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Master Course in Computing Engineering
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A B S T R AC T

This document describes a master thesis in Informatics, in the areas of Program Slicing and Formal

Verification of Programs, and the synergies between both.

The project, entitled as Exploring Frama-C to improve Assertion-based Slicing, is aimed at the explo-

ration of a well-known program analysis and verification tool, Frama-C, to understand how it can be

effective to implement the semantic slicing approach, called Assertion-based Slicing, used to analyze

and reason about programs developed with Contracts.

As a proof of concept, a tool will be developed and tested specific case studies.
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I N T RO D U C T I O N

Program Slicing has been around for a long time, and was first defined by Mark Weiser, Weiser

(1981). According to him, “Program slicing is a method used by experienced computer programmers

for abstracting from programs. Starting from a subset of a program’s behavior, slicing reduces that

program to a minimal form which still produces that behavior. The reduced program, called a ”slice”,

is an independent program guaranteed to faithfully represent the original program within the domain

of the specified subset of behavior”.

Since then several different kind of slicing techniques have been developed from several different

types of static slicing (slicing applied only to the source code with no other transformation) to differ-

ent types of dynamic slicing (which uses a particular execution of the program). Program slicing can

be applied to debugging programs, program analysis, flow control, optimization and software mainte-

nance. Although slicing techniques have been around since the eighties, they haven’t received a wide

acceptance by the software industries, mainly to the difficulty of implementation. This thesis will

explore a new form of slicing using programs with Design by contract approach, called “Assertion-

based-slicing”.

Design by Contract, was first introduced by Bertrand Meyer, Meyer (1992), when he designed

the Eiffel programming language. Design by contract is an approach to software development, that

sates that software developers should define a precise formal and verifiable specification for software

components, with preconditions, postconditions and invariants. These specifications are called “con-

tracts”. Design by contract has its it roots in Hoare Logic, formal verification and specification. For

example: A function f() is only executed if it is called in a state which satisfies its precondition specifi-

cation and when it terminates it must guarantee that the postcondition specification is verified. Several

more different programming languages have also native support Design by Contract but others like C

programming language have third party support and currently the verification tool is Frama-C.

Frama-C is a set of program analyzers for the C programming Language, and was developed by

Commissariat à l’Énergie Atomique et aux Énergies Alternatives and INRIA1. Frama-C does static

analysis of C programs and can be used for formal verification (using ACSL2 ), value analysis, slicing

1 Institut national de recherche en informatique et en automatique, which translates to English as Institute for Research in
Computer Science and Automation

2 ANSI/ISO C Specification Language
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and others. Also, Frama-C is easily extended in the form of plugins due to its modular architecture

design.

This project is entitled ”Exploring Frama-C to improve Assertion-based Slicing”. As stated before,

“Assertion-based slicing” is a technique that applies slicing to programs developed with contracts;

Frama-C will be used to develop a plugin to apply this type of slicing to C programs.

In the next chapter, an overview of Slicing and its different techniques will be given. The techniques

include static slicing, dynamic slicing, quasi-static slicing, conditioned slicing and mainly assertion-

based slicing. After that, Frama-C and the plugins will be analyzed. In this chapter, it is explained

the plugins that use slicing (value analysis plugin, slicing plugin, impact analysis plugin, spare code

plugin and PDG plugin) report the results with contracts, and check if they already use any kind of

semantic slicing. Frama-C slicing plugins strengths and weakness are also explored. In the end, the

developed plugin will be explained, the different development approaches are discussed, and some

examples will be shown.

1.1 O B J E C T I V E S

The aim of this master thesis is split in two main categories. A theoretical one, and another more

practical for proof of concepts. This objectives of this master thesis are the following:

• To explore Frama-c slicing plug-in, to know how the plug-in works and what methods of slicing

it applies;

• To develop a Frama-c plug-in in OCaml3, in order to apply assertion-based slicing to C pro-

grams;

• To use the developed plug-in in large scale C tests (a unix kernal library for example), to test

assertion-based slicing to discover its strengths and limitations.

The main objective of this thesis is to improve assertion based slicing using Frama-C and test if it

can be applied to large C programs.

1.2 C O N T R I B U T I O N S

This master work contributed with a new plugin for Frama-C:

• It allows to apply Assertion-based slicing;

• It corroborates the easiness of extending Frama-C.

3 Ocaml home page: http://caml.inria.fr/

http://caml.inria.fr/


1.3 D O C U M E N T S T RU C T U R E

This dissertation is divided in five chapters:

• Introduction - Introduction to the dissertation;

• Slicing - Overview of slicing techniques and assertion-based slicing;

• Frama-C - Overview of Frama-C and it’s plugins;

• GamaSlicer - Description of the developed plugin;

• Conclusion - Conclusion and reflections of this dissertation.





2

S L I C I N G

Program slicing, Weiser (1981), is the computation of a set of program statements (program slice)

using a statement of the same program(slicing criteria). It is used for debugging, software testing,

software metrics, software maintenance, program comprehension, etc .

Slicing has been around since 1979, but until now it is still not a widely known field in Computer

Science. Its due to the several different techniques that exists, with most being difficult to implement

which its correlated to their difficulty to leave the academic world .

Those several techniques include static slicing (the original), dynamic slicing, quasi-static slicing,

conditioned slicing, assertion based slicing, and so on. For more detailed and thorough explanation of

the different kind of slicing methods, it is recommend to read: Silva (2012).

Static slicing, Weiser (1981), consists of choosing a statement as slicing criteria and applying

forward, Bergeretti and Carré (1985), or backward, Tip (1995), slicing. Static means that only

statically available information is used for computing the slices, this is, all possible executions of the

program are taken in account; no specific input is considered.

Dynamic slicing, Korel and Laski (1988), builds a slice with respect to only one execution of the

program corresponding just to one given input. Quasi-static slicing, Venkatesh (1991), is a slicing

method that combines static slicing and dynamic slicing, it slices a program with an specific input to

a certain variable.

Conditioned slicing, Jiang et al. (1991), creates program slices that consist of a subset of program

statements which preserve the behavior of the original program with respect to a slicing criterion for

any set of program executions. The set of initial states is specified with a first order logic formula on

input.

Assertion-based slicing, Barros et al. (2012), is a term that encompass: postcondition-based,

precondition-based and specification based forms of slicing. Postcondition-based slicing uses as slic-

ing criterion the postcondition of the program. Precondition-based slicing is the same as postcondition-

based slicing but uses the precondition as criterion. Specification-based slicing is a combination of

both, using the postcondition and precondition as slicing criterion.

Program slicing can also be used to enhance verification techniques, that combine static and dy-

namic analysis, as shown in Chebaro et al. (2012). In this technique, a program is first analyzed by
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value analysis (using Frama-c value analysis plugin 1) and labeled with alarms of possible runtime er-

rors. Then using PathCrawler (a structural test generation tool 2) it generates tests to prove the validity

of the alarms. This was the first Sante Method (Static ANalysis and TEsting), Chebaro et al. (2010).

