
Universidade do Minho

Escola de Engenharia

Pedro Miguel Pimentel Guimarães

Monitoring and analysis of queries in
distributed databases

Outubro de 2014

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Pedro Miguel Pimentel Guimarães

Monitoring and analysis of queries in
distributed databases

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor Doutor José Orlando Pereira

Outubro de 2014

Agradecimentos

Antes de mais queria agradecer ao meu orientador, Prof. Doutor José Orlando Pereira

por toda a atenção, preocupação e tempo despendido bem como o grande aux́ılio prestado

e que possibilitou o sucesso desta dissertação.

Queria dar os meus agradecimentos a todos do laboratório, em particular ao João Paulo

por me ajudar a instalar e disponibilizar os recursos necessários, ao Miguel Matos pela ajuda

com o Derby e com o resto da plataforma CoherentPaaS e ao Ricardo Vilaça, pela ajuda na

optimização das escritas no HBase.

Agradeço a todos aqueles com quem tive conversas um pouco aleatórias, por vezes in-

spiradoras, filosóficas ou simplesmente tolas nos tempos mais livres e a todos os outros meus

companheiros de luta, que me foram motivando.

Finalmente, obrigado à minha famı́lia, especialmente ao meu Pai, Mãe e Irmã, por todo

o apoio, amor e carinho que sempre me deram.

Abstract

” Monitoring and analysis of queries in distributed databases ”

Scalable database services combining multiple technologies, including SQL and NoSQL, is

increasingly in vogue. In this context, the CoherentPaaS research project aims at providing

an integrated platform with multiple data management technologies, united by a common

query language and global transactional coherence.

For this integration to succeed, it must provide the same monitoring capabilities of tra-

ditional relational databases, namely, for database administrators to optimise its operation.

However, achieving this in a distributed and heterogeneous system is in itself a challenge.

This work proposes a solution to this problem with X-Ray, that allows monitoring code

to be added to a Java-based distributed system by manipulating its bytecode in runtime. The

resulting information is collected in a NoSQL database and then processed and visualised

graphically. This system is evaluated experimentally by adding monitoring to Apache Derby

and tested with the standard TPC-C benchmark workload.

Resumo

” Monitorização e análise de interrogações em bases de dados distribúıdas ”

Os serviços escaláveis de base de dados combinando diversas tecnologias, incluindo SQL e

NoSQL, estão cada vez mais em voga. Neste contexto, o projeto de investigação Coherent-

PaaS tem como objetivo oferecer uma plataforma integradora de múltiplas tecnologias de

gestão de dados, unidas por uma linguagem de interrogação comum e por mecanismos de

coerência transacional global.

Para que esta integração seja utilizável na prática, é necessário que ofereça as capacidades

de monitorização que são comuns em bases de dados relacionais, por exemplo, para que

o administrador de bases de dados seja capaz de otimizar a sua operação. No entanto, a

concretização desta funcionalidade num sistema distribúıdo e heterogéneo é em si um desafio.

Este trabalho propõe uma solução para este problema com o sistema X-Ray, que permite

adicionar a capacidade de monitorização a um sistema distribúıdo em Java através da ma-

i

nipulação do código-objeto em tempo de execução. A informação resultante é recolhida

numa base de dados NoSQL e depois processada e visualizada graficamente. Este sistema

é avaliado experimentalmente aplicando-o a Apache Derby e utilizando o padrão de testes

TPC-C.

ii

Contents

Glossary vii

List of Figures ix

Code Listings xi

1 Introduction 1

1.1 Context . 1

1.2 Challenges . 3

1.3 Goal & Contributions . 4

1.4 Document Structure . 5

2 State of the Art 7

2.1 Distributed Databases . 7

2.2 Distributed Monitoring . 8

2.3 Debugging Applications . 9

2.3.1 Metrics . 9

2.3.2 Call context and tracing . 10

2.3.3 Data collection . 12

Instrumentation . 12

Hardware counters . 13

2.3.4 Tracing tools . 14

2.4 Event Logging . 15

2.5 Discussion . 16

iii

Contents Contents

3 Architecture 19

3.1 Overview . 19

3.2 Main features . 21

3.2.1 Probes . 21

3.2.2 Tags . 21

3.2.3 Resources . 23

3.2.4 HBase storage . 24

3.2.5 Visualisation . 24

3.3 Usage Methods . 26

3.3.1 Custom Class Loader . 26

3.3.2 JAR Recompiler . 29

3.3.3 Java Agent . 30

3.4 Configuration . 31

3.4.1 Annotations . 31

3.4.2 Configuration Files . 33

4 Implementation 37

4.1 Overview . 37

4.2 Understanding the JVM . 39

4.3 Technologies used . 42

4.4 Selection of targets . 42

4.5 Modifications to targets . 46

4.5.1 Eager loading and callbacks . 47

4.5.2 Event Information . 47

5 Evaluation 49

5.1 Qualitative analysis . 49

5.2 Measurements . 53

6 Conclusions 55

6.1 Future Work . 56

iv

Contents Contents

References 61

v

Glossary

bytecode

or Java bytecode, it’s a portable low-level instruction set, resulting from compilation

of Java programs and designed to run in the JVM.

CCT

Context Calling Tree.

CEP

Complex Event Processing.

CQE

Continuous Query Engine.

JMX

Java Management Extensions.

JRE

Java Runtime Environment.

JVM

Java Virtual Machine.

logback

a flexible and extensible logging framework that implements the Simple Logging Facade

for Java (slf4j) API.

vii

Glossary Glossary

MDC

Mapped Diagnostic Context.

NoSQL

used to refer to databases that don’t typically fit in the traditional relational paradigm.

These generally favour availability, speed and efficient storage above consistency and

ACID guaranties.

opcode

operation code; the part of the instruction that specifies the operation to perform. It’s

normally followed by its parameters if required.

slf4j

Simple Logging Facade for Java.

SQL

Structured Query Language.

type

a particular kind of data. Normally it denotes a reference (non-primitive) type, like

interfaces or classes.

viii

List of Figures

1.1 CoherentPaaS architecture . 2

2.1 Representation of an execution plan . 8

2.2 Representations of calling relationships . 11

3.1 X-Ray sub-module architecture . 19

3.2 Example Graphviz’s representation . 25

3.3 Example flowgraph . 27

3.4 Execution when using the X-Ray class loader 28

3.5 JAR instrumentation procedure . 29

3.6 Agent instrumentation process . 30

4.1 Normal JRE classloading procedure . 40

5.1 Flowgraph produced when sending a query to Derby 50

5.2 Graphviz’s representation of a Derby query 51

5.3 Flowgraph produced when sending a query to a Derby cluster 52

ix

Listings

3.1 Example code benefiting of the use of tags 22

3.2 Using the Log annotation . 31

3.3 Using the tag annotations . 32

3.4 Details about remote tag annotations . 32

3.5 General syntax of an identifier . 33

3.6 Identifier examples . 33

3.7 Some configuration keys . 34

3.8 A few tag configuration keys . 34

3.9 Some remote tag configuration keys . 34

4.1 Instrumentation decision algorithm . 43

xi

1 Introduction

1.1 Context

The use of multiple Database Management Systems technologies (DBMSs), such as

scalable SQL databases and key-value or document-oriented data stores is increasingly in

vogue. This is due to the increase of managed data that demands more efficient storage

with high-availability. Other solutions were developed to satisfy requirements form recently

growing domains as Machine Learning and Data Mining. NoSQL solutions are diverse and

generally try to provide availability and partition tolerance guarantees at the cost of a

reduced level of data consistency. Each type of NoSQL is adequate or not depending on

situation where it needs to be used and on the requirements of the product. One size does

not fit all.

This project aims to design and implement a PaaS (Platform as a Service) that will

allow access a wide range of services and data store technologies in the cloud. These include

NoSQL-data stores (key-value data stores, graphDB data stores, document-oriented data

stores), SQL-like scalable data stores (column-oriented data stores, in-memory databases,

SQL databases) as well as Complex Event Processing (CEP) systems. This data will be

available in a unified way and with the ability to use a common query language to obtain

information about it and support for global transactional coherence.

CoherentPaaS or “A Coherent and Rich PaaS with a Common Programming Model”

is an European Union project coordinated by the Universidade Politécnica de Madrid in

collaboration with several European Corporations, Foundations, Institutes and Universities

in the areas of technology and software development [2].

Figure 1.1 presents CoherentPaaS’s general structure and main components. At the

1

1.1. CONTEXT CHAPTER 1. INTRODUCTION

Figure 1.1: CoherentPaaS architecture.

higher abstraction layer, the CoherentPaaS system includes the Common Query Engine,

supporting several applications (on the bottom left of the figure). Other components include

the transaction management and the “x-ray monitoring”, responsible for the monitoring,

debugging and profiling of the cloud applications and databases (Figure 1.1, on the right).

These facilities are used by PaaS management, responsible to deploy and alter applications.

Work developed for this thesis corresponds to the “x-ray monitoring” module, but it

is not necessarily it: integration is not finished. Depending of that process, it might end

up being only a component in the module or needing further modifications from what is

reported here to be included in the CoherentPaaS project. For the sake of simplicity, the

software developed for the mentioned module will be addressed as X-Ray.

There are many scalable enterprise solutions of the implemented in the Java language

and between them are the most popular and used ones. Examples of datastores in Java

include HBase, Accumulo, Cassandra, Voldemort, Neo4j, Hazelcast, Apache Derby, Ter-

2

CHAPTER 1. INTRODUCTION 1.2. CHALLENGES

rastore, InfiniteGraph, and OrientDB). Although it is not in the scope of this dissertation,

one can propose some reasons for this: a mixture of historical market share in commercial

applications and middleware, the execution model in a virtual machine that enables its easy

deployment independently of machine architecture or Operating System1 with increased se-

curity and a sizable ecosystem of open source, permissive licensed frameworks and libraries

used in conjunction or replacing various parts of the JavaEE platform.

X-Ray must be implemented in some language; as it must interact with all kind of

datastores it is reasonable to choose Java: most datastore solutions are implemented in Java

and the easiest way to interact with programs in a given language is to use their language.

For other datastore systems not implemented in Java, a bridge or converter can easily

be coded.

1.2 Challenges

Debugging and optimisation of queries in this platform poses a problem. In fact it is

problematic for all cloud platforms, as it raises all kinds of challenges when trying to provide

functionality equivalent to a traditional database. Detailed execution plans, similar to the

PostgreSQL’s EXPLAIN and EXPLAIN ANALYZE commands – do not normally exist or are hard

to gather. This difficulty in obtaining functionality is due to:

• Obtaining it requires the integration of several components;

• Some of these components do not offer the necessary features;

• Components are heterogeneous and distributed, so it is necessary to pass software and

hardware frontiers to obtain global information.

The problems listed can be solved by monitoring each component in a distributed system.

Then we can directly obtain information from the components and coordinate them, even

if they were not designed with integration in mind. But this is not enough because when

some component lacks a certain feature it is necessary to add it and it may be onerous or

1This idea was codified in the slogan ”Write once, run everywhere“.

3

1.3. GOAL & CONTRIBUTIONS CHAPTER 1. INTRODUCTION

even impossible to add it in the monitoring layer; maybe a more direct interaction with the

component is necessary. Likewise, to support advanced debugging techniques changes in the

component can be necessary.

Another concern related to the prior considerations is how to change the components.

Source code of some elements might be unavailable, as it can happen when using commercial

software. Even if accessible, it can be infeasible to change it for some reason or being just

plain burdensome.

