
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master Course in Computing Engineering

André Alexandre Wang Liu

3D Application Debugging

Master dissertation

Supervised by: António José Borba Ramires Fernandes,

Braga, November 12, 2014

AC K N OW L E D G E M E N T S

I would like to sincerely and gratefully thank my adviser António José Borba Ramires Fernandes for

all the guidance, patience and understanding in my studies at Universidade do Minho. His interest

and help in this thesis was crucial and without it I could not accomplish this work.

I would also like to thank all members of Departamento de Informatica for all the knowledge I

learned during this course.

I would like to thank all my colleagues in AgroSocial for sticking with me and giving me time to

make the necessary studies while I worked along in our collaborative project.

I also would like to thank all the colleagues I met during my years in Universidade do Minho for

all help provided during my student years.

Finally I would like to thank my family for supporting my life here in Campus Gualtar for it is their

hard work that I could sustain myself so far and it is their hard work that I have reached so far.

A B S T R AC T

It’s rare for a bugless program to exist, this includes 3D applications with their respective shaders. In

particular shaders are harder to debug than common applications, since they are loaded to the gpu and

executed in thousands of smaller threads simultaneously. It isn’t easy to obtain the variables values,

the application state and it’s hard to detect what causes the errors even with posterior correction. That’s

why it’s necessary to use these types of environments.

OpenGL in particular has many open source debuggers, however their stability and version can be

questionable since they are created by an open non-profit community. A study about the usability

of Bugle, APItrace, GLIntercept, GLSL(glslDevil) and VOGL is documented, hopefully helping the

reader to select the best tool for his needs. Furthermore, it allows the reader to use this document as a

user manual.

It was decided to experiment Bugle and GLSL on an Ubuntu environment because it was easier

to experiment in a Linux operative system, however APItrace and GLIntercept are experimented on

Windows in order to debug a bugged Windows application.

A brief study of the code of the mentioned debuggers is necessary in order to understand the very

basics necessary to debug an OpenGL solution. It also helps understand how to update the code with

the latest OpenGL version.

Also a study on commercial debuggers from the known companies such as AMD and NVIDIA is

made in order to know the current commercial debuggers, the documentation will follow some similiar

procedures as the open source debuggers.

Nau 3D engine, developed at Universidade do Minho, is an OpenGL based engine which renders

projects written with xml. Adding internal debugger features could help immensely all who wish to

work with the engine, allowing the engine developers to understand any possible occurring bug within

the engine and also the engine user to find bugs in their own projects.

With the knowledge gathered by studying OpenGL debuggers, several debugging functions for Nau

3D engine were implemented. Experiencing usability itself and the many possible faults should ensure

an improved product by using the many already existing ideas and methods.

Of course implementing the debugger is not enough, it’s pointless to create a new feature without a

proper manual regarding it’s functionality, that’s why it’s written in this thesis all that’s necessary for

a new user to know in order to use Nau’s new debugging feature.

a

R E S U M O

É muito raro existir um programa sem bugs, incluindo aplicações 3D com shaders. Os shaders em

particular são mais complicados que as aplicações principais, pois esses são carregados para a placa

gráfica e são executados em milhares de pequenas threads em simultâneo. Não é fácil obter valores de

variáveis, estado da aplicação, e descobrir causas de erros é de difı́cil deteção e mesmo posteriormente

de correção. Por isso é importante utilizar debuggers especializados para este tipo de ambientes.

O OpenGL em particular tem vários debuggers, no entanto a estabilidade da maioria pode ser ques-

tionável. Um estudo sobre experiencias da usabilidade de Bugle, APItrace, GLIntercept, GLSL(glslDevil)

e VOGL é documentado o que permite o leitor usar este documento como um manual de utilizador.

É decidido experimentar o Bugle e o GLSL num ambiente Ubuntu devido à facilidade da sua

instalação em sistema operativo Unix, no entanto Apitrace e GLIntercept é experimentado no Win-

dows para fazer debug de uma aplicação com bugs.

Um estudo breve do código dos debuggers mencionados é necessário para entender as bases necessárias

para debug de uma solução OpenGL. Isso também ajuda perceber como actualizar o código com as

últimas versões OpenGL.

Também um estudo nos debuggers comerciais actuais de empresas conhecidas como AMD e Nvidia

é efectuada de forma a conhecer os debuggers comerciais actuais, o procedimento da documentação

terá algumas semelhanças com os debuggers open source.

O motor 3D Nau desenvolvido na Universidade do Minho é um motor 3D para OpenGL que faz

renderização de projectos escritos em xml, ter um debugger interno nas suas capacidades pode aju-

dar imensamente a todos que desejam trabalhar com este motor, permitindo aos desenvolvedores do

motor perceber possı́veis bugs a acontecerem dentro do motor e também aos utilizadores do motor

encontrarem bugs dos seus projectos.

Com os resultados dos estudos sobres os debuggers OpenGL, é implementado funcionalidades de

debugging para o motor 3D Nau , é por isso que a primeira parte da tese, o estado da arte, é um assunto

muito importante. Tendo a experiencia da própria usabilidade e as possı́veis falhas devem garantir um

produto melhorado através das várias ideias e métodos já existentes.

É claro implementar somente o debugger não é suficiente, seria inútil criar uma nova capacidade

sem um manual sobre as suas funcionalidades, é por isso que está escrito neste artigo tudo que é

necessário saber para um novo utilizador para usar a nova capacidade de debugging da Nau.

b

C O N T E N T S

Contents iii

i I N T RO D U C T O RY M AT E R I A L 3

1 I N T RO D U C T I O N 4

1.1 Contextualization 4

1.2 Motivation 5

1.3 Document Structure 6

2 S TAT E O F T H E A RT 7

2.1 Bugle 7

2.1.1 Filter and Statistics Configuration 8

2.1.2 Graphic User Interface 9

2.1.3 Inner Workings 11

2.1.4 Maintenance 11

2.2 APITrace 11

2.2.1 Basic Functionalities 12

2.2.2 Log reading GUI 12

2.2.3 Real problem solving example 14

2.2.4 How it works from inside 15

2.2.4.1 Creating a trace 15

2.2.5 Maintenance 16

2.3 GLIntercept 17

2.3.1 Logging 17

2.3.2 Plugin Usage 19

2.3.3 OpenGL32.dll wrapper 19

2.3.4 Maintenance 19

2.3.4.1 Plugins 21

2.3.4.1.1 GLFreeCam . 21

2.3.4.1.2 Plugin Creation . 22

2.4 GLSLDevil/GLSL-Debugger 23

2.4.1 Graphic User Interface 23

2.4.2 How does GLSL logs and debugs 25

2.4.2.1 Common Debugging 25

2.4.2.2 Shader Debugging 25

2.4.3 Maintenance 26

iii

2.5 VOGL 26

2.5.1 Functions and GUI 27

2.5.2 Maintenance 28

2.6 CodeXL 28

2.6.1 Debug Mode 29

2.6.2 Profilling Mode 29

2.6.3 CPU Time Based Profile 29

2.6.4 GPU Application Trace 29

2.7 Nsight 29

2.7.1 Graphics Debugging 30

2.7.2 Performance Analysis 32

3 D E B U G G E R C O M PA R I S I O N S 34

3.1 Open Source Applications 34

3.1.1 Comparision table 34

3.1.2 Feature table 35

3.2 Commercial/Freeware Applications 37

3.3 Conclusions regarding State of Art 37

ii I N C O R P O R AT I N G T H E D E B U G G E R I N N AU 39

4 U S I N G A N E X I S T I N G D E B U G G E R 40

4.1 Changes on GLIntercept 40

4.2 Changes on Nau 42

4.3 Changes on composer 43

5 H O W T O U S E N AU ’ S D E B U G G E R 44

5.1 functionlog 45

5.2 logperframe 46

5.3 errorchecking 46

5.4 imagelog 46

5.5 shaderlog 47

5.6 displaylistlog 47

5.7 framelog 48

5.8 timerlog 49

5.9 plugins 49

5.10 How to get OpenGL state 50

5.11 How to use the composer 51

6 C O N C L U S I O N S A N D F U T U R E W O R K 55

6.1 Conclusions 55

6.2 Prospect for future work 56

iv

iii A P E N D I C E S 61

A I N S TA L L AT I O N 62

A.1 Bugle 62

A.2 APITrace 64

A.3 GLIntercept 64

A.4 GLSLDevil/GLSL-Debugger 65

A.5 VOGL 65

B U S E / C O N F I G U R AT I O N 67

B.1 Bugle 67

B.1.1 Statistics configuration 67

B.1.2 Filter Configuration 68

B.1.2.1 Statistics filterset 69

B.1.2.2 Trace and Log filterset 71

B.1.2.3 Error checking filtersets 72

B.1.2.4 Context attributes and extension override filtersets 73

B.1.2.5 Showextensions filterset 75

B.1.2.6 KHR Debug filterset 75

B.1.2.7 Compilable C source filterset 76

B.1.2.8 Screenshot filterset 77

B.1.2.9 eps filterset 78

B.1.2.10 frontbuffer filterset 78

B.1.2.11 Wireframe filterset 79

B.1.3 Graphic User Interface 79

B.2 APITrace 81

B.2.1 Tracing 81

B.2.2 Retracing 81

B.2.3 Output replay to video 82

B.2.4 Trimming trace file 82

B.2.5 Profiling trace 82

B.2.6 Apitrace’s GUI 84

B.3 GLIntercept 86

B.3.1 Tracing 86

B.3.2 Frame Logging 88

B.3.3 Shader Editor 88

B.3.4 ARB debug output Logging 89

B.3.5 Extension override 90

B.3.6 Function statistics 91

B.4 GLSLDevil/GLSL-Debugger 93

v

B.4.1 GL Trace 95

B.4.2 Shader 96

B.4.3 GL Trace Statisics 97

B.4.4 GL Buffer View 97

B.4.5 Shader Variables and Watch 98

B.5 VOGL 100

B.5.1 Copying the DLL 100

B.5.2 VOGL gui 100

B.5.3 Creating the trace file 101

B.5.4 Trimming a trace file 102

B.5.5 Replaying a trace file 102

B.5.6 Interactive replaying a trace file 103

B.5.7 Realtime editing and replaying a trace file 103

B.5.8 Converting a APITrace trace file 103

B.5.9 Dump images from a trace file 104

B.5.10 Get statistics from a trace file 104

B.5.11 Finding in a trace file 107

vi

L I S T O F F I G U R E S

Figure 1 Bugle showstats example 9

Figure 2 Bugle gldb state tab. 10

Figure 3 Bugle gldb shader error encountered. 10

Figure 4 Apitrace’s qapitrace GUI 13

Figure 5 Apitrace looking up state 14

Figure 6 Debug correction 15

Figure 7 APITrace inner workings diagram 16

Figure 8 GLIntercept xml output in internet explorer. 18

Figure 9 GLSL Trace Statistics and Vertex Shader 24

Figure 10 GLSL fragment color viewer. 24

Figure 11 VOGL editor after snapshot. 27

Figure 12 Nsight HUD while application is running. 30

Figure 13 Nsight HUD while application is paused. 31

Figure 14 Nsight HUD while application is paused with wireframe on. 31

Figure 15 Composer’s Pass controller. 51

Figure 16 Nau’s GLIntercept log viewer. 52

Figure 17 Nau program information. 52

Figure 18 Nau buffer information. 53

Figure 19 Nau VAO information. 53

Figure 20 Nau State information. 54

Figure 21 Bugle showstats example 70

Figure 22 Bugle eps screenshot 78

Figure 23 Bugle gldb state tab. 79

Figure 24 Bugle buffers. 80

Figure 25 Bugle gldb shader error encountered. 80

Figure 26 Bugle gldb breakpoint. 81

Figure 27 Apitrace’s qapitrace GUI 85

Figure 28 Apitrace looking up state 86

Figure 29 GLIntercept xml log 88

Figure 30 Extension override results 91

Figure 31 GLSL open application dialog 93

Figure 32 GLSL Buffer View and Fragment shader 94

Figure 33 GLSL Trace Statistics and Vertex Shader 94

vii

Figure 34 Fragment shader per-fragment options. 97

Figure 35 Fragment coordinates viewer. 98

Figure 36 Fragment color viewer. 99

Figure 37 Fragment position viewer. 99

Figure 38 VOGL Reminder 100

Figure 39 VOGL editor after snapshot. 101

Figure 40 VOGL editor generate trace. 102

viii

L I S T O F TA B L E S

Table 1 Open Source Applications Pros and Cons table 35

Table 2 Open Source Applications Feature table 36

Table 3 Commercial/Freeware Applications Pros and Cons table 37

ix

Part I

I N T RO D U C T O RY M AT E R I A L

1

I N T RO D U C T I O N

Bugs are known by anyone who writes computer programs. Even the common user will acquire such

concept by using software.

Because of such bug omnipresence debugging tools are essential to help the programmer. A prop-

erly used debugger can save many hours of hard work.

In particular, 3D application are hard to debug, since there is code running in two separate proces-

sors, CPU and GPU. Graphic programs, a shader pipeline, are processed and executed in the GPU

processor with a distinct memory space, and in multiple threads, making them particularly hard to

debug. Furthermore, bugs can also appear in the pipeline construction itself.

That separates 3D application debuggers from standard debugging tools such as the already inbuilt

debuggers in popular known IDE .

1.1 C O N T E X T UA L I Z AT I O N

3D applications are prone to error for a number of reasons. Probably the most common reason is

the mathematics behind 3D graphics which is complex and hard to trace in a multi stream processor

environment such as the GPU. This may require the user to output partial results to output buffers and

latter inspect them. This inspection is not straightforward to achieve in a regular debugger since these

buffers live in the GPU memory space, and it is up to the programmer to retrieve them. The multi

stream nature of the GPU also makes it harder to debug a particular instance of a shader.

Another reason lays on the drivers themselves. While the specification is unique, it is a known fact

that there are significant differences between the implementations from the two main hardware makers.

For instance, currently, when using uniform blocks NVIDIA accepts the instance block name, while

AMD does not. Furthermore, not all features described in the specification are implemented. The

same applies to OpenGL extensions, with different drivers having different degrees of implementation

completeness. The third issue relates to the silent way drivers deal with many errors. When an error

occurs usually life goes on in the application. It is up to the programmer to retrieve the compilation

and linkage logs, and check for errors during execution.

Recently, OpenGL has came up with an extension dedicated to debugging [?]. The goal is to provide

the user with feedback when invalid operations are performed. Although a step in the right direction,

4

it is still far from perfect. Not all problematic situations are covered by this mechanism, and the debug

messages provided by the different hardware manufacturers are far from helpful in most cases.

Each of the hardware vendors provides a debugging tool, at least for Windows operating system.

NVIDIA released NSight [NVIa], and AMD has CodeXL [AMD13]. Both debuggers can work in-

tegrated with Visual Studio. While the list of features is impressive, including shader code tracing,

and GPU memory inspection, despite being supported by large corporations these tools are not up to

date with the latest version of OpenGL. CodeXL claims to support OpenGL 4.3 while NSight only

supports OpenGL 4.2. Furthermore, NVIDIA Optimus equipped laptops do not to take advantage of

the full list of features available in NSight, namely shader code tracing.

Open source tools on the other hand are not as powerful as they don’t allow shader tracing. However,

currently some are up to date with the latest OpenGL version and extensions making them useful for

users who want to explore the latest features. It is also possible to integrate these tools within an

application. Being open source allows for the required customizations to be performed. Another

benefit is that these debuggers are not restricted to a particular hardware vendor.

1.2 M OT I VAT I O N

As mentioned before debugging 3D applications is particularly hard. Hence, 3D debuggers are highly

desirable tools. However, although open source debuggers have existed for some time there is no

work detailing their features, weakness, and performing a comparison between them. This thesis

attempts to fill that void. This thesis also covers commercial debuggers from NVIDIA and AMD for

completeness.

The following open source debuggers, mentioned in the OpenGL wiki [Ope12], shall be covered in

this work: Bugle[MB07b], Apitrace[FJea13], GLIntercept[DS13], GLSLDevil [KS10] (renamed as

GLSL-Debugger [HX13]). An addition to the wiki’s list could be the more recent Valve’s OpenGL

debugger, VOGL, which is also covered in this work. All these debuggers are being actively main-

tained.

The study of the open source debuggers will also provide insight on their inner workings.

Each of the debuggers has a rich set of features, though none of them as the superset of features.

Bugle is a tool for OpenGL debugging implemented as a wrapper for Unix like systems and has it’s

own GUI . Apitrace is capable of debugging on different platforms and different 3D APIs, although

in this thesis the focus is on OpenGL. GLIntercept is simple and easy to use, and it is the easiest to

expand due to its plugin architecture. GLSL-Debugger has one of the most user friendly GUI . VOGL

has features very similar to Apitrace, it also has a GUI that can rival GLSL-Debugger.

The second goal of this thesis is to create a debugger for Nau 3D engine [Rama]. Nau 3D engine is

an 3D rendering engine developed at Universidade do Minho which allows hybrid rendering, i.e. it is

capable of performing rasterization, using OpenGL, and ray tracing, using NVIDIA’s Optix and Optix

Prime [NVIb]. Nau’s Projects are created in xml files. However the projects themselves, being highly

5

flexible, can have bugs which will eventually require debugging, thus the objective of this thesis. On

the other hand, implementing a debugger within Nau will also mean to implement a debugger that

debugs the 3D engine itself helping the engine developers.

In this work an open source debugger, GLIntercept, was integrated with Nau and its GUI producing

a richer debugging environment that will assist both Nau developers and users.

1.3 D O C U M E N T S T RU C T U R E

The second chapter of this thesis will mainly focus on the experimentation of the mentioned debuggers

with subsections dedicated to testing and analysis. The open source debuggers will also feature a sub

section dealing with upgradeability regarding OpenGL versions.

