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Inteligent Data Leak Detection Through Behavioural Analysis

by Ricardo Costeira

The information that a company possesses is one of its most valuable assets. This information

is nowadays digitally managed, which is the reason for the exponential increase in security

breaches, where information is defiled or even stolen. Seeking to solve this problem, Watchful

Software developed a product, RightsWATCH, that allows for an organization to protect and

watch over its information.

By monitoring what happens to information, RightsWATCH provides, in case of an incident,

the means to undertake a very complete post-mortem analysis. Nevertheless, by the time this

analysis is complete, it might have been hours (or days) since the incident occurred. To make

matters worse, nowadays most threats actually come from the inside of the company. That

being said, this dissertation defines as its main objective the need to understand if it is possible

to detect data leaks in an intelligent way, through a real time analysis of the user’s behaviour

while he handles the classified information. This possibility was indeed confirmed through an

investigation comprising experiences with real world use cases and a variety of data preparation

and data analysis techniques.
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Detecção Inteligente de Fugas de Informação por Análise Comportamental

por Ricardo Costeira

A informação gerada por uma organização é um dos seus bens mais valiosos. Actualmente,

essa informação é normalmente gerida de forma digital, razão pela qual se tem verificado um

aumento exponencial de incidentes de segurança, onde esta informação é adulterada, ou até

mesmo roubada. Com vista ao combate a este problema, a Watchful Software desenvolveu

um produto, o RightsWATCH, que permite a uma organização proteger e monitorizar a sua

informação.

Ao monitorizar o que acontece à informação, o RightsWATCH permite, no caso de incidente,

que seja efectuada uma análise post-mortem bastante completa. Não obstante, quando essa

análise é feita, podem já ter passado horas (ou dias) desde a ocorrência do incidente. Para

piorar a situação, a maior parte das ameaças de hoje em dia são internas. Assim sendo, esta

dissertação tem como questão central perceber se existe a possibilidade de detectar, de forma

inteligente e em tempo real, fugas de informação através da análise do comportamento dos

utilizadores aquando do manuseamento da informação protegida. Esta possibilidade foi de

facto confirmada através de um trabalho de investigação que envolveu experiências com casos

de uso reais e a aplicação de várias técnicas de preparação e análise de dados.
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Chapter 1

Introduction

1.1 The Problem

1.1.1 The Value of Information

The evolution of technology and information systems has opened a brave new world of possibil-

ities for companies and organizations all over the globe. The need for each individual company

to invest in rooms, or even warehouses of file cabinets and paper documents is no more, since

information can now be stored on some data centre on any part of the world - although some

companies still choose to have their own data centres, which translates into extra costs, having

full control over it still pays off. The advent of the Internet brought cloud storage, which

makes information accessible wherever the user is and whenever the user wants, as long as he

can connect to the service. The Internet is also responsible for providing the largest informa-

tion repository of the world, since it provides the means for anyone to share the information

they want, as well as to search for any kind of information: It even allows for the creation of

mechanisms designed to retrieve information about other users or entities.

These breakthroughs, along with many others, provided easiness of creation, access to and use

of information, and gradually made an impact on a company’s modus operandi. In fact, if a

company is in possession of the right information, it can develop its products or services in a

way that is best suited for the target audience’s needs, undoubtedly gaining some advantage

1
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over competitors. Thus, in this day and age, and apart from the collaborators themselves,

information is the most important asset of a company. Obviously, this also creates the

need to protect it.

This need gets even more relevant as the value of corporate information is usually directly

proportional to its level of confidentiality: The more exclusive the access to information, the

more can a company profit from it, meaning that information can lose all its value if someone

else gets a hold of it. It is common for this to happen, as organizations often suffer from data

leak. To prevent data leak, organizations have invested billions in information security tech-

nologies like firewalls, antivirus and intrusion prevention services, among others. Regardless,

although relevant, these measures are by far insufficient, as corporate information keeps going

out of the secure perimeter: employees come, and employees go, and as they leave the company

they usually have the freedom to take sensitive corporate information, whether they do it on

purpose or not. An employee might want to work out of the company, which means that he/she

might carry around classified information on whatever device(s) (notebook, smartphone, tablet,

...) he/she owns. Situations like these create breaches on the network, giving birth to data

leaks - devices can be lost, stolen, or even hacked; careless employees can mistakenly store the

information on the wrong place, or send it to the wrong person; employees with less noble

intentions might sell the information to the competition. According to a research study from

Ponemon Institute (Ponemon Institute), performed over nine countries, in 2012, regarding 227

organizations from sixteen different industry sectors, seventy-two percent of data leak cases

occur due to human error or malicious attacks. This study also claims that these data leaks

costed 3 890 623,68 US dollars to the United States, and 3 472 979,76 US dollars to Germany.

These are the highest values reported by the study though - the lowest belongs to India, with

803 378,88 US dollars, which is still a considerable amount (Ponemon Institute).

It is by now clear that conventional methods are not enough, due to the granularity of the

protection they offer being so coarse. Instead, why keep wasting money protecting the net-

work, when protecting the information itself would be so much more reliable? This is called

data-centric information protection (Bayuk, 2009). The problem here though, is that

data-centric information protection requires the user to have knowledge on data encryption,

data tokenization or whatever method the company decides to use, which is highly impractical

- imagine a marketing manager having to call an IT person whenever he wanted to protect
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information. So, is there an alternative way to address this extremely inconvenient issue?

1.1.2 Data-Centric Information Protection

Data-centric security is a concept that stresses the security of data and information itself, rather

than securing networks, workstations, applications, etc. What companies and organisations are

starting to understand nowadays is that a data-centric security solution is the only current way

to ensure that their precious data is safe. Currently, there are a few software tools capable of

data-centric protection. One of these is called RightsWATCH.

RightsWATCH is a product developed by Watchful Software, an information security company

founded in Coimbra, spin-off and member of the renowned Critical Group. RightsWATCH

focuses on protecting the information itself - Emails, Microsoft Office documents, any type of

document - on enterprise environments, where confidentiality of information is a relevant and

competitive factor. The information is classified (and encrypted, if needed) according to a set

of security levels defined by the company. The company’s collaborators are granted clearance

levels given their status, which allows them to access certain types of information. For instance,

a common collaborator at Watchful Software has full access to Public and Internal information,

but only has reading rights for Confidential information. This means that the collaborator has

very limited power over the information - he cannot print, copy, print screen, forward (in case

of an email), among other actions. When it comes to information classified as Secret however,

this collaborator cannot even read it. A company can have as many levels as it needs, and it

can aggregate them on what is called a scope. Scopes are useful for managing levels according

to their purpose. For instance, a company can have a scope named Finances and another one

called Partners, with completely different levels on each one.

The protection that RightsWATCH offers is embedded in the document, meaning that it stays

protected wherever it is being used, sent, lost on a device, offline, etc. The classification mech-

anisms are also embedded on the information handling tools - Microsoft Office, Sharepoint,

handheld devices, webmail - in order for their usage to remain seamless to the user.

So far, the problem seems solved. However RightsWATCH, in spite of doing an excellent job

with information protection, does not account for one ever-changing, uncontrollable variable:
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people. There are incidents caused by a company’s collaborators that RightsWATCH sim-

ply cannot prevent. For instance, an employee can send unprotected information to someone

outside of the company, because he/she simply forgot to set the security level. A disgruntled

employee with the right credentials can decrypt and remove classification marks from confi-

dential or even secret information - of course, depending on the company’s security settings

-, and send it to the company’s competitors. If any of these cases do happen, or any other

that is not supposed to, RightsWATCH provides a logging and monitoring interface meant to

minimize the damage by allowing the system administrator to conduct a post-mortem analysis.

This analysis consists of the inspection of the event logs generated by user interaction with the

information that was leaked. Events such as “was it forwarded”, “was the level of classification

changed”, “was it encrypted” are examined. Digging through the enormous amount of logs is a

time-consuming and difficult task. Indeed, it is extremely hard for a human to look at the data

and extract useful conclusions, even though the logs are in a readable format. Therefore, even

if this log analysis process reveals what really happened, it might be too late, and the value of

the information may have been compromised already. With this in mind, a new and exciting

idea begins to take form: In order to tighten even more the data-centric security and protec-

tion it provides, RightsWATCH needs a way to understand the intentions of the company’s

collaborators, in the interest of preventing data leak even before it happens.

1.2 Goals

RightsWATCH ’s monitoring framework captures a large array of different events. Every time

a user performs some kind of action on an asset protected by RightsWATCH, an event is gen-

erated, captured and stored in a database. In a sense, all the events regarding the actions of a

certain user, when grouped together, can be interpreted as that user’s way of interacting with

the information or, in a more convenient way, his behaviour towards the company’s corporate

or sensitive information.

That being said, it can now be stated that the main goal of this dissertation is to investigate the

viability of developing a system that can: 1) gather all the logs generated from RightsWATCH

and create a model from them that can represent the user’s behaviour towards the protected

data and 2) make use of that model to output a decision regarding the nature of new behaviour
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- if it is consistent with the user’s behaviour so far or if it is a new, unknown (thus abnor-

mal) type of behaviour. This system should provide results in real time, or closely enough.

Developing the system to be the most generic as possible is also a goal. Notwithstanding, con-

cerning the scope of the investigation, the sole function of the system will be to extract useful

patterns from event logs, in order to output consistent and trustworthy decisions regarding

the user’s intentions. Why patterns? Because patterns can be one of the most revealing and

important information types. Patterns let us know how things work - farmers seek patterns

in crop growth; physicists seek patterns on the interactions between objects and matter, in

order to understand how the world works and to enclose this understanding in theories that

can be further used to predict what will happen in similar or new situations; politicians seek

patterns in voters’ opinions. Through pattern usage it is possible to reduce the dimension of

a search domain, by grouping values associated to common facts and building easy to analyze

models. Intelligently analysed data is a valuable resource, as it can lead to new insights and,

in cases like this, to competitive advantages (Witten et al., 2011). This leads to the other goal

of this investigation, which is to develop the architecture of this system in such a way that it

can be easily integrated with RightsWATCH. This also includes the subgoal of implementing

the system in a more or less generic way with respect to the access to data sources: It has to

be able to feed itself from different data sources and gather all the data together with little or

no extra effort.

1.3 Research Methodology

The investigation that supported this dissertation followed a Design Science approach, focusing

on the seven guidelines proposed in (Hevner et al., 2004): Design as an artefact, problem

relevance, design evaluation, research contributions, research rigour, design as a search process

and research communication.
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Design as an Artefact

This dissertation presents a functional anomaly detection framework. The system can be

adapted to access different data sources, and it will either allow customisation by the manual

selection of detection algorithms and/or parameters or find them by itself, which provides the

possibility of applying the framework to different domains.

Problem Relevance

Anomaly detection is extremely important in safety critical environments and in sectors where

the existence of anomalies can cost more than what the entity deems as acceptable. Apart

from this, it is also a hard problem to solve, mainly due to the inability of reproducing every

possible anomaly that might exist in a given domain. The developed framework is meant to

provide a set of tools and functionalities that will greatly aid any system where it is integrated

in tackling the anomaly detection problem.

Design Evaluation

The framework was thoroughly evaluated by following the five design evaluation methods men-

tioned in (Hevner et al., 2004). The artefact was tested by using Watchful Software as a case

study. The different scenarios of RightsWATCH misuse already described provide the needed

description of the framework’s utility. Its architectural design was analysed in terms of how

it complements RightsWATCH, and both structural and functional tests were conducted to

guarantee the correct workflow of the framework and that the end result is the one expected.

The classifiers’ creation was studied in a controlled environment, and these were evaluated by

the use of information retrieval metrics such as false positive and false negative rates, which

are then computed to output more refined measures like precision and recall.
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Research Contributions

The main contribution of this research is the design artefact itself. Existing knowledge is

applied in order to solve a very specific problem that, until now, had no acceptable solution.

Research Rigour

The developed anomaly detection framework was deeply tested with real datasets, derived from

information pertaining to the use of RightsWATCH by Watchful Software’s own employees.

The tests were done regarding both user privacy and framework performance and accuracy.

Accepted and well documented methods such as k-fold cross validation where used. Also,

every single test was repeated more than once to account for any type of variation, which is

minimal as soon as the classifiers are formed. The decisions that were made along the way are

backed up by tests and resulting conclusions.

Design as a Search Process

The theory behind anomaly detection itself was studied, such as data and anomaly types.

After the definition and discussion of a myriad of anomaly detection methods, the one which

seems more appropriate for the problem at hands was chosen and the search for the best

features available was conducted. By testing these features with the initial dataset, it was

concluded that the dataset had to be changed in order to achieve better results. The dataset

was completely reshaped, and new features were created from the initial ones. With this new

dataset, not only the results obtained were slightly improved and more robust, but also the

dataset became easier to interpret to a human mind.

Research Communication

Apart from this dissertation, the conducted research is also documented on a paper currently

undergoing a submission process for an international conference called “CYBER 2016, The
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First International Conference on Cyber-Technologies and Cyber-Systems”.

1.4 Report Structure

This report is structured into five main chapters, the first of which is this introduction. The sec-

ond chapter provides for an extensive investigation regarding the state-of-the-art technologies

and methodologies used in intrusion detection systems. Architectural designs and algorithmic

approaches are analysed and compared. At the end of this chapter, some of the most popular

and relevant systems are discussed.

Chapter 3 concerns the proposed architecture for the framework, and chapter 4 regards all the

verification and validation processes that were accomplished in order to assess the framework’s

performance. Results are analysed and discussed as they are obtained. Finally, the fifth and

last chapter documents the final conclusions and future plans for the framework.



Chapter 2

Intrusion Detection Systems

2.1 Definition

An intrusion detection system, also known as intrusion detection and prevention system (or

IDPS) when it has preventive or counter-attack measures against intrusions, is a tool capable

of detecting possible security breaches on a system, by gathering and analysing information

that it was specifically designed to understand. It can be designed to work with a wide range

of information, such as event logs from different sources (firewalls, OSs, etc.), application usage

data, keyboard inputs, or network data packets. Although the main objective of an IDS is, as

the name suggests, to detect intrusions, these systems are often more complex. According to

(Venkaiah et al., 2010), an intrusion detection system should provide three security functions:

it has to monitor the computer or network, to detect possible threats and to respond to the

possible intrusion. This response is ruled by a set of policies that will dictate what should

the system do, depending on the triggered event - it can either issue a warning for the system

administrator, or respond automatically by, for instance, blocking a user or launching some

application or script.

An IDS does not guarantee full protection, but it does create what can be called a second line

of defence, complementing other security control services such as access control or firewalls.

Similarly to some of these services, IDS s operate in an almost seamless way, integrating them-

selves smoothly into the user’s daily workflow.