It also must be powerful. Consider a typical use case to epitomise this. Suppose one

wants to alter a datastore to monitor some parts of its operation, typically how queries are

processed. X-Ray must follow the execution flow of important events from start to end and

filter irrelevant information. What matters here is to follow the execution pass from one

task to another in one machine and be able to detect communication with other resources in

the same or in a different computer. “Task” is used on this context in a generic sense, as a

quantum of related work that corresponds to a singular operation in the optic of the system

examiner. After applying this mechanism it’s possible to process and present the obtained

information.

1.3 Goal and Contributions

The aim of this work is to give CoherentPaaS mechanisms to debug and optimise queries,

comparable to those of traditional databases. These mechanisms are sufficiently powerful

and generic to work in the several types of SQL and NoSQL supported by the project. They

are designed to capture as well as possible the behaviour and inner workings of components.

They are easy to use and expressive, allowing an user to only alter some parameters and

obtain the expected results. Finally, these mechanisms are easily extensible, configurable,

and customisable.

This work provides the design and implementation of a tool that:

• Adds the ability to report information to each component in a heterogeneous distrib-

uted database:

– Decides the relevant information but allows users to choose what to receive;

4

CHAPTER 1. INTRODUCTION 1.4. DOCUMENT STRUCTURE

– Works seamlessly across component and distribution boundaries.

• Enriches each reported event with additional information, as needed[22];

• Functions even in the absence of source code;

• Is demonstrably applicable in the context of distributed databases.

1.4 Document Structure

The rest of this dissertation is organised in the following fashion: Chapter 2 deals with

the state of the art and important concepts necessary to frame and describe decisions and

considerations; Chapter 3 presents the architecture of the developed solution, starting by

a high-level overview, followed by a explanation of each feature and usage method, and

finally the configuration options available; Chapter 4 details how that architecture was

implemented, referencing used technologies and important information about components

or instrumentation aspects; in Chapter 5 the solution is critically evaluated by defining use

cases, collecting metrics and other data from them and analysing them; in the last (6) chapter

findings and deductions obtained from the experimental setups are presented, followed by a

brief description of the directions this work can evolve in the future.

5

2 State of the Art

There are numerous debugging and logging techniques, in multiple platforms and for

multiple purposes. In particular, it is possible to make a distinction between debugging

technologies that work and are designed for distributed databases and general solutions in

the fields of debugging, monitoring, and event logging. The topics of instrumentation and

program analysis are analysed as well as core concepts necessary to a better understanding

of specific challenges and questions associated with each solution.

2.1 Monitoring and Distributed Databases

Suppose a Structured Query Language (SQL) query is executed in a database cluster.

Tools like pgAdmin1 easily allow the generation of a graphical representation of the query’s

execution plan, detailing each computation step, the involved elements, and the operations

applied. Figure 2.1 is an example of such graphical output.

Adequate debugging tools must allow the generation of similar visual representations for

queries running on CoherentPaaS. The difficulties arise with both the heterogeneous nature

of the datastores and the distributed execution context. Solutions capable of fulfilling the

latter requirement exist, but the former requirement proved more difficult to solve.

Data store monitoring solutions are for the most part specific for a database type, for

example, SQL, key-value store or document-store specific. Worst, usually those solutions

do not work for all data stores of that kind, but only on specific engines. For example, we

could have a solution available to MySQL but incompatible to a PostegreSQL database.

Other tools have some limitations that would difficult their use in X-Ray, at least in

1See http://pgadmin.org/ for more details.

7

http://pgadmin.org/

2.2. DISTRIBUTED MONITORING CHAPTER 2. STATE OF THE ART

Figure 2.1: Representation of an execution plan generated by pgAdmin.

some situations, derived from a constrained design space; many of the studied solutions are

implemented as an extension to normal datastores or were conceived to solve very specific

use-cases.

For example the system described in [18] to extend PostegreSQL adds a message-passing

system to a normal distributed database; the resulting system can send and receive messages

besides the normal database operations. Although it is interesting, the system only works

on PostegreSQL databases and the message-passing model offers some drawbacks. All this

presents constraints to the X-Ray architecture if the system was used (were it possible).

2.2 Distributed Application Monitoring

Another approach is to use existing general monitoring frameworks already capable of

operating in a distributed context. This path, by its very nature, avoids the problem with

the different datastore types by being agnostic to them.

An attractive system that follows this model is presented in [27]: considering that in-

formation about the components or middleware of a distributed service may be reduced and

the source code unavailable, the proposed solution is a request tracing tool that worked des-

pite this fact. To that end each component is considered a black box, a device that receives

input, processes it in an unknown fashion and returns output. As the processing is opaque

to the rest of the system, the tracing tool is used to follow requests, as they are passed

between components until the computation associated to the request is produced (and op-

8

CHAPTER 2. STATE OF THE ART 2.3. DEBUGGING APPLICATIONS

tionally sent to the entity that made the request, if it required some kind of response). A

per-request data structure capable of representing this information is defined, the compon-

ent activity graph (CAG). This is a graph that represents causal paths between activities of

the components[27]. A means to recognise the most frequent paths is also provided.

This analysis is made on line as the system and the logger nodes are running without

the need to stop neither. Information can be collected on demand, meaning that it can

enabled or disabled, or intermittently, using sampling. The detection of communication

from one component to the others is made within the kernel when a send or receive system

call is used. SystemTap [5] is used to enable this detection and transmit this information

to the appropriate nodes. So this solution cannot be used for CoherentPaaS as it is not

OS independent and has no JVM support implemented. Besides, although the principle

that no information exists about the components is a valid one and the results obtained

are useful, for this project the assumptions made are other. Even if the source code of a

component cannot be altered and deployed, it is still available or the general API is, and so

more information can be extract and should be, if it is interesting to the user.

2.3 Debugging Applications

An alternative to those methods is to consider debug methods used for normal applic-

ations or applications – i.e. in sequential or concurrent systems. They are not necessarily

applicable to a distributed system, but while those techniques may be insufficient by them-

selves, they can be used to introduce some important concepts. Besides, in some ways,

analysis methods for distributed programs are inspired or built on top of these.

2.3.1 Metrics

Different approaches to achieving program information are possible. They rely on dif-

ferent technologies and have got different intended uses. One approach is to make heavy

use of performance statistics and collect machine/architecture-specific metrics. If the

same setup is used under different conditions and a sufficient number of times, statistically

derived-data is found and validated. By running tests on other machines or simply consid-

9

2.3. DEBUGGING APPLICATIONS CHAPTER 2. STATE OF THE ART

ering the similarities between most modern computer architectures, it is possible to obtain

global valid conclusions about an algorithm or program. Execution times, cache miss rate,

percentage of failed predicted branch jumps are platform-dependent metrics, as they directly

depend on the underlying platform (and so very different results on some metrics can be

obtained).

Other possibility is focusing in capturing platform and/or architecture-agnostic

metrics, valid in any execution environment. Leaving out details that depend on the running

platform reduces some utility of the metrics as some information is lost. In contrast, the

analysis of the data or at least its validity to all systems is facilitated. For some cases, the

missing information is not relevant nor needed; in a sense, collecting platform-agnostic data

can be equivalent to filtering the noise. Examples of platform-independent metrics include

the call made in the execution of a program – number and relation. In the Section 2.3.2,

this is expanded upon.

One example where platform-independent metrics can be very important is when devel-

oping applications for deploying in the Java virtual machine, where there should be a concern

to analyse the developed application, not the underlying system nor the JVM implementa-

tion (or even Java processor [29]) used. This does not mean platform-specific information

cannot be measured and information general enough cannot be derived from there, through

analysis or by mere empirical observation. What it does not mean either, is that these met-

rics are in any way incompatible with each other or redundant. They are distinct only in the

formal sense and can be freely combined to obtain better understandings of applications.

And sometimes, the platform or JVM is indeed part of what is being investigated.

2.3.2 Call context and tracing

The relation between methods or actions is very important when examining data man-

agement applications. It should be possible to visualise how an action is composed and what

sub-actions does it executes. Actions could be methods or something more abstract. This is

important because it allows the visualisation of a produced query execution plan, similarly

to how some database management tools support it.

If not by a direct use of the same algorithm then by applying the same concepts in

10

CHAPTER 2. STATE OF THE ART 2.3. DEBUGGING APPLICATIONS

1 2

3

Figure 2.2: Different representations of calling relationships: 1) call tree, 2) call graph and
3) context calling tree.

a slightly different way.[7] This is related to the concept of software tracing: the act of

following/obtaining data about an execution and its logical ordering, for an intra-program

view, normally associated with a lower level analysis than event-logging.

The representation of the methods called when executing a program is named a call

tree. Each node, besides the information of how a method relates to other method, can also

store information such as execution times.[8] The call tree format allows the representation

of all the original run information and includes as separated nodes different calls to the same

function. Because of this, its size in memory can grown quickly, especially if one considers

cases of call recursion. The detailed context present can also be unnecessary if the distinction

of calls can be inferred or is not important.

In the other extreme is the (dynamic) call graph. This structure uses only node to

represent a function, independently of the number of times or different contexts it was called.

So although compact, it is difficult to extract meaningful information from the nodes, as

context is lost and metrics associated with each function call are lumped in a node.[7]

The context calling tree Context Calling Tree (CCT) is a compromise between this two

formats. It groups together several method invocations in the same node if and only if they

share the same context – meaning that the invoked method is the same, and their parent

11

2.3. DEBUGGING APPLICATIONS CHAPTER 2. STATE OF THE ART

trees are equivalent.These trees can also be called dynamic context calling trees when they

are constructed from a run, as it normally happens, due to the fact that static calculation

of all possible call relations is a computationally intensive problem.

A distinction can be made between complete and a partial CCT. Complete CCTs contain

information about all calls and are generally built using complete code tracing, whereas

partial CCTs are built with incomplete call and context information, normally because

periodic sampling was used to obtain the call stacks. This technique fetches information

and updates the CCT in intervals defined in some way and has less overhead than constant

tracing. The consequent loss of accuracy can be reduced by using a shorter time-span

between measurements or a more advanced sampling algorithm such as adaptive bursting.[33]

2.3.3 Data collection

Independently of the data being collected, there is the orthogonal question of how to

obtain that data. Some forms of collection may be more suitable for obtaining some met-

rics while inefficient for others. Besides the ease of use and the quantity and quality of

the obtained information, we should consider the inconvenience and overhead cause by the

data collection. Here we can distinguish between application runtime overhead, applica-

tion modification overhead, and cognitive overhead (if the changes to implement are not

straightforward or require us to change how we rationalise the problem).

Generally speaking, three approaches to data collection can be employed: using hard-

ware aid; using existing software to assist the debugging (usually leveraging on the existing

functionality of the host Java Virtual Machine (JVM) or OS, at other times by using an

external program) or altering the program to collect them, that is, using instrumentation.

Instrumentation

Instrumentation is the act of altering program behaviour by adding the ability to measure

or know some information when they are run. Though source code can be manually altered,

this approach often involves repetitive work and mixes business logic and debugging logic,

which should be separated. Normally, it is done automatically and what is changed is

the program low-level representation, if dealing with a compiled language. When using a

12

CHAPTER 2. STATE OF THE ART 2.3. DEBUGGING APPLICATIONS

language that compiles to native code, the generated assembly is modified but when using

languages that target the JVM or any virtual machine then the created bytecode is altered.

This alteration can be made statically, in one occasion, or dynamically, every time the

program is loaded and instrumentation is required.

