
Universidade do Minho

Escola de Engenharia

Tiago Alves Carção
Spectrum-based Energy Leak
Localization

Outubro 2014

This work is funded by the ERDF through the Programme COMPETE and by the Por-
tuguese Government through FCT - Foundation for Science and Technology, within pro-
jects: FCOMP-01-0124-FEDER-020484, FCOMP-01-0124-FEDER-022701, and grant ref.
BI2-2013 PTDC/EIA-CCO/116796/2010.

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Tiago Alves Carção
Spectrum-based Energy Leak
Localization

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor Doutor João Saraiva!
Professor Doutor Jácome Cunha

Outubro 2014

Acknowledgements

I want to thank both of my supervisors, Prof. João Saraiva and Prof. Jácome Cunha,
due to their knowledge, dedication, experience, professionalism, innovative spirit, and their
constant ability to discuss every detail throughout my Thesis, helped me greatly.

I also want to thank all of the members of the GreenLab @ Uminho where with the
weekly meetings were able to provide useful contributions in this Thesis development.

To Joana, the person that was always on my side throughout this Thesis, that supported
me in the hardest moments always with an incentive word, and undoubtedly without I could
not finish this path. Thank you so much.

To my laboratory buddies, Claudio and Rui that had spent some great time with me,
in Romania, Italy, The Netherlands, Póvoa de Varzim and Australia.

To all of my friends, specially, David and Casimiro that always provide such a good and
fun time when I am with them, and João and Daniel that are always a source of interesting
and enriching discussions.

To my little brother that is not so little anymore, a big thanks for being a person that
I can always count on and discuss the various subjects of life and sports.

And finally, I would like to thank my parents that always supported me emotionally in
my entire life, and gave me the opportunity to be who I am today. Thank you.

iii

iv

Abstract

For the past few years, we have begun to witness an exponential growth in the inform-

ation and communication technologies (ICT) sector. While undoubtedly a milestone, all of

this occurs at the expense of high energy costs needed to supply servers, data centers, and

any use of computers. Associated with these high energy costs is the emission of greenhouse

gases. These two issues have become major problems in society. The ICT sector contributes

to 7% of the overall energy consumption, with 50% of the energy costs of an organization

being attributed to the IT departments.

The rapid growth of internet-based businesses using computers, often referred to as

“cloud computing”, and the costs associated with the energy to run the IT infrastructure

are the main drivers of green computing.

Most of measures taken to address the hight level of energy consumption have been

on the hardware side. But, eventually, by physical limitations or not, the software will

become the target (Green Software Computing). There are studies already that prove that

developers are aware of energy usage on software issue, but complain about the lack of tools

to aid the energy improvement process.

As a way to get software energy efficient, it is necessary to provide tools for the software

developer to be aware of the energy footprint that he/she is creating with his/her application.

This thesis proposes and implements a methodology to analyze the software energy

consumption. In one of the phases of the methodology, it also defines a technique that with

uses a model to analyze and identify energy leaks in the software. This work is validated by

comparing with other work already done.

With this results, one intendeds to provide some help to the development phase and

to generate more energy efficient programs that will have less energy costs associated with,

while support practices that promote and contribute to sustainability.

v

vi

Resumo

Localização de falhas de energia baseada no espectro do programa

Nos últimos anos, temos vindo a assistir a um crescimento exponencial no sector das

tecnologias de comunicação e informação (TIC). Contudo, apesar de, inquestionavelmente,

se tratar um marco importante, tudo isto ocorre à custa de altos gastos de energia necessários

para alimentar servidores, centros de dados e qualquer uso de computadores.

Paralelamente, associado aos altos custos de energia estão as emissões dos gases de efeito

de estufa. Estas duas questões têm-se tornado grandes problemas da sociedade. O sector das

TIC contribúı para 7% do consumo global de energia, o que representa, para o departamento

TI de uma organização, 50% de custos, associados, à energia.

O rápido crescimento de negócios baseados na internet que utilizam computadores, fre-

quentemente referidos como ”cloud computing” e os custos associados à energia necessária

para executar uma infra-estrutura TI são os principais promotores do “green computing”.

A maioria das medidas adotadas para resolver o ńıvel elevado do consumo de energia,

têm sido feitas do lado do hardware. Existem alguns estudos que comprovam que os desen-

volvedores estão cientes do consumo de energia associado ao software, mas queixam-se da

falta de ferramentas que auxiliem o processo de melhorar energeticamente as aplicações.

Para se obter software energeticamente eficiente, é necessário fornecer, ao desenvolvedor,

ferramentas que lhe permita estar consciente da “pegada” energética que está a ser criada

pela sua aplicação.

Esta tese propõe e implementa uma metodologia para analisar o consumo de energia do

software. Numa das fases desta metodologia, também define uma técnica que utiliza um

modelo para analisar e identificar falhas energéticas no software. Este trabalho é validado

por comparação com outro trabalho já efetuado.

Com estes resultados, pretende-se contribuir com ajuda para a fase de desenvolvimento e

para gerar programas mais eficientes a ńıvel da energia que terão menores custos de energia

associados, ajudando a práticas que promovem e contribuem para a sustentabilidade.

vii

viii

Contents

Contents

1. Introduction 1

1.1. Research Questions . 3

1.2. The solution . 3

1.3. Structure of the Thesis . 3

2. Green Computing 5

2.1. Green Software Computing . 7

3. Fault Localization Techniques 13

3.1. Sepectrum-based Fault Localization . 14

4. Source Code Energy Consumption Analysis 17

5. Instrumentation and Results Treatment 21

5.1. Instrumentation . 21

5.1.1. Case Study: GraphViz . 23

5.1.2. The Influence of CPU Execution on the Energy Consumption Values 24

5.2. Results Treatment . 25

6. Results analysis: Spectrum-based Energy Leak Localization 29

6.1. An example . 36

7. Spectrum-based Energy Leak Localization: The Tool 41

7.1. The Instrumentation . 42

7.2. The Results Treatment . 45

7.3. Results Analysis . 46

7.4. How to use the tool . 48

8. Validation 51

ix

Contents

9. Conclusion 55

9.1. Research Questions Answered . 56

9.2. Other contributions . 56

9.3. Future Work . 57

Appendices 63

A. ANTLR Grammar of Results treatment 63

B. ANTLR Grammar of SELL Analysis 65

C. Perl script to apply instrumentation to every C module 67

D. Clang C++ program to instrumentate a C program with energy instructions 69

x

Contents

Acronyms

API Application Programming Interface

IT Information Technology

ICT Information and Communication Technologies

IDE Integrated Development Environment

MBD Model-based Diagnosis

MHS Minimum Hit-set

RAPL Running Average Power Limit

SFL Spectrum-based Fault Localization

xi

Contents

xii

List of Figures

List of Figures

1. Energy Star certification symbol . 5

2. SEFLab infrastructure [Ferreira et al., 2013] 9

3. SEEP technique that tries to bring energetic advices to developers develop-

ment process [Hönig et al., 2013] . 9

4. A framework to retrieve energy consumption values named JalenUnit [Noured-

dine et al., 2014] . 10

5. The spectrum-based fault localization model (A,e) 15

6. Result of SFL technique applied to Listing 1, indicating c3 as the faulty com-

ponent . 16

7. Process of instrumentation . 18

8. Process of collecting results . 18

9. Process of analysing results . 19

10. Activity Diagram illustrating the Software Energy Analysis Technique 19

11. A program with its Abstract Syntax Tree . 22

12. Generic AST instrumented with nodes to extract energy information 22

13. Energy consumption of Graphviz functions 23

14. Energy consumption of Graphviz modules 24

15. Collected data node’s information . 26

16. An example tree of a test’s data collected structure 27

17. The spectrum-based energy leak localization input matrix (A) 30

18. The spectrum-based energy leak localization input matrix (A) 32

19. A visual certification that represents the composition of the different modules

to create a full process. 41

20. Deployment Diagram of the tool developed 42

21. AST of a program with a function granularity, each function is instrumented

to extract energy information . 43

22. Input grammar of the results treatment phase 45

23. Architecture of the Results Treatment Module 47

xiii

List of Figures

24. Input grammar of the results analysis phase 48

25. Architecture of the System . 49

xiv

Listings

Listings

1. Instrumented program to the block level . 14

2. Generic instrumented C program with information to log energy consumption 44

3. Example of an input for the Results Treatment phase 46

4. ”ANTLR Grammar of Results treatment”style 63

5. ”ANTLR Grammar of SELL Analysis” . 65

6. ”Perl script to apply instrumentation to every C module” 67

7. ”Clang C++ program to instrumentate a C program with energy instructions” 69

xv

Listings

xvi

1 INTRODUCTION

1. Introduction

Currently, we are witnessing a technological era where information media has grown

exponentially, with billions of users. Almost everyone has access to computers, and the

Internet is accessible virtually anywhere, which is undoubtedly a milestone in the field of

content delivery [Guelzim and Obaidat, 2013].

The problem with this globalization is that all of this occurs at the expense of energy

consumption that is the necessary and indispensable element to supply servers, data cen-

ters and any use of computers [Guelzim and Obaidat, 2013]. The energy required to meet

the growing demand for power to run and storage, grows faster along with the widespread

diffusion of cloud services over the internet [Ricciardi et al., 2013]. In this way, the fast

and growing power consumption attracted the attention of governments, industry and aca-

demia [Zhang and Ansari, 2013]. Also, associated with this energy consumption, is the

emission of greenhouse gases. These two issues are becoming a major problem in the society

of information and communication [Ricciardi et al., 2013].

The information and communication technologies (ICTs) contribute 7% to the overall

world energy consumption [Vereecken et al., 2010]. This percentage has the tendency to

increase further, since the traditional technologies are migrating data from local servers to

remote servers and data centers, forming a large number of clouds in the Internet infrastruc-

ture [Mouftah and Kantarci, 2013].

The energy consumption has an immediate impact on the business value. In fact, the

energy costs associated with information technology departments constitute approximately

50% of the overall costs of the entire organizations [Harmon and Auseklis, 2009]. There is

also electricity that is wasted, and potentially avoidable, that is leading to high operating

costs [Zhang and Ansari, 2013]. Thus, this raises the need and expectation of reducing the

energy costs and the impact on the environment, by directing attention to these issues [Har-

mon and Auseklis, 2009].

The energy efficiency requires a thorough investigation to discover and understand

everything that is related with it [Zhang and Ansari, 2013]. ICT services require the integra-

tion of sustainable practices for green computing to meet sustainability requirements [Har-

1

1 INTRODUCTION

mon and Auseklis, 2009]. This term, green computing, refers to the practice of using

computing resources more efficiently, maintaining or increasing their overall performance.

Although the original conceptual already exists for two decades now, only since the last

decade has received more attention [Harmon and Auseklis, 2009].

Thus, green computing paradigms are emerging to reduce energy consumption, the

resulting emissions of greenhouse gases and operating costs [Ricciardi et al., 2013], and trying

to find solutions that make all these systems energy efficient [Mouftah and Kantarci, 2013].

Increasingly, the industry, in an attempt to reduce costs and energy consumption, is be-

coming more active in the area of green computing. For example, Symantec, using the mon-

itoring of their resources, found there were some resources that were being squandered and

by implementing measures to reduce this waste they saved close to $2 million and more than

6 million kilowatts of energy [Symantec, 2008b,a]. Google also made some changes, using

customized cooling systems in their data centers improved the energy consumption [Google,

2014].

New challenges, research, and discussions are being addressed to enable new models and

solutions that consider energy as an additional constraint, minimizing its consumption [Ric-

ciardi et al., 2013]. This thesis aims to contribute to help to solve this issue, with a contri-

bution that is useful and that enables a society of growth and prosperity eco-sustainable.

This project intends to address in detail green computing in the energy consumption of

software. Nowadays when one says that a program is efficient, the term efficient encapsulates

the notion that software is fast to execute and performs the task without requiring a lot of

resources. However, when it comes to efficiency, the efficiency can also be energetic, and it

is exactly this notion that one need to change in the consciousness of the programmer, the

notion that it is also possible to have an efficient software in terms of energy.

All the hardware components of ICTs consume a constant power consumption to be

running. When they are performing operations they increase this power consumption. This

operations are directly related to the software needs what makes the study of energy con-

sumption quite pertinent in software. Surely related with the increase of power consumption

in the hardware components consumption that software provoques, up to 90% of the energy

used by ICT can be attributed to software applications running on them [Standard, 2013].

2

1 INTRODUCTION

The design of software has significant impact on the amount of energy used [Standard, 2013].

So it is very important that software engineers are aware of the consumed energy by the

software they designed, in order to design more efficiently in regards to energy consumption,

knowing precisely where the high consumption parts are and how to correct them.

1.1. Research Questions

1. Can we define a methodology to analyze the energy consumption of software source code?

2. Is it possible to adapt a purpose fault localization algorithm to the context of energy
consumption?

3. Can we find energy leaks in software source code?

1.2. The solution

In this thesis the objective was to create a technique that could analyze a program’s

execution with a test suit and discover the energy leaks present in the program. With

this objective in mind a methodology to accomplish this goal was elaborated and defined.