9
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As it seems, the concept of “intrusion detection system” was first used on the early 80’s, in

a seminal paper by Anderson (Anderson, 1980). At this time, IDS s were focused on single

machines - Jones and Sielken (Jones and Sielken, 2000) called this the first generation of in-

trusion detection. Denning (Denning, 1987) introduced a new intrusion detection model called

“intrusion-detection expert system” (expert systems are described on section 2.4.1), meant to

detect a wider range of security violations through more sophisticated processing, more be-

haviour patterns and, more importantly, real-time alerts - the second generation of IDS s

had arrived, and it was able to expand from a single computer to a distributed system. As

time passed on, and with the growth of the Internet and communication technologies, Heber-

lein (Heberlein et al., 1990) brought Network Security Monitor, or NSM (section 2.5.4) and

the third (and current) generation of intrusion detection systems, whose main focus is on

networks.

Porras and Valdes (Porras and Valdes, 1998) quantitatively evaluate the success and failure of

an intrusion detection system with three different measurements: accuracy, performance,

and completeness. The first two are relatively easy to understand, and to measure as well

- accuracy regards the IDS ’s ability to correctly flag as anomalous or intrusive any malicious

action, and performance has to do with the rate at which the IDS can analyse and process

audit events. Completeness, on the other hand, is the measure of how well can the system

detect an attack - incompleteness occurs when the IDS fails to detect an attack. Clearly this

evaluation criteria will have some degree of uncertainty, as it is indeed impossible to have a

global awareness of attacks or privilege abuse.

In addition to these metrics, Debar (Debar et al., 1999) introduced two more concepts: fault

tolerance and timeliness. Intrusion detection systems should be designed to be fault tol-

erant, so that they are attack resistant, especially regarding denial of service - this becomes

even more relevant considering that the operating system on which the IDS is installed, or

even the hardware where it runs, may be vulnerable to attacks. The timeliness dimension is

similar to performance, the difference being that it also includes the time required by the IDS

to propagate and react to information - the intrusion detection system has to complete and

send its analysis to the security officer as soon as possible, to both minimize the damage and

prevent the attacker from overthrowing the analysis or the IDS itself.

Axelsson (Axelsson, 1998), based on the evaluation of several intrusion detection systems that
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existed at the time, developed a generalized or, as the author states, “typical” model of an

intrusion detection system. This model is shown in figure 2.1: the solid arrows represent

data/control flow, while dotted arrows indicate a possible response to intrusion activity. Note

that although several different databases are represented, this only means that the correspond-

ing data is stored, and not that there actually is a need for several independent databases.

Axelsson described each module as follows:

Figure 2.1: Generic model of an intrusion detection system.

Audit collection - Aims to collect information from where the system will extract knowl-

edge to support its decisions (as referenced earlier, the collected data can come from a

wide variety of sources). Typically, the term sensor is applied to systems that monitor

networks, while host based technologies tend to use the term agent (Scarfone and Mell,

2007). Network based and host based technologies will be tackled on a later section.

Audit storage - The audit data has to be stored for further reference, and for long enough

to allow for its processing. Since its volume is often exceedingly large, the storage space



Chapter 2. Intrusion Detection Systems 12

can easily get overwhelmed. Because of this, intrusion detection can be considered as a

problem in audit data reduction.

Processing - This module is the core of the IDS. This is where one or more intrusion detec-

tion algorithms are executed to evaluate the available information in search of suspicious

behaviour. Over the years, these algorithms have been usually classified into three differ-

ent categories: anomaly detection (also called behaviour based detection), misuse

detection (also known as signature based or knowledge based detection), and

hybrid detection. These techniques will be discussed in section 2.4.

Configuration data - This is the module where all the information regarding the way the

intrusion detection should be carried on is stored. How to collect the audit data, how

should an intrusion be dealt with, which threshold value distinguishes intrusions from

normal behaviour, etc. Due to its nature, this is also the most sensitive module, as access

to the information stored here would give an intruder the means to fool the system, thus

being able to succeed in going by undetected.

Reference data - Concerns all the information used as a term of comparison with the col-

lected information from the audit trail. This module can store information about known

intrusion signatures and/or profiles of normal behaviour. The signatures are most often

updated by the security officer, as new intrusion signatures are discovered. This is not

an easy task, since the analysis of novel intrusions requires a high level of expertise and

this is why signature outsourcing is common. Behaviour profiles, on the other hand, are

usually updated at regular intervals, as the users keep using the system, producing new

behaviour knowledge.

Active/Processing data - This module stores possible intermediate results such as, for in-

stance, partially fulfilled intrusion signatures.

Alarm - This module handles all the output which, as seen in the diagram, may correspond

to an automated response to the intrusion or to an alert for the security officer.

Axelsson’s model is useful to describe the general, high level, behaviour of a system of this

kind. Regardless, a complete characterization and classification of intrusion detection systems
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goes beyond this simple architecture, due to the wide variety of methods and technologies that

can be implemented - albeit, in the end, it is still possible to interpret any IDS type as a more

specific subset of Axelsson’s model, which means that it still holds today. Figure 2.2 presents

this more complete classification (Pathan, 2014).

Figure 2.2: Characterization and classification of intrusion detection systems.

This classification considers only the functional attributes of intrusion detection systems. There

is another attribute, a non functional one, that should also be considered, which is usage

frequency (Debar et al., 1999). An IDS can be designed to carry either periodic or continuous

analysis. Since the former option is possible, sometimes scanners that are used for security

assessment are confused with intrusion detection systems. Accordingly, the usage frequency

provides a fair distinction between the two.

2.2 Architecture Types

The architecture of intrusion detection systems should be idealized considering three relevant

factors: the source of the data to be analysed (the scope), the way tasks are being distributed

and the processing components that are built into the IDS (together usually referred to as

processing location) (Pathan, 2014).
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2.2.1 Scope

Considering the source of the information, an IDS may be classified as a host based intrusion

detection system, or HIDS, a network based intrusion detection system, or NIDS, or

as a hybrid intrusion detection system. Each of these has its own strengths and weaknesses,

which will be described next.

2.2.1.1 Host based Intrusion Detection Systems

The host based intrusion detection system collects and analyses the data from a single host.

The detection software installed on the host is commonly known as agent. It can monitor a

wide range of activities, such as the behaviour of applications and processes, changes in the file

system, integrity of the system, use of resources, user access and interaction with the system,

among many others. Some HIDS s can also monitor the data packets that go from and arrive

on the host. In fact, some solutions even use dedicated hardware running agent software, and

placed in a way that it can monitor the network traffic - technically, these would fit under

network based systems, but they work in a similar fashion of a normal host based system, and

their monitor activity is more specialized (usually focused on one application, like a web server

or a database) than the standard NIDS (Scarfone and Mell, 2007).

Agents are developed to monitor servers, hosts, or even applications services. Due to the variety

of implementations, de Boer and Pels (de Boer and Pels, 2005) consider four different HIDS

categories:

1. Filesystem monitor - Systems that check the integrity of files and directories.

2. Logfiles analysers - Systems that analyse logfiles searching for patterns indicating sus-

picious activity.

3. Connection analysers - Systems that monitor connections attempts to and from the

host.

4. Kernel based - Systems that search for suspicious behaviour at the kernel level.
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The filesystem monitor type of agent searches, on a regular basis, for changes in the host’s files,

comparing to previously stored information, this way detecting if any unauthorized change has

occurred. The changes that it searches for are related to file inherent attributes: changes in

permissions of the file/directory, inodes, owner and/or group, size, modification and access

times, checksums, among others (a filesystem monitor does not necessarily set all of these fea-

tures). The user is responsible for setting the files and directories that HIDS is responsible

for monitoring. After creating the initial database, it can be set to perform routine checks on

the target, and to present the user with the results. The database needs to be updated regu-

larly to prevent false positives - for instance, the user can legitimately erase a file or directory,

which will count as an intrusion to the system. Despite the fact that these HIDS types do

not perform real time analysis, they can still help with intrusion prevention by controlling the

access, modification, replacement or deletion of files, this way mitigating, for example, malware

installation.

Logfile analysers perform their monitoring and detection tasks through the analysis of logs.

This analysis can be done either through pattern matching, pattern matching with correlation

between events1, or anomaly detection (de Boer and Pels, 2005). With pattern matching, the

system searches for patterns and compares them to those already known as malicious. The

problem with this method is that it looks for individual patterns only - a seemingly innocent

line in a log, may not be so innocent if found in more than one log. Pattern matching with

correlation between events considers cases like this, effectively providing a more robust protec-

tion. On the other hand, an HIDS that uses anomaly detection might prove itself even more

valuable, depending on the nature of the logs. Indeed, it has no need to know anything about

the legitimacy of the logs, requiring only to know what a normal behaviour is.

Connection analysers can stop all the traffic, incoming or outgoing, that contains network,

transport or application layer attacks, wireless networking protocol attacks, and unauthorized

applications and protocols. This filtering can actually work as a firewall. They exclusively

monitor the incoming network connections and, depending on the implementation, these sys-

tems can offer features like detection of unauthorized TCP and UDP connections, port binding

(which prevents port scans and unauthorized bindings to the given port), host warning and/or

blocking, etc.

1Analysis carried through pattern matching is often - but not always - a kind of misuse detection.
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Lastly, the kernel based system refer to one of two system types: either a system that monitors

the operating system’s kernel or a system that uses kernel methods (in the actual mathematical

sense) to detect intrusions. With the first method, it is possible to rely on different data sources:

based on system usage, based on the arguments issued to system calls by any process, or the

order of system calls themselves, among other intrinsic data sources (de Boer and Pels, 2005).

Systems of this kind can be programmed to carry out different types of tasks. There are kernel

based HIDS s capable of hiding files/directories; killing/protecting processes; detecting local

denial of service attacks; preventing someone with root privileges to change a file/directory;

and so on. As for the second method, it is directly related to the use of machine learning for

detecting intrusions. Some of these types of kernels will be approached in the machine learning

section.

Scarfone and Mell (Scarfone and Mell, 2007) refer another category worth mentioning - code

analysis. In this case, agents are capable of using several techniques to identify malicious

activity. The methods are: code behaviour analysis, buffer overflow detection, system call

monitoring and maintaining application and library lists. With code behaviour analysis, the

agent executes the code on a sandbox before running it normally on the host, in search for

bad behaviour patterns. This technique can prevent, for example, privilege escalation through

a particular piece of code. Buffer overflow detection allows the agent to detect attempts to

overflow the stack and/or heap, by paying attention to certain sequences of instructions and at-

tempts to access unauthorized portions of the memory. With system call monitoring, the agent

knows which applications and processes are calling which other applications and processes. For

instance, with this technique, the agent would recognize a keylogger trying to intercept the

user’s keystrokes. Lastly, by maintaining application and library lists, the agent can monitor

those the user or a process attempts to load, and compare this information to lists of authorized

or unauthorized applications or libraries.

As it monitors the system, the agent also keeps logging information regarding events it detects

over time. These logs are useful later to validate alerts, investigate incidents and to correlate

events between the agent and other logging sources (Scarfone and Mell, 2007). The logged

data can take many forms: timestamps, event/alert type, prevention action performed (if any),

details about the events, etc.

When it comes to true and false positive rates, achieving an acceptable measure of certainty
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is challenging, especially when the HIDS uses detection and monitoring techniques that have

no knowledge of the context under which the detected events occurred (e.g., filesystem mon-

itors and logfile analysers). For example, the host might have rebooted while installing or

uninstalling some application, changing system files. These actions are harmless in this case,

but they could easily be caused by someone with a malicious intent. In other words, despite

the events being accurately detected, their nature cannot always be determined without ad-

ditional context information (Scarfone and Mell, 2007). Given this problem, some products

(more commonly those meant for desktops and laptops) prompt the user to supply the context

in which the events are occurring (such as upgrading an application). If the user does not

respond in a given time limit (minutes or even seconds), the agent acts accordingly, depending

on its features and on how it was programmed. Another common way for an HIDS to obtain

better results is to combine several different techniques, that monitor different characteristics

of the host.

Some general advantages of using a HIDS are (Bace, 1998, Pathan, 2014):

- Maintaining a strong association between programs and users: identifying the user and

the time at which applications or commands were executed;

- Tracking behaviour changes associated with misuse;

- Confronting incoming threats without the need to analyse the whole network traffic;

- Can distribute the work load throughout the available hosts on the network, therefore

cutting deployment costs;

- No need for additional hardware.

Of course, there are disadvantages as well (Debar et al., 1999, Pathan, 2014):

- High complexity in management and scalability - every host is configured in its own way,

and there is also the need for a constant observation for effectiveness reasons. Some

systems have to build profiles of expected behaviour, while others need to be configured

with a set of detailed rules that define exactly how applications should behave;

- OS dependent;
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- Susceptible to attacks, resulting in corrupted data or data deletion, since it has priority

in direct access to the data;

- Vulnerable to alterations to the audit data, if an attack is successful;

- Deep data analysis and very detailed information collection can and will take its toll on

system’s performance.

2.2.1.2 Network based Intrusion Detection Systems

The network based intrusion detection system collects and analyses data from the network.

Note that this does not mean that every single bit is examined - off course, this would be too

overwhelming.

While monitoring the network for data packets, NIDS s usually focus the TCP/IP protocol.

Even though most of the analysis is conducted at the application layer, the transport and

network layers are also checked, not only in search of attacks at those levels, but also to aid

in the analysis of the application layer activity (for instance, an application can be identified

through the TCP port number). Some existent NIDS s also perform an analysis, albeit limited,

on the hardware layer (Scarfone and Mell, 2007).

These systems are normally composed of sensors, management servers, consoles and, possibly,

one or more databases. The data packets are sniffed out of the network through sensors

positioned on “mission critical” spots. Sensors can be of two types (Scarfone and Mell, 2007):

appliance and software only. Appliances are built with specialized hardware and sensor

software. The hardware is usually optimized: specialized NIC s and NIC drivers to capture

data packets more efficiently; and specialized processors or other components that can aid in

the their correspondent analysis. It is also possible that some part - or even all - of the software

resides in the firmware for performance reasons.

The software only type has no specific hardware to run on and they are simply installed in

common computers. They can either behave like a common application, or include their own

OS.

To deploy the sensor, the system administrator has two options, depending on his/her needs. If

the goal is to force all the data packets to be analysed before they reach their final destination

in order to prevent intrusion, the sensor must be placed inline, that is, on a place where it can
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intercept the data before it reaches the host. This behaviour is similar to that of a firewall.

In fact, some of the existing inline sensors are hybrids, providing both the services of NIDS s

and firewalls. Some of these sensors can also: limit the network bandwidth when a particular

protocol is behaving inappropriately; alter malicious content, that is, alter a packet by replacing

malicious content with a harmless version (some sensors can even remove infected attachments

from emails); reconfigure other security devices present on the network and run third-party

programs/scripts to carry additional prevention actions. These sensors are usually placed on

segments between networks.

