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A B S T R AC T

When assembling bottom terminated components in printed circuit boards, connectivity is
extended through metallized terminals. To minimize thermal fatigue failure of the welds, soft-
ware tools have been developed to model liquid surfaces shaped by various forces and constraints.
Surface Evolver (SE) is the software tool used by Bosch in their media entertainment products to
model liquid surfaces through the analysis of discrete parts of that surface. However, depending
on the level of detail, this process may have long execution times, which is not consistent with
the demand of industry and mainly in an interactive software where users expect the results to
be obtained quickly.

This dissertation aims to improve the efficiency of SE, through the optimization of the to-
tal energy computation, taking advantage of vectorization, parallel computing and other high
performance techniques.

The analysis and profile of the current SE version were crucial to support the decisions taken
to improve the computational performance of the software. Scalability tests, taking into account
the Amdahl’s law, call graphs and other profiling analysis helped to identify bottlenecks, where
an effort should be invested to improve the software. One of the heaviest computations identified
in SE is the computation of the total energy of the configuration.

SE was identified to be a memory-bounded software, mainly due to its current mesh data
structure, implemented with linked lists, which limits the use of the vectorization features on
current CPU cores and also does not support data parallelization techniques and data locality.
A new data structure was proposed to overcome these performance constraints, which led to a
faster execution of SE.

The results showed an improvement on the total energy computation, an increase of vectoriz-
able operations, software prefetching techniques and scheduling optimizations which, alongside
the alternative data structure, increased the performance of the SE.
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R E S U M O

Na montagem de bottom terminated components em printed circuit boards, a conetividade é
expandida através de terminais metalizados. De modo a minimizar as falhas por fadiga térmica
das soldaduras, ferramentas de software foram desenvolvidas para modelar superfı́cies liquidas
condicionadas por várias forças e restrições. O Surface Evolver (SE) é a ferramenta de software

utilizada pela Bosch nos seus produtos de media entertainment para modelar superfı́cies liquidas
através da análise de partes discretas destas superfı́cies. No entanto, dependendo do nı́vel de
detalhe, este processo poderá ter longos tempos de execução, o que não é condizente com a
exigência da industria e principalmente num software interativo onde o utilizador espera que os
seus resultados sejam obtidos rapidamente.

Esta dissertação tem como objetivo melhorar a eficiência do SE, através da otimização do
cálculo da energia total, tirando partido de vetorização, computação paralela e outras técnicas de
computação de alta performance.

A análise e o profiling da implementação atual do SE foram cruciais para suportar as decisões
tomadas para melhorar a eficiência computacional do software. Testes de escalabilidade, tendo
em consideração a lei de Amdahl, call graphs e outras análises de profiling ajudaram a identificar
bottlenecks, onde um esforço deverá ser investido de modo a melhorar a performance do software.
Um dos cálculos mais pesados identificado no SE é o cálculo da energia total da configuração.

O SE foi identificado como sendo memory-bounded, principalmente devido à sua estrutura
de dados atual, implementada com listas ligadas, o que limita o uso de funcionalidades de
vetorização nos cores de CPU atuais e também não suporta técnicas de paralelização e locali-
dade de dados. Uma nova estrutura de dados foi proposta de forma a ultrapassar estas limitações,
o que resultou numa execução mais rápida do SE.

Os resultados mostraram uma melhoria no cálculo da energia total, um aumento de operações
vetorizáveis, técnicas de software prefetching e otimizações de scheduling que, juntamente com
a estrutura de dados alternativa, aumentaram a performance do SE.
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1

I N T RO D U C T I O N

The modelling of liquid surfaces shaped by various forces and constraints, is a process used
in the study of these surfaces, including simulation and optimization procedures. Several univer-
sities and companies in the field of mechanical engineering, electronic engineering, mathematics,
among others use this process to study the behaviour of these surfaces when constrained by differ-
ent forces and energies. This dissertation aims to study the development of a modelling process
to simulate the evolution of a surface in order to identify problems of thermal fatigue failure in
the design of new Printed Circuit Boards (PCBs), as part of a collaboration with Bosch - Car
Multimedia, world leader in media entertainment.

To optimize the procedure and parameters to braze components of the Bottom Terminated
Component (BTC) type on PCBs, a case study was chosen to simulate a thermal fatigue failure
of the welds, which leads to a premature end of an electronic component [1]. With this simu-
lation, the evolution of the surface can be monitored without the need of field experiences or
even discovering problems after large productions, which represent high manufacturing costs for
companies.

To generate information about the procedure, this simulation process needs a solution to
achieve these optimizations, using Computer Aided Engineering (CAE) computational tools to
support the design of new PCBs. The CAE computation tool used by Bosch for this process
is the Surface Evolver (SE), an interactive software application to model liquid surfaces using
the Finite Element Method (FEM). The FEM is used to model a problem involving continuous
surfaces through the analysis of discrete parts of that surface, for which it is possible to know
or obtain a mathematical description of their behaviour. However, some surfaces might be dis-
cretized with more detail, thus making a larger mesh, or when the mesh evolves to a higher
refinement state, it produces more elements and increases the computing requirements. These
longer execution times are not consistent with the demand of the industry, particularly in interac-
tive software, where the user expects the results to be obtained quickly and see the evolution of
the surface in real-time.

This dissertation addresses this response time problem, aiming to implement a new and more
efficient solution using parallel computing techniques: the SE execution times will be reduced,
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1.1. MOTIVATION & GOALS

leading to a more interactive interface with the user and enabling the study of surfaces in greater
detail. First of all, the problem was studied and analysed as well as the computing process of
the software. The execution of the SE code was profiled to identify potential bottlenecks, the
performance of the critical regions in the sequential version were optimized and the adequacy
of the data structures required a detailed analysis, before proceeding to parallel implementations.
This analysis showed that a significant part of the software is spent to compute the total energy
of the configuration. So, the main focus of this work is to implement a new version of this
computation, proposing a more efficient data structure, exploring vectorizing features of the
available processing units and implementing a parallel version in a shared memory paradigm
with OpenMP.

Heterogeneous computing environments, which typically consists of one or more multicore
computing devices and an accelerator, such as a Graphics Processing Unit (GPU), will also be
taking into account. To achieve a higher performance, the implementation must consider that
each processor and accelerator can differ with different architectures, programming paradigms
and memory hierarchies. Algorithms may require changes to execute in these environments and
deal with load balancing among the available processing units.

An heterogeneous environment might have different architectures, from Central Processing
Units (CPUs) to accelerators such as the GPU, the Intel Many Integrated Core (MIC) devices
or even Digital Signal Processors (DSPs) and Field-Programmable Gate Arrays (FPGAs). In
this dissertation, the parallel implementation executes in an homogeneous shared memory en-
vironment: however, all decisions regarding performance improvements, such as an alternative
data structure, are made taking into account a future implementation running in heterogeneous
environments.

1.1 M OT I VAT I O N & G O A L S

The key objective of this dissertation is to improve the efficiency of the modelling of liquid
surfaces with the SE software. As mentioned, this dissertation uses as a case study, the opti-
mization of the procedure and parameters for brazing components of the BTC type on PCBs,
simulating a thermal fatigue failure of the welds, which leads to a premature end of an electronic
component.

Both components of profiling and the implementation of a new and more efficient solution
are the main outcomes of this dissertation, which will be the result of the following tasks:

• To study the modelling of liquid surfaces with the SE software, including a profile of the
code with different sizes of input data sets and resolutions;

13



1.2. CONTRIBUTION

• To design and implement a more efficient data structure to deal with vectorization, parallel
computing and memory locality;

• To improve the sequential version of the SE software (vectorization, memory accesses
among other improvements);

• To implement an efficient parallel version of the application for shared memory environ-
ments, with multicore CPUs;

• To study how these improvements can be used for a future heterogeneous implementation,
with a GPU or an Intel Xeon Phi as accelerators.

1.2 C O N T R I B U T I O N

This dissertation contributes by implementing a new, more efficient version of the SE soft-
ware used to model liquid surfaces, currently used in related research projects and companies
around the world. It also contributes with relevant information about the implementation pro-
cess, all the studies and decisions made while building a new version of SE that might become
useful in the future for other attempts to implement high performance computing software.

1.3 D I S S E RTAT I O N O U T L I N E

This dissertation has 6 chapters. Chapter 2 introduces the modelling of liquid surfaces as
well as the particular problem of thermal fatigue failure of BTC components welds in PCBs.
This chapter also presents the FEM and the software SE used to model these surfaces, as well as
the case studies used with SE.

Chapter 3 the required computing background (homogeneous and heterogeneous environ-
ments), as well as profilers, compilers, framework and libraries used to improve the performance
of the SE. In chapter 4 the SE is presented with greater detail, profiling and analysing the critical
regions, performance bottlenecks and the current data structure.

In chapter 5 presents an evolution on the improvements of the SE performance. It starts to
describe the total energy computation of the SE (the part of the software identified as critical
bottlenecks), an alternative data structure proposal and other techniques to improve the perfor-
mance, such as vectorization and a shared memory implementation to compute the total energy
in parallel.

Finally, chapter 6 presents the conclusions and gives suggestions for future work. This disser-
tation includes at the end an appendix A, which contains relevant information about the method-

14



1.3. DISSERTATION OUTLINE

ology and computer nodes characteristics, as well as the Amdahl’s law to better understand the
limitations to these improvements.

Introductory text explains the structure at the beginning of each chapter, showing key infor-
mation. Similarly, at the end of each chapter, a summary resumes the chapter and stresses the
relevant details.
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2

M O D E L L I N G O F L I Q U I D S U R FAC E S

This chapter introduces the liquid surfaces modelling shaped by various forces and constraints

and the main problem studied, the thermal fatigue failure of BTC components welded to PCBs,

that leads to a more premature end of an electronic component. The simulation of these pro-

cedures is done by a numerical analysis with the FEM that evolves the surface from its initial

state to the state where it meets the required stop criteria. This is done by the SE, an interactive

software to study these surfaces, and is presented with an example and two main case studies

used throughout this analysis.

The modelling of liquid surfaces shaped by various forces and constraints, is a process used
to study these surfaces, including simulation and optimization procedures. Several universi-
ties and companies in the field of mechanical engineering, electronic engineering, mathematics,
among others use this process to study the behaviour of these surfaces when constrained by
different forces and energies.

In this dissertation, it is mostly studied the development of a modelling process to simulate
the evolution of a surface in order to identify problems of thermal fatigue failure in the design of
new PCBs.

2.1 DY S F U N C T I O N S / E L E C T R I C A L A N O M A L I E S O F A P C B

The thermal fatigue failure of BTC components welds in PCBs yields a more premature end
of an electronic component, therefore it is a concern and a process that requires some optimiza-
tion and maturation. Optimizing the welding process, it is possible to minimize the electrical
failure problems due to thermal fatigue of the welded components and thus increasing the life
cycle of the BTC components [1].

During its use, these BTC components and the respective PCBs go through successive ther-
mal cycles, which originate anomalies by gradients of thermal expansion coefficients of the
various materials present: polymers, composite materials, copper PCBs, encapsulating material
of the BTC components, brazing materials, etc. The thermal fatigue, when accumulated, leads

16



2.1. DYSFUNCTIONS/ELECTRICAL ANOMALIES OF A PCB

to an interruption of the electrical conductivity, so the brazing is one of the major causes of
problems in this system.

It is therefore important to work on solutions to these problems. The optimization of the
BTC components placement on the PCB and the brazing procedures and parameters can lead
to a substantial increase in the robustness of electronic systems. The analysis of the welding
material volume and the design of the PCB copper area to be welded to the component, require
careful studies to lower the error rate in production line and extend the life of the weld joint,
to assist in the overall quality of the brazing process, since the residual stresses resulting from
thermal cycling depend on both the configuration of the PCB, and the amount of solder.