Afterwards a comparison between the mentioned debuggers is made in form of tables, these tables

pretty much serves as a conclusion for the study of the state of art. Those who want to either pick

a debugger to use or work on a debugger should read this table. This will also allow a good feature

overview so we can view all the existing features a debugger has while seeing which debugger can

complement a missing feature from another debugger.

Once all analysis and experimentation is done the creation of the promised debugger for Nau begins,

the created debugger itself will use one of the five candidate open source debuggers as it’s base because

starting the from the scratch would be far too time consuming and inefficient.

The original debugger will have to be changed in ways that will allow Nau to interact with the

debugger, this will force some tinkering with the debuggers code as a new adapted version of the

original. Nau comes with a basic composer which uses Nau in order to render xml projects, this

composer will receive additional features to accommodate the new debugging features, these additions

shall be conscious of the debugging studies.

Nau’s new debugging features will also require documentation of it’s usability, this thesis will serve

as a manual for all new debugging features implemented for Nau’s new features.

For all interested in the installation method of all five open source debuggers these are documented

in the appendices section of this thesis.

6

2

S TAT E O F T H E A RT

In these study seven different debuggers for OpenGL were selected, five open source and two com-

mercial debuggers. Four of the open source debuggers were chosen because they are mentioned in

the official OpenGL wiki, aside from being the most popular among the community. VOGL is an

exception, chosen due to it’s relation with Valve. The list of the chosen debuggers is:

• Bugle - Open source

• APITrace - Open source

• GLIntercept - Open source

• glslDevil - Open source

• VOGL - Open source

• CodeXL - Commercial

• Nsight - Commercial

The focus of this work is on OpenGL debugging, thus it will barely mention other features outside

of this context. Topics like DirectX, CUDA and OpenCL will be avoided unless it is also mentioned

alongside OpenGL.

In the following sections each of the debuggers will be tested and analyzed. To conclude this section

a comparison is performed.

2.1 B U G L E

Bugle [MB07b] is mostly used by Linux operative systems. For Windows it is recommended to use

MinGW but a word of caution is given regarding Windows installation in the official website [MB07a]

”it is significantly trickier than on UNIX-like systems, and currently only recommended for experts”.

This work uses a successfully compiled Bugle in a Ubuntu 13.10 gnome operative system, this

section shall report the experiments with Bugle.

7

Bugle’s configuration is based on filters (a set of actions used to extract, manage, or print informa-

tion). Filters are chained together, like a production line from a factory, the product being debug or

profile information.

Bugle comes with several filters. Filters can be configured during the chain but no method other

than changing the C code directly can create new filters.

There is also a GUI which allows for easier user experience. The GUI also enables the option of

step by step to trace a resources such as viewing textures, buffers or shaders.

The main list of features is as follows:

• Create filter chains;

• Log all GL calls (sec. B.1.2.2);

• Configure and show meta-data statistics (sec. ??);

• View OpenGL version and extensions used on the application;

• Identify API errors;

• Screenshot or video capture;

• Output a compilable C file (B.1.2.7);

• Alternate to GL LINE to visualize the object’s triangulation (sec. B.1.2.11).

Bugle uses two additional configuration files (also mentioned in the installation in the appendice

??), filters and statistics. To run bugle the provided gldb-gui on the target application,

just run it inside the working directory and it’ll run bugle’s user interface, do not forget to change the

chain in Options-> Target. The specified chain ’must exist inside filters.

2.1.1 Filter and Statistics Configuration

Bugle is a debugger which works by relying with chains of filters, each chain is a set of filters which

are executed during the debugging of the application, the chains are customizable by the user to adapt

into different debugging requirements.

The filters are methods to either extract or output information, for instance the following filter

filterset stats_basic is a filter which extracts basic information from the application such

as the number of frames and time elapsed. However this filterset does not output any form of

information, so this is a filter used to extract information. While stats_basic may be useless by it-

self it is absolutely necessary for filterset showstats to show FPS and any other information

relying on stats_basic.

Some filters themselves can be configured, for example showstats mentioned before can be

configured to show different statistics.

8

The output a statistic related filters can show depends on the configuration of statistics in the

statistics file, this gives even more freedom for the user to decide what to profile and what

kind of debugging operation to perform. This file is where all stat related calculations are defined,

for example frames per second is defined as: f ramespersecond = d(” f rames”)/d(”seconds”) with

precision 1 and label "fps".

This means that whenever showstats uses show frames per second it’ll output fps as

shown in figure 1.

Figure 1.: Bugle showstats example.

2.1.2 Graphic User Interface

Bugle has it’s own GUI , it makes manual use of bugle through command line redundant. The GUI

allows the user to use additional debugging beside filter chains, such methods include:

• Viewing the GL state, it’s possible to check which states changed by checking show changed

states, this is shown in figure 2;

• Step by step debugging, breakpoints on certain GL function are also possible;

• Viewing resources such as shaders and texture;

• Viewing buffers and framebuffers, these resources are update according to the current state

bugle is paused (from step by step or breakpoints);

9

• Additional error logs, for instance there is the shader error log in the shader tab.

This means it’s possible to pause the application and check it’s state, then pause again on a later

stage to see which states changed. Using the checkboxes greatly helps to search for such changes.

Breakpoints serve as an extension of step by step debugging and it helps searching or hunting for

certain functions or parts of the rendering where an anomaly may occur.

The exposure of buffers and shader information to the user may help evaluate whether there’s an

anomaly and where it may have occurred by slowly tracing by step.

Figure 2.: Bugle gldb state tab.

Figure 3.: Bugle gldb shader error encountered.

10

2.1.3 Inner Workings

In Unix systems OpenGL debugging uses the wrapping method, the difference between Windows and

Unix files is that Unix relies on *.so while Windows uses *.dll [Wik].

It’s possible to link *.so files before loading applications. This is exactly what Bugle does. The

gldb interface simplifies the process for the user as it will only add the BUGLE_CHAIN=<chain>

LD_PRELOAD=libbugle.so before running the application. As can be seen libbugle .so is

the wrapping library the LD_PRELOAD forces to use the specific library first. In windows systems

it’ll create a opengl32.dll instead.

This also means that GUI is optional, simply use BUGLE_CHAIN= <chain> LD_PRELOAD=libbugle.so <target application>

and Bugle will initiate, the <chain> is the name of chain to be used (check Filter Configuration

section).

2.1.4 Maintenance

In order to update Bugle with the latest OpenGL functions simply update the current library files

including the ones that come within bugle’s khronos-api folder, Bugle generate’s it’s files using the

OpenGL libraries using the khronos-api xml files, these can be located in with https://cvs.khronos.org/svn/repos/ogl/trunk/doc/registry/public/api/,

So when it comes to GL version Bugle is very simple to update. Should the repository die or become

out of date it’s recommended to create a script to generate the xml files based on the official khronos

header files.

It should be noted that the files requiring replacement are third party and not shown within the

official repository, however it should be visible after being downloaded.

Once the new libraries are updated simply build with Scons as mentioned on the Installation section

at the appendices.

2.2 A P I T R AC E

APITrace [FJea13] is a command line tool for debugging, it has cross-platform compatibility allowing

debugging for Linux, Windows and even Android.

This debugger has the ability to replay it’s trace files allowing the user to check and verify it’s

current state including the resources and uniforms used for the current function. Using the replay it’s

possible to dump images to ffmpeg in order to create a video.

It’s trace file has is a binary file readable only by apitrace which may be a downside considering it

forces the user to use only it’s tools. However it can also be edited by apitrace allowing the user to

resize the file or even change some input.

In short this debugger offers:

• Capability to create an OpenGL, OpenGL ES, Direct 3D and DirecDraw trace file;

11

http://en.wikipedia.org/wiki/DLL_injection

• Replaying an OpenGL and OpenGL ES trace;

• Using the replay combined with ffmpeg to create a video;

• Inspection of the OpenGL state when retracing;

• Viewing and editing trace files;

• Creating screenshots and videos based on the replay.

2.2.1 Basic Functionalities

APITrace is a debugger that needs to be run in command line, when tracing it will create a .trace

file which contains all traced information, every other APITrace debugging must be performed on the

generated trace file.

Sometimes traces can result in big files, thus trimming can help reduce the file size considerably. A

example why trimming is important is the fact that some files over 100 frames can take a considerable

amount of time to load, trimming can reduce that load.

Replaying is APITrace’s strongest feature, many APITrace operations resort to replaying. Since

replaying is independent from the target application it’s possible to store many different trace files for

replaying.

2.2.2 Log reading GUI

APItrace relies on qapitrace GUI to read trace files, simply use the .trace file on the executable

and it’ll show the whole log arranged by frame as shown in 4.

12

Figure 4.: On the left shows how Apitrace splits the log per each frame, on the right it has a frame node expanded
showing it’s function log.

Not only it’s possible to manually edit the GL calls for the next replay it’s also possible to lookup

the state on the current function shown in 5. This is very useful since it shows the GL state, uniforms

and shaders. Doing so allows the user to find if everything is in place at the place of an anomaly.

13

Figure 5.: Looking up the state before changing the program, it allows to see the current program’s parameters,
shaders, buffers(surfaces tab) and uniforms.

2.2.3 Real problem solving example

The example used in most debugging is a bugged application, for some reason the light intensity is

always returning a value very close to 0 thus making the object always on night.

Using qapitrace GUI and using ”Lookup state” before switching to program 1 (text rendering

shaders) it can check the uniforms for the bugged shader.

The analysis of the uniforms concludes that it wasn’t sending the proper matrices to the shader thus

messing the calculations, problems include modelMatrix, viewMatrix and viewModelMatrix were

zero matrices and the normalViewMatrix’s determinant was 0. Those are clearly bugs that should not

occur in a shader and the error can be determined as outside the shader but within the application’s

uniform management. The results can be compared at the figure 6.

14

Figure 6.: On the left is the model before correction, on the right is the model after correction.

As seen in image what happens if the bugged matrices are avoided by considering them as identity

matrices (which is more cheating than a solution). It also corrects the viewMatrix by changing

normalViewModelMatrix into normalMatrix.

2.2.4 How it works from inside

O APITrace for windows works using the usual DLL injection method. APITrace raw code is coded

with a combination of C code and Python scripts, the python scripts are used to generate the final C

code solution.

This application isn’t based on one single executable, it has multiples executables and also carries

python scripts to make additional and more advanced commands.

Making a qt and a script based initial solution allows less code to be written, it does create a more

complex build method, however it also allows cross-platform compatibility.

2.2.4.1 Creating a trace

A study of Apitrace’s code concludes that the tracing works according to the following diagram in

figure 7:

15

http://en.wikipedia.org/wiki/DLL_injection

Figure 7.: APITrace inner workings diagram - trace action

APITrace works with the common DLL injection method, it uses an injection application to make

the injection work, it does require an previously prepared wrapper, the wrapper itself does the logging.

Apitrace also allows to trace direct3D as well since it contain other wrappers beside OpenGL.

2.2.5 Maintenance

Should there be an update for opengl32.dll it will be important to know where to change the source

code. In Apitrace case most code is packed into python scripts, by searching for the function OpenGL

4.3 with it’s header it can be found in two files:

• specs\glapi.py

• thirdparty\khronos\GL\glext.h

The file in khronos folder isn’t necessary to be manually updated, all it needs is to be updated with

the most recent files published by khronos. The glapi.py is a script generated by glspec.py in

the same folder, this will generate based on the khronos files, manual editing is obligatory.

This is done by using make -b command on the specs\scripts folder, this command will

download all the current OpenGL specs (download the current OpenGL functions), it’ll also gener-

ate glapi.py, glxapi.py, wglapi.py, glparams.py, wglenum.py and eglenum.py.

Most of these files contains functions to replace, for instance glapi.py contains all and only

glapi.addFunctions parameters, the pattern by comparing both files beforehand is noticeable.

Basically all the mentioned *.py functions may need to be updated, there was however an inconsis-

16

http://en.wikipedia.org/wiki/DLL_injection

tency between glxapi.py because the one being used uses Function(*) but the newly generated

ones uses GlFunction(*), perhaps an update to the application is necessary.

Even with a diff tool(a tool to merge or change differences between to files such as vimdiff) it may

take hours of precisely replacing each function, they do not have an automatic method to replace the

necessary functions, attempting to hastily replace will cause errors during compilation.

As for the rest all is needed is to replace the khronos header files with the most recent header files. It

should be noted that the current OpenGL 4 specs do not require much updating since they are mostly

arb extensions making it a ”4.*”1 spec.

2.3 G L I N T E R C E P T

GLIntercept [DS13] is an OpenGL debugger for windows, it has an official windows installer which

contains a debugger up to OpenGL 4.3. It is the debugger most focused on windows among the five

debuggers listed in this document.

GLintercept is very manual when it comes to configuration and utilization requiring the user to

manually copy and paste files and edit manually with text editors.

This debugger is unique due to the fact that it allows the inclusion of plugin libraries, the source

code has it’s own plugin solution to help creation of plugins. By using this capability it’s possible for

other programmers to extend the debugger.

The debugger itself is capable of tracing and xml logging, it can also capture the used frames and

resources.

The original GLIntercept also comes with additional plugins that allows:

• ARB debug output Logging;

• Extension override;

• Shader Editor;

• Frame pinging (updating the frame);

• Write function statistics.

Take note that SciTE (Scintilla based Text Editor) is a third party text editor created outside of

GLIntercept, thus it’s source belongs to a different project.

2.3.1 Logging

GLIntercept most basic feature is logging, in fact mostly without pluginsthat’s what GLIntercept does,

the basic log GLIntercept offers is the following:

1 The spec should work for almost any OpenGL 4 version

17

(...)

glUniform4fv(5,1,[0.597000,-0.390000,0.700000,0.000000])

glUniformMatrix4fv(6,1,false,[-0.006048,0.002009,0.003809,0.000000,

0.000000,0.007302,-0.002488,0.000000,0.005158,0.002355,0.004466,

0.000000,0.705268,0.841264,0.479696,1.000000])

glUniform1iv(7,1,[1])

glUniform1iv(8,1,[2])

glUniform1iv(9,1,[0])

glBindVertexArray(10)

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,13)

glDrawElements(GL_TRIANGLES,1518,GL_UNSIGNED_INT,00000000)

(...)

It’s possible to set GLIntercept to log per frame or in xml format. When it’s set to log per frame

it separates the log into multiple file according to the captured frame, the captured log looks like a

normal log but it’s limited to one frame. In case xml format is used, it comes with a viewer which

shows the xml according to the figure 8.

Figure 8.: GLIntercept xml output in internet explorer.

It’s also possible to enable shader and texture capturing during logging, in such case it’ll create

separate folders with the mentioned resources, in GLIntercept capturing textures is referred as image

logging. In case of single frame logging if shaders or textures are captured they will be put in the

respective frame’s folder, if xml logging is active it’ll also capture the framebuffers.

18

2.3.2 Plugin Usage

Any other addition to GLIntercept is made by exteding with plugins, pluginsare essentially adding

another wrapper within GLIntercept’s wrapper. For instance the statistics pluginsis made by counting

every function that passes through the wrapper and outputting the results at the end of the application.

It’s also possible to override parameters within the application with plugins, for example the Free

Camera plugin changes the application’s camera by swapping the related matrices with a new calcu-

lated matrices.

2.3.3 OpenGL32.dll wrapper

GLIntercept in order to wrap has to record all functions to during initialization, this is done by reading

OpenGL’s header files with it’s own parser and recording them in the FunctionTable.

When a plugin asks for a specific function to wrap it’ll also add a function to the FunctionTable,

the FunctionTable serves as a handler and intercepts functions.

BuiltinFunction.h is the header of all basic OpenGL 1.* functions which are mandatory for

the wrapper.

GLIntercept also needs to know where the original opengl32.dll is, when the function is called

GLIntercept will always dynamically redirect OpenGL functions to the main DLL allowing functions

to be called even when the header is unknown.

2.3.4 Maintenance

GLIntercept can log all OpenGL functions. However, there is no automatic way of understanding the

function parameters. GLIntercept requires header configuration files with the function signatures and

constants to provide this information. Currently, GLIntercept is up to date with OpenGL 4.4. In case

the function information is not provided it’ll replace the parameters information with ”???”.

Should a new OpenGL version come out, it is feasible to partially update the header configuration

files manually by adding a few functions and constants.

For a full update, GLIntercept has a script for downloading the egl, gl, glx and wgl xml files from

khronos spec repository at https://cvs.khronos.org/svn/repos/ogl/trunk/doc/registry/public/api/. It is

possible to use the script to create an almost complete GLIntercept header configuration files. A small

amount of code tuning is still required due to the fact that OpenGL has constants defined with the same

value. Simply put the headers in the 3rdParty\HeaderGen folder and execute XMLGenGLI.py

script, it should create the headers automatically, tuning is still required.

In an attempt to transform Glew’s header into an appropriate GLIntercept’s header it took several

steps of careful tuning, so it’s recommended to create a script which does the job, there are a few

pointers that should be noted when making the changes:

19

• Some types have to be replaced with similar types for example GLclampf becomes GLfloat;

• Many defines must be enclosed within an enum, for example GL_ZERO has to be enclosed

within enum EnumName{ GL_ZERO 0x0,};;

• GLEnum types will need to point at the enum which should be enclosed with (if it requires

GLZERO using the previous example it will become GLEnum[EnumName];

• GLbitfield behaves like GLEnum, however conversion to GLEnum is unnecessary, it does

uses the defined enums;

• Some enums like GL_ZERO and GL_FALSE need to be enclosed in different sets of enums, us-

ing the previous example it’d have enum EnumNameBools{ GL_FALSE 0x0, GL_TRUE

0x1};, this way there won’t be conflict between GL_ZERO and GL_FALSE, however in order

to recognize as GL_FALSE it’ll need to be changed to GLEnum[EnumNameBools];

• APIENTRY and GLAPI will need to be removed from the header file;

• It’s best to split the header files according to OpenGL version, this way it becomes easier to

track the version changes while relying on the already existing headers.

For instance in glext.h it has:

#define GL_PIXEL_MODE_BIT 0x0020

//...