This methodology has three different phases. For each of these phases, a sub-technique

was developed. In the first phase the software code is prepared to extract the execution

information of each program’s constituent. This information is structured and represents

the constituent energy consumption, the time of its execution and the number of times it

was used. After this process the software is compiled and ran with a test suit. In the

following phase, the energy results produced by the program’s execution are collected and

treated and the information is then passed to the final phase. In the final phase and using

a technique based in the programs spectrum and its execution data, the data is evaluated

and the information about which are the energy leaks is obtained. This methodology in

conjunction with the three phases completely defined, accomplishes the objective previously

set.

3

1 INTRODUCTION

1.3. Structure of the Thesis

This Thesis is organized as follows:

Section 2 - Green Computing - contains the State of the Art, with information on

Green Computing evolution and the emerging area of Green Software Computing.

Section 4 - Source Code Energy Consumption Analysis - contains the definition of a

methodology to analyze program’s source code energy consumption

Section 5 - Instrumentation and Results Treatment - specifies in detail the first and

second phases, the instrumentation and results treatment, of the methodology presen-

ted in Section 4.

Section 6 - Results analysis: Spectrum-based Energy Leak Localization - contains

information about the adaptation of a fault localization technique in the context of

energy usage, third phase of the methodology defined in Section 4.

Section 7 - Spectrum-based Energy Leak Localization: The Tool - describes and show-

cases the tool developed, which implements all the techniques presented in Sections 5

and 6.

Section 8 - Validation - contains the process of validation that was made to the

methodology and consequent technique.

Section 9 - Conclusion - concludes this Thesis with comments on the work done,

results, and future work, along with answers to our Research Questions.

4

2 GREEN COMPUTING

2. Green Computing

The concept of green computing despite being a hot topic is a relatively old concept. It

has emerged around the 90s when it was raised the awareness of the energy that was being

used by IT devices, which led the IT community to take some measures. One of the first

measures taken under green computing was the assignment of a “certificate” to products that

had a concern in terms of energy consumption minimizing it while maximizing efficiency.

This certificate (Figure 1) was applied to different peripherals, computers, monitors, printers,

etc. One of the first real results of this awareness was the appearance of the stand-by

functionality in the devices that made them entering in sleep mode after a period of inactivity.

Figure 1: Energy Star certification symbol

Despite the fact that this awareness already started 20 years ago, only just more recently,

in the last decade, has started to exist a more active concern with the reduction of energy

usage.

The costs of energy consumption in the field of ICTs will be increasing over the next 20

years [Rühl et al., 2012] which alone is a great incentive for green practices. The ICT with

its intrinsic properties and with their use, helps to reduce the energy consumption in other

sectors. Nonetheless, it has a forecast increase in their energy consumption. Its share of 7%

in global energy consumption will be increased to more than 14.5% [Vereecken et al., 2010].

Recently, one has witnessed an exponential growth of IT devices. Data centers are

nowadays a common term in the vocabulary of informatics and all the big tech companies

have this kind of infrastructure. Although these infrastructures endure what is widely known

as the cloud, and upon all the benefits that this feature brings, maintaining data centers

5

2 GREEN COMPUTING

have substantial energy costs of supply (huge set of machines and devices as well as cooling

systems). Adding up to the costs, there is still a large amount of greenhouse gases in this

eco-system. With what is expected to be a future reality very close, the internet of things,

it is expected that the network of devices present increases significantly. That fact itself will

imply that there is an infrastructure capable of handling this information increase which

will naturally result in an boost of global energy consumption.

With these predictions and conditions, countless associations begun to focus their atten-

tion on this issue. A number of organizations, including the USA’s Environmental Protection

Agency (EPA), have identified a number of processes, optimizations and energy alternatives

in data centers and even in home appliances [Fanara et al., 2009]. Google was another of

the organizations that included in its research the topic of green computing and has already

achieved some results [Google, 2014].

Another aspect of the ITs is the use of personal computers, and recently (and exponen-

tially growing) smartphones and tablets. These devices have an intrinsic concern for energy

usage since their power supply is taken from a battery which has a finite limited capacity.

The less energy consuming components of these devices, the less power will be consumed,

and therefore it is possible to use these devices during a longer period of time.

Having regard to energy concerns, version after version, Intel, the largest producer of

processors for computers, smartphones, tablets, etc. has had a concern in obtaining max-

imum efficiency while lowering the power consumption of its processors. This development

has permitted after each release, on the one hand to reduce the energy consumption in the

use of processors, and on the other hand extend the usage time of portable battery powered

devices.

The interest in this area exists and has strong promoters which is already remarkable.

However, one can not ignore the fact that the ITs consist of two artifacts of different types:

hardware and software. If on one side a lot has been done in order to decrease the power

consumption of the hardware, as already shown – which is understandable since the hardware

change does not alter the normal functioning of the software and allows immediate energy

savings to be made – at some point, either by physical limitations or because more needs to

be done to reduce the energy usage, software will be an obvious target.

6

2 GREEN COMPUTING

2.1. Green Software Computing

This concern with the software has already started to happen although on a smaller

scale when compared to the hardware, and has already been dubbed the Green Software
Computing. Slowly we start to see some initiatives from companies that support some

of the world’s major operating systems such as Apple’s Mac OS X and iOS, and Google

with Android. On one hand Apple in its most recent versions of the operating system

for desktop (Mac OS X), by using only the operating system software, could improve the

energy performance of their computers, thus allowing the battery life to be prolonged, in

some cases, up to 4 hours [Brownlee, 2013]. Regarding to mobile OS, iOS and Android

devices already have tools that allow the user to check the battery consumption profile of

applications. Apple already allows its developers in its development IDE (Xcode) to make

an energy profiling to their applications. Android in its next version will also bring energy

profiling tools aimed at developers.

A study also proved that the developers are aware and interested in the green software

domain [Pinto et al., 2014]. This study demonstrated that there is a community interest in

learning more about this area and trying to find out what may be the causes of high energy

consumption and possible ways to address them. Also note that developers feel there is a

lack of tools that support this identification process and optimization.

To make greener software, besides requiring the energy consumption values, one also

wants to know what zones of code are hotspots, or areas where the power consumption is

excessive. These areas can be seen as red zones and are the firsts to be investigated.

In order to proceed with the identification of these red areas, one needs to be able to

measure the energy consumption. As mentioned, research in Green Software Computing is

still in an early stage and therefore the tools that exist to measure this consumption are

incomplete and insufficient. To overcome this fact in some cases estimates are used. Some

of these estimates are not reliable and are not precise. Although external devices can be

used, they will only allow to measure the total power consumption for a period of time,

this option may have read errors that are always associated with the reading of values in

external devices. Adding to these difficulties, there is also the fact that the measurement of

7

2 GREEN COMPUTING

consumption is done on the whole system and not only on the desired applications.

Intel, as a manufacturer of processors, and also as a promoter of Green Computing,

since 2012 began to worry about providing tools to developers to gain access to energy

consumption by existent on-chip components (either the processor, DRAM or even on-

chip GPU). This tool is provided as an API and is named Running Average Power Limit

(RAPL) Rotem et al. [2012]. The RAPL is an interface that allows system calls to consult

the values of energy consumed by each component. These intakes are updated by the

processor that will from time to time update some special registers in memory reserved for

this purpose. Thus, by reading these registers one can read the recorded energy consumption.

There are studies that prove that the measurements made by this interface are accurate and

are trustworthy [Hähnel et al., 2012]. However, RAPL only reports on-chip consumption

leaving aside peripherals such as the hard drive, and non-integrated GPUs and motherboard.

To address this lack of information, the academia started to construct their own tools

that allows them to see the power consumption.

As previously said, the tools to run energy profiling are short in number and often lack

the desired accuracy. Because of this, several laboratories have developed their own methods

for monitoring power consumption. Software Improvement Group (SIG), a company that

is linked to qualitative analysis of software, in collaboration with Amsterdam University,

developed a laboratory related to energy. This laboratory, among other contributions to the

field, [Arnoldus et al., 2013; Grosskop and Visser, 2013; Grosskop, 2013], has developed a

piece of hardware that can be connected to any computer hardware component and also

connected to a device (DAQ) that will produce as output the power consumption of the

components connected to it (Figure 2) [Ferreira et al., 2013]. Li et al. [2014] also developed

a similar technique but for mobile devices. One can also use hybrid variants for measuring

the power consumption: Li et al. [2013] showed that combining hardware analysis based in

power measurements, and software statistical modeling, at least in Android, is possible to

calculate values of the energy consumption’s source line.

Measuring the energy, which can be done using external or internal devices, and with a

higher/lower level of refinement, some contributions have already been made.

Using a model-based policy, Zhang et al. [2010] during his PhD developed an applica-

8

2 GREEN COMPUTING

Figure 2: SEFLab infrastructure [Ferreira et al., 2013]

tion for Android that allows any application’s energy consumption to be monitored. The

limitations of this application are largely associated with the problems of using models,

i.e., the need to calibrate the model for the environment where the application is running.

Thus Couto [2014], attempts to solve this and other limitations by creating a dynamically

calibration of the models for any smartphone.

Hönig et al. [2013] published a technique that uses a model-based technique to generate

information about software energy consumption. This technique is presented in Figure 3,

where using symbolic execution and execution knowledge stored in a database, this technique

tries to predict energy consumption of a particular program.

Also in an attempt to provide energy information for a particular program, Noureddine

et al. [2014] developed a technique for the instrumentation and collection of the energy usage

data in Java (JalenUnit, as seen in Figure 4), and presented an approach to analyze the power

consumption of a method by varying the method’s data input.

One of the current practices in the development of applications is, before publishing

them to the public, run an obfuscation tool on the source code trying to deter copying of

software. Using this as motivation, Sahin et al. [2011] investigated and demonstrated that

obfuscation has a significant statistical impact and is more likely to increase the energy

usage. These conclusions are an indicator that the way the code is written has an influence

9

2 GREEN COMPUTING

Figure 3: SEEP technique that tries to bring energetic advices to developers development pro-
cess [Hönig et al., 2013]

Figure 4: A framework to retrieve energy consumption values named JalenUnit [Noureddine et al.,
2014]

on energy consumption.

Gutiérrez et al. [2014] did a energy consumption study in multiple Java Collections.

They produced as results what were the collections that had higher intakes of energy or that

were more energetically efficient. In conjunction with this analysis, they also developed a

framework which taking into account the data obtained, refactors the java source code to

use the collections that statistically consume less energy.

A common practice in the software world, the use of patterns, was also questioned at

the energy level. Vásquez et al. [2014] presented a qualitative and quantitative study of the

high energy consumption in API calls and patterns used in Android. Their findings indicate

10

2 GREEN COMPUTING

that there are patterns that have a significant impact on the energy consumption, such as

the Model-View-Controller pattern. Sahin et al. [2012] also did an analysis of the impact on

the energy usage in software design patterns.

11

2 GREEN COMPUTING

12

3 FAULT LOCALIZATION TECHNIQUES

3. Fault Localization Techniques

It is becoming more common the IDEs (integrated development environment) offer tools

to analyze the values of power consumption of the programs being written. Although this

information is already provided to the users, the notion of what it means and what relevance

that consumption of certain components have in relation to consumption of the program is

yet to be determined.

In this thesis, a set of techniques and tools will be proposed to determine red areas in

the software energy consumption. In this context, a parallel is made between the detection

of anomalies in energy consumption in software during execution of the program and the de-

tection of faults in the execution of a program. Establishing this parallelism, fault detection

techniques, used to investigate the failures in the execution of a program, may be adapted

to be used in the analysis of energy consumption.

When it comes to identify faults in programs there are two main analysis: model-based

or statistically. The model-based analysis is an analysis that allows us to extract accurate

conclusions about failures that can be happening. However, and because in a model we

have to define the complete system, when applied to energy, at least for now, it would

be impractical to obtain an energy model of the software. It would be necessary to take

into account the system settings and all the implications that a change in the model would

lead to energetically. The statistical analysis, based on the implementation of the program

using the source code, does not allow taking totally accurate conclusions, but allows useful

information to be extracted with relative ease.

So, knowing the two main analysis, the statistical analysis technique of fault localization

is probably the most appropriate. Since its foundations rely on an analysis of the program

based on its implementation (in its source code), one does not need to parameterize the

entire system. Within the statistical analysis techniques for locating faults, the technique

of using the program spectrum is more efficient than the use of dynamic slicing [Korel and

Laski, 1988] and therefore the technique that stands out as candidate, with very good results

in this field [Abreu et al., 2009], is the Spectrum-based based Fault Localization technique

(SFL).

13

3 FAULT LOCALIZATION TECHNIQUES

3.1. Sepectrum-based Fault Localization

A program spectrum [Reps et al., 1997] is a set of information of data run-time execution

of a program. There are different types of program spectrum that can be used [Harrold et al.,

2000]. For example, lets consider the use of the block-hit type, in the Listing 1. One can

consult what is actually considered as a block-hit in the program execution. The spectrum

of a block-hit program is a set of flags that will reflect if the condition of the block is used

or not.

Listing 1: Instrumented program to the block level

int largestNumberAmongThreeNumbers(int a, int b, int c) {

int res;

if (a > b) {

// block (c1)

if (a > c) {

// block (c2)

res = a;

}

else {

//bock (c3)

res = b;

}

}

else {

// block (c4)

if (b > c) {

// block (c5)

res = b;

}

else {

// block (c6)

res = c;

}

}

return res;

}

In SFL, the hit spectrum is used to build a matrix A, of N ×M , where the M columns

represent the different parts of the program during N executions (independent, i.e. the

14

3 FAULT LOCALIZATION TECHNIQUES

error
M components detection

N spectra


a11 a12 · · · a1M

a21 a22 · · · a2M
...