On the other hand, if analysing copies of the network traffic is enough, a passive sensor can be

deployed. These sensors are often deployed to monitor key network locations, such as a DMZ.

They can also perform their package capture through a variety of methods (Scarfone and Mell,

2007):

Spanning port - Some network switches have what is called a spanning port, that is able

to see all the data traffic. The monitoring is achieved by connecting a sensor to this

port. It has the advantage of being a simple and inexpensive method, but it carries some

problems too. For instance, due to misconfiguration of the switch, or even to heavy load

periods, the port might lack the ability to see all the traffic - in the latter case, the port

can even be deactivated for a period of time.

Network tap - With a network tap, the sensor is directly connected to the network medium

itself (the actual cable). This tap gives the sensor access to a copy of all the data

being carried by the medium. Nonetheless, tapping the network can involve network

downtime, both in the installation and if something goes wrong afterwards. It can also

be an expensive add-on.

NIDS load balancer - The load balancer is a device responsible for aggregating and directing

the traffic of a network to the monitoring systems. It can aggregate traffic from different

networks, and it distributes the traffic according to a set of predefined rules configured

by the system administrator. These rules can, for example, be configured to send all

the traffic to more than one sensor or to split the traffic throughout the sensors based on

volume (to avoid overwhelming any sensor) and/or based on IP address, protocol or other

traits, such as the usual type of data that a given sensor uses to analyse. Splitting traffic
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could lead to trouble, however. An example of this would be the case when a threat is

composed of two steps, each one analysed by a different sensor. It is feasible that each

step, individually, presents no threat at all, which is obviously a problem.

Regarding intrusion prevention, many sensors can attempt to end TCP sessions by resetting

them. Unfortunately, this technique often does not work right away, and it is not applicable to

non-TCP sessions, such as UDP and ICMP. Even so, and just as inline sensors, some sensors are

able to reconfigure other devices in the network and run third-party programs/scripts destined

to carry out prevention actions.

Just like HIDS s, NIDS s are able to access diverse system information. Most of them can at

least, for example, identify the hosts in the network (either by IP or MAC address), the hosts’

operating systems, the network’s overall characteristics (devices, hosts, number of hops that

traffic suffers between two devices, etc) and, to a lesser extent, the hosts’ used applications.

They also have the logging ability in common with HIDS s. Nonetheless, given the difference in

scope, the type of logged data also differs (there are similar types though, such as timestamps

or event information): protocol information, source/destination information, number of bytes

transmitted, state-related information, among others.

Although not entirely, the detected events by most NIDS are mainly focused on the different

network layers (Scarfone and Mell, 2007):

Application layer reconnaissance and attacks - Some of the most usually analysed pro-

tocols are DNS, FTP, NFS, POP, SMPT, HTTP (cannot monitor web services though),

DHCP and peer-to-peer file sharing software. Common attacks are buffer overflows,

password guessing, banner grabbing, malware transmission;

Transport layer reconnaissance and attacks - The most commonly monitored protocols

are TCP and UDP. SYN floods, port scanning and unusual packet fragmentation are

some of the frequent attacks;

Network layer reconnaissance and attacks - The primarily targeted protocols for analy-

sis are IPV4, ICMP and IGMP. Many systems also consider IPV6. Usual attacks regard

spoofed IP addresses and illegal IP header values;
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Unexpected application services - These can be detected either through stateful pro-

tocol analysis2 methods, that determine the consistency between the activity and the

expected protocol, or through anomaly detection, in order to identify changes in network

flow and/or open ports on hosts;

Policy violations - NIDS s can detect some types of policy violations (e.g., access to inappro-

priate web sites or use of forbidden application protocols) that can assist administrators

on specifying the nature of an unauthorized activity - it can help by revealing TCP or

UDP port numbers, IP addresses, visited web site names, and so on.

Throughout history, NIDS s have been connected to high rates of false negatives (Scarfone and Mell,

2007). The reason for this is that the earliest technologies relied mainly on signature based

detection, which is almost useless against new and/or unknown threats. Due to this fact, these

systems nowadays use a combination of misuse and anomaly detection together with stateful

protocol analysis, in order to increase the viability and overall performance.

Some of the most prominent advantages of using a NIDS are (Pathan, 2014):

- No impact on network performance;

- Attacks can be identified in real time, making it possible for the administrator to respond

quickly;

- OS independent;

- Possibly being invisible to attackers, since it does not leave any trace of its presence in

the network (opposed to HIDS that requires installation on the host, unavoidably leaving

traces in the system);

- Requiring simple infrastructures, it has a wide variety of applications.

Nonetheless, the limitations are also prominent (Debar et al., 1999, Pathan, 2014):

- Specific applications might require highly complex protocols;

2This detection method was yet to be accounted for as it is generally either not considered as important as
the ones referenced in section 2.1 and shown in figure 2.2 - thus ignored -, or considered as a subset of signature
based detection (Scarfone and Mell, 2007).
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- Cannot detect attacks at a higher level when dealing with encrypted packets (HIDS s are

useful in these situations: they can be deployed in the network’s endpoints to monitor

the unencrypted content);

- Restricted applications on segmented networks, especially those with switches;

- Incapable of analysing traffic when the volume of network traffic traces exceeds the sys-

tem’s collecting capacity;

- Need of large recording capacity for data storage (for instance, monitoring the states of

TCP connections with large network flows).

2.2.1.3 The Current Trend - Hybrid Solution

As it was being suggested along the two last sections, some problems and limitations that

HIDS s face can be solved by NIDS s and vice-versa. Hence, the idea of using both systems

together comes naturally, an this is how hybrid intrusion detection systems were born. The

main goal is to combine both intrusion detection systems so that they can complement each

other, thus maximizing their strengths. As a result, a hybrid system has more flexibility and

better performance than any of the systems alone. The hybrid system reunites the best of both

worlds: it can act as a NIDS by analysing and monitoring the network traffic, while at the

same time acting as an HIDS by focusing on each host and processing the packets addressed

to the system where the HIDS component is (Pathan, 2014). The whole system is managed in

a centralized way (more on this in the next section), no matter in which network segments

the sensors are, or which hosts have agents. Figure 2.3 depicts a possible architecture for an

hybrid intrusion detection system. The illustrated network represents a LAN connected to the

Internet through a firewall. Three different network segments can be distinguished - the local

network, the DMZ and the Internet. Note that all of these segments have a NIDS linked to

them. Not only this, but the more critical areas inside the segments also have HIDS s attached

to them. The IDS manager, stationed at the local network, is responsible for the management

of all the IDS s.
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Figure 2.3: An example of an hybrid intrusion detection system.

2.2.2 Location

Intrusion detection systems comprise several modules (recall figure 2.1). The location of these

modules, in conjunction with the system’s architecture, allow for the following characterization

(Pathan, 2014):

Centralized - The idea of a centralized IDS is that there is only one system - the manager or,

as it is commonly called, agent-manager - responsible for the event analysis, corelation

detection, classification and reaction. The other systems are responsible only for the

data collection and transmission to the manager. Figure 2.3 is a possible instance of a

centralized IDS.
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Hierarchical - Hierarchical IDS s also have an agent-manager like their centralized counter-

parts. The difference here is that in a hierarchical system more than one manager can

exist, this way establishing an hierarchical organization. For instance, in a given network

there might be a manager specifically for all the NIDS s, and another manager responsible

for all the HIDS s.

Distributed - In these systems, there are several manager systems as well, but the components

that would normally just collect data can now also process and analyse this data, either

fully or partially, before sending it to the manager.

2.3 Reaction After Detection

After detecting a possible intrusion, the IDS has to react in some way. There are two possible

types of reactions: active actions and passive actions.

An IDS is capable of active post-detection actions when it reacts on its own. This type of post-

detection is the reason why intrusion detection systems are, nowadays, also called intrusion

detection and prevention systems (Pathan, 2014). Various examples were already referred on

sections 2.2.1.1 and 2.2.1.2.

Passive post-detection actions are the opposite of the active ones. This is the case of IDS s

that act as decision support systems, merely triggering alarm notifications and sending (or

showing) them to the administrator, when a possible attack is detected. Some work has been

done on these systems by the IDWG, or Intrusion Detection Exchange Format Working

Group. This group, created through the IETF, or Internet Engineering Task Force - an

organization that thrives to develop and promote Internet standards (NCC, 2012) - sought to

define data formats and exchange procedures in order to share information between intrusion

detection systems, their modules and management systems through a standard communication

language (Feinstein and Matthews, 2007, Wood and Erlinger, 2007).
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2.4 Detection Methods

Depending on the chosen methodology for analysing the audit data, IDS s can be categorized as

knowledge based and/or behaviour based. Knowledge based intrusion detection systems

are commonly referred to as misuse or signature detection systems, while behaviour based

intrusion detection systems are usually known as anomaly detection systems. Just like with

NIDS and HIDS, the fusion of these detection methods into a hybrid technique is possible.

2.4.1 Misuse Detection

Misuse detection systems focus on the attack’s information (Debar et al., 1999), comparing

the collected data to some form of expression of the knowledge previously obtained about the

attack. This knowledge is typically expressed through signatures or patterns, that correspond

to traces of known attacks. A signature can either be built manually or automatically and can

take many forms, from a telnet attempt with the username of “root”, to an email with a subject

of “Free pictures!”, along with an attachment called “freepics.exe” (Scarfone and Mell, 2007).

Because they compare the analysed activity to the knowledge base directly through pattern

matching, misuse detection systems are, consequently, very effective against known attacks.

Due to this effectiveness and the scope of their implementation, these systems can potentially

keep their false positive occurrence at a very low rate. Not only this, but since the attack is

known, the performed analysis can produce a high level of detail, making it easier for the secu-

rity office to engage in preventive or corrective actions (Debar et al., 1999). On the other hand,

misuse detection systems are very ineffective at detecting attacks that are unknown such as

new threats, disguised threats or even variants of known threats. For instance, on the emailed

malware example above, if the attachment was named “freepics2.exe”, a signature looking for

“freepics.exe” would probably fail to match it (Scarfone and Mell, 2007). For this reason, the

signatures database has to be continuously updated with information about new attacks which

is a very demanding task (Debar et al., 1999). Ergo, given all this information, one can say

that misuse detection systems have good accuracy, but may lack in completeness for their need

to constantly update the knowledge base.

This kind of IDS is the simplest there is, but its scope is somewhat narrow. These systems
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have next to no understanding of network or protocols, and can’t track or even understand the

state of complex communications (Scarfone and Mell, 2007) - for instance, they have no means

to know how to pair a request with the corresponding response, like a request to a Web server

and the corresponding response status code of 403 (meaning that the server refused to fill the

request). In addition, misuse detection systems are also incapable of keeping track of previous

requests when processing the current one. This means that, in a given set of events, if none of

them contain a single indication of threat or attack, the IDS is unable to detect attacks that

compromise more than one event or even the whole set.

Axelsson (Axelsson, 1998), besides signature based intrusion detection, also considers a subset

of these systems, which he calls specification based intrusion detection. In this case, the

knowledge base is filled with information not about attacks or threats, but about benign be-

haviour. The author further merges both signature and specification based intrusion detection

into what he calls policy based intrusion detection.

Debar (Debar et al., 1999) claims that misuse detection systems might be implemented through

one of the following procedures:

1. Expert systems;

2. Signature analysis;

3. Petri nets;

4. State transition analysis.

Expert systems (Jackson, 1990) can represent and reason about a given knowledge base in order

to solve problems. The knowledge translates into facts by adding semantic to it (Debar et al.,

1999), and is interpreted by the inference engine as a set of if-then implication rules - if all the

conditions or facts on the left side of a rule (the if side) are satisfied, the actions on the right

side are carried on. The actions can either trigger other rules or confirm the intrusion. This

clear division between control reasoning and formulation of the solution is the main advantage

of these systems (Kumar and Spafford, 1994b). However, creating good rules is not an easy

task: not only they’re subject to human error, but the data from which the control reasoning

is devised is either insufficient or sequenceless, i.e., there is no default ordering logic to use
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when constructing the rules. These knowledge engineering issues have negative impact on the

completeness of the system (Debar et al., 1999). Other limitation, connected to the system’s

performance, has to do with the use of expert system shells: these require that all audit data

is imported into the shell as facts before reasoning can take place. Model based systems

were proposed by Garvey and Lunt (Garvey and Lunt, 1991) as derivatives from expert systems

(Kumar and Spafford (Kumar and Spafford, 1994b) classify them as actual variations of misuse

detection systems), though armed with additional features. This method bases the detection

on the combination of reasoning with attack scenarios modelled from behaviour information

stored in the database. The system then has an anticipator which considers a subset of these

scenarios - those most likely to happen - and seeks information on the audit data to either

validate or refute them. The information about the next possible behaviour bound to happen

is passed on to the planner, who then decides how will the hypothesised behaviour show itself

in the audit data, translating it to a system dependent audit trail match (Kumar and Spafford,

1994b). As evidence increases for certain scenarios and decreases for others, the active scenarios

(models) list is updated. While model based intrusion detection has the advantage of being

supported by a well grounded mathematical theory, it may place additional burden on the

person that creates the models, as the evidence numbers assigned to each part of the model

should be meaningful and accurate.

Signature analysis systems acquire knowledge the same way as expert systems, but process

it differently. Instead of converting the audit data to facts, the system keeps a semantic

description of the attacks exactly as it can be found in the data. This way, it can create attack

scenarios solely from the sequences of events that the attacks generate, or to from patterns

of data found on the audit trail (Debar et al., 1999). This version of misuse detection is very

efficient, reason for which it is applied for commercial purposes (sections 2.5.3, 2.5.5 and 2.5.6).

A Petri net (Jensen, 1996) is a famous mathematical modelling language used in a variety

of areas such as data analysis, software design, concurrent programming, among others. An

extension of Petri nets, called Coloured Petri nets (Jensen, 1996), harnesses all the power

of the original Petri nets while introducing the power of a high level programming language.

With their generality, conceptual simplicity and graphical representability (Debar et al., 1999),

the task of writing new signatures is simplified even when the signature has a high level of

complexity (although the system administrator should restrain himself from creating overly
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complex signatures, as their matching with the audit data can become potentially expensive

resource-wise). The Intrusion Detection In Our Time, or IDIOT project, uses coloured Petri

nets. The implementation is explained in (Kumar and Spafford, 1994a).

The state transition analysis technique was introduced by Porras (Porras, 1992) on his MSc

thesis, and implemented for the first time - on a UNIX environment - by his colleague Ilgun,

also in a MSc thesis (Ilgun, 1992). This method regards attacks as sequences of actions caused

by the intruder that lead from some initial state (prior to the intrusion) to a compromised

state (when the intrusion is complete), where state is a snapshot of the system representing

the values of all volatile, semi-permanent and permanent memory locations on the system.

