∀p : CAO ex f ield, i : CAO int, x : coe f type, p.[i← x] = f romlist ((tolistp).[i← x])

∀p : CAO ex f ield, i, j : CAO int, x : coe f type, 0 ≤ i < degp⇒ 0 ≤ j < degp⇒ i 6= j⇒

(p.[i← x]).[j] = p.[j]

∀i : CAO int, 0 ≤ i < degCAO ex f ield zero ⇒

CAO ex f ield zero.[i] = coe f type zero

82

6.3. Formalisation of the CAO types in EasyCrypt

The arithmetic operations available in the CAO exfield type are the same as in the CAO mod and

the field properties are defined in the same way. The only detail relevant to mention is that we match

the addition and the unary minus operations with the ones already defined in the polynomial theory.

op (+) = Poly CAO mod q.ZModule.(+).
op [−] = Poly CAO mod q.ZModule.([−]).

There are two available casts in the CAO exfield type. One can map an element of the CAO exfield

type to an element of the type of the coefficients (and vice-versa) and also one is able to map elements

of the CAO exfield type to vectors, resulting on a vector made of the polynomial coefficients.

op ofmod : coef type→ CAO exfield.
op tomod : CAO exfield→ coef type.

op ofexfield : CAO exfield→ CAO vector.
op toexfield : CAO vector→ CAO exfield.

The definition of the probability distribution over the type CAO exfield is kept abstract, i.e., no

probability is defined for the sampling operation. However, we provide a set of axioms that state that

the distribution is lossless, uniform and that the elements of the type CAO exfield are in the support of

the distribution.

is lossless ex f ield distr

is uni f orm ex f ield distr

∀x : CAO ex f ield, in supp x ex f ield distr

Again, we end the concretisation of the CAO exfield theory with a set of proved lemmas about the

CAO exfield type and its operations.

83

6.3. Formalisation of the CAO types in EasyCrypt

∀p1, p2 : CAO ex f ield, i : CAO int, deg p1 = deg p2⇒ 0 ≤ i < deg p1⇒ p1 = p2⇒

p1.[i] = p2.[i]

∀p1, p2 : CAO ex f ield, p1 6= CAO ex f ield zero ⇒ p2 6= CAO ex f ield zero ⇒

p1 ∗ p2 6= CAO ex f ield zero

∀p1, p2 : CAO ex f ield, p1 6= CAO ex f ield zero ⇒ p2 6= CAO ex f ield zero ⇒

p1/p2 6= CAO ex f ield zero

∀p1, p2 : CAO ex f ield, p1 6= p2⇒ p1− p2 6= CAO ex f ield zero

∀p1, p2 : CAO ex f ield, p1 6= −p2⇒ p1 + p2 6= CAO ex f ield zero

∀p : CAO ex f ield, p 6= CAO ex f ield zero ⇒ −p 6= CAO ex f ield zero

6.3.7 Vector type

The vector type CAO vector is parametrised by an integer size, that represents the size of the vector,

and by a type t, representing the type of the elements of the container. With both parameters, we

uniquely define the vector of type t with constant size size. Our CAO vector theory makes use of the

EasyCrypt Array theory - we realise the CAO vectors as arrays of finite length. By relying on the

EasyCrypt Array theory, we inherit a lot of operations and axioms, thus reducing the overhead and

the possible mistakes when defining our theory. For example, stating that a CAO vector type is equal

to the array type, we no longer need to define the get and set operations and we are able to enrich the

CAO vector type with, for example, the map operations. The type is, then, defined as

type CAO vector = t array.

We define the length of the elements of the CAO vector type as a constant function CAO vector length

, that always output the value of size.

∀x : CAO vector, CAO vector length x = size

Additionally, we provide a function to initialise vectors with a given element. This function only

takes as input the element with which the vector will be initialised, since the length is already defined

to be size. This operation CAO vector make is modeled as follows:

84

6.3. Formalisation of the CAO types in EasyCrypt

∀x : t, CAO vector length (CAO vector make x) = size

∀x : t, i : CAO int, 0 ≤ i < size⇒ (CAO vector make x).[i] = x

The available operations over the CAO vector are the same as the available for the CAO bits type

(Section 6.3.5) - except for the bitwise operations - and are specified and axiomatised the same way.

The only exception is the shift (<< and >>) operations. The shift operation implies that the values of

a vector are moved right or left and that the remaining values are filled with the zero value. Therefore,

we need to know the exact type of the elements of the vector to defined the shift operations using the

zero value of the type of the elements. We provide an example of the definition of the shift operation

for vectors with elements of the CAO mod type.

op (>>) : α array→ CAO int→ α array.
op (<<) : α array→ CAO int→ α array.

∀v : CAO mod array, i : CAO int, v << i = (blit (shi f t v 0) (make (length v) CAO mod zero)

i ((length v)− i))

∀v : CAO mod array, i : CAO int, v >> i = (blit (make (length v) CAO mod zero) (shi f t v 0)

((length v)− i)i)

Note that we define the operations using the type α array (an array of some type α) instead of using

CAO vector. This way, we can reason about arrays of different types and, since the CAO vector is an

array of a specific type, it inherits all these operations and its properties.

A probability distribution over a vector vector distr is naturally influenced by the probability dis-

tribution over the type of the elements of the vector. We define the probability of the sampling from

vector distr to output a given vector as follows

∀d : t distr, x : CAO vector, size = CAO vector length x⇒ µ x vector distr x =

f old right (f un p x, p ∗ µ x d x) 1 x

Informally, the above lemma says that the probability of vector distr outputing a specific vector is

the probability of outputing a specific element of the type of the vector in every slot of the vector.

Notice that we only define the distribution for CAO vector elements of the correct length.

85

6.3. Formalisation of the CAO types in EasyCrypt

The concretisation of the probability distribution over the CAO vector type is completed with the

definition of the following axioms and lemmas to reason about the support of the distribution, its

weight and its uniform property.

∀x : CAO vector, d : tdistr, 0 ≤ size⇒ in supp x vector distr ⇐⇒

(length x = size ∧ all (support d) x)

∀d : t distr, x : CAO vector, 0 ≤ size⇒ (∀y, in supp y d)⇒

length x = size⇐⇒ in supp x vector distr

∀x : CAO vector, d : tdistr, 0 ≤ size⇒ in supp x vector distr ⇒ length x = size

∀x : CAO vector, d : tdistr, k : CAO int, 0 ≤ k < size⇒ in supp x vector distr ⇒ in supp x.[k] d

∀d : t distr, 0 ≤ size⇒ weight vector distr = (weight d) ˆ size

∀d : t distr, 0 ≤ size⇒ is lossless d⇒ is lossless vector distr

∀d : t ; distr, is uni f orm d⇒ is uni f orm vector distr

To end the CAO vector theory, we proved that the following lemmas, taken from the original

CAOVerif formalisation, still hold in our model.

86

6.3. Formalisation of the CAO types in EasyCrypt

∀v1, v2 : CAO vector, v1 = v2⇐⇒ CAO vector length v1 =

CAO vector length v2∧ ∀i : CAO int,

0 ≤ i < CAO vector length v1⇒ v1.[i] = v2.[i]

∀v : CAO vector, i : CAO int, x : t, 0 ≤ i < CAO vector length v⇒ (v.[i← x]).[i] = x

∀v : CAO vector, i, j : CAO int, x : t, 0 ≤ i < CAO vector length v⇒

0 ≤ j < CAO vector length v⇒ i 6= j⇒

(v.[i← x]).[j] = v.[j]

∀src, dst : CAO vector, o f s, len, i : CAO int, 0 ≤ o f s⇒ 0 ≤ len⇒

o f s + len ≤ CAO vector length dst⇒

o f s + len ≤ CAO vector length src⇒

i ≥ o f s ∧ i < o f s + len⇒

(blit src dst o f s len).[i] = src.[i− o f s]

∀src, dst : CAO vector, o f s, len, i : CAO int, 0 ≤ o f s⇒ 0 ≤ len⇒

o f s + len ≤ CAO vector length dst⇒

o f s + len ≤ CAO vector length src⇒

i < o f s ∧ i ≥ o f s + len⇒

(blit src dst o f s len).[i] = dst.[i]

∀v1, v2 : CAO vector, CAO vector length (v1 || v2) =

CAO vector length v1 + CAO vector length; v2

6.3.8 Matrix type

Matrices in CAO are parametrised by three elements: the number of rows (n rows) and the number

of columns (n columns) of the matrix and the type (t) of the elements that compose it. In order to

define the CAO matrix type and theory, we reutilise what is already defined in the Matrix theory of

EasyCrypt. Simlar to what was done to the CAO vector theory, the CAO matrix type is defined as

follows

type CAO matrix = x matrix.

Our CAO matrix theory contemplates the same operations available for the CAO vector theory. We

do not provide the definitions for these functions since they are the similar in both theory - with the

87

6.3. Formalisation of the CAO types in EasyCrypt

difference of the operations being defined for two dimensions in the CAO matrix theory. We still

provide the definitions for the make and size operations.

op CAO matrix size: CAO matrix→ CAO int ∗ CAO int.

op CAO matrix make: t→ CAO matrix.