...
. . .

...
aN1 aN2 · · · aNM



e1

e2
...
eN


Figure 5: The spectrum-based fault localization model (A,e)

result of each execution does not influence the next) as can be seen in Figure 5. In this

hit spectrum, the value 0 means that such part was not executed and the value 1 means it

was. The SFL representation also presents one column vector corresponding to the errors,

e. This vector represents all errors, which is the final disclosure of the existence of errors

in the execution of the program where the value 0 means that no error occurred and 1

otherwise. The objective of spectrum-based fault localization is trying to find which parts

of the program have a column that best explains the existence of the vector of errors. This

similarity of vectors is quantified by coefficients of similarity [Jain and Dubes, 1988]. The

existing test vector can be obtained in different ways. In SFL, there is the notion of an

oracle that enables the vector error to be generated with the consultation of the oracle state.

This oracle, in the case of detecting faults in a program, can be seen as the supposed output

that the program may have. There may also be situations in which this oracle is not easily

determined or given and to be used it must be generated, using other inherent techniques

in the SFL domain.

Given the coefficients of similarity existing in SFL techniques the best performing coef-

ficient is the Ochiai [Abreu et al., 2006]

SO =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where n11(j) is the number of failed runs where part j was involved, n10(j) is the number

of passed runs where part j was involved, n01(j) is the number of failed runs where part j

was not involved and n00(j) is the number of passed runs where part j was not involved.

15

3 FAULT LOCALIZATION TECHNIQUES

In the case of coefficients of similarity, it is normal that a value closer to 1 means that

this vector is closer to explain the result of the vector of errors. To better understand the

segmentation-based fault localization technique an example will be used. Figure 6 presents

the values of the Ochiai coefficients calculated for each M column vector, of applying the

SFL technique to the program shown in Listing 1 with the inputs 〈2, 4, 1〉, 〈5, 3, 1〉, 〈5, 2, 7〉,
〈3, 9, 12〉, 〈1, 3, 1〉 and 〈2, 1, 4〉 and with the outputs 4, 5, 7, 12, 3 and 4 respectively.

c1 c2 c3 c4 c5 c6 e
0 0 0 1 1 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 1
0 0 0 1 0 1 0
0 0 0 1 1 0 0
1 0 1 0 0 0 1

n11(j) 2 0 2 0 0 0
n10(j) 1 1 0 3 2 1
n01(j) 0 2 0 2 2 2

sO(j) 0.82 0.0 1.0 0.0 0.0 0.0

Figure 6: Result of SFL technique applied to Listing 1, indicating c3 as the faulty component

The last row of the Figure 6 indicates that the component 3 (c3) has the highest probab-

ility of being faulty, and the component 1 (c1) is the closest second. In fact, if we consult the

program in Listing 1 we can see that the block c3 has an error, because it doesn’t compare

the value of b with c which will lead to failure for some inputs. The fact that c1 has such a

hight probability can be explained because this component enclosures the faulty component

and so, will also fail for some inputs.

16

4 SOURCE CODE ENERGY CONSUMPTION ANALYSIS

4. Source Code Energy Consumption Analysis

The process of energy analysis is dependent on the approach that one wants to define.

The aim of this thesis is to conduct an energy consumption analysis of the software source

code, so this process will focus on the source code level. The process takes as input a

program yet to be compiled and a set of program tests, and provides information about the

program’s energy consumption.

What is proposed here can be seen as a generic methodology to be followed for the

energy usage analysis on an application’s source code. The method is generic and therefore

can be applied to any language/programming paradigm.

The basis of this methodology is the methodology used in the SFL, i.e., we have a

spectrum of a program that we want to identify in different tests in order to draw conclusions.

However, the methodology defined here differs somewhat from the SFL approach. Because

this is an energy consumption analysis the data collected must be more informative about

the program’s execution. This is why, at the end of the executions where it will exist

the execution data non-structured, this data should be structured hierarchically so one can

analyze it. After having this execution information, as in SFL technique, it is analyzed and

conclusions are extracted.

In the proposed methodology, one can identify three distinct steps:

1. Instrumentation

2. Results Treatment

3. Results Analysis.

Initially, this methodology has as input the source code of the program. This source code

will be instrumented and instructions that will extract the trace of program execution and

relate energy consumption to the source code will be added. To make this instrumentation

it will be necessary to define which are the components (packages/namespaces, function-

s/methods, the code block, the line of source code, etc.) to be instrumented and choose

which tool will be used to perform the instrumentation. After this step, the code has to

17

4 SOURCE CODE ENERGY CONSUMPTION ANALYSIS

be compiled and then executed. To fulfill the needs of running the program with different

inputs it is fundamental to have a set of tests to run. Thus, compiling the code and running

the program’s test suit, one can obtain the energy consumption information produced by

each test (Figure 7).

Source Code

Energy Instrumentation Source Code Instrumented

Compile & Run
Execution Data

Tests

Figure 7: Process of instrumentation

In the next phase, and after obtaining the program’s execution information of the differ-

ent tests, it is necessary to structure these results. This structuring of the results is essential

because, if by one side, the execution spectrum is needed, by the other side, in the context

of energy consumption analysis the trace of execution containing the call hierarchy of com-

ponents with the energy values is very informative (number of calls, energy consumption

associated with the component and its derivatives, runtime, etc.). This process transforms

the execution results and produces data in a format that can be fed into the following phase

(Figure 8).

Execution Data Process Results Energy Data

Figure 8: Process of collecting results

The data analysis will occur in the next phase. This analysis will try to relate the source

code energy consumption with the data collected. After drawing conclusions about this

data, it will be necessary to produce a report explaining the outcome from the analysis. So,

at the end of this methodology as an output there will be a report with information about

the analysis (Figure 9).

18

4 SOURCE CODE ENERGY CONSUMPTION ANALYSIS

Energy Data Analyze Results Produce Report

Report

Figure 9: Process of analysing results

The entire process with this three phases is completely defined and can be seen in

Figure 10.

Results AnalysisResults TreatmentInstrumentation

Source Code

Energy Instrumentation

Source Code Instrumented

Compile & Run

Execution Data Process Results

Energy Data Analyze Results Produce Report

Tests

Figure 10: Activity Diagram illustrating the Software Energy Analysis Technique

19

4 SOURCE CODE ENERGY CONSUMPTION ANALYSIS

20

5 INSTRUMENTATION AND RESULTS TREATMENT

5. Instrumentation and Results Treatment

Throughout the rest of this dissertation we will be diving into each phase of the meth-

odology defined in Section 4. In this section the first phase will be addressed.

5.1. Instrumentation

As seen in Section 3.1, when one wants to identify the spectrum of a program imple-

mentation it must to specify the level on where the analysis will be performed. Depending

on the programming language where the target program was developed, this granularity

may vary. On one hand, in the C language, one can have Libraries > Files > Functions >

Block of code > Line of code, on the other hand, in Java one can have Packages > Classes

> Methods > Block code > Line of code, and in other languages there will also exist other

components. Consequently, for each language will always be necessary to define the desired

granularity.

After having defined the level of source code that one wants to retrieve the information,

one also has to define the desired information to collect with the instrumentation. The

process final goal is to analyze the program’s energy consumption and therefore the logic

data to be gathered is the information related with the energy consumption of the computer

hardware components. As examples of hardware components there are the CPU, cache,

DRAM, disk, fans, graphics card, motherboard, and other machine specific peripherals, and

the program specific components (for example, the use of the mouse in a specific program).

To complement this process, there is information that can be useful to retrieve conclusions

about the profiling of energy: execution time, CPU frequency, CPU temperature, etc..

With the level of source code granularity and the information to collect chosen the next

step is to perform the instrumentation. To do the instrumentation one can start by write

by hand on the source code the instructions to collect the data after the execution, but

this is an inefficient, long and not scalable process. So, in order to obtain an automated

instrumentation, a structure that represents the program and can be modified to contain

the collecting instructions must be defined. The use of such structure is a technique that

modern compilers already use in their compiling processes and is called Abstract Syntax

21

5 INSTRUMENTATION AND RESULTS TREATMENT

Tree (AST). The AST represents the constituents of a program in a hierarchical manner

(Figure 11). This structure allows changes by using operations without having concerns

about the syntax structure of the source code file. This operations can be: add, remove or

update nodes.

x := a + b;

y := a * b;

while (y > a) {

a := a + 1;

x := a + b;

}

Program

:=

x +

a b

. . . while

>

y a

block

:=

a +

a 1

. . .

Figure 11: A program with its Abstract Syntax Tree

Having to collect energy information among other information, one needs to establish a

source of this information. The source of this information can vary. It can be an external

device that measures the overall energy consumption, a set of system calls that allow greater

precision or even a pre-defined model. To the instrumentation here defined it is assumed

that there is a framework that allows to accurately measure the power consumption within

a certain range (depending on the granularity level). So, to define this range, reading and

printing information nodes are both added before and after the granularity level content. An

generic AST instrumented example can be seen in Figure 12. The syntax of this information

Program

component 1

start print . . . stop print

. . . component n

start print . . . stop print

Figure 12: Generic AST instrumented with nodes to extract energy information

22

5 INSTRUMENTATION AND RESULTS TREATMENT

generated from all components has to be produced in a formatted way because it will serve

as input in the next phase (Section 5.2).

After the instrumentation on the AST is made, the software source code has to be

compiled, but now containing the needed instructions to collect the energy usage. After the

compilation, the compiled program must be ran with a set of different inputs (test suit),

that will test the program code. The more diverse and complete in terms of coverage of the

program are these tests, the better analysis of the information extracted from the software

implementation can be made.

5.1.1. Case Study: GraphViz

As a initial proof of concept and to apply the instrumentation in a robust application

fully established, it was decided to choose a tool that had heavy processes and did some

intensive processing to generate its output. The chosen tool was an open-source tool and

is called GraphViz1. GraphViz is a software package that enables the design of graphs

which then processes and generates the corresponding view. The Algorithm 1 (Section 7)

was applied to the software package with about 18 tests. These tests ran GraphViz with

different generation flags and different input graphs. In Figures 13 and 14 one can see the

results (for the sake of visualization, some functions and tests are omitted).

Figure 13: Energy consumption of Graphviz functions

These graphs show that different inputs and different flags have different energy con-

sumption values which by itself is and indicator that an analysis can be made with different

1www.graphviz.org

23

www.graphviz.org

5 INSTRUMENTATION AND RESULTS TREATMENT

tests to extract energy usage information. This was one of the first results that motivated

further research.

Figure 14: Energy consumption of Graphviz modules

5.1.2. The Influence of CPU Execution on the Energy Consumption Values

During the instrumentation and data collecting of the GraphViz application several tests

were made. During this tests it was discovered that for some functions, the consumption

values would increase in about 1000%. In a quick checkout to discover what was happening

it was evident that something went wrong, and it was not a bad design of the function

code. What was discovered was that when the program was executing, if the processor

was working on one particular function that demanded a large computational resources, the

processor would be put at 100% of its capabilities. When the CPU is running at full power it

consumes more energy. Therefore the functions processed by the CPU when it was working

at the maximum level had higher consumption values. The fact that this was happening had

an impact on other functions besides the resource demanding ones. The functions that lead

to this suspicion in fact, were being influenced because when the processor ended processing

the resource demanding functions and started processing other functions, it was still working

at high level when this was probably not needed.

To try to obtain more information about this situation, it was made some research.

The demanding resources functions were identified and a new instrumentation process was

24

5 INSTRUMENTATION AND RESULTS TREATMENT

made. In this new instrumentation and besides the instructions to collect the energy usage,

a instruction to force the process to pause was added. After compiling this new version

and execute it again, the new data was collected. The results of this instrumentation were

somewhat positive but not conclusive:

• 19% of the functions that were firstly influenced had their consumption back on the

normal values

• 15% of the functions that were firstly influenced increased their overall consumption

values

• in the other cases there was no influence.

Because of this new instrumentation, the time that the program took to execute the input

obviously increased but the energy consumption values were the same as before because the

energy usage was not being tracked while the program was paused. This first results seems

promising and would require more investigation. A more profound investigation on trying

to find a win-win situation in the execution time and the energy consumption levels should

be made. As this goes out of the scope of this thesis and due to time limits this was not

explored any further and was addressed to future work.

5.2. Results Treatment

The results produced by the execution of the program instrumented and compiled, are

not structured which difficult the task of extracting knowledge about each component’s

energy consumption. Therefore there is a need to build a structure that holds the information

hierarchically so it can allow easy transformations to be made and immediate information

calculation for each component.

The input to this phase is the output from the instrumented program execution. This

output is written in a flat and sequencial form, representing the order that the components

were used in the program. So, whatever is the language of the program instrumented, the

output form will be in the same format for all languages and paradigms, which makes this

phase independent of any programming language or paradigm.

25

5 INSTRUMENTATION AND RESULTS TREATMENT

So the previous phase output must be in a standard and defined manner so it can be

parsed and treated in this phase. Therefore one needs to define a standard format for the

input that the instrumentation output must follow. This representation must ensure the

following format to be a valid input in this phase:

. . .

begin component n where time = x, CPU = y, DRAM = z, . . .