For common components, other than BTCs, the lifetime of the PCB has a fall-off-rate of
2 Defects per Million Opportunities (DPMO) in the production line and an estimated lifetime
in reliability tests of more than 15 years, more than 30 years when using nominal values of
solder paste volume. The use of components other than the BTC, Quad Flat Package (QFP)
or Small Outline Integrated Circuit (SOIC) types are much easier to produce and it can easily
reach 30 to 40 years of useful lifetime, since due to the geometry of its terminals, they are easier
to produce with these quality levels. These traditional components are more flexible and thus
they adapt better to the resulting deformations from the differences in the thermal expansion
coefficients of the materials. However, the new BTC components, because of their rigidity, are
more susceptible to problems associated with thermal fatigue failure, thereby making it more
difficult and demanding to maintain a fall-off-rate of 2 DPMO and 15 years of estimated lifetime.
This means that with the introduction of the new BTC components it is necessary to introduce
new strategies to oppose the new implications for durability, namely:

• Optimizing the design of the PCB layouts in order to manage the local rigidity, thus mini-
mizing the effects of the thermal fatigue of the solders in the BTC components;

• Optimizing the procedures and parameters of brazing BTC components on PCBs, to scale
the size of the welding blisters and minimizing the stress fields associated with the defor-
mation;

To achieve these optimizations, it is essential to generate knowledge and CAE computational
tools are required to support the new PCB designing, integrating the BTC components, and
generating additional value by incorporating new technologies in smaller (miniaturization) and
robuster integrated circuits manufacturing. Moreover, experimental tests to validate a conceptual
solution are long, about 4 months, which a CAE computational tool can help to reduce.

17



2.2. FINITE ELEMENT METHOD

2.2 F I N I T E E L E M E N T M E T H O D

The FEM is a numerical method used to model a problem involving continuous surfaces
through the analysis of discrete parts of that surface, for which it is possible to know or obtain
a mathematical description of their behaviour - discretization. Each discreet element - the finite
element - and the mathematical descriptions of its behaviour contributes to the analysis of the
global problem. This change of scale from the individual finite element analysis to the analysis
of a global problem is called assembling. As a result, a problem with a high complexity or
without an analytic solution can be solved by smaller and simpler problems with a mathematical
solution (exact or approximated), that when assembled leads to a solution of the global problem
[2].

Figure 1.: Spacial discretization of a domain by finite elements 1

In a numerical simulation process, it must be taken into account that numerical methods
such as the FEM, are approximated methods. It is extremely important to identify all the po-
tential sources of error as well as estimate the magnitude of those errors and provide the best
model representation in the discretization process. The FEM allows a consideration of a great
behaviours diversity and constitutional models such as linear elasticity (Hooke’s law), plasticity,
viscoplasticity, hyperelasticity, termoelasticity, etc.

The finite elements can assume various geometric forms such as one-dimensional, two-
dimensional or three-dimensional. One-dimensional problems are solved by using finite ele-
ments in the shape of line segments, two-dimensional problems usually recurs to quadrilaterals

1 http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.
html
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2.2. FINITE ELEMENT METHOD

or triangles and three-dimensional problems usually uses hexahedrons, tetrahedron or pentahe-
dron, among others.

So, for instance in a linear elasticity analysis applied to engineering problems, one of the first
analysis to consider is the displacement fields of a finite number of points in the system. These
points - the nodes of a mesh - are usually placed in the element vertices, however, depending on
the type of formulation they can be placed in the middle of the edges, facets or even inside the
elements. So, the numerical analysis with the FEM calculates, in a first stage, the displacements
on the nodes for a particular filling applied to the domain being analysed. Thus, it is possible
to replace the problem of determining the displacement of an infinite number of points in a
continuous domain with the calculations of the displacements in a finite number of points - the
mesh nodes.

The FEM, in a generic way, goes through three different stages: the pre-processing stage,
the analysis stage and finally the post-processing stage.

2.2.1 Pre-processing

The pre-processing stage concerns to the geometric modelling of the system being studied
and the definition of all the constraints, attributes and physical/mechanical properties to be con-
sidered. This stage is usually done with the help of modelling Computer Aided Design (CAD)
software that assists the user to create an accurate representation of the continuous problem. The
global quality of the FEM analysis depends largely on the quality of these representations and
the way the user decides on some simplifications or the element and mesh types.

2.2.2 Analysis

The analysis stage is the FEM phase where all the calculations are performed. Initially, all
the information created by the pre-processing stage is read and analysed, followed by the iterative
process of elements calculations and linear systems solving.

2.2.3 Post-processing

The post-processing stage analyse the output of the previous stage and presents the evolution
and/or the final result of the mesh. These results can be presented to the user in friendlier formats
to facilitate the analysis of the result, in a color shaped distribution of isovalues or isolines for
instance.
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2.3 T H E S U R F AC E E VO LV E R

The Surface Evolver, developed by Ken Brakke from the University of Susquehanna (USA)
[3], is an interactive software for the study of surfaces shaped by surface tension and other
energies, and subject to various constraints1. This software implements a surface as a simplicial
complex with a union of triangles made of the basic elements: vertices, edges, and facets. The
initial surface can be defined in a datafile that can be loaded to the program. The surface is
evolved toward minimal energy by a gradient descent method to find a minimal energy surface,
or to model the process of evolution by mean curvature and then it outputs the new surface. SE
is an interactive software and the evolving process can be viewed as it evolves towards the final
state.

The evolving of the surface is done in three main steps:

• First, the discretization process, when the user writes a model that involves a continuous
surface through the analysis of discrete parts of that surface. The initial surface, is defined
as a simplicial complex with a union of triangles made of the basic elements: vertices,
edges, and faces in a datafile that can be loaded to the SE. The surface is represented by
a FEM, where each element is a simplex. In this datafile, it is also defined the element
attributes and the surface tension, energies as well as other constraints and boundaries.

• After the model and all the attributes are defined, then the surface can be evolved. This can
be done by either defining the iterative process in the datafile, therefore making a script to
this process, or interactively typing commands directly to the software. In both cases, the
evolution of the surface can be seen graphically.

• Following the iterative process, SE outputs the attributes of the evolved surface and also
exports the new surface to several formats.

2.3.1 Surface Evolver example

The SE has a command line interface and allows the user to start the software with an input
datafile defining the surface and other data such as constraints, boundaries and forces [3].

As a basic example of how the SE works, a simple cube can be used to demonstrate all the
process. The initial surface is a unit cube, with one body constrained to have a volume of 1. No
gravity or other forces are assumed besides the surface tension leading the cube to evolve to a
sphere, the minimal energy surface.

1 http://www.susqu.edu/brakke/evolver/evolver.html
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// cube.fe
// Evolver data for cube of prescribed volume.

vertices /* given by coordinates */
1 0.0 0.0 0.0
2 1.0 0.0 0.0
3 1.0 1.0 0.0
4 0.0 1.0 0.0
5 0.0 0.0 1.0
6 1.0 0.0 1.0
7 1.0 1.0 1.0
8 0.0 1.0 1.0

edges /* given by endpoints */
1 1 2
2 2 3
3 3 4
4 4 1
5 5 6
6 6 7
7 7 8
8 8 5
9 1 5
10 2 6
11 3 7
12 4 8

faces /* given by oriented edge loop */
1 1 10 -5 -9
2 2 11 -6 -10
3 3 12 -7 -11
4 4 9 -8 -12
5 5 6 7 8
6 -4 -3 -2 -1

bodies /* one body, defined by its oriented faces */
1 1 2 3 4 5 6 volume 1

Listing 1: Input datafile to define a surface shaped as a cube in the SE [3]

In the input datafile shown in the listing 1 it is defined the surface. It starts by defining
the vertices, one per line, starting by a positive integer, defining the vertex number and then its
coordinates. Next, are defined the edges also one per line. It starts also with a positive integer, the
identifier and then 2 identifiers, the endpoints, which are the numbers of the tail and head vertices
of the edge. The faces are defined next, also starting by the face number and then followed by
a list of oriented edge numbers in counter-clockwise order around the face. A negative edge
means the opposite direction from the one that was defined on the list. Finally, the bodies, in
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this case just 1, are represented by an identifier followed by a list of faces which composite the
body. In every definitions (vertices, edges, faces and bodies) are more parameters that can be
defined such as the volume, density, constraints, etc. In this case a volume is being defined as a
constraint, with the value of 1.

Opening the evolver executable, it is possible to pass the input datafile as a parameter:

evolver cube.fe

(a) Initial surface (b) Surface after 5 iterations

Figure 2.: Initial state of the cube and the cube after 5 iterations

At this point, the user has access to the command line and can interactively define and evolve
the surface, as well as using the GUI to see the surface represented graphically using the com-
mand s. The appearance of the cube at the start is shown in figure 2a. The faces are converted to
facets, since the software only uses triangles. To do a number of iterations it is used the command
g n, where n is the number of consecutive iterations. After the command g 5, that is, 5 iterations,
the surfaces evolves to the one shown in figure 2b and the output is shown in the listings 2.

The output shows one iteration per line with informations about the area, energy and current
scale factor respectively. By default, the SE seeks the optimal scale factor to minimize energy.
The current volume can be obtained using the command v as shown in the listings 3. It also
shows the pressure as well as the volume defined and the actual volume.
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5. area: 5.11442065156005 energy: 5.11442065156005 scale: 0.186828
4. area: 5.11237323810972 energy: 5.11237323810972 scale: 0.21885
3. area: 5.11249312304592 energy: 5.11249312304592 scale: 0.204012
2. area: 5.11249312772740 energy: 5.11249312772740 scale: 0.20398
1. area: 5.11249312772740 energy: 5.11249312772740 scale: 0.554771

Listing 2: Output of running 5 iterations over the surface with the command g 5

Body target volume actual volume pressure
1 1.000000000000000 0.999999779366360 3.408026016427987

Listing 3: Volume of the surface obtained by the command v

One might want to increase the level of detail by refining the triangulation. This is done with
the r command. This subdivides each facet into four smaller similar facets as shown in the figure
3a and prints the following message:

Vertices: 50 Edges: 144 Facets: 96 Facetedges: 288 Memory: 27554

This shows the number of geometric elements and the memory they are currently occupying.

(a) Surface after refinement (b) Final surface

Figure 3.: Cube after being refined and the final cube after 20 iterations

Finally, the figure 3b shows the surface after running 20 iterations which outputs the infor-
mation shown in the listings 4.
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20. area: 4.92221107324660 energy: 4.92221107324660 scale: 0.249909
19. area: 4.91072281356264 energy: 4.91072281356264 scale: 0.209411
18. area: 4.90935398167529 energy: 4.90935398167529 scale: 0.264455
(...)
3. area: 4.90277445806910 energy: 4.90277445806910 scale: 0.457579
2. area: 4.90266224878650 energy: 4.90266224878650 scale: 0.261398
1. area: 4.90256564950024 energy: 4.90256564950024 scale: 0.462497

Listing 4: Output of running 20 iterations over the surface with the command g 20

The surface can continue to be refined and proceed to more iterations. After that, the com-
mand q quits the software, asking the user to save the final surface.

2.4 C A S E S T U D I E S

In order to execute real scenarios with SE, two case studies of simulation used by Bosch
were used to measure the performance and to use in development. First, a case study with a
smaller number of elements, from now on referred to as smaller, to analyse the performance of
SE in cases where it fits in the CPU caches and to be used in active development where it is not
practical to wait long periods of time between changes in the source code. Second, a case study
with a larger number of elements, from now on referred to as larger, to analyse the performance
of cases that do not fit in the CPU caches and need to access the main memory.

(a) Initial surface (b) Final surface

Figure 4.: Smaller case study surface evolving at the initial and final state
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The smaller case study, shown in figure 4, is initially represented by 10K elements and a
memory usage of 1654KB and evolves to a surface with 15K elements and a memory usage of
2366KB. The iterative process is composed by 80 main iterations with computations and mesh
refinements throughout the iterations.

The larger case study, shown in figure 5, is basically a surface with a representation of 176
elements like the one represented in the smaller case with some changes on their attributes and a
more refined iterative process. It is initially represented by 500K elements and a memory usage
of 314MB and evolves to a surface with 1M elements and a memory usage of 978MB. It also
has 80 main iterations but with an even more refined mesh resulting in a considerable increase
in the amount of computations and heavier refinements.

(a) Initial surface (b) Final surface

Figure 5.: Larger case study surface evolving at the initial and final state

In the measures performed of the original version of the SE, during the profiling phase as
shown ahead, the smaller case study has an execution time of approximately 2 seconds and the
larger case study has an execution time of approximately 35 minutes.

S U M M A RY

The modelling of liquid surfaces shaped by various forces and constraints is used in different

fields of research and industry to study and simulate the behaviour of these surfaces in differ-

ent scenarios, such as the thermal fatigue failure of the welds in PCBs which leads to a more

premature end of an electronic component. To find an approximate solutions for these problems,

numerical methods like the FEM are used to solve continuous and high complex problems by

analysing discrete parts of these surfaces, for which it is possible to know or obtain a mathemat-

ical description of their behaviour.
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The FEM goes through three main stages: the pre-processing stage, when the domain is dis-

cretized and all the constraints are defined, the analysis stage, when all the calculations are

performed and finally the post-processing stage when the results are presented.