Since the matrix type is an algebraic type in CAO, we extend our the matrix theory with algebraic

operations: addition, subtraction, unary subtraction, multiplication and exponentiation. We follow the

same approach used to specify operations for vectors: we define them for the EasyCrypt type to be

able to reason about the type of the elements of the container type and then the operations are inherit

by our CAO matrix type.

op (+) : α matrix→ α matrix→ α matrix.
op (−) : α matrix→ α matrix→ α matrix.
op [−] : α matrix→ α matrix.
op (∗) : α matrix→ α matrix→ α matrix.
op (ˆ) : α matrix→ CAO int→ α matrix.

The sizes of the matrix that result from these operations are modelled using the following axioms.

∀m1, m2 :′ a matrix, CAO matrix size m1 = CAO matrix size m2⇒

CAO matrix size (m1 + m2) = CAO matrix size m1

∀m1, m2 :′ a matrix, CAO matrix size m1 = CAO matrix size m2⇒

CAO matrix size (m1−m2) = CAO matrix size m1

∀m :′ a matrix, CAO matrix size (−m) = CAO matrix size m

∀m :′ a matrix, x : CAO int, CAO matrix size (mx) = CAO matrix size m

∀m1, m2 :′ a matrix, snd (CAO matrix size m1) = f st (CAO matrix size m2)⇒

f st (CAO matrix size (m1 ∗ m2)) = f st (CAO matrix size m1) ∧

snd (CAO matrix size(m1 ∗ m2)) = snd (CAO matrix size m2)

We use matrix with elements of the CAO mod type to exemplify the axiomatisation of the arithmetic

operations over matrices. Note that we do not provide an explicit definition of matrix multiplication.

In order to do so, we would need to provide a pointwise product operation between two vectors, how-

ever, in CAO, vectors are simply containers and are not considered algebraic types, which invalidates

the definition of any algebraic operation around them.

88

6.3. Formalisation of the CAO types in EasyCrypt

∀m1, m2 : CAO mod matrix, i, j : CAO int, CAO matrix size m1 = CAO matrix size m2⇒

0 ≤ i < f st (CAO matrix size m1)⇒

0 ≤ j < snd (CAO matrix size m1)⇒

(m1 + m2).[(i, j)] = m1.[(i, j)] + m2.[(i, j)]

∀m1, m2 : CAO mod matrix, i, j : CAO int, CAO matrix size m1 = CAO matrix size m2⇒

0 ≤ i < f st (CAO matrix size m1)⇒

0 ≤ j < snd (CAO matrix size m1)⇒

(m1−m2).[(i, j)] = m1.[(i, j)]−m2.[(i, j)]

∀m : CAO mod matrix, i, j : CAO int, 0 ≤ i < f st (CAO matrix size m)⇒

0 ≤ j < snd (CAO matrix size m)⇒

(−m).[(i, j)] = −m.[(i, j)]

∀m : CAO mod matrix, i, j, e : CAO int, 0 ≤ i < f st (CAO matrix size m)⇒

0 ≤ j < snd (CAO matrix size m)⇒

(me).[(i, j)] = m.[(i, j)]e

In order to define the probability distribution over matrices, we start by extending the EasyCrypt
matrix theory with a fold right function and an all predicate, that checks if some predicate holds for

all elements of a matrix. These functions are define as follows.

op fold right: (’state→ χ→ ’state)→ ’state→ χ matrix→ ’state.

op all: (χ → bool)→ χ matrix→ bool.

89

6.3. Formalisation of the CAO types in EasyCrypt

∀xss : CAO matrix, f :′ state→′ x →′ state, s : t, CAO matrix size size xss = (0, 0)⇒

(f old right f s xss) = s

∀ f :′ state→′ x →′ state, s : t, xss : CAO matrix, 0 < f st (CAO matrix size xss)⇒

0 < snd(CAO matrix size xss)⇒

(f old right f s xss) = f old right f (f s xss.[(0, 0)])

(sub xss (1, 1) ((f st (CAO matrix size xss)− 1),

(snd (CAO matrix size xss)− 1)))

∀p : t→ CAO bool, xss : CAO matrix, all p xss⇐⇒

(∀i, j : CAO int, 0 ≤ i < f st (CAO matrix size xss)⇒

0 ≤ j < snd(CAO matrix size xss)⇒ p xss.[(i, j)])

The definition of the probability distribution over matrices is similar to the definition of the proba-

bility distribution over vectors, thus, we omit its explicit and full definition.

We end the CAO matrix theory, and the formalisation of the CAO type system in EasyCrypt, with

the proof of some relevant lemmas about matrices.

90

6.4. CAO to EasyCrypt mapping algorithm

∀m1, m2 : CAO matrix, m1 = m2⇐⇒

CAO matrix size m1 = CAO matrix size m2 ∧

∀i, j : CAO int, 0 ≤ i < f st (CAO matrix size m1) ∧

0 ≤ j < snd (CAO matrix size m1)⇒

m1.[(i, j)] = m2.[(i, j)]

∀m : CAO matrix, i, j : CAO int, x : t, 0 ≤ i < f st (CAO matrix size m)⇒

0 ≤ j < snd (CAO matrix size m)⇒

(m.[(i, j)← x]).[(i, j)] = x

∀m : CAO matrix, i1, j1, i2, j2, : CAO int, x : t, 0 ≤ i1 < f st (CAO matrix size m)⇒

0 ≤ j1 < snd (CAO matrix size m)⇒

0 ≤ i2 < f st (CAO matrix size m)⇒

0 ≤ j2 < snd (CAO matrix size m)⇒

i1 6= i2∨ j1 6= j2⇒

(m.[(i1, j1)← x]).[(i2, j2)] = m.[(i2, j2)]

∀m : CAO matrix, f st (CAO matrix size m) = 1⇒

length(to array m) = snd (CAO matrix size m)

∀m : CAO matrix, i : CAO int, f st (CAO matrix size m) = 1⇒

0 ≤ i < snd (CAO matrix size m)⇒

(to array m).[i] = m.[(i, 0)]

6.4 C AO T O E A S Y C RY P T M A P P I N G A L G O R I T H M

Our CAO to EasyCrypt mapping algorithm was designed with two main objectives:

• To correctly map every CAO structure and command into some piece of EasyCrypt code that

has the same meaning.

• To correctly map every annotation and logic specification presented in the CAO code into Easy-
Crypt. This implies the generation of the necessary lemmas to prove the program safety and

some functional property that may have been specified.

91

6.4. CAO to EasyCrypt mapping algorithm

6.4.1 Preprocessing

Before starting to produce an EasyCrypt script from a CAO implementation, we perform some pre-

processing over data, so that we can improve the efficiency of the translation process. The abstract

syntax trees of the CAO language and of the pWhile language available in EasyCrypt are very simi-

lar, thus the abstract syntax tree that results from the syntactic and semantic analysis could be used to

produce the EasyCrypt script. However, we followed a different approach and created another logic

structure, that results from the abstract syntax tree but is independent from it, and that allows a better

organisation when producing the EasyCrypt script.

Informally, this preprocessing phase creates a series of lists that contain information about the

elements of the CAO program. We chose lists instead of maps because we need to order then in order

to avoid dependency errors. The information about a CAO program that is captured during this step

is the following:

• Global integer constants - that need to be defined first because, for example, potentially many

type declarations will depend on then.

• Other global constants - that need to be defined before the CAO program itself.

• Global variables - this list is important due to syntactic restrictions of EasyCrypt. Global

variables may appear everywhere in the CAO program but they must all be defined inside of

the EasyCrypt module but before any procedure and with a specific syntax. Additionally, they

may not be initialised, thus, this structure helps the creation of an init function, that initialises

all the global variables to its value.

• Local variables - again, it is important to collect the local variables of every function due to

EasyCrypt syntactic restrictions because variable declaration must be made before any instruc-

tion in some EasyCrypt procedure. Note that control variables used in the seq loops are also

considered local variables.

• Bit string literals - EasyCrypt does not contemplate the definition of bit string literals and,

therefore, in order to be used in the EasyCrypt script, every bit string that appears in the CAO
program needs to be initialised in the init function.

• Functions - since they are an essential element of every CAO program, we also specify a list

that contains information about all the functions of the program. This information contemplates

the function arguments, its statements and its possible contract.

• Logic nodes - we also collect information about the logic specifications that appear in the CAO
program, so that they can be translated before the definition of the CAO program in some

EasyCrypt module.

92

6.4. CAO to EasyCrypt mapping algorithm

In this section, we will focus on the description of how the CAO code is translated to EasyCrypt
without considering any CAO-SL structure. A description of how the annotations and logic specifi-

cations are mapped can be found in Section 6.5. We will abstract the CAO syntax and consider its

abstraction and representation in the logic structure described above.

N OTAT I O N We will use the symbol 7→ to denote the mapping of a logic representation of a CAO
element to the corresponding EasyCrypt syntax. Elements of the CAO language will be represented

by its componentes in a tuple form (x1 ∗ ... ∗ xn). For example, a variable in CAO is represented

by its identifier id, its type τ and its value v using the form (id ∗ τ ∗ v). We will use the syntax

None and Some x to denote some optional parameter x.

6.4.2 Global integer constants

The first step of the translation process is to identify all the global integer constants present in the CAO
program - both int and register int constants. This first step is extremely important because many

of the types used in the remaining CAO program will depend on these constants, like, for example,

some vector or some ring type. Additionally, integer constants may also depend on one another, which

requires that the constants appear in the EasyCrypt script with the same order of the CAO program.

At this point, the typechecker, with the preprocessing phase, has already produced a structure con-

taining all the constants of the CAO program. Therefore, being id the name of the constant, t its type

and e its possible value or condition, a constant is syntactically mapped as represented in Figure 41.