. . .

end component n where time = x, CPU = y, DRAM = z, . . .

. . .

Having the input in a standard representation one can process this data and construct

the structure needed to treat the information. This structure, and because the execution

information is a hierarchy information (execution path), the representation chosen was a

n-ary tree where the nodes represent the components identified and are characterized by the

execution information.

In this new representation, each node contains information about the energy consump-

tion as well as the time consumed and the number of times it was performed (Figure 15).

Figure 15: Collected data node’s information

26

5 INSTRUMENTATION AND RESULTS TREATMENT

A graphical representation of the complete structure of all nodes can be seen in Fig-

ure 16. For each test run a related tree instance is created. The next step of the analysis

of the software energy usage needs the program spectrum (instead of just having the binary

spectrum-hit, it has the number of times executed per program component), and the time

and energy consumption. The next phase also needs the data in a formatted form and with

this tree structure, producing this information becomes trivial. For the n tests, and for each

node in the tree a transformation to feed the next phase will be made. This transformation

includes for each node aggregate all of its information in the tree and produce a row with

all the components and its aggregated information.

Figure 16: An example tree of a test’s data collected structure

27

5 INSTRUMENTATION AND RESULTS TREATMENT

28

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

6. Results analysis: Spectrum-based Energy Leak

Localization

The technique presented here, Spectrum-based Energy Leak Localization (SELL), is a

technique that is independent of the programming language which means it is a generic

technique and therefore be applied to different paradigms.

As seen in Section 3.1 and as the name so indicates, the SFL is based on the program

execution hit-spectrum. In the technique developed throughout the thesis and presented

here, a part of the knowledge used is also the spectrum of the program’s execution. This

spectrum allows the component to be discriminated whether if it was used or not and in the

case where it has been used, extract more information about its execution. As in the SFL,

the tests are also independent, i.e., the execution order of the tests is irrelevant because the

state of a test does not affect the execution of another test. However, contrary to what the

SFL defines, where there is an oracle to which we can ask questions about the validity of the

output obtained by running a test, this analysis does not receives as input an oracle. This

can be explained because, with regard to energy consumption, if one hand, there is still no

known oracle to answer with 100% certainty to what is in excess energy consumption, on

the other hand, what can really be seen as an excess of energy consumption? Therefore, the

oracle is not a tool that can be obtained as an input.

Aside from the difference in the use of an oracle provided in the input, the technique

presented here has important and complementary information to the spectrum of the exe-

cution that SFL does not need. This information can and is used as a way to obtain a more

useful and complete analysis about the energy consumption of the program’s components.

The input of this tool is a matrix A that has n lines which correspond to the number

of the run tests and has m columns that are the m program’s components (defined at the

granularity level of the instrumentation) (Figure 17).

Each matrix element, λmn, if used in test n, contains information about the component

m execution or contains no information when component m not used.

29

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

m components

n spectra


λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m
...

...
. . .

...
λn1 λn2 · · · λnm


Figure 17: The spectrum-based energy leak localization input matrix (A)

λij =


(
Energy, Texecution, N#

)
ij

if cj was used

∅ if cj was not used

This component execution data is segmented by 3 categories: energy consumption, exe-

cution duration and number of times executed. In the energy consumption category, values of

energy of different hardware components are present: cpu (Ecpu), DRAM memory (EDRAM),

fans (Efans), hard drive (Edisk) and graphic card (GPU) (EGPU).

Energyij
=
(
Ecpu, EDRAM, Efans, Edisk, EGPU

)
ij

All hardware components that consume energy may have its component represented on

this data, but on this thesis we defined this components because they are representative of

the differences between computers. All the consumption values are expressed in the unit of

energy: milliJoule (mJ)2. The component’s execution duration is represented in the attribute

Texecution, this attribute is expressed in milliseconds. Finally, information about the number

of executions (cardinality) is defined in N# and is dimensionless.

With the matrix that contains, for each test, the execution information of each program

component, the next steps are the processing and analysis of this information.

2There are two point of views in the energy consumption: the energy consumption and power consumption.
While the energy consumption is the total energy consumed during a period of time and is measured
in Joules (J), defined in the SI, the energy consumption is the energy consumed per unit time (J/s), or
as is defined in the SI, Watts (W). The energy consumption indicates, for a given component, the total
energy consumed which is the desired information when we want to extract information from an analysis
on where we can make some changes that improve instantly the energy performance of the program’s
execution. On the other hand, the use of power consumption is useful in a situation where we want to
realize when a component has a comparatively greater amount of energy usage per time; information
that can be used to extract energy consumption patterns, which is set for future work.

30

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

As the SFL uses an oracle to check the validity of a test, the ideal would be an oracle

adapted to the context of energy to better understand the values of the execution data. Thus,

since we can not get the oracle, the first phase will be to build one that can be used. For the

oracle construction there are several options. The first thought was to make a simple metric

to calculate the average energy consumption of the program in all the tests and the oracle

would determine if the test consumption was above average would be recorded as a failure

and otherwise it was considered as a pass. However, this technique has some limitations,

as well as the average energy consumption could hide significant statistical differences, one

would be ignoring the other execution information such as execution time and the number

of times the component was involved in the test.

Another possibility for this oracle would be building a base of prior execution consump-

tion knowledge and use various programs to feed this knowledge base. The knowledge base

can be segmented by type of software (image processing, graphs, etc.) and could be a corres-

pondence between patterns of software execution and energy consumption. However, despite

many positive points, the construction of this knowledge base would need a lot of different

programs and for each one it would be necessary to catalog its execution pattern and the

respective consumption. Another con is that the oracle would not obtain independence of

the input tests for which the patterns were identified and that might differ between the

testing and the pattern.

Thus, the solution that was defined for the oracle creation was premised on the fact that

it had to be relative to the program implementation and use all available information to

extract the best knowledge. Another point to consider is that while in the SFL, the oracle

decides with a binary criterion (fail, pass) a test execution, here the criterion has to be a

continuous value to represent the factor of a test greenness. Taking the example of what is

usually done in the regulation of greenhouse gas emissions of the world’s countries, where

after assessing how much is the total emission of gases in the different years, depending on

what each country contributed in gas emissions in those years, assigns the percentage of

responsibility to each country. In this analysis one can try to establish an analogy, where

the years are the different tests, the countries are the different components with the total

for each category (energy, execution time and cardinality), and the goal is to try to assign

31

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

responsibilities to each component comparing with the total value.

To construct the oracle is then necessary, for each test, sum up all the values of the

categories creating a total element. Because this is done for the n tests at the end we will

get a vector here called t (total).

t



m∑
i=1

λ1i

m∑
i=1

λ2i

...
m∑
i=1

λni


=


t1

t2
...

tn


With the oracle defined, the final model that this thesis introduces is totally defined and

can be seen in Figure 18. It is based on this model that the remaining process of analysis

will focus and is where from the knowledge will be extracted.

m components t

n spectra


λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m
...

...
. . .

...
λn1 λn2 · · · λnm



t1
t2
...
tn


Figure 18: The spectrum-based energy leak localization input matrix (A)

With the complete model defined, it is time to, and following the analogy of gas emis-

sions, relate the data of each component with the total data. In the final, one wants to obtain

a simple structure that makes the relationship between the similarity of any component (ci)

32

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

and the total vector (t).

ci t


λ1i

λ2i

...

λni


?≈


t1

t2
...

tn


The similarity between component i and the total vector t can be seen as how much compon-

ent i is responsible for each execution information of the total vector. This association has

as domain the current model and data, and therefore does not depend on prior knowledge,

and is independent of other software, allowing conclusions regarding the software developed.

Thus, it eliminates the dangers that could be introduced by comparing a program consump-

tion with the consumption of other programs, since energy consumption is relative and it

is totally dependent on what is the purpose of the program execution. As it would be

expected, the smaller the number of components smaller is the components sample which

influences the extracted similarity for each component. The quality of the test suit is also

important because only with tests that provide global coverage and test the program for

different inputs, one can hope to extract interesting information.

To obtain the component similarity with the oracle vector, there was a need to define

a function that received the vector of a component and the total vector, and returned

a structure with the similarity (α) for each of the constituints of component’s execution

information:

similarity

(

λ1i

λ2i

...

λni

 ,


t1

t2
...

tn


)

= φi

where,

33

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

φi =
(
α(Energy), α(Texecution), α(N#)

)
i

The chosen formula to calculate the similarity coefficient for each of the component’s

constituents, was the Jaccard similarity coefficient [Real and Vargas, 1996]. This formula,

with two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) and where xi, yi ≥ 0, calculates

the similarity coefficient using the following formula:

J(x, y) =

n∑
i=1

min(xi,yi)

n∑
i=1

max(xi,yi)

The Jaccard similarity coefficient is a well known formula to calculate the similarity coef-

ficient between two vectors and has been used for a long period of time in the mathematics

domain.

With the application of this similarity function to all components of the matrix, the

result will be a row vector that represents for each component and for each execution in-

formation their influence in the overall context. As already mentioned, this vector contains

the similarity of each execution information for each component, which allows the similarity

analysis to be made focusing the desired execution information. So, defining a sort criteria

and sorting the similarity vector allows to realize which are the components that are closer to

representing the totality of execution information. Thus, and relating to the sorting criteria,

one can be realize what are the possible failures at energy level of the program.

sortBy
(
φ,Ecpu, Texecution) =

[
. . .
]

With this similarity execution information of each component one can make one para-

meterized analysis, however, and complementary it would also be useful to have a value

that translated all of the execution information. This value would allow a numerical and

global comparison between the different components. This analysis would do the sorting of

all components, where the components with highest value were likely to be faulty at energy

level. To make the conversion, a function that translates execution information in a numeric

value was developed. The function created, aims to convert the information available in a

value, this value is dimensionless and therefore is not directly related to any of the units

of information used. To obtain the desired value, one needs to multiply all the execution

34

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

Table 1: Average power consumption for each hardware component
Component name Power consumption (average) (W) Formula factor

CPU 102.5 0.34
DRAM 3.75 0.01
Fans 3.3 0.01
Hard Drive 7.5 0.02
GPU 187.5 0.62

information from different category, summing the information from the same category. The

decision to multiply all categories have to do with the fact that it makes the final value

grows depending on the proportion that that category adds, the higher the value of the cat-

egory the higher is the proportion that it increases the overall value. Regarding information

within the same category, they have a summative contribution within the category, and will

influence in proportion the global value.

globalValue
(
λi
)

= Energyi × Texecutioni
×N#i

In the energy category, there are different types of results on the hardware components’

energy consumption. These hardware components have an usual power consumption values

and it varies from component to component. Therefore, it makes sense that these energy

information is standardized according to the naturalness of those components produce more

power. This normalization allows for example two hardware components A and B with

the same energy consumption, wherein the component A in mean consumes more energy

than B, that B has its consumption value diluted. The Table 1 explains the average power

consumption for each component3 and the factor that it will have on the formula. This

factor of a hardware component k is calculated using the following formula:

factork = powerk
n∑

i=1
poweri

where powerk represents the average power consumption of the hardware component k, and

n is the number of hardware components available.

So, with the data from the Table 1 one can produce the following formula to calculate

the energy category of global value:

3http://www.buildcomputers.net/power-consumption-of-pc-components.html

35

http://www.buildcomputers.net/power-consumption-of-pc-components.html

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

Energyij
= 0.34× ECPUij

+ 0.01× EDRAMij
+ 0.01× Efansij + 0.02× Ediskij

+ 0.62× EGPUij

With this informations the full model and its operations are specified. In the following

subsection a example using this technique is given.

6.1. An example

To understand how this analysis works and see how the analysis handles the execution

data, an example can be studied.

Lets think of a program that could be written in any language known. This program

has four different components (functions in C, modules in C, methods in Java, etc.) and is

ran with a test suit of five different inputs. This program has previously been through the

first two phases of the process described in the Section 4, and its energy, execution time and

usage has been identified. Therefore, we can use the information of this program’s execution

and start the analysis. In Table 2 we can see the entire model of the SELL Analysis already

defined but lets construct it step by step.

Firstly we have the input data. This data is the data seen the Table 2 where for each

component and each test we have a triple of three categories. This triple contains the energy

consumption value, the number of times that component was used and the consumption time:
Etotal

N#

Texec


So, in Table 2 we can check all the data from the program’s execution in the given tests.

Having this inputs, and as defined in SELL, we have to build the oracle (t vector). To

do so, for each test, we sum all the values of each category of the component data. After

doing this for every test we have built the oracle vector. The following step its to calculate

each component’s category similarity. To achieve this we apply for each component category

vector and the oracle vector the Jaccard’s coefficient similarity formula. For example, for

c1, and for the energy category similarity coefficient we will have the following formula:

Esimilarity coefficient = min(37,140)+min(38,166)+min(36,129)+min(37,164)+min(39,209)
max(37,140)+max(38,166)+max(36,129)+max(37,164)+max(39,209)

= 0.2314

36

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

Table 2: SELL Matrix built for the example program
test c1 c2 c3 c4 t

1

37
1
75

  61
2

102

 0
0
0

 42
1
34

 140
4

211



2

38
3
77

  50
1

103

 34
2
42

 44
1
37

 166
7

259



3

36
1
73

  58
1

102

 35
1
43

 0
0
0

 129
3

218



4

37
3
74

  66
2

105

 0
0
0

 61
2
43

 164
7

222



5

39
2
75

  54
3

100

 51
4
60

 65
2
60

 209
11
295


similarity by
component’s

category

0.2314
0.3125
0.3104

 0.3577
0.2813
0.4249

 0.1485
0.2188
0.1203

 0.2623
0.1875
0.1444


global similarity 0.020 0.0373 0.0116 0.0112

The calculation for the other categories and the different components would be the same,

and its results can also be consulted in Table 2 in the similarity by component’s category

row.