SE is an interactive program that uses the FEM to study these surfaces and the complexity of

the analysed problems shows that an efficient computational solution is required to reduce the

execution times, allowing the study of more complex problems.
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PA R A L L E L C O M P U T I N G BAC K G RO U N D

This chapter introduces the parallel computing background, specially related to parallel comput-

ing and its use in High Performance Computing (HPC) to increase the performance of software.

Starting with homogeneous environments, it is presented profiling tools, hardware and software

multithreading, Non-Uniform Memory Access (NUMA) environments and vectorization and their

impact on the performance of software. It is also explored heterogeneous environments, specially

with a GPU as an accelerator, its architecture details and also the Compute Unified Device Ar-

chitecture (CUDA) programming model. In order to develop more efficient code, frameworks

and APIs like pthreads, OpenMP, StarPU, Thrust and OpenACC, etc. will also be be presented

as potential alternatives to increase the SE performance.

3.1 H O M O G E N E O U S E N V I RO N M E N T

Environments composed by one or more CPUs with a main memory RAM are, until today,
the most usual types of systems available. The hardware of each CPU garantees the same storage
representation and the same memory space for all the computing units, unlike heterogeneous
environments, where different computing devices might have its own memory organization and
computing units [4].

3.1.1 NUMA

Although in homogeneous environments, there is a memory space for each device, if a com-
puting node has more than one device, each one has its own memory space causing a NUMA
pattern. In such scenario, each device when it needs to fetch data from a memory space of a
different device, it is slower than to fetch data from its own memory space.

In a shared memory paradigm, this is a problem which normally lowers the performance
when executing threads in a different device than the one where the data is allocated. All the
threads, on a cache miss, will need to fetch from a different memory space which belongs to a
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another device. Therefore, a key element in improving the performance on these environments
is dealing with memory affinity [5].

The appendix A.1, presents the experimental setup, including the node of the SeARCH clus-
ter at the University of Minho where all the performance tests were realized, with the multicore
structure shown in figure 6.

Figure 6.: Shows the node topology used in the experimental setup

Figure 6 shows that the node has two NUMA nodes, one for each of the two computing de-
vices, each one connected to external 32GB of RAM. As mentioned, if the main thread allocates
memory in the NUMA node P#0, all threads running in one of the cores of the second device
will have a penalized memory access time.
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3.1.2 Hardware Multithreading

Hardware support for multithreading is the ability to execute multiple threads in the same
core in a device [6]. This is done by sharing all the resources of the device, such as registers or
the ALU and even the caches of that core. It can lead to a more efficient usage of a CPU, if a
thread is stalled for some reason, another thread can continue its execution.

3.1.3 Multithreading

Intel implemented a Simultaneous Multithreading (SMT) approach in its x86 CPU devices,
trademarked as Hyperthreading, that allows a single processor core to interleave two threads of
execution more efficiently, since each core will be able to concurrently balance two threads of
execution on a given core. As shown in the node used by the experimental setup, in figure 6,
there are 2 Intel devices with 8 physical cores, each supporting 2 threads. This means that after
the 16th thread, a new thread will run in the same core as one of the previous threads, sharing all
the resources of that core. Software with a particular usage of resources can take advantage of
such technology, leading to an increase of performance. However, in cases where the workload
is more or less equal for each thread, this will have both threads sharing the same resources,
which may not improve the performance and, in some cases, may even drop the performance.

3.1.4 Vectorization

A particular subset of Single Instruction, Multiple Data (SIMD) is vectorization. This is the
ability to transform a scalar implementation, which executes an atomic operation with two scalar
operands, in a vector (series of adjacent values) operation. These SIMD operate on multiple data
in just one instruction, depending on the presented technology of the CPU. For example, Intel
Streaming SIMD Extensions (SSE) has 8 registers of 16 bytes known as XMM0-7, which allows
to store 4 floats in each register. Vectorizing in such a scenario, allows to implement an operation
with 4 floats at the same time [7].

In Advanced Vector Extensions (AVX), the width of the SIMD registers is increased from
16 bytes to 32 bytes, and renamed from XMM0–XMM7 to YMM0–YMM. This doubles the
number of operands to 8 (in the example above, using floats) or 4 doubles. More recently, the
AVX-512 was announced, supporting a 64 bytes extension to the AVX-256, meaning that the
number will double again soon (by the time this dissertation was written, it was announced to
late 2015 or early 2016 in the new Knights Landing Xeon Phi).
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Many compilers add support to automatic vectorization in loops and other regions, if the
code is written following a particular set of instructions. They can also generate a report with
the vectorized operations, and in the case of Intel C++ Compiler (ICC), also tips to improve the
efficiency by advising how to vectorize potential loops or regions. In the chapter 5.4.3, this will
be explained in greater detail as well as the implementation of SE to increase the performance
through vectorization.

3.2 H E T E RO G E N E O U S E N V I RO N M E N T

For decades, microprocessors based on a single CPU were used to execute software. As
new CPU models came to the market, the increase of transistors and clock rates led to a more
efficient software with low or no effort by the developers. Moore’s law [8] states that the number
of transistors on a chip will double every 18 to 24 months. However, at the start of the 2000s
we hit the power wall, but it is still possible to increase the number of transistors as Moore’s law
indicates. So, instead of increasing clock speeds, transistors were used to build larger caches,
pipelines, branch prediction, prefetching and other architecture enhancements. Not being able to
make a single CPU faster, another use for these transistors was to built more than one processing
units (CPU + cache) in the same chip/device, also known as cores. However, in the multicore
era, developers cannot expect their software to automatically increase the performance of their
existing codes on a newly designed chip and software needs to be optimized to run on multicore
devices.

CPUs are designed for latency. They have sophisticated control logic to allow instructions
from a single thread to be executed in parallel or even out of their order. Moreover, larger caches
are build to reduce the latency of memory accesses on more complex applications. A different
design approach can be seen on GPUs. GPUs are designed for throughput. During many years,
the video and game industry required a massive number of floating-point operations and needed
hardware to do so. Reducing the control logic and power of the GPU allows the designers to
have more computing units on a chip and thus increase the total execution throughput.

These conceptual differences on CPUs and GPUs should be clear. GPU should not be used
when each thread needs more control logic or has intensive memory accesses. Since GPUs have
a fast thread switching, thread idle time is covered by quick replace its execution by another.
CPU has a more sophisticated logic control but is limited to a more limited number of execution
units.

These environments, where both CPUs and GPUs coexist (and other device types such as
the Xeon Phi), are referenced to heterogeneous environments. The new challenges involves the
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design of efficient solutions to run on different architectures and take advantage of the best of
each one.

3.2.1 GPU and CUDA programming model

The use of GPUs to handle computation other than graphics related is named General Pur-
pose Graphics Processing Unit (GPGPU). A GPGPUs is used in HPC to increase the perfor-
mance of massive parallel applications. The main manufactures, NVIDIA and AMD, produces
GPUs and they can be programmed using either CUDA or OpenCL, however AMD GPUs can
only be programmed with OpenCL.

GPU devices have a very different architecture from CPUs so they require a different pro-
gramming approach. CUDA is an extension to the C programming language and has its own
programming model adequate to execute in GPUs [9]. At the time of this dissertation, there are
four generations of NVIDIA GPUs to be solely used as computing accelerators: Tesla, Fermi,
Kepler and most recently, Maxwell. They differ mostly in terms of capacities, numbers and com-
puting capability. This dissertation focus more on the Fermi and Kepler architectures so they
will be the most explored.

Figure 7.: Kepler architecture - full chip block diagram 1
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A modern GPU architecture is organized into an array of Streaming Multiprocessors (SMs)
or Extended Streaming Multiprocessors (SMXs) as shown in figure 7, the former was used by
Tesla and Fermi GPUs, while the latter in Kepler and Maxwell. The Kepler architecture has up
to 15 SMXs, however the number of SMXs can vary from one generation of CUDA GPUs to
another. Each SMX, has shown in figure 8, has a number of Streaming Processors (SPs) that
share control logic and an instruction cache [10].

Figure 8.: A SMX from the Kepler architecture 1

Kepler architecture also has a L2 cache shared by all SMXs and it is connected to memory
by 6 memory controllers. GPUs comes with a Graphic Double Data Rate (GDDR) Dynamic

1 http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
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Random Access Memory (DRAM), referred to as global memory. This GDDR DRAM differs
from the DRAM on the CPU board in that they hold graphics information or in the case of mas-
sive parallel applications for off-chip memory, thought with higher latency than typical systems
DRAM. This impact can be reduced by the study of locality in local memory and caches.

Each Kepler SMX contains 192 CUDA cores (single-precision floating-point compute ele-
ments) and 64 double-precision units as well as 32 Special Function Units (SFU), and 32 load/s-
tore units. With 16,384 threads, the GTX680 exceeds 1.5 teraflops in double precision [11].

A CUDA device is typically a GPU. They execute CUDA kernels on one or more devices
usually called by the host, typically a CPU. The functions or data declarations for both host and
device are clearly marked with special CUDA keywords. When a kernel function launched, it
is executed by a large number of threads on a device. All the threads that are generated by a
kernel launch are collectively called a grid. All threads in a grid will run the same kernel code as
according to a Single Program, Multiple Data (SPMD) approach. When all threads of a kernel
complete their execution, the corresponding grid terminates.

The execution of a kernel will generate several thread blocks of 32 threads called warps that
are scheduled and executed via the warp schedulers and dispatch to a SMX. Each SMX can
execute 4 warps, each warp executing two independent instruction per clock cycle.

3.2.2 Intel MIC

This dissertation work was performed in parallel with another dissertation work by Bruno
Araújo, which explores different points, one of them is the efficient use of the Intel MIC acceler-
ator. For further informations about the use of Intel MIC to improve the performance of the SE
code, we suggest to consult that dissertation [12].

3.3 S O F T WA R E

The main software environment which needs to be discussed in this context are compilers,
as well as tooling to perform profiling analysis and debugging. The main compilers explored,
as shown in the appendix A.1 regarding to the experimental setup, were the GNU Compiler
Collection (GCC) and the ICC. As shown throughout this dissertation, both compilers were used
without any difference regarding the performance of the SE. However, using the ICC with the
Intel Composer pack of utilities, might be useful to detect memory efficiency problems as well
as other tools like the Intel VTune Amplifier to inspect performance metrics in a program.

GProf and Valgrind are performance tools to profiling and debug the program. GProf collects
data from a program with instrumentation code added by compiling the program with -pg. This
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data can then be inspected by the developer or, to ease this analysis, convert the output to a visual
call graph by using tools like gprof2dot2. Valgrind lets the developer measure other performance
metric such as cache misses, CPI, loads/stores, etc. Usually this type of analysis, like it was done
in this dissertation, uses PAPI, to specify a standard API for accessing hardware performance
counters available on most modern microprocessors [13].

PAPI can be used to support relevant performance decisions and whether to take an effort
to optimize or even reimplement a part of the code. Valgrind is a non-obtrusive way to do this,
without inserting code, however the margin of error is higher. Valgrind also allows the developer
to check its memory performance and identify memory leaks or other memory related constraints
like dangling pointers, uninitialized variables, illegal frees, etc.

3.3.1 Shared Memory Environment

In a shared memory environment, two or more threads share a given region of memory
[14]. In these environments of execution, it is normal to have parts of that region that need
a synchronized access, e.g. the produces/consumer problem, where the producer writes data to
that region and the consumer can only read if a producer has finished writing. Often, semaphores
are used to synchronize shared memory access [15].

In such environments, race conditions can happen, causing a program to be non-deterministic,
that is, multiple executions producing different results, depending on the order of execution of
each thread.

Using threads to create workers is usually done with pthreads (in Unix systems) or OpenMP.
Pthreads are the Unix standard to spawn threads and deal with everything during their life cy-
cle [16]. OpenMP is an API for multi-platform shared memory parallel programming in C/C++
and the user only defines parallel regions and the API deals with all the threads life cycle [17].
Pthreads is a low-level API, which means that the user must implement everything, including
critical regions, work sharing, scheduling, etc. OpenMP, on the other hand, has all these imple-
mented with relative ease for the developer to include in the code.

OpenMP facilitates the implementation and it is often better to avoid synchronization prob-
lems due to implementations of such regions by hand. It has a built-in scheduler, allowing the
developer to balance work between threads and implement loop parallelism and parallel regions
and other features available through the API [18]. Another advantage is the use of pragmas to
indicate parallel work, which in compile-time the developer can activate or deactivate, making
the program parallel or sequential respectively. It can also use environment variables to define
OpenMP primitives like the number of threads or the scheduling mechanism to use as shown
ahead. This eases the implementation, but with a cost, since usually this comes with an higher

2 https://github.com/jrfonseca/gprof2dot
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overhead. However, it is debatable, since the API has a set of optimized mechanisms to deal
with several usual problems in parallel computing and the implementation of a developer might
not be as optimized.