#define GL_COMPUTE_SHADER_BIT 0x0020

And in the header configuration files it has

//gli1_1 include file

enum Mask_Attributes {

...

GL_PIXEL_MODE_BIT = 0x0020,

...

};

//gli4_3 include file

enum Mask_ShaderProgramStages {

GL_COMPUTE_SHADER_BIT = 0x0020,

};

The conversion of functions also requires tuning to take the different enums into account. For

instance, consider the function glUseProgramStages:

//glext.h

GLAPI void APIENTRY glUseProgramStages (GLuint pipeline,

GLbitfield stages, GLuint program);

//gli4_4 include file

void glUseProgramStages(GLuint pipeline,

GLbitfield[Mask_ShaderProgramStages] stages,

GLuint program);

20

On the positive side, these updates do not require a rebuild of GLIntercept.

2.3.4.1 Plugins

GLIntercept has plugins placed on a separate Visual Studio solution, the solution should have several

projects, each project is a DLL plugin for GLIntercept.

When observing all solutions it can found that they usually have the following pattern:

• Header folder with the following files:

– CommonErrorLog.h so the tools know how to log errors;

– InterceptPluginInterface.hwhere the connection between the code and output

DLL is made;

– <Plugin Name>.def (Sometimes in source folder instead) always with the exact

same functions, used to define the DLL ;

– (optional) config.ini usually an example of how to activate the plugin.

• Source common files with the following files:

– ConfigParser.<cpp/h> to parse the configuration files;

– (optional) InputUtils.<cpp/h> required to override the application’s input;

– (optional) MiscUtils.<cpp/h> has a few additional functions which may come in

handy;

– (optional) NetworkUtils.<cpp/h> when network communication is required;

– (optional) ReferenceCount.h which provides reference counting class.

• And also in the source folder it can be found <Plugin Name>.cpp which acts as a main

function and includes <PluginCommon.cpp> required for DLL exportation.

These functions do not require modification, they are shared between all plugins, the exceptions are

the ones dependent on the plugin’s name, the .def file has the exact same contents between all plugins.

This section will use the GLFreeCam to give an brief example because it overrides the application

with new input and gives visible results.

2.3.4.1.1 GLFreeCam

GLFreeCam is a plugin that uses the MiscUtils.<cpp/h> and InputUtils.<cpp/h>, this

plugin will allow the user to override the camera moving it beyond what it was programmed for.

All DLL’s have rendering stages, these rendering stages are a new layer of functions which will

trigger depending on the plugin. In GLFreeCam after the final rendering stages it’ll calculate the

elapsed time and the pressed keys to create a transformation matrix.

21

GLFreeCam.cpp will use OpenGLFreeCamera.<cpp/h> to alter the view frustum before

rendering, it will do so by saving a global variable transform_point that will always be loaded

as the current transformation matrix. This technique will not work for all applications, during tests it

failed to move all models according to the new camera.

It can be concluded with this that in order to build a new plugin all it needs is to add additional

functions to each stage, some of the overrides such as the inputs can be done with the already existing

headers.

2.3.4.1.2 Plugin Creation

It’s possible to create additional plugins for GLIntercept and it’s source code provides the workspace

to do so, use the GLI Plugins solution to view the plugins source code and it’s possible to use the

already existing pluginsas reference.

The already existing test pluginis a perfect base for a new plugin, it’s important to check the other

pluginsto import additional headers and code such as InputUtils to capture input.

In order to understand plugincreation the CustomGetUniformswas created to intercept uniform

data, one of the first tasks was to reuse one of the already existing projects and rename it to the new

plugin’s name, editing the project’s properties is crucial.

Since it’s intended to only print uniform information with a press of keys InputUtils is neces-

sary.

The plugin starts with at the CreateFunctionLogPlugin which can be copied from an al-

ready existing plugin and simply re-adapted, this is followed by a new customized class based on

InterceptPluginInterface again re-adapted from already existing code, here this class is

named as GetUniforms.

Where a real change is required starts from the class constructor, in GetUniforms it was neces-

sary to add all functions to intercept with gliCallBacks->RegisterGLFunction(<string>)

while using "*" as a string value would allow all functions unfortunately it does not allow partial

wildcards such as"glProgramUniform*" thus requiring a function iterating through the different

variations. The class deconstructor can be left empty.

In GLFunctionPre is where the InterceptPluginInterface intercepts all registered

functions, using the function accessArgs.Get(<pointer>) it’ll fetch and store the value in

<pointer> which can be an integer or a pointer to an array, in this case it was necessary to check

which type of function was intercepted in case the uniform value was float, integer , etc.

Once the value type of an argument is known it can be used as a simple integer or a pointer to an

memory location, however if it points to a part of memory it will only become valid on GLFunctionPost,

sometimes it’s wise to use a pointer which is helf from GLFunctionPre to GLFunctionPost.

The pluginCustomGetUniforms in order to print only at the end of the frame it’s important to

use GLFrameEndPost, here it will use inputSys.IsAllKeyDown(<keys>) to check if the

required set of keys have been pressed, in such case it’ll print the uniform data if valid. <keys> is

22

the set of keys necessary to be pressed and it’s a vector of unsigned integers (vector<uint>), it’s

possible to use the configuration to read the desired set of keys.

In CustomGetUniforms it’s used GetKeyCodes("CaptureKeys",parser,captureKeys)

to read the keys, GetKeyCodes is a function copied from the existing camera plugin, the parser is

the ConfigParser and captureKeys the vector which is also used as <keys> mentioned be-

fore. This way it’s possible to add additional parameters in the GLIntercept’s config file to change the

keys necessary to print the uniforms.

2.4 G L S L D E V I L / G L S L - D E B U G G E R

glslDevil [KS10] originally by Magnus Strengert, Thomas Klein, and Thomas Ertl [SKE07] is now

renamed as GLSL-Debugger, [HX13] it’s a debugger with a GUI similar to commercial debuggers.

This debugger is still alive and being updated however it still requires improvement.

From the current analysis this debugger allows some control on the debugging such as freezing the

debugged application to view it’s statistics and resuming until it hits a certain function.

As practical it’s interface may be the shader debugger is not reliable except for showing which

shader is active, it may end with much less features compared to the other debuggers. It’s uses are the

following:

• GL calls trace;

• Step-by-step OpenGL debugging;

• Buffer visualization;

• Shader debugging (if the current function is an OpenGL debuggable draw call;

• Restart shader debugging without changing the windows items;

• Step-by-step shader debugging;

• List shader variables with name, type and current value;

• Different windows according to the appropriate shader.

2.4.1 Graphic User Interface

GLSL’s main feature is it’s GUI , it’s capable of doing logging and showing it’s log on real-time

unlike most debuggers. As show in figure 9 it shows both trace and statistics, these are updated as

long the application runs, this is very useful as it allows the user to see which functions are being

called, the rate they are being called and the amount of functions so far.

23

Figure 9.: GLSL it’s featuring trace statistics and the vertex shader.

It’s also possible to simulate debug of shaders whenever a draw call is the next function to be called,

in order to do so the trace must be paused. Currently only GL 2 shaders can be reliably debugged while

mesa limits only to GL 3. This debugging is shown in figure 10 where the frag color is being debugged,

the shader variables shift according to the debugger, shader variables are only visible when debugging,

since the frag color is the result of the frag shader, it’s possible to see the fragment shader’s output.

Figure 10.: GLSL fragment color viewer.

24

2.4.2 How does GLSL logs and debugs

2.4.2.1 Common Debugging

In the Windows version of GLSL a glsldebug.dll is created, acoording to the existing files and

the functions within it is certainly the OpenGL wrapper, the functions inside are separated between

hooked and orig, thus the difference between the hooked function (caught) and orig (original).

This means that when debugging all OpenGL’s functions are hooked by the debugger then executed

by the original, logging occurs thanks to the hooking.

The hooking functions is also part of the Unix build, considering how imperative is the existence

of libGL.so, that must be where the hooking affects.

Whenever GLSL debugs an application it’s possible to save a log file as well, this GLSL log file

has the format according to the following example:

| glXSwapBuffers(0x1d11d50, 46137346)

| glXMakeContextCurrent(0x1d11d50, 46137346, 46137346, 0x1d2c7e8)

| glXMakeContextCurrent(0x1d11d50, 46137346, 46137346, 0x1d2c7e8)

| glXMakeContextCurrent(0x1d11d50, 46137346, 46137346, 0x1d2c7e8)

| glUseProgram(3)

W! OpenGL error GL_INVALID_OPERATION detected

| glUniform1f(0, 0,102166)

| glActiveTexture(GL_TEXTURE0)

| glBindTexture(GL_TEXTURE_2D, 1)

| glUniform1i(1, 0)

| glActiveTexture(GL_TEXTURE1)

GLSL does not have the best automatic log system compared to the other debuggers, but the GUI

is the main focus of the debugger.

2.4.2.2 Shader Debugging

GLSL Shader debug code is in the debug lib files, in order to debug the shader it’ll parse all shader

data such as uniforms and attributes into a ShaderProgram struct and run them in a new thread.

It fetches uniform data using OpenGL functions such as glGetIntegerv or glGetProgramiv

from the original OpenGL functions.

Once it’s loaded all it needs is to execute the functions step by step. As seen in libglsldebug.c

there is a function that called shaderStep, there is no doubt that it’ll proceed shader’s debugging.

Unfortunally the whole process still needs development since shader debugging is unreliably limited

to mesa headers and unstable.

25

2.4.3 Maintenance

GLSL update’s it’s library functions by relying on khrono’s OpenGL headers, so in order to up-

date it’s library it needs to have the current headers on glsldb/GL replaced and remake the build.

For instance it’ll need to use glext.h in http://www.khronos.org/registry/ to substitute the current

GLSL glext file, other files from the same repository are wglext.h and glxext.h. WinGDI.h

actually belongs to Microsoft and it can obtained from http://www.csee.umbc.edu/ squire/download-

/WinGDI.h. Finally gl.h and glx.h belongs to mesa repository, it can actually be found in https://github.com/freedreno/mesa/tree/master/include/GL

or simply search for it in the computer if it has mesa’s header files. Even so there is a good chance

that updating will cause issues with enumerates.

In Windows build it’ll generate a trampolines.h that connects with the original library, this

library is necessary for the debug library. It seems such file is unnecessary in an Unix build.

In Unix build it’s best not to forget to update the libGL.so mentioned in the Installation section

at the appendices, should the drivers be updated, the debug will fail if built with a different lib than

the one being currently used by the computer.

It should be noted that current shader debugging is depedent on the mentioned mesa header files,

since current mesa does not support OpenGL 4 versions shader debugger won’t support either.

2.5 VO G L

VOGL [Val] is an open source OpenGL debugger released this year, originally authored by RAD

Game Tools and Valve Corporation. This debugger should have both Linux and Windows cross-

platform compatibility allowing to be a good alternate to APITrace, just like APITrace cmake and Qt

is required.

As a Valve debugger this debugger can capture steam games, pay in mind that currently this debug-

ger is only in it’s alpha stages, those interested should pay attention to it’s development and growth.

According to wikipedia [Com] this debugger has the following high level goals:

• Free and open-source

• Steam integration

• Vendor and driver version neutral

• No special app builds needed

• Frame capturing, full stream tracing, trace trimming

• Optimized replayer

• OpenGL usage validation

26

• Regression testing, benchmarking

• Robust API support: OpenGL v3/4.x, core or compatibility contexts

• UI to edit captures, inspect state, diff snapshots, control tracing

2.5.1 Functions and GUI

VOGL just like GLIntercept needs to copy it’s own DLL wrapper to the target application, once

copied it can be debugged via command line like APITrace or using a GUI like GLSL. Just like

APITrace, VOGL can view it’s log’s with it’s own GUI which is organized very similarly. It’s also

capable of looking up the state with replaying just like APITrace, this can be seen in figure 11.

Figure 11.: VOGL editor after snapshot.

VOGL store trace files in .bin format, it’s also possible to convert them to .json format, in

.json format the frames are separated per .json file. When replaying a .json trace it’s possible

to edit the file during replay, the next time the frame is replayed the changes should be in effect unless

it’s cached (which requires restarting the replay).

27

The replay can actually start with interactive mode which allows the user to pause the replay mid-

way, what it actually does is to stop at a certain frame. For example if in order to jump the frame

backwards it’ll replay from the beginning until it reaches the previous frame. Interactive mode is also

slow.

VOGL is capable of benchmarking a trace file, by doing so it’ll attempt to run the trace as fast as it

can while offering the benchmark results at the end of the replay.

The GUI should show a timeline in the top area, that’s the functions timeline, it points at the current

selected function within the timeline.

Unlike GLSL, VOGL cannot simulate shader debugging, this feature is not in the intended feature

list either.

2.5.2 Maintenance

VOGL like other debuggers rely on khronos xml spec files, those spec files are stored within glspec

folder, during compilation of the VOGL’s Visual Studio solution It’ll automatically build and use

voglgen32.exe which in turn reads the xml spec files to create .inc files, these .inc files are

vital for VOGL’s build and it will not succeed without them.

This means VOGL can be maintained by simply updating with the latest spec files as the rest of the

process is automatic.

2.6 C O D E X L

CodeXL [AMD13] is an AMD developed debugger, it carries capabilities specifically for AMD

boards, it allows the user to check both the GPU and CPU states. CodeXL can also extend as a

Visual Studio extension, thus debugger offers services such as:

• Trace all API calls;

• Performance counters, includes kernel usage, number of instructions executed, etc.;

• Temporal kernel observation;

• Application summary;

• Kernel code disassembly;

• Remote application debugging.

CodeXL has it’s own IDE which may be used instead of Visual Studio, however it uses a different

solution structure.

28

2.6.1 Debug Mode

Debug mode gives basic buffer and resources information, it works when a project breaks (pauses).

When viewing the buffers it shows what is drawn on the buffer, same for loaded textures. VBO’s are

have more data associated from ”Image view” and ”Data view”, data view shows the arrays in a table

with it’s own display options.

2.6.2 Profilling Mode

There are different types of profiling, in order to get a report it’s necessary to start and finish the

application, afterwards a report file will be generated.

2.6.3 CPU Time Based Profile

CPU time based profiling will tell the functions performance, such as the number of times called and

the percentage of all calls they represent.

On Visual Studio it will show the 5 hotspot functions and modules so allowing an user to check

where there may be a bottleneck.

2.6.4 GPU Application Trace

GPU application trace will give use the common trace call list, it will also give the statistic about the

time spent on each function such as the maximum, minimum and average times.

The trace report will also include a timeline related to the application lifespan. This will help the

user to view when did the call occurred.

2.7 N S I G H T

Nsight [NVIa] is a debugger developed by Nvidia, just like CodeXL it also extends Visual Studio but

can also extend Eclipse, unlike CodeXL it doesn’t carry it’s IDE. In this document it’ll focus on Visual

Studio extension.

Following features from Nsight are expected:

• Application and System Trace with Call Stack Correlation;

• Trace and report SLI performance limiters;

• Graphics Shader Debugger;

• Graphics Frame Debugger;

29

• Frame Profiling;

• Frame Timing.

• Remote application debugging.

During usage some of the features don’t work properly in the laptop, in order to use Nsight to it’s

fullest it should be run in a desktop.

2.7.1 Graphics Debugging

Nsight’s graphics debugging mode is far more unique than any other debuggers, rather than giving

a trace file or a report it runs overrides the application’s output. Essentially it means that part of it’s

GUI runs on the debugged application itself and can also be used standalone apart from the IDE.

It’s easy to notice a performance graph on the left (on default) as shown in figure 12, to open the

HUD show in figure 13 and 14 use <ctrl-z>.

Figure 12.: Nsight HUD while application is running.

When the HUD is on a number of new options are available such as <ctrl-w> which forces

wireframe to be active as shown in figure 14. When paused even more options are available as shown

in figure 13, if an appropriate IDE is used it will synchronize and integrate some options on the IDE.

30

Figure 13.: Nsight HUD while application is paused.

Figure 14.: Nsight HUD while application is paused with wireframe on.

The timeline shown on the bottom at the figures 13 and 14 when paused there is a timeline repre-

senting the draw calls on the current frame, there the state on each rendering stage can be viewed. This

allows to understand better the construction of the current frame. The same timeline is synchronized

with the IDE which allows to view the resources related to the rendering stage on an automatically

opened tab called ”API Inspector”.

31

The ”API Inspector” allows to view the used resources and draw vertexes on the selected rendering

stage, one important use is the program section in the menu on the left, this allows to view which

working shaders are related to the draw call, using the source link on the shader list will open a

fetched shader file, here it can make break points like a common Visual Studio break point and debug

the variables. This step by step shader debugging is likely to not work on a old laptop, there is however

evidence that it works in different computers.

2.7.2 Performance Analysis

When using ”Performance Analysis” it will display a wide variety of options to select, ”Application

Settings” and ”Trigger and Actions” do not need to be changed, ”Activity Type” will show a list of

four items, unless it’s required to trace other related processes ”Trace Application” option will do.

”Trace Settings” start unchecked, the program used had no useful information regarding CUDA,

”DirectX, OpenCL and Tools Extensions, selecting those will not affect the debug result list (except

for performance perhaps). Only System and OpenGL were need, Tools Extensions was checked just

in case.