To finish the gathering and calculation of all the values needed to make the energy leak

analysis in the program, we must calculate the global similarity of each component. To do

so, we must apply the formula defined in the prior Section and calculate for each test and

each component its global value. After this, we also must calculate the global value for each

oracle test value. After this we calculate the similarity between the component’s and the

oracle’s global value vector.

In Table 3 we can see, for the component c1 and the oracle, its global value vector.

37

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

Table 3: Component c1 and oracle global value vector
c1 t

943.5 40174.4
2984.52 102325.72
893.52 28684.44
2792.76 86651.04

1989 230589.7

Using the Jaccard’s coefficient similarity formula we can obtain the following similarity

coefficient: 0.019661758. Doing this calculations for every component of the program the

global value similarity coefficient can be consulted in Table 2.

Now that we have all the needed information to analyze we can extract some information.

Reading the global similarity coefficient value we can see which component has the highest

probability of have a energy leak. Sorting the components for this metric we obtain the

following configuration: c2, c1, c3 and finnaly c4. This means that if I was a developer of

this application I should consider looking first in the component c2 to better improve the

energy consumption of the program. The advantage of the SELL technique is that it can tell

besides the global value, why the component is faulty. For example, c2 is calculated as the

most probable component to have a energy leak, why? Well, if we look into its categories

similarity values we will see that this component ranks 1st in the energy similarity value,

2nd in the cardinality similarity value and 1st in the execution time similarity. This ranks

clearly points to this component. Also, there are some curious facts that can be seen in this

analysis. For example c4 has an energy category similarity value higher than the c1, although

and due to the other categories its ranked 4th in the overall. Other curiousity is that c3 has

in one of the tests an higher value of energy consumed that any of the c1 energy values

retrieved, however and because we take into consideration multiple tests, c3 is ranked 3rd in

the overall, when c1 is ranked 2nd. Other curious facts could be found and explained but, and

to compare this analysis over a technique using only the energy consumption values, another

fact will be given. If we calculate the components average energy consumption values we

would obtain:

c1 = 37.4, c2 = 57.8, c3 = 24, c4 = 42.4

38

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

what would indicate the following ranking: c2, c4, c1 and finnaly c3. This rank is

completely different from the obtained in the SELL Analysis because it ignores the other

components influence. To prove that this technique produces some true conclusions in the

following Section a validation of the technique will be done.

39

6 RESULTS ANALYSIS: SPECTRUM-BASED ENERGY LEAK LOCALIZATION

40

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

7. Spectrum-based Energy Leak Localization: The Tool

Throughout the thesis development, all the phases already identified in Section 5 and in

6 were materialized in a tool. This tool integrates the different phases developed and each

phase was implemented as an individual module because that would allow them to be used

in different contexts. One could use this modules, for example, in the CROSS platform4. In

this portal, one could create a certification to represent the whole process of this tool and

it would be automatically linked. A possible certification for the whole process using the

modules built in this thesis is represented in Figure 195.

Figure 19: A visual certification that represents the composition of the different modules to
create a full process.

The tool is composed by multiple components as can be seen in Figure 20.

In the following sections each of the components will be explained in detail.

4A platform that allows the construction of certifications to analyze open source software using different
tools. This tools could be the modules here developed

5This visual language here seen was defined by Carção and Martins [2014] and is presented in [Carção and
Martins, 2014]

41

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

«pc client»
Client

«Executable»
ClangAST Instrumentation

«Executable»
Instrumentation & Run

«Executable»
Results Treatment

«Executable»
Software Energy Analysis

{Language=Perl}

{Language=Java}

{Language=Java}

{Language=C++}

Figure 20: Deployment Diagram of the tool developed

7.1. The Instrumentation

The process of instrumentation was conceived to instrument programs written in C

language, which, by doing so, allows the analysis of the energy consumption of C programs.

This language was chosen due to that is a language well established in the community and

allows access to a good number of repositories of robust open source software to be tested

in terms of energy.

To do this instrumentation it was necessary to find an instrumentation tool that allows

the extraction of the C language AST from a program. The natural language choice was a

fairly complete tool that serves as a C front-end for the LLVM compiler and that among the

many features already available, can build the program’s AST from a file, and it is called

the Clang6 framework.

The accuracy chosen for the analysis was defined at the level of function which means

that to retrieve the information required for the analysis one needs to know where is the

beginning and the end of the function. The granularity choice is related with the precision

6http://clang.llvm.org/

42

http://clang.llvm.org/

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

one wants to extract information and analysis and in this case is also limited to the tools

that exist and its accuracy.

The chosen framework to collect the energy data required for posterior instrumentation

and analysis was the Intel Power Gadget framework. This framework works based on the

framework RAPL and provides information on energy consumption and performance of the

CPU. To measure the execution time it is used the Time library in C.

After having defined the parameters for the instrumentation, one can execute the in-

strumentation itself. The source code is processed and the AST is constructed. Then for all

the functions we descend to the function level in the AST and add instructions to measure

energy and time consumption and an instruction to print this information (Figure 21). The

print information added was defined be in conforms with the data input of the following

phase (grammar shown in Appendix A). It was developed a small program in C++ linked

with Clang that allows to build the AST, add the nodes and regenerate the source code

(Appendix D).

Program

function 1

start body stop print

. . . function n

start body stop print

Figure 21: AST of a program with a function granularity, each function is instrumented to extract
energy information

At the end of the instrumentation, one generates again the program’s source code and

compiles it.

43

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

Listing 2: Generic instrumented C program with in-
formation to log energy consumption

void function () {

startMeasuring (Regist information)

/∗ PROGRAM EXECUTION BEHAVIOR ∗/

endMeasuring (Display information)

}

The compiled program is then executed with a test suit and, for each test it produces

the information about its energy consumption. This information will serve as input in the

next phase, the results treatment.

For programs’ instrumentation, compilation and the test suit execution, a Perl script

(Appendix C) was developed. The script’s algorithm is shown in Algorithm 1.

Algorithm 1 C program energy instrumentation and execution of set of tests

1: procedure Instrumentate and execute tests
2:

3: for all module in software do
4: programOutput← clangEnergyInstrumentation(module)
5: softwareInstrumented← softwareInstrumented + moduleInstrumented
6:

7: softwareCompiled← compile(softwareInstrumented)
8:

9: for all module in software do
10: output← execute(softwareCompiled)
11: instrumentationOutput← instrumentationOutput + output
12:

13: return instrumentationOutput.

44

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

7.2. The Results Treatment

This phase receives as input the collected data from a program execution previously

instrumented. To make this process cohere the input must be in a standard format. This

format was defined with a grammar and is presented in Figure 22.

〈Input〉 −→ 〈Data〉*

〈Data〉 −→ 〈Component-begin〉 〈Data〉* 〈Component-end〉

〈Component-begin〉 −→ ‘>’ 〈Component〉

〈Component-end〉 −→ ‘<’ 〈Component〉

〈Component〉 −→ ID ‘(’ 〈Params〉 ‘)’

〈Params〉 −→ 〈Param〉 (‘,’ 〈Param〉)*

〈Param〉 −→ ‘time’ ‘=’ NUMBER
| ‘cpu’ ‘=’ NUMBER
| ‘dram’ ‘=’ NUMBER
| ‘gpu’ ‘=’ NUMBER
| ‘fans’ ‘=’ NUMBER
| ‘disk’ ‘=’ NUMBER

Figure 22: Input grammar of the results treatment phase

A sample of the input of a program execution previously instrumented can be seen in

Listing 3.

45

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

Listing 3: Example of an input for the Results Treatment phase

> main [time = ..., cpu = ..., dram = ...]

> fA [time = ..., cpu = ..., dram = ...]

> fB [time = ..., cpu = ..., dram = ...]

< fB [time = ..., cpu = ..., dram = ...]

> fA [time = ..., cpu = ..., dram = ...,]

> fB [time = ..., cpu = ..., dram = ...]

< fB [time = ..., cpu = ..., dram = ...]

< fA [time = ..., cpu = ..., dram = ...]

< fA [time = ..., cpu = ..., dram = ...]

> fD [time = ..., cpu = ..., dram = ...]

> fE [time = ..., cpu = ..., dram = ...]

< fE [time = ..., cpu = ..., dram = ...]

< fD [time = ..., cpu = ..., dram = ...]

< main [time = ..., cpu = ..., dram = ...]

This module was developed in Java, and so, this grammar was defined using the ANTLR

framework (when dealing with Java is one of the most used frameworks to deal with gram-

mars) and can be consulted in Appendix A. The semantic rules of this grammar were used

to transform the collected data into a n-ary tree. The architecture of this module can be

seen in Figure 23.

With the n-ary tree that represents the execution path of each of the program’s com-

ponent build, various operations are performed on the tree. Each component can appear

multiple times as a node on the tree, so, its information is aggregated and refreshed. Tra-

versing the tree and having done this for all of the components, the information aggregated

is ready to be produced to the next phase. As this phase’s input must be in a standard

format, also the next phase’s input must be in a standard format. This format is defined in

the grammar of the Appendix B.

7.3. Results Analysis

The last module created was the component that made the full analysis. Because this

phase is also a separated tool it must receive the input in a standard defined format. To

define this format a grammar was created and can be seen in Figure 24. The development

46

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

Results treatment

Parsing

Parser

+parse(): ComponentSample[][]

ResultsTreatment

+aggregateNodeComponents()
+generateOutput()

ComponentSample

-timeInformation : long
-cardinalityInformation : long

PowerInformation

-cpu : double
-DRM : double
-GPU : double
-fans : double
-disk : double
-...

-powerInformation

Gram.g

-grammar

-parser

nAryTree-trees 1..*

ComponentNode

+name: String

-nodes

-executionData

Figure 23: Architecture of the Results Treatment Module

language of this module was also Java and therefore the grammar was created using the

ANTLR framework and can be consulted in the Appendix B.

As this module implements the SELL Analysis it must represent different concepts. Each

of the concepts and its correlation is represented in the Table 4.

In the tool, there is a main class (SELLAnalysis) that is the center of this process. It has

the model information and the operations to this model (defined in Section 6, i.e., calculate

oracle, sortBy criteria and compute global value).

The architecture of this module is represented in the Class Diagram presented in the

Figure 25.

47

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

〈Matrix 〉 −→ 〈Row〉*

〈Row〉 −→ 〈Component-Sample〉*

〈Component-Sample〉 −→ ‘[’ 〈Params〉 ‘]’
| ‘_’

〈Params〉 −→ 〈Param〉 (‘,’ 〈Param〉)*

〈Param〉 −→ ‘time’ ‘=’ NUMBER
| ‘numberUsed’ ‘=’ NUMBER
| ‘cpu’ ‘=’ NUMBER
| ‘dram’ ‘=’ NUMBER
| ‘gpu’ ‘=’ NUMBER
| ‘fans’ ‘=’ NUMBER
| ‘disk’ ‘=’ NUMBER

Figure 24: Input grammar of the results analysis phase

7.4. How to use the tool

To use the tool developed we first have to download it. This tool can be obtained in the

url url. The package contains all of three modules and a README file. These modules

must be ran separately or linked all together in a tool like CROSS portal. The README

file gives instructions on how to run each of the modules and the pre-requisites to run them.

48

url

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

Table 4: Correlation between the SELL concepts and its implementation in the tool

SELL concept Implemented as

Component’s power information Class: PowerInformation

Component Class: ComponentSample

Matrix of components Instance Variable: ComponentSample[][]

Oracle Instance Variable: ComponentSample[]

Formula to calculate the similarity coefficient Class: SimilarityFormula

Formula to apply the calculation of the similarity between
the component and the oracle

Class: ComponentSimilarityStrategy

Component similarity Class: ComponentSimilarity

An array of components’ similarity Instance Variable: ComponentSimilarity[]

Global value of component’s Class: TotalV alueComponent

An array of components’ global value Instance Variable: TotalV alueComponent[]

Analysis

Parsing

Parser

+parse(): ComponentSample[][]

SELLAnalysis

+calculateOracle()
+calculateComponentsSimilarity()
+orderComponentsBy(param): ComponentSample []
+calculateComponentsGlobalSimilarity(): double [] ComponentSample

-timeInformation : long
-cardinalityInformation : long

PowerInformation

-cpu : double
-DRM : double
-GPU : double
-fans : double
-disk : double
-...

-powerInformation

Gram.g

-grammar

-matrix [][]
-parser

Component Similarity

+timeSimilarity : double
+cardinalitySimilarity : double

-similarityComponentVector

PowerSimilarity

+cpu: double
+DRAM : double
+GPU : double
+fans : double
+disk : double
+...