3.3.2 Other Frameworks and Libraries

Although CUDA is the NVIDIA programming model for GPUs, other frameworks and li-
braries can be used to improve the performance of applications running in heterogeneous envi-
ronments. StarPU is a scheduling system of graphs of tasks which are assigned to heterogeneous
platforms devices, providing a high-level, unified execution model tightly coupled with an ex-
pressive data management library. This way, the developer creates tasks that can be schedule to
run in parallel, and StarPU assigns a device to run that task, using different scheduling algorithms
[19].

Thrust is a parallel algorithms library that provides a high-level interface enabling perfor-
mance portability between GPUs and multicore CPUs. It enables an abstraction between the
heterogeneous environments in terms of unified memory for instance, facilitating transfers be-
tween the different devices [20].

The Magma project is a dense linear algebra library, similar to LAPACK but for heteroge-
neous/hybrid architectures. The latest version also includes some operations on sparse matrices
[21]. Other libraries such as cuSP, cuBLAS and cuSPARSE also provides an interface to linear
algebra operations but only executing on GPUs from NVIDIA.

OpenACC is a programming standard for parallel computing developed by Cray, CAPS,
NVIDIA and PGI. Similar to OpenMP, developers can annotate C/C++ source codes using di-
rectives (pragmas) to identify the parallel regions. This can improve the performance of the
software without much effort and parallel code can be offloaded to target devices such as GPUs
[22].

S U M M A RY

In this chapter it was explored the computing background, all the hardware and software that
are used, specially in homogeneous computing environments as well as others that can be used
in the future development of the SE for heterogeneous environments.

Several profiling tools are used to better understand the actual behaviour and performance of
the SE, as well as hardware and software multithreading, NUMA environments and vectorization,
which need to be taking into account when studying how to improve the performance of software.
These will be analysed in greater detail in the next chapters, in the context of the SE.
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P RO F I L I N G T H E S U R FAC E E VO LV E R

Before any new and improved implementation of any software, specifically in this case of the

SE for liquid surfaces modelling, a profiling analysis should be performed to verify the current

implementation. This analysis must identify the critical regions and which operations are taking

longer, to decide whether to optimize or even reimplement those operations.

In this chapter, this analysis is made using call graphs of the main components of the software,

exploring both normal and Named Quantities modes. Scalability tests to measure the current

execution times, speedups and efficiency of this implementation are made using the two case

studies explored in the chapter 2. The analysis of the current data structure and locality is also

important to explore the impact that the maintenance functions have in the SE.

The SE, currently in the version 2.7, was implemented to study the modelling of liquid
surfaces shaped by various forces and constraints. Depending on the complexity of the prob-
lem being analysed, the computational load can be very high, thus having execution times not
consistent with the needs of researchers and industry professionals. Before the research and
implementation of new solutions to increase the performance of SE, both in homogeneous and
heterogeneous environments, it is necessary to evaluate the current computing performance and
analyse the current implementation of the software.

4.1 E X P E R I M E N TA L S E T U P

All tests were run on the SeARCH cluster at the University of Minho. The methodology
followed a k-best approach, where 6 runs were executed and measured and the best result was
taken, provided that the difference between that and the 3rd best did not exceed 5%.

The computer node used has the following characteristics:

• 2 x Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz

• #Cores: 8 (with Hyperthreading, where #Threads are 2)
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• L1 Cache (per core):

– 32 KB instruction cache

– 32 KB data cache

• L2 Cache (per core):

– 256KB cache

• L3 Cache (per device):

– 20MB cache (shared by all cores)

• Main Memory: 64GB

For other informations about the methodology, node characteristics and software used as
well as speedups and other calculations used in this chapter, see Appendix A.1.

4.2 C A L L G R A P H S

A call graph is a directed graph used to represent the relationships between functions of a
program as well as the impact in the overall performance. It is an important analysis where it
can be identified the functions that take longer to execute.

In the SE, the call graphs were created using both case studies allowing to identify potential
critical areas as well as the impact variation between smaller and larger problems.

In the smaller case study, a significant portion of the time is spent parsing the input from the
user and in graphical operations however, as shown ahead in the larger case study analysis, this
relative impact on the overall performance is reduced as problems get more complex, since the
computation performed per command takes longer.

The most significant and time consuming functions in the smaller case study, as shown in
figure 9, are:

• recalc - 33%: As mentioned, interpreting commands and graphical operations have a high
relative impact in less complex problems. The main function responsible for this impact is
intended to recalculate and display the new results. This functions may have parallelized
computations since the calculation of energies and pressures, can be performed by element
without dependencies.

• calc energy - 24%: One of the heaviest functions is responsible for obtaining the total en-
ergy of the configuration and it is the heaviest computation included in the recalc function.
This also, can be parallelized.
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Figure 9.: Main component of the call graph - smaller case study

• vertex average - 14%: Another heavy function is used to compute the average of a set of
vertices. This also, can be parallelized.

• calc all grads - 10%: Used to compute the forces and/or gradients from the restriction
configuration. This also, can include parallel computations.

• calc force - 7%: This function computes the resulting force on the triangulation vertices
due to surface tensions and constraints. This also, can be parallelized.

All the functions involving computations per element are qualified for parallel computing
since they can be done without any dependencies between elements. Other computing operations
involving all elements, such as obtaining the total energy of the configuration can be done with
parallel computing using a reduce pattern.
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Figure 10.: Impact of the data structure used to represent the finite elements - smaller case study

Some of the heavier functions are also those involved in data structure operations namely
to search edges, vertices, facets, etc. as shown in figure 10. These functions (get facet verts,
get facet body containing get next edge, get fe edge, among others) have an impact of 14% in
the overall performance with a tendency to grow with the complexity of the problems.

The data structure currently implemented, based on linked lists, must be reconsidered and it
gets worst with the implementation of parallel computing as analysed ahead.

As shown in figure 11, the larger case study has a more complex problem which makes it
longer to execute, specially for functions with more computational workload, increasing their
respective impact on the overall performance of SE.

• recalc - 62%: the recalc function, which has an impact of 33% on the overall performance
of the smaller case study, now has an impact of almost 62% on the larger case study due
to the complexity increase of the problem, specially in the total energy computation. In
the smaller case study, all data fits into the CPU caches, with a miss rate below 2% in the
L1 cache and less than 1% in the L2 cache, mainly due to compulsory misses. The larger

case study has a memory usage of almost 1GB and the non-contiguous memory accesses
increase the miss rate, which is extremely costly to the overall performance of SE.

• calc energy - 60%: This function also has an increase over the impact on the overall per-
formance.

• calc force - 1%: This function has less calls in this case study so it has its impact reduced.

• vertex average - 7%: This function computes the average of a set of vertices and also has
a significant impact on the overall performance.

The functions involved in data structure operations namely to search edges, vertices, facets,
etc. have its impact significantly penalized as shown in figure 12. As described, this is actually
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Figure 11.: Main component of the call graph - larger case study

where most misses occurs, penalizing the computation functions and the CPU gets stalled due to
the miss penalty to receive data from main memory.

This data structure as mentioned is based on linked lists and should be reconsidered, as it will
be used in a software with a strong parallel computing component, should be given a particular
attention to the partition of the data.
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Figure 12.: Impact of the data structure used to represent the finite elements - larger case study

4.3 C U R R E N T I M P L E M E N TAT I O N A N A LY S I S

The SE has implemented some parallel functions, in the normal and Named Quantities mode.
Named Quantities are the systematic scheme of calculating global quantities such as area, vol-
ume, and surface integrals that replaces the original ad hoc scheme in the SE. Next, it is studied
the scalability of the current implementation for the two case studies - smaller and larger, with
and without the use of Named Quantities - which is done with low-level parallelism implemen-
tations using POSIX threads.

All the tests were made using up to 14 threads. The SE has a problem which needs to be
solved, when running with more than 14 threads, SE returns a memory corruption error. So it
was not possible to include the results with more than 14 threads.
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4.3.1 Smaller case study

The smaller case study has too low-complexity to draw any significant conclusions how-
ever, as some of the problems have this kind of complexity, the analysis of such case studies is
important.

Without Named Quantities

In terms of execution times, the smaller case study is relatively fast and the sequential version
has an approximate execution time of 2.25 seconds. In fact, for problems of low-complexity,
that is, problems for which the surface dimension fits in the CPU cache, and for some number
of threads, the parallel implementation has higher execution times than the strictly sequential
version.

Figure 13.: Execution times and speedups using up to 14 threads without Named Quantities - smaller
case study

The thread creation overhead is not enough to compensate the use of parallelism in such
small case studies, thus not scaling. The speedups reflect the behaviour of the execution times
and Amdahl’s law states that the parallel version is limited by the sequential portion of the
software (see A.2).

Analysing the software behaviour, the currently implementation needs approximately 10%
of sequential code for parsing, initial settings, computations between each iteration, etc. So, the
maximum speedup attainable with a certain number of threads can be represented as shown in
figure 13 and the difference between the current speedups and the maximum attainable speedups
are significant. Also, these 10% of the sequential proportion are taken from the current imple-
mentation of the SE. Some portions may, with deeper analysis, be reduced thus increasing the
maximum attainable speedup.
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Figure 14.: Efficiency using up to 14 threads without Named Quantities - smaller case study

Another important metric to analyse is the efficiency. This metric estimates how well the
resources, the CPUs in this case, are being used. Since the efficiency directly depends on the
speedups, the results show in figure 14, as well as the speedups analysis, that the current mul-
tithreaded implementation is inefficient. Using 2 threads, each thread only works 52% of the
execution time and with 14 threads the efficiency drops to 7%.

With Named Quantities

Using Named Quantities to compute quantities such as the total energy of the configuration
adds a more schematic way of computing these quantities. However, to facilitate the way the
user can provide the computational method, the software has more workload, thus decreasing
the overall performance.

Figure 15.: Execution times and speedups using up to 14 threads with Named Quantities - smaller case
study
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Both smaller and larger case studies have worst execution times than in the normal mode as
show in figure 15. This trade-off of functionality and code usability against performance can be
observed in many scenarios of software development.

Figure 16.: Efficiency using up to 14 threads with Named Quantities - smaller case study

The smaller case study is also fast and the sequential version has an approximate execution
time of 3.65 seconds. Here, the surface dimension also fits in the CPU cache. Since it has
more workload per element than in the normal mode it scales a bit better, however without any
significant speedup. The number of elements is still too low to compensate the overhead creation
of the threads.

Observing the efficiency, which directly relates to the speedups, the results show in figure
16, that the multithreaded implementation is also inefficient. Using 2 threads, each thread only
works 60% of the execution time and with 14 threads the efficiency drops to 8%.

4.3.2 Larger case study

In the larger case study, since it has significantly more elements, the thread creation overhead
pays off in the normal mode. However in the Named Quantities mode, the amount of additional
workload to maintain the computational processes over each quantity, reduces the parallelism
capability and makes it almost sequential to compute over all elements. As mentioned, this trade-
off is noticeable here also, where to increase the functionality of the software and to facilitate
the interaction with the user, the overall performance is reduced.
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Without Named Quantities

In the larger case study, the use of parallel computation has better speedups than in the
smaller case study as shown in figure 17.

Figure 17.: Execution times and speedups using up to 14 threads without Named Quantities - larger case
study

The computation done by each thread regarding to the number of cache hits is higher, thus
reusing the data in the caches from the cores where each thread is running. The speedups shown
in figure 17 reflect the execution times and as mentioned, are far from the maximum attainable
speedups calculated according to Amdahl’s law with the same 10% of sequential portion of the
code. In fact, the maximum speedup is just below 3 with 14 threads.

Figure 18.: Efficiency using up to 14 threads without Named Quantities - larger case study
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The larger case study has a more efficient use of the processors using parallel computations
as shown in figure 18. Each thread is reusing data in the cache of the core where it is running
which makes it possible to increase the efficiency. However the efficiency is still very low with
58% using 2 threads and 20% using 14 threads.

With Named Quantities

The Named Quantities as shown in figure 19, have a worst performance than the normal
mode. In fact, these differences are noticeable not just in the sequential version but also in the
multithreaded version. The thread creation overhead is also prejudicing the performance because
it has more data associated per thread which causes this overhead to be higher than in the normal
mode.