Generally, the source code is not necessary, but it can be needed to aid the instrument-

ation effort, depending on the complexity of the application and the intended analysis. The

overhead, while acceptable, is not neglectable [33] and should be considered. Altering a

program’s representation is a means for instrumenting a program, but not a method and in

fact one can use instruction rewriting to monitor various things in very different manners.

Or we can apply it for completely different uses, such as generating boilerplate code [4],

processing server annotations,[6] and aspect-oriented programming [1].

The architecture of the instrumenter can also be very diverse. It can be a single, simple

program that alters an application or it can be part of a modular system capable of being

extensible with a wide range of plug-ins or similar tools. Examples of monitoring or tracing

software that use instrumentation include the venerable gprof, valgrind [24] and its tools

(memcache, callgrind, Google’s Flayer[16], etc.), Intel’s Pin [3] and tools. We can find

various solutions specific to the JVM (Java Virtual Machine), maybe because the JVM

abstracts away many platform and hardware details and provides some features that enable

it, like Java Agents, instrumentation interfaces, custom classloaders and JVM TI. Bytecode,

the instrumentation target, is also a relatively simple and high level target when compared to

assembly. Examples of application debuggers include jp2 [28], JBInsTrace[11], and iPath.[9]

Some of these will be discussed in more detail later.

Hardware counters

Hardware performance counters, or simply hardware counters, are special-purpose re-

gisters built into modern microprocessors to store the counts of hardware-related activities,

such as cache misses, branch mispredictions or number of cycles executed. These counters

can be used to conduct low-level performance analysis or tuning with very low overhead,

especially compared to software instrumentation.[7, 30] The number of available hardware

13

2.3. DEBUGGING APPLICATIONS CHAPTER 2. STATE OF THE ART

counters in a processor is limited and not every useful information can be kept. So it is

necessary to conduct multiple measurements to collect the desired metrics or to continu-

ously process or save this data. The types and meanings of hardware counters vary from

one kind of architecture to another due to the variation in hardware organisations so they

cannot be relied upon as an universal solution. Lastly, it can be difficult to correlate low

level performance metrics to source code or application level.

2.3.4 Tracing tools

Native tracing solutions, that address programs compiled to native code, are not useful

for Java programs, as they would end up tracing the JVM itself and not only the target

program. This is because a Java program is not a self-contained executable but rather a

piece of (byte)code that is run by a JVM. So debugging a given program in that execution

environment would be difficult. Some sort of support to explicitly separate the program

from the virtual machine could be made but it would not be trivial.

Even frameworks that might offer some kind of support to programs in JVM still they

go against the Java philosophy of compile once, run everywhere. Normally these solutions

are only available in certain Operating Systems and as most use instrumentation of machine

code or depend on some kernel or OS functionality, adding support to a new architecture

may not be trivial. Native solutions neither can easily access JAVA code, which could be

a valuable ability nor are they generally enough high-level. So in general a specialised tool

will be a better fit.

General debugging frameworks like valgrind (and its tools like callgrind, Flayer, etc.) or

Pin are powerful and extensible with the goal to easily allow building new tools by taking

advantage of the provided features and the plugin architecture model. But they are native

solutions and so are not compatible with CoherentPaaS.

iPath [9] is a dynamic instrumentation tool with some interesting properties for a distrib-

uted setting. It allows a more focused analysis as the methods to analyse can be chosen and

this selection can be altered at run-time. Best of all is that it works on distributed systems.

Yet it is a native solution and although one can choose the instrumented methods when the

call stack is walked to update the calling context information, all methods including those

14

CHAPTER 2. STATE OF THE ART 2.4. EVENT LOGGING

that were not declared as to observe, will be on recorded in the calls information structure.

Solutions involving bursting or sampling are not generally interesting, as they seek to

solve almost the opposite problem of this work: the need to analyse the whole program and

to compensate for this weight by using a lighter collecting process. This in contrast with the

need to analyse some parts of the program in a way that does not lose a invocation, which

is lighter than instrumenting the whole code and executed more times, so it can be more

heavy. It should be noted that some advanced algorithms can have about 84 % matching

with the full tree.[33]

So it can be concluded that those solutions, by the intention they were designed, are not

adequate in this instance, even if they can have a good code coverage [33].[31]

Next are the JVM-specific tools, more viable candidates for possible solutions. Most

of these tools focus on complete knowledge of the whole execution instead of finding when

something interesting is happening. They normally run as an agent specified at run-time

with a parameter at command line or programmatically. That way any standard production

JVM, is capable of executing the instrumenting code. They instrument a program’s methods

and some also can instrument native (JNI) and JRE classes’ methods. Some allow for fine

tracing, at the block level. Examples of JVM tracers include JBInsTrace and jp2, among

others.

jp2 [28] is an interesting example, as it allows one to query the trace results using a query

language xQuery, previously saved to a XML file. Still the focus is the opposite: logging

all the methods (it is possible to disable tracing only per thread) and distinguish between

calls to the same method on the same method but in different bytecode positions. These

are excessive details. None of the presented tecnologies is a distributed-aware and capable

tracing solution for the JVM capable of fulfilling the CoherentPaaS requirements.

2.4 Event Logging

Event logging is an action to obtain high-level information from a running program.

According to Chandy, an event is a significant change in the state of the universe, [12]. It

follows that only changes interesting to an application are significant changes, and so, are

15

2.5. DISCUSSION CHAPTER 2. STATE OF THE ART

considered events. Events must be observed to be reported and processed. They can be

processed where they were first reported or transported to an event consumer. Normally

an event includes a timestamp and other descriptive parameters. The distinction between

logging and tracing is that tracing is more of a low level method. Events logged normally

have a specific structure/format that eases their processing and are normally more important

to a developer or administrator, not to a developer. Events normally are used to change

the behaviour of a system depending on some conditions, to monitor performance or to

detect distributed/concurrency problems or security breaches.[22]Event logging is related to

message-passing systems, as a possible mean to distribute the events to consumers and to

continuous queries.

An example of a logging structure is EV-Path [17], a middleware infrastructure that

extends a publish-subscribe system. It offers the flexibility needed to support the varied

data flow and control needs of alternative higher-level streaming models. Others include

Netlogger[20], WebLogic Event Server[32], and PreciseTracer[27].

This tools emphasise the logging infrastructure, the log producers and consumers and

how the events move between nodes, but do not focus on how the event production is made

or assume access to the applications’ original source code. But it might not be available or

be feasibly to change it and re-deploy the application. Besides, the structure of a event’s log

still has to be decided having in consideration the domain-specific peculiarities of distributed

databases and user requests.

2.5 Discussion

Succinctly, many of those solutions are not available in a distributed context or are

not usable in a way that addresses the target problem. Data store monitoring solutions

are for the most part database-specific. General debugging and monitoring solutions have

got some problems. As the name implies, these solutions are general, thus they do not

take in account the particularities of databases or distributed systems. This is a surpassable

limitation; another problem is that the majority of the existing solutions do not allow users to

explicitly choose what to log. Thus excessive information that amounts to noise is produced

16

CHAPTER 2. STATE OF THE ART 2.5. DISCUSSION

and collected. Some solutions allow that choice, but not in a simple way.

Based on the analysis of previous work, a complete and adequate solution should:

be based in JVM/Java: Even if it was possible to use native solutions instead, they would

still have disadvantages when compared with a solution in Java;

be dynamic: As long as performance does not take a significant hit, instrumentation should

be dynamic, done each time it is needed. One time instrumentation adds a new step

in the run process and is not that useful because between runs it is likely that the

original program or the configuration options will be altered;

be automatic: It should do as much as it can automatically, including everything that must

be done to alter and get the analysed program running. But it should also let users

specify what can not be guessed and allow them to change the default parameters if

they want;2

focus on important details: When reviewing existing applications under the prism of query

monitoring and debugging, it becomes evident how excessive detail can hurt more than

help;

be extensible: Examples of good tools are Pin, valgrind, etc. These tools are popular

because they can be extended to satisfy particular needs are requisites, because they

allow different people to use its code base as a foundation stone to build upon and

avoid dealing with (some) low level details and needing to reinvent the wheel.

We also can infer technological dependencies and required components. For example, based

in the first two conclusions we know that we need something capable of altering a Java

program at runtime to use for instrumenting programs.

2An example of this is valgrind. Users can run it without any options and it produces useful information,
but using some options it can do more operations; it might surprise some people that it can do more
than check for memory leaks!

17

3 Architecture

3.1 Overview

The figure 3.1 presents the X-Ray architecture as conceived for CoherentPaaS, with the

components designed and implemented in this thesis, completely or partially, coloured in

red.

Figure 3.1: X-Ray sub-module architecture.

There is the assumption of the existence of distributed applications with software com-

ponents in multiple servers, virtual hosts, and Java virtual machines. These applications

generate monitoring events through the X-Ray Capture layer to the X-Ray Storage and Pro-

cessing layer, to be used in the X-Ray Analysis and Visualisation layer. Label icons identify

19

3.1. OVERVIEW CHAPTER 3. ARCHITECTURE

the main configuration points for the system.

For Java applications, the X-Ray Capture module includes bytecode instrumenta-

tion, a mechanism applicable in several ways, capable of modifying compiled programs

and inserting into them code responsible to generate logging events of the relevant run-time

processes/happenings, maintain context and allowing software probes. This is the main con-

figuration point for Java programs. The generated events pass through slf4j1 to an event

spooler.

This event spooler is responsible for enriching them with additional information as

needed and delivering them to the X-Ray Storage and Processing module. Bridges or file

processing can be used to obtain information about non X-Ray-ready programs. Several

agents responsible for monitoring and collecting metrics in the different abstraction levels

and feed them to the event spooler, including a JVM Agent making use of Java Management

Extensions (JMX)[13].

In the Storage and Processing module, events can be stored in a NoSQL database with

high-throughput capacity (the sink database) or be fed to the Complex Event Pro-

cessing (CEP) engine for real-time processing.

The Continuous Query Engine (CQE) is CoherentPaaS’s own database engine,

capable of executing queries on several heterogeneous databases.

The Analysis Library contains analysis procedures applicable to the monitoring data,

specially concerned with request tracking across software modules and components.

The data can leave for the analysis and visualisation module in a couple of ways: it

can be exported to enable interaction with external systems, be processed (potently in

real-time) or be used to construct visual representations available to the end-user.

On one hand, the developed work must satisfy CoherentPaaS’s requirements; in partic-

ular, most of those presented above. On the other hand, the produced tool aims to have a

sufficiently general model and to avoid making too much assumptions that tightly tie it to

CoherentPaaS to manage having a purpose outside it.

1See http://www.slf4j.org for more information.

20

http://www.slf4j.org

CHAPTER 3. ARCHITECTURE 3.2. MAIN FEATURES

3.2 Main features

3.2.1 Probes

Probes implemented in X-Ray allow code execution on defined moments: entry and

exit(s) of certain methods. The target data – name and reference of executing class, name

and signature of the method, the current thread and the parameters/return value – are

accessible to all defined probes. Custom, That makes them powerful and in fact, some of

the provided functionality in X-Ray is implemented using probes. It is trivial to add a

probe allowing one to save information in a data-store or to use probes to do a simple local

analysis.

Besides analysis, another use case for a probe is to alter some parameters before passing

those to the original method, or alter return values before the function end. Conditional

actions can be implemented using probes: only do something if the return value is > 4 or if

an exception was thrown.