Afterwards the Launch button needs to be pressed to start the analysis, it will generate an report

when stopped (either Stop button or the application ends, ”Trace Process Tree” will only create the

report when the Stop button is clicked). The report will be split in several sections, the name of the

section should give enough understanding to it’s contents. The sections are the following:

• Common

– Summary Report

– Session Summary

– Timeline

• OpenGL

– OpenGL API Call Summary

– OpenGL API Calls

– OpenGL Draw Calls

– OpenGL Frames

– OpenGL Transfers

• System

– Function Calls

– GPU Devices

– Modules

32

– System Information

33

3

D E B U G G E R C O M PA R I S I O N S

3.1 O P E N S O U R C E A P P L I C AT I O N S

3.1.1 Comparision table

Bugle APITrace GLIntercept GLSL-
Debugger

VOGL

Graphic User In-
terface;

Generation of
organized trace
files;

Easy to set up; Graphic User In-
terface;

Graphic User In-
terface;

Create informa-
tion filters;

Trace organized
per frame;

It’s unnecessary
to install addi-
tional tools to
build;

Easier for an
inexperienced
user;

Generation of
organized trace
files;

Chain informa-
tion filers;

Editing the trace
file;

Existing config-
urations are easy
to set up;

Viewing the
shader source
when debug-
ging;

Trace organized
per frame;

Realtime statis-
tics, including
OpenGL call
count, fps, etc;

Profilling a trace
file;

Taking over the
camera;

A different win-
dow per shader
type;

Exporting
frames to
editable json;

Configure meta-
data statistics;

Trimming a
trace file;

Plugins may in-
crease the po-
tential for inter-
ested users;

View shader
variables con-
tents (incom-
plete);

Trimming a
trace file;

Taking over the
camera;

Replaying the
trace as long the
trace file exists;

Viewing/Editing
shader when
debugging (can
fail);

View resources
when debug-
ging;

Replaying the
trace as long the
trace file exists;

Pros View Shader er-
rors;

Replaying the
trace until a
chosen frame;

Overriding con-
text attributes;

View OpenGL
call count on
realtime per
frame;

Replaying the
trace until a
chosen frame;

34

Overriding con-
text attributes;

Creating videos
with the trace
file;

Creation of xml
files as a trace
file;

View extension
count on real-
time per frame;

Dumping buffer
state and screen-
shots;

Screenshot /
Video capturing;

View loaded
uniforms when
looking up the
state with GUI ;

Configuration
inside .ini files
in a understand-
able C based
code;

Step by Step de-
bugging

Editing trace
files while
replaying;

Create eps
vector graphics
screenshots;

Cross-Platform
compatability.

Updating to a
newer OpenGL
requires only
an additional
include list;

Edit param-
eters on the
next OpenGL
function to call;

Conversion
from APITrace
to VOGL;

Step by Step de-
bugging;

View total num-
ber of OpenGL
calls at the end
of trace.

Choose which
function to stop
at.

Cross-Platform
compatability

Choose which
function to stop
at.
Hard to install
on windows;

Trace files are
unreadable with-
out the applica-
tion

Default trace
files aren’t very
organized;

Current code
untested on
windows;

Still in early al-
pha stages.

Cons Staying on
the debugged
application’s
working direc-
tory to trace;

A beginner may
not understand
how to use the
configuration;

Command line
dependent;

No Linux ver-
sion.

Table 1.: Open Source Applications Pros and Cons table

3.1.2 Feature table

It should be noted in this section about the following tags:

• yes - means that the feature was found in the debugger;

• no - means that the feature was not found in the debugger;

• bugged - means a bug occurred during the using of the following feature;

• incomplete - means that the feature is not always compatible but the author is aware of it;

35

• similar - means that the exact feature is not present, but a similar feature can be used to replace

it.

• Win - is used to abreviate Windows.

APItrace Bugle GLIntercept GLSL VOGL
GUI partial yes no yes yes
Trace step-by-step no yes no yes no
Replay trace yes bugged no no yes
ARB debug output yes yes yes no yes
Trace statistics no yes yes yes yes
Runtime statistics no yes no yes no
Video capturing yes bugged yes no no
Screenshooting yes yes yes similar yes
Capture frame log yes similar yes similar yes
Application profilling yes yes no no yes
Shader information yes yes yes yes untested
Uniform data reading yes no no incomplete untested
Force Wireframe no yes yes no no
Plugin addition no no yes no no
OS Win/Unix Win/Unix? Windows Win?/Unix Win/Unix

Table 2.: Open Source Applications Feature table

36

3.2 C O M M E R C I A L / F R E E WA R E A P P L I C AT I O N S

CodeXL (partially tested) Nsight
Visual Studio extension; Visual Studio and Eclipse extension;
Has it’s own IDE; Nvidia HUD is available outside the envi-

ronment;
Performance Analysis (CPU Profilling); Performance Analysis (CPU Profilling);
View application resources; View application resources per render

stage;
Pros Step by step shader debugging (untested); Step by step shader debugging using Vi-

sual Studio’s break points (untested);
Gives a function usage summary; Gives a function usage summary;
Can create several report files; HUD Integrated into the application with

real time performance graph;
It can be downloaded for free without reg-
istration.

HUD’s timeline is synchronized with
IDE;
Can create several report files;
Can list the modules/files used by the ap-
plication.

Buggy if it isn’t an AMD GPU; Nvidia only;
May cause errors on a Nvidia GPU. Lack of standalone IDE forces user to use

one of the IDEs it extends;
Cons Requires Nvidia developer registration to

use it (Not instant);
Features may not work properly on lap-
top.

Table 3.: Commercial/Freeware Applications Pros and Cons table

Take notice that some features were written according to the documentation because the used hard-

ware was not within the debugger’s requirements.

3.3 C O N C L U S I O N S R E G A R D I N G S TAT E O F A RT

It’s possible to conclude that among the five open source debuggers GLIntercept is the most simplest

one, it’s basic functions is limited to logging without using any GUI to read the output log, GLInter-

cept also has a great advantage of allowing pluginsto extend the wrapper.

APITrace and VOGL are very similar to each other, while APITrace is older than VOGL the latter

has an improved interface, in fact VOGL has shown more future potential then APITrace. However

unlike VOGL, APITrace is up to date with the lates OpenGL specifications. These two debuggers are

the only ones showing the ability to replay, even compared to the two proprietary debuggers.

37

GLSL and VOGL have the most professional interfaces, GLSL is the only debugger among the five,

capable of simulating shader debugging, however this feature isn’t up to date with the latest OpenGL

specifications.

GLSL and BUGLE are the only ones capable of step by step debugging. Actually VOGL is capable

of pausing a replay, however it’s slow and what it actually does is to replay until a certain frame.

Bugle is very rich compared to the other debuggers, it has more features, shows more information

and it’s possible to configure it to tailor to the user needs. Among the five debuggers Bugle is currently

the most complete debugger. It does however lack the ability to replay trace files like VOGL and

APITrace, it can’t add additional plugins like GLIntercept and it doesn’t have a shader debug simulator

like GLSL. Bugle ability to show statistics on runtime far surpasses the other open source debuggers.

CodeXL and Nsight are actually very similar to each other, they both show very detailed profil-

ing results, are capable of debugging shaders of their respective manufacturer’s hardware and show

detailed statistics and logs.

The proprietary debugger’s flaw is the fact that they are hardware limited including the fact that

very old GPUs are incompatible with some features. There are a few differences between them, as

shown Nsight places a HUD on the application something that CodeXL doesn’t have, this means that

the usability and experience in using them should be different. Then again which should be used is

hardware dependent.

38

Part II

I N C O R P O R AT I N G T H E D E B U G G E R I N NAU

4

U S I N G A N E X I S T I N G D E B U G G E R

Nau is an open-source 3D graphics engine that works with OpenGL as its graphics API. Nau allows

for multipass pipeline definition using XML project files. The material management system is very

extensible and flexible allowing for complex pipelines, and enabling it to perform many graphical

effects without the need to write a single line of code, apart from the shaders.

Nau works with Optix [NVIb], from NIVIDA, enabling hybrid rendering algorithms in pipelines

that contain both rasterization and ray-tracing passes.

An embeded profiler detailing both CPU and GPU times provides helpfull information to fine tune

projects.

Composer is an application GUI that works on top of Nau’s library and provides a simple GUI

to explore the settings of the current project, allowing for shader recompilation in real time. It also

provides information on materials, lights, cameras, and uniform variables.

Nau is continuously being updated to include new OpenGL features and to extend the XML project

definition language. Although Nau already provides some debug information, both final users and

developers would benefit from having extra debugging information available.

In order to have many debugger features without having to write the whole code it was decided

to incorporate one of the studied open source debuggers, the debugger of choice was GLIntercept

because Nau is a windows library and uses visual studio solutions, thus using GLIntercept was a

faster and easier choice.

This decision resulted into an altered version of GLIntercept, the original version used was the 1.3.0

version thus most plugins and features up to that point should work with the changes. The main reason

why GLIntercept was chosen was because it’s the simplest of the debuggers. By doing so GLIntercept

will include it’s plugins while integrating it’s basic logging features into Nau.

4.1 C H A N G E S O N G L I N T E R C E P T

Several changes were made on GLIntercept in order to integrate the library, first it was necessary to

create a header (ConfigDataExport.h) which allows to edit the configuration settings outside of

the original GLIntercept’s functionalities, this results in a new header file that exports configuration

editing functions.

40

Because the settings can now be edited on runtime several changes regarding removing and adding

new settings also had to be made, for example the pluginsalters an internal function table, but now

it’s capable of removing pluginswhich implies methods to clean the function table in order to avoid

crashing.

This is was done because the class ExtensionFunction indexes the functions to execute during

wrapping in an array, if it’s not properly cleaned it will suddenly execute an already erased function.

The following code is an addition to clean this table:

//Plugins often add Overrides which should be removed if

//the plugin is removed

void ExtensionFunction::removeOverrides(){

int removedExtensionsCount = 0;

for (int i=overrideIndexList.size()-1;i>=0; i--){

//Uses the list containing the plugin added overrides;

//these must be deleted

if (overrideMustDeleteList[i]){

removedExtensionsCount++;

//Removes override from function table

functionTable->RemoveFunction(overrideIndexList[i]);

//Removes the override from the real list

//reorganizes the list (inneficient) but

//it’s fine since this function isn’t used often

for (int j=overrideCurrIndexList[i];

j<currExtensionIndex-1; j++){

wrapperIndex[j]=wrapperIndex[j+1]-1;

extFunctions[j]=extFunctions[j+1];

}

}

else{

//Fixes the pointer for the overrided function

//if not deleted

const FunctionData *foundFunc =

functionTable->GetFunctionData(overrideIndexList[i]);

*foundFunc->internalFunctionDataPtr =

(void**)overrideCurrIndexList[i];

}

}

currExtensionIndex -= removedExtensionsCount;

overrideIndexList.clear();

41

overrideCurrIndexList.clear();

overrideMustDeleteList.clear();

}

It was also placed a new function to restore the original loaded settings, this seemed to be important

in case the user wanted to reload or reset the configuration, considering how the configuration was

stored all it required was a copy of the original loaded configuration stored in the driver and a current

configuration.

The gliLog is no longer automatically created, it has to be started manually with a function on the

target application. This allows Nau to not use GLIntercept at all, so the new features are not forced on

the user.

Also it was decided to disable any functionality to the wrapped functions until it’s enabled by the

application, this is to prevent any function to be logged when the application is supposedly paused,

this is done by forcing the functions LogFunctionPre and LogFunctionPost to do nothing

until it’s active. This forces the necessity to use gliSetIsGLIActive(true) when releasing the

paused state and gliSetIsGLIActive(false when returning to the paused state. The driver’s

AddLoggerString was exported as gliInsertLogMessage in order to allow Nau to add per-

sonal messages to the log file.

These additions means that the GLIntercept solution will need to be compiled as well, for more

information regarding GLIntercept’s installation check the appendices.

4.2 C H A N G E S O N N AU

Nau will now interact with GLIntercept, this also means that the created OpenGL32.dll is a must

have for Nau. Also a gliConfig.ini is necessary to load standard default configurations.

The <debug> tag now exists and is important in order to use the new features else it won’t use the

debugger at all. This means previous works won’t use debugger, so the new features won’t harm it’s

performance.

On the code’s side the new tags are all recorded on projectloaderdebuglinker.cpp, if a

programmer wishes to add or remove tags for the debugger all he has is to edit this file. How tags

work shall be mentioned on the usage section.

It’s also highly recommended to install GLIntercept in order to have a fully organized directory

with the basic GLIntercept necessities. The config file should be edited to fit the install directory.

Aside from additional tag it’s also been incorporated within Nau methods to read which OpenGL

state to fetch and the corresponding functions for the enum.

42

4.3 C H A N G E S O N C O M P O S E R

Nau comes with a solution called composer which reads Nau projects, a few debugging changes have

been made in order to add debugging options.

The composer now is capable of stopping the rendering, this causes the rendering result’s to pause

(it won’t show the results at all which may look glitched), once it’s pause it will attempt to load the

txt logfile and split the log in frames, it’ll also load program information which includes shaders and

uniforms.

When paused the composer will attempt to gather buffer data, by using OpenGL methods. It’ll first

attempt to get all current VAO data and map the buffer information into a c++ map structure (which

is actually a tree map). Once the VAO buffers are mapped it’ll map the remaining buffers, since the

only VAO buffers have full information the remaining buffers will allow the user to change the table

structure.

In order to improve data gathering when paused it’s possible to render Nau pass by pass or frame

by frame, while the option to render pass is on the debug menu there is the advanced pass controller

which allows to: render one pass, render a frame (or whats left of it), render all passes until it renders

the target pass.

Splitting the GLIntercept’s simply requires to use wglSwapBuffers as a separator, this conclu-

sion was achieved by analysing Apitrace’s logs where all frames ended with the exact same function.

Using the same method as GLIntercept’s function statistics plugin a statistic regarding the function

usage is generated.

Since GLIntercept supports single frame logging, the feature uses multiple folders which requires

an additional library. The chosen library was dirent[Rö] due to it’s easier installation, practical use and

compatibility. This does mean it’s include folders require an additional dirent.h, since dirent has

all it’s functions embedded within the header file no new dll is required aside GLIntercept’s wrapper.

The information is extracted using methods from Lighthouse 3D’s vsGLInfoLib [Cos] [Ramb],

by changing the existing methods and removing the unused ones glInfo was created. These new

functions do not require GLIntercept.

In addition to Nau’s new OpenGL state methods a new window was created, this doesn’t necessarily

need to be in the debug menu, it was placed there because since it was a new functionality but it can

be moved away in future updates.

43

5

H OW T O U S E NAU ’ S D E B U G G E R

To activate Nau’s debugger all is needed is the addition of the debugger tag on the project xml file,

this section will demonstrate how most of these tags work. Often the mentioned value for the attribute

will be some generic type, this means that the value should be of the same type within the quotation

mark. The generic values are:

• "bool" so the value should either be "true" or "false";

• "uint" means a a positive integer string like "0", "24" and "2000". "-1" is an example

of invalid ”uint”;

• ”string” is for text values so almost any value under quotes should be valid.

The project must have the debug tag like the following code, the glilog attribute is optional,

when it’s "false" it won’t create the glilog.txt file:

<project>

...

<debug glilog="bool">

<functionlog>

... see functionlog section

</functionlog>

<errorchecking>

... see errorchecking section

</errorchecking>

<imagelog>

... see imagelog section

</imagelog>

<shaderlog>

... see shaderlog section

</shaderlog>

<displaylistlog>

... see displaylistlog section

44

</displaylistlog>

<framelog>

... see framelog section

</framelog>

<timerlog>

... see timerlog section

</timerlog>

<plugins>

<plugin>

... see plugins section

</plugin>

...

</plugins>

</assets>

</project>

Most of the available options are very similar to the standard GLIntercept’s config file, however

there are a few exceptions.

5.1 F U N C T I O N L O G

This will affect the created log file, when enabled a txt log will be created, while most tags are self

explanatory it may be important to know that:

• Using <enabled value="true"/> is mandatory to create the log file;

• When <logmaxframeloggingenabled> is enabled it will only log a certain number of

frames according to <logmaxnumlogframes>;

• If <logpath> and <logname> are not set then the log file will be named by the default

gliConfig.ini on the application folder.

<functionlog>

<enabled value="bool"/>

<logmaxframeloggingenabled value="bool"/>

<logmaxnumlogframes value="uint"/>

<logpath value="string"/>

<logname value="string"/>

</functionlog>

45

5.2 L O G P E R F R A M E

This allows the user to create separate single frame log files, these log files are currently not connected

to composers logfile.

<logperframe>

<logperframe value="bool"/>

<logoneframeonly value="bool"/>

<logframekeys>

<item value="key"/>

<item value="key"/>

...

</logframekeys>

</logperframe>

It should be noted that key means the key combination necessary to trigger the frame log snap-

shot, for example <item value="ctrl"/><item value="f"/> means that the user needs

to press <ctrl-f> to create the snapshot.

5.3 E R RO R C H E C K I N G

Error checking allows the user to toggle whether to print errors on the glilog or not, when "true"

the respective error will be logged.

<errorchecking>

<errorgetopenglchecks value="bool"/>

<errorthreadchecking value="bool"/>

<errorbreakonerror value="bool"/>

<errorlogonerror value="bool"/>

<errorextendedlogerror value="bool"/>

<errordebuggererrorlog value="bool"/>

</errorchecking>

5.4 I M AG E L O G

Image log determines if the logger will log images, the images should be logged on a separate sub-

folder from the log. <imagesavepng>, <imagesavetga>, <imagesavejpg>, are the al-

lowed save formats and <imageicon> determines the icon type.

<imagelog>

46

<imagerendercallstatelog value="bool">

<imagesavepng value="bool"/>

<imagesavetga value="bool"/>

<imagesavejpg value="bool"/>

<imageflipxaxis value="bool"/>

<imagecubemaptile value="bool"/>

<imagesave1d value="bool"/>

<imagesave2d value="bool"/>

<imagesave3d value="bool"/>

<imagesavecube value="bool"/>

<imagesavepbuffertex value="bool"/>

<imageicon>

<imagesaveicon value="bool"/>

<imageiconsize value="uint"/>

<imageiconformat value="png"/>

</imageicon>

</imagelog>

5.5 S H A D E R L O G

This will create a copy of the OpenGL shaders on the main log’s folder, these shaders will be saved

on a Shader folder.