The problem with this approach is that the number of paths can be exponential in the program size. By

using program slicing to reduce the number of paths, depending on the options of the tool it can have

gains between 24 % to 97 % in program reduction, depending on the complexity of the program and

the generated alarms from Frama-c value analysis plugin. Using program slicing the Sante method

was vastly improved.

A new dynamic program slicing algorithm based on an abstract machine was presented by Hua-

Xiao et al. (2013). The main difference with this approach is that the execution path of program is

judged by an abstract machine and the dynamic program slicing is based on input and makes use

of control dependency and data dependency information. The abstract state machine is defined by a

quadruple: (Stack, Econ, Stmcon, Denv) . Stack is where it stores the intermediate results of calcula-

tion and the value of a variable in an assignment expression. Econ is where it is stored the pending

expression. Stmcon is where pending statements are stored. Denv is mapping of variable name to

value. The initial state, final state and the state transition rules of the abstract machine are detailed in

Hua-Xiao et al. (2013). The abstract machine confirms the programming execute path, by marking

each statement with true or false. If the statement has been executed the mark would be true, other-

wise false. After the execution of the abstract machine the statement which are true will be exported

and construct the execution path of program. The principle of assigning values to executive marks is

explained in Hua-Xiao et al. (2013). The authors state that this approach has higher accuracy and

lower time and space complexity. The main problem with this approach is the lack of pointer support,

which they state that in the future will be solved.

When slicing Objected Oriented programs, there have been several approaches. The challenge with

object oriented programs is because of features such as class, objects, inheritance and polymorphism,

Jain and Garg (2013). All these features strengthen the expression of ideas in object oriented pro-

grams but at the same time pose a challenge to slicing, due to this features cannot be represented in

a normal System Dependency Graph. Although there are several graph implementations of control

flow and data dependence from object oriented programs (including Class Dependence Graph, Object

Oriented Program Dependence Graph, Class Control Flow Graph, etc) generating a graph from an

object oriented program is itself very difficult and generating slices from dependencies very compli-

cated. The need for a graph is normally due to the need of a graphic representation of the program.

Since a graphic representation of program is not always needed, another approach was proposed to

calculate slices based on definition-use (d-u) chains, Jain and Garg (2013). A d-u chain is a sequence

of adjacent d-u pairs, and a d-u pair is a definition of a variable and the uses of that variable. Using

d-u chains is much easier to represent the program and the space complexity is lesser, which leads to

faster slice results.

1 Frama-c value analysis home page: http://frama-c.com/value.html
2 Frama-c pathcrawler home page: http://frama-c.com/pathcrawler.html/

http://frama-c.com/value.html
http://frama-c.com/pathcrawler.html/


There exist some tools that can apply slicing and have significant performance. One of those is

Frama-c3. Frama-c is a suite of tools dedicated to the analysis of source code written in C. Frama-

c applies slicing to source code using a slicing plug-in. This plug-in uses the results of the value

analysis plug-in and of the function dependencies computation. It supports slicing criteria for code

observation and slicing criteria for proving properties. Although being an open source system, it is not

crystal clear which slicing methods Frama-c actually applies in each of the above mentioned variants.

2.1 A S S E RT I O N - B A S E D - S L I C I N G

A program slice takes in account a slicing criteria (ρ, υ) where ρ is a program statement and υ is a

subset of the program’s variables. This means a slice consist of statements which affect the values

of variables at the slicing statement with a criteria. Although it preserves the behavior of the original

program with respect to (ρ, υ), normally contains non-essential statements if the slicing criteria is

strengthen with more context of applying the slicing technique.

One way to have more context is to re-use assertions from existing software satisfying a specifi-

cation (like ACSL), and to apply a slicing criteria that uses all variables from ρ and that υ contains

all variables from the specification. To do this we can’t only use the syntactic information but also

use semantic information and use a relation between specification and the semantic information of

the program, this technique is called assertion-based-slicing Barros et al. (2012). It is here that this

slicing technique diverges from normal slicing techniques, because normally slicing techniques use

only syntactic information and are called syntactic slicing, and techniques using semantic information

are called semantic slicing(but also use syntactic information).

For example, suppose we wish to calculate the slice of a program based on its specification, where

it consists of (P,Q) where P is the precondition and Q is the postcondition and that exists a stronger

precondition P’ than P, or else the desired postcondition is Q’ is weaker than the specified Q. From

a software engineering perspective it would be desirable to eliminate code that may be superfluous

with respect to the specification (P’,Q’). We will now “assertion-based-slicing” to refer to slicing

techniques that use axiomatic semantics of programs taking as criteria assertions (postconditions and

preconditions) annotated in programs. This includes: precondition-based slicing, postconditon-based

slicing and specification-based slicing. Assertion-based slicing is more powerful and flexible than

syntactic slicing, since the criteria can be as expressive as any set of first-order formulas on the initial

and final states of the program.

2.1.1 Postcondition-based Slicing

From Chung et al. (2001): A postcondition based slice with respect to a postcondition Q is a backward

static slice that consists of a subset of the statements and control predicates of a program that might

3 Frama-c home page: http://Frama-c.com/

http://Frama-c.com/


affect the postcondition when the program is executed. The idea of slicing programs based on their

specifications was introduced by Comuzzi et al Comuzzi and Hart (1996), with the notion of predicate

slice (p-slices). To understand the idea of p-slices, Cruz (2011), consider a program S and a given

postcondition Q. It may well be the case that some of the commands in the program do not contribute

to the truth of Q in the final state of the program, i.e. their presence is not required in order for the

postcondition to hold. In this case, the commands may be removed. A crucial point here is that the

considered set of executions of the program is restricted to those that will result in the postcondition

being satisfied upon termination. In other words, not every initial state is admissible – only those for

which the weakest precondition of the program with respect to Q holds.

2.1.2 Preconditon-based Slicing

Chung and colleagues Chung et al. (2001), later introduced precondition-based slicing as the dual

notion of postcondition-based slicing. A precondition based slice with respect to a precondition P is a

forward static slice that consists of a subset of the statements and control predicates of a program that

might be executed and change the program state when the program start execution in a state satisfying

P . The idea is still to remove statements who do not affect the specification of the final state of

program, the difference is that the set of executions of the program is now restricted to the first-order

condition on the initial state. If a statement does not violate any property of the final state it can be

removed, this is equal to saying that the strongest postcondition of the program is not weakened in the

computed slice.