Figure 19.: Execution times and speedups using up to 14 threads with Named Quantities - larger case
study

The speedups shown in figure 19 reflect the execution times and are far from the maximum
attainable speedups, calculated according to Amdahl’s law, with the same 10% of sequential
portion of the code. In fact, the additional workload prevents this case study from scale.

The efficiency as show in figure 20 also demonstrates that the use of Named Quantities is
worst than using the normal mode. It is also very low with 50% using 2 threads and 8% using 14
threads.

4.4 DATA S T RU C T U R E S A N D L O C A L I T Y

As seen in the call graphs, functions involved in data structure operations namely to search
edges, vertices, facets, etc. have a great impact on the overall performance. This impact is even
greater when running with parallel computations in a NUMA environment, as the one where
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Figure 20.: Efficiency using up to 14 threads with Named Quantities - larger case study

these tests were performed. In NUMA environments with more than one device, each device has
its own local memory which is faster to access than other non-local memory spaces belonging to
other devices. For instance, when running SE using 2 threads, if the second thread is allocated
to run in a different core from another device, memory accesses to the local memory of the first
thread are slower. The second thread will have to access a non-local memory that is in a different
device, thus the access will be penalized.

4.4.1 Current Data Structure

As mentioned, some of the heavier functions in SE are those that deal with the data structure.
Search for a particular element, insert/remove and other operations have an impact of almost
15% in the overall performance. It also reduces the performance of other computations since it
reduces memory locality and prevents vectorization.

Analysing the current implementation of SE as shown in figure 21, it is noted that the main
data structure that contributes to all computation processes (excluding auxiliary structures used
in parsing, GUI, etc.) is the web.

The web is the structure that supports the entire content of a surface. In the web, it is con-
tained the entire information of the surface, including the elements that build the surface as well
as the various boundaries and constraints, size, total area and total energy of the surface, among
other information. Inside the web, are contained the elements of the surface. These elements are
separated into five types: Vertex, Edge, Facet, FacetEdge and Body.

There is also a special type Element, used to represent any type of element, useful for com-
putations that iterate over all the elements (independent of their type). Also to learn information
from a particular element without even knowing its type, just by having a pointer to it.
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Figure 21.: Main data structure scheme of SE, representing the web and the different types of elements
and boundaries/constraints

These elements are inserted into the web through an array (with 5 positions) of Skeletons. A
Skeleton is a structure used to represent each group of elements, accessible from the web through
their respective position:

• Position 0 - Vertex

• Position 1 - Edge
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• Position 2 - Facet

• Position 3 - Body

• Position 4 - FacetEdge

Inside the skeleton of each type of elements, a flag is saved to identify its type and also a
linked list. This linked list has its start marked by a pointer named used, has a pointer named
free which points to a position where it can be inserted an element and also a pointer named last

which points to the last element. The linked list is used to save all the elements corresponding to
a specific type.

The elements that compose each of the respective lists may be one of five types as described.
Each element has its own set of attributes defined internally by SE as well as an extra set of
attributes that can be defined by the user.

• Vertex: A vertex is a point in space represented by its coordinates (these coordinates can
change as the surface evolves). In addition to a set of properties, common to other types
of elements, a vertex is connected to the overall surface through one of the edges and facet
that compose the vertex.

• Edge: An edge is a one-dimensional geometric element. It is connected to the global
structure through two vertices and a facetedge. It also has a set of attributes, common to
all types of elements as well as type specific attributes such as the density, length and the
color with which it is drawn in the GUI.

• Facet: A facet is a structure that represents a face in the shape of a triangle. In the input
datafile there is also an auxiliary element, a face, which allows the user to represent a face

with other geometric shapes, a rectangle for example. However, SE only recognizes trian-
gles so in the pre-processing phase, while creating the surface, all the faces are converted
to a set of facets. It is connected to the global structure through a facetedge and in addition
to attributes in common with other types of elements, a facet has its own attributes such as
density, area and also the front and back color with which it is drawn in the GUI.

• FacetEdge: A facetedge is an internal structure, defined by SE as a way to represent an
oriented pair between a facet and one of its edges, so that the orientation of the edge
remains consistent with the orientation of the facet.

• Body: A body is a set of elements that composes all the dimensions of a region in space. It
also has associated a set of attributes, common to other types of elements, as well as other
specific attributes such as the volume, density and pressure of a region.
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As noted in the data structure scheme shown in figure 21, some attributes are specific to each
element type and others are common to all the elements. In the structure of the SE, this separation
is made with two macros: BASIC STUFF and COMMON STUFF. The BASIC STUFF macro
(which is part of all types of elements) has a set of variables used to manage the linked list.
It contains the forechain and backchain variables, that are pointers to the next and previous
elements of the list. It also contains the inner id of the element, assigned to the element by SE as
well as a bitmap ATTR used for internal attributions.

The COMMON STUFF macro contains the BASIC STUFF set of variables and also the
original id of the element, that is defined by the user in the input datafile. It is necessary to save
the original id because the id assigned internally by the SE may not be the same as specified by
the user, however, the element can still be referenced by the user, in a computation process, by
its original id. All types of elements may have an original id so the COMMON STUFF macro
is included in their structure definition, except for the facetedge type, which is only defined
internally and it just has the internal id assigned by the SE.

In addition to the elements, the web also has a list of boundaries and constraints that can be
defined by the user in the input datafile. These boundaries and constraints can be associated to
each element (or a set of elements) and they are identified by a name and an expression. These
expressions (that can be a formula or other SE specific expression) act on the elements and are
represented as a structure of the expnode type after the parsing phase.

4.4.2 Linked lists

SE main data structure is based on linked lists. Linked lists can be resized dynamically
which is very useful in programs like SE, where mesh refinements produces more elements.
Also, linked lists allow different element types which is not possible in arrays. Other interesting
operations are the insertions at the head or tail of a list with a complexity of O(1). Typically,
programmers are attracted to linked lists to minimize the memory usage. Also, it is the easiest
dynamic data structure to write from scratch 1.

However, when performance is critical, linked lists have several disadvantages that lowers
the efficiency, not only in sequential but also in parallel computing and specially when executing
in heterogeneous environments:

• Out-of-order: the performance is increased with out-of-order execution of instructions.
However, accesses in linked lists are dependent as the address of the next element is only
computed after the current element has been loaded from memory.

1 http://www.futurechips.org/thoughts-for-researchers/quick-post-linked-lists.html
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• Hardware prefetching: modern microprocessors computations are faster than memory ac-
cesses so prefetching data from memory before is actually needed increases the overall
performance. However, it is not possible with linked data structures.

• Locality of reference: linked lists have the data elements (even the adjacent ones) spread
all over the memory. This means that every time the list is iterated, the next element will
often be loaded from memory.

• SIMD: data level parallelism can be exploited with SIMD operations. A single instruction
can operate on multiple elements thus increasing the performance. However elements in a
linked list have to be fetched one at a time.

• GPUs: in heterogeneous environments, specially using GPUs as computing accelerators,
memory address spaces are different. Thus, when sending a list over to the GPU, all point-
ers have to be converted from one memory space to the other. Having a lot of pointers
also reduces considerably the performance of the GPU execution, since the global memory
accesses are highly penalized.

4.4.3 Arrays

Arrays, unlike linked lists, are not resizable. To increase the size it is needed to reallocate
the array which may end up either in the same position or in a new position, moving the data
somewhere else. However, this impact can be amortized. If possible, starting with a predictable
size and double the current amount when the array is full could increase the performance of SE.
One of the advantages of linked lists, allowing different element types, are not needed on SE.
Parallel computing with arrays is also faster than with linked lists. The data partitioning without
contiguous elements in memory could create a load balancing problem since the elements are
spread in memory, each thread can take longer to iterate over its partitioned set of elements.

In heterogeneous environments, arrays are also more efficient. All pointers in a linked list
need to be converted from one memory space to the other. The amount of pointers in a linked list
makes it considerable expensive to send it to the GPU. Global memory accesses are also more
efficient with arrays, since the elements are contiguous in memory.

4.4.4 Concurrent Data Structures

Standard data structures, with concurrent operations applied to their elements need synchro-
nization primitives to make it thread safe. In parallel computing, this is one of the major bottle-
necks when global operations are applied. Until a few years ago, the concern was not so great as
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it is today, since sequential computing was the main paradigm, data structures have never been
designed to be inherently parallel1. Today, in the multicore era, data structures with a minimum
of synchronization possible are needed. Other data structures like octrees or graphs can induce
a partitioning in which can be identified potential critical regions in mesh refinement and other
operations of the FEM.

S U M M A RY

In this chapter it was analysed the performance of the current SE implementation. Observing
the call graphs, one of the main critical areas are the data structure operations. These not only
reduce the performance of the sequential implementation, as also reduce the performance of
the current parallel implementation and any future implementation, specially in heterogeneous
environments. The main data structure of SE, current implemented with a linked list of finite
elements, it is not the best when computing performance is taken into account, as shown by the
speedups and efficiency analysis of the current implementation. Another important computation
is the total energy computation of the configuration. The function - calc energy - computes
the energy of the surface and has an impact close to 60% on the overall performance of the
larger case study. Thus, reducing the execution time of this function will increase the overall
performance of SE.

1 http://www.drdobbs.com/architecture-and-design/parallel-data-structures/231601211

52

http://www.drdobbs.com/architecture-and-design/parallel-data-structures/231601211


5

I M P ROV I N G T H E P E R F O R M A N C E O F T H E S U R FAC E E VO LV E R

Previous chapters introduced the problem of the liquid surfaces modelling and described the

software used by Bosch as well as two case studies. Being the main goal of this dissertation

the performance improvement of the SE, the next step was to research the necessary parallel

computing background and the profiling of the software to better understand the bottleneck per-

formancing critical regions. The most computational heavy function, the calc energy is used to

compute the total energy of the configuration and it has, in the larger case study, a workload of

60%. This chapter presents an alternative to the web data structure in SE and other techniques

to improve the performance of this function, which will improve the overall efficiency of the SE.

5.1 T OTA L E N E R G Y C O M P U TAT I O N O F T H E S U R F AC E E VO LV E R

The function that computes the total energy of the configuration, the calc energy function,
has a workload of 60% of the total execution time in the larger case study, as observed in figure
12. This function obtains the total energy configuration and has several computations over all
facets, edges and bodies.

The calc energy function starts with a series of initializations and verifications, followed by
a computing process over three types of elements:

• For all Facets: a computing process that computes the energy of each facet in the configu-
ration. It is a for loop that iterates over all the elements of the facet type.

• For all Edges: Similar to the previous, this computing process also iterates over all el-
ements of the type edge, computing the energy for each one. However, this part of the
computing process has a constraint evaluation, which is done by adding a critical region,
processing each edge at a time.

• For all Bodies: After the energy for each element that contributes to the total energy con-
figuration is computed, this final computing process computes the energy of the body and
reduces with a sum of all bodies, thus obtaining the final value.
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Figure 22.: Main flow of the calc energy function with computations over all the elements of a specific
type

These For all ... computing processes, iterate over all elements, performing a computation
on each of the elements: they are parallelizable. However, in some cases, synchronization and
communication between different elements are required which serializes that part of the process
and reduces the efficiency of a parallel implementation.

The calc energy function, has 3 main iterations over 3 element types with an impact of 60%
for the larger case study, mainly due to an intensive memory access, mostly in the 3 iterations
over all elements in a linked list as well as a lack of vectorized code and a parallel implementa-
tion.

To improve the performance of SE through the optimization of one of the heaviest computa-
tions, the calc energy function, we propose an alternative data structure, that can take advantage
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of vector operations on commodity CPU devices (such as x86 architecture), with improved mem-
ory locality, as well as a parallel implementation of this function.

5.2 A N A LT E R N AT I V E DATA S T RU C T U R E

The proposal of an alternative data structure to SE, focusing on performance, aims to replace
the existing data structure to store the different types of elements, which is currently implemented
with linked lists, with the following goals:

• Contiguous memory allocation: as observed, one of the major bottlenecks in the SE perfor-
mance involves the maintenance of linked lists (functions like get facet verts or get fe edge

are responsible for more than 20% of the overall performance). These functions have in-
tensive searches of elements, which are not stored in contiguous memory addresses, thus
increasing the number of memory accesses resulting in a high number of cache misses. The
current data structure implementation is not taking advantage of spatial locality. This sug-
gests that this new data structure must store the elements (facets, vertices, edges, facetedges

and bodies) contiguously in the memory.