Internally collected data is routed to probes through slf4j and logback, but this is only

an implementation detail.

3.2.2 Tags

Instrumentation provides also the ability to tag entities being observed. A tag is a piece

of information used as an identifier that increases the data collectible by X-Ray, by recog-

nising that certain computations are happening in distinct contexts (even if the executed

code is the same). It can be associated with an object or thread and through certain in-

structions it is possible to generate a tag, remove it, move it or copy it to a thread or object.

Adding the choice between doing these operations on methods entry or exit points, the res-

ult is a robust mechanism enabling one to follow a (program’s level) request execution even

when threads or objects are reused (e.g. the case when thread or object pools are involved).

This also works in other similar situations in which long-lived applications need a low latency

and the ability to answer a great number of clients, frequently recycling resources.

Unlike other configuration options such as the log level, tag indications are only ap-

plicable to methods, being optionally inherited. Indeed, as a fine-tuning option used to

21

3.2. MAIN FEATURES CHAPTER 3. ARCHITECTURE

differentiate similar contexts, they would quickly become meaningless and less useful if they

were mass-assigned.

A tag is used as an ID, so each tag value is a unique (in a given JVM run), being

unspecified how the values are formed or the relation between tags except (in)equality. In

practice values correspond to numbers obtained from an incrementing counter.

As a way to better illustrate how tags work in practice the following example of a simple

producer/consumer application is provided.

Consider a queue of objects, instances of the class SomeObject. Several producers create

objects of this type, initiate them and push them into the queue. In another thread a

consumer obtains objects from the queue and executes a series of methods after inspecting

the object. Using tags it is easy to follow the object as it from the producer to the consumer

and it is likewise easy to distinguish objects with different origins.

The queue is being shared, elements are being inserted in several threads and each

element is processed in one of several consumer threads. Without tagging the queue elements

it would be difficult to follow the program execution.

class Consumer{

void consume (){

SomeObject so = queue . take () ;

SomeValue sv = s . getValue () ;

doSomething (sv) ;

int i = doAnotherThing (sv) ;

doIt () ;

// (. . .)

}

}

class Producer{

void produce (){

SomeObject so = new SomeValue () ;

queue . put (so) ;

}

22

CHAPTER 3. ARCHITECTURE 3.2. MAIN FEATURES

}

class SomeObject{

SomeValue getValue () { . . . }

}

Using tags, it is possible to follow a logical work unit, starting from the consumer and

going to the producer, passing by the queue. A simple advantage of tags is that when logging

X-Ray information to the standard output or to a log file, grepping through the generated

text for any tag value will return all methods and events associated with that tag – for

example it can represent an work unit.

3.2.3 Resources

Information about the usage of physical resources (CPU, RAM, etc.) and JVM re-

sources (garbage collection, loaded classes, etc.) is is also recorded, such that it can later be

correlated with information from other events.

To accomplish this, it is not be possible to reuse other existing mechanisms from X-

Ray. The method entry, exit and communication events raised are only triggered in well

defined but often not entirely predictable times. The collected data, although extensible

with probes, is limited. But what is needed for a constant flux of data is for metrics to be

updated at regular intervals.

The JVM statistics module is responsible for monitoring the running system and collect

several important data about its operation. Measurements are collected periodically until

the module execution is halted. The measurements are not only possible but plain to do,

thanks to the JMX and JRE platform beans. Those MXBeans represent information about

some parts of the runtime: the garbage collector, threads’ state, or the used memory[13]

and can be accessed by standart, well-defined methods.

The obtained information is dispersed using the Mapped Diagnostic Context (MDC)[26,

21], a per-thread2 key-value map, available at runtime in several code locations. To avoid

polluting the keyspace, all statistic keys share a prefix; that allows a simple handling of

2Normally implemented using Thread-Local Storage.

23

3.2. MAIN FEATURES CHAPTER 3. ARCHITECTURE

entries (either reading or deleting) according to its type so writing a balancer or other

JVM-statistics interacting entity is easy and unconstrained by hard design choices.

3.2.4 HBase storage and retrieval

It is possible to save structured event information to an HBase cluster – materialising

information to a non-volatile context adequate to processing of large amounts of information

easily present in distributed applications. This process takes advantage of the high scalability

and throughput of HBase and can be used to feed real time systems as well as CEP systems.

This hbase-appender is based on logback’s DBAppender.3

Each event is inserted as a line on an HTable with its key being the event unique

identifier. Each event has a type (like call logging, remote communication or performance

metrics) and a timestamp. Depending on the event type, relevant attributes are saved

using column families (CFs) as a way to group similar ones. The time-stamp, event type,

and other attributes common to all events are saved in a CF called common. The other

column families are call (related to methods entries and exits), remote (communications

made between different hosts), jvm (to store statistics about JVMs) and finally prop is used

to store all other miscellaneous information. This is possible because HBase is a NoSQL

database that deals well with variable data, including the addition of new columns.

The provided xray-merger regenerates logs saved in HBase and exports them to various

formats, including graphical ones. It can also join logs originated from different machines and

produces a global coherent representation, interpreting remote communication events and

pseudo-nodes labelled with the socket address used for the communication and connecting

them in the right place on the graphs.

3.2.5 Visualisation

The proposed X-Ray framework includes components for visualising the collected in-

formation. Such visualisation is useful in itself, as a program analysis tool, as well as a

demonstration of what X-Ray enables in the context of the CoherentPaaS framework. The

first and simplest way the framework can be used is as a specialised logging tool.

3See http://logback.qos.ch/manual/appenders.html#DBAppender for more information.

24

http://logback.qos.ch/manual/appenders.html#DBAppender

CHAPTER 3. ARCHITECTURE 3.2. MAIN FEATURES

For more advanced visualisations, there is one of the features build upon the core X-

Ray functionality, a type of driver that enables the construction of graphics representing a

program run – the graph-appender. It has a two-fold purpose: on one hand it enables the

construction of structures like the CCTs described in Section 2.3.2 and other useful data,

and on the other hand, it aims to present this data in a visually attractive fashion which is

in itself as big or even bigger challenge than knowing what information to collect and how.

A useful feature when analysing a program one is not very familiar with is obtaining its

calls’ graphic representation. Comprehending how code relates to each other, where some

method is called, discovering certain execution patterns, are all useful to understand an

application.

Data is collected normally by the framework method, including method entries and

exits. Saving this information it is possible to produce a representation of the invocation

relationships between (specific or selected) methods. Internally the graph is maintained in

memory using jgraph.

<Entry> test.WorkerPool@697dc141.process(I)V
20

test.Worker@6672ca8f.process(I)V

4

test.Worker@70d30ef6.process(I)V

3

test.Worker@380f27d9.process(I)V

3

test.Worker@5357f509.process(I)V

1

test.Worker@46db13d3.process(I)V

3

test.Worker@3107e198.process(I)V

3

test.Worker@4c2a38be.process(I)V
3

test.WorkerPool@697dc141.createWorker()V

1

test.Worker@3107e198.delegate(I)V
2

test.Worker@4c2a38be.delegate(I)V

1

test.Worker@5357f509.delegate(I)V

1

test.Worker@380f27d9.delegate(I)V

1

1

1

test.Worker@70d30ef6.delegate(I)V

1

1

1

1

test.Worker@46db13d3.delegate(I)V
1

1

1

Figure 3.2: Example Graphviz’s representation of the call relationships, resulting of calling
dot on the X-Ray generated .dot file.

As for output formats, it is possible to export to graphviz’s4 .dot format to generate

afterwards a graphic with graphviz or feed it to other tools that can read that format.

4The project website is located at http://graphviz.org/.

25

http://graphviz.org/

3.3. USAGE METHODS CHAPTER 3. ARCHITECTURE

Another available way to see this information is with a browser through the possible use

of an embedded server. This works with Jetty5 + d3js6 to obtain a browser accessible, low

dependencies graphical representation. Figure 3.2 show an example of graph produced by

X-Ray + graphviz and Figure 3.3 was produced by X-Ray using d3js.

3.3 Usage Methods

These usage methods were developed having in consideration situations where it might be

interesting to instrument code, drawing experience from concrete use cases. For each of those

use cases the following factors were considered when developing the solutions implemented:

the instrumentation cost, ease of use, number of times the solution would be used generally,

its power, and expressiveness.

3.3.1 Custom Class Loader

The first alternative is to use the provided class loader. It is configured to read configura-

tion files and react accordingly to classes to be loaded, selectively altering them or returning

the original class unchanged, as appropriated. Figure 3.4 illustrates how the normal execu-

tion is affected. For a better understanding, contrast it with the default, uninstrumented

environment presented on Figure 4.1.

For those who already used this mechanism, it might seem somewhat onerous, as all in-

teraction with the affected classes must be made through the class loader, returned Class<?>

instances and using methods from the package java.reflect. This is more verbose and

the compiler cannot provide much assistance (give type information, check the number of

parameters, etc.). The altered methods have to be invoked differently and the types of their

parameters and return values also change – because we are using different class loaders, the

system’s and X-Ray’s – a returned object cannot be casted to the normal, uninstrumented

class and used normally.7

5See http://www.eclipse.org/jetty/ for more details
6http://d3js.org/ has got more information about what d3js is and how it can be used.
7Classes defined by different class loader are considered different by the JVM, even if they have the same

name or code[19, § 4.3.4], [23, § 5.3].

26

http://www.eclipse.org/jetty/
http://d3js.org/

CHAPTER 3. ARCHITECTURE 3.3. USAGE METHODS

Figure 3.3: Example flowgraph representing the call relationships, produced by X-Ray and
d3js: 1) Entry, 2) test.WorkerPool.process(I)V, 3) test.Worker.process(I)V, 4)
test.Worker.delegate(I)V and 5) test.WorkerPool.createWorker()V.

Yet this does not pose a problem when using X-Ray. First, the need to use different

invocation strategies and reflection methods exists only where uninstrumented code interacts

directly with instrumented code. But when using X-Ray the whole program is instrumented.

The framework provides tools to specify or filter the classes or methods to instrument,

27

3.3. USAGE METHODS CHAPTER 3. ARCHITECTURE

Figure 3.4: Program execution when using the X-Ray class loader.

avoiding a greater instrumentation penalty and the same control as if this choice was made

at the source code level. Therefore a simple solution to ease the use of this modification

strategy is to wrap the program to be executed in a single class and only worry about

handling that class.

Because of security restrictions preventing deep and potential unsafe changes, it is not

possible to alter methods in the java.* packages or native methods.

Also if X-Ray attempted to further alter the program representation, by changing mul-

tiple times the same class, the Java Runtime Environment (JRE) would give an error (a

java.lang.LinkageError) about an attempted duplicated class definition, which is disal-

lowed.

This makes impossible to change instrumentation properties during the application run

and seeing this changes take effect. The solution is to use the Java Agent (presented in

Section 3.3.3) or modify the desired configurations and restart the program through the

28

CHAPTER 3. ARCHITECTURE 3.3. USAGE METHODS

X-Ray class loader.

3.3.2 JAR Recompiler

Other solution is to statically modify the bytecode. Instead of modifying the program

each time it is executed, it can be done just once. This is how JarRecompiler works: it

alters all the necessary files from JAR and saves them to a new JAR. This new JAR then

can be normally used. Figure 3.5 details how this is done.

With this solution it is possible to develop code normally, without a need to alter it to

accommodate for interfacing with modified code. As the bytecode alteration is done just

once, clients of the altered code do not need the asm library to run it. A disadvantage of

this method is that it is less flexible - it is necessary to do a JAR recompilation every time

a configuration is changed and one wants to see the effects of those changes. To mitigate it,

a Maven plugin was developed for generating the altered JAR in the package phase.