2.1.3 Specification-based Slicing

A specification base slice can be calculated when both precondition P and postcondition Q are given

in a specification of a program. The set of relevant slices is restricted to those for which Q holds upon

termination when the program is executed in a sate that satisfies P. Programs resulting from these

slices and which are still correct to (P,Q) are said to be specification-based slices. This method is

also proposed by Chung and colleagues , Chung et al. (2001), and relies on a theorem proved by the

authors which states that the composition in any order of postconditon-based slicing (in regard to Q)

and precondition-based slicing (in regard to P) produces a specification-based slice in regard to (P,Q).
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F R A M A - C

Frama-C is a suite of tools dedicated to the analysis of source code written in C, Cuoq et al. (2012).

With the help of Frama-C the user can observe sets of possible values for the variables of the program

in execution, slice programs into simplified ones, navigate the dataflow of a program and, by using

ACSL1 annotations, use Frama-C to prove formal properties. Frama-C is coded in OCaml and it is

organized with a plugin architecture (like Eclipse and Gimp Cuoq et al. (2012)). A common kernel

centralizes information and analyses the code. The plugins interact with each other with the help of an

interface defined by the kernel: this makes Frama-C easy to extend and any plugin can use the results

of other as input.

3.1 C I L : C I N T E R M E D I AT E L A N G UAG E

CIL is important in this thesis because Frama-C relies on CIL for parsing and abstract syntax tree.

As the title states, CIL, stands for C Intermediate Language, Necula et al. (2002). An intermedi-

ate language is the language of an abstract machine designed to aid in understanding and analyzing

programs. CIL, is a high level representation of the C language, that permits easy analysis and source

code transformation of C programs. The C programming language is well known for its flexibility

when dealing with low-level constructs, but also known for its difficulty to understand and analyze.

CIL was developed to tackle that difficulty but still represent programs in a form that resembles the

original code.

CIL features a reduce number of syntactic and conceptual forms. For example all syntactic sugar is

eliminated, all functions are given explicit return statements and all loops variants are reduced to one

form. CIL also deals with lvalues. Lvalue is an expression referring to a region of computer memory.

Only an lvalue can appear on the left side of an assignment. In CIL, an lvalue is a pair of a base and

an offset. The base address can be a starting address for a variable or a pointer expression. An offset

can be empty or can be offset in a variable (or memory region) and which is denoted by the base that

consists of a sequence of field or index designators.

CIL syntax is divided in three basic concepts:

1 ANSI/ISO C Specification Language
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• Expressions, represent functional computation without side efects or control flow;

• Instructions, express side effects, but have no control flow;

• Statements, capture control flow.

CIL also provides control flow graph, with every statement annotated with successor and predecessor

control flow information, so with CIL from a individual statement one can discover all other statements

that can be reachable. The successors are the statements that will be executed sequentially after the

original statement, the predecessor are the statements that were executed before the original statement.

CIL language was extended by Frama-C to support ACSL 2 with logic constructs in the CIL abstract

syntax tree, which can be used to express preconditions and postconditions.

3.2 P L U G I N S

Since the objective of this thesis is to explore Frama-C to improve assertion based slicing, the main

focus of this chapter will be on Frama-C and its different plugins that are focused or use slicing

techniques.

3.2.1 Value Analysis Plugin

The Value Analysis Plugin automatically computes variation domains for the variables of programs. It

can show sets of inferred possible values for variables and can be used to infer the absence of run-time

errors. It is used by most Frama-C plugins (include the slicing ones) this being the main reason it is

displayed here. An example of it is use is shown bellow with the input being in Listing 3.1:

int y, z=1;

int f(int x) {

int y = x+1;

return y;

}

void main (void) {

for (y=0; y<20; y++) z = f(y);

}

Listing 3.1: val1.c

Calling Frama-C in batch mode with the -val option (Value Analysis Plugin) produces the output

shown in Listing 3.2:

2 ANSI/ISO C Specification Language



$ frama-c -val -slevel 2 val1.c

(...)

[value] ====== VALUES COMPUTED ======

[value] Values at end of function f:

y in [1..20]

[value] Values at end of function main:

y in {20}

z in [2..20]

Listing 3.2: Result from val1.c

3.2.2 Slicing Plugin

The slicing plugin given an input program produces an output which is made of a subset of statements

of the analyzed code. This subset is produced though a slicing criterion, specificed by the user. The

output is supposed to be compilable code and have the same behavior as the analyzed program from

the point of view of the provided slicing criterion. Frama-C applies slicing to source code using a

slicing plug-in. This plug-in uses the results of the value analysis plug-in and of the function depen-

dencies computation. It supports slicing criteria for code observation and slicing criteria for proving

properties. There are several slicing criterion including the use of ACSL expressions with slice prag-

mas. Although being an open source system, it is not crystal clear which slicing methods Frama-C

actually applies in each of the above mentioned variants due to the lack of information and there is no

paper describing precisely how the slicing module works, but it seems to be a combination of forward

and backward slicing.

3.2.3 Spare Code Plugin

The goal of Spare Code Plugin is to remove unnecessary code in a program, where the output is

guaranteed to be compilable code. The Spare code plugin is almost equal to the slicing plugin but

always use as entry point the main function and the output code is from the point of view of values

assigned to the main function. It can also use ACSL expressions in slice pragmas, but as the restriction

of only analyzing the annotations found inside of a body of a function. It also depends on the Value

analysis Plugin.

3.2.4 Impact Analysis Plugin

The Impact Analysis Plugin allows the automatic computation of the set of statements impacted by

the side effects of a statement of a C program. Statements not appearing in this set are guaranteed



not to be impacted by the selected statement. It relys on Frama-C graphic user interface to select the

statement that will impact the rest of the program, you can also use it in batch mode but we have to

write impact pragmas on the statements. It seems to do forward slicing, but like the slicing plugin

there is no information to confirm that.

3.2.5 PDG Plugin

The PDG (Program Dependency Graph), as the name implies, given as input a program and an entry

function, creates a program dependency graph in the form of .dot that latter can be converted to pdf.

It is written in a special notation that is:

• The color of the edge represents the data dependencies, blue for yes, black otherwise.

• The shape of the arrow represent control dependencies, circle for yes, normal arrow otherwise.

• The lines represent address dependencies, dotted for yes, plain otherwise.

3.3 T E S T I N G T H E P L U G I N S

In this section we will test Frama-C and its several plugins that are focused on slicing or use slicing

techniques, such as:

• Slicing plugin;

• Spare Code plugin;

• Impact Analysis plugin;

• PDG plugin.

To test the plugin’s we will use two simple programs with ACSL notations.