Between the two states, there has to be at least one state transition that the intruder performs

to carry out the attack. By identifying the initial and compromised states, the system is capable

of also identifying the key actions, also called signature actions. Signature actions are those

that, if taken out of the attack’s execution, would prevent the attack to complete with success.

Since this approach only recovers the bare minimum of key actions needed, it simplifies the

analysis. Not only that, but it make it easier for the administrator to organize the data using

a representation similar to a state diagram.

Kumar and Spafford also refer to keystroke monitoring in (Kumar and Spafford, 1994b), which

is a method of capturing the user’s keystrokes to determine if an attack will occur. They state

that this procedure has the disadvantages of the general unavailability of user typed keystrokes

and the multitude of different possibilities to represent the exact same attack at a keystroke

level, which means that in order for keystroke monitoring to be robust - or even feasible - from

a misuse detection’s point of view, it would need to analyse the semantics of the actual written

contents, which clearly raises privacy issues.

2.4.2 Anomaly Detection

An anomaly detection system focuses on information about the system’s behaviour (Debar et al.,

1999). It is based on the premise that security breaches can be detected by monitoring audit

data in search of abnormal patterns of system usage, as Denning stated in (Denning, 1987)

when presenting one of the first anomaly detection system definitions. The system starts by

learning the general profile that describes a subject’s behaviour when executing some activity
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that needs to be monitored, and then collects information over which it can infer the subject’s

behaviour at a given time, comparing it to the stored profile - in essence, an anomaly detection

system searches for deviations from normal behaviour (Axelsson, 1998). Note that “subject”

is being used as a generic way of addressing the audited entity - it can be a user, a process, a

network, a set of parameters, etc. If the audited behaviour’s deviation from the learned profile

surpasses a certain threshold or is simply large enough, the activity is considered a possible

intrusion. Although the concept is fairly straightforward, the actual division between anomalies

and normal data is quite challenging to achieve. The reasons for this may vary (Chandola et al.,

2009):

- Defining a normal region is not a trivial task. If, for instance, there are anomalous exam-

ples close to normal data points, the definition of the normal region might be ambiguous,

treating anomalous observations as normal and vice-versa;

- When anomaly detection systems are used to detect malicious behaviour, the attackers

can possibly adapt their intrusion in order to make it appear as normal, thus hindering

the definition of normal behaviour;

- In domains where behaviour is expected to evolve through time, whatever represents

normal behaviour in the present might not be sufficient in the future;

- The exact definition of an anomaly depends on the domain where it is applied: a small

deviation from normal in a medical domain (for instance, a slight fluctuation in body

temperature) might be regarded as an anomaly, while the same deviation in a stock

market domain (for example, variation on the value of a stock) is probably considered

as normal. For this reason, a technique developed for a domain cannot be applied to

another domain in a carefree fashion;

- Availability of labelled data for training and/or validating anomaly detection models

is usually a major issue: there is very little chance that a company’s data about the

behaviour of some entity will be organized, let alone correctly labelled. As such, the

developer will probably have to take a leap of faith and assume that all the data represents

normal behaviour (it actually is relatively safe to make this assumption, as long as the



Chapter 2. Intrusion Detection Systems 30

majority of the examples are normal - the detection will still work fairly well even with

some anomalies amidst normal observations);

- Apart from anomalies concealed within normal regions, real world data tends to be noisy,

which sometimes can make normal examples dangerously similar to anomalies, thereby

blurring the distinctiveness between the two types of data.

With the above information in mind, one can state that anomaly detection systems can be

considered complete, albeit rather problematic when it comes to accuracy (Debar et al., 1999).

Regardless, in cases when the system flags acceptable behaviour as suspicious, the administrator

can, at any time (if the system allows it), mark it as acceptable, so that from then onwards

that same behaviour pattern is treated as such (Pfleeger and Pfleeger, 2003).

As it would be expected, the performance of an ADS is directly influenced by external factors

such as the type of input data and the type of anomalies the system has to deal with. In fact

each case is unique, and the behaviour profile creation algorithm has to be carefully planned

and subsequently tweaked in accordance with these external influences.

2.4.2.1 Input Data

The input of an ADS is in general a set of data instances, often called dataset. Each example of

the set (also commonly referred to as observation, object, record, sample, point, vector, among

others) consists on a set of attributes (also known as features, variables, dimensions, fields)

which define the sample in question. These attributes are generally seen in one of three types

(more types, as well as other conventions, exist):

1. Binary - Only 0 or 1 as possible values;

2. Numeric - Quantitative type. Describes a measurable quantity as a number, which can

either be an integer or a real value;

3. Categorical - Qualitative type. Describes a quality or characteristic of a data point.

These features should be mutually exclusive - an observation cannot have two features

of the same category - and tend to be represented by non-numeric values, although there
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are cases where numbers are used. They can also be further divided into two groups:

ordinal variables, which can be logically ordered in some way (eg. A, B, C) and nominal

variables which have no underlying ordering criteria.

A data point can have one or more dimensions. In the case of multivariate examples, the

dimensions can be of different types. It is the nature of these types that defines which algo-

rithmic techniques can be used to the anomaly detection. For instance, a method that builds

a profile model through numeric operations cannot be efficiently applied to categorical data

represented by non-numeric values. Although, it is possible to alter the raw data into another

type without losing information. In fact, categorical values are almost always translated into a

more basic type, such as numeric or binary, or even broke down into more simple features (the

anomaly detection techniques used, in spite of being efficient, may (and probably will) have

trouble interpreting complex categorical data, such as IP addresses or product names).

Data points can be related to one another. The more common manifestations are sequence

data, spatial data and graph data (Chandola et al., 2009). Sequence data is the case where

the examples are somehow sequentially ordered, e.g., time-series, genome or protein sequences.

Spatial data relates data points to the neighbouring instances. This is the case of vehicular

traffic and ecological data, for instance. When this type of data has a temporal (sequential)

component, it becomes spatio-temporal data, which is the case of climate data for example.

Lastly, in graph data the examples are represented as vertices in a graph, connected to other

vertices with edges. These relations become more relevant when they are taken into account

together with anomaly types.

Finally, the dataset can be either labelled or unlabelled. Data is labelled when each data

instance has a special attribute that specifies the kind of example - normal or anomalous.

The labels are added by a human expert which might require a considerable effort specially

for labelling anomalous data: while normal behaviour is limited to the actual data, anoma-

lous behaviour, often being dynamic in nature, can have a variety of unknown forms. The

labelling will also influence the kind of methods that one can apply to the problem. Supervised

anomaly detection is the name given to the techniques that use datasets with both normal

and anomalous examples labelled. The idea is to build a model able to distinguish between

normal and anomalous classes, and any unseen observation is classified using the model to

define the class in which it belongs, with some degree of assurance. However, there are some
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problems with these methods. Firstly, it is extremely difficult to have enough anomalous data

to accurately represent the anomalous class, as anomalies can take many different forms and it

is impossible to predict them all. Apart from this, the examples available tend to be far fewer

than the normal cases - this will cause the classes to be skewed, which is something that one

should avoid at all costs since it will not allow for a trustworthy detection. Secondly, obtaining

accurate examples of anomalies is remarkably challenging in most cases. In fact, there are

cases where anomalous examples are impossible to recover unless artificial methods are used,

which of course are not optimal. Some of these methods were proposed in (Theiler and Cai,

2003), (Steinwart et al., 2005) and (Abe et al., 2006). The methods that use only one class

are called semi-supervised anomaly detection, and the used class is generally the one repre-

senting the normal behaviour, for the same reasons explained above. Since these techniques

do not have to deal with the same problems as their fully supervised counterparts, they are

more widely applicable (Chandola et al., 2009). The process aims to build a model based on

normal behaviour, and any new data point that does not fit into the model is considered an

anomaly. There are methods that consider the existence of only the anomalous class, such as

in (Dasgupta and Nino, 2000), but these are rarely used, given the problems already stated.

The last method type is called unsupervised anomaly detection, and as the name suggests, the

techniques of this kind do not use labelled data. These techniques do not require training, and

rely solely on the assumption that, in the test set, the majority of the observations represent

normal behaviour - of course, if this assumption does not hold, a high false alarm rate can be

expected. Semi-supervised methods can be adapted to perform in an unsupervised environ-

ment, by sampling a subset of the unlabelled data as training dataset. Of course, this is only

reliable if the same assumption referred above holds (Chandola et al., 2009).

These different methods can be set in a static or online detection environment. On static

anomaly detection, the model is created from a given dataset and remains as it was created

until a new model is needed. Although simpler, this method fails to adapt to changes in the

target’s behaviour. In turn, online anomaly detection is more complex to implement, but can

adapt to changes in behaviour. The disadvantage is that, by slight changes in behaviour over

time, the ADS can be tricked into accepting anomalies as cases of normal activity.
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2.4.2.2 Anomaly Types

Anomalies are data patterns that deviate from the patterns considered as representatives of

normal behaviour. Figure 2.4 depicts an ideal situation, since the data is explicitly separated

(Chandola et al., 2009). The two normal regions, N1 and N2, are where most of the data

examples lie. Observations that are acceptably far away from these regions - points o1, o2 and

region O3 - are anomalies.

Figure 2.4: Anomaly example in a 2D dataset.

According to (Chandola et al., 2009), anomalies can be classified into three different categories:

1. Point Anomalies - If a single data instance can be considered anomalous regarding the

rest of the data, then it is considered an anomaly point. Points o1 and o2 on figure 2.4

are such examples. A simple real life case would be tracking the amount of money one

spends with a credit card. If, on one transaction, the value was way higher compared to

normal activity, the event would be tagged as an anomaly;

2. Contextual Anomalies - If an observation is considered an anomaly only when a specific

context applies, then the data is defined as a set of contextual or conditional anomalies.

The context has to be specified as a part of the problem formulations and is defined

by the attributes of the dataset, which can be one of two types: contextual attributes,
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that determine the context or neighbourhood for the observation (for example, in a spa-

tial dataset, longitude and latitude are contextual attributes) and behavioural attributes,

which define the non-contextual features of the observation (for example, in a spatial

dataset describing the average rainfall around the world, the amount of rainfall in a given

location would be a behavioural attribute). These anomalies are mostly considered in

spatial and time-series data. Again, using the credit card example, the time of purchase

could be a contextual attribute: if a user always spends 100e every month and 1000e in

Christmas, spending 1000e in August would be considered an anomaly.

3. Collective Anomalies - Collective anomalies are the cases where a group of related data

points are compared to the dataset and turn out to be anomalous, even if the individual

examples are considered normal. This type of anomaly can only occur if the observations

have some type of relation between them. Once more, using the credit card example: the

amount of money spent per transaction could be a feature that, in a collective anomaly

perspective, forms a new feature called amount of money spent per day. If the user usually

spends 20e per day, and suddenly spends 50e, this event will be considered anomalous.

2.4.2.3 Profile and Detection

To create the base profile, the system has to monitor the characteristics (or behaviour) of a

target activity over a certain period of time (Scarfone and Mell, 2007). A profile might show for

instance that during a typical workday, 15% of a user’s emails have files attached to them. The

ADS can then choose among a set of well defined methods (sections 2.4.2.4, 2.4.2.5, 2.4.2.6 and

2.4.2.7) to compare current behaviour to this previously defined profile, giving it the ability to

detect anomalies such as when the user starts attaching files to every email, which can possibly

even represent a data leak problem or insider attack.

In the last example, the kind of malicious activities that it could instantiate - consuming

the host’s resources, sending a large number of files or emails through the network, as well as

starting new connections continuously - would easily trigger the ADS responsible for monitoring

the host (Scarfone and Mell, 2007). In (Kumar and Spafford, 1994a), Kumar and Spafford

divide alarms into four different possible types, each one with non zero probability:
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1. Intrusive but not anomalous - When the ADS fails to detect an intrusion, classifying

it as normal behaviour. These situations are usually known as false negatives;

2. Intrusive and anomalous - Ideal situation when the system performs as expected,

correctly detecting malicious activity. These are often called true positives;

3. Not intrusive but anomalous - False positive situation, when the user does not mean

any harm (no intrusive behaviour), but the system still considers his/her activity as

anomalous (very common alarm in misuse detection, due to the nature of the algorithm);

4. Not intrusive and not anomalous - The other ideal situation, where the system does

not raise any issues regarding a benign user’s activity. These situations are commonly

referred to as true negatives.

Note that this particular description considers that the ADS flags anomalies as positive values

and normal behaviour as negative values. Depending on the implemented detection method,

the opposite can also occur. For the rest of this section, the above case will be assumed for

coherence.

Figure 2.5 shows a probability distribution function (or PDF ) representation of ADS

alarms. Both behaviour types follow a normal distribution. The threshold line represents

the decision boundary between what the algorithm considers normal and intrusive behaviour.

The best case scenario would be having the two distribution functions completely separated,

which unfortunately is theoretically unachievable. Instead, the goal is generally to attempt to

minimize both false negatives and false positives. These rates are both deeply connected to the

threshold value, which further hardens the task of minimizing them: as seen in the figure, if

the threshold is set at a low value, the number of false positives will be lower, but the number

of false negatives will increase. On the other hand, if the threshold value is set too high, the

number of false negatives drops, as the number of false positives rises. As a result, the trade-off

between the rates has to be handled with care, also taking into consideration the use that the

ADS is meant for (Jain et al., 2004): the more critical and sensitive information the system

where it is installed handles, the higher the threshold should be, thus avoiding the more critical

false negatives.

Anomaly detection systems, since their conception, go through two distinct phases before they
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Figure 2.5: Alarm situations defined by probability distributions.

are deployed (Patcha and Park, 2007). First comes the training phase which was already

summarily described: it is where the ADS creates a model of the subject’s behaviour. The

dataset used has to contain enough information (of normal behaviour - unlabelled - or both

normal and anomalous behaviour - labelled -, depending on the method) for the algorithm to

build the behaviour profile - the more information there is, the more accurate the profile will

be, but the training will consequently take more time. Axelsson describes two different types

of anomaly systems, regarding the training method (Axelsson, 2000):

Self-learning systems - As the name suggests, a system of this type can start monitoring
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and analysing information and events by itself, and then attempt to build the behaviour

profile through what it observed;

Programmed systems - In this approach, the system needs the administrator to aid in

the construction of the behaviour profile, by manually inputting the information he/she

thinks is relevant.

The generated model can either be static or dynamic (Scarfone and Mell, 2007). A static model

remains unchanged until the ADS is explicitly ordered to generate a new one. Dynamic models

however, adjust over time, as events are observed. They have the advantage to better adapt

to the ever changing system and network configurations, while a static version will become

deprecated in a short amount of time.