<shaderlog>

<enabled value="bool"/>

<shaderrendercallstatelog value="bool"/>

<shaderattachlogstate value="bool"/>

<shadervalidateprerender value="bool"/>

<shaderloguniformsprerender value="bool"/>

</shaderlog>

5.6 D I S P L AY L I S T L O G

When enabled OpenGL display lists are saved on a DisplayList folder under the main log path.

<displaylistlog>

<enabled value="bool"/>

</displaylistlog>

47

5.7 F R A M E L O G

This will save the frame buffer’s pre/post/diff state on an additional Frame folder. While in GLIn-

tercept’s gliConfig.ini the pre/post/diff flags are one single attribute, here the they are 3 separate

booleans (for example ColorBufferLog is now: <frameprecolorsave>, <framepostcolorsave>,

<framediffcolorsave>).

<framelog>

<enabled value="bool"/>

<frameimageformat value="string"/>

<framestencilcolors>

<item value="uint"/>

<item value="uint"/>

...

</frameStencilColors>

<frameprecolorsave value="bool"/>

<framepostcolorsave value="bool"/>

<framediffcolorsave value="bool"/>

<framepredepthsave value="bool"/>

<framepostdepthsave value="bool"/>

<framediffdepthsave value="bool"/>

<frameprestencilsave value="bool"/>

<framepoststencilsave value="bool"/>

<framediffstencilsave value="bool"/>

<frameicon>

<frameiconsave value="bool"/>

<frameiconsize value="uint"/>

<frameiconimageformat value="png"/>

</frameicon>

<framemovie>

<framemovieenabled value="bool"/>

<framemoviewidth value="uint"/>

<framemovieheight value="uint"/>

<framemovierate value="uint"/>

<frameMovieCodecs>

<item value="string"/>

<item value="string"/>

...

</frameMovieCodecs>

48

</framemovie>

</framelog>

5.8 T I M E R L O G

Used to add a time on main log’s function when a function takes more time than the set cutoff. The

cutoff value is in microseconds.

<timerlog>

<enabled value="bool"/>

<timerlogcutoff value="uint"/>

</timerlog>

5.9 P L U G I N S

Adding a plugin is slightly different on Nau because of the configuration format, but not too differ-

ent, some plugins can fit extra parameters (for example extension override) these extra parameters

should be placed as mentioned in the example, the format for these parameters are the same as the

GLIntercept’s config file.

Pay in mind that most GLIntercept plugins require the plugin name to match a certain name, for

example in the GLIntercept’s config file there is the following plugin:

OpenGLShaderEdit = ("GLShaderEdit/GLShaderEdit.dll")

It’s possible to see which names are required in the standard gliConfig.ini, by converting this

for Nau projects, it results in:

<plugin name="OpenGLShaderEdit" dll="GLShaderEdit/GLShaderEdit.dll"/>

If a different name is given to the plugin it may not be guaranteed to work.

<plugins>

<plugin name="name string" dll="dllpath string">

extraparameter1 = "extraparameter1 value";

extraparameter2 = "extraparameter2 value";

...

<plugin>

...

</plugins>

49

5.10 H O W T O G E T O P E N G L S TAT E

Nau has a new function state implementation which allows the user to get OpenGL state information

by reading a xml file, the following example can be used:

<?xml version="1.0" ?>

<methods>

<method>

<enums>

<enum value="0x0BE2" name="GL_BLEND"/>

<enum value="0x8076" name="GL_COLOR_ARRAY"/>

</enums>

<function name="glGetBooleanv">

<param type="GLenum"/>

<param type="GLboolean*"/>

</function>

</method>

<method>

<enums>

<enum value="0x8455" name="GL_FOG_COORD_ARRAY_STRIDE"

alias="GL_FOG_COORDINATE_ARRAY_STRIDE"/>

<enum value="0x0B70" name="GL_DEPTH_RANGE" length="2"/>

</enums>

<function name="glGetIntegerv">

<param type="GLenum"/>

<param type="GLint*"/>

</function>

</method>

</methods>

This xml file will list OpenGL state gathering methods, each method corresponds to one function,

this does not mean that a error will occur if the same function is duplicated in a different method list.

The most important part of the method is the enums list enums (and their name and values) and the

function name.

Using the example it’s possible to say the enums GL_BLEND and GL_COLOR_ARRAY use the

function glGetBooleanv, the values are necessary to get the real OpenGL enum. In the second

method the enums will use glGetIntegerv, the alias is unused but it may prove useful for later

additions, length means that the enum fetches two values instead of 1 (the default length), using a

length higher than 1 returns a array instead.

50

The function parameters aren’t used at the moment, but may prove useful in case of future updates,

the enums can be copied from the official gl.xml khronos spec file, they use the same enum format

except for length.

Adding new functions requires to add the respective function to the OpenGL function names map

within Nau’s head/src/nau/debug/state.cpp.

5.11 H O W T O U S E T H E C O M P O S E R

The composer now has an additional Debug menu, in order to enable the other options it’s necessary

to use Pause, once paused the composer will start reading the GLIntercept main log file (if there is

any) and fetch program data. This may take a second or more depending on the amount of data.

Once paused the Advanced Pass Controller, GLI Log, Program Info and Buffer Info

shall become available. The Next Pass allows the composer to render only next pass, for more ex-

tensive pass control the user should use Advanced Pass Controller shown in figure 15. The

GLI Log is shown in the figure 16, this is partially inspired by APItrace’s qapitrace GUI ,

however Nau’s log has special Nau messages indicating whether Nau’s frame or pass started or ended.

Figure 15.: Composer’s Pass controller.

51

Figure 16.: Nau’s GLIntercept log viewer.

Program Info in the figure 17 will give information from each program, uniforms are part of

the Program Info but unfortunately only the latest uniform data will be recorded since uniform

content isn’t being logged. Take note that when a line ends with > as seen in the figure below it means

it has a subnode.

Figure 17.: Nau program information.

Buffer Info shows buffer information, the buffers are separated between VAO buffers and

other buffers, VAO buffers have more detailed information and the types cannot be altered, the other

buffers can change the type information as shown in figure 18 with a 6 types per line buffer.

52

Because some buffers are large (as shown in the figure 18, even with 6 cells per line it has over

a thousand lines) they had to be paged for both visual reasons and usability reasons since reading a

buffer that big would take long to load. The option

In the figure 19 the VAO information can be seen, this information shows the VAO ’s element

array and the corresponding buffer indexes which are in turn in the buffers page shown in figure 18;

Figure 18.: Nau buffer information.

Figure 19.: Nau VAO information.

53

In order to incorporate Nau’s new state reading functions a new Window was created, all it needs is

to load the xml file with the states and it’ll load the states according to figure 20.

Figure 20.: Nau State information.

54

6

C O N C L U S I O N S A N D F U T U R E W O R K

6.1 C O N C L U S I O N S

This work concludes that the current Open Source debuggers while not covering all features can

complement each other with features the other do not have, while most have the basic debugging

features they often lack something.

Organizing information itself isn’t easy, as mentioned in the introduction this is almost a ”finding a

needle in a haystack situation” however this ”haystack” is also the most complete source of informa-

tion.

It is in fact hard to find a bug even with a debugger, mostly because it’s necessary to remember

where the bug needs to be found or with which method. Also in order to find a bug it’s important

to have a good understanding regarding how OpenGL works, which may not be so easy and even

confusing in some cases.

All free debuggers have shader debugging problems, mostly because it’s run on the graphic board’s

kernel unlike common application code, it’s debugging is must be parsed with a proper IDE. This

limits proper shader debugging to the respective manufacturer’s debugging tools such as CodeXL and

Nsight. Perhaps GLIntercept’s SciTe is the correct way to debug a shader since it acts almost like it’s

own IDE to compile the shader, unfortunately it’s not bug free.

Creating the comparison tables helped put a conclusion on the current state of art of the debuggers,

it helps see which of the debuggers is the most complete and interesting. It also helps noting which

features are actually very unique where others fail to have.

Bugle is in fact the most complete debugger but it’s a Unix based debugger that does not carry any

cross compilation features, which is unfortunate in a sense since most 3D applications are Windows

video games. The only way to run it on Windows is through the use of Unix environment emulators

like MingW.

Apitrace may actually be very interesting if combined with scripts since it’s command line based,

how it integrates with ffmpeg and allows replays are unique features found in this debugger. In fact

not even commercial debuggers perform replays like Apitrace.

55

GLIntercept while ideally a Windows debugger it may not cover all features, however it’s plugin

features and easy and documented code allows new programmers to extend the debugger. Since it’s

coded using Visual Studio it’s source code is ideal for other Visual Studio projects.

GLSL is in fact the debugger with the most number of incomplete features, the original debugger

was made for OpenGL 2.0 making it’s shader debugging very limited. The debugger itself is very be-

ginner friendly recommended for those less experienced with debugging. Unfortunally the developers

are not focused on developing the Windows version of this debugger thus the Windows version has

it’s own bugs.

VOGL is a newcomer, and it already shows promising results, it’s very similar to APITrace, while

it’s still alpha and has it’s own expected share of bugs it’s capable a several important debugging

operations.

Ideally the best way to debug is to use the commercial debuggers, they are both very similar when

it comes to overall features, however Nsight allows to demonstrate runtime statistics while CodeXL

requires pausing.

Every experience counts, whether it’s a frustrating installation or a smooth GUI it helps under-

stand better what do we want and what we don’t want in a debugger, experiencing all of this while

cataloguing every requirement in order to debug was a very good experience.

Integrating GLIntercept on Nau was a much more simple task than expected, GLIntercept’s code

itself is simple to read once the programmer knows where to start looking, all that was necessary to

do was to export the configuration functions and to clean memory leaks. Then again the ease was all

thanks to all the previous experience from reading all the necessary code.

On Nau’s side, due to the highly modular architecture of the 3D engine, it was painless to introduce

all the new features. Although a substancial set of features have been implemented, much remains to

be done to achieve a really helpful debugging environment. For instance, plugininformation hasn’t

been fully integrated yet, while there may also be a few faults that miss the eye.

The new additional features are actually very useful, it allows a user to integrate additional GLIn-

tercept pluginsincreasing the range of possibilities for Nau itself, the logs should also help the project

owner check for his own mistakes or the even developer itself can find mistakes created by the engine.

This project may have some good impact on Nau’s future development and community.

6.2 P RO S P E C T F O R F U T U R E W O R K

GLIntercept’s pluginfeature is in fact interesting, for future work there is the possibility to create a plu-

ginthat affects Nau directly. Regardgin the integration not all information generated by plugins is used

by Nau, being available on text format only. Integrating this information in Nau’s GUI, Composer,

could be a helping hand in some debugging scenarios. Also there should be room for performance

improvements, large log often causes a large workload on the Composer.

56

Shader debugging is still lacking, for there was no successful shader debugging, this means that this

area requires more work and a proper shader compiler may greatly help future programmers.

57

B I B L I O G R A P H Y

[AAWL14] António Ramires Fernandes Andre Alexandre Wang Liu. Open source debuggers and

integration with a 3d engine. page 8, 2014. Sibling article.

[AMD13] AMD. Codexl. CodeXL. AMD, November 2013. [Online; accessed 14 Noevember

2013].

[Com] Wikipedia Comunity. Vogl. Wikipedia. [Online; accessed 24 October 2014].

[Cos] Pedro Costa. Cg-pi/mv/vs/vsglinfolib.cpp at master . pfac/cg-pi . github. GitHub. [Online;

accessed 7 July 2014].

[DS13] Dtrebi...@gmail.com and SkewMat...@gmail.com. Glintercept - opengl call intercep-

tor/logger. Glintercept. Code.google.com, June 2013. [Online; accessed 1 Noevember

2013].

[FJea13] Fonseca, Alexander Monakov José, and et al. Apitrace. GitHub, November 2013. [On-

line; accessed 1 Noevember 2013].

[HX13] Hanson and Chris ’Xenon’. Glsl-debugger. Github, October 2013. [Online; accessed 14

Noevember 2013].

[KS10] Thomas Klein and Magnus Strengert. Glsldevil - opengl glsl debugger. GlslDevil.

Http://www.vis.uni-stuttgart.de, February 2010. [Online; accessed 15 Noevember 2013].

[MB07a] Merry and Bruce. Bugle user manual. BuGLe. OpenGL, 2007. [Online; accessed 1

November 2013].

[MB07b] Merry and Bruce. Opengl software development kit. BuGLe. OpenGL, 2007. [Online;

accessed 1 November 2013].

[NVIa] NVIDIA. Nvidia nsight visual studio edition. NVIDIA Nsight Visual Studio Edition.

NVIDIA, n.d. [Online; accessed 15 Noevember 2013].

[NVIb] NVIDIA. Nvidia optix ray tracing engine,. [Online - accessed 1 August 2014].

[Ope12] OpenGL.org. Debugging tools. OpenGL.org, March 2012. [Online; accessed 1 Noevem-

ber 2013].

[Rama] António Ramires. Nau - opengl + optix 3d engine. GitHub. [Online; accessed 8 June

2014].

58

[Ramb] António Ramires. Vsglinfolib – very simple opengl information lib. Lighthouse3D. [On-

line; accessed 7 July 2014].

[Rö] Toni Rönkkö. Dirent api for microsoft visual studio. Softagalleria. [Online; accessed 24

August 2014].

[SKE07] Magnus Strengert, Thomas Klein, and Thomas Ertl. A hardware-aware debugger for the

opengl shading language. In Graphics Hardware, pages 81–88, 2007.

[Val] Valve. vogl. Github. [Online; accessed 24 October 2014].

[Wik] Wikipedia. Dll injection. DLL injection - Wikipedia the free encyclopedia. [Online;

accessed 7 February 2014].

59

I N D E X

DLL

DLL Injection

[Wik]: ’a technique used for running code

within the address space of another

process by forcing it to load a dynamic-

link library’, 24, 30, 31, 98

Dynamic Linked Library, 5, 30, 31, 45, 46,

98

Frames per second, FPS = f rames
seconds , 11, 12, 20

GUI

Graphic User Interface, 5, 8, 22–24, 28,

31, 46, 61, 68, 70, 90, 95, 97

IDE

Integrated Development Environment, 4,

89

Plugin

plug-in, plugin, extension, add-on, addon:

Piece of software that adds a specific

feature, 33, 36, 37, 40–42, 45, 46, 68,

73, 74, 90, 97, 98

VAO

Vertex Array Object, 76, 86, 87

60

Part III

A P E N D I C E S

A
I N S TA L L AT I O N

A.1 B U G L E

According to the documentation in order to use Bugle in Ubuntu it requires to check the following

requirements:

• GCC 4.1 or higher;

• A C++ compiler with the POSIX regular expression functions (generally g++).

• OpenGL header files, including a recent version of glext.h. A version supporting at least

OpenGL 2.0 is required. For OpenGL ES, the OpenGL ES and EGL header files are required;

• Perl 5;

• Python 2.7;

• Scons;

There are also secondary recommended requirements:

• GTK+ is needed for the GUI debugger.

• gtkglext, GLEW (1.6 or later) are needed for the texture and framebuffer viewers in the GUI

debugger.

• GLUT is required by the test suite.

• FFmpeg allows the included libavcodec to be used for video capture.

Recent installations of Ubuntu usually have GCC, g++, Perl and Python. OpenGL libraries are still

required to be installed and even if they aren’t installed it’s important to install it for the debugged

programs, Scons also needs to be installed to build bugle:

sudo apt-get install freeglut3-dev libglew-dev libpangox-1.0-dev

sudo apt-get install Scons

62

For the secondary installations it’ll be shown a different approach, the latest version of GTK+ is

hard to install, but GTK+ 2.24 works fine and is an already existing Ubuntu 13.10 package, in order

to install it needs to:

sudo apt-get install libglib2.0-dev

The line above only if glib isn’t installed yet:

sudo apt-get install libatk-dev libatk-bridge2.0-dev libgtk2.0-dev

libpango-dev libpango1.0-dev libcairo-dev libgdk-pixbuf2.0-dev

After GTK+ is installed, install gtkglext, the procedure is the same, download the tar file, extract

and install with the same commands used to install GTK+. FFmpeg can be installed with:

sudo apt-get install ffmpeg

In case the current version of FFmpeg isn’t satisfactory, consider changing the repository and in-

stalling a more recent version with the following commands:

sudo apt-get remove ffmpeg

sudo apt-get purge libav-tools

sudo add-apt-repository ppa:jon-severinsson/ffmpeg

sudo apt-get update

sudo apt-get dist-upgrade

sudo apt-get install ffmpeg

sudo apt-get install frei0r-plugins

sudo apt-get --purge autoremove

All it needs now is to install bugle, download the archive from the official site and extract it,

<root bugle directory> shall be referred as the folder where the extracted contents are, once

extracted build it with scons, this is done by doing:

cd <root bugle directory>

scons

sudo scons install

A build folder will be generated as a result of the first scons, the second will install it within the

system.

Afterwards create a .bugle folder in the home directory where,place filters and place

statistics file. It’s possible to get both .bugle files in <root bugle directory>

/doc/examples.

63

A.2 A P I T R AC E

Before building the application following applications are needed to build the program:

• Qt version >=4.7 and <5 (version 5 won’t work)

• Visual studio 2010 with SP1

• Cmake (tested with 2.8)

In order to build the application it’s best to set the project in a folder close to root (for example

C:\temp\) due to cmake limitations.

Use command line and jump to the project folder (in this case “cd C:/temp/apitrace-master”) then:

set PATH=%PATH%;C:\Qt\4.8.5\bin

qmake -query

cmake-gui -H%cd% -B%cd%\build

The set command must be used for the Qt bin where qmake.exe exists, in this case it was

C:\Qt\4.8.5\bin. Using these commands will open cmake GUI , then press the configure

button and set to Visual Studio 10 (Visual Studio 10 = Visual studio 2010, however Visual Studio 11

= Visual studio 2012). In Linux systems use export PATH=$PATH;<QT Bin directory>.

This test was created on a 32 bit computer, according to the official guide in a 64 bit computer

it’s necessary to use cmake-gui -H% cd% -B% cd% build -DENABLE_GUI=FALSE and

configure for Visual Studio 10 win64 instead.