The first is a very simple function called square.c (see Listing 3.3) that squares a value and has

an ACSL notation that guarantees that the result of the function is equal or greater than one hundred:

/*@ ensures \result >= 100;

*/

int f(){

int x=1;

x = x*x;

x = x+100;

x = x+50;

return x;

}



Listing 3.3: square.c

The second is called condi.c (shown in Listing 3.4) and it is a simple program with a main()

function that calls a function with an if then else; and the precondition requires that the function g()

is given as input a value greater than ten and postcondition assures the result to be equal or greater

than zero:

/*@ requires y > 10;

@ ensures \result >= 0;

*/

int g(int y){

int x=0;

if(y>0){

x=100;

x=x+50;

x=x-100;

}else{

x = x - 150;

x=x-100;

x=x+100;

}

return x;

}

int main(){

int a = g(11);

return a;

}

}

Listing 3.4: condi.c

3.3.1 Slicing Plugin

This is the main plugin to do slicing in Frama-C. We will try to discover what kind of slicing it does,

its strengths and its limitations. We always use the same slicing criteria, that being slice-return, which

slices the result value of a function.

We will first test the plugin with square.c (see Listing 3.3). Using f() as entry function, and

after running the value analysis plugin(its required to do so) the result is shown in Figure 1 :



Figure 1: Slice result to square with f()

The result is the expected one that being assuming that Frama-C uses the traditional syntactic slic-

ing, but it doesn’t give us any new information about its slicing algorithm. If we add a replicated

statement,x=x+100 to the function f() and change the postcondition to be greater or equal to zero

(see Listing 3.5):

/*@ ensures \result >= 0;

*/

int f(){

int x=1;

x = x*x;

x = x+100;

x = x+100;

x = x+50;

return x;

}

Listing 3.5: Modified square

When running on the modified square 3.5 on the slicing plugin the result is:

Figure 2: Slice result to modified square with f()

Still, no surprise it didn’t slice the statement x=x+100;.

One final modification to 3.3:

/*@ ensures \result >= 0;



*/

int f(){

int x=1;

x = x*x;

int y = 10+x;

y += x;

return x;

}

Listing 3.6: Alternative modified square

In this modified square version (Listing 3.6), we add two new statements, that will not impact the

final result, but will use the variable x. Now the result from running the slicing plugin:

Figure 3: Slice result to alternative modified square with f()

As we can see in Figure 3 it slices all statements with the variable y. This proves it does syntactic

slicing, how it does is unclear due to lack of documentation of this plugin. The expected result if it

did assertion based slicing would be:

/*@ ensures \result >= 100;

*/

int f(){

int x=1;

x = x*x;

x = x+100;

return x;

}

Listing 3.7: Assertion based slicing result label

It would slice the statement x= x+50; because the statement x=x+100; guarantees the postcondi-

tion is respected and all new modifications (like x= x+50;) are unnecessary to respect the postcon-

dition (although they also respect the postcondtion), and can be sliced.

Now, using condi.c (see Listing 3.4), using the g() function with slice return:



Figure 4: Slice result to condi g() function

It sliced the if(y>0) statement, so we can infer it uses the precondition to do the slicing. Why

it sliced the statement x=0; and x=100; is unclear and goes against the definition of slicing, since

those attributions are necessary to the the result of the function.

Also the main() slice:

Figure 5: Slice result to condi main() function

It sliced the declaration type variable a, which is very wrong, since C requires variables type to be

declared. Also sliced the return statement which is also wrong with the definition of slicing. This

code would not be compilable.

Lets, now change the input value of function g() to -5, the result from main() and g() is:



Figure 6: Slice result to condi alternative g() function

Figure 7: Slice result to condi alternative main() func-
tion

We can see that it sliced everything, the red code is from the value analysis and the slicing plugin

never slices when the value analysis reports the code is dead(in red). From this we know it respected

the precondition, but this was achieved with the value analysis plugin and not the slicing plugin.

This combination of both plugins seems to be the main strength of the slicing plugin since it uses

pre and post conditions in the slice and at the same time its weakness, because it is dependent on the

value analysis of the program and in reality the slicing plugin is oblivious to pre and post conditions

and just relies on the results of the value analysis.

3.3.2 Spare Code Plugin

The result from running the Spare Code plugin on Listing 3.3 using as entry function, f(), is that

nothing is sliced which is correct.

When running the Spare Code plugin on Listing 3.4, we have to use two different entry function,

g() (show in Listing 3.8) and main() (show in 3.9). With function g(), the result is the following:

/* Generated by Frama-C */

int g(void)

{

int x;

x = 100;

x += 50;

x -= 100;

return x;

}

Listing 3.8: Spare Code result for condi.c using g as entry function



We can see, that it removed the if control statement and the code inside the else statement. The differ-

ence from the slicing plugin is that it didn’t remove the return statement, but removed any indication

of variable y as input of the function and the attribution of 0 to the variable x.

Last, using the function main() as entry:

void main(void)

{

return;

}

Listing 3.9: Spare Code result for condi.c using main as entry function

The result is strange. First it didn’t propagate the slice to the function g and removed the declaration

of the variable a and added a return statement.

3.3.3 Impact Analysis Plugin

When running the Impact Analysis Plugin on Square (see Listing 3.3) using the statement x=1;

(see image 8):

Figure 8: Impact Analysis on square

The result (listed in Figure 8) is the expected one, as all statements that are affected by x=1(in blue)

are marked(in green).

Using the statement x=100;(in blue) in condi (Listing3.4):



Figure 9: Impact Analysis on condi

The only statements that are impacted by x=100 are the ones inside the if block and the return

x statement(in green), as show in Figure 9.



3.3.4 PDG Plugin

The resulting PDG 3 for square.c (show in Listing3.3) by using the (f()) function as entry point is:

Figure 10: Square PDG for the f() function

All statements, except x=1 are data dependent to Decl x, all are normal dependencies and all

statements except ”return x” are address dependent to Decl x.

3 All graphs were generated from .dot.



The resulting PDG for condi.c (show in Listing 3.4) using the g function as entry point is showed

in Figure 11:

Figure 11: Condi PDG for the g() function

The statement y>0, in the control flow point, is data and address dependent to Decl y and In1

which is the input from the function g(). Decl y and In1 are address dependent to each other. All

other statements are normal dependencies to Decl x. return x;, x-=100; and x+=100; are

data dependencies to Decl x. Lastly all statements except return x address dependent to Decl

x.



For last the resulting PDG for condi.c (show in Listing 3.4) by using the main() function as

entry point is:

Figure 12: Condi PDG for the main() function

The output for the main faction is is data dependent to In1 and is address dependent to Decl a.



4

G A M A S L I C E R

The aim of this thesis is to develop a Frama-c plugin in OCaml to apply assertion-based slicing to C

programs. To achieve this, it is needed: a parser, an Abstract Syntax Tree, a verification condition

generator (that generates both weakest preconditions and strongest postconditions per statement), a

slicegraph and a way to print the shortest path in the slicegraph. It was decided that the developed

plugin would be called GamaSlicer.

In this Chapter, first it will be explained the different approaches to implementation, then what is a

Frama-C plugin and its implementation, and finally results of the plugin.

4.1 A P P RO AC H E S

4.1.1 Initial Approach

After studying Frama-C and it’s plugins, the initial proposal as shown in figure 13 was to reuse the

Frama-C parser, it’s Cil AST 1 and WP Frama-C plugin to generate the weakest preconditions 2.