It is also not possible to alter native methods. Methods in the java.* packages can be

instrumented if the input JAR corresponds to the JRE classes, but this is not recommended.

Figure 3.5: JAR instrumentation procedure.

29

3.3. USAGE METHODS CHAPTER 3. ARCHITECTURE

3.3.3 Java Agent

A last implemented use mode is with a Java Agent[25, java.lang.instrument docu-

mentation], an auxiliary program distributed as a JAR and with special information in its

MANIFEST.MF file. Depending on the support provided by the JVM, that might be different

for each implementation, it can be initiated along the examined program by passing an argu-

ment to the command line or it can be attached to a running JVM instance after it started.

Similar to static recompilation, it is transparent for all normal code interactions and, as the

class loader solution, to test some change, a simple program re-run is enough. Depending

on how agents are configured, they have the ability to alter JRE classes and native methods

and redefine classes already instrumented. A disadvantage of the use of agents is that not

all JVMs support it. Among those who do, it does not exist a simple, universal way to do

some things, specially initiating an agent after the virtual machine start-up. [19, § 8.4.3.4].

Figure 3.6: Agent instrumentation process.

Figure 3.6 shows how this method transforms the normal program execution. Compared

30

CHAPTER 3. ARCHITECTURE 3.4. CONFIGURATION

to other runtime schemes (figure 4.1 and 3.4) this approach also funnels requests from custom

class loaders.

3.4 Configuration

X-Ray can be configured in two ways: annotations or configuration files. Both have

the same expressive power, but the second approach is more flexible. If these two config-

urations strategies are used in parallel and conflict in some parameters, the value from the

configuration file will override the annotations in the source file(s).

A simple example of how configuration can be useful, using log levels: uninteresting

methods are not observed (are not specified to X-Ray), interesting but very common methods

can have a low level (such as TRACE or DEBUG) and very important methods can have

a higher level (e.g. WARN). This allows one to selectively choose what information to see

and assign the adequate importance.

It is also possible to apply indications to a class or package and have all the methods

contained be instrumented or apply these indications to a method and having them take

effect in all the methods that override it.

But this framework is only useful in a distributed context if it can monitor or infer rela-

tions between simultaneous executions. So it is also possible to monitor executing threads

and inter-method interactions, plus to gather other information about concurrency and

communication events, using mechanisms such as tagging and monitoring of socket commu-

nication between different virtual machines.

3.4.1 Annotations

The main annotation is @Log, applicable to methods, classes and packages. It indicates

that entries and exits of the affected methods should be logged. It possesses two optional

elements: “inherited” controls hierarchy and “level” specifies the messages log level. When

not defined, default values are used for these elements.

@Log

@Log(i n h e r i t e d=true)

31

3.4. CONFIGURATION CHAPTER 3. ARCHITECTURE

@Log(i n h e r i t e d=true , l e v e l=Level .WARN)

More annotations exist to deal with tag operations: @SetTag, @CopyTag, @MoveTag, @Remove

Tag for local manipulations and @SendTag and ReceiveTag for remote manipulations in-

volving sockets. All of them admit two optional elements: “target” and “time”, indicating

the target of the operation and when it should be executed. When values for these elements

are not defined, the default value will be used and it is different according to the concrete

annotation.

@CopyTag

@RemoveTag(t a r g e t=TagTarget . Thread)

@MoveTag(time=TagTime . AfterMethod)

@SetTag (t a r g e t=TagTarget . Object , time=TagTime . BeforeMethod)

The annotations for remote operations are different because they need additional parameters

that cannot be automatically inferred. The required parameters are the hostname and port,

for the local and the remote sites. Because this information might be unknown at compile

time or change throughout a run, a string starting with “?” indicates that the information

should be read from the field with given name. A string starting with “:”, followed by a

number n, signals information to be read from the nth function parameter (counting from

0). An important note: some compiling options can erase metadata and optimise out other

unused data that might in rare cases interfere with this process.

@ReceiveTag (hostname = ”some . hostname” , hostpor t = ”? port ” ,

remotename = ” another . hostname” , remoteport = ” : 0 ”)

void r e c e i v e (int rport , InputStream i s) throws IOException ;

@SendTag(hostname = ” another . hostname” , hostpor t = ” : 0 ” ,

remotename = ”some . hostname” , remoteport = ”? port ”)

void send (int l por t , OutputStream os) throws IOException ;

@SendTag(hostname = ” another . hostname” , hostpor t = ”8080” ,

t a r g e t=TagTarget . Thread , time=TagTime . AfterMethod ,

remotename = ”?someHostname” , remoteport = ”8080”)

32

CHAPTER 3. ARCHITECTURE 3.4. CONFIGURATION

void spec i a lSend (OutputStream os) throws IOException ;

Annotation use implies access to source code of the program to alter, a compile-time

dependency on X-Ray and each change in the configuration requires a program recompilation

to take effect. It also results in a spread of annotations to several files instead of a centralised

place to read or alter everything. But this solution has certain advantages: it is simple and

comes bundled with the code. Also, because it is applied directly on the entity to examine, it

is not affected by refactoring, such as changing classnames, method arguments, or packages

structure.

3.4.2 Configuration Files

The configurations presented here should be written in a specific .properties file for

processing. This file type was selected because it is incredibly simple to visualise and to

work with, by humans and computers, unlike XML. It can also be parsed by code from the

JRE so no implementation needs to be bundled and distributed. Let an identifier be a string

following one of these formats:

<packageName>.<className>.<methodDescription>

<packageName>.<className>

<packageName>.∗

For example:

xray . example . SomeClass . aMetod ()V

xray . example . SomeClass . aMethod (Ljava / lang / St r ing ;) [I

xray . example . SomeClass

xray . example .∗

When the identifier appears in the configuration file, the instrumenter is instructed to alter

the represented entity, as if it had an annotation in the source code.

<identifier>.inherited signals that the configurations for the given element should be

inherited and <identifier>.level allows configuring the logger severity level of messages

emitted by the element.

33

3.4. CONFIGURATION CHAPTER 3. ARCHITECTURE

xray . example . SomeClass . method ()V. i n h e r i t e d

#equa l s to

xray . example . SomeClass . method ()V. i n h e r i t e d = true

#i f the i n h e r i t e d property i s not set , i t i s i f i t was wr i t t en

xray . example . SomeClass . method ()V. i n h e r i t e d = f a l s e

#t h i s can used to e x p l i c i t l y l i m i t the propagat ion o f

#c o n f i g u r a t i o n s i n h e r i t e d from an ance s to r from reach ing

#descendants o f the des ignated e n t i t y

only monitor method () from SomeClass i f the de f ined log l e v e l

#i s WARN or h i g e r

xray . example . SomeClass . method ()V. l e v e l = WARN

Finally, a local operation with tags is stated in the form <methodIdentifier>.

<operation> <target> tag on <time>

xray . example . SomeClass . method ()V. c o p y o b j e c t t a g o n e n t r y

xray . example . SomeClass . method ()V. s e t t h r e a d t a g o n e x i t

xray . example . SomeClass . method ()V. r emove ob j e c t tag on ent ry

xray . example . SomeClass . method ()V. move thread tag on ex i t

and a remote operation is formulated in the form <methodIdentifier>.on <time>

<remoteOperation> and copy tag to <target> plus one or zero of the following strings,

”-local address” or ”-remote address”. As when using annotations both the remote and local

addresses must be defined. This is done using two keys, each with a different location key.

Their values are in the form of <hostname>|<port>.

xray . example . SomeClass . method ()V. on ex i t s end and copy tag

to thread−l o c a l a d d r e s s=l o c a l h o s t |6000

xray . example . SomeClass . method ()V. on ex i t s end and copy tag

to thread−remote address =193 .137 .9 . 115 |? port

xray . example . SomeClass . aMethod (I)V. o n e n t r y r e c e i v e a n d

34

CHAPTER 3. ARCHITECTURE 3.4. CONFIGURATION

c o p y t a g t o o b j e c t−l o c a l a d d r e s s =?host |8080

xray . example . SomeClass . aMethod (I)V. on en t ry r e c e i v e and copy

t a g t o o b j e c t−remote address=?host | : 0

#the be l low statement s i g n a l s that a remote opera t i on should be

#app l i ed to a method . I f each l o c a t i o n address i s not s p e c i f i e d ,

#i t w i l l r e s u l t in a runtime e r r o r

xray . example . Another Class . method ()V. on ex i t s end and copy tag

t o t h r e a d

Unlike when annotations are used, access to source code it is not necessary. Likewise,

it is not necessary to recompile the program for each change in the configurations – simply

restarting the program is enough. Configurations are all grouped and separated from the

code, which eases its reading or alteration and is architecturally cleaner. As for disadvant-

ages, it is fragile in the event of refactoring. The identifier is not exactly equal to the entity

it represents so a search and replace may fail to modify it, and some IDEs do not normally

alter resource files when refactoring.

Theoretically it is possible to update the bytecode automatically, depending on how the

X-Ray software is used: the configuration file can be watched for changes and when they

occur the classes bytecode can be reprocessed and swapped with the previously in use.

These two methods are available because both have advantages and disadvantages. In

some occasions it is not possible to make a choice: if the source code is not available, separate

configuration files must be used. In other occasions, the choice between this strategies is

not so important. When doing a static bytecode transformation of a whole program, some

advantages .properties files have do not apply and the solutions are more similar to each

other, in that particular case.

35

4 Implementation

4.1 Overview

When starting a program through the developed framework, the configuration file(s) to

configure X-Ray, if any were given, are parsed and its commands are added to the frame-

work’s internal state. How these files are passed is dependent on how the framework was

used. After this process the original program starts running.1 In its course it needs to use

classes or interfaces that are employed in the application but are not available, because they

were not previously used and so need to be loaded. The JVM starts by locating and parsing

the file with the class binary representation or bytecode to afterwards load it and make

available to the rest of the code, as it is responsible for coordinating the execution of Java

programs.

It scans the file and for each defined method decides if should instrument it using as

criteria:

1. Configuration from files.

2. Configurations acquired by reading annotations in the currently analysed class and

other loaded classes.

This may require visiting the bytecode of superclasses or of the implemented interfaces

if they were not already, as the decisions made about a class depend upon decisions made

about those other classes.

First of all, for each class is tested against a filter to allow a quick rejection of classes to

instrument, which reduces the examined code.

1See Section 3.3.2 for an alternative execution model.

37

4.1. OVERVIEW CHAPTER 4. IMPLEMENTATION

The precise algorithm to decide if instrumentation should be made or not is defined in

Section 4.4.

If any method should be altered, the new code for the method body is generated. After

going through all the class code one of these situations will happen:

1. The original code of the class was altered at some point, and so this new code is

returned to the JVM to be used by the program.

2. No original code was instrumented by lack of indications; if so the original code is

simply returned.

Either way the program will have the class and can now resume. This process hap-

pens again each time a class is needed, until the end of the program. The described ap-

proach is only possible because the binary representation Java programs corresponds to an

well-specified, platform-independent format possible to understand and programmatically

manipulate.

If any method was changed for analysis, it is altered in at least two sites: its entry and

exit(s). The exits can be normal – from return statements – or exceptional – from throw

statements. At method entry and exit the method and class names are collected, as well as

a reference to the current object and executing thread. At method entry passed parameters

will be saved and at method exit, the return value is stored too.