-powerSimilarity
ComponentSimilarityStrategy

+calculateComponentsProbability()

OracleVectorConstructionStrategy

+constructOracleVector()

SimilarityFormula

+calculateSimilarity()

JaccardSimilarityCoefficient

Figure 25: Architecture of the System

49

7 SPECTRUM-BASED ENERGY LEAK LOCALIZATION: THE TOOL

50

8 VALIDATION

8. Validation

After defined a methodology to analyze the source code energy consumption, implemen-

ted that methodology along with a own technique to identify energy leaks a validation on

the technique proposed was needed.

The chosen validation was to try to obtain the same results that other researches already

accomplished and validated. By doing so, and if the technique here defined can also reach

the same conclusions, then one could affirm conclusively that the technique works and is

trustworthy.

In the Section 2 we already saw that Gutiérrez et al. [2014] made a research on how much

the Java collections consumed and made a energy consumption rank of those collections,

identifying the collections that perform best on energy usage. To build this rank they ran

an well-known benchmark7 and measured the energy consumption of the benchmark with the

different collections. Their conclusions were in the form of how much times each collection

when replaced by other collection had better/worse results. Given the times that a collection

when replaced had better consumption values the following rank (worst to better) could be

retrieved:

ConcurrentLinkedDeque
LinkedBlockingDeque
LinkedList
LinkedTransferQueue
ConcurrentLinkedQueue
ArrayList
PriorityQueue
CopyOnWriteArrayList
ConcurrentSkipListSet
TreeSet
CopyOnWriteArraySet
LinkedHashSet
HashSet

So, with the approach defined in this thesis we can also test the same benchmark and

retrieve the conclusions. With the tool developed in this thesis, we wanted to test this

7http://java.dzone.com/articles/java-collection-performance

51

8 VALIDATION

results. The problem was that the instrumentation module of the tool is constructed to C

programs. So, to overcome this problem, we ran Java code from a proxy C program. This

program instantiates a version of the Java Virtual Machine (JVM) and then uses it to run

the desired code.

To apply the SELL technique we needed to define which are the components. As we want

to know which collection has the highest probability of having energy leaks, the components

here are the different collections. The test suit will feature the operations available in the

benchmark (Table 5). For each operation of the benchmark a function was created a function.

The energy is only measured after initializing the JVM, thus eliminating the energy usage

of the initialization of the JVM. There is an excess of consumption for each method of the

benchmark but is constant for every method therefore, in terms of methods comparison is

negligible.

Table 5: Operations performed in the benchmark for each collection
Operations performed in the benchmark

add 100000 distinct elements
addAll 1000 times 1000 elements

clear
contains 1000 times

containsAll 5000 times
iterator 100000

remove 10000 elements given Object
removeAll 10 times 1000 elements

retainAll 10 times
toArray 5000 times

Using the tool the instrumentation and compilation, the results treatment and finally the

SELL analysis were made to the benchmark. The analysis input and calculated similarities

(as shown in Section 6) can be seen in Table 6.

Due to size constrains, the components are the rows and the tests (methods) are the

columns8. The collections are ordered by the its global similarity value. So, by comparing

the rank obtained by the SELL technique and the rank obtained by [Gutiérrez et al., 2014]

8Because each method was called once in the execution to simulate the test, the usage cardinality of each
matrix element is allways 1

52

8 VALIDATION

Table 6: SELL Matrix built for the benchmark test. Collections are the components (rows) and
the operations to the collections are the tests (columns).

a
d
d

a
d
d
A

ll

cl
e
a
r

co
n
ta

in
s

co
n
ta

in
sA

ll

it
e
ra

to
r

re
m

o
v
e

re
m

o
v
e
A

ll

re
ta

in
A

ll

to
A

rr
a
y

si
m

il
a
ri

ty
b
y

co
m

p
o
n
e
n
t’

s
ca

te
g
o
ry

G
lo

b
a
l

si
m

il
a
ri

ty

LinkedBlockingDeque
796 614 918 1293 1241 1101 1387 1137 1247 1306 0.096

0.11601 1 1 1 1 1 1 1 1 1 0.0769
770 636 4936 5120 5212 3782 5290 4144 5183 4086 0.0949

ConcurrentLinkedDeque
709 550 1046 1394 945 1035 1257 1399 1086 1145 0.0919

0.10801 1 1 1 1 1 1 1 1 1 0.0769
705 619 5007 4313 5300 3728 4985 4335 5123 3983 0.0923

LinkedList
770 524 1048 926 996 811 1008 1075 1194 1400 0.0848

0.09351 1 1 1 1 1 1 1 1 1 0.0769
694 817 4980 2961 4607 3198 4951 4373 4764 4370 0.087

LinkedTransferQueue
760 722 1250 702 1226 920 1159 647 1226 989 0.0835

0.08811 1 1 1 1 1 1 1 1 1 0.07692
787 815 4409 3219 4618 3142 5414 3513 4438 3987 0.0832

ConcurrentLinkedQueue
741 700 1163 999 954 701 1164 810 1277 889 0.0817

0.08311 1 1 1 1 1 1 1 1 1 0.0769
724 852 4391 3359 3838 3339 5352 3381 4396 3622 0.0806

ArrayList
503 747 970 1024 1335 533 1106 728 961 746 0.0752

0.07761 1 1 1 1 1 1 1 1 1 0.0769
430 2712 2785 3268 5431 1835 4442 4653 4906 2221 0.0792

PriorityQueue
721 998 1134 908 514 1069 631 545 883 1182 0.0746

0.07611 1 1 1 1 1 1 1 1 1 0.0769
3182 3906 4690 4503 481 3781 2449 1816 2596 4980 0.0785

CopyOnWriteArrayList
827 1063 772 533 704 727 1089 1217 739 768 0.0734

0.06961 1 1 1 1 1 1 1 1 1 0.0769
3678 4163 763 3121 3493 1965 4779 3866 3595 2363 0.077

ConcurrentSkipListSet
625 865 1016 1043 687 1362 597 566 554 964 0.0720

0.06571 1 1 1 1 1 1 1 1 1 0.0769
2977 3566 3603 3890 618 3881 2505 2208 2060 4319 0.0718

TreeSet
787 909 591 935 199 1020 1070 741 705 981 0.069

0.0651 1 1 1 1 1 1 1 1 1 0.0769
2980 3790 382 4882 370 3887 3492 1995 2244 4826 0.0699

CopyOnWriteArraySet
1307 975 685 550 708 725 1067 742 543 520 0.0680

0.06441 1 1 1 1 1 1 1 1 1 0.0769
5160 5070 3055 2271 435 2229 5443 2054 2048 956 0.0696

HashSet
738 622 1042 730 896 581 706 785 636 859 0.066

0.04821 1 1 1 1 1 1 1 1 1 0.0769
2245 2794 3201 2001 2787 2314 2367 2214 2304 2874 0.0608

LinkedHashSet
556 625 970 586 765 673 738 732 639 1073 0.064

0.04471 1 1 1 1 1 1 1 1 1 0.0769
980 2397 3240 1160 1017 3184 1968 2729 2626 3771 0.0559

Oracle
9840 9914 12605 11623 11170 11258 12979 11124 11690 12822
13 13 13 13 13 13 13 13 13 13

25312 32137 45442 44068 38207 40265 53437 41281 46283 46358

(Table 7) we can see that 9 of 13 collections have the same rank and only four collections

are misplaced.

From this four collections we can see that the difference in the collections that do not have

53

8 VALIDATION

Table 7: Rank from [Gutiérrez et al., 2014] on the left vs our analysis rank on the right
ConcurrentLinkedDeque LinkedBlockingDeque
LinkedBlockingDeque ConcurrentLinkedDeque
LinkedList LinkedList
LinkedTransferQueue LinkedTransferQueue
ConcurrentLinkedQueue ConcurrentLinkedQueue
ArrayList ArrayList
PriorityQueue PriorityQueue
CopyOnWriteArrayList CopyOnWriteArrayList
ConcurrentSkipListSet ConcurrentSkipListSet
TreeSet TreeSet
CopyOnWriteArraySet CopyOnWriteArraySet
LinkedHashSet HashSet
HashSet LinkedHashSet

the same rank, is one position. This collections have energy consumption similarity values

and very alike (0.064 vs 0.066 and 0.096 vs 0.0919) as well as the global similarity values

and therefore, a possible lack of precision on the energy measure may be the explanation

here. Is also important to mention that this collections also have close values in the rank

defined by [Gutiérrez et al., 2014]. Note that this differences only exist in one position

and in any case misplace a supposedly energy leak free collection as a collection with a high

probability of being faulty in energy terms. So with our analysis we came to very much

the same conclusion of which Java collections were the better and the worse in terms of

energy, which means that our solution works and may be used to identify energy leaks in

the software with the capability of giving a extra report on why is that happening.

54

9 CONCLUSION

9. Conclusion

When I started doing this Thesis I faced an area that was still in a very early stage of

development but had already great interest. The fact that Green Software Computing area

is pretty new can be exciting because we can investigate and produce work in some areas

that were never done or investigated, but on the other side, it also means that the tools

available are not always complete and the community is still small.

As stated before, the tools available in this domain are scarce, and the developers actually

do not have any tool that helps them to improve their software to be more energy efficient.

Thus, the main goal of this Thesis was to propose a technique that could execute a software

package, read its execution data and produce a report with the program’s energy leaks. With

the work already presented here we clearly have shown that this goal was accomplished.

Throughout the Thesis research and development multiple contributions were made.

The main contributions of this Thesis are:

• A methodology to analyze a program’s source code energy consumption

This methodology defines what are the steps to be taken in order to execute, read and

analyze a program’s energy usage.

• A software module that allows the instrumentation

This module allows the instrumentation of C programs to extract the execution data of

the source code.

• A software module that processes the execution data

This module is independent of the program language and accept as input the program’s

execution data. It processes this data and aggregates the information by component.

• A software module that analyzes the execution data

This module (SELL) is also program language independent. It analyzes the program

execution data and produces as output which are the energy leaks in the program.

• A tool that supports all the modules above mentioned.

55

9 CONCLUSION

9.1. Research Questions Answered

During my Thesis work three questions, that i presented in the beginning of this disser-

tation (Subsection 1.1 - Research Questions), appeared. This questions are related to the

concept, the design and implementation of this Thesis. Now, and with the conclusion of my

Thesis, I can answer these questions.

Q1 Can we define a methodology to analyze the energy consumption of software source code?

A1 Yes, in Section 4 - Source Code Energy Consumption Analysis we defined such meth-

odology that we detailed in the Sections 5.1, 5 and 6.

Q2 Is it possible to adapt a purpose fault localization algorithm to the context of energy con-
sumption?

A2 Yes it is. In Section 6 - Results analysis: Spectrum-based Energy Leak Localization

we adapt and refine a fault localization technique to become a energy leak localization

technique.

Q3 Can we find energy leaks in software source code?

A3 Indeed. After defined and implemented the SELL technique, Section 8 - Validation we

demonstrated that in fact, we can identify the energy leaks in the software’s source

code.

9.2. Other contributions

Added to this Thesis contributions during its work I was involved in other works that

gave fruit to three publications and one prize award:

• A Visual DSL for the Certification of Open Source Software, Tiago Carção,

Pedro Martins. In the proceedings of the International Conference on Computational
Science and Its Applications (ICCSA’14), Guimarães, Portugal, June 30 - July 3, 2014.

• Detecting Anomalous Energy Consumption in Android Applications, Marco

Couto, Tiago Carção, Jácome Cunha, João Paulo Fernandes, João Saraiva. In the

56

9 CONCLUSION

proceedings of the Brazilian Symposium on Programming Languages (SBLP’14), Maceio,

Brazil, October 2-3, 2014.

• Measuring and visualizing energy consumption within software code, Tiago

Carção. In the proceedings of the Visual Languages and Human-Centric Computing
(VL/HCC’14), Melbourne, Victoria, Australia, July 28 - August 1, 2014.

• Energy consumption detection in LabView, Tiago Carção, Jácome Cunha, João

Paulo Fernandes, Rui Pereira, João Saraiva. Grand prize ($2000) of a competition on

innovating ideas applied to a specific software, awarded by National Instruments

9.3. Future Work

With the contributions of this Thesis as basis, some research should be made to further

improve the tools available to help the development of software applications. This research

can target the following topics:

• Identify patterns of energy usage (bad smells) - Having a tool to identify the

energy leaks in a software program, one can run multiple software packages and identify

some bad smells in terms of energy;

• Propose some refactoring to those bad smells - With the bad smells identified,

multiple techniques to refactor them with a greener version can be researched;

• Develop a visual tool to present the information collected - With all of the

information – the energy leaks, the bad smells and consequent refactors – we need

to present this information. Thus, a visual tool, that can also be integrated in the

IDEs, that implement these techniques can be developed. This tool would be a major

contribution to the daily tasks of the software developer.

57

9 CONCLUSION

58

References

References

Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund, A. J. C. (2009). A practical eval-
uation of spectrum-based fault localization. Journal of Systems and Software, 82(11):1780–
1792.

Abreu, R., Zoeteweij, P., and van Gemund, A. J. C. (2006). An evaluation of similarity
coefficients for software fault localization. In 12th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC 2006), 18-20 December, 2006, University of California,
Riverside, USA, pages 39–46.

Arnoldus, J., Gresnigt, J., Grosskop, K., and Visser, J. (2013). Energy-efficiency indicators
for e-services. In 2nd International Workshop on Green and Sustainable Software, GREENS
2013, San Francisco, CA, USA, May 20, 2013, pages 24–29.