The input file would be parsed by Frama-C, converted into a Cil Ast, and the WP plugin would

generate the weakest preconditions required to apply Postcondition-based Slicing. After generating

the proof obligations the WP plugin would send it to an SMT solver 3(also called prover) and the

prover would report the proof obligations validity. The Cil AST, would also be used to create a

slicegraph (a control flow graph that can have additional edges connecting the statements).

Then the module Slicing from GamaSlicer would collect the validity of proof obligations, and

depending on that validity add new edges to the slicegraph. A shortest path algorithm would be

applied to the slicegraph, and the corresponding path would be printed by the printer, giving a sliced

output file.

1 Cil stands for, C Intermediate Language, the main goal of Cil is to aid in program analysis and transformation.
2 To note that this was possible to do by using Frama-C API and modules.
3 Satisfiability Modulo Theories solver.
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Figure 13: GamaSlicer initial approach

This approach failed mainly due to the lack of documentation and high dificulty in use of the API

of the Weakest Precondition Plugin. Although it is fully functional to use WP in the command line,

the documentation of the API is lacking and very confusing. To note, that only the API of this plugin

is lacking, not the Frama-C API itself. This could be mainly due to WP plugin being new compared to

other Frama-C plugins and Frama-C itself. Also, with this approach it would be required to develop a

strongest poscondition Vcgen in the GamaSlicer plugin, due to the fact that WP plugin only calculates

weakest preconditions proof obligations.

4.1.2 Second Approach

Due to the failure of the initial approach, a second approach was devised, as shown in figure 14. As

stated early, the WP plugin is fully functional at the command line, and can be used to generate proof

obligations of a program into a folder.

The goal was to take advantage of this, so this approach was nearly identical to the first one, but

now the GamaSlicer plugin would invoke externally at the command line level the WP plugin with

the input file. The results would be stored in a folder, and after the termination of the execution of the

WP plugin , a GamaSlicer module would parse the results in the folder. After obtaining the results, it

would work exactly as the first approach.



Figure 14: GamaSlicer second approach

This second approach also failed, due to the fact that WP plugin was not able to generate a proof

obligation per statement and only the final proof obligation of the program 4. As GamaSlicer re-

quires weakest precondition calculus to apply assertion-based slicing. This approach also had the

same drawback of the WP plugin not generating strongest postconditions, which are required to do

precondition-based slicing and specification-based slicing.

4.1.3 Final Approach

With both the initial and second approach failing a new approach was needed, in figure 15 . As stated

before the problem was always with the WP plugin and with the lack of way to generate strongest post-

conditions. It was decided that a new module in the GamaSlicer plugin would be implemented. This

new module would receive Frama-C Cil Ast and generate both weakest precondition and strongest

postcondition proof obligation per statement and be called Vcgen.

After generating the proof obligations, their validity would be proven. To do this a new module

using Why3 5 API. First the formulas are converted to Why3 Terms 6 and then Why3 connects to

the provers of choice to assert the validity of the proof obligation. With the validity of the proof

4 The proof obligation that proves or disproves the precondition or postcondition of the given program.
5 Why3 is a platform for deductive program verification. Why3 homepage: http://why3.lri.fr/
6 Why3 Term is a Why3 library available trough Why3 API that is used to create and build logic terms which then can be

used to build logic formulas.

http://why3.lri.fr/


obligations found and reported to the GamaSlicer Slicing module this approach is equal to the two

initial approaches.

Figure 15: GamaSlicer final approach

This was the approach that was implemented with success, although with some drawbacks. Reusing

Frama-C modules and plugins, had the advantages of time and performance. Also creating a Vcgen for

both WP and SP calculus with the imposed time constraints, some cuts had to be done, implementing

only simple C types.

4.2 A F R A M A - C P L U G I N

As stated before GamaSlicer is a Frama-C Plugin. One can use Frama-C with several entry points.

By a plugin registering in entry point, Frama-C will recognize and execute that plugin when called to.

The several different entry points are shown in Figure 16:



Figure 16: Plugin intregation overview

The two main registration points reproduce the two ways that a Frama-C plugin can be used:

• Use a simple script that extends Frama-c entry point by using Db.Main.extend in a Ocaml

script;

• Build a plugin by using plugin Modules as script or by using Makefile.dynamic.

As shown in Figure 16 one can also register a plugin GUI if necessary.



A simple example of the first option7is:

let run () =

let chan = open_out " hello.out" in

Printf.fprintf chan "Hello , world !\n";

close_out chan

let () = Db.Main. extend run

Listing 4.1: OCaml hello world.ml

Listing 4.1, is a simple script that writes a print message, and registers the function run as an entry-

point for the script. When executed Frama-C will call it if the script is loaded. The script can be

loaded and compiled with frama-c -load-script hello world.ml, which creates a executable hello.out.

The second option is to register a script as a plug-in. A illustrated in Listing 4.2:

let help_msg = " output a warm welcome message to the user "

module Self = Plugin.Register

(struct

let name = " hello world "

let shortname = " hello "

lethelp = help_msg

end)

let run () =

let chan = open_out " hello .out" in

Printf.fprintf chan "Hello , world !\n";

close_out chan

let () = Db.Main. extend run

Listing 4.2: OCaml Registered hello world.ml

Registering a plugin is achieved by using the functor Plugin.Register. This functor takes as argu-

ments three options:

• name, is a non empty string with the full name of the module;

• shortname, is a small string with a shortname of the module, normally used as prefix;

• help, is a string with the help and description of the module.

GamaSlicer uses the second option but uses it with a makefile that inherits from Frama-C Make-
file.dynamic, and loads several different modules that use Frama-C modules.

Using the option -load-script is ideal for small experiments, but when a plugin becames larger

and more complex with several files it is a good ideia to install it correctly by using a makefile. An

example with the hello world makefile:

7 Taken from Frama-C Developer Manual



FRAMAC_SHARE :=$(shell frama -c. byte -print -path )

FRAMAC_LIBDIR :=$(shell frama -c. byte -print -libpath )

PLUGIN_NAME = Hello

PLUGIN_CMO = hello_world

include $(FRAMAC_SHARE)/ Makefile.dynamic

Listing 4.3: hello world Makefile

As shown in Listing 4.3, one must set some variables before including the generic Makefile.dynamic.

To run the plugin, one must first do make to compile it, and then load and execute the plugin using

frama-c -load-module ./Hello.

If everything is correct, it is possible to install the plugin by running make install. After that the

plugin is loaded everytime Frama-C is lanched.

For more information about how to build a Frama-C plugin it is recommend to read the Frama-C

Developer Manual (available from their website) and Cuoq et al. (2012).