(id * t * None) 7→ const id : t. (∗ No initial value ∗)
(id * t * Some e) 7→ const id : t = e. (∗ Initial value e ∗)

(id * t * Some e) 7→ const id : t. axiom id cond : e. (∗ Condition e ∗)

Figure 41: Constant mapping

The remaining global constants are translated after the cloning of the types of the program, using

the same algorithm of Figure 41.

6.4.3 Type cloning

The type cloning phase contemplates the cloning of every type used in the CAO program according

to the theories of the CAO types described in Section 6.3. Naturally, the integer and boolean types

are not cloned, since they do not need any step of initialisation. The output produced by this step is

simply a list of EasyCrypt clonings, according to Figure 42.

In Figure 42, the left side shows the representation of CAO types as they are used in the typecheck-

ing rules of Section 3.2. We provide a brief description of that type representation.

• Integer - arbitrary precision integers.

93

6.4. CAO to EasyCrypt mapping algorithm

Integer 7→ CAO int
RInteger 7→ CAO reg int

Bool 7→ CAO int
Bits (Signed, e) 7→ clone CAO bits as Signed CAO bits ie with op size = ie.

Bits (Unsigned, e) 7→ clone CAO bits as Unsigned CAO bits ie with op size = ie.
Mod (None, None, p) 7→ clone CAO mod as CAO mod p with n = p.

Mod (Some t, Some s, p) 7→
clone CAO exfield as CAO exfield p with type coef type = t, op coef type zero = t.CAO mod zero.

Vector (e, t) 7→ clone CAO vector as CAO vector t e with op size = e, type x = t.
Matrix (e1, e2, t) 7→

clone CAO matrix as CAO matrix t e1 e2 with op n rows = e1, op n columns = e2, type x = t.

Figure 42: Type mapping

• RInteger - integers in the range [0, 2w[.

• Bits(Signed, e) - signed bit strings with size e.

• Bits(Unsigned, e) - unsigned bit strings with size e.

• Mod(None, None, p) - ring or field Ze type.

• Mod(Some t, Some s, p) - extension field Zt[s] type, with s being the variable used in the

polynomial and t the type of the coefficients.

• Vector(e, t) - vector of type t and of length e.

• Matrix(e1, e2, e3) - matrix of type t with e1 rows and e2 columns.

Structures are defined as a tuples and operations are created using the names of the elements of the

structure. We illustrate the definition of structures with an example. Suppose the following structure,

that specifies the key type of the RC4 encryption scheme.

typedef BYTE := unsigned bits[8];

typedef RC4_KEY := struct [

def x : BYTE;

def y : BYTE;

def data : vector[256] of BYTE;

];

The RC4 KEY structure will be abstractly defined as the following tuple

type RC4 KEY = Unsigned CAO bits 8.CAO bits ∗ Unsigned CAO bits 8.
CAO bits ∗ CAO vector Unsigned CAO bits 8 256.CAO vector.

94

6.4. CAO to EasyCrypt mapping algorithm

In order to reason about the elements of the structure, the translation process will also generate

three operations, one per each element of the structure.

op RC4 KEY x (t: RC4 KEY) : Unsigned CAO bits 8.CAO bits = t.‘1.
op RC4 KEY y (t: RC4 KEY) : Unsigned CAO bits 8.CAO bits = t.‘2.
op RC4 KEY data (t: RC4 KEY) : CAO vector Unsigned CAO bits 8 256.

CAO vector = t.‘3.

6.4.4 A CAO program as an EasyCrypt module

EasyCrypt ambient environment do not support the definition of imperative procedures. Therefore, a

module is created, to support the specification of the remaining elements of the CAO program. This

module has the same name as the CAO file.

G L O B A L VA R I A B L E S Global variables could be translated to the EasyCrypt script at the same

time as global constants, using the op EasyCrypt command. For instance, an integer global variable

x with some value e could be defined as follows.

op x : int = e.

However, this option would limit the possible changes to the variable value. Thus, since we do not

want variables to behave as constants, we collect all global variables and define then at the beginning

of the module, before the procedures. The algorithm to translate global variables can be found in

Figure 43.

(id * t * None) 7→ var id : t
(id * t * Some e) 7→ var id : t

Figure 43: Global variables mapping

Note that, even if some global variable as some initial value, it is not assigned to it when it is

declared. This is an EasyCrypt syntactic restriction which is solved by defining a new function -

init - where global variables are initialised. The init function takes no input, produces no output and

its body is filled with assignment statements. Consequently, for every global variable to which some

initial value is assigned, there will be an EasyCrypt assignment command in the init function, as

described in Figure 44.

S T RU C T U R E S A N D S T RU C T U R E F I E L D S We have seen in Section 6.4.3 how the structure

types are defined in EasyCrypt. However if one needs to assigne some value to a structure field,

95

6.4. CAO to EasyCrypt mapping algorithm

∀ (id * t * Some e), (id * t * Some e) 7→ id = e;

Figure 44: Global variables initialisation mapping

EasyCrypt does not support the use of functions as left values. Therefore, the structure and its

fields are declared as global variables and, in the init function, there is an assignment statement with

different semantics of the others: instead of attributing a value to some variable, it explicitly define

the elements of some tuple. Considering the structure of the example in Section 6.4.3 and a variable

key of the type RC4 KEY, the structure is initialised as follows.

var x : Unsigned CAO bits 8.CAO bits

var y : Unsigned CAO bits 8.CAO bits

var data : CAO vector Unsigned CAO bits 8 256.CAO vector

var key : RC4 KEY

proc init() : unit = {
(x,y,data) = key;

}

Formally, the algorithm that translates variables with structure type declaration is presented in Fig-

ure 45. The notation (id ∗ s f s) describes a structure (with identifier id and fields s f s), (id ∗ t)
describes a structure field (with identifier id and type t) and to tuple is an auxiliary function that

generates tuples from the fields of the structure with the representation (id1, ..., id2).

∀ (id * t) ∈ Struct, (id * t) 7→ var id : t
∧

(id * sft) 7→ to tuple sfs = id;.

Figure 45: Global variables with structure type initialisation mapping

B I T S T R I N G L I T E R A L S EasyCrypt does not support the explicit description of bit strings liter-

als like CAO. Thus, in order to be able to use them like one could use in CAO expressions, there is the

need to initialise them following their representation in the CAO bits theory - as EasyCrypt bitstrings,

which, by their turn, are formalised as boolean arrays. Bit strings are also declared as global variables

and initialised in the init function.

Since there is no identifier attached to literals, bit string literals are declared as variables with name

bsi, where i is a number between 0 and the number of bit string literals in the CAO program. The bit

96

6.4. CAO to EasyCrypt mapping algorithm

strings are then initialised in the init function as boolean arrays. The formal algorithm that describes

this translation can be found in Figure 46.

(bs * t) 7→ var bs i : t
∧

∀j ∈ [0..length bs], bit ∈ f st (bs * t), (bs * t) 7→ bs i = bs i[j <− bit];

Figure 46: Bit string literals mapping

P RO C E D U R E S / F U N C T I O N S CAO functions are mapped into EasyCrypt procedures, only de-

fined through modules. From the preprocessing phase, we are in possession of a sorted list containing

all the functions of the CAO program, including their arguments, statements and possible contracts.

The elements of the list are of the form (id ∗ t ∗ ctr ∗ args ∗ stmts), with id the name of the

function, t its return type, ctr its contract, args its list of arguments and stmts its list of statements.

Arguments are structured as (ida ∗ ta), with id the name of the argument and t its type.

The translation of a CAO function to an EasyCrypt procedure starts by producing the header of the

function according to the EasyCrypt syntax. The algorithm works accordingly to function Figure 47.

(id * t * ctr * args * stmts) 7→ proc id (∀ (id a * t a) ∈ args, (id a * t a) 7→ id a : t) : t

Figure 47: Function header mapping

Recalling Section 6.2.2, we added the support to parametrise CAO functions by constant param-

eters, attached with some condition. When mapped to EasyCrypt, the constant parameters of a

function are considered normal arguments of the function and the conditions of the parameters are

added to the contract of the function, as preconditions. This can be done without loss of generality

because the program has been previously typechecked.

After the declaration of the header of the function, the next step to take is to declare all the local

variables. Local variables need to be declared before any instruction due to EasyCrypt syntactic

restrictions. The algorithm to translate local variables can be found in Figure 48. Naturally, the local

variables structure has a parameter f that concerns the function where variables are declared.

(id * t * f * None) 7→ var id : t;
(id * t * f * Some e) 7→ var id : t = e;

Figure 48: Local variables mapping

Finally, the translation of CAO functions gets completed with the generation of the remaining

commands (other than declarations). There are some similarities between the CAO and the pWhile

syntaxes that could transform this translation into a direct syntactic translation. The only two excep-

tions are the sampling command and the seq loop. In what respects the first one, to perform some

sampling operation in pWhile language, there needs to be an explicit description of the probability

distribution, whereas in CAO, the distributions are uniform over the support of the type of the left

97

6.4. CAO to EasyCrypt mapping algorithm

value (recall Section 6.2.2). In what respects the last one, there is no instruction in pWhile similar to

the seq CAO statement, which requires a conjunction of other commands that results in a block of

code with the same semantics of seq loops.

The recursive mapping algorithm that produces function statements can be consulted in Figure 49.