When the training phase is over, it yields to the testing phase. Here the resulting model from

the previous phase is tested. The dataset used is composed by (labelled or unlabelled) infor-

mation either solely about normal behaviour or both normal and intrusive behaviour, so that

careful and precise tweaking of the detection method is possible. This phase is essential to

calibrate the ADS, even if in the cases when anomalous information is used, all of the intrusion

possibilities are not covered (which is indeed an impossible level of detail to achieve). After

testing and calibrating, the ADS is ready to be deployed. When a new instance appears, it

will be processed by a classifier algorithm using the model as reference. The output, depending

on the implementation, will be either a score or a label. The score, or anomaly score, can be

compared to a predefined threshold, and the result of this comparison defines if the observation

is normal or anomalous. In this case, multiple levels (multiple thresholds) can be defined, thus

ranking anomalies by score which can translate to the seriousness of the threat. On the other

hand, a label simply tells immediately if the example was considered normal or anomalous.

Besides the high possible rate of false alarms - along with the difficulty of choosing a thresh-

old value - and the possible large amount of time that it might take to train the algorithm,

anomaly detection systems are far more complex to implement than misuse detection systems.

Different architectures and methods have been proposed for anomaly detection over the years.

The most common methods to implement an ADS are statistical methods (Javitz and Valdes,

1991, Manikopoulos and Papavassiliou, 2002) and data mining methods (Lee and Stolfo, 2000,

Portnoy et al., 2001), the latter usually translating into classification (Lane and Brodley, 1997,
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Shon and Moon, 2007)3 or clustering, although other methods were still developed or tested -

expert systems (Denning, 1987, Dowell and Ramstedt, 1990, Vaccaro and Liepins, 1989), com-

puter immunology (Forrest et al., 1997), user intention identification (Spirakis et al., 1994,

Spyrou and Darzentas, 1996), and a few other approaches (combinations of different methods

are also possible (Javitz and Valdes, 1991)).

2.4.2.4 Statistic and Probabilistic Methods

Statistical methods for anomaly detection have their foundation on a single key assumption

(Chandola et al., 2009): normal data instances occur in high probability regions of a stochastic

model, while anomalies occur in the low probability regions. These techniques fit a statistical

model to the data - most commonly for the normal behaviour -, so that they can afterwards

infer if an unseen behaviour instance belongs to this model or not. If this instance has a low

probability of being generated by this model, it is classified as an anomaly. The model can

be fit either through parametric or non-parametric methods, the only difference being that

parametric techniques use a fixed number of parameters as they know beforehand the nature

of the distribution, whereas non-parametric methods have no such knowledge, thus increasing

the number of parameters as the quantity of audit data available increases.

With parametric techniques, the anomaly score of an observation x is the inverse of the prob-

ability density function, f(x,Θ), Θ being the set of parameters estimated from the audit data

(Chandola et al., 2009). Another option is to use a statistical hypothesis test, where the null hy-

pothesis H0 states that the observation or instance x has been generated through the estimated

distribution. Hence, x is considered an anomaly if the statistical test refutes H0. Parametric

methods can be classified with regard to the nature of the distribution:

Gaussian model based - Methods of this type expect that the data is generated from a Gaus-

sian distribution. The parameters are estimated using Maximum likelihood Estimates, or

MLE, and the distance of the instance to the estimated mean is its corresponding anomaly

score (Chandola et al., 2009). To then decide if the observation is an anomaly or not, its

3Note that the previous references are directed to some implementation methods, and not the most known
implementations themselves.
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score is compared against a threshold. Different techniques will use different thresholds,

and different measures to obtain the anomaly score.

Regression model based - Anomaly detection techniques based on regression models are di-

vided into two steps. Firstly, a regression model fits the data. Afterwards, for each test in-

stance, the residual for the instance is used to compute the anomaly score (Chandola et al.,

2009). This residual is the portion of the instance that cannot be explained by the re-

gression model, and its magnitude can actually be used as the anomaly score (though

other measures also exist). Problems might arise if the training data has anomalies, as

the generated parameters can be influenced, thus rendering the regression model inac-

curate. Fortunately there are techniques to deal with anomalies on training data, such

as the popular robust regression (Rousseeuw and Leroy, 1987). Regression is often also

considered as a classification method.

Mixture of parametric distributions - Techniques of this nature can be categorized into

two subsets. The first one is comprised by techniques that model normal observations

and anomalies as distinct parametric distributions (Chandola et al., 2009). The testing

phase for this subset has to determine which distribution - normal or abnormal - the test

instance belongs to. Abraham and Box, in (Abraham and Box, 1979), assume that both

normal and abnormal data sets follow a Gaussian distribution, the latter having a larger

variance - N(µ, σ2) and N(µ, k2σ2), respectively. The test observations are tested using

the Grubbs ’ test, which is used to detect anomalies in a univariate dataset (Grubbs, 1969)

(also called maximum normed residual test), and flagged accordingly to the result. Other

methods were also proposed, for instance, in (Abraham and Box, 1979, Eskin, 2000).

The second subset’s techniques model only the normal observations as a mixture of para-

metric distributions (Chandola et al., 2009). A test instance is flagged as an anomaly if

it does not belong to any of the models. These techniques have mostly used Gaussian

mixture models (Agarwal, 2007).

Finally, non-parametric methods. With these techniques, the model is not initially known, but

instead derived from the data. They also make fewer assumptions regarding the data, when

compared to parametric techniques (Chandola et al., 2009). Some of these techniques are as

follows:
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Histogram based - With this technique, histograms are used to maintain the normal data

profile. Techniques of this category are often referred to as frequency or counting based

(Chandola et al., 2009), and require normal data to build (Javitz and Valdes, 1991) -

if labelled anomalous data is available, anomaly histograms can be constructed as well

(Dasgupta and Nino, 2000).

A basic implementation for univariate data is defined in two steps. The first step is

building an histogram based on the values corresponding to a given feature on the training

data. In the next step, the test instances are tested by the algorithm, in order to see

if they fall into any of the histogram’s bins. If they do, they are considered normal; if

they do not, they are flagged as anomalous (Chandola et al., 2009). A variant of this

technique implies the association of an anomaly score to each test instance, regarding the

frequency of the bin in which it falls. The size of the bin is also relevant: if the bins are

small, a large number of test observations will fall into empty or low bins, resulting in a

high false alarm rate. If, however, the bins are large, anomalous instances will fall into

frequent bins, thus raising the number of false negatives. Consequently, optimizing the

size of the bins is a main challenge of this technique (Chandola et al., 2009).

The basic technique for multivariate data is to construct attribute-wise histograms. This

means that, for each test observation, the anomaly score for each of its attributes is

calculated as the height of the histogram that contains that attribute. The per-attribute

scores are then aggregated to obtain the final, general score. A variant of this method is

applied in (Mahoney and Chan, 2002).

Kernel function based - Methods based on kernel functions are similar to parametric meth-

ods described before. The main difference is the density function estimation technique

used (Chandola et al., 2009). A possible technique of sorts is the parzen windows estima-

tion (Parzen, 1962). For example, Desforges (Desforges et al., 1998) proposed a method

to “identify abnormal or unexpected conditions from measured response data”, where

they estimate the pdf function through a kernel method.

Below are some advantages in using statistical methods (Chandola et al., 2009):

- If the assumptions about the data distribution hold true, the method is then a statistically

justifiable solution for anomaly detection;
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- The anomaly score obtained is related to a confidence interval, which can be further used

as additional information when making a decision for any test observation;

- If the distribution estimate phase stands firm against anomalies in data, then it can

operate under an unsupervised setting with no need for labelled training data.

And some considerable problems (Chandola et al., 2009):

- Statistical methods rely heavily on the assumption that data is generated from a par-

ticular distribution. This assumption is often false, especially when dealing with highly

dimensional datasets;

- Choosing the best statistic to implement is not always a straightforward task (Motulsky,

2014);

- Histogram based techniques, though fairly simple to implement, fail to capture the in-

teractions between different attributes, when applied to multivariate data. An anomaly

can potentially have attribute values that are quite common individually, while their

combination is extremely rare.

2.4.2.5 Data Mining

Intrusion detection can be seen from a data-centric point of view as a data analysis process

(Lee and Stolfo, 2000). Data analysis is not a trivial task to be done manually. It becomes even

harder and rather inefficient in cases where the most important patterns that can be found are

not visible to the naked eye. Given this, when confronted with data to be analysed researchers

normally resort to data mining. Data mining is a subset of computer science that aims to

uncover hidden patterns from typically large and multivariate datasets. Often, authors blend

data mining with classification. As an example, Patcha and Park describe neural networks

and support vector machines in (Patcha and Park, 2007), which are typically associated to

machine learning (a subset of classification), as data mining methods. The concepts are in

fact similar, which creates the need to distinguish them clearly. Data mining techniques are

executed by a human in order to find, as stated before, unknown patterns in data. Machine
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learning, on the other hand, can be carried without direct human interaction, and its goal

is to predict behaviour based on known patterns that it learns in the training phase. Even

knowing the definition of each concept, it still is troublesome to distinguish them, as they tend

to overlap each other: data mining uses classification techniques, in spite of the different goal;

classification uses data mining methods, either as a preprocessing step (to improve the accuracy

of the learning phase) or as unsupervised learning.

Data mining can also be understood as a superset of all these similar technologies - statistics,

machine learning, pattern recognition and matching, etc - as they all are used to find some

type of information in a database or dataset (John, 1997). With time, it became a business

intelligence buzzword with a life of its own4.

Data mining is the data analysis step in KDD, or knowledge discovery in databases

(Fayyad et al., 1996a). KDD corresponds to the whole process from data gathering to the

output of meaningful data patterns. To better understand data mining, one should understand

the KDD process as a whole. This process is divided into several steps that may vary in

number between publications but, in the end, the definition of the whole process holds for

every case. The steps here described follow the line of thought in (Fayyad et al., 1996b), and

are illustrated in figure 2.6 (although there are boxes representing more than one step given

their deep connection).

The first thing to do is to completely understand the application domain. One has to

understand the goal of the application and everything relevant to the achievement of that goal.

An incomplete knowledge of the domain might force one to go back to this first step when he

or she is already writing code. After this step, it is time for the data selection. The developer

has to dig deep into all the data of the application domain, and uncover all the relevant infor-

mation to construct the initial dataset. When the initial data is selected and the raw dataset

is ready, it still has to be preprocessed and cleaned. In these two phases, the idea is to clear

the dataset from noise, outliers - or at least account for them -, define strategies to handle

missing values and/or DBMS related issues such as data types or data redundancies. As this

point, the data is ready to the next stage, which regards its reduction and/or projection.

The goal is to select and extract useful features that are representative and informative about

4The book “Data Mining: Practical Machine Learning Tools and Techniques”(Witten et al., 2011) was
once called “Practical Machine Learning” - “data mining” was introduced later for marketing purposes
(Bouckaert et al., 2010).
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Figure 2.6: KDD process breakdown.

the data, as well as using dimensionality reduction or other transformation methods to reduce

the number of actual variables in the dataset. One of the most well known dimensionality

reduction algorithm is called Principal Component Analysis, or PCA. This statistical

procedure is capable of two different, yet related, goals: to allow for a visualisation of the data

when searching for more obvious patterns (particularly useful with high dimensional datasets)

and to dim the effects of the curse of dimensionality. This means that for a dataset consisting

of a large number of correlated variables, PCA will try to reduce the number of variables while

trying to maintain as much as possible of the variance present in the dataset (Jolliffe, 2002).

The reduction is achieved by transforming the old, correlated variables into new uncorre-

lated variables, which are then ordered by descending order in variance level, so that the first

few retain most of the variance present in all of the original dataset. The new values are linear

combinations of the old values (Jolliffe, 2002). After running PCA, it may be possible to still

reduce even further the dimensionality of the dataset, as the first few new variables - called

principal components - might hold most of the variance of the original dataset, which allows for

the rest of the variables to simply be ignored with minimal loss. The plotting of the principal

components leads to the visualisation objective: when plotting them against each other, the

importance of certain features over others as well as certain patterns might be uncovered.

The next stage of the KDD process is, finally, data mining. In (Fayyad et al., 1996b) this
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stage is divided into three different steps. The first step is to choose the purpose of the out-

putted model by the data mining algorithm - whether it should classify, summarize or cluster,

for instance. The second step involves choosing the actual data mining algorithm. This

step is highly dependant of the type of data available, and should conform to the purpose

of the KDD process - for instance, the developer might be more interested in understanding

the model, rather than in its predictive power. The third and final step is the actual data

mining, i.e., creating a model from the dataset that is capable of uncover important patterns

in a particular form depending on the chosen algorithm. After the data mining stage, come

the two final steps: the interpretation of the data, which consists on analysing the uncovered

patterns, inferring their usability and relevance (there might be the case where patterns are

irrelevant or redundant) and translating the useful ones to a form that humans can understand,

and the usage of the newly uncovered knowledge, which can mean different things, such as

incorporating the knowledge into a system that can act according to it, document and report

the knowledge to any interested parties, or comparing the knowledge to its previously believed

or extracted counterpart. An important aspect of the KDD process is that, at any step, one

can move back to an already cleared step if needed.

As it was already stated, data mining for anomaly detection is commonly implemented through

classification and clustering. These methods are clarified in the next sections.

2.4.2.6 Classification

Classification has three most commonly used formats: supervised, semi-supervised and unsu-

pervised learning, which were already referred in section 2.4.2.1. These procedures are im-

plemented under the assumption that a classifier who can distinguish between normal and

anomalous data can be learnt in the feature space (Chandola et al., 2009). The built model

can be one of two types: one-class and multi-class. One-class classification based anomaly

detection methods assume that the training dataset has only one class label. These procedures

learn how to implement a discriminative boundary around the normal instances, treating ev-

erything out of that boundary as anomalous. On the other hand, multi-class methods are used

when the training dataset has labelled instances belonging to more than one normal class -

even so, there can exist anomalous cases that do not belong to any of the classes. For each
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class, there is a classifier. Some variants of this method associate a confidence level with the

prediction made. Figure 2.7 depicts an example for each classification type (Chandola et al.,

2009).

Figure 2.7: Classification procedures.

A typical classification algorithm estimates a decision function f : RN 7→ {±1} for the training

data, that is, a dataset D of l observation vectors ~xi with n dimensions and class labels yi,

such that f will correctly classify new examples (~x, y), i.e., f(~x) = y. This function has to

be carefully selected since, if no restriction is imposed, it is possible to obtain a function that

outstandingly classifies training data in a correct way, but fails with test and unseen data.

This is known as overfitting and is a common mistake. Regardless, cases where the function

is just too simple to properly fit the data, not even showing acceptable performance with the

training set, also occur, and this is called underfitting. To avoid these two extremes, one

should search for a function in between the two cases that generalizes for different datasets.