4.2.1 Used Frama-C Modules

Several different Frama-C modules where used in GamaSlicer, bellow follows a list of the used Frama-

C modules and the reason for their use:

• Ast - To compute and retrive the Cil Abstract Syntax Tree;

• Db - To register the enter point of the plugin;

• Cil types - To retrive Cil types so GamaSlicer recognizes them.

• Cfg - To add Control Flow Graph to the Cil Abstract Syntax Tree;

• Ast info - To get the names of the different functions in Cil AST, and to find the default behav-

iors of ACSL clauses in the Cil AST;

• Globals - To fold over the functions of the Cil AST;

• Kernel function - To retrieve the definition of a function;

• Annotations - To retrieve the function logic specification;

• Cil - To find the default behavior of a function and to create ghost statements8;

• Logic const - To create new logic constants when creating proof obligations;

8 Ghost Statements are not part of the actual code, but they are created as support to the generated graph. In this case, as start
and end nodes of the slicegraph



• Logic utils - To convert a C expression to a logic term;

• Visitor - To use Frama-C visit mechanism of the Cil type Named Predicates;

• Printer - To print the several different Cil types.

Another minor modules where used to do minor tasks, mostly sub-modules of the modules above.

4.3 I M P L E M E N TAT I O N

In this section the final approach will be explained in more detail. Then, a walkthrough of GamaSlicer

different modules and how they integrate between themselves and Frama-C will be explained.

As stated before, GamaSlicer was implemented using OCaml, due to the fact that Frama-C requires

it’s plugins to be written in OCaml. Two other major libraries were also used, Why3 and OCaml-

graph9.

Why3 was used, because from its support for different provers, making GamaSlicer independent

of a single prover. The provers must still be implemented and currently GamaSlicer supports several

different provers but due to Why3 more provers can be added easily if needed.

Ocamlgraph was used, to implement the slicegraph, mainly due to its ease to use graph data struc-

tures, for being able to define your own data structure for the graph , it’s performance and also provid-

ing several classic operations and algorithms over graphs.

4.3.1 Modules

GamaSlicer is divided in eight modules, which follow the Frama-C naming convention. These mod-

ules are: Gs options, Towhy3, Vcgen, Provers, Slicing, Slicegraph, Gs printer and Gs register.

Gs options

In this module, the plugin is registered with Frama-C, this is done by registering the name, shortname,

help, etc. By registering the plugin, Frama-C will treat GamaSlicer as a plugin and not as a script. Also

in this module the command line options are defined. As default, GamaSlicer applies Postcondtion-

based slicing, but if called with option -slice-type, a different behavior can be set:

• ”post” - GamaSlicer will apply Postcondtion-based slicing;

• ”prec” - GamaSlicer will apply Precondition-based slicing;

• ”spec” - GamaSlicer will apply Specification-based slicing.

9 OCamlgraph is a graph library for Objective Caml. OCamlgraph homepage: http://ocamlgraph.lri.fr/

http://ocamlgraph.lri.fr/


Towhy3

Towhy3 is a module that converts Frama-C predicates into Why3 Term, using Why3 API 10 in a

recursive algorithm. Currently only Int types and theories are supported due to the fact that module

Vcgen only handles Int types. Also in this module, formulas are bounded with a first order quantifier

depending on the type of slicing being invoked.

Vcgen

As the module states, in this module proof obligations, for each statement, are calculated using weak-

est precondition calculus and strongest postcondition calculus.

The algorithm used to implement the weakest precondition calculus and strongest postcondition

calculus are presented bellow. Both algorithms receive a logic Hoare triple {φ}P{ϕ}, Hoare (1969),

where ϕ represents the postcondition and φ the precondition of a given program. P is a program,

which translates to a sequence of statements, which is denoted by ;. The algorithms listed use first

order symbols, as normal also ϕ[e/x] means that all ocurrences of x in formula ϕ are replaced by e.

Weakest precondition calculus algorithm:

wprec(skip, ϕ) = ϕ

wprec(x := e, ϕ) = ϕ[e/x]
wprec(C; S; ϕ) = wprec(C, wprec(S, ϕ))

wprec(i f e then St else S f , ϕ) = (e → wprec(St, ϕ)) ∧ (¬e → wprec(S f , ϕ))

wprec(while b do {θ} S, ϕ) = θ

Strongest postcondition calculus algorithm:

spost(skip, φ) = φ

spost(x := e, φ) = ∃.v φ[v/x] ∧ x = e[v/x]
spost(C; S; φ) = spost(S, spost(C, φ))

spost(i f e then St else S f , φ) = spost(St, b ∧ φ) ∨ spost(S f ,¬b ∧ φ)

spost(while b do {θ} S, φ) = θ ∧ ¬φ

Using both algorithms above, the Vcgen module gets, from Frama-C Abstract Sintax Tree, the list of

statements of the program and then applies a recursive weakest precondition calculus and a strongest

postcondition calculus to the statements list. It creates the formulas using Frama-C Logic utils module.

Two proof obligation lists are returned, one corresponding to WP calculus and other to SP. Both lists

are then stored in an hash table with the key being the function name and the value a tuple containing

the two lists produced. Due to the complexity of generating proof obligations with pointers, and due

to time constrains only int types were implemented.

10 Why3 API homepage: http://why3.lri.fr/API-0.85/

http://why3.lri.fr/API-0.85/


Provers

In this module, Provers are implemented using Why3 API. Provers must be correctly installed in

the system and configured via command line using: why3 configure -detect. To configure a prover

installed in the system one must provide its name and version. At the time being, GamaSlicer supports

the following provers:

Alt-ergo, Cvc4, Cvc3, yices, z3, e-prover.

Yices, z3 and e-prover are not totally supported and require adjustments depending of the system

and its options.

When receiving a formula to assert its validity, all provers must first build a task with the theories

used in the formula and the formula itself. This task is then invoked in the specified prover. When the

prover ends the computation then it reports the result back to to Why3 which can be of the following

types:

• Valid, the task is valid;

• Invalid, the task is invalid;

• Timeout, the prover exceeds the time or memory limit;

• Unknown, the prover can’t determine if the task is valid;

• Failure, the prover was unable to read its input task;

• HighFailure, an error occurred while trying to invoke the prover.

The provers also report the time in seconds they took to give an answer.

Slicing

Slicing Module is responsible for the execution of assertion based slicing algorithm. As stated pre-

viously, assertion based slicing is a term that encompass precondition-based slicing, postcondition-

based slicing and specification based slicing.

Postcondtion-based slicing algorithm, receives an ordered list of statements and the corresponding

weakest precondition proof obligations . In a reduce(fold) algorithm, the proof obligations from each

statement are joined in a logic implication (creating a new formula) to lower proof obligations of the

ordered list of statements and proof obligations until the list is empty. The new folded list, called slice

results, contains the implications between statements, then they are dispatched to the prover where

their validity is asserted.