Each time the execution flow passes through the method, indications of passage through

its entry and an exit are given to X-Ray and optionally from there to other systems and all

this collected information made available. Remote communication events are also listened

for and reported.

Other information associated with methods, classes or packages is maintained by the

framework. Part of it is only used internally at runtime and the other part is passed on

and made visible. Managed data includes the inheritance information that controls how

configurations are passed on to other entities and the level associated with each event. As

with the traditional logging systems, the developed solution uses log levels to allow one to

observe only more important information.

38

CHAPTER 4. IMPLEMENTATION 4.2. UNDERSTANDING THE JVM

4.2 Understanding the JVM

Java and all other languages targeting JVM produce .class files as a result of code

compilation. These files contain instructions described in a machine and OS independent

manner, the bytecode. They can also be compressed into a single JAR file, a ZIP file with an

optional manifest file. The JAR may also be signed. Regardless of this, when a program is

started, what happens is the same: a main class is specified (implicitly or explicitly), loaded,

and the main method is invoked with the run arguments, normally given in the command

line[23, § 5.2], [19, § 12.1].

In the execution’s course various data types used to represent different values and entities

are used. These types are differentiated into two types: primitive and reference. Primitive

types have explicit, well defined semantics and possible values, their own set of bytecode

instructions, hard-coded support, and represent simple values. Reference types represent

instances of classes, arrays, or interfaces. Values of those types are objects in the OOP and

they are passed around by copying a reference or handle rather than by copies of values.

Even at bytecode-level, almost all instructions or opcodes are typed in some way. For

example there are several sum (iadd, ladd, fadd, dadd) and return instructions (as ireturn

or freturn) to operate with integers, doubles, floats or reference types[23, § 6.5].

Of all types, the bulk of a program’s logic is in classes and interfaces. They both define

methods that reify segments of execution and classes allow the creation of various instances

of that type, enabling complex programming logic. The other reference types, array types,

are more data oriented and not as interesting to monitor using the chosen technique.

To call methods and create instances of the mentioned types one needs to load these

types into the runtime and ready them for use. This is both true for the first loaded class at

startup as well as all the later ones. This is done with a classloader. A default classloader

is used to load the main class that initiates the program and if the programmer does not

explicit employ another, all other types. It is called the bootstrap2 or system classloader.

User-defined classloaders can be used if one wants to have greater control over how classes

are loaded and defined: it is possible to create a loader that defines types by reading bytecode

2It bootstraps the program, starting the VM, initialising all the required core classes and runs the appro-
priate main class passing its arguments.

39

4.2. UNDERSTANDING THE JVM CHAPTER 4. IMPLEMENTATION

from a datastore or a network address. These classloaders have an hierarchy that always

ends in the system class loader.3 They can delegate work to the parent classloader when

they cannot or do not want to fulfil a request by themselves.

Figure 4.1: Normal JRE classloading procedure.

When the JVM needs to use a non-array type, it searches for that type in the loaded

classes. If it is not there, it must be loaded by a class loader. Loading is the process

getting a binary representation (bytecode) of a type, normally by copying it from a file.

Figure 4.1 shows on the process of loading classes and interfaces (both the program’s and

others) normally happens. The purple lines represent the requests dispatch and the solid

line represent the default dispatch. When not using a custom classloader, the system’s will

be used. Black dotted lines represent the classloader hierarchy through which request can

be deferred. If the request arrives at the system classloader and it cannot be satisfied a error

3Similar to how the class hierarchy ends in the Object class.

40

CHAPTER 4. IMPLEMENTATION 4.2. UNDERSTANDING THE JVM

or exception is thrown, normally a ClassNotFoundException.

After loading, the class must be linked or readied to be executed when requested. Linking

implies verifying, preparing and (optionally) resolving phases[23, § 5]. First the code is

verified to make sure it is valid – all opcodes used exist and are correctly used, jumps point

to locations that make sense, there are no invalid method signatures or type operations.

A reference type is prepared by creating and setting static fields to their default value

and initialising other structures used internally to represent the type in the JVM. Resolving

symbolic references such as method calls or other classes’ use is the final step, but there is

some amount of flexibility about when this can happen. As long an error is thrown when

a referenced class or interface cannot be processed, a certain VM can choose whether to

resolve all references immediately (and their references), resolve a reference only when used,

or something in between.

Finally, the linked class or interface is initiated by having its static fields initialisers run

and other static initializers (static blocks).4 Superclasses are first initialised if they were not

already. Implemented interfaces or superinterfaces are not pre-initialised. Static methods

and fields can used after this operation.

Instantiation of new objects of a given class is performed when a class constructor is

invoked.5 Memory is allocated for the new object and the constructor method in evaluated,

not before running a constructor from each superclasse in descending order – this can be

called “constructor chaining”[14].

From there on, the executed binary code is relatively similar to the original source code,

with instructions corresponding to field reads and writes, method invocations, object and

array creation, sums, ifs, switches and try-catch blocks, etc. and where applicable these

instructions have specific types[23, § 3,§ 6.5].6

All of this and other aspects related with Java program execution and class handling

conducted on runtime is explained in detail and clearly in [23, § 5] and [19, § 12], including

edges cases not considered here. [23, § 6.5 and § 6 in general] cover the existing opcodes.

4Internally a special static method <clinit> is invoked. All initialisers are merged to form this method
accessible only by the JVM.

5It also happens implicitly in some special circumstances, for example, when concatenating strings.
6E.g. an ireturn allows one to see that an integer will be returned.

41

4.3. TECHNOLOGIES USED CHAPTER 4. IMPLEMENTATION

4.3 Technologies used

The framework being described here is implemented using some technologies as founda-

tion. One is asm[10], a bytecode-manipulation library. It is small, fast, and powerful and so is

used in projects such as AspectJ, Scala, and Groovy. It provides two interaction interfaces,

the Core API, focused on simplicity and speed, and the alternative Tree API, easier to use

but less efficient. The Core API is used because performance is an important consideration

when aiming to support runtime bytecode transformations. It is modelled on the Visitor

design pattern, or to be more precise the Hierarchical Visitor pattern[15]. Other solutions

such as javassist, BCEL or cglib do not offer the best performance or have not been updated

for some time.

The other main component of the used software is related to the logging of collected

information itself. Logging in X-Ray is done with slf4j, a logging facade for Java and logback

a logging framework implementing the slf4j API. slf4j acts as a facade through which all

logging actions are made, removing a direct dependency on a specific framework: only the

JAR with the API must be distributed. If no binding is found, logging does not occur; if

a binding is detected at runtime, it is used. Thus, bindings can be freely replaced between

program executions. This enables the isolation of many implementation details, increases

modularisation and decoupling.

Logback enables processing various actions for the same logging message and it is easy

to extend. That actions are executed by entities called appenders, programmable in Java,

and configurable with a simple XML file. The framework’s core only depends on slf4j; some

X-Ray extensions use directly logback because of its advanced features and its ease to

configure.

4.4 Selection of instrumentation targets

On this section the answer to two essential questions will be presented. They are: “How

it’s decided if a method should be instrumented?” and “How are the various configuration

options applied, specially when they conflict with each other?”

X-Ray operates every time it is called to resolve a class, meaning, to return the bytecode

42

CHAPTER 4. IMPLEMENTATION 4.4. SELECTION OF TARGETS

associated with a class. Depending on how it is invoked, this could happen dynamically or

statically. Regardless, the decision whether to instrument or not is made for each method,

on a case-by-case basis. The available configurations can be made in a larger scope if wanted

though, such as on a class or package.

Let m be a method from class C. If an indication to instrument exists in:

• the analysed method m;

• m’s enclosing class C;

• the package where C belongs;

• the original method declaration or a super implementation of m, if that indication is

inheritable;

• a supertype that C extends or implements, if that type’s configurations are to be

inherited;

• a package that contains a supertype C extends or implements, but only if that indic-

ation is is inherited

then the method m will be altered by X-Ray. Otherwise, the original method code is returned

and the rest of the class is visited. The given conditions are tested by the order by which

they were presented. The following code listing presents this information in the form of

pseudo-code.

de f instrument ?(m) :

i f method in s t rument l i s t . conta in s ?(m) :

r e turn true

e l s e i f c l a s s i n s t r u m e n t l i s t . conta in s ?(m. c l a s s) :

r e turn t rue

e l s e i f p a c k a g e i n s t r u m e n t l i s t . conta in s ?(m. c l a s s . package) :

r e turn t rue

end

f o r met in h i e r a r ch i c a l me thod cha in (m) :

43

4.4. SELECTION OF TARGETS CHAPTER 4. IMPLEMENTATION

i f method in s t rument l i s t . conta in s ?(met)

∧ i s i n h e r i t a b l e ?(met) :

r e turn t rue

end

end

f o r c l a in h i e r a r c h i c a l c l a s s c h a i n (m. c l a s s) :

i f c l a s s i n s t r u m e n t l i s t . conta in s ?(c l a)

∧ i s i n h e r i t a b l e ?(c l a) :

r e turn t rue

end

end

f o r p in h i e r a r c h i c a l p a c k a g e c h a i n (m. c l a s s) :

i f p a c k a g e i n s t r u m e n t l i s t . conta in s ?(p)

∧ i s i n h e r i t a b l e ?(p) :

r e turn t rue

end

end

return f a l s e

end

The instrument lists are built when processing configurations and contain the classes,

methods or packages to instrument. The hierarchical chains relate included element with

each other. The hierarchical method chain of m contain the methods from the supertypes

of C that contain a method with the same name and signature as m.

In a hierarchical class chain, every supertype of C is included and all its supertypes are

included recursively, up to the class hierarchy root: java.lang.Object. Types closer to C

appear before more distant ones in the hierarchy chain. For example, in the class chain of

java.lang.InterruptedException, java.lang.Exception will appear before java.lang.

Object.

Finally, hierarchical package chains are defined for the class C as all the packages that

contain any supertype of C. The class java.lang.String extends Object, implements two

44

CHAPTER 4. IMPLEMENTATION 4.4. SELECTION OF TARGETS

interfaces from java.lang and also the java.io.Serializabe interface. Its hierarchical

package chain contain the packages java.lang and java.io.

The rules used to determine what configurations should take effect are also identical to

the ones presented from the decision to instrument. Similarly, the same places are searched

for the configurations in the same order and if configurations are found they are followed.

Otherwise, the default values are used.

Package settings are applied to all the classes inside that package. Class configurations

are applied to all the class methods, declared or provided by supertypes. And each method

can be individually configured.

Those configurations can optionally be inherited. If the package-level configurations are

inheritable, all the classes that extend or implement classes defined in the original package

will use the configurations defined, unless overridden.

Similarly, if a type-level configuration is inherited, all subtypes are affected by that

configuration. In the case of configurations at the method level applied to m, for any

type extending/implementing the enclosing type, the corresponding method m′ will use

those configurations, whether m was overridden (or implemented if abstract) or the original

implementation used.

A difference is that instead of having instrumentation lists it will be used <attrib-

ute> maps (with an attribute being something like the log level) and for each element the

value of that attributed is stored.

When a settings conflict arises the priority is given to the more specific indications,

followed by the closest ones. For example if the class C of method m should log events with

the TRACE level and exists an original implementation of m with log level of DEBUG, m

will have the DEBUG level.