Brownlee, J. (2013). OS X Mavericks Will Improve Your Battery
Life By As Much As 4 Hours. http://www.cultofmac.com/251135/

os-x-mavericks-will-improve-your-battery-life-by-as-much-as-4-hours/.
Accessed: 2014-09-23.

Carção, T. and Martins, P. (2014). A visual DSL for the certification of open source software.
In Computational Science and Its Applications - ICCSA 2014 - 14th International Conference,
Guimarães, Portugal, June 30 - July 3, 2014, Proceedings, Part V, pages 602–617.

Couto, M. (2014). Monitoring Energy Consumption in Android Applications. Master’s
thesis, University of Minho.

Fanara, A., Haines, E., and Howard, A. (2009). The state of energy and performance bench-
marking for enterprise servers. In Performance Evaluation and Benchmarking, First TPC
Technology Conference, TPCTC 2009, Lyon, France, August 24-28, 2009, Revised Selected
Papers, pages 52–66.

Ferreira, M. A., Hoekstra, E., Merkus, B., Visser, B., and Visser, J. (2013). Seflab: A
lab for measuring software energy footprints. In 2nd International Workshop on Green and
Sustainable Software, GREENS 2013, San Francisco, CA, USA, May 20, 2013, pages 30–37.

Google (2014). Better data centers through machine learning. http://googleblog.

blogspot.pt/2014/05/better-data-centers-through-machine.html. Accessed:
2014-09-23.

Grosskop, K. (2013). PUE for end users - are you interested in more than bread toasting?
Softwaretechnik-Trends, 33(2).

Grosskop, K. and Visser, J. (2013). Energy efficiency optimization of application software.
Advances in Computers, 88:199–241.

Guelzim, T. and Obaidat, M. S. (2013). Chapter 8 - Green Computing and Communication
Architecture. In Obaidat, M. S., Anpalagan, A., and Woungang, I., editors, Handbook of
Green Information and Communication Systems, pages 209–227. Academic Press.

59

http://www.cultofmac.com/251135/os-x-mavericks-will-improve-your-battery-life-by-as-much-as-4-hours/
http://www.cultofmac.com/251135/os-x-mavericks-will-improve-your-battery-life-by-as-much-as-4-hours/
http://googleblog.blogspot.pt/2014/05/better-data-centers-through-machine.html
http://googleblog.blogspot.pt/2014/05/better-data-centers-through-machine.html

References

Gutiérrez, I. L. M., Pollock, L. L., and Clause, J. (2014). SEEDS: a software engineer’s
energy-optimization decision support framework. In 36th International Conference on Soft-
ware Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 503–514.

Hähnel, M., Döbel, B., Völp, M., and Härtig, H. (2012). Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Performance Evaluation Review, 40(3):13–17.

Harmon, R. R. and Auseklis, N. (2009). Sustainable IT services: Assessing the impact of
green computing practices. pages 1707–1717. IEEE.

Harrold, M. J., Rothermel, G., Sayre, K., Wu, R., and Yi, L. (2000). An empirical invest-
igation of the relationship between spectra differences and regression faults. Softw. Test.,
Verif. Reliab., 10(3):171–194.

Hönig, T., Eibel, C., Schröder-Preikschat, W., Cassens, B., and Kapitza, R. (2013). Proact-
ive energy-aware system software design with SEEP. Softwaretechnik-Trends, 33(2).

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall.

Korel, B. and Laski, J. W. (1988). Dynamic program slicing. Inf. Process. Lett., 29(3):155–
163.

Li, D., Hao, S., Halfond, W. G. J., and Govindan, R. (2013). Calculating source line level
energy information for android applications. In International Symposium on Software Testing
and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, pages 78–89.

Li, D., Jin, Y., Sahin, C., Clause, J., and Halfond, W. G. J. (2014). Integrated energy-
directed test suite optimization. In International Symposium on Software Testing and Ana-
lysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, pages 339–350.

Mouftah, H. T. and Kantarci, B. (2013). Chapter 11 - Energy-Efficient Cloud Computing: A
Green Migration of Traditional {IT}. In Obaidat, M. S., Anpalagan, A., and Woungang,
I., editors, Handbook of Green Information and Communication Systems, pages 295–330.
Academic Press.

Noureddine, A., Rouvoy, R., and Seinturier, L. (2014). Unit testing of energy consumption
of software libraries. In Symposium on Applied Computing, SAC 2014, Gyeongju, Republic
of Korea - March 24 - 28, 2014, pages 1200–1205.

Pinto, G., Castor, F., and Liu, Y. D. (2014). Mining questions about software energy
consumption. In 11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, pages 22–31.

Real, R. and Vargas, J. M. (1996). The probabilistic basis of jaccard’s index of similarity.
Systematic biology, pages 380–385.

Reps, T. W., Ball, T., Das, M., and Larus, J. R. (1997). The use of program profiling for
software maintenance with applications to the year 2000 problem. In Software Engineering
- ESEC/FSE ’97, 6th European Software Engineering Conference Held Jointly with the 5th

60

References

ACM SIGSOFT Symposium on Foundations of Software Engineering, Zurich, Switzerland,
September 22-25, 1997, Proceedings, pages 432–449.

Ricciardi, S., Palmieri, F., Torres-Viñals, J., Martino, B. D., Santos-Boada, G., and Solé-
Pareta, J. (2013). Chapter 10 - Green Data center Infrastructures in the Cloud Computing
Era. In Obaidat, M. S., Anpalagan, A., and Woungang, I., editors, Handbook of Green
Information and Communication Systems, pages 267–293. Academic Press.

Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., and Rajwan, D. (2012). Power-
management architecture of the intel microarchitecture code-named sandy bridge. IEEE
Micro, 32(2):20–27.

Rühl, C., Appleby, P., Fennema, J., Naumov, A., and Schaffer, M. (2012). Economic devel-
opment and the demand for energy: A historical perspective on the next 20 years. Energy
Policy, 50:109–116.

Sahin, C., Cayci, F., Gutiérrez, I. L. M., Clause, J., Kiamilev, F. E., Pollock, L. L., and
Winbladh, K. (2012). Initial explorations on design pattern energy usage. In First Inter-
national Workshop on Green and Sustainable Software, GREENS 2012, Zurich, Switzerland,
June 3, 2012, pages 55–61.

Sahin, C., Tornquist, P., McKenna, R., Pearson, Z., and Clause, J. (2011). How Does Code
Obfuscation Impact Energy Usage? conferences.computer.org.

Standard, R. (2013). GHG Protocol Product Life Cycle Accounting and Reporting Standard
ICT Sector Guidance. In Greenhouse Gas Protocol, number January, chapter 7 - Guide.

Symantec (2008a). Corporate responsibility report. http://www.symantec.com/content/

en/us/about/media/SYM_CR_Report.pdf. Accessed: 2014-09-23.

Symantec (2008b). Environmental progress and next steps. Email to Everyone Symantec
(Employees). Accessed: 2014-09-23.

Vásquez, M. L., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Penta, M. D., and
Poshyvanyk, D. (2014). Mining energy-greedy API usage patterns in android apps: an
empirical study. In 11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, pages 2–11.

Vereecken, W., Van Heddeghem, W., Colle, D., Pickavet, M., and Demeester, P. (2010).
Overall ict footprint and green communication technologies. In Communications, Control
and Signal Processing (ISCCSP), 2010 4th International Symposium on, pages 1–6.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M., and Yang, L. (2010).
Accurate online power estimation and automatic battery behavior based power model
generation for smartphones. In Proceedings of the 8th International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS 2010, part of ESWeek ’10 Sixth
Embedded Systems Week, Scottsdale, AZ, USA, October 24-28, 2010, pages 105–114.

61

http://www.symantec.com/content/en/us/ about/media/SYM_CR_Report.pdf
http://www.symantec.com/content/en/us/ about/media/SYM_CR_Report.pdf

References

Zhang, Y. and Ansari, N. (2013). Chapter 12 - Green Data Centers. In Obaidat, M. S., An-
palagan, A., and Woungang, I., editors, Handbook of Green Information and Communication
Systems, pages 331–352. Academic Press.

62

A ANTLR GRAMMAR OF RESULTS TREATMENT

Appendices

A. ANTLR Grammar of Results treatment

Listing 4: ”ANTLR Grammar of Results treatment”style
grammar Output ;

@lexer : : header { package output ; }
@parser : : header {

package output ;
import gener i cTree . ∗ ;

}

output r e tu rn s [Tree<ComponentNode> t r e e]
: l 1 = l i n e (l 2 = l i n e { $ t r e e . getRoot () . addChild ($ l 2 . node) ;

})∗ { $ t r e e = new Tree ($ l 1 . node) ; }
;

l i n e r e tu rn s [Node<ComponentNode> node]
scope { ArrayList<Node<ComponentNode>> c h i l d L i s t ; }
: component begin (l 1 = l i n e {
i f ($ l i n e : : c h i l d L i s t == n u l l)
$ l i n e : : c h i l d L i s t = new ArrayList<Node<ComponentNode>>();

$ l i n e : : c h i l d L i s t . add ($ l 1 . node) ;
})∗ component end

{
i f ($component begin . nodeBegin . ge t Id () . equa l s ($component end . nodeEnd . get Id ())) {
ComponentNode componentNode = new ComponentNode ($component begin . nodeBegin , $component end . nodeEnd) ;
$node = new Node<ComponentNode>(componentNode) ;

i f ($ l i n e : : c h i l d L i s t != n u l l) {
f o r (Node<ComponentNode> c h i l d : $ l i n e : : c h i l d L i s t) {

$node . addChild (c h i l d) ;
}

}
}
}

;

component r e tu rn s [OutputNode outputNode]
@in i t { $outputNode = new OutputNode () ; }

: ID ’ (’ params ’) ’ { $outputNode . s e t I d ($ID . t ex t) ; $outputNode . setParameters ($params . parameters) ; }

63

A ANTLR GRAMMAR OF RESULTS TREATMENT

;

component begin r e tu rn s [OutputNode nodeBegin]
: ’> ’ component { $nodeBegin = $component . outputNode ; }
;

component end r e tu rn s [OutputNode nodeEnd]
: ’< ’ component { $nodeEnd = $component . outputNode ; }
;

params r e tu rn s [OutputNodeParameters parameters]
@in i t { $parameters = new OutputNodeParameters () ; }

: p1 = param { $parameters . put ($p1 . key , $p1 . va lue) ; } (’ , ’ p2 = param { $parameters . put ($p2 . key , $p2 . va lue) ; })∗
;

param re tu rn s [S t r ing key , S t r ing value]
: ’m’ ’= ’ ID { $key = ”m” ; $value = $ID . t ex t ; }
| ’ t ’ ’= ’ NUMBER { $key = ” t ” ; $value = $NUMBER. text ; }
| ’ e ’ ’= ’ NUMBER { $key = ”e ” ; $value = $NUMBER. text ; }
;

ID
: I d e n t i f i e r N o n d i g i t

(I d e n t i f i e r N o n d i g i t
| DIGIT
)∗

;

NUMBER
: DIGIT+ (’ . ’ DIGIT+)?
| ’ . ’ DIGIT+
;

fragment I d e n t i f i e r N o n d i g i t
: Nondig it
;

fragment Nondig it : (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ ’) ;

fragment DIGIT : ’ 0 ’ . . ’ 9 ’ + ;
WS : (’ ’ | ’\ t ’ | ’\n ’ | ’\ r ’)+ { sk ip () ; } ;

64

B ANTLR GRAMMAR OF SELL ANALYSIS

B. ANTLR Grammar of SELL Analysis

Listing 5: ”ANTLR Grammar of SELL Analysis”
grammar Matrix;

@lexer::header { package sell; }

@parser::header {

package sell;

import java.util.TreeMap;

import sell.input.*;

}

parse returns [DataRetrieved matrix]

@init{ $matrix = new DataRetrieved (); }

: (line { $matrix.addVector($line.vector); })+ EOF

;

line returns [DataLineRetrieved vector]

@init{ $vector = new DataLineRetrieved (); }

: (c1 = component { $vector.addComponent($c1.component); })+ (’>’

↪→ c2 = component { $vector.addTotal($c2.component); })? (’|’

↪→ c3 = component { $vector.addError($c3.component); })? (NL |

↪→ EOF)

;

component returns [ComponentSample component]

: param

| ’[’ params ’]’ { $component = new ComponentSample($params.
↪→ parameters); }

| ’_’ { $component = new ComponentSample(false); }

| ’0’ { $component = new ComponentSample(false); }

| ’1’ { $component = new ComponentSample(true); }

;

params returns [ComponentParameters parameters]

@init{ $parameters = new ComponentParameters (); }

: p1 = param { $parameters.put($p1.key, $p1.value); } (’,’ p2 =

↪→ param { $parameters.put($p2.key, $p2.value); })*

;

param returns [String key, String value]

: ’n’ ’=’ NUMBER { $key = "n"; $value = $NUMBER.text; }

| ’t’ ’=’ NUMBER { $key = "t"; $value = $NUMBER.text; }

| ’e’ ’=’ NUMBER { $key = "e"; $value = $NUMBER.text; }

| ’cpu ’ ’=’ NUMBER { $key = "cpu"; $value = $NUMBER.text; }

| ’ram ’ ’=’ NUMBER { $key = "ram"; $value = $NUMBER.text; }

65

B ANTLR GRAMMAR OF SELL ANALYSIS

| ’disk ’ ’=’ NUMBER { $key = "disk"; $value = $NUMBER.text; }

| ’fans ’ ’=’ NUMBER { $key = "fans"; $value = $NUMBER.text; }

| ’gpu ’ ’=’ NUMBER { $key = "gpu"; $value = $NUMBER.text; }

;