• Vectorization: one of the potential techniques for increasing the performance is to take ad-
vantage of vectorization capability of current commodity processors (SSE, AVX) through
SIMD computations. To enable the vectorization capability, the elements of the array must
be contiguously accessed (or with a fixed offset). That is, a loop must maintain the same
offset when iterating over the elements necessary for the computation. With linked lists,
this is not possible due to the dynamic computation of the address for each element.

• Complexity: accessing a particular element of a linked list has a complexity of O(N) in
the worst case. That is, searching for an element, in the worst case, forces to iterate over
all the elements of the list and, in the best case, a complexity of O(1), having an average
complexity of O(N/2). A data structure with direct mapping between the id of the element
and its address always has a search complexity of O(1).

• Parallelism: A linked list has several problems, as explained in the last chapter. Thus, a new
data structure must also be optimized to execute in a parallel implementation, not only in a
shared memory paradigm but also in heterogeneous environments such as those presented
in chapter 3 with computing accelerators like GPUs and the Intel Xeon Phi, where memory
accesses and data communication are even more penalized.

55



5.2. AN ALTERNATIVE DATA STRUCTURE

5.2.1 Implementation

The proposal for the new data structure is based on arrays with an array of auxiliary indices.
This way the mentioned points are implemented:

• Contiguous space: arrays store their elements in contiguous memory spaces.

• Vectorization: since the spaces are contiguous, the offset will also be constant in the
operands, making it possible to vectorize some of the computing processes over all the
elements.

• Complexity: an array of elements have their id mapped directly to the position where they
are stored in the array. However, SE might not actually remove an element from the linked
list and instead mark it as deleted. That way, if an element needs to be reused after its
removal, it is not created again, just unmarked as deleted. As one of the objectives is to
enable vectorization, the array cannot have elements that are with the deleted tag because a
verification will break the vectorized computation. Since it is not possible before the loop
execution to verify if an element is marked as deleted, in this data structure the element
must be removed from the array, making the vectorization to be possible. However, simply
remove the element will leave that position as empty, which also prevents vectorization. To
correct this, it was added an index array that maps each id to the element index in the array,
maintaining a complexity of O(1) using the index array to find an element, and a second
array, the actual elements array which is used in the loop computations throughout the SE.

• Parallelism: arrays are excellent structures for adding parallelism, however, problems of
inefficiency may arise due to false sharing which can be solved by padding to a line of
cache (typically 64 bytes).

This new data structure adds these new maintenance operations:

• init: initializes a new structure (allocates space for an initial number of elements)

• reset (l): the structure l is reset: (releases the used space and initializes a new structure)

• set (key, value): adds or updates an element value, accessible through a key, which in this
case is always the id of the element.

• unset (key): removes an element via its key (its id in the SE).

This data structure is built not just to store elements in the SE, but also to store other types
of elements.

56



5.2. AN ALTERNATIVE DATA STRUCTURE

5.2.2 Maintenance

In the SE project, the structures are defined in the respective ds.h and ds.c header file. They
are then used to store all the facets, vertices, edges and bodies in the storage.c file. The headers
ds.h are included in the SE header file include.h which in turn is included in all files of the
project, making available to use all the functions of the new data structure (init, reset, set, unset)
throughout the project.

5.2.3 Usage

To exemplify this process, the structure can be demonstrated storing integer values for better
understanding:

Figure 23.: Data structure usage example, using integer values as elements

The array, using the function init to initialize, has 3 set operations that define the elements
of the data structure. In this example, the elements 12, 14 and 13 were defined with the keys
2, 4 and 0 respectively as show in the figure 23. As the elements with keys 1 and 3 have not
been defined, these are marked with -1 in the index array. The elements that have been defined
have their indices in the index array pointing to the respective position where it is stored in the
elements array. For example, the element with the key 2 is obviously in the index array at the
position 2, which has the value 0 stored, corresponding to the position in the elements array
where the value is, in this case it has stored the value 12 in that position.
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The reverse operation, unset, only receives the key to remove. Note that to save space, the
index array is cut to the right until it finds an element different from the value -1.

To enable the usage in the calc energy function and in other functions, all the functions and
macros that creates or removes an element (defined in storage.h and storage.c) as well as all
the functions and macros that updates any attribute of an existent element (defined in skeleton.h,
skeleton.c and inline.h) needs to be consistent with the old data structure. These changes add
an overhead to the overall execution time to support both data structures. As this data structure
is a proposal to replace the current data structure to store the elements, it is needed to maintain
both, since this proposal is only being used in the calc energy function and in the calc quants

function, used to compute in the Named Quantities mode.

5.3 PA R A L L E L I M P L E M E N TAT I O N I N S H A R E D M E M O RY

As mentioned, one of the heaviest computational functions is the calc energy. This func-
tion was chosen to measure the improvement of the previously suggested data structure as well
as other high performance computing techniques such as vectorization, improving the memory
locality and parallel computing. Thus, if these suggestions improve this function and therefore
improve the overall performance of SE, they can also be adapted to the entire software. Not
just other computational heavy functions (pressure, forces and other computations) but also in
the commands/datafile parsing and even the graphical user interface. The implementation of the
calc energy parallel version with OpenMP allows to maintain the data organization of the web

as well as easily specifying if the software should be compiled sequential (without any OpenMP
overhead) or parallel in compile-time, just by including the -openmp directive to the compiler.

5.3.1 Data partitioning

As observed in the chapter 5.1, the calc energy function has 3 main parallelizable computa-
tions:

• For all Facets: This is the most computational heavy part of the function. It is completely
parallelizable without any dependencies. It is a reduction loop, which computes the total
energy of a set of facets, by computing the energy of each individual facet, finishing by
adding each one.

• For all Edges: Similar to the previous, it is also a parallelizable loop, however, for each
edge it is evaluated all the constraints of the edge. This evaluation is done with a critical
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region, which means that only one edge is evaluated at a time, thus decreasing the perfor-
mance of the parallel computation.

• For all Bodies: After the energy computation of each body, the total energy it is computed
by adding the energy of each body. However, it is difficult to parallelize this loop due to the
low number of bodies that normally compose a surface. Even the larger case study, only
has 176 bodies, which is low to pay-off the thread creation overhead.

Thus, these For all ... loops can be implemented in parallel by assigning each thread a chunk
of the respective data set involved in the computation. In the For all Facets loop, for instance,
each thread is assigned with a subset of facets, each thread computing the energy of each facet
and then adding in a reduce pattern the total energy of all the facets. The same methodology is
also used for both For all Edges and For all Bodies loops, assigning to each thread a subset of
edges and bodies respectively.

5.3.2 False Sharing

After the parallel implementation with OpenMP, the results observed showed almost no
speedups. After an analysis of the miss rate inside the parallel region, it was noticed that the
miss rate increased almost 30% with a tendency to grow as the number of threads increase. The
resulting high cache miss rate is a cause of concern, since it can significantly limit the perfor-
mance of multiprocessors causing a false sharing scenario [23].

Since in Symmetric Multiprocessor (SMP) systems, each processor has a local cache, the
memory system must guarantee cache coherence. False sharing occurs when threads on different
processors modify variables that reside on the same cache line. This invalidates the cache line
and forces an update, which drops the overall performance [24].

As suggested by the Intel Guide for Developing Multithreaded Applications [25], a padding
was added to the elements data structures, to complement the size of a typical cache line which
is 64 bytes. This avoids the need to update a value in the cache that might be used by an-
other thread as shown in listing 5. Besides the manual padding of the structure, this can also
be ensured by specifying the alignment with compiler directives as also shown in listing 5.
It not just prevents a false sharing scenario but it is also helpful when dealing with vector-
ization as shown ahead. Different compilers has different ways to specify this directives. In
the GNU compiler, it can be specified before the structure definition with an aligned attribute:
__attribute__ ((aligned(x))). In the Intel compiler it is specified at the end of the
structure definition with a declspec align - __declspec(align(x)), where in both cases, x
is the alignment size, in this case a cache line which is typically 64 bytes.
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Figure 24.: Falsh sharing example where threads 0 and 1 require variables that are adjacent in memory
and reside on the same cache line. Even though the threads modify different variables, the

cache line is invalidated, forcing a memory update to maintain coherency.

#define CACHE_LINE 64

#ifdef __INTEL_COMPILER
#define _IF_INTEL_ALIGN(x) __declspec(align(x))
#define _IF_GNU_ALIGN(x)
#else
#ifdef __GNUC__
#define _IF_INTEL_ALIGN(x)
#define _IF_GNU_ALIGN(x) __attribute__ ((aligned(x)))
#endif
#endif

struct _IF_INTEL_ALIGN(CACHE_LINE) facet
{

COMMON_STUFF /* 32 bytes */
REAL density; /* 8 bytes */
REAL area; /* 8 bytes */
facetedge_id fe_id; /* 4 bytes */
short color; /* 2 bytes */
short backcolor; /* 2 bytes */

int padding[2]; /* 8 bytes */

} _IF_GNU_ALIGN(CACHE_LINE);

Listing 5: Facet structure padded to a cache line size of 64 bytes. The structure is also aligned to 64 bytes
with a compiler directive to both GNU and Intel compilers
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5.3.3 Parallelism overhead

Performing a computation in parallel, always inserts some overhead to the software. In a
shared memory paradigm, using OpenMP in this case, both fixed startup and per-thread overhead
are added to the software. In some cases, these overheads are high enough to make it worthless to
parallelize some determined region [26]. Some of the factors that increase the OpenMP overhead
are:

• OpenMP startup overhead: when the software starts, there is an additional overhead to
initialize the library. It is just noticeable at the software startup and it is not significant for
most software.

• Thread startup overhead: the overhead to create the worker threads. Since OpenMP reuses
a pool of threads, it is also a one-time cost;

• Per-thread overhead: in every parallel region, for instance in a parallel for, there is an
overhead to assign to each worker thread a chunk of data to compute. This overhead is
noticeable in every start of a parallel region of the software;

• Lock management overhead: the overhead spent to manage blocks on critical regions. In
the For all Edges loop of the SE, each edge must validate a set of constraints which must
be done an edge at a time, not just preventing parallelism but also adding a synchronization
overhead.

In the SE, the smaller case study starts with just 10K elements which makes the overhead to
be more significant than in the larger case study which starts with 500K elements.

5.4 P E R F O R M A N C E O P T I M I Z AT I O N D I S C U S S I O N

Subsection below presents the results of the new shared memory implementation with OpenMP,
both in the normal and Named Quantities modes as well as using both the smaller and larger

case studies. These results also include the alternative data structure described above and other
optimizations such as scheduling, vectorization and software prefetching, as described ahead.

5.4.1 Results

Smaller case study

In the smaller case study, as mentioned above, the calc energy function has a workload of
24% and it has 3 main parallel regions:
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• For all Facets: a computing process that computes the energy of each facet in the configu-
ration. This region has a workload of 60% of the total energy computation.

• For all Edges: Similar to the previous, this computing process iterates over all the edges.
However, this part of the computing process has a constraint evaluation, which is done by
adding a critical region, processing each edge almost one at a time and it has a workload
of 45%.

• For all Bodies: This final computing process computes the energy of each body and reduces
with a sum of all energies, thus obtaining the final value. However, since the smaller

case study only has a single body, parallelization only causes overhead of the new thread
creation. In fact, it was decided not to parallelize regions with less then approximately
1000 bodies since the overhead does not pay-off. This computation and the final updating
region have a workload of 5%.

Besides the calc energy function, it was also parallelized the vertex average function (with
a 14% workload in the smaller case study) and the calc force (with a 7% workload also in the
smaller case study) [12].

W I T H O U T N A M E D Q UA N T I T I E S

The first analysis uses the normal mode to compute the total energy of the configuration. As
observed, the For all Facets is the most significant region of the computation as well as the best
candidate to parallelize due to not having a need for synchronization, unlike the For all Edges

region.

Figure 25.: Comparing the execution times of the 3 ”For All ...” loops of the total energy computation for
the original and the new shared memory implementation with OpenMP
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In the figure 25 it is shown the results of the new parallel implementation with OpenMP, as
well as other performance improvements:

• An alternative data structure used to compute the total energy of the configuration as de-
scribed above;

• A vectorization, false sharing, scheduling and software prefetching improvement by modi-
fying some computations and with the help of the new memory organization in the alterna-
tive data structure as described ahead;

Figure 26.: Speedups of the facets energy computation, the heavier part of the total energy computation

These results show that the For all Facets is in fact more suitable of parallelizing due to not
having any type of synchronization, not like the For all Edges that is almost sequential. The For

all Bodies does not have any type of parallelism. The speedups of the For all Facets region, in
the figure 26, shows an improvement over the original version.