If C is the class of method m and C extends C ′ and m has not configuration whatsoever,

logging properties will be inherited from C, unless all of these conditions are met:

1. C ′ has configurations defined

2. C ′ configurations are inheritable

3. C has no configurations defined

45

4.5. MODIFICATIONS TO TARGETS CHAPTER 4. IMPLEMENTATION

4.5 Modifications to targets

If the conditions analysed in Section 4.4 indicate that any method should be altered, it

is necessary to take the class binary representation and alter the method(s) bytecode. But

by changing the original bytecode it might be then necessary to update other internal class

structures, such as the constant pool, responsible for holding string and numerical constants

as well as class, method and field names.[23, § 4.1, § 4.4]. Something as simple as referring

to a new class requires this change. asm does this work automatically.

X-Ray also adds fields or other information needed for the framework’s operation. A

produced change is the addition of a reference to a slf4j logger object as a new static field.

Tags also require the creation of a new field. These constructed fields are named in an unusual

way to avoid colliding with existing code (their names start with the “$ xray ” prefix) and

with a special marker to indicate they were not originally present but were generated (their

ACC SYNTHETIC flag is set). This might be useful to other class manipulation or reading

tools to warn them it might not be necessary to process these constructs or to enable the

use both tools simultaneously.

If a method is to be analysed, it is changed at least in its entry and exit(s) as already

mentioned. The entry point is easy to alter by inserting the relevant code before any of

the original bytecode instructions. Exit points occur at return and throw statements. A

throw statement results in an athrow instruction in the compiled code. On the other hand, a

return statement results in one instruction of return opcode family (ireturn, lreturn, freturn,

dreturn, areturn and return), depending on the type of the return value. So all exit points

are identifiable and it is trivial to add the necessary instrumentation code.

Before copying the original instruction to the new class representation, the needed log-

ging instructions are inserted. These instructions capture all the relevant execution inform-

ation pass it through calls to methods on core X-Ray classes, needed at runtime. Finally the

produced bytecode is returned. These X-Ray methods are responsible for producing logging

events following a certain structure, sending those to the defined outputs and invoking any

user-defined probes.

46

CHAPTER 4. IMPLEMENTATION 4.5. MODIFICATIONS TO TARGETS

4.5.1 Eager loading and callbacks

When loading a class its binary representation is first retrieved. Then referenced methods

or classes are resolved in the linking phase. Although the JVM can resolve most references

at any arbitrary time, classes in a superior hierarchical level must be resolved (if they have

not been resolved yet) before the preparation phase, when the loaded class is initialised and

all superclasses must already be initialised. This is important because when deciding what

modifications to perform on a class, super classes and interfaces give indications to subtypes.

These can happen both in configuration files – easy to solve as the file entries are read all

at once – and in their binary code, using annotations.

So one might think that X-Ray can work by simply intercepting class definition requests

when they are made: superclasses are visited before ending the visit of the current class

and annotations could be read in time to be applied to subclasses. However, super types

are only loaded between linking and initialisation, but it is in the loading phase that the

binary representation of methods is defined and it cannot be altered in the next phases.

Furthermore, interfaces (both implemented and superinterfaces) are not necessarily initial-

ised before initialising a type. So it is necessary to force loading of supertypes before ending

the loading phase. This is accomplished by requiring each X-Ray instrumentation process

to pass a callback to be invoked when reading the bytecode of a type T and encountering

unloaded super types. Those types will be loaded using the callback and theirs supertypes

too, recursively. After that we know whether T should be instrumented or not and we can

return the original bytecode or modify and return it, as appropriate. A list of visited types

and their hierarchical relations is maintained to avoid repeated visits.

4.5.2 Event Information

Each event has an unique identifier associated. The identifier is composed of a VMID

(Virtual Machine ID) and a sequence number. The VMID is an unique identifier for each

JVM, based on some of its unique information and valid as long as its IP address remains

unique and constant(cfg. [25, java.rmi.dgc.VMID documentation][25, java.rmi.server.UID

documentation]) and the sequence number is a local identifier. Each event has a type (like

47

4.5. MODIFICATIONS TO TARGETS CHAPTER 4. IMPLEMENTATION

call logging, remote communication or performance metrics) and a timestamp.

At method entry each parameter passed will be saved by X-Ray. For objects a reference

is saved and for primitive types, boxing of the original value is performed. At method exit,

before the terminating statements, the return value or exception is also saved as well as a

flag indicating whether the method returned normally or not. More stored data include the

name and reference of the current object (Java’s this); the method name, signature and

the running thread are also saved.

For the most part they are passed using slf4j parametrised messages.7 if not directly

obtainable from logback Other information is copied using MDC[26, 21].

7See http://www.slf4j.org/faq.html#logging_performance for more details

48

http://www.slf4j.org/faq.html#logging_performance

5 Evaluation

X-Ray is tested by being evaluated qualitatively, being applied to a software of significant

dimension in the application field of CoherentPaaS. Its performance is also evaluated quant-

itatively, by observing the impact of instrumentation and of different kind of loggers while

running a standard performance benchmark. For all of these tests, Derby1 was employed.

5.1 Qualitative analysis

Starting with a simple example to see if more complex case studies could succeed, a

simple client-server configuration was picked. The client connects to the Derby database and

executes a query that runs in that database. After the computation produces a result, it is

returned to the client, which prints the results and exits. SELECT t1.a,t3.e FROM T1 JOIN

T3 ON t1.b=t3.b WHERE t1.c > (SELECT avg(t2.c) FROM T2) was the executed query.

Figures 5.1 and 5.2 were obtained saving the logs produced by client and database

server to HBase, using the hbase-appender, and by invoking the xray-merger that read that

information from HBase and reconstructed it and added relevant remote communication

event nodes between the datastore and the client. Figure 5.1 is the flowgraph generated by

d3js and in Figure 5.2 the same information is shown through Graphviz.

The second experiment was to instrument and follow a request made by a client to a

cluster of two Derby databases, that communicate with each other. That is a true distributed

query. From this experiment with distributed databases, it was possible to obtain the

graphic 5.3, using HBase plus the xray-merger.

As it is plain to see, for X-Ray to successfully perform its job it must work in the context

1See https://db.apache.org/derby/index.html for more details.

49

https://db.apache.org/derby/index.html

5.1. QUALITATIVE ANALYSIS CHAPTER 5. EVALUATION

Figure 5.1: Flowgraph produced when sending a query to Derby. Each node represents an
object. When more than one object of the same class is used an identifier is used
to distinguish them.
1) NetConnection, 2) localhost:60059-localhost:1527, 3) DRDAConnThread, 4)
ClientStatement, 5) NetResultSet, 6) OnceResultSet, 7) ProjectRestrictResult-
Set@1, 8) ScalarAggregateResultSet, 9) ProjectRestrictResultSet@2, 10) BulkT-
ableScanResultSet@1, 11) ProjectRestrictResultSet@3, 12) HashJoinResultSet,
13) BulkTableScanResultSet@2, 14) HashScanResultSet

50

CHAPTER 5. EVALUATION 5.1. QUALITATIVE ANALYSIS

NetConnection

localhost:60059-localhost:1527

2

ClientStatement

1

NetResultSet

2

DRDAConnThread

OnceResultSet

2

ProjectRestrictResultSet@3

3

5

ProjectRestrictResultSet@1

3

ScalarAggregateResultSet

3

ProjectRestrictResultSet@2

5

BulkTableScanResultSet@1

5

HashJoinResultSet

3

BulkTableScanResultSet@2

29

HashScanResultSet

28

Figure 5.2: Graphviz’s representation of the call relationships when sending a query to Derby.

of a distributed query, capture the communication between database nodes and/or client,

track the request in the middle of unrelated computations, etc.

To accomplish this, it was necessary to change Derby’s source code, just to exposed more

easily the communication ports and other minor details to X-Ray. Work is being made to

directly support in the future more ways to obtain information such as the communication

sockets; just because it was not possible not collect that information without altering source

code, does not mean that it is impossible to do so. It might still seem like the exercise was a

failure: but it was not except for that tiny detail, expectable to arise when interacting with

real production code.

Also of note is that although the source code was modified, the instrumentation config-

51

5.1. QUALITATIVE ANALYSIS CHAPTER 5. EVALUATION

Figure 5.3: Flowgraph produced when sending a query to a Derby cluster composed by two
databases. Each node represents an object. When more than one object of the
same class is used an identifier is used to distinguish them.

1) MultiDatabaseQuery, 2) NetConnection@1, 3) ClientStatement@1, 4) NetResult-
Set@1, 5) NetConnection@2, 6) ClientStatement@2, 7) NetResultSet@2, 8) local-
host:47903localhost:1527, 9) DRDAConnThread@1, 10) OnceResultSet, 11) Pro-
jectRestrictResultSet@1, 12) ScalarAggregateResultSet, 13) ProjectRestrictResult-
Set@2, 14) BulkTableScanResultSet@1, 15) ProjectRestrictResultSet@3, 16) Hash-
JoinResultSet, 17) BulkTableScanResultSet@2, 18) HashScanResultSet, 19) local-
host:47905localhost:1527, 20) DRDAConnThread@2, 21) IndexRowToBaseRowResultSet,
22) MultiProbeTableScanResultSet 52

CHAPTER 5. EVALUATION 5.2. MEASUREMENTS

urations did not take advantage of that access but were made using .properties files.

In fact, having only that problem when using X-Ray in such mature codebase, with

about 762 KSLOC (thousand source lines of code)2 and a complicated execution model,

making use of custom classloaders and generating classes on the fly for each (unprepared)

SQL Statement. Due to those peculiarities only the X-Ray instrumentation Agent could be

employed.

5.2 Measurements

In parallel, and recognising the need to gauge the performance of the developed software,

an experiment with code used in business was conducted. The selected experiment was to

start a Derby database and to apply to it the TPC-C transaction processing benchmark.3

The goal is to obtain significant statistics about the state of the database over the course

of the benchmark, to see what was the overhead of using X-Ray and if was even possible to

instrumented such big codebase developed by a third-party and that potentially makes use

of features or was designed in ways capable of interfering with the framework.

The benchmark details are in Table 5.1 and the results can be seen in Table 5.2.

DB: TPC-C 1WH, 200MB
WL: 1 client, no think time

Table 5.1: Benchmark details for TPC-C on Derby

The database where the TPC-C benchmark was run is a single warehouse with approx-

imately 200MB of data and the work load, 1 (one) client making requests without delay

between them (i.e. with no think time).

The columns in Table 5.1 explain how TPC-C ran and the obtained results, with times

in milliseconds (ms) and transactions in transactions per minute (tpmC). The different

experiment runs were:

clean No instrumentation was used.

2According to https://www.openhub.net/p/derby/analyses/latest/languages_summary, accessed on
October 30 2014. Although a rough estimate to evaluate a project, it reflects its size and complexity.

3See the homepage, http://www.tpc.org/tpcc/default.asp, for more details.

53

https://www.openhub.net/p/derby/analyses/latest/languages_summary
http://www.tpc.org/tpcc/default.asp

5.2. MEASUREMENTS CHAPTER 5. EVALUATION

clean 29.0ms 923tpmC
instr 29.5ms 909tpmC

file 43.6ms 621tpmC
1518144KB 6946245 lines

hbase 115.8ms 226 tpmC
22844152KB 3278000 lines

Table 5.2: Execution times of running TPC-C on Derby

instr Run with the instrumentation turned on, but not using any appender.

file Using TPC-C with instrumentation plus enabling logs to stdout and redirecting them

to a file.

hbase Having the HBase-appender save logging information to HBase. In the HBase-

appender auto-flush was turned off.