Commands are represented by the abstraction that is used in the typechecking process, with the fol-

lowing meaning:

• Sample(lval) - sampling from an uniform distribution of the type of lval, being the result

stored in lval. The probability distributions are defined in the type EasyCrypt theory.

• FCallS(f , es) - calling function f with the list of arguments es.

• Ret(e) - returns the value of expression e.

• Ite(e, stmts, None) - conditional statement without the else branch, with condition e and stmts
being the statements that compose the if branch.

• Ite(e, stmts1, Some stmts2) - conditional statement with the else branch, with condition e,

stmts1 being the statements that compose the if branch and stmts2 being the statements that

compose the else branch.

• Seq(ctr, SeqIter(s, e1, e2, None), stmts) - seq loop, with possible contract ctr, control variable

s, starting condition e1, ending condition e2 and composed by statements stmts.

• Seq(ctr, SeqIter(s, e1, e2, Some e3), stmts) - seq loop, with possible contract ctr, control vari-

able s, starting condition e1, ending condition e2, with an incrementation rate of s defined by e3
and composed by statements stmts.

• While(ctr, e, stmts) - while loop, with possible contract ctr, loop condition e and composed

by statements stmts.

Assign(lval, e) 7→ lval = e;

Sample (lval) 7→ lval $←(get type lval).distr
FCallS (f, es) 7→ f (es);

Ret (e) 7→ return e;
Ite (e, stmts, None) 7→ if (e){ stmts }

Ite (e, stmts1, Some stmts2) 7→ if (e){ stmts1 } else { stmts2 }
Seq (ctr, SeqIter(s, e1, e2, None), stmts) 7→ s = e1; while (s <> e2){ stmts; s = s + 1; }

Seq (ctr, SeqIter(s, e1, e2, Some e3), stmts) 7→ s = e1; while (s <> e2){ stmts; s = s + e3; }
While (ctr, e, stmts) 7→ while (e){ stmts }

Figure 49: Statement mapping

98

6.5. CAO-SL to EasyCrypt mapping algorithm

E X P R E S S I O N S Expressions in CAO are translated to EasyCrypt in an almost direct translation.

The only detail worth mentioning is the fact that all the operators follow a prefix style, in order to

overcome some difficulties of the EasyCrypt typechecker to deal with operators that may be override

to different types. The prefix style implies the explicit identification of the types involved in the

operation, which eliminates typechecking errors. For example, an addition operation between two

inhabitants of the type Z7 - x and y - would be translated to EasyCrypt as follows.

x + z 7→ CAO mod 7.(+)x y

6.5 C AO - S L T O E A S Y C RY P T M A P P I N G A L G O R I T H M

Annotations to the CAO program are very important in what concerns deductive verification. They

allow the specification of pre- and postconditions, loop invariants and variants and also some logic

elements that can be used to help when discharging proofs.

6.5.1 Logic specifications

Our mapping algorithm translates every logic specification to EasyCrypt before the generation of the

program. This organisation is important because some logic definition may be used in, for example, a

program assertion.

C O N S T RU C T O R at The constructor at is used to refer to the value of some expression in some

particular state in the execution of the code, defined by a label. In EasyCrypt, we are able to rea-

son about memories of programs but not about its states, i.e., we are able to reason about the value

of expressions that belong to a program but not to reason about the value of expressions in states

of the program (besides the pre-state and the post-state). Consequently, every occurence of the at
constructor will be translated to the EasyCrypt by simply translating the expression to which the at
constructor is applied.

L O G I C F U N C T I O N S Logic functions in CAO-SL can appear with or without definition and, ac-

cording to this characteristic, the translation will be different. The algorithm that describes the process

can be found in Figure 50, where to tu pl e ′ is a function that generates tuples with the representa-

tion (t a1 ∗ . . . ∗ t an) and the function to tu pl e ′ ′ is a function that generates tuples with the

representation (id a1 : t a1 , . . . , id an : t an).

(id * t * args * None) 7→ op id : to tuple’ args→ t.
(id * t * args * Some e) 7→ op id (to tuple’’ args): t = e.

Figure 50: Logic functions mapping

99

6.5. CAO-SL to EasyCrypt mapping algorithm

For example the logic function logic int sum{L} (a,b : int) = a + b would be

mapped into op sum (a, b : CAO int): CAO int = a + b, whereas the logic function logic int sum’{L}
(a,b : int) would be mapped into op sum’ : CAO int→ CAO int→ CAO int.

P R E D I C AT E S Predicates in CAO-SL are translated to EasyCrypt in a very similar way to logic

functions. In fact, if only the header of the predicate is provided, we consider a predicate as a function

with a boolean return value. The only differences -in the case of a body to the predicate is provided -

are the use of the pred keyword (instead of the op keyword) and the absence of a return type (since it

is always a boolean value). The translation algorithm for predicates is represented in Figure 51.

(id * args * None) 7→ op id : to tuple’ args→ CAO bool.
(id * args * Some e) 7→ pred id (to tuple’’ args)= e.

Figure 51: Predicates mapping

For instance, the CAO-SL predicate predicate equa{L1,L2}(u,v : unsigned bits[10])

= forall l:int; 0 <= l < 10 ==> at(u[l],L1) == at(v[l],L2)would be mapped

into pred equal (u v:Unsigned CAO bits 10.CAO bits)= ∀(l:CAO int), 0 ≤l < 10⇒ u[l] = v[l], whereas

the predicate predicate equal’{L1,L2}(u,v : unsigned bits[10])would be trans-

lated into op equal’ : Unsigned CAO bits 10.CAO bits→ Unsigned CAO bits 10.CAO bits→ CAO bool

.

I N D U C T I V E P R E D I C AT E S In CAO-SL, in order to define an inductive predicate, one first de-

fines the predicate (and its arguments) and then provide one (or more) base cases and an inductive

case for it. Informally, our translation algorithm defines the predicate as a logic function and then

axiomatises its behaviour according to the cases of the predicate.

The translation algorithm is described in Figure 52. The inductive cases are represented by the list

ind and are represented by the structure (id ∗ e).

(id * args * ind) 7→ op id : to tuple’ args→ CAO bool. f orall (id i * e) ∈ ind, (id i * e) 7→
axiom id i : e.

Figure 52: Inductive predicates mapping

L E M M A S Lemmas are very useful when performing proofs. For example, they provide a mean to

reduce the complexity of some proof: by proving an auxiliary proposition using a lemma, some other

proof may become trivial. In CAO-SL, lemmas are defined without any proof script, which could rep-

resent a difficulty when translating the lemma to EasyCrypt. Nevertheless, since they are first-order

logic propositions, the mapping of CAO-SL lemmas to EasyCrypt contemplates the specification of

a simple proof script that consists only on an SMT call. The algorithm that deals with the translation

of CAO-SL lemmas is presented in Figure 53.

100

6.5. CAO-SL to EasyCrypt mapping algorithm

(id * p) 7→ lemma id : p by smt.

Figure 53: Lemmas mapping

As an example, the lemma transitivity of Section 6.5.1, would result in the following Easy-
Crypt code.

lemma transitivity : ∀(u v z: Unsigned CAO bits 10.CAO bits), equal u v ∧equal
v z⇒ equal u z by smt.

A X I O M AT I C D E F I N I T I O N S An axiomatic is a logic definition that contemplates logic types

and predicates and operations over those types. Therefore, the translation of an axiomatic is defined

recurring to the previously defined translations. The only detail worth mentioning is the possibility

to define new logic types inside the axiomatic. These types are easily translated from CAO-SL to

EasyCrypt through the definition of a new type with the keyword type.

We provide an example to illustrate the mapping of CAO-SL axiomatic definitions. Consider the

lists axiomatic in Section 6.5.1. The translation process should be able to define a new logic type

list, a logic element of type list, two logic operations over the list type and two axioms. The resulting

EasyCrypt script follows.

type list.
op nil : list.
op append : list ∗ list→ list.
op cons : CAO int ∗ list→ list.
axiom append nil: ∀(l:list), append(l,nil) = l.
axiom append cons: ∀(l1 l2:list) (n:CAO int), append(cons(n,l1),l2) = cons(n,

append(l1,l2)).

6.5.2 Ghost code

EasyCrypt does not support the definition of ghost code. Therefore, any ghost code annotation will

not be mapped into the EasyCrypt script.

6.5.3 Function contracts

The EasyCrypt pWhile programming language does not support any logic specification other than

assertions. In order to reason about a function and its contract, EasyCrypt allows the specification

101

6.5. CAO-SL to EasyCrypt mapping algorithm

of Hoare triples. The function contracts, introduced using CAO-SL, will be added to the EasyCrypt
script in the form of propositions in the Hoare triple.

For every annotated function present in the CAO program, one lemma to prove the validity of the re-

spective Hoare triple is generated. The algorithm to create these lemmas is showed in Figure 54, where

function get pre takes as input a function contract and outputs its precondition, function get post
takes as input a function contract and outputs its postcondition.

EasyCrypt provides a keyword - res - to refer to the value that is outputted by the function. Yet, in

order to reason about values in the precondition in the postcondition, EasyCrypt does not contemplate

any mechanism or keyword for it. To overcome this difficulty, we define the function lemma as a

quantification on as many logic variables as input variables and then add to the precondition clauses

that attest the equality between the input variables and the logic variables. Consequently, by referring

to the these logic variables, we are actually referring to variables that have the old value of the input

variables.