It also shows that the hardware support for multithreading does not help in these types of
problems. Since each thread uses the same units, which are shared, they do not benefit of this
technology as it can be observed in the figures 25, 26 and 27. As demonstrated in the experi-
mental setup, the node has 2 devices, each with 8 cores plus Hyperthreading. So after the 16th
thread, the results show no improvement and in some cases are even worst.

Figure 27 shows the new execution times of the SE with the new performance optimizations
as mentioned. As shown, the new data structure, as well as the more efficient parallel implemen-
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Figure 27.: Comparing the total execution times of the energy computation (at the left) and the total
execution time of the SE (at the right) for the original and the new shared memory

implementation with OpenMP

tation with OpenMP and other improvements, reduce the execution times more than 2x in the
smaller case study of the SE.

Figure 28.: Speedups and efficiency of the total energy computation (at the left) and of the SE with the
energy computation parallelized (at the right)

The speedups shown in figure 28 have the Amdahl’s law stating the maximum attainable
speedups by just parallelizing the regions that were mentioned (calc energy, calc force and ver-

tex average). This way it is demonstrated the improvement with just these 3 functions and not
all the parallelizable regions like in the chapter 4.3. The Amdahl’s law is calculated as shown in
the appendix A.2 with a B=0.55 (sequential weight of the algorithm). This value was obtained
by subtracting the weight of the 3 parallelized regions (calc energy=24%, calc force=7% and
vertex average=14% which is 0.45) to 1. This shows that although the performance was im-
proved with these optimizations, it can still be better with an even deeper analysis of the current
algorithm, specially in the energy computation for all the edges, in order to remove the critical
region of the code that is lowering the performance of the total energy computation in the SE.
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W I T H N A M E D Q UA N T I T I E S

The Named Quantities mode uses a set of methods as a way of computing a scalar value
from some particular type of element (vertex, edge, facet, body). However, this more schematic
mode of computing these values adds an extra work that lowers the performance but increases
the ease of adding new methods to the SE.

Figure 29.: Comparing the total execution times of the energy computation (at the left) and the total
execution time of the SE (at the right) for the original and the new shared memory

implementation with OpenMP with the Named Quantities method

The new implementation, with all the optimizations mentioned in the previous section, as
shown in figure 29, improves the total energy computation. In fact, the new SE has a perfor-
mance more than 2x efficient than the original implementation but is just by optimizing the data
structure since the additional overhead to parallelize does not pay-off using Named Quantities

with the smaller case study.

Figure 30.: Speedups and efficiency of the total energy computation (at the left) and of the SE with the
energy computation parallelized (at the right) with Named Quantities
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In the figure 30, the speedups and efficiency are calculated in the same way as in the normal
mode and show that it does not scale.

Larger case study

In the larger case study, as mentioned above, the workload of the calc energy function is
60% of the total SE execution time and each parallel region has a workload of:

• For all Facets: This region has a workload of 80% of the total energy computation;

• For all Edges: This region has a workload of 18% of the total energy computation, however
this is almost sequential due to the critical region;

• For all Bodies: The larger case study only has 176 bodies which still does not feasible the
parallelization overhead for this region. It has a workload of 2%.

W I T H O U T N A M E D Q UA N T I T I E S

The first analysis, like in the smaller case study, uses the normal mode to compute the total
energy of the configuration. In this case study, the For all Facets is also the most significant part
of the computation as well as the best candidate to parallelize.

Figure 31.: Comparing the execution times of the 3 ”For All ...” loops of the total energy computation for
the original and the new shared memory implementation with OpenMP

The results in figure 31 also shows, as in the smaller case study, that the For all Edges

region suffers from the critical region which prevents it to scale. Also, for the For all Bodies the
parallelization is not being used since it only has 176 bodies.
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However, the For all Facets is a region without any synchronization and with the false shar-
ing problem solved by the alternative data structure as described in the chapter 5.3.2, this region
shows significant speedups in figure 32.

Figure 32.: Speedups of the facets energy computation, the heavier part of the total energy computation

It also shows, as in the smaller case study, that the hardware support for multithreading does
not help in these types of problems. Also, after the 16th thread, the results show almost no
improvement and in some cases are even worst.

Figure 33.: Comparing the total execution times of the energy computation (at the left) and the total
execution time of the SE (at the right) for the original and the new shared memory

implementation with OpenMP
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Figure 33 shows the new execution times of the SE with the new performance optimizations
as mentioned. The improvement is not as significant as the smaller case study because one
of the main problems with the original parallel implementation is the thread creation overhead
for smaller problems. This overhead for larger problems is reduced, however it still shows a
significant improvement over the original implementation.

Figure 34.: Speedups and efficiency of the total energy computation (at the left) and of the SE with the
energy computation parallelized (at the right)

The speedups shown in figure 34 also have the Amdahl’s law stating the maximum attain-
able speedups by just parallelizing the regions that were mentioned (calc energy, calc force and
vertex average). The Amdahl’s law is calculated as shown in the appendix A.2 with a B=0.32
(sequential weight of the algorithm). This value was obtained by subtracting the weight of the
3 parallelized regions (calc energy=60%, calc force=1% and vertex average=7% which is 0.68)
to 1. Due to having more workload per thread, the impact overhead is significantly reduced when
comparing to the smaller case study, approaching more the Amdahl’s curve, specially for 14 and
16 threads. This also shows that the For all Edges is preventing a higher performance of the
energy computation, but not as much as in the smaller case study where the relative workload is
higher.

W I T H N A M E D Q UA N T I T I E S

The Named Quantities mode uses a set of methods as observed ahead. This mode does not
have the overhead as the normal mode so the improvement observed is only due to the alternative
data structure and not the new shared memory implementation.

This shows, in figure 35, an improvement on the total energy computation but is not signifi-
cant on the overall performance of the SE.
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Figure 35.: Comparing the total execution times of the energy computation (at the left) and the total
execution time of the SE (at the right) for the original and the new shared memory

implementation with OpenMP with the Named Quantities method

Figure 36.: Speedups and efficiency of the total energy computation (at the left) and of the SE with the
energy computation parallelized (at the right) with Named Quantities

In the figure 36, the speedups and efficiency are calculated in the same way as in the normal
mode and shows that it does not scale.

It is important to note that the Named Quantities mode was not much explored since it was
not part of the initial objectives. One of the advantages of using the Named Quantities is the
ability to compute more than one quantity in parallel (for instance, computing parallel energies
and forces), which was not necessary in these case studies. The Named Quantities mode can be
useful and even scale more than the normal mode in such cases and also adds an easier way to
define new methods for calculating quantities.

5.4.2 Scheduling

A scheduler is a mechanism that assigns a subset of the workload to the parallel workers. In
OpenMP, specially in parallel loops, a loop scheduler assigns a specific subset of the iterations
to different threads. The default scheduling mechanism assumes an equal load balance which
is frequently noticed in some problems [27]. That is, the same static amount of iterations is
assigned to each thread.
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However, in some cases this causes a load imbalance. Some of the threads are assigned with
more work than other threads and the algorithm does not process until the last thread finishes
while the other threads are doing nothing as they finished earlier.

Since the proposal of OpenMP [28], it was suggested to include in the default implementa-
tion of OpenMP different types of schedulers to deal with these balancing problems. Currently,
there are 5 different loop scheduling types in OpenMP [29]:

• Static: This type of scheduler divides the loop into chunks of equal size or as equal as
possible in the case where the number of iterations is not divisible by the number of threads.
The chunk size can be defined and by default is the loop count divided by the number of
threads. If set to 1, it interleaves the iterations by the amount of threads;

• Dynamic: The dynamic scheduler uses an internal work queue to give a chunk of the loop
iterations to each thread. However, when a thread is finished it receives more work from
the top of the work queue. By default the chunk size is 1;

• Guided: The guided scheduler is similar to the dynamic scheduler but the chunk size starts
off large and decreases to better handle imbalance between the iterations;

• Auto: This special type of scheduler delegates the scheduling decisions to the compiler;

• Runtime: Runtime is not a kind of scheduler. It is a way of define what type of scheduler
to use just by defining an environment variable named OMP SCHEDULE. It is useful for
problems where a particular dataset or number of threads change the performance with a
specific scheduler so the user can decide without recompiling the code, which one to use
just by defining the variable;

Using a non-static scheduler adds more overhead to the OpenMP implementation of a soft-
ware. Dealing with schedulers increases the workload to manage the work queues and assigning
data to each thread so, in some cases, even with a small load imbalance problem, assigning a
non-static scheduler could not increase the performance of the software.

To measure the OpenMP different types of scheduling influence in the SE, it was used the
runtime variable OMP SCHEDULE as mentioned above, to assign a different scheduler and mea-
sure its performance in the function calc energy to compute the total energy of the configuration.

The figure 37 shows that up to 16th threads there are no significant differences for the smaller

case study. In fact, the work to compute each subset the For all ... loop is not much different
so there are not a real load balancing problem. After the 16th thread, the behaviour is different
due to Hyperthreading, where a thread might be preempted, and with a smaller case study this
affects significantly the performance of each scheduler.
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Figure 37.: Comparing the performance of the different types of schedulers in the calc energy function
with the smaller case study (at the left) and the larger case study (at the right)

In the larger case study, due to the increasing number of computations, each thread have
more work than another, depending on the number of elements that each facet, edge or body,
in the subset, is connected. In the smaller case study, since this number is not high, the load
imbalance is not noted, however in the larger case study it can be observed that the static has a
worst performance, not with 1 thread where the overhead is smaller or even with 2 threads where
the subsets are almost equal, but thereafter where each subset is smaller and the imbalance is
more noticeable.

Figure 38.: Comparing the performance of the different types of schedulers in the calc energy function
with the smaller case study (at the left) and the larger case study (at the right) with Named

Quantities

71



5.4. PERFORMANCE OPTIMIZATION DISCUSSION

In the Named Quantities mode it is noted almost the same, with a smaller difference in the
non-static scheduling types as shown in figure 38. Unlike the normal mode, where for some
number of threads, there is a better performance for a particular scheduler.

5.4.3 Vectorization

As detailed in the chapter 5.2 referring to the alternative data structure as well as in the
false sharing chapter 5.3.2, the total energy computation was optimized in order to increase the
number of SIMD computations. The alternative data structure, now based on arrays has its
elements contiguously stored in memory, and with an alignment as defined in the chapter 5.3.2
makes it possible to automatically vectorize some of the loops in the total energy computation.

Figure 39.: Vectorization report generated by the Intel C Compiler with a level 5 vectorization report

The Intel C Compiler allows to generate a report based on a level of detail with a set of
informations of which loops were vectorized and a justification as well as tips on loops that were
not vectorized [7].

As shown in figure 39, one of the loops that was not vectorized, is now vectorized as well
as other loops that benefit from the alternative data structure and data alignment. In the vector-
ization report is described the variables involved in the operation, x and x2 in this case, showing
that both have aligned access. Another relevant information is the scalar and vector costs and the
resulting estimated potential speedup that in this case is 6.230.

To measure the vectorization impact, it was disabled the automatic vectorization just for
the calc energy function and measured the performance of that function that computes the total
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Figure 40.: Comparing the vectorization performance in the calc energy function with the smaller case
study (at the left) and the larger case study (at the right)

energy of the configuration as shown in figure 40. This shows that in the normal mode, removing
the vectorization from the function, drops the performance in more than 30% in some cases.

Figure 41.: Comparing the vectorization performance in the calc energy function with the smaller case
study (at the left) and the larger case study (at the right) with Named Quantities

Also, for the Named Quantities mode shown in figure 41, the difference tends to be even
higher as there are more loops in this mode.

5.4.4 Software Prefetching

The alternative data structure, as the results show, increases the performance of computing
the total energy of the configuration. By having contiguous data allocation, with a fixed stride,
enables the ability to vectorize loops but it also has influence on the data locality. However, this
alternative data structure just stores the elements of the surface and all the other information still
uses the linked list and other data structures of the SE. Some of this information is still needed
inside the calc energy function and it is lowering the performance of this function. One of the
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explored techniques to reduce the impact of these data accesses to the linked list among others,
is to explicitly load the elements to the cache through software prefetching.

An array, unlike a linked list and depending on the memory access pattern might have the
element used in the following iteration using an hardware prefetch capability. An hardware
prefetcher operates transparently, without developer intervention and it is triggered when succes-
sive cache misses occur in the last-level cache and a stride in the access pattern is detected, such
as in the case of loop iterations that access array elements [30]. This does not mean that the
developer does not have to do anything, it is still needed to have knowledge of how this can be
optimize, through cache friendly code.