NUMBER

: DIGIT+ (’.’ DIGIT +)?

| ’.’ DIGIT+

;

fragment DIGIT : ’0’..’9’+;

NL : ’\r’? ’\n’ | ’\r’;

Space : (’ ’ | ’\t’)+ {skip();};

66

C PERL SCRIPT TO APPLY INSTRUMENTATION TO EVERY C MODULE

C. Perl script to apply instrumentation to every C module

Listing 6: ”Perl script to apply instrumentation to every C module”
#! / u s r / b i n / p e r l −w

use strict;

use warnings;

use 5.010;

use Cwd ’abs_path ’;

use File::Copy;

my $path = shift || ’.’;

my $absoluteDirPath = abs_path($path);

my @folder_split = split(’\/’,$absoluteDirPath);
my $name_dir = $folder_split [-1];

my $target_dir = $absoluteDirPath . "/../". $name_dir . "_copy";

$target_dir = abs_path($target_dir);

mkdir($target_dir) or die "Could not mkdir $target_dir: $!";

copy_recursively($absoluteDirPath , $target_dir);

traverse($absoluteDirPath);

sub traverse {

my $thing = shift @_;

my $filename = shift @_;

#say $t h i n g ;
if (defined($filename) and not -d $thing) {

my $firstChar = substr($filename , 0, 1);

my @stringSplitted = grep { /.+\. c$/ } $filename;

if ((not $firstChar eq ".") and (scalar

↪→ @stringSplitted) > 0) {

#f i l e i t i s not an h idden f i l e and i s a C
↪→ l anguage f i l e

my $absolutePath = abs_path($thing);
my $command = "/Users/tac/Dropbox/MEI/Tese/

↪→ CInstrumentation/CInstrumentation " .

↪→ $absolutePath;
system($command);

67

C PERL SCRIPT TO APPLY INSTRUMENTATION TO EVERY C MODULE

}

}

return if not -d $thing;
opendir my $dh , $thing or die;

while (my $sub = readdir $dh) {

next if $sub eq ’.’ or $sub eq ’..’;

#say ” $ t h i n g / $sub ” ;
traverse("$thing/$sub", $sub);

}

close $dh;
return;

}

sub copy_recursively {

my ($from_dir , $to_dir) = @_;

opendir my($dhh), $from_dir or die "Could not open dir ’

↪→ $from_dir ’: $!";
for my $entry (readdir $dhh) {

next if ($entry eq ’.’ or $entry eq ’..’);

my $source = "$from_dir/$entry";
my $destination = "$to_dir/$entry";
if (-d $source) {

mkdir $destination or die "mkpath ’$destination ’ failed
↪→ : $!" if not -e $destination;

copy_recursively($source , $destination);
}

else {

copy($source , $destination) or die "copy failed: $!";
}

}

closedir $dhh;
return;

}

68

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

D. Clang C++ program to instrumentate a C program
with energy instructions

Listing 7: ”Clang C++ program to instrumentate a C program with energy instructions”
#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <vector >

#include "llvm/Support/Host.h"

#include "llvm/Support/raw_ostream.h"

#include "llvm/ADT/IntrusiveRefCntPtr.h"

#include "llvm/ADT/StringRef.h"

#include "llvm/Support/FileSystem.h"

#include "clang/Basic/DiagnosticOptions.h"

#include "clang/Frontend/TextDiagnosticPrinter.h"

#include "clang/Frontend/CompilerInstance.h"

#include "clang/Basic/TargetOptions.h"

#include "clang/Basic/TargetInfo.h"

#include "clang/Basic/FileManager.h"

#include "clang/Basic/SourceManager.h"

#include "clang/Lex/Preprocessor.h"

#include "clang/Lex/Lexer.h"

#include "clang/Basic/Diagnostic.h"

#include "clang/AST/RecursiveASTVisitor.h"

#include "clang/AST/ASTConsumer.h"

#include "clang/Parse/ParseAST.h"

#include "clang/Rewrite/Frontend/Rewriters.h"

#include "clang/Rewrite/Core/Rewriter.h"

using namespace clang;

char functionName [256];

// R e c u r s i v e A S T V i s i t o r i s i s the big−kahuna v i s i t o r t h a t t r a v e r s e s
// e v e r y t h i n g i n the AST .
class MyRecursiveASTVisitor

: public RecursiveASTVisitor <MyRecursiveASTVisitor >

{

public:

MyRecursiveASTVisitor(Rewriter &R) : Rewrite(R) { }

void InstrumentStmt(Stmt *s);

bool VisitStmt(Stmt *s);

bool VisitFunctionDecl(FunctionDecl *f);

69

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

bool VisitReturnStmt(ReturnStmt *Return);

Rewriter &Rewrite;

};

// Return Statements
bool MyRecursiveASTVisitor :: VisitReturnStmt(ReturnStmt *Return)

{

// Stmt ∗BODY = Return−>getBody () ;
SourceLocation ST = Return ->getLocStart ();

char fc [256];

sprintf(fc , "// Retrieve data %s\n", functionName);

Rewrite.InsertText(ST , fc , true , true);

return true; // r e t u r n i n g f a l s e a b o r t s the t r a v e r s a l
}

bool MyRecursiveASTVisitor :: VisitFunctionDecl(FunctionDecl *f)

{

if (f->hasBody ())

{

SourceRange sr = f->getSourceRange ();

Stmt *s = f->getBody ();

// Make a s t a b at d e t e r m i n i n g r e t u r n type
// G e t t i n g a c t u a l r e t u r n type i s t r i c k i e r
// QualType q = f−>getReturnType () ;
QualType q = f->getResultType ();

const Type *typ = q.getTypePtr ();

std:: string ret;

if (typ ->isVoidType ())

ret = "void";

else

if (typ ->isIntegerType ())

ret = "integer";

else

if (typ ->isCharType ())

ret = "char";

else

ret = "Other";

// Get name o f f u n c t i o n
DeclarationNameInfo dni = f->getNameInfo ();

DeclarationName dn = dni.getName ();

std:: string fname = dn.getAsString ();

70

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

// Point to s t a r t o f f u n c t i o n body
SourceLocation ST = s->getLocStart ().getLocWithOffset (1);

// Add comment
char fc [256];

sprintf(fc , "\n// Retrieve data\n");

sprintf(functionName , "%s", fname.data());

Rewrite.InsertText(ST , fc , true , true);

if (f->isMain ())

llvm::errs() << "";

SourceLocation END = s->getLocEnd ();

Rewrite.InsertText(END , fc , true , true);

}

return true; // r e t u r n i n g f a l s e a b o r t s the t r a v e r s a l
}

class MyASTConsumer : public ASTConsumer

{

public:

MyASTConsumer(Rewriter &Rewrite) : rv(Rewrite) { }

virtual bool HandleTopLevelDecl(DeclGroupRef d);

MyRecursiveASTVisitor rv;

};

bool MyASTConsumer :: HandleTopLevelDecl(DeclGroupRef d)

{

typedef DeclGroupRef :: iterator iter;

for (iter b = d.begin(), e = d.end(); b != e; ++b)

{

rv.TraverseDecl (*b);

}

return true; // keep go ing
}

int main(int argc , char **argv)

{

struct stat sb;

71

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

if (argc < 2)

{

return 1;

}

// Get f i l e n a m e
std:: string fileName(argv[argc - 1]);

// Make s u r e i t e x i s t s
if (stat(fileName.c_str(), &sb) == -1)

{

perror(fileName.c_str ());

exit(EXIT_FAILURE);

}

CompilerInstance compiler;

DiagnosticOptions diagnosticOptions;

compiler.createDiagnostics ();

// Create an i n v o c a t i o n t h a t p a s s e s any f l a g s to p r e p r o c e s s o r
CompilerInvocation *Invocation = new CompilerInvocation;

CompilerInvocation :: CreateFromArgs (*Invocation , argv + 1, argv +

↪→ argc ,

compiler.getDiagnostics ());

compiler.setInvocation(Invocation);

// Set d e f a u l t t a r g e t t r i p l e
llvm:: IntrusiveRefCntPtr <TargetOptions > pto(new TargetOptions ())

↪→ ;

pto ->Triple = llvm::sys:: getDefaultTargetTriple ();

llvm:: IntrusiveRefCntPtr <TargetInfo >

pti(TargetInfo :: CreateTargetInfo(compiler.getDiagnostics (),

pto.getPtr ()));

compiler.setTarget(pti.getPtr ());

compiler.createFileManager ();

compiler.createSourceManager(compiler.getFileManager ());

HeaderSearchOptions &headerSearchOptions = compiler.

↪→ getHeaderSearchOpts ();

headerSearchOptions.AddPath("/usr/local/include",

clang:: frontend ::Angled ,

false ,

false);

72

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

headerSearchOptions.AddPath("/usr/local/opt/llvm/llvm/tools/

↪→ clang/include",

clang:: frontend ::Angled ,

false ,

false);

headerSearchOptions.AddPath("/Applications/Xcode.app/Contents/

↪→ Developer/Toolchains/XcodeDefault.xctoolchain/usr/include",

clang:: frontend ::Angled ,

false ,

false);

headerSearchOptions.AddPath("/System/Library/Frameworks",

clang:: frontend ::Angled ,

false ,

false);

headerSearchOptions.AddPath("/Library/Frameworks",

clang:: frontend ::Angled ,

false ,

false);

headerSearchOptions.AddPath("/usr/include",

clang:: frontend ::Angled ,

false ,

false);

// Al low C++ code to get r e w r i t t e n
LangOptions langOpts;

langOpts.GNUMode = 1;

langOpts.CXXExceptions = 1;

langOpts.RTTI = 1;

langOpts.Bool = 1;

langOpts.CPlusPlus = 1;

Invocation ->setLangDefaults(langOpts ,

clang ::IK_CXX ,

clang :: LangStandard :: lang_cxx0x);

// c o m p i l e r . c r e a t e P r e p r o c e s s o r (c l a n g : : TU Complete) ;
compiler.createPreprocessor ();

compiler.getPreprocessorOpts ().UsePredefines = false;

compiler.createASTContext ();

// I n i t i a l i z e r e w r i t e r
Rewriter Rewrite;

Rewrite.setSourceMgr(compiler.getSourceManager (), compiler.

↪→ getLangOpts ());

const FileEntry *pFile = compiler.getFileManager ().getFile(

↪→ fileName);

73

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

compiler.getSourceManager ().createMainFileID(pFile);

compiler.getDiagnosticClient ().BeginSourceFile(compiler.

↪→ getLangOpts (),

&compiler.

↪→ getPreprocessor

↪→ ());

MyASTConsumer astConsumer(Rewrite);

// Convert < f i l e >. c to < f i l e o u t >. c
std:: string outName (fileName);

size_t ext = outName.rfind(".");

if (ext == std:: string ::npos)

ext = outName.length ();

outName.insert(ext , "_out");

// l l v m : : e r r s () << ” Output to : ” << outName << ”\n ” ;
std:: string OutErrorInfo;

llvm:: raw_fd_ostream outFile(outName.c_str(), OutErrorInfo , llvm

↪→ ::sys::fs:: F_None);

if (OutErrorInfo.empty())

{

// Parse the AST
ParseAST(compiler.getPreprocessor (), &astConsumer , compiler.

↪→ getASTContext ());

compiler.getDiagnosticClient ().EndSourceFile ();

// Output #i n c l u d e
outFile << "//# include <PowerGadgetTool.h>\n";

// Now output r e w r i t t e n s o u r c e code
const RewriteBuffer *RewriteBuf =

Rewrite.getRewriteBufferFor(compiler.getSourceManager ().

↪→ getMainFileID ());

outFile << std:: string(RewriteBuf ->begin(), RewriteBuf ->end());

}

else

{

llvm::errs() << "Cannot open " << outName << " for writing\n";

}

outFile.close();

int result = rename(outName.c_str(), fileName.c_str());

74

D CLANG C++ PROGRAM TO INSTRUMENTATE A C PROGRAM WITH
ENERGY INSTRUCTIONS

if (result != 0) {

llvm::errs() << "Cannot save file as original\n";

}

return 0;

}

75

	Introduction
	Research Questions
	The solution
	Structure of the Thesis

	Green Computing
	Green Software Computing

	Fault Localization Techniques
	Sepectrum-based Fault Localization

	Source Code Energy Consumption Analysis
	Instrumentation and Results Treatment
	Instrumentation
	Case Study: GraphViz
	The Influence of CPU Execution on the Energy Consumption Values

	Results Treatment

	Results analysis: Spectrum-based Energy Leak Localization
	An example

	Spectrum-based Energy Leak Localization: The Tool
	The Instrumentation
	The Results Treatment
	Results Analysis
	How to use the tool

	Validation
	Conclusion
	Research Questions Answered
	Other contributions
	Future Work

	Appendices
	ANTLR Grammar of Results treatment
	ANTLR Grammar of SELL Analysis
	Perl script to apply instrumentation to every C module
	Clang C++ program to instrumentate a C program with energy instructions