An example of the generation of Hoare triple lemmas about functions follows. Suppose a CAO
function that takes as input two integers values and that outputs the addition of both values. It would

be mapped into the following EasyCrypt function.

proc sum(x : CAO int, y : CAO int) : CAO int = {

return (x+y);
}

Suppose now that the function is annotated with the precondition true and with postcondition res =
old(x) + old(y). The corresponding EasyCrypt lemma would be defined as presented next.

lemma sum (x’ y’ : CAO int): hoare [sum : x = x’ ∧y = y’ ∧true
V res = x’ + y’].

(id * t * ctr * args * stmts) 7→ lemma id hoare (gen logic vars args) : hoare [id : get pre ctr / add eqs
args ==> get post ctr].

∧
∀ (id a * t a) ∈ args, (id a * t a) 7→ id a’ : t a

∧
∀ (id a * t a) ∈ args, (id a * t a) 7→ id a’ = id a

Figure 54: Function contracts mapping

In contrast to the previous version of CAOVerif, the backend tool does not provide the same au-

tomation degree. However, we generate a proof script for functions, in order to prove the validity of

102

6.5. CAO-SL to EasyCrypt mapping algorithm

the Hoare triple related to it. We refer the reader to Section 6.5.5 for a better understanding of how

this proof script is generated.

6.5.4 Statement annotations

CAO-SL allows two types of statement annotations - assertions and loop annotations - but only the

first ones can be specified directly in a program written in the pWhile language. Assertions in Easy-
Crypt are written exactly as they are written in CAO-SL: being p a predicate, an assertion is written

as assert p;.

Loop annotations are translated directly into the proof script using the while tactic. Note that, as

presented in Section 5.2.3, in Hoare logic, the while EasyCrypt tactic only takes as input the invariant,

since no termination proof is generated by the EasyCrypt proof engine. Let inv be the loop invariant

specified by some user, it will appear in the generated proof script as while (inv).

6.5.5 A proof script

EasyCrypt is an interactive proof assistant, meaning that one needs to guide the tool in order to

complete some proof. This is the exact opposite of what happens with the backend tool of the pre-

vious version of CAOVerif. Using the Frama-C/Jessie toolchain, the program was parsed through

an automatic verification conditions generator, which generated all the proof obligations related to

some program. In EasyCrypt, proof obligations are generated iteratively, according to the tactic ap-

plied. Consequently, it is hard to be certain about how a proof script will conduct. For example, in

the presence of an assignment operation, the most intuitive option was to apply the wp tactic so that

the postcondition was updated in respect to the assignment. However, one could want to weaken the

precondition with the conseq tactic first to deal better with the remaining proof obligations. Never-

theless, it is possible to generate a proof script that would fit the proof in question. In this section

we describe the generation of proof scripts for the lemmas that aim to reason about functions and its

contracts. These scripts are very simple and elementary yet, besides not contemplating any advanced

proof strategy or tactic, they permit the proof of an interesting set of lemmas.

We defined an association between CAO statements and EasyCrypt tactics to be used in the pres-

ence of those statements. This relation is presented in Figure 55. We use the same symbol (7→) to

define this relation and we define the recursive application of this relation with the function get tactics,

that, given a list of CAO statements, finds the suitable EasyCrypt according to the relation of Fig-

ure 55. Auxiliary functions get ctr and get inv return the contract of a function and the invariant of a

loop, respectively.

The algorithm that generates proof scripts for function reasoning works by obtaining the function

statements - which can be done efficiently using the data structure outputted by the preprocessing

103

6.6. Safety properties

Assign(lval, e) 7→ wp.
Sample (lval) 7→ rnd.

FCallS (f, es) 7→ call (: get pre (get ctr f)V get post (get ctr f)).
Ite (e, stmts, None) 7→ wp.

Ite (e, stmts1, Some stmts2) 7→ wp.
Seq (ctr, SeqIter(s, e1, e2, None), stmts) 7→ while (get inv ctr). get tactics stmts.

Seq (ctr, SeqIter(s, e1, e2, Some e3), stmts) 7→ while (get inv ctr). get tactics stmts.
While (ctr, e, stmts) 7→ while (get inv ctr). get tactics stmts.

Figure 55: Relation between CAO statements and EasyCrypt tactics

phase (Section 6.4.1) - and then by applying the algorithm of Figure 55 to them. The algorithm

finishes by applying the skip tactic and then by calling external SMT solvers using the smt tactic.

We state that a proof script produced using the presented algorithm suits every function in which

conditional blocks are composed by deterministic straightline code without procedure calls. Infor-

mally, this means that inside an i f statment there can only be assignments or other deterministic i f
statements. In order to be able to deal with every class of programs, there was the need to use the

case, rcondt and rcondf tactics in an interleaved way. This fact would require, for example, that we

keep track of the line of the i f statements in the EasyCrypt proof environment, which represents

information that we are not able to obtain and that could compromised the desired levels of efficiency.

6.6 S A F E T Y P RO P E RT I E S

Safety is related with preventing runtime errors which are due to not accounted situations in the

evaluation semantics of the programming language. The inference system for these safety-sensitive

Hoare triples (already defined in Figure 7) does not depend only on the structure of the command, but

also on expressions that may occur in it. The side-conditions of each rule include special conditions,

called safety conditions, whose validity implies that the program does not evaluate to an error state.

In this section, we present how we delt with safety proofs in our renewed CAOVerif tool. Intu-

itively, the process works by generating a new EasyCrypt module to which the CAO program will

be translated exactly like presented in Section 6.4.4. However, every statement will be annotated with

an assertion that contains safety conditions. Using this safety-sensitive EasyCrypt procedure and the

ability to emulate Hoare triples, we were able to model safety-sensitive Hoare triples and, by proving

their validity, prove the safety of the function they concern.

6.6.1 The safe predicate in EasyCrypt

In order to be able to introduce safety properties in assertions, we defined a safe predicate that rea-

sons about inputs of an arbitrary type. This way, we can apply the safe predicate to all CAO types

104

6.6. Safety properties

Type Operation Proof obligation
int e1/ e2 e2 6= 0

e1% e2 e2 > 0
e1 ∗ ∗ e2 e2 ≥ 0

register int e1/ e2 e2 6= 0
e1% e2 e2 > 0
e1 ∗ ∗ e2 e2 ≥ 0
e1 ◦ e2 e1 ◦ e2 < 2w, where ◦ ∈ {+,−, ∗, /, %, ∗∗}

mod[n] e1/ e2 gcd(toint e2, n) = 1∧ e2 6= CAO mod zero
e1 ∗ ∗ e2 e2 ≥ 0

mod[τ < X > /p(X)] e1/ e2 e2 6= CAO ex f ield zero
e1 ∗ ∗ e2 e2 ≥ 0

signed/unsigned bits[n] b[e] 0 ≤ e < n
b[e1 . . . e2] 0 ≤ e1 < e2 < n
b << e, b >> e 0 ≤ e < n
b < | e, b | > e 0 ≤ e < n

vector[n] of τ v[e] 0 ≤ e < n
v[e1 . . . e2] 0 ≤ e1 < e2 < n
v << e, v >> e 0 ≤ e < n
v < | e, v | > e 0 ≤ e < n

matrix[n1, n2] of τ m[e1, e2] 0 ≤ e1 < n1 ∧ 0 ≤ e2 < n2
m[e1 . . . e2, e3] 0 ≤ e1 < e2 < n1 ∧ 0 ≤ e3 < n2
m[e1, e2 . . . e3] 0 ≤ e1 < n1 ∧ 0 ≤ e2 < e3 < n2
m[e1 . . . e2, e3 . . . e4] 0 ≤ e1 < e2 < n1 ∧ 0 ≤ e3 < e4 < n2
m ∗ ∗ e e ≥ 0

Table 5: Safety proof obligations

105

6.6. Safety properties

previously formalised. The behaviour of the safe predicate is axiomatised for each CAO type in its

respective theory. Table 5 sums up the safety proof obligations that are generated for each type.

C AO I N T S A F E T Y The safety of integer operations was slightly introduced in Figure 8. Since

we consider arbitrary precision integers, our focus lies only on the division and modulo operation.

Yet, since in CAO there is no type real, one can not perform exponentiation with negative values,

since it would result in a fractional number. We added a new safety condition to encounter this CAO
restriction: the exponents in the exponentiation operation needs to be greater or equal to zero.

sa f e(e1 ∗ ∗ e2) = sa f e(e1) ∧ sa f e(e2) ∧ e2 ≥ 0

C AO R E G I N T S A F E T Y The safety conditions of operations involving elements of the register int

CAO type are equal to the safety conditions defined above for the CAO int type. However, when deal-

ing with bounded integers, we need to consider possible overflows. This safety property is captured

by the following restriction

sa f e(e1 ◦ e2) =sa f e(e1) ∧ sa f e(e2) ∧ sa f e(e1 ◦ e2) ∧ e1 ◦ e2 < 2w ,

where ◦ ∈ {+ , − , ∗ , /, %, ∗∗}

C AO B O O L S A F E T Y Boolean safety was also introduced in Figure 8 in the form of comparison

between integers. Nevertheless, we need to account the safety of the conjunction, disjunction, ex-

clusive disjunction and negation boolean operations. The safety properties for these operations are

presented in Figure 56.

sa f e(b1 ∨ b2) = sa f e(b1) ∧ (¬b1 ⇒ sa f e(b2)

sa f e(b1 ∧ b2) = sa f e(b1) ∧ (b1 ⇒ sa f e(b2))

sa f e(b1 ⊕ b2) = sa f e(b1) ∧ sa f e(b2)

sa f e(¬b) = sa f e(b)

Figure 56: Safety of boolean operations

C AO B I T S S A F E T Y In our model, the CAO bits type inherits the properties of the EasyCrypt
bitstring type, which is defined as a boolean array. Therefore, when considering accesses to bit strings,

the safety properties will be the same introduced in Section 2.6.2.1. The remaining safety conditions

are axiomatised as shown in Figure 57.