After this a visual studio solution will be generated and build either with the solution or using the

following command:

cmake --build build --config MinSizeRel

If QT isn’t properly configured it won’t generate a solution with qapitrace.exe.

A.3 G L I N T E R C E P T

GLIntercept source code is downloaded with Visual Studio 2008 solutions in the Src\WorkSpaces

folder, one solution is for GLIntercept main dll wrapper and functions called GLIntercept.sln,

another is for the plugins called GLI Plugins.sln and finally one for SciTE.sln a GUI for

the shader editor, SciTE is a third party solution which will not be analysed.

The original solution comes with Visual Studio 2008 but it’s possible to upgrade the solution to

more recent versions. Visual Studio 2008 express edition is more than enough to build the GLIntercept

solutions however SciTE needs afxwin.h which is unavailable in express edition.

64

After building the gli configuration file gliConfig.ini needs to know where is the required

files such as the headers, pluginsand xml formats, these are outputted in the GLIntercept’s Bin folder,

these files are in different sections requiring the configuration to change:

• FunctionLog - uses BaseDir = "<bin folder>\XSL";

• PluginData - uses BaseDir = "<bin folder>\Plugins";

• InputFiles - uses GLFunctionDefines = "<bin folder>\GLFunctions \gliIncludes.h";

GLIntercept’s OpenGL wrapper is built in Bin\MainLib folder. It’s much easier to test using

the official installer thus building is only necessary if in order to develop GLIntercept’s wrapper or

plugins, if in order to add additional functions it’s recommended to use the plugin’s solution to create

extensions.

In order to debug with GLIntercept it’s necessary copy or create the gliConfig.ini into the

debugging application’s workspace along with the wrapper, to manually inject a DLL .

A.4 G L S L D E V I L / G L S L - D E B U G G E R

In order to build GLSL download it from https://github.com/GLSL-Debugger/GLSL-Debugger repos-

itory, have cmake, glut libraries, glew libraires, bison, flex and qt4 installed.

Once the files are downloaded from the respective repositories build them with cmake, use cmake-gui

-H%cd% -B%cd%\build on Windows and initiate the build procedures.

In Windows create a Visual Studio solution with cmake, on Unix systems create a common make

solution relying on cmake -Bbuild in the command line and then use make command on the new

build directory. Windows systems may force the user to indicate the appropriate library and include

directories.

In Unix 64-bit system a problem regarding libGL.so may occur within /usr/lib/x86_64-

linux-gnu/, it needs re-linking it to the current driver, otherwise the debugger may not work

properly. For example in Ubuntu 13.10 64-bit using nvidia 319 update drivers will require to link to

/usr/lib/nvidia-319-updates/libGL.so.

In order to use GLSL start it on it’s own working directory else it won’t find the appropriate libraries,

in the build folder created during cmake there should be a bin folder containing the executable

glsldb.

A.5 VO G L

Here is demonstrated the Windows installation of VOGL, before building VOGL a few libraries need

to be installed, specifically pthreads 2, SDL 2, libjpeg-turbo and QT 5.3 (QT 5.2 will cause errors).

While libjpeg-turbo does not require to be placed in a specific directory it needs to be included later

65

http://en.wikipedia.org/wiki/DLL_injection

in one of the VOGL’s projects. Once downloaded a folder called external, sibling to vogl, is

required, so on the same directory where the VOGL project is placed use the following commands:

git clone https://github.com/ValveSoftware/vogl.git

mkdir external

mkdir external/windows

mkdir vogl/vogl_build/win32

Extract the folder in SDL 2’s archive, rename it to SDL and move it to the external folder, add ei-

ther external/SDL/VisualC/SDL/Win32/Release or external/SDL/VisualC/SDL

/Win32/Debug (depending on which is compiled) to the PATH windows variable because of DLL

dependencies.

Same goes for pthreads, extract the Pre-built.2 folder and rename it to pthreads.2 then

move it to external/windows, add external/windows/pthreads.2/dll/x86 (use x64

instead of x86 for a 64 bit build) DLL ’s to PATH windows variable as well.

With this VOGL is ready to be built, on VOGL’s directory (the one created by the git clone use

the following cmake command cmake-gui -H%cd% -B%cd%\vogl_build\win32 to open

cmake’s GUI , then add the following entry:

• Name - Qt5 DIR

• Type - PATH

• Value - Qt5.3.2\5.3\msvc2013_opengl\lib\cmake\Qt5 depends where QT 5.3 is

installed

Then configure with Visual Studio 12 (to create a Visual Studio 2013 solution). Once generated the

solution will be complete, however it still requires to include libjpeg-turbo (pthreads and SDL

are immediately included if they were put on the external folder). The only project that requires the

library is vogltrace so edit it’s properties VC++ Directories, add to Include Directories

the libjpeg-turbo/include and to Library Directories the libjpeg-turbo/lib.

Once it’s done VOGL should be good to build.

66

B
U S E / C O N F I G U R AT I O N

B.1 B U G L E

B.1.1 Statistics configuration

This file is used two determine statistics format, it’s existence is imperative whenever using stats

outputs such as logstats and showstats,see section B.1.2.2. It can be configured to fetch the

statistics in four forms:

• s(<stat>) - the value of the stat at the start

• e(<stat>) - the value of the stat at the end

• d(<stat>) - the difference in the stat (e(<stat>) − s(<stat>))

• a(<stat>) - the average value of the stat

<stat> can be one of the following values:

• "frames" - Requires stats_basic, current frame number;

• "seconds" - Requires stats_basic, current time in seconds;

• "triangles" - Requires stats_primitives, current number of triangles;

• "batches" - Requires stats_primitives, current number of batches of triangles;

• "fragments" - Requires stats_fragments, current number of fragments;

• "calls:*" - Requires stats_calls, current number of GL calls, the * can be the function

name or left alone as a wild-card;

• "calltimes:*" - Requires stats_calltimes, current number of time spent on GL

calls, the * can be the function name or left alone as a wild-card;

67

• "calltimes:total" - Requires stats_calltimes, current number of total time spent

on GL calls;

Using these options it’s possible to create the basic FPS counter, the existing example from Bugle’s

files is:

"frames per second" = d("frames") / d("seconds")

{

precision 1

label "fps"

}

As can be seen it works with simple math functions such as FPS = f rames
seconds , using the possible

stats options many different stats can be outputted. The example above simply needs to be copied and

pasted into the statistics file in order to be available.

Another example of number of calls per frame would be:

"calls per frame" = d("calls:*") / d("calls:*") *

d("calls:*") / d("frames")

{

precision 0

label "*"

}

The d("calls:*") / d("calls:*") exists to cause a NaN when it’s 0 so it won’t be outputted

and flood the statistics with zeros, for example some gl functions used during initialization has zero

calls for the rest of the application and are simply flooding the screen. In the label unlike the previous

example this one lists as "*", this allows to label with the function name instead of a static label.

B.1.2 Filter Configuration

Using Bugle requires configuring filters and statistics. This section will refer to the con-

figuration of these two files and the results they produce. All filter chains exist inside filters file.

For instance, an empty chain would be:

chain pass

{

}

All filtersets need to be placed inside a chain.

68

B.1.2.1 Statistics filterset

There is a group of filtersets which work together to output stats. In order to gather statistic

relevant data the following filtersets are required:

• filterset stats_basic

• filterset stats_primitives

• filterset stats_fragments

• filterset stats_calls

• filterset stats_calltimes

Each of these filtersets gathers a certain type of statistics, this is described in the statistics section.

However, these filters alone will not produce any output, they exist only to enable the mentioned statis-

tics. In order to produce some output, the filterset showstats or filterset logstats

are required, the former outputs in the application window while the latter outputs to a log-file, and

both can be used at the same time.

To show and log FPS simultaneously it’s possible to combine the examples from statistics section

and create the following chain:

chain logandshowfps

{

filterset stats_basic

filterset showstats

{

show "frames per second"

}

filterset logstats

{

show "frames per second"

}

filterset log

{

filename "bugle.log"

}

}

When this chain is used a FPS counter shall appear on the top left corner, it’ll also create a

bugle.log which logs the FPS every frame. As can be seen in the example above a show op-

tion is used on both showstats and logstats, this will write the "frames per second"

from statistics file verbally.

69

filterset showstats can use additional options such as graph which draws a graph, time

which decides the update rate, key_accumulate and key_unaccumulate which toggles the

average statistics from the moment key_accumulate is pressed, key_unaccumulate undoes

the key_accumulate’s effects.

The following chain will show a much more complete use of showstats also shown in figure 21:

chain showstats

{

filterset stats_basic

filterset stats_primitives

filterset stats_fragments

filterset stats_calls

filterset showstats

{

show "frames per second"

show "batches per frame"

show "calls per frame"

graph "triangles per second"

graph "fragments per second"

}

}

Figure 21.: Bugle showstats example.

70

B.1.2.2 Trace and Log filterset

The most common features of the open source debuggers is to trace and log OpenGL calls. In or-

der for Bugle to accomplish this two filtersets are required, the filterset trace and

filterset log. The former captures data for the log and the latter specifies where to write. For

example:

chain trace

{

filterset trace

filterset log

{

filename "bugle.log"

}

}

The filterset trace does not require any additional options, the filterset log has

more additional options beside filename:

• filename - Name of the output log file;

• file_level, stdout_level and stderr_level - Specifies the output level for log file,

standard out and standard error respectively, it’s possible values are:

– 0 - No logging;

– 1 - Errors that usually lead to immediate termination like bad log file name or when

using the filterset showstats without the appropriate stats filtersets when

showing a stat (like attempting to show FPS without filterset stats_basic);

– 2 - Warnings, usually the ones that affect Bugle’s functions for example invalid file names

when making screenshots prevents the usage of the filter itself, this results in a warning;

– 3 - Notices, usually OpenGL errors or undefined behavior, for example when filterset

checks ignores an OpenGL error in the application;

– 4 - Information from filtersets that generate logs such as filterset trace or

filterset showextensions;

– 5 - Bugle’s debugging message, some filtersets output debugging messages, for ex-

ample all filtersets which require input like the filterset screenshot gener-

ate input debug messages.

• format - Overrides default log format, the following printf-style escapes are allowed:

– %l - Log level;

71

– %f - Filter-set;

– %e - Event;

– %m - Log message;

– %p - Process ID;

– %t - Thread ID;

– %% - Literal % .

An example of a Bugle log using the mentioned chain trace is the following log result:

[INFO] trace.call: glXQueryExtension(0x985530, NULL, NULL) = True

...

[INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT)

[INFO] trace.call: glUniformMatrix4fv(8, 1, GL_TRUE, 0x7fff5086453c ->

{ {

{ 1.08247, 0, -0.011336, 0 },

{ 4.74842e-05, 1.73204, 0.00453425, 0.018138 },

{ 0.0106833, -0.00267088, 1.02014, 2.06059 },

{ 0.0104717, -0.00261799, 0.999942, 3.99999 } } })

[INFO] trace.call: glUniformMatrix4fv(9, 1, GL_TRUE, 0x7fff5086457c ->

{ {

{ 0.999945, 0, -0.0104718, 0 },

{ 0, 1, 0, 0 },

{ 0.0104718, 0, 0.999945, 1 },

{ 0, 0, 0, 1 } } })

[INFO] trace.call: glUniform3f(1, 1, 1, 1)

[INFO] trace.call: glUniform1f(0, 0)

[INFO] trace.call: glUniform3f(3, 0, 0, 1)

[INFO] trace.call: glUniform1f(2, 0.2)

[INFO] trace.call: glUniform3f(4, 0, 0, -3)

[INFO] trace.call: glUniform1f(5, 1)

[INFO] trace.call: glUniform1f(7, 32)

...

B.1.2.3 Error checking filtersets

This section will refer to error logging and control filtersets.

Thefilterset error exists as a safeguard calling glGetError after each function allowing

the application to read it’s own errors without Bugle accidentally collecting them (in case the applica-

tion needs to read and know there was an error Bugle won’t accidentally hide it from the application).

The filterset checks will search for undefined behaviour such as an OpenGL call attempt

to use unreadable memory and ignore it instead of allowing it to crash the application, resulting in a

warning into the log.

72

For instance when filterset checks is active and glEnableVertexAttribArray(7)

within the application tries to read an undeclared buffer the following output to the log may occur:

[NOTICE] checks.error: illegal generic attribute array 7 caught in

glDrawElements (unreadable.memory); call will be ignored.

This results in the application ignoring what usually would cause a crash.

The filterset showerrorwill trace errors into to standard error instead just like trace logs

the application. These filtersets can be used in the following manner:

chain errordebugging

{

filterset error

filterset checks

filterset showerror

}

B.1.2.4 Context attributes and extension override filtersets

The two mentioned filtersets in this section will force the application to take some options, for ex-

ample filterset extoverride can force the OpenGL version while filterset context-

attribs can force the application into debug mode.

The possible extension overrides are:

• version <value> - This option will force OpenGL version string into the indicated value,

masking it’s real value;

• disable "all" - This will disable all extensions that are not explicitly enabled;

• disable <value> - This will disable the indicated extension;

• enable <value> - This will enable the indicated extension;

The possible context attributes overrides are:

• major <value> - Specifies the value for GLX_CONTEXT_MAJOR_VERSION_ARB;

• minor <value> - Specifies the value for GLX_CONTEXT_MINOR_VERSION_ARB;

• flag <flag> - Specifies the flags for GLX_CONTEXT_FLAGS_ARB, the available flags are:

– debug

– forward

– robust

73

If the value is any of the designated flags then it shall be turned on, if it’s precedented by a !
then the opposite shall occur;

• profile <flag> - Specifies the flags for GLX_CONTEXT_PROFILE_MASK_ARB, the

available flags are:

– core

– compatibility

– es2

Works exactly like flag.

An example of overriding would be:

chain override

{

filterset extoverride

{

version "1.5" #Set maximum version

disable "GL_EXT_framebuffer_object"

disable "GL_EXT_framebuffer_blit"

}

filterset contextattribs

{

major 3

minor 2

flag "debug"

flag "robust"

profile "core"

profile "!compatibility" #disables compatibility

}

}

This results in the application receiving OpenGL as version 1.5 when asking for the version string,

however the value of GL_VERSIONwill be 3.2.0, in this case it resulted in 3.2.0 NVIDIA 319.60

as the GL_VERSION.

It should also be noted that extoverride tries to suppress the extensions but can’t fully prevent

them, in case it fails to suppress it throws a warning announcing the failure in the following format:

[NOTICE] extoverride.warn: glXGetProcAddressARB was called, although

the corresponding extension was suppressed

74

B.1.2.5 Showextensions filterset

This filterset will output all extensions into standard error when the application terminates, the

already existing chain is composed as the following:

chain showextensions

{

filterset showextensions

filterset log

{

stderr_level 4

}

}

An example of filterset showextensions’s output is the following:

[INFO] showextensions.gl: Min GL version: 2.0

[INFO] showextensions.glx: Min GLX version: 1.3

[INFO] showextensions.ext: Required extensions: GLX_ARB_get_proc_address

Note that show extensions isn’t affected by the overrides from the previous sections.

B.1.2.6 KHR Debug filterset

This filterset will install a glDebugMessageCallbackARB, however it’ll require a debug

context. The option sync can be turned on by adding sync yes, it’ll enable GL_DEBUG_OUTPUT_

SYNCHRONOUS.

A filter example for this filterset while forcing debug context is the following:

chain debugcontext{

filterset contextattribs

{

flag "debug"

}

filterset logdebug

{

sync yes

}

}

And the resulting debug messages can be the following:

75

[INFO] logdebug.message: Buffer detailed info: Buffer object 1 (bound

to GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_

DRAW) will use VIDEO memory as the source for buffer object

operations. [source: API type: other id: 131185]

[INFO] logdebug.message: Buffer detailed info: Buffer object 1 (bound

to GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_

DRAW) will use VIDEO memory as the source for buffer object

operations. [source: API type: other id: 131185]

[INFO] logdebug.message: Buffer detailed info: Buffer object 2 (bound

to GL_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_DRAW) will

use VIDEO memory as the source for buffer object operations. [source:

API type: other id: 131185]

[INFO] logdebug.message: Buffer detailed info: Buffer object 2 (bound

to GL_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_DRAW) will

use VIDEO memory as the source for buffer object operations. [source:

API type: other id: 131185]

[INFO] logdebug.message: Texture state usage warning: Waste of

memory: Texture 0 has mipmaps, while it’s min filter is inconsistent

with mipmaps. [source: API type: other id: 131204]

[INFO] logdebug.message: Texture state usage warning: Waste of

memory: Texture 0 has mipmaps, while it’s min filter is inconsistent

with mipmaps. [source: API type: other id: 131204]

B.1.2.7 Compilable C source filterset

Bugle’s capable of creating a compilable trace (create a *.c file instead of a common log), this trace

file is compilable and work’s as a replay of the original application.

The following chain is sufficent:

chain exe

{

filterset exe

{

filename "exetrace.c"

}

}

76

B.1.2.8 Screenshot filterset

filterset screenshot is used to create both screenshots and videos. The following filterset

shows an example of such a chain:

chain screenshot

{

filterset screenshot

{

filename "bugle%d.ppm" # A %d is the frame number

key_screenshot "C-A-S-S" #Ctrl+Alt+Shift+S

}

}

To create video files the following options are available:

• video yes - By default it’s no (screenshot example) but in order to create a video it must be

set to yes;

• codec <value> - Set’s the codec of the output video, the available codecs can be seen in

ffmpeg’s documentation, for example value can be ”mpeg4”;

• bitrate <value> - Set’s the approximate rate of bit’s per second for the video encoding;

• allframes <value> - If set to ”yes” it’ll capture all frames of the application, by default

the video captures at 30 FPS , however, if set to ”yes” the speed may vary;

• lag <value> - Sets a latency between video capture and encoding.