Software prefetching and locality optimizations are techniques for overcoming the speed gap
between processor and memory. However, this relies on the developer or the compiler to insert
explicit prefetch instructions into the code for memory references that are likely to result in a
cache miss. At runtime, the inserted prefetch instruction will bring the data into the cache of
the processor, thus overlapping the memory access cost when the element is needed, hiding the
memory access latency [31].

Explicitly prefetching has several benefits [32]:

• Irregular memory accesses: Data elements can be typically prefetch even in various kinds
of irregular data structures by inserting appropriate prefetch intrinsics;

• Cache locality hint: Hardware prefetchers place the data in the lowest level cache of the
requesting core, whereas by software prefetching data, this can be placed directly into the
L1 cache;

• Hide latency: Asynchronously prefetching data before it is actually needed by inserting a
prefetch declaration hides the memory accesses latency to load the data element;

There is also some negative impacts in software prefetching [32]:

• Increased instruction count: Unlike hardware prefetching, software prefetching inserts a
set of instructions to load the elements from the memory;

• Code structure change: Specially in a loop, the position in the code where a load might
occur has an impact on the performance, so there might be additional computations to
measure the best place to prefetch the data element;

Detecting the right place to prefetch data is crucial to increase the performance, otherwise
it can even decrease the performance by having an unnecessary memory load that is replacing
data in the cache. If the prefetch occurs too early in the code it might be replacing other useful
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data (cache pollution) or be replaced before being used. If it occurs too late, it might not hide
the processor stall [31].

In the GCC, software prefetch can be achived by adding a prefetch built-in function as shown
in listing 6:

/* Prefetching in GCC */

for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];

/* ... */

__builtin_prefetch (&a[i+j], 1, 1);

__builtin_prefetch (&b[i+j], 0, 1);

/* ... */

}

Listing 6: Built-in prefetch function from GCC loop example

The function receives 3 arguments1: the address of the memory to prefetch and two optional
arguments, rw and locality. The rw argument is a compile-time constant one or zero; one means
that the prefetch is preparing for a write to the memory address and zero, the default, means that
the prefetch is preparing for a read. The locality must be also a compile-time constant integer
between 0 and 3. A value of 0 means that the data element has no temporal locality, that is, it
needs not to be in the cache after the access. A value of 3 means that it has a high degree of
temporal locality and should be kept in all the levels of cache as long as possible.

In the SE it was included software prefetch to load the elements from the linked list that are
still needed in the total energy computation done at the calc energy function.

Figure 42 shows the results using software prefetch to load the elements in the normal mode.
It can be observed that for the smaller case study there are no significant improvement and for 10
threads there is even a lost of performance. This case study, due to its size, fits in the L3 cache,
so prefetching only causes overhead. However, for the larger case study, it is noted a small
but significant improvement using software prefetching. One of the main bottlenecks are in the
elements access inside the linked list. Hiding the memory latency by prefetching the elements
as soon as the pointer to the next element is computed reduces the cache misses.

In the Named Quantities, shown in the figure 43, the difference between the time that the
pointer is computed and the time it is needed is very close, so in some cases, the element is not

1 https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
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Figure 42.: Comparing the software prefetching performance in the calc energy function with the
smaller case study (at the left) and the larger case study (at the right)

Figure 43.: Comparing the software prefetching performance in the calc energy function with the
smaller case study (at the left) and the larger case study (at the right) with Named Quantities

yet in the cache, stalling the CPU. However, with a deeper analysis, both the normal and Named

Quantities can be improved.
In fact, this is one of the general alternatives for software using linked lists or other irregular

data structure. Prefetching the elements as soon as the pointers for the next iterations are com-
puted, a prefetch might reduces significantly the number of cache misses, thus increasing the
software performance.

S U M M A RY

This chapter presented several ways to improve the computational performance of the calc energy

function, used to compute the total energy of the configuration. To increase memory locality and

76



5.4. PERFORMANCE OPTIMIZATION DISCUSSION

vectorization, an alternative data structure was proposed, mainly to replace the elements storage
from linked lists to arrays.

Next, it presented how to increase the performance through a parallel implementation in a
shared memory environment, using OpenMP. The results show a significant increase of the per-
formance, specially in the smaller case study where the parallelism overhead is more noticed. It
was also explored how to increase the performance exploring the workload scheduler of OpenMP,
the vectorization improvement after using the alternative data structure and finally a suggestion
for software prefetching, that even thought it was not fully explored, shows a performance im-
provement that can be higher with a deeper analysis.
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C O N C L U S I O N S

This dissertation studies the liquid surfaces modelling shaped by various forces and con-
straints, specially the thermal fatigue failure of BTC components welded to PCBs, that leads to
a premature end of an electronic component. The simulation of these procedures is done by a
numerical analysis with the FEM that evolves the surface from its initial state to the state where
it meets the required stop criteria.

This is a process used by universities and companies in the field of mechanical engineering,
electronic engineering, mathematics, among others to study the behaviour of these surfaces when
constrained by different forces and energies. The software used by Bosch to study these surfaces
is the SE and it was presented with two main case studies used throughout this dissertation.

This dissertation studied the development of a modelling process to simulate the evolution
of a surface, to identify problems of thermal fatigue failure in the design of new PCBs. This has
a very high computational load, which is not consistent with the requirements of the industry
and researchers, which required to improve the performance of the current software, the SE, to
increase the complexity of the problems to be addressed and to obtain a solution in valid time.

The approach followed to increase the performance of the SE, started by studying the paral-
lel computing background, namely the target homogeneous environment with multicore CPUs.
It was noticed that NUMA systems, as well as hardware multithreading capabilities and Intel
Hyperthreading can be useful to increase the performance with a small effort by the developer.

Vectorization proved to be very critical in achieving high performance computing software.
Using SIMD allows one single instruction to execute with multiple operands, depending on the
technology. Although the main focus of this dissertation was to implement an improved version
to execute in a homogeneous environment, heterogeneous environments were also introduced
and all the decisions regarding efficiency, were also made by taking into account these environ-
ments.

From the profiling analysis of the SE, it was noticed that the current implementation has
several performance issues. By the analysis of the SE call graphs, it was shown that one of the
heaviest computational functions is the calc energy. This function is used to compute the total
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energy of the configuration and has a workload of 24% in the smaller case study and 60% in
larger case study. So, to improve the computational efficiency of the SE it was decided to use
this function as prove of concept of all the decisions to increase the efficiency of the SE.

Another major bottleneck identified is the current data structure, which stores the elements
using linked lists. This type of data structure, although very efficient in memory usage, it is
not consistent with high performance computing so it was proposed an alternative data structure.
This data structure has the main purpose to replace the linked lists implementation with an array
based implementation.

The shared memory implementation uses OpenMP to implement parallelism and has sev-
eral advantages over the actual version implemented with pthreads. As shown in the results
discussion, after fixing the false sharing and other memory locality related problems, the new
implementation increased the performance more than 2x in the smaller case study.

OpenMP also allowed to implement a scheduling study, where different mechanisms were
explored. For the smaller case study, since all the data fits in the CPU caches, a load balancing
problem is not as much reflected as in the larger case study. For this case, a non-static type of
scheduling has advantages over the static mechanism, due to the fact that some elements take
longer to compute its energies than others.

One of the major impacts on the performance comes from the alternative data structure
and that is the vectorization. Having the data contiguous in memory, as well as some memory
alignments, enabled the vectorization and allowed to perform several computations using SIMD.
In the most notorious loop, this reflected in a speedup of 6.230 over the scalar loop.

However, the calc energy function also needs to use the current data structure and not only
the alternative one. This means that some of the computations are still using the elements from
the linked list. To reduce the impact of these memory accesses, a software prefetching technique
was also explored. The main idea to this technique was to add a prefetch directive to load
asynchronously an element from the list before it was actually needed. This can be hard to do, if
a load occurs to early, it might be replacing important data from the cache and it might even be
replaced before it is used. If the load occurs too late, it might not yet been loaded from memory,
stalling the CPU waiting for the data. Although this technique has only been implemented by the
end of this dissertation and not fully explored, the results show a small but significant increase
of performance, specially in the larger case study.
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6.1. FUTURE WORK

6.1 F U T U R E W O R K

At the end of this dissertation, several results specially using the alternative data structure,
capable of vectorization and with improved memory locality, motivate further work to improve
the performance of the SE, namely:

• Adapt the alternative data structure to all the functions of the software. This can be done
with the calc energy function as a guideline to implement an improved and vectorizable
version of other functions.

• Reimplement the parser and GUI to also use the alternative data structure. Although more
challenging than the previous point, the performance of the SE fully depends on the effi-
ciency of these functionalities.

• One of the major bottlenecks, that is preventing the calc energy function to achieve higher
speedups, is the critical region in the For all Edges computation. Rethinking the algorithm
or at least reimplement this computation to reduce the penalty of the critical region, also
increase the SE performance.

• Further research on the software prefetching technique presented can also help to reduce
the impact on the linked lists and other memory accesses that are penalizing the perfor-
mance of the SE.

• All the decisions regarding performance, specially in the alternative data structure, were
made taking into account the possibility of a future heterogeneous implementation, spe-
cially using the GPU as a computing accelerator. This dissertation also includes informa-
tion about this computing device as well as libraries and frameworks that can be used to
achieve a higher performance in such an environment.
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A
A P P E N D I C E S

A.1 E X P E R I M E N TA L S E T U P

All tests were run in the SeARCH cluster at the University of Minho with shared nodes
among other MSc. students. However, the nodes were always entirely reserved so that no exter-
nal influence were noticed on the results. The methodology followed a k-best approach, where
6 runs were executed and measured and the best result was taken, provided that the difference
between that and the 3rd best did not exceed 5%.

A.1.1 Node Characteristics

The computer node used has the following characteristics:

• 2 x Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz

• #Cores: 8 (with Hyperthreading, where #Threads are 2)

• L1 Cache (per core):

– 32 KB instruction cache

– 32 KB data cache

• L2 Cache (per core):

– 256KB cache

• L3 Cache (per device):

– 20MB cache (shared by all cores)

• Main Memory: 64GB
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A.1. EXPERIMENTAL SETUP

This node has 2 Xeon Processors, each one with 8 Cores plus Intel’s technology Hyperthread-

ing making it able to support 2 virtual hardware threads, thus 32 threads can run simultaneously.
Memory accesses are non-uniform for these 2 NUMA processors as shown in the node topology.

Node Topology

In the Figure 44 it is presented the topology of this node from the operating system point of
view, to better understand its functioning.

Figure 44.: Shows the node topology used in the experimental setup

85



A.2. SPEEDUP AND EFFICIENCY

As mentioned, there are 2 NUMA nodes, each one with half of the main memory available
(32 GB for each) and each of the 8 cores has its own L1 and L2, with a shared L3 for the 8 cores
of each processor. This has a great impact on memory and processor affinity since processor
units from one NUMA node often need to access data from the other node. Another impact
on the performance is the cache conflicts that Hyperthreading causes in L1 and L2 since these
caches are shared by both threads.

A.1.2 Software Versions

Several profilers and software were used in the SE analysis but mostly the profilers gProf and
the Valgrind Tools (Valgrind, Callgrind, PAPI counters with cachegrind). These profilers have a
measuring error inferior to 1% on the miss rate measures and a residual error on the call graphs
creation. As for the software used, the versions are:

• GCC - Version 4.9

• Intel Composer 2015 SP1 (package 2015.1.117)

• ICC - Version 15.0.1

• PGI - Compilers & Tools 2014 (release 14.7)

• gProf - Version 2.20.51.0.2-5.34.el6

• Valgrind - Version 3.8.1

• GCC level 3 of optimizations

A.2 S P E E D U P A N D E F F I C I E N C Y

Speedups were calculated for each scalability test performed according to:

Sp = T1
Tp

where:

• S is the speedup

• p is the number of processors

• T1 is the execution time of the sequential algorithm
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A.2. SPEEDUP AND EFFICIENCY

• Tp is the execution time of the parallel algorithm with p processors

Also, it was calculated, according to Amdahl’s Law [40], the maximum speedup that can be
obtained:

Sp = 1
B+ 1

n (1−B)

where:

• S is the speedup

• p is the number of processors

• n is the number of threads of execution

• B ∈ [0, 1] is the weight of the sequential part of the algorithm

Another performance metric used - Efficiency - was computed to estimate how well-utilized
the processors are in the execution of the program.

Ep =
Sp
p = T1

pTp

where:

• E is the efficiency

• p is the number of processors

• S is the speedup

• T1 is the execution time of the sequential algorithm

• Tp is the execution time of the parallel algorithm with p processors
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