As of today, there is one off the shelf classification method that has been the centre of atten-

tion for both its relatively simple implementation and, most importantly, its effectiveness. This

method is called Support Vector Machine classification, or SVM, and it was originally designed

for binary (two-class) classification only (Boser et al., 1992, Cortes and Vapnik, 1995), in a su-

pervised learning environment. Over the years, new formulations arrived, and today SVM can

be used for classification, regression, feature extraction, distribution estimation, among other

similar operations, in supervised, semi-supervised or unsupervised learning environments.
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In the original SVM concept (all the others branch from it), the SV classifier will be a hyper-

plane defined as

~wT · ~x+ b = 0, w ∈ RN , b ∈ R, (2.1)

which corresponds to the decision function

f(~x) = sign(~wT · ~x+ b), (2.2)

where ~w is a weight vector normal to the hyperplane and the independent term b is known as

the bias, and it translates the hyperplane away from the origin. An infinite number of hyper-

planes exists, but the optimal hyperplane is the one that establishes the largest possible margin

between the closest data points to it - the so called support vectors. These observations com-

pletely define the optimal hyperplane, so if they are corrupted by noise or not informative, the

algorithm will not do well. Figure 2.8 illustrates a simple example where a hyperplane (the

line in the middle) separates red balls from blue balls with the largest margin. The optimal

Figure 2.8: Graphical example of linear classification with the SVM algorithm.
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hyperplane is perpendicular to the shortest line connecting both convex hulls (dotted boxes

enveloping the classes), intersecting its midpoint (hence, at the same distance from both sides).

This shortest line corresponds to the distance between the parallel hyperplanes ~wT ·~x+ b = −1

and ~wT · ~x + b = +1, i.e., the size of the margin which, through these hyperplanes, can be

mathematically reduced to 2
‖~w‖ , as shown in the figure. Having said that, since the algorithm

wants to maximise the margin, it will in reality try to minimise ‖~w‖. In addition, constraints

are needed in order to assure that the data points are correctly classified. In a more formal

perspective,  ~wT · ~xi + b ≤ −1 if yi = −1

~wT · ~xi + b ≥ +1 if yi = +1
(2.3)

which can be rewritten as simply

yi · (~wT · ~xi + b) ≥ 1. (2.4)

By joining equations 2.2 and 2.3 with the minimisation of ‖~w‖ (which will hereafter be used

as 1
2
‖~w‖2 for convenience, as both are equivalent), the primal formulation of linear SVMs is

achieved:

min
w,b

1

2
‖~w‖2

s.t. yi(~w
T ~xi + b) ≥ 1,

i = 1, ..., l,

(2.5)

Figure 2.9: An outlier’s influence on the defini-
tion of a hard margin.

which is a quadratic program of n variables

(the dimensions). However, there are two

problems with this formulation: it is ex-

tremely sensible to outliers and it will not

work for nonlinearly separable data. There

cannot exist a single data point inside the

margin or on the wrong side. For this reason,

it is called a hard margin. This can, and will

certainly cause problems when choosing the

best hyperplane. For instance, for the outlier

case, consider the example on figure 2.9. The
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outlier from the blue class becomes a support vector, and forces the algorithm to choose a

non-optimal hyperplane. To fight this, slack variables are introduced into the optimisation

problem, turning the hard margin into a soft margin. There is a slack variable ξ for each data

point, which measures the deviation of an observation from the ideal. In other words, if ξ > 1,

the observation is on the wrong site of the hyperplane (hence, misclassified); if 0 < ξ < 1, the

data point is indeed on the right side, but inside the margin; finally, if ξ < 0, the example is

on the right side and behind the margin. Since every constraint can be satisfied if ξ is large

enough, there is a need to control its size. So, to control the sensibility of the SVM to the

outliers, there is a regularisation parameter C. The larger the value of C is, the harder it

is to ignore the constraints - this causes the margin to be narrow, and if C is large enough the

algorithm creates a hard margin. On the other hand, a lower C provides for a larger margin,

as the constraints are more easily ignored. The value for C has to be chosen manually, and it is

quite a daunting task since there are a myriad of possibilities. A frequent option is to choose it

through cross validation, which is statistical model validation technique capable of asserting

how will a model generalise.

The problem definition is know slightly more complex:

min
w,b,ξ

1

2
‖~w‖2 + C

l∑
i=1

ξi

s.t. yi(~w
T ~xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l,

(2.6)

Figure 2.10: Classification with soft margin.

Figure 2.10 illustrates the previous example,

but now with a soft margin. Notice that while

the outlier point is misclassified, the margin is

now quite large, thus providing better gener-

alisation. Regarding nonlinear classification,

slack variables also play a part. However, this

type of classification is only possible due to

another “trick” related to the dual formula-

tion of the SVM. It is not necessary to ap-

proach this formulation formally as it is not
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needed to grasp the basic theory of the algorithm - it also uses Lagrange multipliers, which are

not trivial to understand. Be that as it may, the dual formulation uncovers a property of the

SVM algorithm that, basically, is responsible for its predictive power with nonlinear data: the

algorithm needs only the computed dot products between data points, instead of the whole

training data. The two most important aspects of this trait are that this way the number of free

parameters is bounded by the number of support vectors and not by the number of dimensions

(which is indeed good news given the existence of complex datasets with an extremely high

number of dimensions which would immediately cause a performance bottleneck), and that the

dot product can be replaced by a kernel. In the SVM context, a kernel function is of the form

K : RN ×RN 7→ R, and its power advents from its capability of computing dot products in a

high-dimensional space RM while remaining in RN . In a more mathematical way,

K(~xi, ~xj) = 〈φ(~xi), φ(~xj)〉M , ~xi, ~xj ∈ RN (2.7)

where 〈·, ·〉M is an inner product of RM ,M > N, and φ is defined as φ : RN 7→ RM . The

impact of the kernel trick cannot be stressed enough. It is one of the most important properties

of SVM s, as it provides a solution to Cover’s theorem: “A complex pattern-classification

problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable

than in a low-dimensional space, provided that the space is not densely populated” (Cover,

1965). Figure 2.11 depicts the usage of a kernel to uncover a linear decision boundary on

a dimensional space higher than original. Note that this is a simple case for demonstration

purposes only. Real world problems can have millions of dimensions, which are not humanly

visualisable. The most frequently used and known kernel is the Radial Basis Function kernel,

or RBF, but others such as the polynomial, linear or sigmoid kernels are also a common

choice. Kernels often have parameters that need manual setting. The RBF, polynomial and

sigmoid kernels all require a parameter γ to be defined previously to their usage. The value

can be decided through cross validation, much like parameter C from the SVM algorithm. In

fact, one option that is often resorted to in this case is to perform a grid search with cross

validation, that is, test the algorithm with different pairs of (C, γ), and then picking the pair

with the best cross validation accuracy (Hsu et al., 2003).
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Figure 2.11: Although the decision boundary is linear in R3, it is nonlinear when trans-
formed back to the input space R2.

With the use of kernels, the formulation of the optimisation problem changes yet again:

min
w,b,ξ

1

2
‖~w‖2 + C

l∑
i=1

ξi

s.t. yi(~w
Tφ(~xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l

(2.8)

When solved with Lagrange multipliers (recall the dual formulation) the decision function also

changes to

f(x) = sign(
l∑

i=1

αiyiK(~x, ~xi) + b), (2.9)

where αi is the ith Lagrange multiplier. Figure 2.12 illustrates the same toy example of fig-

ure 2.8, now complete with more information regarding the discussed concepts.

The beauty of the SVM algorithm is in its relatively simple mathematical basis. In fact,

although the models developed can get highly complex, one does not need to be an expert in

learning theory in order to understand the algorithm that builds the model, as it can bee seen

as a linear algorithm in a possibly high-dimensional feature space nonlinearly related to the

input space. Note that no computations are performed in this high-dimensional feature space,

as the use of kernels allows for all the necessary computations to be performed on the input
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Figure 2.12: The same example of figure 2.8, now more complete information-wise.

space. Consequently, in spite of the algorithm actually having a respectable degree of complex-

ity attached to it, one can “pretend” to simply be working with a linear, basic algorithm, and

still be able to solve nonlinear problems (Hearst et al., 1998).

Unfortunately, in the anomaly detection area it is not always possible to implement a binary

classification process with SVM s. The truth is that anomalies are often scarce, while there is

an abundance of normal examples. It is not unusual to have two or three anomalous exam-

ples per hundreds or thousands of normal ones. In cases like these where one of the classes

is skewed, a binary SVM will likely have trouble correctly classifying observations, as the

available information for one of the sample types is too limited. This is actually a disadvantage

of the method: the algorithm will not perform well if there is not enough data for training. So

the solution is either to acquire more anomalous information or conduct the classification with

some other method. However, obtaining more information is not always possible. So, to tackle

this problem, methods derived from the standard binary classification capable of working with

only one class have been proposed. More specifically, the one-class ν-SVM proposed in
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(Schölkopf et al., 1999) and Support Vector Data Description5, or SVDD, proposed in

(Tax and Duin, 1999). Although their purpose is similar, the methods are distinctly different.

The ν-SVM method attempts to find a hyperplane that separates the data points from the

origin with the largest margin possible. It defines a small region where it tries to encompass

the most observations possible. The quadratic program is

min
w,ρ,ξ

1

2
‖~w‖2 +

1

νl

l∑
i=1

ξi − ρ

s.t. ~wTφ(~xi) ≥ ρ− ξi,

ξi ≥ 0, i = 1, ..., l

(2.10)

and the decision function (again, with Lagrange multipliers so that kernels are usable)

f(x) = sign(
l∑

i=1

αiK(~x, ~xi)− ρ). (2.11)

The hyperplane is defined through w and ρ, and notice how there is a ν instead of a C. This

regularisation parameter is similar to C, but it is bounded between 0 and 1 (C just has to be

a positive value), and has a very precise definition: it sets an upper bound on the fraction of

outliers and a lower bound on the number of data samples that become support vectors. So,

for instance, if ν = 0.5, at most 50% of the observations will be misclassified, while at least

50% of them will become support vectors. Graphically, this type of classification will be similar

to figure 2.10, with the red balls being the anomalies.

The other method, SVDD, takes a different approach. Instead of a hyperplane, it uses a

hypersphere. This hypersphere is defined by a centre a and a radius R > 0. It considers normal

everything that stands within the radius of the sphere, and anomalous everything out of it.

The optimisation problem is

5Initially the name was support vector domain description, as the title in (Tax and Duin, 1999), but later
the authors dropped the “domain” and replaced it with “data”.
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min
R,a,ξ

R2 + C
l∑

i=1

ξi

s.t. ‖~xi − a‖2 ≤ R2 + ξi,

ξi ≥ 0, i = 1, ..., l

(2.12)

C influences the size of the sphere - a larger C induces a smaller R. However, this C is also

bounded much like the ν in the previous method, but the lower bound is 1/l instead of 0.

Figure 2.13: SVDD example.

The upper bound is still 1, but it is not a

strict upper bound - the algorithm will still

function with C > 1, although it is point-

less since for C ≥ 1, the SVDD searches for

a hard margin. A possible example of this

type of classification is depicted in figure 2.13:

the blue dots are the normal class observa-

tions (with one misclassification), the green

ones the support vectors, and the red ones

the anomalies.

SVM s are nowadays widely used, but even

with all the hype around them, they are not

the only relevant classification algorithm. Other frequently used techniques are as follows:

Neural networks - A neural network is a machine learning algorithm that can be applied

both in a one-class and multi-class settings. A basic multi-class neural network ADS

operates in two steps (Chandola et al., 2009). First comes the training phase, so that

the neural network can learn about all the different normal classes. Second, the testing

phase, where the test dataset is fed to the neural network - it considers examples of

normal behaviour those test inputs that it accepts, and examples of anomalies those it

reject (De Stefano et al., 2000). Replicator Neural Networks have been used for one-class

anomaly detection (Hawkins et al., 2002), where a multi-layer feed forward neural network

is constructed with the same number of input and output neurons, which correspond to

the features in the data. The training here involves data compression into three hidden
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layers. At the testing phase each data instance is reconstructed using the learnt network

to obtain the reconstructed output.

Bayesian networks - This machine learning method is used for the multi-class design of

anomaly detection. A basic technique for a univariate dataset using näıve Bayesian

networks estimates the posterior probability of observing a class label on a certain test

observation. The class label with the largest posterior is the chosen one. The training set

is assumed to have independent attributes, and provides the estimations for the likelihood

of observing the test instance given class and the class probabilities - the zero probabil-

ities are smoothed with Laplace smoothing. It is possible to generalize this method for

multivariate datasets by aggregating the per-attribute posterior probabilities for each test

observation, and using that aggregated value to classify the observation (Chandola et al.,

2009).

Rule based - A rule based ADS learns rules to capture the normal behaviour of the system

(Chandola et al., 2009). If no rules are applicable to a test observation, it is considered

anomalous. These methods exist for both one-class and multi-class designs. For multi-

class, the basic algorithm has two steps. The first one is, of course, the learning phase,

where it learns rules from the training data using a rule learning algorithm, such as

decision trees. Each rule has a confidence value associated to it, proportional to the

ratio between the test instances where the rule is verified and the total of test instances

that the rule covers. The second step consists in finding, for each test instance, the rule

that best captures it. The inverse of the confidence associated with the best rule is the

anomaly score of the test instance. Another type of rule based technique for one-class

anomaly detection, called associative rule mining, is defined in (Agrawal et al., 1993),

and it generates rules from data following an unsupervised strategy.

Below are some advantages of classification techniques (Chandola et al., 2009):

- Classification methods, especially for multi-class settings, are very powerful;

- The testing phase is relatively fast, since the test observations need only to be compared

against the learnt model.
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As well as disadvantages (Chandola et al., 2009):

- If the labels for the normal classes are not accurate, multi-class techniques will struggle

to provide acceptable results;

- These techniques label the test instances, which is not always the desirable option, namely

when meaningful anomaly scores are more important than just knowing the class where

the instance belongs to.

2.4.2.7 Clustering

Clustering is a technique whose goal is to define patterns in data by organising the obser-

vations into groups or clusters. The organisation criteria of the groups is the similarity

between observations: similar examples will be closer to each other, while not so similar ex-

amples will be farther away. Figure 2.14 exemplifies a case with three distinct clusters. This

kind of method assumes that the normal observations belong to large and dense clusters,

while anomalies will be isolated or grouped in very small clusters (Chandola et al., 2009).

Figure 2.14: Clustering example. Black points
represent outliers.

It can be used in a semi-supervised setting, by

clustering normal data to create a model of

the accepted behaviour - if any new instance

does not fit into any of the clusters generated

or not even close to one, it is considered an

anomaly. On the other hand, this method

is also a wise choice in unsupervised environ-

ments. The reason for this is somewhat intu-

itive: if the data is unlabelled, there is no way

to isolate observations in order to distinguish

them. Therefore, through clustering analysis

it may be possible to separate the data into

clusters, thus providing a safe method of iden-

tifying differences between the various examples, or even labelling them. One of the best known

clustering methods is the K-Means clustering algorithm. This algorithm aims to divide the
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dataset into k clusters in which each data point belongs to the cluster with the nearest mean.