106

6.6. Safety properties

sa f e(bs) = true
sa f e(bs [e]) = sa f e(bs) ∧ sa f e(e) ∧ 0 ≤ e < l en gth bs

sa f e(bs [e1 . . . e2]) = sa f e(bs) ∧ sa f e(e1) ∧ sa f e(e2) ∧ 0 ≤ e1 ≤ e2 < l en gth bs
sa f e(bs ◦ e) = sa f e(bs) ∧ sa f e(e) ∧ 0 ≤ e < l en gth bs , where ◦ ∈ {<< , >> , < | , | >}

sa f e(bs1 † bs2) = sa f e(bs1) ∧ sa f e(bs2) , where† ∈ {∧ , ∨ , ⊕ , @}
sa f e(¬bs) = sa f e(bs)

Figure 57: Safety of bit string operations

C AO M O D S A F E T Y The inhabitants of the CAO mod [n] type are a subset of the inhabitants of

the integer type and, thus, the safety conditions for the integer type also apply to the CAO mod type.

There is only one simple detail that needs to be taken into account: when performing the division, it

is not enough to ensure that the divisor is different than zero, since both operations are only defined

under the condition that n and the divisor. This safety property is encompassed by the following

axiom.

sa f e(e1 /e2) = sa f e(e1) ∧ sa f e(e2) ∧ e2 6= 0 ∧ gcd(to int e2 , n) = 1

C AO E X F I E L D S A F E T Y CAO exfield type corresponds to the CAO extension field type Zn [X].

The operations defined for this type are the typical arithmetic operations: addition, subtraction, unary

subtraction, multiplication, exponentiation and division. Consequently, the safety proof obligations

will be the same as the other types that support arithmetic operations (CAO int and CAO mod).

C AO V E C TO R S A F E T Y Safety properties for arrays have been introduced in Section 2.6.2.1 and

they mostly concern the prevention of performing accesses out of the bounds of the array. We extend

those safety conditions with ones that give respect to other array operations defined in CAO and

present in our formalisation of the CAO typesystem, that can be consulted in Figure 58. Note that

these safety conditions are similar to the ones that refer to bit strings (Figure 57), except that are

applied to the CAO vector type.

C AO M AT R I X S A F E T Y The safety proof obligations for the matrix type will be similar to the ones

already defined for CAO vector type. Every safety condition to non-arithmetic operations will be an

extension of the safety conditions already define for the CAO vector type to two dimensions. The

formalisation of the CAO matrix safety conditions can be found in Figure 59.

107

6.6. Safety properties

sa f e(a) = true
sa f e(a [e]) = sa f e(a) ∧ sa f e(e) ∧ 0 ≤ e < l en gth a

sa f e(a [e1 . . . e2]) = sa f e(a) ∧ sa f e(e1) ∧ sa f e(e2) ∧ 0 ≤ e1 ≤ e2 < l en gth a
sa f e(a ◦ e) = sa f e(a) ∧ sa f e(e) ∧ 0 ≤ e < l en gth a , where ◦ ∈ {<< , >> , < | , | >}

Figure 58: Safety of vector operations

sa f e(m) = true
sa f e(m [e1 , e2]) = sa f e(a) ∧ sa f e(e1) ∧ sa f e(e2) ∧ 0 ≤ e1 < rows m ∧

0 ≤ e2 < co l umns m
sa f e(m [e1 . . . e2 , e3 . . . e4]) = sa f e(m) ∧ sa f e(e1) ∧ sa f e(e2) ∧ sa f e(e3) ∧ sa f e(e4) ∧

0 ≤ e1 ≤ e2 < rows m ∧ 0 ≤ e3 ≤ e4 < co l umns m
sa f e(m [e1 . . . e2 , e3]) = sa f e(m) ∧ sa f e(e1) ∧ sa f e(e2) ∧ sa f e(e3) ∧

0 ≤ e1 ≤ e2 < rows m ∧ 0 ≤ e3 < co l umns m
sa f e(m [e1 , e2 . . . e3]) = sa f e(m) ∧ sa f e(e1) ∧ sa f e(e2) ∧ sa f e(e3) ∧

0 ≤ e1 < rows m ∧ 0 ≤ e2 ≤ e3 < co l umns m
sa f e(m1 ◦ m2) = sa f e(m1) ∧ sa f e(m2) , where ◦ ∈ {+ , − , ∗}

sa f e(−m) = sa f e(m)

sa f e(m ∗ ∗ e) = sa f e(m) ∧ sa f e(e) ∧ e ≥ 0

Figure 59: Safety of matrix operations

108

6.6. Safety properties

6.6.2 A safety-sensitive EasyCrypt scheme

Having a safe predicate defined, we could reason about the safety of a CAO program by generating

a proof script that was similar to the one presented in Section 6.5.5, with the addition of a cut state-

ment for every expression that appeared in the translated CAO program that would reason about the

safety of that expression. Nevertheless, we followed a different approach: we generate another Easy-
Crypt script that is exactly the same except that the statements that compose the procedures inside of

the modules are annotated with assertions that reason about the safety of the expressions inside the

statements.

To produce the new EasyCrypt script with procedures annotated with assertions, we define a new

translation algorithm for CAO functions, that can be consulted in Figure 60.

Assign(lval, e) 7→ assert(safe e); lval = e;

Sample (lval) 7→ lval $←(get type lval).distr
FCallS (f, es) 7→ assert (∀ e ∈ es, safe e); f (es);

Ret (e) 7→ assert(safe e); return e;
Ite (e, stmts, None) 7→ assert(safe e); if (e){ stmts }

Ite (e, stmts1, Some stmts2) 7→ assert(safe e); if (e){ stmts1 } else { stmts2 }
Seq (ctr, SeqIter(s, e1, e2, None), stmts) 7→

assert(safe e1 / safe e2); s = e1; while (s <> e2){ stmts; assert(safe (s+1)); s = s + 1; }
Seq (ctr, SeqIter(s, e1, e2, Some e3), stmts) 7→

assert(safe e1 / safe e2 / safe e3); s = e1; while (s <> e2){ stmts; assert(safe (s+e3)); s = s + e3; }
While (ctr, e, stmts) 7→ assert(safe e); while (e){ stmts }

Figure 60: Safety-sensitive functions mapping

For a better illustration of the process, consider the following example of a CAO program that

changes the values of a vector according to some condition.

def safety_test (x : int) : vector[10] of int {

def v : vector[10] of int;

seq i := 0 to 9 {

if (x % 2 == 0) { v[i] := 1; } else { v[i] := 0; }

}

return v;

}

The EasyCrypt script generated would have the following safety-sensitive procedure.

proc safety test(x : CAO int) : CAO vector CAO int 10.CAO vector = {

109

6.6. Safety properties

var v : CAO vector CAO int 10.CAO vector;
var i : CAO reg int;

assert(safe 0);
i = 0;

assert (safe (i ≤9));
while (i ≤9) {

assert (safe (Int.(%%) x 2 = 0));
if (Int.(%%) x 2 = 0) {

assert (safe (v[i]) ∧safe 1);
v[(i)] = 1;
}

else {
assert (safe (v[i]) ∧safe 0);
v[i] = 0;
}

assert (safe (i+1));
i = i + 1;
}

assert (safe v);
return (v);

}

The normal script would be equal to the above described, but without the safety conditions.

6.6.3 Safety proofs

The safety-sensitive EasyCrypt script is generated as an auxiliary script, so that the original one

does not become too big and unreadable. However, the original script includes the safety-sensitive to

perform safety proofs.

In order to prove the safety of some procedure, we prove the equivalence between the original

procedure and the procedure annotated with assertions. If the two programs are equivalent, then the

CAO procedure meets all the safety restrictions and one is able to continue to perform proofs over

that function with confidence that the execution of it will not end in some error state.

110

6.6. Safety properties

The equivalence between the two programs is proven with respect to its annotations. The Hoare

triple that represents the equivalence has the form {φ∧ θ}C ∼ Csa f e{ψ}, where φ is the precondition

for both C and Csa f e, psi is the postcondition and θ is a new assertion that states that the memories of

both programs are the same. Informally, this means that the execution of C and Csa f e will be the same,

despite the fact that for the right side program one also needs to prove the safety proof obligations

generated by the assertion commands. In EasyCrypt, the assert(p); statement is consumed by the

wp tactic, that produces a proof goal with p, given the context already built.

A proof scrip is also generated for our safety proofs. For some function f in a module M, the

EasyCrypt equivalence lemma is the following.

equiv f safe : M.f ∼ M safety.f : φ ∧ θ V ψ.

The proof script is equal to the one generated for functional correctness proofs, with the addition

of application of the wp tactic in the middle of the other tactics, since an assertion condition will

always appear. In probabilistic relational Hoare logic proofs in EasyCrypt, the application of a tactic

consumes information of both programs. The algorithm to generate the proof script is defined in

Figure 61. Note that there is no need to apply the wp tactic one second time in the presence of an

assignment or a conditional block, since the wp tactic is already applied and, due to its recursive

behaviour, it is not necessary to apply it a second time.