In order to create a video there is the following chain example:

chain video

{

Press C-V to start and to stop recording

filterset screenshot C-V inactive

{

video "yes"

filename "bugle.avi"

codec "mpeg4"

bitrate "7500000"

allframes "no"

}

}

77

B.1.2.9 eps filterset

The filterset epsworks like filterset screenshot, however instead of screenshots it’ll

create a vector graphics file in the *.eps format. This file can be used by certain applications like

MS Word or Adobe Illustrator. In the figure 22 shows what it looks like when converted to png, the

example is the same application as figure 21.

chain eps

{

filterset eps

{

filename "bugle.eps"

key_eps "C-A-S-W" #Control+Alt+Shift+W

}

}

Figure 22.: Bugle eps file converted to png.

B.1.2.10 frontbuffer filterset

The filterset frontbuffer forces the application to always output the frontbuffer’s state, in

other words the application screen will only show the frontbuffer.

chain frontbuffer

{

filterset frontbuffer

}

78

B.1.2.11 Wireframe filterset

The filterset wireframe forces the application to render in wireframe mode.

chain wireframe

{

filterset wireframe

}

B.1.3 Graphic User Interface

The gldb-gui needs to be run on the command line within the target application’s working directory,

if no chain is specified it will use an empty pass, even it can still show the application’s state during

the last pause as show in 23. In the bottom of the state bar it allows to only show the selected states or

the ones that got modified between two different pauses.

Figure 23.: Bugle gldb state tab.

While it’s paused it’s possible to view the application’s buffers as shown in figure 24, it’s possible

to change the format according by changing the line composition according to the labels on left.

79

Figure 24.: Bugle buffers.

Another noteworthy feature of the GUI is that it reports any error encountered within the appli-

cation’s shaders as shown in figure 25. It’s also possible to see both the application’s textures and

framebuffers in it’s own corresponding tabs.

Figure 25.: Bugle gldb shader error encountered.

It also allows step by step debugging and placing breakpoints within the application, to debug step

by step use the step option (or it’s respective hotkey) on the Run menu, to place breakpoints add

the specific function which will break when traced on the Breakpoints tab, in the figure 26 the

application will pause whenever glDebugMessageCallbackARB is called.

80

Figure 26.: Bugle gldb breakpoint.

B.2 A P I T R AC E

B.2.1 Tracing

Run with apitrace trace <Target Executable> to start tracing, apitrace will generate a

<Target Executable>.model file which can be read by qapitrace.

Take note that he trace should be run on the target’s directory (<Target Executable Path>

apitrace trace <Target Executable>) so it may be advantageous to add apitrace’s bin

folder to PATH variable, otherwise it’s necessary need to run it like this: <Apitrace path>\apitrace

trace<Target Executable>. The command apitrace trace <Target Executable

Path>/<Target Executable> will not work in most cases due to detecting the current direc-

tory as the working directory.

In Windows it’s possible to add the folder to the path variable in “Control Panel/System and Secu-

rity/System”→ Advanced system properties→ Ambient Variables.

B.2.2 Retracing

In order to replay the trace use qapitrace or use glretrace.exe, using glretrace on command line will

the print the tracing warnings on the command line.

Dumping OpenGL frame call – It’s possible to dump a call with apitrace replay -D <frame

number> <trace file>.trace > <output file>.jsonwhich will dump a file with all

calls related to the frame, it will also place textures in their byte code.

81

B.2.3 Output replay to video

It’s possible to output the replay using ffmpeg to create a video file, the following command will

create the video file in mp4:

apitrace dump-images -o - <trace file>.trace | \\

ffmpeg -r 30 -f image2pipe -vcodec ppm -i pipe: -vcodec mpeg4 -y \\

<output file>.mp4

It is also possible to use libav instead:

apitrace dump-images -o - <trace file>.trace | \\

avconv -r 30 -f image2pipe -vcodec ppm -i - -vcodec mpeg4 -y \\

<output file>.mp4

B.2.4 Trimming trace file

To reduce a big trace file it’s possible to trim it by using the following command:

apitrace trim --exact --frame 0-<target frame> -o trimed.trace \\

application.trace

However trimming it from a beginning different from 0 will most likely create an unreplayble trace

file (because it’s missing its first initialize calls).

B.2.5 Profiling trace

In order to profile a trace, one of the already existing scripts in apitrace has to be used, in this case the

scripts were copied to the example application folder so the used command was the following:

apitrace replay --pgpu --pcpu --ppd models.trace | profileshader.py

The output of the profiller is the following:

+------------+--------------+--------------------+--------------+-------------+

| program | Draws [#] | Duration [ns] v | Per Call[ns] | Longest[id] |

+------------+--------------+--------------------+--------------+-------------+

| 4 | 38706 | 839456832 | 21688 | 62325 |

| 1 | 42838 | 91206304 | 2129 | 50705 |

| 0 | 167 | 1027008 | 6149 | 3037 |

+------------+--------------+--------------------+--------------+-------------+

82

Also as noticed in the command a --pgpu --pcpu -{ppd was used, this commands are used

for the following:

• –pgpu record gpu times for frames and draw calls.

• –pcpu record cpu times for frames and draw calls.

• –ppd record pixels drawn for each draw call.

For instance if only –pgpu was used it would result in the following output:

+------------+--------------+--------------------+--------------+-------------+

| program | Draws [#] | Duration [ns] v | Per Call[ns] | Longest[id] |

+------------+--------------+--------------------+--------------+-------------+

| 4 | 38706 | 841012896 | 21728 | 62033 |

| 1 | 42838 | 116815840 | 2726 | 38851 |

| 0 | 167 | 5082688 | 30435 | 3037 |

+------------+--------------+--------------------+--------------+-------------+

In --pcpu case, it would result in the following output:

+------------+--------------+--------------------+--------------+-------------+

| program | Draws [#] | Duration [ns] v | Per Call[ns] | Longest[id] |

+------------+--------------+--------------------+--------------+-------------+

| 1 | 42838 | 0 | 0 | 3112 |

| 0 | 167 | 0 | 0 | 15 |

| 4 | 38706 | 0 | 0 | 3039 |

+------------+--------------+--------------------+--------------+-------------+

And lastly for --ppd it would result in the following output:

+------------+--------------+--------------------+--------------+-------------+

| program | Draws [#] | Duration [ns] v | Per Call[ns] | Longest[id] |

+------------+--------------+--------------------+--------------+-------------+

| 1 | 42838 | 0 | 0 | 3112 |

| 0 | 167 | 0 | 0 | 15 |

| 4 | 38706 | 0 | 0 | 3039 |

+------------+--------------+--------------------+--------------+-------------+

This output occurred probably because there was no relevant cpu times and pixel draws, thus only

--pgpu had data to fill the table, as a result --pcpu and --ppd were pointless in the example

application. Perhaps OpenGL only applications will not output cpu times nor pixel draws.

This type table can be hard to understand for a beginner, most would not understand what program

and draws are.

83

The program column indicates the shader program (the combination of vertex, fragment, geometry,

etc. shaders), each loaded shader set has it’s own program id, the example has two different programs,

the program 0 is the default no shader that existed in this test application (reason why it has so lit-

tle amount of calls it’s because they are initializers), program 1 used for outputting text labels and

program 4 for the model.

The draws columns indicate the number of draws, this is the number of gl calls for the specified

program, it does not include all calls such as glGetIntegerv and it also excludes anything between

glFlush and glClear.

The other three columns are: Duration (total duration spent on the program), Per Call (the average

duration for each gl call) and finally Longest (Maximum duration on a single gl call).

B.2.6 Apitrace’s GUI

With the GUI qapitrace.exe it’s possible to view the generated trace files, in windows systems

it can start by dragging the .trace file to the qapitrace executable. The trace shall be listed in a node

tree with frames per node, each frame shall have his calls as a sub-node. In the figure 27 it’s possible

to see how the qapitrace GUI shows trace files.

84

Figure 27.: On the left shows how Apitrace splits the log per each frame, on the right it has a frame node
expanded showing it’s function log.

It can edit the gl calls by right clicking on the traced call, considering that by editing can cause an

error it is possible to conclude it may affect the replay action.

It can also check the replay of the trace on the trace menu, it also possible to get a partial replay by

right clicking on a frame and use “Lookup State” option, once the replay is done it’ll will show the

state as shown in figure 28.

85

Figure 28.: Looking up the state before changing the program, it allows to see the current program’s parameters,
shaders, buffers(surfaces tab) and uniforms.

B.3 G L I N T E R C E P T

B.3.1 Tracing

GLIntercept makes normal tracing calls, whenever an OpenGL function is called it’s function is logged

according to the configurations.

Basic logging must have log per frame disabled:

LogPerFrame

{

Enabled = False;

FrameStartKeys = (ctrl,shift,f);

OneFrameOnly = True;

}

86

Also it can be configured according to the FunctionLog bracket, in such case obviously LogEnabled

must be true, LogFlush only purpose is to decide whether to output as soon the function is traced,

the rest is redundant:

FunctionLog

{

LogEnabled = True;

LogFlush = False;

//LogPath = "c:\temp\";

LogFileName = "gliInterceptLog"

//AdditionalRenderCalls = ("glClear");

//LogMaxNumFrames = 200;

//LogFormat = XML;

XMLFormat

{

XSLFile = gliIntercept_DHTML2.xsl;

BaseDir = "C:\Program Files\GLIntercept_1_2_0\XSL";

}

}

The following is an example of a GLIntercept txt log:

(...)

glUniform4fv(5,1,[0.597000,-0.390000,0.700000,0.000000])

glUniformMatrix4fv(6,1,false,[-0.006048,0.002009,0.003809,0.000000,

0.000000,0.007302,-0.002488,0.000000,0.005158,0.002355,0.004466,

0.000000,0.705268,0.841264,0.479696,1.000000])

glUniform1iv(7,1,[1])

glUniform1iv(8,1,[2])

glUniform1iv(9,1,[0])

glBindVertexArray(10)

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,13)

glDrawElements(GL_TRIANGLES,1518,GL_UNSIGNED_INT,00000000)

(...)

In case LogFormat is active and set to xml it will output a xml file that can be rendered with

internet explorer, this is shown in the following figure 29.

87

Figure 29.: GLIntercept xml log rendered in internet explorer

B.3.2 Frame Logging

Generates a log similar to tracing, however each log is created on the current frame when using

<ctrl-shift-f>. This command will cause GLIntercept to capture the log that from the frame

and save it in the logging folder.

This is a variation of basic tracing requiring activation of log per frame, it’s format will be according

to:

LogPerFrame

{

Enabled = True;

FrameStartKeys = (ctrl,shift,f);

OneFrameOnly = True;

}

B.3.3 Shader Editor

The shader editor is either bugged or incomplete, whenever it tries to compile the application it always

get uniform mismatch error, it also cause the program to freeze for a while when the editor is open. It

does seem to work for .cg shaders.

88

In order to use the shader editor press <ctrl-shift-s> when the program is running, the fol-

lowing plugin is also needed:

PluginData

{

BaseDir = "C:\Program Files\GLIntercept_1_2_0\Plugins";

Plugins

{

(...)

OpenGLShaderEdit = ("GLShaderEdit/GLShaderEdit.dll")

(...)

}

(...)

}

B.3.4 ARB debug output Logging

ARB debug output is produced along the logs, it is created by adding the following lines:

PluginData

{

BaseDir = "C:\Program Files\GLIntercept_1_2_0\Plugins";

Plugins

{

(...)

DebugContext = ("GLDebugContext/GLDebugContext.dll")

{

ForceDebugMode = True;

LogToFunctionLog = True;

89

LogToErrorLog = True;

BreakOnMessage = False;

MessageControl

{

AllMessages = ("Dont Care", "Dont Care", "Dont Care", True)

}

}

(...)

}

(...)

}

B.3.5 Extension override

It is possible to change the program extension strings, however this will only affect the application if

the application itself uses the extension strings, otherwise it won’t make any noticeable effect.

PluginData

{

BaseDir = "C:\Program Files\GLIntercept_1_2_0\Plugins";

Plugins

{

ExtensionOverride = ("GLExtOverride/GLExtOverride.dll")

{

VersionString = "1.1.0 - Custom version string";

ShaderVersionString = "1.0.0 - Custom shader version string";

}

}

}

For example the configuration above will alter the OpenGL version shown in the following screen-

shot in figure 30:

90

Figure 30.: Extension override results

The existing possible extension overrides are:

• VendorString = "Custom vendor string";

• RendererString = "Custom renderer string";

• VersionString = "Custom version string";

• ShaderVersionString = "Custom shader version string";

• ExtensionsString = (GL_EXT_A, GL_EXT_B, GL_EXT_C, GL_EXT_D);

• AddExtensions = (GL_ARB_shading_language_100,

GL_ARB_shader_objects, GL_ARB_fragment_shader, GL_ARB_vertex_shader);

• RemoveExtensions = (GL_S3_s3tc,WGL_EXT_swap_control);

• WGLExtensionsString = (GL_EXT_A, GL_EXT_B, GL_EXT_C, GL_EXT_D);

• WGLAddExtensions = (GL_EXT_A,GL_EXT_B);

• WGLRemoveExtensions = (WGL_ARB_buffer_region,

WGL_ARB_extensions_string, WGL_NV_render_texture_rectangle);

B.3.6 Function statistics

This extension does not is not included in the config examples provided by GLIntercept, however it

does exist in the pluginsfolder.

This plugincreates a call count list after exiting the application allowing the user to check which

functions were called the most.

PluginData

{

BaseDir = "C:\Program Files\GLIntercept_1_2_0\Plugins";

91

Plugins

{

FunctionStats = ("GLFuncStats\GLFuncStats.dll");

}

}

The following is an example of this plugin’s output, ... was used on the list to shorten it.

======= OpenGL function call statistics ==========

Total GL calls: 82938

Number of frames: 7 Average: 11888 calls/frame (excluding first

frame count of 11606)

======= OpenGL function calls by call count ==========

glNormal3f 38126

glVertex3f 38126

glPixelStorei 2436

glGetIntegerv 1221

wglGetProcAddress 717

glBegin 382

glEnd .. 381

glMap2f 336

glEvalMesh2 256

glBitmap 203

glEnable 80

glMapGrid2f 80

glGetError 62

glMatrixMode 44

glNamedProgramLocalParameters4fvEXT 40

glGetDoublev 40

glLoadIdentity 38

glNamedProgramLocalParameter4fvEXT 37

glTranslatef 32

glRotatef 32

92

glDisable 31

...

======= OpenGL function calls by name ==========

glBegin 382

glBindProgramARB 19

glBitmap 203

glClear 8

glColor3f 8

glColor4f 7

glDepthFunc 8

glDisable 31

glEnable 80

glEnd .. 381

glEvalMesh2 256

...

B.4 G L S L D E V I L / G L S L - D E B U G G E R

GLSL is a very graphic debugger, one of the first steps to use GLSL is to choose which application to

debug, it can do so with the Open Program button or <ctrl-o>, afterwards it needs the program

text box (the application executable) to be filled. Optionally the arguments and working directory can

also be inputted, the dialog is as shown in figure 31.

Figure 31.: GLSL opening a new application to debug, in the example it’s opening an application called tuto-
rial19

Once that’s done GLSL is ready to debug, it’ll start the debugging by pressing run button (green

gear icon) or F5. Watching the figure 32 and 33 should be much more intuitive than a text description.

93

Figure 32.: GLSL showing buffer view and fragment shader.

Figure 33.: GLSL it’s featuring trace statistics and the vertex shader.

94

The following subsections shall describe what each function does, these sections shall be grouped

by sub-window, each button is listed from left to right.

B.4.1 GL Trace

This sub-window logs all the trace results, the debugging starts from here.

• Run

This is the most basic function and essentially starts the debugging, it’ll unlock most of the

functions.

• Step

This can only be used after pausing during a run, it’ll trigger the next function and pause again.

• Skip

This can only be used after pausing during a run, it’ll skip the next function and pause again.

• Edit

This can only be used after pausing during a run, it’s used to edit the parameters of the next

function to trigger.

• Jump to next Draw Call

This will resume running but pause as soon it reaches a draw call, when it reaches the draw call

it’ll enable the Shaders sub-window. It’s hotkey is <F7>.

• Jump to next Shader Switch

This will resume running but pause as soon it reaches a the next change of shaders or essentially

the next glprogram function. It’s hotkey is <F6>.

• Jump to next User Defined OpenGL

This will resume running but pause as soon it reaches a particular function, the function is

chosen by the user when a popup appears. It’s hotkey is <ctrl-F6>.

• Run (F8)

This will resume running and won’t pause unless Stop button is pressed or an error occures

when Halt on Error is enabled. It’s hotkey is <F8>.

• Stop (Alt+Break)

This will pause the application enabling diverse debugging options. It’s hotkey is <alt+break>.

95

• Halt on Error

When this is enabled the debugger will pause whenever an error occurs.

• Disable GL Trace

When this is enabled the debugger will not record any trace, essentially it’ll almost run the

application without any form of debugging.

• Show GL Trace settings

This will show a popup which allows the user to choose which functions to be recorded in the

trace.

• Save GL Trace

Use this function in order to save a log file.

B.4.2 Shader

This sub-window is only available when the next function to trigger is a draw call. Unfortunately only

OpenGL 2 shaders work reliably, using mesa shaders for OpenGL 3 should also work however not as

reliable as OpenGL 2.

• Debug Shader

This initiates shader debugging, because of the limitations it is untested. It’s hotkey is <ctrl+F5>.

• Reset Debug Session

This restarts shader debugging, untested since no old shader program worked. It’s hotkey is

<ctrl+shift+F5>.

• Step

Same as Step from GL Trace, this one works for shader debugging. It’s hotkey is <F11>.

• Step Over

Same as Skip from GL Trace, this one works for shader debugging. It’s hotkey is <F10>.

• Edit Per-Fragment Option

This button will open output options for the fragment shader, thus it’s only available in the

fragment shader tab, the options are shown in figure 34. It’s hotkey is <F4>.