To create the clusters, k centroids must be defined in strategic locations, as their positioning

dictates the final result - a sane choice is to place them as far away from each other as possible.

With the centroids defined, the next stage is take each observation and link it to the closest

centroid. When no points remain, new centroids are calculated as the barycentres of the clus-

ters that resulted from the previous stage. At this point, the process starts repeating itself,

until the newly calculated centroids are the same as the previously calculated ones.

Besides the advantage of not needing supervised data, clustering analysis is also easily adapted

to online anomaly detection. In spite of this, there are some drawbacks: these algorithms tend

to be computationally expensive, and if normal observations do not create clusters, the method

will probably fail. Also, in high dimensional spaces, the distances between points might be sim-

ilar, and by consequence the formed clusters might not mean anything useful (Chandola et al.,

2009).

2.4.3 Hybrid Approach

Misuse detection and anomaly detection can be combined to form a hybrid system (Depren et al.,

2005, Lunt et al., 1992). Both misuse and anomaly systems have their advantages and disad-

vantages. By bringing both systems together, their weaknesses can be strengthened while

keeping the advantages of both sides. The advantages can even be combined to generate new

ones. For example, as Patel and Buddhadev described in (Patel and Buddhadev, 2013), their

hybrid system will create new signatures for misuse detection through the data analysed by

the anomaly component.

2.5 Real World Applications and Prototypes

Intrusion detection has come a long way from a simple log analyser on a single machine to a

necessary monitoring and protection system distributed throughout machines on a network.

Some IDS s made it to the market, while others did not go pass prototyping. Some market

IDS s and influential prototypes are presented below.
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2.5.1 TypeWATCH

TypeWATCH is Watchful Software’s second product. TypeWATCH is an anomaly detec-

tion system that leverages the power of keystroke dynamics through its biometric properties

in order to build user profiles and detect intrusions. Monrose and Rubin presented a set

of results strongly supporting the hypothesis of using keystroke dynamics as a biometry in

(Monrose and Rubin, 2000) - the typing rhythm, speed, certain habits and behaviours that

users demonstrate when interfacing with a keyboard. TypeWATCH arrives years later as a

MSc thesis (Ferreira et al., 2011), and it only became more powerful ever since.

TypeWATCH is an HIDS with two distinct phases. The first one, called the enrolment phase,

prompts the user to generate his/her profile. When the user enrols, TypeWATCH starts col-

lecting a set of keystroke metrics such as flight times between keys and dwell times. Note that

TypeWATCH does not register what the user inputs. A set of these metrics comprise a sam-

ple, and after thirty samples are recorded, the enrolment phase ends, and TypeWATCH is now

ready to enter the monitoring phase and detect intrusions: as the user works, TypeWATCH

records his/her keystrokes. When a certain keystroke threshold is reached, TypeWATCH com-

pares the newly generated sample against the user’s learnt profile stored in the database - If

the anomaly score (the difference between the profile and the new sample) surpasses a prede-

termined limit, the user is considered an intruder, which may lead TypeWATCH to engage in

post-intrusion activities - system lock down, sending an email to the user, sending a picture of

the intruder or a text message to the user’s smartphone, among other possibilities - or simply

prompting the user to type in his/her password, as the IDS makes a distinction between the

severity of intrusions in order to mitigate false alarms.

2.5.2 IDES

IDES (Lunt et al., 1992) stands for Intrusion Detection Expert System, and was the first fully

functional IDS built. Its development began in 1984 at SRI International for a government

project, and it led to Dr. Dorothy Denning, using her research and development work at SRI,

to publish her immensely influential work, “An Intrusion Detection Model”(Denning, 1987), in

the same year (Innella, 2001).

http://www.sri.com/
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IDES was an HIDS built to monitor logins, command and program execution, file and de-

vice accesses, among others, looking for deviations in usage, while also using an expert system

to match intrusions to already encoded intrusion scenarios, thus providing a hybrid detec-

tion method. IDES was later restructured, becoming the Next-generation Intrusion Detection

Expert System, or NIDES (Anderson et al., 1995).

2.5.3 Haystack

Haystack (Smaha, 1988) was a HIDS developed in 1988, by the Haystack project at Lawrence

Livermore Labs, for the United States Air Force. As a misuse IDS, Haystack analysed audit data

and searched for known attacks. Regardless, Haystack was also capable of anomaly detection,

as it could compare user behaviour with their past behaviours and, in a more generic way, infer

about the accepted generic behaviour of a particular group of users. The last generation of the

technology was released in 1989, and went by the name of Stalker (Innella, 2001). Haystack

was also incorporated in prototype called Distributed Intrusion Detection System, or DIDS

(Snapp et al., 1991), which could monitor the hosts connected to a network.

2.5.4 NSM

Network Security Monitor (Heberlein et al., 1990) was the first NIDS to come to life. This

system was deployed at major government facilities, where network traffic analysis could po-

tentially offer a large amount of information (Innella, 2001). The goal of this anomaly based

IDS was to develop profiles of usage of network resources, and then identify possible breaches

by comparing the current behaviour against the historical profile (Heberlein et al., 1990).

Heberlein’s contributions with NSM were extended to the DIDS project, where, along with

the Haystack team, he created the idea of a hybrid intrusion detection system (Innella, 2001).

2.5.5 RealSecure

RealSecure is an IDS currently owned by IBM (IBM). It was created in 1997 by a leading

security company at the time, called Internet Security Systems, or ISS, that was bought by

https://www.llnl.gov/
https://www.llnl.gov/
http://www.ibm.com/us/en/
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IBM in 2006. RealSecure is a robust NIDS that relies on both misuse detection and protocol

analysis (Systems, a,b).

2.5.6 NetRanger

NetRanger was developed at WheelGroup. It was a misuse based NIDS. WheelGroup was

bought by Cisco in 1998. With this turn in events, NetRanger was re-engineered and re-

branded, and is now known as the Cisco Systems Adaptive Security Appliance (Cisco).

2.5.7 Snort

Snort is a free and open source NIDS developed by Sourcefire, which was acquired by Cisco

near the end of 2013. It combines the three detection methods already approached - misuse,

protocol and anomaly based - to perform real-time traffic analysis and packet logging on IP

networks, in order to detect a wide variety of network attacks and probes.

2.6 Conclusions

Intrusion detection is an extremely vast subject. Since there is still no perfect solution (and

probably never will be), the problem is still target of deep investigation and study, and as seen

with the survey above, the solutions branch into a variety of methods, that in turn tap into

different fields in engineering and mathematics.

From the main intrusion detection types discussed, i.e., misuse and anomaly detection, the

latter is the one that fits perfectly into the problem at hands. On the other hand, anomaly

detection is also the hardest of the two problems, not only for the inherent complexity of the

system’s design and implementation, but also for the need to deal with an immense number of

false positives (normal behaviour observations that are misinterpreted by the system as anoma-

lies) after deployment. Of course, tuning and tweaking the detection algorithm will certainly

help in reducing the false positive ratio, but nothing can fully prepare the system for the real

world, as anomalies can appear in ways that are not predictable in a timely fashion by the

http://www.cisco.com/
http://www.snort.org/
http://www.sourcefire.com/
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engineers responsible for the project.

Based on the explored literature, the preferred type of detection algorithms in problems of this

nature seems to be the classification type. More specifically, neural networks and SVM s. The

reason for the preference is simple: given all the constraints imposed by the problem, these

algorithms are robust and perform extremely well. Between the two previously mentioned,

SVM s have the advantage of not consuming too much time in the training phase while keeping

the end results as good or even better than the ones from neural networks. This, allied to the

SVM method’s algorithmic simplicity, automatically selects it to be the core algorithm of the

anomaly detection system to be developed.



Chapter 3

Proposed Model and Architecture

Gathering and organising all the knowledge involving intrusion detection systems was a neces-

sary step that will now allow for a more pragmatic design of the solution for the problem at

hands. However, before even starting to think about design details and features, it is essential

to be entirely familiar with RightsWATCH logging methodology, in order to know what should

actually be designed and developed.

3.1 Initial Approach

Any interaction that a user has with information protected by RightsWATCH is recorded on

a Microsoft SQL server logging database. This database is composed by a small set of

tables, and the full record is stored only into one of them - the other tables are there only for

structuring purposes, as it will be seen shortly.

Let the table where the records are stored be called the main table. Apart from the primary

key - an incremental value assigned to each new record that arrives -, this table has thirty-

eight columns, some of which being foreign keys. Part of this set of columns link the table to

the previously mentioned (secondary) tables, and the remaining set to other tables in another

database. This second database is the configuration database, which holds a variety of

information needed for configuring different RightsWATCH components.

At this point, and after studying the databases, three facts are clear. The first is that, to build

61



Chapter 3. Proposed Model and Architecture 62

an anomaly detection system based on the RightsWATCH logging system, one only needs

access to the main table. This table will be the main data source for the system, and by having

all the relevant data already gathered, it will simplify the data preparation and selection steps.

The second and third facts, however, will hinder the preparation step. The second fact is that,

after looking at the data, it became instantly clear that it needs to be cleaned and normalised.

As for the third fact, the different data types of the main table will be an obstacle. The records

stored have information in binary, numeric and categorical formats, where the last one refers to

strings of text. Since most machine learning algorithms only deal with numeric data, a common

decision in problems of this kind is to divide the categorical values into their individual values,

performing what is referred to as one-hot encoding. For instance, a categorical feature whose

values are “yes”, “no” and “maybe” will disappear, leaving in its place three new binary features

that correspond to each of the values. This has its advantages, but the obvious disadvantage is

a large increase of features. Both the second and third facts pertain to common, yet important

obstacles to overcome, and the implemented solutions will be detailedly described in chapter

4.

Before starting to develop or even thinking about a complex system, trying to visualise the

data in search of evident patterns is always a good idea. Not only this will help to understand

the data better, but it is possible to extract certain patterns. In order to plot and visualise

the data, a software named Weka was used (Hall et al., 2009). Weka is an open source data

mining software developed by the Machine Learning Group at the University of Waikato, in New

Zealand. As the authors describe it, “Weka is a collection of machine learning algorithms for

data mining tasks. (...) Weka contains tools for data pre-processing, classification, regression,

clustering, association rules, and visualization.”.

To use Weka, one can either input a file with the dataset, or grant it direct access to the

database. In this case, the second option was chosen, as it would be faster than building a

file with the data in a format accepted by Weka. This way, only a configuration file for Weka

had to be created, so it could know what to do with the data types that it would receive from

the database connection. This was necessary as different database management systems exist,

with their own features and definitions.

With everything up and running, the data could now be visualised. Immediately, the idea

that the data could, in its raw state, provide useful patterns, was discarded. The information
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that RightsWATCH extracts from user activity is extremely fine grained, which means that

no feature by itself can create patterns that can successfully distinguish between users. Even

when plotting features against each other, hardly any relevant patterns arise, which also means

that the features are poorly correlated, or at least not correlated enough so that the patterns

can be seen by the naked eye. In fact, the features that do show correlation between them, are

only correlated because they bring the same information to the dataset. An example of the

raw features’ visualisation is documented on figure 3.1.

With this initial (and manual) data analysis done, the data was observed, studied, and it

(a) Most of the correlation attempts look like this. Each colour
represents a user.

(b) The most interestingly shaped pattern, which relates the clas-
sification mark of a file with the previous mark it had.

Figure 3.1: Raw feature visualisation examples.

was shown that one cannot expect much from its raw state. As such, now is the right time to

start designing the system. The full architecture of the developed framework is discussed and

explained in the next section.

3.2 Architecture

Based on the information on the environment and the problem so far, it was decided that the

framework needs to be capable of three different tasks. These tasks are:

1. Reading from the data source and transforming the data into a single dataset that the

algorithm can understand;

2. Run the detection algorithm over the dataset and output a classifier;
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3. Use the classifier to infer the legitimacy of the new log entries that arise, and output the

result in a way that humans can understand and extract conclusions from.

The proposed architectural design of the framework is depicted in figure 3.2.

Since there are three main tasks, it makes sense to divide the workload through three main

Figure 3.2: Architectural design of the framework.

modules, so that the modularisation and encapsulation principles are respected.

The Reader module is responsible for reading and shaping the input data. It is divided into two

secondary modules. The first module is called Preprocessor, and it selectively reads the features

that are considered relevant and preprocesses them which, when dealing with categorical data,

means tearing the feature apart into n features, where n is the number of existent cases for the

raw feature. The raw features that it reads have to be previously selected by the developer,

through manual input directly into the code. This way, the framework can easily be adapted

to accept other data sources, as one only needs to teach this module how to access the data

source(s) and what features to use. This is represented in figure 3.2 by the AD RMS logs.

AD RMS, or Active Directory Rights Management Services, is an infrastructure provided by
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Microsoft, that gathers all the server and client technologies to support information protection

through the use of rights management in an organisation, which RightsWATCH uses. The

arrows are dashed and greyed to indicate that, although possible (and, for this specific case,

planned), their usage is not implemented.

After the data preprocessing, this module outputs a file with the result. This result then serves

as input for the second module, the DatasetBuilder. This is where the features are reorganised

in order to produce the final dataset. Besides its basic operation, this sub module also preserves

the user’s privacy by completely transforming the data into something that cannot be tracked

back to its original state - the dataset is fully composed of numeric values, whose relationship

to the real data only exists while the file is being created, and later eliminated when the file is

ready.

The dataset file will be the input source for the ClassifierBuilder module. This module analyses

the data and generates a model of the user’s behaviour. This model, also known as classifier,

will be used to determine if future user events are coherent to whatever is considered normal

for the user. To perform this step, a detection algorithm is needed. As stated before, the

SVM method was the chosen one for the task. However, there is no need to implement the

algorithm from scratch, since it is already implemented in an open source fashion. From all

the implementations available, the libsvm, by Chang and Lin (Chang and Lin, 2011), was the

chosen one. This library packs the standard SVM algorithm along with the most relevant

variations, such as one-class SVM and SVM for regression. Another version of the library,

available in the website, also packs the SVDD algorithm. The library is already well prepared

and optimized to deliver the best results it can. In fact, since its inception in 2001, libsvm was

successfully integrated and used in various data mining problems (the full list is available on

libsvm’s website).

To perform the detection, two different SVM algorithms were investigated, although one of

them to a much greater extent than the other. These algorithms are the one-class classification

algorithm and the SVDD. This second algorithm was only considered in the final stages of the

investigation, mostly for performance comparison. Both of these relate to semi-supervised

learning, and are the only SVM options available for this problem. The reason for choosing

semi-supervised algorithms is one of the most important aspects of the problem that ignited

this investigation: information about bad user behaviour does not exist and it is not easy to
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idealise due to an infinity of possibilities. This means that the solution is to create a model of

good behaviour by using the good data available, and tag everything that deviates from this

model as undesirable behaviour.

Every user is a different person, with different habits, behavioural patterns and work positions.