Assign(lval, e) 7→ wp.
Sample (lval) 7→ rnd.

FCallS (f, es) 7→ wp. call (: get pre (get ctr f)V get post (get ctr f)).
Ite (e, stmts, None) 7→ wp.

Ite (e, stmts1, Some stmts2) 7→ wp.
Seq (ctr, SeqIter(s, e1, e2, None), stmts) 7→ wp. while (get inv ctr). get tactics stmts.

Seq (ctr, SeqIter(s, e1, e2, Some e3), stmts) 7→ wp. while (get inv ctr). get tactics stmts.
While (ctr, e, stmts) 7→ wp. while (get inv ctr). get tactics stmts.

Figure 61: Proof script for safety proofs

111

7

C O N C L U S I O N S A N D F U T U R E W O R K

Domain specific languages (DSL) are a very interesting set of programming languages: by having

some well defined and restricted application, they offer a programmer the necessary abstractions and

mechanisms to write programs of some complicated domain in a very elegant way. Usually, the code

of these languages is not executable and the toolset around the language provides code extraction

to common programming languages like C or Java. Cryptographic domain specific languages are

of extreme interest because the development of cryptographic software involve knowledge in many

different areas and need to be almost computationally invisible.

The code extraction feature, even if proven sound, may not produce valid code because the program

written in the domain specific language may contain some error that is undetectable due to the lack of

code execution. In cryptography, an error such like this can be catastrophic because it can compromise

the security assets of security infrastructure. Code verification is, most of the times, carried out in the

produced code, owning that the language of the this code usually has some verification mechanism

platform. This fact turns the verification process very complicated because there is no natural way of

dealing with data structures specific to the domain of the DSL defined in the generated code language.

In this project we bring these two worlds together: we present a verification platform for CAO- a

cryptographic domain specific language - based on a verification toolset specific to the domain of cryp-

tography, EasyCrypt. We extended the CAO language with additional features that turn the process

of specifying cryptographic primitives even more natural and re-invent the CAOVerif tool, providing

it with a new backend tool - EasyCrypt-, that is more suitable to the domain of cryptography.

Additionally, we provide an interesting connection between the CAO language and the EasyCrypt
platform. Our renewed CAOVerif tool can work as an interface for EasyCrypt, which allows some

user to write cryptographic code in a very friendly language and then translate it to an EasyCrypt
specification that can be used to reason about it. This feature reduces the need for some user to learn

the specification details of EasyCrypt, allowing him to focus on the proving part of the script.

112

7.1. Old CAOVerif vs. new CAOVerif

7.1 O L D C AOV E R I F V S . N E W C AOV E R I F

An important subject of this work was to compare the two versions CAOVerif and to evaluate the

advantages and disadvantages of using EasyCrypt or the Frama-C/Jessie toolset as backend for the

tool.

The first important diference resides on the nature of EasyCrypt and Frama-C. The first is an inter-

active proof assistant, where proofs are developed step-by-step with a very low degree of automation.

The second, combined with the Jessie plugin, delivers an interface for many external provers (both

SMT solvers and interactive proof assistants) where high degrees of automation can be achieved.

By relying on Frama-C with the Jessie plugin, we are able to present a intuitive graphical interface

where, even an unexperienced user, is able to reason about programs using simple mechanisms. It

may be the case where some proof goals will not be discharged automatically, which may lead to

the need of using an interactive proof assistant like COQ. EasyCrypt does not provide a graphical

interface and is not as user friendly. Even though much of the script is generated by our new version

of CAOVerif, it may require some knowledge of the toolset and of program logics to potentialise the

usage of CAOVerif.
When trying to prove simple properties about programs (like safety properties over integers or

arrays), the old CAOVerif tool provides a faster mechanism to deal with these proof goals, since many

of them are proved with a simple call to an SMT solver. Nevertheless, since we automatically generate

proof scripts to try to prove properties about programs, an user would simply need to run the script

and check if all the proof obligations are discharged. In what concerns more difficult properties (like

safety properties over inhabitants of some extension field type), it really takes no advantage in using

the old version of CAOVerif, since one will not be able to proof the generated proof goals without

the use of an interactive proof assistant. One more time, the new version of CAOVerif generates the

necessary proof scripts, which may be an advantage when comparing to the older version.

There is one big advantage in using EasyCrypt as backend for the CAOVerif tool: since Easy-
Crypt is specific to the domain of cryptography, it suits better for a deductive verification tool for a

cryptographic domain specific language. By generating an EasyCrypt script from a CAO implemen-

tation, we are not only able to reason about functional correctness and safety properties, but also to

reason about the security of some scheme implemented in CAO. This is hard if CAOVerif relies on

the Frama-C/Jessie toolchain, because SMT solvers will not be able to prove security assumptions

over programs and, even if one generates a COQ script of the implementation, one would need to use

external libraries to prove security properties of CAO programs in a platform not developed with that

aim.

Finally, the Jessie plugin is currently deprecated and it is being replaced by the WP plugin. This

means that possible bugs on the Jessie plugin would not be fixed, which would compromise the

soundness of CAOVerif. In contrast, EasyCrypt is a recent platform, that is supported by an active

team, which grants the users a higher degree of confidence.

113

7.2. Future work

7.2 F U T U R E W O R K

From this work, we propose some main directions for future work:

• With the introduction of the sampling operator in CAO, on is able to define probabilistic pro-

grams in the language but one is not able to reason about probabilistic programs using CAO-SL.

The introduction of probabilistic annotations in CAO-SL would augment the set of programs

that can be analysed by our tool.

• The CAO language may also be improved, not only with features that will approximate the lan-

guage to the standards, but also with features that would turn the specification of programs a less

painful process. The inclusion of more high order features, like maps or folds, in CAO would

contribute to the deliver of better and more user-friendly language. Note that these features are

already present in the CALF language Barbosa (2009).

• One could also extend the CAO-SL language with security reasoning mechanisms. For ex-

ample, an user could annotate the program with some postcondition isCPA that would mean

that the scheme written in CAO is secure under the chosen plaintext attack (CPA) assumption.

There are no automatic security proofs, however, our tool could generate all the generic lemmas

necessary to prove its security, leaving the proof scripts empty.

• Our tool can be included in a bigger platform with the aim to generate correct-by-construction

C programs. Intuitively, one would specify some program in CAO, use CAOVerif to reason

about it and then use the CAO compiler to generate C implementations from a CAO program

that was verified using CAOVerif.

114

B I B L I O G R A P H Y

José Bacelar Almeida, Manuel Barbosa, Jean-Christophe Filliâtre, Jorge Sousa Pinto, and Bárbara

Vieira. Caoverif: An open-source deductive verification platform for cryptographic software imple-

mentations. Sci. Comput. Program., 91:216–233, 2014. doi: 10.1016/j.scico.2012.09.019. URL

http://dx.doi.org/10.1016/j.scico.2012.09.019.

José Bacelar Almeida, Maria Jooão Frade, and Jorge Sousa Pinto. Rigorous software development : an

introduction to program verification. Undergraduate topics in computer science. Springer, London,

2011. ISBN 978-0-85729-017-5. URL http://opac.inria.fr/record=b1132575.

Manuel Barbosa. Formal specification, language definitions and security policy extensions, June 2009.

Manuel Barbosa, Andrew Moss, Dan Page, Nuno F. Rodrigues, and Paulo F. Silva. Type checking

cryptography implementations. In Farhad Arbab and Marjan Sirjani, editors, Fundamentals of Soft-

ware Engineering, volume 7141 of Lecture Notes in Computer Science, pages 316–334. Springer

Berlin Heidelberg, 2012. ISBN 978-3-642-29319-1. doi: 10.1007/978-3-642-29320-7 21. URL

http://dx.doi.org/10.1007/978-3-642-29320-7_21.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of code-based

cryptographic proofs. SIGPLAN Not., 44(1):90–101, January 2009. ISSN 0362-1340. doi: 10.

1145/1594834.1480894. URL http://doi.acm.org/10.1145/1594834.1480894.

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-aided

security proofs for the working cryptographer. In Proceedings of the 31st Annual Conference on

Advances in Cryptology, CRYPTO’11, pages 71–90, Berlin, Heidelberg, 2011a. Springer-Verlag.

ISBN 978-3-642-22791-2. URL http://dl.acm.org/citation.cfm?id=2033036.

2033043.

Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella Béguelin. Beyond prov-

able security verifiable ind-cca security of oaep. In Proceedings of the 11th International Con-

ference on Topics in Cryptology: CT-RSA 2011, CT-RSA’11, pages 180–196, Berlin, Heidelberg,

2011b. Springer-Verlag. ISBN 978-3-642-19073-5. URL http://dl.acm.org/citation.

cfm?id=1964621.1964640.

Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech, Benedikt

Schmidt, and Santiago Zanella-Béguelin. Fully automated analysis of padding-based encryption

in the computational model. In Proceedings of the 2013 ACM SIGSAC Conference on Com-

puter & Communications Security, CCS ’13, pages 1247–1260, New York, NY, USA, 2013. ACM.