96

Figure 34.: Fragment shader per-fragment options.

B.4.3 GL Trace Statisics

This window will show a count of the called GL functions, it may either count per frame or a total

called since the beginning of the debugging.

• Combo Boxes

These combo boxes will determine how and which statistics to display, the left combo box offers

which type of GL function to display such as GL, GLX and WGL, the right combo box decides

how they are counted from total to calls per frame.

• Tabs

This sub-window is split into two tabs, GL Calls and GL Extensions, GL Calls will display

results per function and GL extension will display the results according to the extensions, these

results are also influenced by the combo boxes.

B.4.4 GL Buffer View

This sub-window will allow the user to capture the front buffer, it cannot choose which buffer to

capture.

• Capture

This is the basic manual capture, it’ll capture the front buffer from the state of the current gl

function (not frame), it may capture nothing if it’s used before anything is drawn.

97

• Automatic Capture

This is the same as capture, however when it’s on it’ll capture after each gl function.

• Save as image

This allows the current captured buffer to be saved as an image.

B.4.5 Shader Variables and Watch

GLSL can only view shader variables during shader debugging, during shader debugging the uniforms

and variables are split according to the tabs as shown in the screenshots figures 35, 36 and 37.

Watch is available when one of the uniforms is chosen to be put on watch (double clicking). Once on

watch it’s possible to view them as shown in the screenshots, the figure 35 shows fragment coordinate

viewing, 36 shows fragment color viewing and 37 shows fragment position viewing. All shown views

interact and update according to the shader debugger.

Since fragment color viewing is the same as outputting the fragment shader it’s possible to see the

fragment shader results by debugging, the triangle shown in the figures 35 and 36 is the 3D model

used in the application.

Figure 35.: Fragment coordinates viewer.

98

Figure 36.: Fragment color viewer.

Figure 37.: Fragment position viewer.

99

B.5 VO G L

B.5.1 Copying the DLL

In the official VOGL wiki it mentions mostly about Linux methods which may need some changes in

Windows, to make the normal trace method mentioned in the official wiki it’s necessary to copy and

rename vogltrace32.dll to opengl32.dll on the target application working directory, this

is the Windows equivalent of LD_PRELOAD.

As an alternative it’s possible to use vogleditor32.exe GUI instead in order to create and

manage trace files, the editor also requires vogltrace32.dll as seen in figure 38. Note that this

thesis relies on 32 bit instead of 64, in order to use 64 bit version of VOGL just replace 32 with 64.

Figure 38.: VOGL editor reminder, occurs when attempting to trace an application.

B.5.2 VOGL gui

VOGL GUI carries most VOGL’s functionalities from creating traces to replaying, the trace is logged

similarly to APITrace and when a function is selected it’s possible to get the snapshot (similar to

APITrace’s lookup state capability) and obtain the current function state, this is done by either double

clicking or press the snapshot button to the right.

Once the snapshot it’s possible to see the framebuffers as shown to the left in figure 39, the OpenGL

state in the state tab and more.

The red starting green bar on the top of the editor is actually the OpenGL call bar, it places each

OpenGL call within the bar serving as a function timeline.

100

Figure 39.: VOGL editor after snapshot.

B.5.3 Creating the trace file

In order to use VOGL it’s vital to create the trace file, this is where it begins. The Windows version

will differ slightly compared to Linux, to recreate the same steps in Windows it’s necessary to:

• Copy the DLL mentioned before (vogltrace32.dll);

• set VOGL_CMD_LINE="--vogl_debug --vogl_tracefile <VOGL_tracefile>

--vogl_pause";

• Execute the application.

As an alternative VOGL editor has on the toolbar the Generate Trace... which will open

a file opening dialog shown in figure 40, it’s important to place the .bin output trace file, VOGL’s

traces are in .bin format.

Before the application runs it’ll show a reminder as shown in figure 38, this means that it’s necessary

to have the DLL wrapper in place when generating the trace file.

101

Figure 40.: VOGL editor generate trace.

The trace file is generated as soon the application closes.

B.5.4 Trimming a trace file

If the resulting generated trace is very big VOGL will immediately suggest to trim the trace file for

faster and easier debugging, otherwise It’s possible to trim the trace file by using Trim Trace...

on the toolbar.

Trim has two attributes, Trim Frame which is the frame where the trimming begins and Trim

length which is the size of the trimming. Trimming is done by replaying the requested frames and

recreating the trace.

In the command line it’s possible to trim the file with vogl32 replay <tracefile> --trim_file

<tracefile-trim>.bin --trim_len 2 --trim_frame 10. --trim_len and --trim_frame

are the equivalent of the GUI ’s trimming attributes.

B.5.5 Replaying a trace file

Most of the times VOGL works by replaying just like APITrace, as long there is a .bin trace file it

can replay it by choosing the Play Trace option in the toolbar.

It’s also possible to replay the trace file in the command line with vogl32 replay <tracefile>.

For a higher performance replay add the --benchmark after the replay parameter, by doing so

it’ll also throw in the application’s performance.

102

B.5.6 Interactive replaying a trace file

It’s possible to replay interactively a trace file with vogl32 replay <tracefile> -interactive,

this will allow the following commands to the application:

• <space> to pause replay;

• <s> to initiate slow mode;

• <left arrow> or <right arrow> to seek, adding <ctrl>, <shift> or <alt> will

make seek even further (seek is to jump through draw calls);

• <J> or <T> to trim the current frame.

B.5.7 Realtime editing and replaying a trace file

It’s possible to use VOGL to edit and replay a trace file at the same time, in order to do so it’s important

to dump the trace file into .json, in order to do so the following must be done:

mkdir dump

vogl32 dump <tracefile> dump/<dumpname>

It’s important to separate the dump from the rest of the files because it creates one .json file per

frame, doing so avoids making a mess in the folder. Once dumped extract the .zip archive in the

dump folder and rename it by adding a suffix .orig, this way the replay will rely on the extracted

files instead.

Now that the files are ready use vogl32 replay dump/<dumpname>_000000.json --endless

to start the replay, any change made to a .json file will affect the corresponding frame, if the change

does not occur restart the replay to reset the cache.

B.5.8 Converting a APITrace trace file

In order to convert and APITrace .trace file it’s necessary to use APITrace’s glretrace <.trace>

-benchmark function, it means that to convert it’s necessary to replay the APITrace trace file and

trace it with VOGL.

• Copy the DLL to the trace file folder;

• set VOGL_CMD_LINE="--vogl_debug --vogl_tracefile <VOGL_tracefile>

--vogl_pause";

• glretrace <apitrace_tracefile> --benchmark

103

B.5.9 Dump images from a trace file

It’s possible to dump images per draw call in the editor with Dump Per-Draw Framebuffers

in the editor’s toolbar.

It’s also possible to dump frame buffer images per draw call from a trace file with vogl32 replay <tracefile>

-dump_framebuffer_on_draw -dump_framebuffer_on_draw_prefix dump/cap, this

will result in several images whose names follow the following format:

• GLCTR: GL call counter

• FR: Frame #

• DCTR: Frame draw counter

• W, H: Width/height of FBO (or the default framebuffer)

• FBO: Framebuffer object handle #

• FBO attachment

• Texture’s internal format

• Texture handle #

The editor can also dump per-frame screenshots with Collect Per-Frame Screenshots

from the toolbar.

B.5.10 Get statistics from a trace file

By using vogl32 info <tracefile> it’s possible to get the statistics from a trace file, the

statistics are outputted in the following format, take note that some parts have been omitted with

(...) due to the huge size of the statistics:

vogl 32-bit Release Built Oct 26 2014 17:26:21

Output statistics about a trace file.

Scanning trace file trace.bin

Total file size: 4,616,033

SOF packet size: 60 bytes

Version: 0x0106

UUID: 0xfd38a90b 0xdb594ba1 0x72689b83 0x75b88e93

First packet offset: 60

Trace pointer size: 4

Trace archive size: 908 offset: 4615125

104

Can quickly seek forward: 1

Max frame index: 72

Total trace archive files: 3

"compiler_info.json"

"frame_file_offsets"

"machine_info.json"

Found trace file EOF packet on swap 72

num non whitelisted funcs: 2

total gl state snapshots: 0

total swaps: 72

total make currents: 6

(...)

total display list calls: 4537

Avg display lists calls per frame: 63.013889

total gl get errors: 0

Avg glGetError calls per frame: 0.000000

total context creates: 0

total context destroys: 0

Total calls to glLinkProgram/glLinkProgramARB: 0

Total calls to glProgramBinary: 0

Total unique program handles passed to glUseProgram/

glUseProgramObjectARB: 0

Total unique program pipeline handles passed to glUseProgramStages:

0

API histogram: 48

glMaterialfv: Total calls: 8787 23.2%, Avg calls per frame:

122.041667

glPopMatrix: Total calls: 4608 12.1%, Avg calls per frame:

64.000000

glPushMatrix: Total calls: 4608 12.1%, Avg calls per frame:

64.000000

glTranslatef: Total calls: 4536 12.0%, Avg calls per frame:

105

63.000000

(...)

glShadeModel: Total calls: 1 0.0%, Avg calls per frame: 0.013889

wglChoosePixelFormatARB: Total calls: 1 0.0%, Avg calls per frame:

0.013889

wglGetCurrentDC: Total calls: 1 0.0%, Avg calls per frame: 0.013889

wglGetExtensionsStringARB: Total calls: 1 0.0%, Avg calls per frame:

0.013889

wglUseFontBitmapsA: Total calls: 1 0.0%, Avg calls per frame:

0.013889

API Category histogram: 5

"VERSION_1_0": Total calls: 37297 98.3%, Avg calls per frame:

518.013889

"wgl": Total calls: 650 1.7%, Avg calls per frame: 9.027778

"RAD_debugger": Total calls: 3 0.0%, Avg calls per frame: 0.041667

"ARB_extensions_string": Total calls: 1 0.0%, Avg calls per frame:

0.013889

"ARB_pixel_format": Total calls: 1 0.0%, Avg calls per frame:

0.013889

API Version histogram: 2

"1.0": Total calls: 37300 98.3%, Avg calls per frame: 518.055556

"": Total calls: 652 1.7%, Avg calls per frame: 9.055556

Warning:

Warning: Number of non-whitelisted functions actually called: 2

Warning: wglGetCurrentDC

Warning: wglUseFontBitmapsA

Warning:

5 warning(s), 0 error(s)

106

B.5.11 Finding in a trace file

VOGL allows the user to find functions or parameters within the trace file, simply use vogl32 find

<tracefile> -find_func <functionname> and it’ll list all functions found with the same

functioname, it’s also possible to include wildcards, for example using glC.* it’ll list all functions

starting with glC. The search output is in the following format:

----- Function match, frame 70:

{

"func" : "glClear",

"thread_id" : "0x16FC",

"context" : "0x30000",

"call_counter" : 37033,

"crc32" : 4040923817,

"begin_rdtsc" : 14286596747157,

"end_rdtsc" : 14286596838246,

"gl_begin_rdtsc" : 14286596755356,

"gl_end_rdtsc" : 14286596838102,

"backtrace_hash_index" : 0,

"rnd_check" : 64982,

"inv_rnd_check" : 553,

"params" : {

"mask" : "0x4100"

}

}

----- Function match, frame 71:

{

"func" : "glClear",

"thread_id" : "0x16FC",

"context" : "0x30000",

"call_counter" : 37495,

"crc32" : 3484429998,

"begin_rdtsc" : 14286636517653,

"end_rdtsc" : 14286636606663,

"gl_begin_rdtsc" : 14286636525780,

"gl_end_rdtsc" : 14286636606528,

"backtrace_hash_index" : 0,

"rnd_check" : 40913,

107

"inv_rnd_check" : 24622,

"params" : {

"mask" : "0x4100"

}

}

Total matches found: 72

0 warning(s), 0 error(s)

It’s also possible to find parameters with vogl32 find <tracefile> -find_param <paramname>,

the following is a search for GL_FRONT:

----- Parameter 0 match, frame 71:

{

"func" : "glMaterialfv",

"thread_id" : "0x16FC",

"context" : "0x30000",

"call_counter" : 37927,

"crc32" : 63488095,

"begin_rdtsc" : 14286651430725,

"end_rdtsc" : 14286651441264,

"gl_begin_rdtsc" : 14286651440157,

"gl_end_rdtsc" : 14286651441210,

"backtrace_hash_index" : 0,

"rnd_check" : 25250,

"inv_rnd_check" : 40285,

"params" : {

"face" : "GL_FRONT",

"pname" : "GL_AMBIENT",

"params" : {

"ptr" : "0x000000000017F800",

"mem_size" : 16,

"crc64" : "0x89D4B0CC0713D174",

"values" : [0.77647054195404053, 0.20130716264247894,

0.37385621666908, 264, 0.25]

}

}

}

108

----- Parameter 0 match, frame 71:

{

"func" : "glMaterialfv",

"thread_id" : "0x16FC",

"context" : "0x30000",

"call_counter" : 37928,

"crc32" : 3337696999,

"begin_rdtsc" : 14286651444810,

"end_rdtsc" : 14286651454359,

"gl_begin_rdtsc" : 14286651453837,

"gl_end_rdtsc" : 14286651454296,

"backtrace_hash_index" : 0,

"rnd_check" : 59464,

"inv_rnd_check" : 6071,

"params" : {

"face" : "GL_FRONT",

"pname" : "GL_DIFFUSE",

"params" : {

"ptr" : "0x000000000017F800",

"mem_size" : 16,

"crc64" : "0x89D4B0CC0713D174",

"values" : [0.77647054195404053, 0.20130716264247894,

0.37385621666908, 264, 0.25]

}

}

}

Total matches found: 8788

0 warning(s), 0 error(s)

109

	Contents
	Introductory material
	1 Introduction
	1.1 Contextualization
	1.2 Motivation
	1.3 Document Structure

	2 State of the art
	2.1 Bugle
	2.1.1 Filter and Statistics Configuration
	2.1.2 Graphic User Interface
	2.1.3 Inner Workings
	2.1.4 Maintenance

	2.2 APITrace
	2.2.1 Basic Functionalities
	2.2.2 Log reading GUI
	2.2.3 Real problem solving example
	2.2.4 How it works from inside
	2.2.4.1 Creating a trace

	2.2.5 Maintenance

	2.3 GLIntercept
	2.3.1 Logging
	2.3.2 Plugin Usage
	2.3.3 OpenGL32.dll wrapper
	2.3.4 Maintenance
	2.3.4.1 Plugins
	2.3.4.1.1 GLFreeCam
	2.3.4.1.2 Plugin Creation

	2.4 GLSLDevil/GLSL-Debugger
	2.4.1 Graphic User Interface
	2.4.2 How does GLSL logs and debugs
	2.4.2.1 Common Debugging
	2.4.2.2 Shader Debugging

	2.4.3 Maintenance

	2.5 VOGL
	2.5.1 Functions and GUI
	2.5.2 Maintenance

	2.6 CodeXL
	2.6.1 Debug Mode
	2.6.2 Profilling Mode
	2.6.3 CPU Time Based Profile
	2.6.4 GPU Application Trace

	2.7 Nsight
	2.7.1 Graphics Debugging
	2.7.2 Performance Analysis

	3 Debugger Comparisions
	3.1 Open Source Applications
	3.1.1 Comparision table
	3.1.2 Feature table

	3.2 Commercial/Freeware Applications
	3.3 Conclusions regarding State of Art

	Incorporating the debugger in Nau
	4 Using an existing debugger
	4.1 Changes on GLIntercept
	4.2 Changes on Nau
	4.3 Changes on composer

	5 How to use Nau's debugger
	5.1 functionlog
	5.2 logperframe
	5.3 errorchecking
	5.4 imagelog
	5.5 shaderlog
	5.6 displaylistlog
	5.7 framelog
	5.8 timerlog
	5.9 plugins
	5.10 How to get OpenGL state
	5.11 How to use the composer

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Prospect for future work

	Apendices
	A Installation
	A.1 Bugle
	A.2 APITrace
	A.3 GLIntercept
	A.4 GLSLDevil/GLSL-Debugger
	A.5 VOGL

	B Use / Configuration
	B.1 Bugle
	B.1.1 Statistics configuration
	B.1.2 Filter Configuration
	B.1.2.1 Statistics filterset
	B.1.2.2 Trace and Log filterset
	B.1.2.3 Error checking filtersets
	B.1.2.4 Context attributes and extension override filtersets
	B.1.2.5 Showextensions filterset
	B.1.2.6 KHR_Debug filterset
	B.1.2.7 Compilable C source filterset
	B.1.2.8 Screenshot filterset
	B.1.2.9 eps filterset
	B.1.2.10 frontbuffer filterset
	B.1.2.11 Wireframe filterset

	B.1.3 Graphic User Interface

	B.2 APITrace
	B.2.1 Tracing
	B.2.2 Retracing
	B.2.3 Output replay to video
	B.2.4 Trimming trace file
	B.2.5 Profiling trace
	B.2.6 Apitrace's GUI

	B.3 GLIntercept
	B.3.1 Tracing
	B.3.2 Frame Logging
	B.3.3 Shader Editor
	B.3.4 ARB_debug_output Logging
	B.3.5 Extension override
	B.3.6 Function statistics

	B.4 GLSLDevil/GLSL-Debugger
	B.4.1 GL Trace
	B.4.2 Shader
	B.4.3 GL Trace Statisics
	B.4.4 GL Buffer View
	B.4.5 Shader Variables and Watch

	B.5 VOGL
	B.5.1 Copying the DLL
	B.5.2 VOGL gui
	B.5.3 Creating the trace file
	B.5.4 Trimming a trace file
	B.5.5 Replaying a trace file
	B.5.6 Interactive replaying a trace file
	B.5.7 Realtime editing and replaying a trace file
	B.5.8 Converting a APITrace trace file
	B.5.9 Dump images from a trace file
	B.5.10 Get statistics from a trace file
	B.5.11 Finding in a trace file