Precondition-based slicing algorithm, also receives an ordered list of statements, but now instead

of the proof obligations calculated by the weakest precondition calculus, they were calculated by

strongest postcondition calculus. The algorithm to compute the slice results is the same as postcondition-

based slicing.



Specification-based slicing algorithm, receives two ordered lists of statements, one with the proof

obligations generated by weakest precondition calculus and other the other with the proof obligations

produced by the strongest postcondition calculus. Also using a reduce algorithm, for each statement,

its corresponding strongest postcondition proof obligation is joined in a logic implication with weakest

preconditions proof obligations of lower statements. The new folded list, as in the algorithms above

is also dispatched to the prover to assert the implications validity.

Slicegraph

Slicegraph module is the builder of the final Slicegraph, implemented using Ocamlgraph. A slicegraph

is a Control Flow Graph which can have additional edges between statements representing the several

different slices. Each Node has type Statement from Frama-C Cil types, and the edges have type int

and by default have weight 1.

Initially as the diagram in figure 15 shows, this module receives from Cil AST module, the program

AST, which is translated into a control flow graph. Two particularly important additional statements

are added: the Start statement, which is connected with an edge to the first statement of the control

flow graph, and End statement which is connected to the last statement of the control flow graph (both

using Frama-C Ghost statement as implementation). These two statements are added to keep the graph

consistency; for example if the first statement of a program is sliced, one must have always an initial

statement that will never be sliced, and correspondingly if the last statement is sliced one must always

have a End statement that will never be sliced. Also the Start statement is associated with the program

precondition and the End statement is associated with the program postcondition.

After creating the initial Slicegraph, this module will be called again after the Slicing module

computes the list of slice results. First, all results that don’t have a valid answer are filtered, then

using an imperative algorithm on the filtered list, depending on the type of slice, new edges are added.

If invoked with Postcondition-based slicing, when it receives a slice result between two statements

and considering a slice result is a implication between two proof obligations with an corresponding

statement , new edges are added from the predecessors of the left statement of the implication to the

right statement of the implication.

When invoked with Precondition-based slicing, new edges are added from the left statement of the

implication to the successors of the right statement of the implication.

Lastly when using Specification-based slicing, an edge is added between the left statement of the

implication and the right statement of the implication.

After adding the new slice edges, several new paths of the program will be present. One could

choose randomly which path to keep, but the best option is to choose the shortest path since we want

the optimal slice of the program. To do this, a shortest path algorithm is applied to the Slicegraph,

from the Start statement to the End statement (another reason to add these two ghost statements).

A problem when using shortest path is when it deals with conditional statements. It will always

choose a branch instead of two. A solution, prior to run the shortest path algorithm, is:



1. Mark all conditional nodes;

2. Iterate over all conditional nodes with the following algorithm;

a) Run shortest path on both branchs of the conditional statement;

b) Store the path results and weights from both branches;

c) Create a new edge with weight that equals the sum of the weight of the branches plus one,

from the conditional statement to the first statement after the conditional blocks;

d) Delete both branchs of the conditional statements.

After running the shortest path, Slicegraph module then maps the path by when encountering a

conditional statement retrieving the shortest path of both branches, and adding both paths in place to

the final path. Then converts it a format that can be printed (due to conditional branchs, if the path is

printed without transformation it would not result in a valid C program).

Gs printer

This module, as the name states, contains all printing functions that use the structures from all the

other modules. This module is invoked in the main module.

Gs register

This is the main module. Here Frama-C modules are invoked, including parser, Ast, and Ast info.

Also in here all the other modules are invoked according to the execution flow defined in the diagram

of Figure 15, finally it is in charge of reporting the sliced output program or an error (in case one has

concurred).

4.4 T E S T I N G G A M A S L I C E R

In this section we will test GamaSlicer with different input C programs and with the three asser-

tion based slice techniques, postcondition-based slicing, precondition-based slicing and specification-

based slicing.

4.4.1 GamaSlicer Poscondtion-based slicing

In this subsection we will test the plugin with postcondtion-based slicing. To invoke the plugin with

postcondition-based slicing, the option is -slice-type ”post”.

The first input is a simple example with postcondition x ≥ 0 and can be seen in Listing 4.4:

/*@ ensures x >= 0;

*/



void f(int x){

x = x-150;

x = x+100;

x = x+100;

}

Listing 4.4: post1.c

The Weakest preconditons calculated by GameSlicer for each line are:

• WP Line1 : x ≥ −50

• WP Line2 : x ≥ −200

• WP Line3 : x ≥ −100

We can see that the first two instructions will be sliced because WP Line1→WP Line3 , according

to the slicegraph algorithm stated in subsection 4.3.1. The output of GamaSlicer with Listing 4.4 is:

/*@ ghost ; */

x += 100;

/*@ ghost ; */

Listing 4.5: Output from post1.c

As expected both the first and last statement were sliced. The ghost statements are the Start and End

statement as stated in previous section.

The second example also has the same postcondition x ≥ 0, but with different statements as shown

in Listing 4.6:

/*@ ensures x >= 0;

*/

void f(int x){

x = x+100;

x = x+50;

x = x-100;

}

Listing 4.6: post2.c

GamaSlicer should slice every statement after the first one because the first statement satisfies the

postcondition. As show in Listing 4.7 , GamaSlicer does precisely that:



/*@ ghost ; */

x += 100;

/*@ ghost ; */

Listing 4.7: Output from post2.c

To test GamaSlicer with more complex program, an example of taxes calculation was used as shown

in Listing 4.8:

/*@ requires age >= 18;

@ ensures personal >= 5750;

*/

void taxesCalculation(int age, int income, int personal, int t){

if(age >= 75){ personal = 5980; }

else if(age >= 65){ personal = 5720; }

else { personal = 4335; }

if((age >= 65) && (income > 16800))

{

t = personal - ((income -16800)/2);

if (t > 4335){ personal = t + 2000; }

else { personal = 4335; }

}

}

Listing 4.8: taxes calculation.c

The program in Listing 4.8 has precondition age ≥ 18 and postcondition personal ≥ 5750. Using

chained conditional statements calculates the personal taxes depending on the age of the individual.

The output from GamaSlicer is shown in Listing 4.9

/*@ ghost ; */

if (age >= 75)

{

personal = 5980;

}else{

if (age >= 65)

}

if (

age >= 65)

{

if (income > 16800)

}else{



}

/*@ ghost ; */

Listing 4.9: Output from taxes calculation.c using Poscondition-based slicing

All non conditional statements were sliced except personal 5̄980 as it was expected since the

postcondition is ≥ 5750. One will note that much of conditional statements are not sliced, but its

branches are empty. That happens when an conditional is chained to another conditional and its

branches were also sliced and because slicing a conditional statement is breach of control flow and

if done changes the control flow of the program. On a side note, one can see CIL in action since

it decomposed the conditional statement with the ∧ in two conditional statements chained to one to

another each one with expression composing the separated Logic and.