115

http://dx.doi.org/10.1016/j.scico.2012.09.019
http://opac.inria.fr/record=b1132575
http://dx.doi.org/10.1007/978-3-642-29320-7_21
http://doi.acm.org/10.1145/1594834.1480894
http://dl.acm.org/citation.cfm?id=2033036.2033043
http://dl.acm.org/citation.cfm?id=2033036.2033043
http://dl.acm.org/citation.cfm?id=1964621.1964640
http://dl.acm.org/citation.cfm?id=1964621.1964640

Bibliography

ISBN 978-1-4503-2477-9. doi: 10.1145/2508859.2516663. URL http://doi.acm.org/10.

1145/2508859.2516663.

Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and Vir-

gile Prevosto. Acsl: Ansi/iso c specfication language. Technical report, CEA LIST and INRIA,

2010.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient

protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security,

CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM. ISBN 0-89791-629-8. doi: 10.1145/

168588.168596. URL http://doi.acm.org/10.1145/168588.168596.

Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Advances in Cryptology -

EUROCRYPT ’94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia,

Italy, May 9-12, 1994, Proceedings, pages 92–111, 1994. doi: 10.1007/BFb0053428. URL http:

//dx.doi.org/10.1007/BFb0053428.

Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security of triple en-

cryption. Cryptology ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/.

Nick Benton. Simple relational correctness proofs for static analyses and program transformations.

SIGPLAN Not., 39(1):14–25, January 2004. ISSN 0362-1340. doi: 10.1145/982962.964003. URL

http://doi.acm.org/10.1145/982962.964003.

Bruno Blanchet. A computationally sound automatic prover for cryptographic protocols. In Workshop

on the link between formal and computational models, Paris, France, June 2005.

François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3: Shep-

herd Your Herd of Provers. In Boogie 2011: First International Workshop on Intermediate Ver-

ification Languages, pages 53–64, Wroclaw, Poland, 2011. URL https://hal.inria.fr/

hal-00790310.

Luca Cardelli. Type systems, 1997.

J.I. den Hartog and E.P. de Vink. Verifying probabilistic programs using a hoare like logic. In-

ternational journal of foundations of computer science, 13(3):315–340, 2002. URL http:

//doc.utwente.nl/55799/.

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1st edition, 1997. ISBN 013215871X.

Levent Erkök and John Matthews. High assurance programming in cryptol. In Proceedings of the

5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security

and Information Intelligence Challenges and Strategies, CSIIRW ’09, pages 60:1–60:2, New York,

116

http://doi.acm.org/10.1145/2508859.2516663
http://doi.acm.org/10.1145/2508859.2516663
http://doi.acm.org/10.1145/168588.168596
http://dx.doi.org/10.1007/BFb0053428
http://dx.doi.org/10.1007/BFb0053428
http://eprint.iacr.org/
http://doi.acm.org/10.1145/982962.964003
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310
http://doc.utwente.nl/55799/
http://doc.utwente.nl/55799/

Bibliography

NY, USA, 2009. ACM. ISBN 978-1-60558-518-5. doi: 10.1145/1558607.1558676. URL http:

//doi.acm.org/10.1145/1558607.1558676.

Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus platform for deductive

program verification. In Werner Damm and Holger Hermanns, editors, Computer Aided Verifica-

tion, volume 4590 of Lecture Notes in Computer Science, pages 173–177. Springer Berlin Hei-

delberg, 2007. ISBN 978-3-540-73367-6. doi: 10.1007/978-3-540-73368-3 21. URL http:

//dx.doi.org/10.1007/978-3-540-73368-3_21.

Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers. In Matthias

Felleisen and Philippa Gardner, editors, Programming Languages and Systems, volume 7792 of

Lecture Notes in Computer Science, pages 125–128. Springer Berlin Heidelberg, 2013. ISBN 978-

3-642-37035-9. doi: 10.1007/978-3-642-37036-6 8. URL http://dx.doi.org/10.1007/

978-3-642-37036-6_8.

Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. The spirit of ghost code. In

Armin Biere and Roderick Bloem, editors, Computer Aided Verification, volume 8559 of Lecture

Notes in Computer Science, pages 1–16. Springer International Publishing, 2014. ISBN 978-3-

319-08866-2. doi: 10.1007/978-3-319-08867-9 1. URL http://dx.doi.org/10.1007/

978-3-319-08867-9_1.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and Sys-

tem Sciences, 28(2):270 – 299, 1984. ISSN 0022-0000. doi: http://dx.doi.org/10.1016/

0022-0000(84)90070-9. URL http://www.sciencedirect.com/science/article/

pii/0022000084900709.

Shai Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint

Archive, Report 2005/181, 2005. http://eprint.iacr.org/.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,

October 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL http://doi.acm.org/

10.1145/363235.363259.

The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. URL

http://coq.inria.fr. Version 8.0.

The EasyCrypt development team. EasyCrypt Reference Manual, 2015. URL http://www.

easycrypt.info. Version 1.x.

Christine Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. November 2014.

URL https://hal.inria.fr/hal-01094195.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint

Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

117

http://doi.acm.org/10.1145/1558607.1558676
http://doi.acm.org/10.1145/1558607.1558676
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-319-08867-9_1
http://dx.doi.org/10.1007/978-3-319-08867-9_1
http://www.sciencedirect.com/science/article/pii/0022000084900709
http://www.sciencedirect.com/science/article/pii/0022000084900709
http://eprint.iacr.org/
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://coq.inria.fr
http://www.easycrypt.info
http://www.easycrypt.info
https://hal.inria.fr/hal-01094195
http://eprint.iacr.org/

Bibliography

Nikhil Swamy, Juan Chen, Cedric Fournet, Pierre-Yves Strub, Karthikeyan Bharagavan, and

Jean Yang. Secure distributed programming with value-dependent types. Technical Report

MSR-TR-2011-37, March 2011. URL http://research.microsoft.com/apps/pubs/

default.aspx?id=141708. This is an extended version of the conference paper (ICFP ’11)

with the same title. A final version of this full technical report is forthcoming.

118

http://research.microsoft.com/apps/pubs/default.aspx?id=141708
http://research.microsoft.com/apps/pubs/default.aspx?id=141708

	Contents
	1 Introduction
	1.1 The CAO language
	1.2 Deductive program verification
	1.3 Verification of cryptographic software
	1.4 EasyCrypt
	1.5 Motivation
	1.6 Objectives
	1.7 Document structure

	2 Theoretical Background
	2.1 Type systems
	2.1.1 Judgements
	2.1.2 Type rules
	2.1.3 Type derivations
	2.1.4 Well typing and type inference

	2.2 While language
	2.3 Hoare logic
	2.3.1 Annotated While language
	2.3.2 Specifications and Hoare triples
	2.3.3 Hoare calculus

	2.4 Probabilistic Hoare logic
	2.4.1 A probabilistic While language - pWhile
	2.4.2 Bounded Hoare triples
	2.4.3 Probabilistic Hoare calculus

	2.5 Probabilistic relational Hoare logic
	2.5.1 Relational Hoare logic
	2.5.2 Probabilistic relational Hoare calculus
	2.5.3 Provable security
	2.5.4 Verifiable security

	2.6 Software formal verification
	2.6.1 Safety properties
	2.6.2 Extensions to Hoare logic for realistic programs
	2.6.3 Focus on automation vs focus on interactivity

	2.7 State of the art tools for verification of cryptographic software

	3 CAO specification
	3.1 CAO syntax
	3.2 CAO type system

	4 CAO-SL specification
	4.1 Logic expressions
	4.1.1 Operator precedence
	4.1.2 Semantics
	4.1.3 Types in logic expressions

	4.2 Function contracts
	4.2.1 Constructors old and result
	4.2.2 State and locations

	4.3 Statement annotations
	4.3.1 Assertions
	4.3.2 Loop annotations

	4.4 Logic specifications
	4.4.1 Functions
	4.4.2 Predicates
	4.4.3 Lemmas
	4.4.4 Axiomatic definitions

	4.5 Ghost code

	5 EasyCrypt toolset
	5.1 An example of EasyCrypt
	5.2 Proving in EasyCrypt
	5.2.1 Proof engine
	5.2.2 Ambient logic
	5.2.3 Program logics
	5.2.4 A proof example: Correctness of BR93

	6 A new CAOVerif
	6.1 A new architecture for CAOVerif
	6.2 An OCaml implementation of the CAO typechecker
	6.2.1 CAO + CAO-SL: a new language
	6.2.2 Additions to the CAO language

	6.3 Formalisation of the CAO types in EasyCrypt
	6.3.1 Integer type
	6.3.2 Boolean type
	6.3.3 Ring/field type
	6.3.4 Register int type
	6.3.5 Bit string type
	6.3.6 Extension field type
	6.3.7 Vector type
	6.3.8 Matrix type

	6.4 CAO to EasyCrypt mapping algorithm
	6.4.1 Preprocessing
	6.4.2 Global integer constants
	6.4.3 Type cloning
	6.4.4 A CAO program as an EasyCrypt module

	6.5 CAO-SL to EasyCrypt mapping algorithm
	6.5.1 Logic specifications
	6.5.2 Ghost code
	6.5.3 Function contracts
	6.5.4 Statement annotations
	6.5.5 A proof script

	6.6 Safety properties
	6.6.1 The safe predicate in EasyCrypt
	6.6.2 A safety-sensitive EasyCrypt scheme
	6.6.3 Safety proofs

	7 Conclusions and future work
	7.1 Old CAOVerif vs. new CAOVerif
	7.2 Future work