For the tests file and hbase, it is also present the size occupied in disc at the end of the

benchmark and the number of lines written. In the file test the number of lines and size

refer to the written file, and in the case of the hbase run, size is the size of the data written

to HBase during the benchmark, and number of lines is the number of written entries on

tables.

It is possible to see that when using instrumentation (instr) the benchmark ran at 98, 3%

of the original speed; that is only a 1, 7% slowdown. The volume of written data in HBase

in the hbase configuration can be stored in the future to CoherentPaaS or the used table

schemata can be improved.

54

6 Conclusions

The results obtained in the previous chapter led to a conclusion: the experiment was

successful. The qualitative analysis made during the application of X-Ray to Derby was a

path to accomplish something necessary was always found and all the tasks could be con-

cluded. Importantly, when using the tool there was never some mechanism was missing;

all the developed ones were sufficient and nothing compromised the ability to satisfy the

experiment purposes. Nevertheless, some difficulties were discovered when trying to con-

figure mechanisms such as remote tagging. This is due to the fact that information in a

real program is not as readily available or in a format understood by X-Ray, unlike it is

sometimes assumed.

As for the quantitative measurements made, they confirmed the notion that the proposed

solution is lightweight and its usage does not impose an expensive overhead.

Consider the execution plans described in the initial chapter and the general objective of

obtaining detailed information of what happens at every moment. With X-Ray it’s possible

to monitor what actions happen in each component and measure how long they take; from

this it is trivial to implement some sort of command that returns the execution plans as they

finished and debug a particular query or component. Furthermore, if the past execution

plans are saved, it is possible to provide some estimates of how long similar queries will

take. Finally if different operation sequences can be executed to complete a query and each

time one of the different operations is chosen the saved history will have several execution

times associated with the operations and in the future the fastest operation sequence can

be directly used.

The most important aspect shown by the conducted experiment is that the developed

framework, in fact, can be used to fulfil the requisites of the CoherentPaaS’s “X-Ray monit-

55

6.1. FUTURE WORK CHAPTER 6. CONCLUSIONS

oring” module. One experiment focused on two datastores communicating with each other

(using sockets), executing a distributed query and returning a result to the client. The

experiment that tested the X-Ray performance was made using a industry standard bench-

mark. Indeed the target use cases are similar to these examples, only with added complexity,

a greater number of participating datastores and with more heterogeneity.

6.1 Future Work

The instrumentation of native methods by the developed JVM agent is a goal needed to

satisfy other less frequent use cases and so is testing the effects of applying instrumentation

several times in the same run. This last feature of using an agent poses several challenges in

two places: the internal X-Ray configurations and the JVM and program state. When a user

changes some instrumentation options online the saved configurations must be invalidated

or more smartly be selectively changed having in mind what can or cannot be modified.

On the JVM part some changes to the defined classes can’t be made and both it and the

running program have to accommodate for the produced changes, resulting in a potentially

inconsistent runtime state.

To deal with legacy systems not implemented in Java where the X-Ray system can’t

be used, some solution must be implemented. That is the bridge or converter mentioned

in Section 1.1. It was not possible to work on this bridge so in the future it should be

developed, preferably in the C language to allow an easy interoperability with C, C++ and

if needed with other languages via bindings.

There are also possible changes and improvements that can be classified into two types:

implementation of new features, and efforts to increase ease of use and usefulness. A pos-

sible feature is to allow following inter-thread communications that use mechanisms such as

message passing. Tags can already be used to this end, but a default provided instrument

would be interesting, perhaps implemented using tags or complementing them.

To solve the problems found in the configuration of certain features, in Chapter 5, more

ways to support reading values can be implemented, namely, the ability to invoke methods

or accept objects of the type SocketAddresss directly to obtain communication addresses.

56

CHAPTER 6. CONCLUSIONS 6.1. FUTURE WORK

The usefulness of X-Ray can be improved by further developing the graphical represent-

ation: adding more export formats as well as improving the existing ones by incorporating

more of the collected information on them, e.g. execution times. Collecting and using more

information is an useful thing, so a important future task is to associate the collected JVM

statistics (cf. Section 3.2.3) with each execution instant and each method invocation. If

more information is included by default and presented to the user in a visually clear and

attractive fashion, their comprehension about the analysed program can only increase.

57

Bibliography

[1] The aspectj project. http://www.eclipse.org/aspectj/.

[2] Factsheet CoherentPaaS. https://ec.europa.eu/digital-agenda/sites/

digital-agenda/files/130816%20Factsheet%20COHERENTPAAS.pdf.

[3] Pin - a dynamic binary instrumentation tool. http://software.intel.com/en-us/

articles/pintool.

[4] Project lombok. http://projectlombok.org/.

[5] Systemtap. https://sourceware.org/systemtap/.

[6] Using java ee annotations and dependency injection. http://docs.oracle.com/cd/

E11035_01/wls100/programming/annotate_dependency.html.

[7] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with
flow and context sensitive profiling. SIGPLAN Not., 32(5):85–96, May 1997.

[8] T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 29, pages 46–57,
Washington, DC, USA, 1996. IEEE Computer Society.

[9] A. R. Bernat and B. P. Miller. Incremental call-path profiling: Research articles. Con-
curr. Comput. : Pract. Exper., 19(11):1533–1547, Aug. 2007.

[10] E. Bruneton, R. Lenglet, and T. Coupay. Asm: a code manipulation tool to implement
adaptable systems. http://asm.ow2.org/current/asm-eng.pdf.

[11] P. Caserta and O. Zendra. Jbinstrace: A tracer of java and jre classes at basic-block
granularity by dynamically instrumenting bytecode. Sci. Comput. Program., 79:116–
125, Jan. 2014.

[12] K. M. Chandy. Event-driven applications: Costs, benefits and design approaches.

[13] O. Corporation. Monitoring and management of the java virtual machine – over-
view of the jmx technology (the java ™tutorials). http://docs.oracle.com/javase/

tutorial/jmx/overview/javavm.html.

[14] O. Corporation. Using the keyword super – interfaces and inheritance (the java
™tutorials). http://docs.oracle.com/javase/tutorial/java/IandI/super.html.

[15] R. A. DiFalco. Hierarchical visitor pattern. Wiki Wiki Web http://c2.com/cgi/wiki?

HierarchicalVisitorPattern, 2011.

59

http://www.eclipse.org/aspectj/
https://ec.europa.eu/digital-agenda/sites/digital-agenda/files/130816%20Factsheet%20COHERENTPAAS.pdf
https://ec.europa.eu/digital-agenda/sites/digital-agenda/files/130816%20Factsheet%20COHERENTPAAS.pdf
http://software.intel.com/en-us/articles/pintool
http://software.intel.com/en-us/articles/pintool
http://projectlombok.org/
https://sourceware.org/systemtap/
http://docs.oracle.com/cd/E11035_01/wls100/programming/annotate_dependency.html
http://docs.oracle.com/cd/E11035_01/wls100/programming/annotate_dependency.html
http://asm.ow2.org/current/asm-eng.pdf
http://docs.oracle.com/javase/tutorial/jmx/overview/javavm.html
http://docs.oracle.com/javase/tutorial/jmx/overview/javavm.html
http://docs.oracle.com/javase/tutorial/java/IandI/super.html
http://c2.com/cgi/wiki?HierarchicalVisitorPattern
http://c2.com/cgi/wiki?HierarchicalVisitorPattern

Bibliography Bibliography

[16] W. Drewry and T. Ormandy. Flayer: Exposing application internals. In Proceedings
of the First USENIX Workshop on Offensive Technologies, WOOT ’07, pages 1:1–1:9,
Berkeley, CA, USA, 2007. USENIX Association.

[17] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan. Event-based systems: Oppor-
tunities and challenges at exascale. In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, DEBS ’09, pages 2:1–2:10, New York,
NY, USA, 2009. ACM.

[18] D. M. Eyers, L. Vargas, J. Singh, K. Moody, and J. Bacon. Relational database support
for event-based middleware functionality. In Proceedings of the Fourth ACM Interna-
tional Conference on Distributed Event-Based Systems, DEBS ’10, pages 160–171, New
York, NY, USA, 2010. ACM.

[19] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley. The Java Language
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

[20] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. Netlogger: A toolkit
for distributed system performance analysis. In Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, MASCOTS ’00, pages 267–, Washington, DC, USA, 2000. IEEE Computer
Society.

[21] C. Gülcü, S. Pennec, and C. Harris. The logback manual, chapter 8: Mapped diagnostic
contexts. http://logback.qos.ch/manual/mdc.html.

[22] A. Hinze, K. Sachs, and A. Buchmann. Event-based applications and enabling tech-
nologies. In Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems, DEBS ’09, pages 1:1–1:15, New York, NY, USA, 2009. ACM.

[23] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine Spe-
cification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

[24] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’07, pages 89–100, New York, NY,
USA, 2007. ACM.

[25] Oracle Corporation. Java Platform, Standard Edition API Specification”, 8th edition.

[26] QOS.ch. Slf4j user manual. http://www.slf4j.org/manual.html#mdc.

[27] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and Z. Jia. Precise, scal-
able, and online request tracing for multitier services of black boxes. IEEE Transactions
on Parallel and Distributed Systems, 23(6):1159–1167, 2012.

[28] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, M. Schoeberl, and M. Mezini. Portable
and accurate collection of calling-context-sensitive bytecode metrics for the java virtual
machine. In Proceedings of the 9th International Conference on Principles and Practice
of Programming in Java, PPPJ ’11, pages 11–20, New York, NY, USA, 2011. ACM.

60

http://logback.qos.ch/manual/mdc.html
http://www.slf4j.org/manual.html#mdc

Bibliography Bibliography

[29] M. Schoeberl. A java processor architecture for embedded real-time systems. J. Syst.
Archit., 54(1-2):265–286, Jan. 2008.

[30] M. J. Serrano. Trace construction using enhanced performance monitoring. In Pro-
ceedings of the ACM International Conference on Computing Frontiers, CF ’13, pages
34:1–34:10, New York, NY, USA, 2013. ACM.

[31] J. Whaley. A portable sampling-based profiler for java virtual machines. In Proceedings
of the ACM 2000 Conference on Java Grande, JAVA ’00, pages 78–87, New York, NY,
USA, 2000. ACM.

[32] S. White, A. Alves, and D. Rorke. Weblogic event server: A lightweight, modular
application server for event processing. In Proceedings of the Second International
Conference on Distributed Event-based Systems, DEBS ’08, pages 193–200, New York,
NY, USA, 2008. ACM.

[33] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and adaptive
calling context profiling. SIGPLAN Not., 41(6):263–271, June 2006.

61

	Glossary
	List of Figures
	Code Listings
	Introduction
	Context
	Challenges
	Goal & Contributions
	Document Structure

	State of the Art
	Distributed Databases
	Distributed Monitoring
	Debugging Applications
	Metrics
	Call context and tracing
	Data collection
	Instrumentation
	Hardware counters

	Tracing tools

	Event Logging
	Discussion

	Architecture
	Overview
	Main features
	Probes
	Tags
	Resources
	HBase storage
	Visualisation

	Usage Methods
	Custom Class Loader
	JAR Recompiler
	Java Agent

	Configuration
	Annotations
	Configuration Files

	Implementation
	Overview
	Understanding the JVM
	Technologies used
	Selection of targets
	Modifications to targets
	Eager loading and callbacks
	Event Information

	Evaluation
	Qualitative analysis
	Measurements

	Conclusions
	Future Work

	References