4.4.2 GamaSlicer Precondition-based slicing

In this subsection we will test the plugin with precondition-based slicing. To invoke the plugin with

precondition-based slicing, the option is -slice-type ”prec”.

In Listing 4.10, it is shown a simple example with precondition x ≥ 0:

/*@ requires x >= 0;

*/

void f(int x){

x = x+100;

x = x-200;

x = x+200;

}

Listing 4.10: pre1.c

Since the last two statements do not violate the final strongest precondition both can be removed,

as it is shown in Listing 4.11 :

/*@ ghost ; */

x += 100;

/*@ ghost ; */

Listing 4.11: Output from pre1.c

The second input, in Listing 4.12 is a more complex one that demonstrates a conditional statement:

/*@ requires x >= 0;

*/



void f(int x){

if(x>0){

x = x+100;

x = x-200;

x = x+200;

}else{

x = x-150;

x = x-100;

x = x+100;

}

}

Listing 4.12: pre2.c

It also has the precondition x ≥ 0 and since the expression in the conditional is the same as the

precondition the second branch should be sliced. The block inside the branch should be sliced as the

first input (shown in Listing 4.10). The output from GamaSlicer is shown in 4.13:

/*@ ghost ; */

if (x > 0)

{

x += 100;

}else{

x -= 150;

}

/*@ ghost ; */

Listing 4.13: Output from pre2.c

As expected the first branch was sliced like the first example (Listing 4.11). All the statements in

the second branch should have been sliced, but the first statement was not. This is due to the prover not

being able assert the validity of the implication of the conditional statement strongest postcondition

with the statement strongest postcondition, although the formula is proven valid by a human. Using

different provers or with different options to assert the validity of the implication will slice all the

statements in the second branch.

Using the previous example of taxes calculation, shown in Listing 4.8, the output from GamaSlicer

using Precondition-based slicing is shown in Listing 4.14

/*@ ghost ; */

/*@ ghost ; */

Listing 4.14: Output from taxes calculation.c using Precondition-based slicing



Remembering that precondition of Listing 4.8 is age ≥ 18, everything is sliced. This is expected

because the precondition was too strong and nothing in the program is relevant to affect that precon-

dition.

4.4.3 GamaSlicer Specification-based slicing

In this last subsection we will test the plugin with Specification-based slicing. To invoke the plugin

with Specification-based slicing, the option is -slice-type ”spec”.

The first example of specification-based slicing like the previous subsections is a simple program

with precondition being the most weak possible (true) and postcondition being x ≥ 100, as shown in

Listing 4.15:

/*@ requires \true;

@ ensures x >= 100;

*/

void f(int x){

x = x*x;

x = x+100;

x = x+50;

}

Listing 4.15: spec1.c

Since the precondition is the most weak of them all, only after the second statement there should

be any slice. The output from GamaSlicer is shown in Listing 4.16

/*@ ghost ; */

x *= x;

x += 100;

/*@ ghost ; */

Listing 4.16: Output from spec1.c

As expected GamaSlicer only sliced the last statement since it didn’t affect the conditions.

The second example, shown in Listing 4.17 of specification-based slicing is a program with a

conditional statement, with precondition y ≥ 10 and postcondition x ≥ 0.

/*@ requires y > 10;

@ ensures x >= 0;

*/

void f(int x,int y){



if(y>0){

x = 100;

x = x+50;

x = x-100;

}else{

x = x-150;

x = x-100;

x = x+100;

}

}

Listing 4.17: spec2.c

In this example we can see clearly the advantage of using specification-based slicing as shown in

Listing 4.18

/*@ ghost ; */

if (y > 0)

{

x = 100;

}else{

x -= 150;

}

/*@ ghost ; */

Listing 4.18: Output from spec2.c

Due to precondition being y ≥ 10 one can assume that the second branch of the conditional state-

ment should be sliced, but like the output in Listing 4.13 the prover is not able to assert the validity of

the formula. The first branch was sliced due to postcondition x ≥ 0 since after the first statement in

the branch this property is already respected.

As with other types of assertion based-slicing the taxes calculation program(shown in Listing 4.8)

was used test specification-based slicing of GamaSlicer:

/*@ ghost ; */

if (age >= 75)

{

personal = 5980;

}else{

if (age >= 65)

}

if (

age >= 65)

{



if (income > 16800)

}else{

}

/*@ ghost ; */

Listing 4.19: Output from taxes calculation.c using Specification-based slicing

The output is the same as Listing 4.9 when using Postcondition-slicing. This is due to preconditon

age ≥ 18, because age is only used in conditional statements and the value of the variable age is never

altered.
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C O N C L U S I O N

This document starts with an overview of Slicing techniques. Then a more detailed explanation of the

several slicing techniques called Assertion-based slicing (Postconditon-based slicing, Precondition-

based slicing and Specification-based slicing) is given.

The intermediate language, CIL was exaplained was well as its importance to Frama-C. After,

Frama-C and its various plugins were explored. Due to lack of documentation, it was hard to find

what kind of slicing is implemented. The slicing plugins do not use semantic information but they

bypass this weakness by running the value analysis plugin first. Slicing plugins are all very similar

which is strange. Frama-C developers seem to use slicing as mean to an end and not slicing as main

feature; that can explain the diversity of slicing plugins.

Frama-C was explored and a plugin that showcases assertion-based slicing techniques was devel-

oped with success. The strengths of assertion-based slicing were shown (being able to slice a program

by its contract) and its limitations (being dependent on provers and their performance) were also

shown.

In Chapter 4 an extensive description of the developed plugin was presented. To develop a Frama-C

plugin it was necessary to learn OCaml language and Frama-C philosophy and architecture. There

were three different approaches to the architecture of the plugin, the first two failed due to the diffi-

culty in using Frama-C WP plugin API, because that plugin was not developed with the idea of being

used in Slicing (for example not being able to provide a proof obligation per statement). That fact

delayed this thesis timeframe, because a Vcgen was developed which was not initially expected. Al-

though the first two approaches failed, the last one was successfully implemented and, as shown by

the examples, GamaSlicer was able to slice several different programs using the program contracts as

slicing criteria. Postcondtion-based slicing, Precondition-based slicing and Specification-based slic-

ing were all implemented with success and their utility in slicing programs was shown. GamaSlicer

is a positive contribution to the Frama-C family of plugins, and shows that Frama-C can actually be

used to perform different kinds of C code analysis. Frama-C developers should improve its documen-

tation and specially its API, which will improve the good reputation that already enjoys and increase

the community of C analyzers around Frama-C. Due to the failure of the two first approaches, there

was not enough time to extend the Vcgen module of GamaSlicer to support dynamic memory, and so

GamaSlicer was not applied to large C unix kernal libraries.
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As future work, GamaSlicer Vcgen module can be extended to support dynamic memory. Also a

Graphic User Interface shall be developed to shown more easily the slicegraph and its different slices.
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