As such, it is both unsafe and unreasonable to simply assume without any kind of proof that,

to build the behavioural models for each user, the exact same algorithm with the exact same

parameters will produce the best possible model. Moreover, this hypothesis cannot be tested

in this investigation, since all the data corresponds to only four users, which is not enough

to allow for a definite conclusion. Given all this, the secondary function of this module is,

in the validation stage and following a conservative approach, to test different variations of

the detection method. More specifically, to test the two SVM algorithms, each through four

different kernels - linear, RBF, polynomial and sigmoid kernels - while performing a grid search

over the algorithm parameters - C for SVDD and ν for one-class - and kernel parameter γ

(except, of course, for the linear kernel, that does not use γ). Various classifiers will be

generated, and the one with the best performance will be chosen. This process is described in

chapter 4.

The final model will be stored and used by the AnomalyDetection module, which is divided

into three sub modules, Detector, Classifier and AlarmManager. The first one is responsible

for retrieving new logs generated by user activity, extract the features and prepare them for

the second sub module, which evaluates the entry, sending the result to the AlarmManager sub

module. This last one will react to the result, issuing an alarm to the administrator with the

corresponding threat level. Shall it be the case of a false alarm, the administrator can mark

the event as benign, triggering a mechanism which will send this feedback to the Classifier sub

module, allowing it to accomodate to this information in order to avoid similar mistakes in the

future.

Of all the three main modules, AnomalyDetection is the only one that is not fully implemented.

Although the Classifier sub module had to be ready as it was needed for verification and

validation of the solution, the other two are only prototyped. Indeed, this module is the one

with the least relevance to the investigation. Also, with all the emphasis on the other two and

with the problems that arose over time while developing and testing them, in the end there

was no time left to finish this module. These problems are clarified in chapter 4.
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Experimental Setup

4.1 Testing and Development Environment

The ADS framework was developed at Watchful Software’s office, so that the RightsWATCH

team could provide the necessary guidance to allow a smooth future integration of the frame-

work into RightsWATCH itself. In the same way, all the testing was performed there, with

data from four of Watchful Software collaborators (the reason for this number of collaborators

is explained in section 4.2.3). The quality of the logs available is discussed in section 4.1.1 -

it will only be briefly discussed however, since there is no need to go deeper as the type of

information itself will already be explored in the next section - and the technologies used to

develop the framework are approached in section 4.1.2.

4.1.1 RightsWATCH Users

As it was said before, the framework was tested on a set of logs that stems from four different

users. These four users are responsible for customer support, product marketing and sales,

and do not perform tests on the software during their normal workflow. Although, in critical

situations such as the release of a new RightsWATCH version, it is possible for some of them

to be asked by the development team to test the application’s features, which may inevitably

translate into outlier records on the database as they will be performing tasks that would not
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perform otherwise. Fortunately, the work that these users normally do already involves using

RightsWATCH, so in these critical moments they end up either with minor testing tasks or,

in the best case, testing the product through their normal workflow, thus generating logs that

do not deviate too much from what it is considered normal for them. The available number of

logs for user 1, user 2, user 3 and user 4 are, respectively, 5714, 3120, 2514 and 2365.

Having only four users is obviously not enough to perform some specific types of tests such as

load testing or bottleneck identification. However, it is impossible to gather data from more

sources, since client information is off limits and the option of generating artificial data would

consume too much time. Alas, four users will have to suffice for the goals of this investigation.

4.1.2 Technologies

The technologies used to create the framework were chosen within the context of RightsWATCH ’s

development, by integration reasons. As it was already mentioned, the logging information is

stored on a Microsoft SQL Server database. The new table created for the framework, Log-

Training, is in the same database, under the same DBMS technology. The communication

with the database is done in the Reader module (see figure 3.2), which is fully implemented

in C#. The reason why this language was chosen is because RightsWATCH also uses it for

the same purpose. This way, besides maintaining code coherency (different components, with

the same purpose, written in the same language) by the time the framework is integrated with

the product, it is possible to make use of the common components code that was already

developed in RightsWATCH, thus saving time on the development phase by not “reinventing

the wheel”.

The ClassifierBuilder module, on the other hand, is implemented in C++, serving as a wrapper

for the libsvm library, which is written in C\C++. Certain parts of the libsvm library were

slightly changed, in order to parallelise operations with OpenMP. All the code was written in

Visual Studio 2013.
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4.2 Dataset Creation

“Sometimes it is not who has the best algorithm that wins; it is who has the most data.” -

Well known aphorism in Machine Learning.

The creation of the dataset for the detection algorithm to use as input is not a trivial task.

Practical experience along the data mining field suggests that the data preparation stage takes

about sixty to eighty percent of the time involved in a data mining problem (Romano, 1997).

In fact, organising the data in an efficient and useful way is one of the most important steps

in problems of this genre. Not only retrieving the data from its source(s), but also picking the

best features or even hand-engineering new ones. Of course, if the data has no quality in terms

of the information it holds within, the algorithm will not perform well. On the other hand,

quantity is also important - the more observations there are, the better. The common problem

with this is that more data might be hard to obtain: it might be expensive; it might even be

impossible; and in supervised environments, for instance, it might require a large amount of

time analysing every observation in order to label it. This is why all efforts must be made to

take advantage of all the available data, carefully studying it so that whatever gets discarded

as useless is, in fact, useless.

4.2.1 The Horrors of Industrial Databases

Nowadays, companies store practically all their relevant data on databases. To data mining

researchers, these real world industrial databases can be considered one of their worst night-

mares, and the reason is simple: real data is, most of the times, dirty and cluttered, and the

databases are not prepared for data mining. This is particularly seen in databases comprising

non-functional (i.e., informative) information, such as usage logs.

When a software project starts, the initial database schemas are created. Assumptions are

made, as well as decisions grounded on those assumptions. Time passes and the project grows,

and inversely proportional to this growth is the maintenance and attention given to the database

systems. This does not mean by any chance that the people involved in the project stop caring

about the databases, as they are generally essential to keep the project up and running, or at
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least part of it. The reality is that even with noisy or messy tables, and little or no intelligibility

of the data, the project will still work perfectly. In spite of this, the database will, in time,

morph into a more obscure version of its former self. In other words, an array of convenient

fixes start to change the database, so that the engineers involved in the project can avoid

working directly on the tables, which is always a delicate task. Of course, this has nothing to

do with conveniency when it comes to data mining. For instance, new columns might be added

to the already existing tables, increasing their dimensionality and complexity, when dividing

individual tables into more than one table would keep the information clean, organised and

easy to understand.

As time goes on, the records might start to become inconsistent and/or incoherent, due to

changes in the project that probably are related to higher level changes such as the inception

of new features, bug injection and/or correction or changes in the project’s business model.

Records might begin to be saved with incomplete information, or missing values as they are

normally referred to in the data mining world. This can happen when values do not apply to a

certain case, or they can simply be missing. Not only missing values, but data saved with errors

due to bugs or undefined behaviours, noise, or conflicts between values are also common. As

it was already stated (although in other words), the database’s “health” regarding the quality

of the information it holds is usually sacrificed so that the project can continue to evolve, as

the engineers devote their attention and efforts to the project’s maintenance and evolution at

a higher, functional, most profitable level. The above mentioned problems usually have minor

side effects. These side effects are more commonly noticed on secondary tables, that are not

crucial to the project’s functionality (which is the case of RightsWATCH ’s logging table). In

the end, it is highly unlikely for an organisation’s database system to be ready for data mining

processes.

That being said, there is a need to prepare and cleanse the data, in order to remove noise,

inconsistencies and incompleteness, which might disguise possibly useful patterns. The next

sections clarify all the steps that were taken in order to produce the dataset.
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4.2.2 Data Preparation and Cleansing

The main table, as it was called in the previous chapter, is called LogItems, and has all the

relevant information for the initial dataset gathered in it. However, information from the other

two tables of the database, LogTypesDictionary and LogStatesDictionary will also be used. An

explanation for this will be given in the next section.

The database schema is detailed in appendix A. Before explaining the kind of information

that the records hold, it is necessary to shed some light on the way RightsWATCH enforces

data protection. To put it simply, RightsWATCH allows a user to be linked to more than one

company. Within those companies, the user can choose the scope, which can be understood as

different company sectors or projects, and within the scopes it is possible to select the level of

protection. For now, let the focus now be on the analysis of the main table. With its thirty-

eight dimensions (excluding primary key), the table stores records that log detailed information

about user behaviour. Each records logs a variety of information, such as:

• if the user was connected or disconnected by the time of the action, as well as the type

of action - read, write, document classification, email sending, among others -, and the

time of the action (both client and server side);

• The combination of company-scope-level used for the action and the previous combination

of the previous interaction with the same information, if applicable;

• The plugin that was used, for example, RightsWATCH for Office, RightsWATCH for

Outlook, etc;

• The path of the file that the user interacted with, and the previous path, if applicable;

• The user’s machine name, as well as, in case of an email, the email address used to send

the information and the corresponding recipients.

Several problems might affect a database prior to the KDD process, and RightsWATCH ’s log-

ging database is no different. LogItems has some of the most common problems. The most

prominent one is that every record appears to have missing values, be it a blank space or null

values. Of the thirty-eight table columns, twenty-five of them have missing values, although
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one of the columns is a legacy artefact and not currently being used. After a discussion with

Watchful ’s development team, it was concluded that blank space is used where no value is

applicable, for instance, when a user works on a document that was previously unprotected,

and thus there is no previous directory path for the protected information. As for the null

values, they are used when a value is not supposed to exist, for example, when a user works

on a protected document and all the email related fields of the record get a null value. Then,

instead of missing values, both cases can be interpreted as default values, when there is nothing

else to insert on the fields.

Another serious problem is the inconsistency of information over time. As the product evolved,

the information in one of the columns also changed. This means that, at some point, previously

unseen information meant the same as old information. This can obviously turn into a problem

for any detection algorithm, especially if the information keeps changing. This change in the

way information is represented happened both due to bug injection and the implementation of

new features in RightsWATCH.

Regarding the quality and quantity of information, one main issue was identified, and it has

to do with the columns related to email recipients. Instead of being associated with the corre-

sponding record on another table, the emails are all piled up in the LogItems table, under the

form email1;email2;...;emailn for n emails. This is valid for every email recipient column, i.e.,

the “to”, “cc” and “bcc” columns.

To solve these problems, various methods can be employed. For missing values, common op-

tions are to substitute these values by the mode if it is a categorical dimension or mean if the

values are numeric. More conservative approaches choose to completely remove the records

with missing values, which has the obvious drawback of reducing the dataset. In this case

however, since the appearance of these values is somewhat controlled, the solution is similar for

both blank spaces and null values. For the former, it was decided to replace the blank spaces

with zeros when dealing with numeric fields, and leave them as blank spaces in the remaining

cases. As for the null values, the decision was to handle these morphing them into zeros when

working with numeric values, and to blank spaces when handling the remaining fields. The

value zero was chosen because, when used in other fields, it meant that nothing was supposed

to exist in that case. In result, the data means exactly the same as it meant before, but it is

now more normalised.
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The data inconsistencies, as stated before, were identified in one column only. This column

is called log extra data, and just like the name suggests, is responsible for logging data that

does not fit in any other column of the table - its purpose is actually the reason for the data

inconsistencies. In a normal situation, the best solution would be to divide all the information

throughout new columns. Nevertheless, this is not the case, since that under all the data en-

tanglement in the column’s values, only one of them is of interest. This value, called rule id,

only appears when the user applies a rule, which is not always the case. Moreover, this value

disappeared from the logs for a considerable amount of time (months) even when the user did

apply a rule, due to changes in the code that handles the logging process. This bug is now

corrected, and the solution for the overall inconsistency goes through extracting and using only

the rule id, leaving a blank space when it is not present. In spite of this, given the bug that

caused the value to disappear, it was decided to leave the rule id out of the initial dataset for

now, as this value, by itself, is the only one that has real missing values. Its reintroduction

on the dataset will be evaluated in the future, when more correct instances of the value are

available. In fact, the more correct observations of this value are available, the less impact will

the missing instances have, as the specification of the framework dictates that the detection

algorithm has to be able to evolve and learn continuously from new information which, with

the bug fixed, turns the rule id into a valid and possibly valuable dimension again.

Finally, the email problem was solved through the creation of new tables. These tables are

called LogEmailsX, where X can be one of three possibilities: To, Cc or Bcc. These tables

associate, for their respective type of recipient, the email addresses with the logs from the main

table. In other words, each table has a log id as a foreign key (which is, in fact, LogItems ’

primary key), and each of their records corresponds to the email addresses for a given log. For

instance, if log number seven had two emails on the to field, the LogEmailsTo table would have

two records with log id equal to seven, one for each address.

All of these changes could not be directly implemented over the LogItems table, as it would

directly affect RightsWATCH ’s development. Instead, a new table, called LogTraining, was cre-

ated. This will be the main table for developing the framework, as it will have RightsWATCH ’s

logs in a normalised, more refined version. Some columns of this table will in fact be different

from the original table, as it will hold the raw learning features instead of the raw initial infor-

mation. With the data prepared, data selection and feature extraction are the next phases of
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the process.

4.2.3 Data Selection and Feature Extraction

The data selection process can turn out to be complex and exhausting. In this case, fortunately,

it turned out to be quite straightforward.

The database available for this investigation gathers all RightsWATCH usage information for

the Watchful team. This means that logs generated by both software and quality assurance

engineers are also included, which actually represent a significant forty-eight percent of all the

available data. The problem here is that they generate most of their logs when testing fea-

tures and/or correcting bugs. Sometimes, this means logging dummy information, which is

completely different from normal. Of course, this is their usual behaviour, and they also use

RightsWATCH normally when they need, so one might argue if their logs are or are not valid

for the task at hands. However, Watchful follows the SCRUM software development method-

ology which, in this case, means that a developer after executing a task (behaviour pattern),

might never actually repeat it or perform something completely different afterwards. In the

end, the behaviour profile of a developer would not be stable enough for a trustworthy anomaly

detection.

To account for this issue there are not many possible solutions other than either select the valid

records or to completely eliminate all of them. Unfortunately, time is a valid resource, and

there is not enough of it to analyse each log individually. Consequently, the decision here was

to eliminate all the developer’s logs, thus reducing the database from eighteen to four users.

Concerning feature selection and extraction, two methods were used. The first method is an

heuristic one, as it simply involved human thought on feature value. The second method was

then used to cover up the first one’s flaws, as it formally rates the features according to their

relative importance (variance), through the use of the PCA algorithm.
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4.2.3.1 Heuristic Feature Extraction

In situations similar to this one, human opinion about the data matters. Despite all the efforts,

feature extraction is still an NP-hard problem, and although algorithms nowadays are capable

of uncovering important features where they are not expected, they can fail when dealing with

the most obvious cases. So, before handing the data to an algorithm and waiting for its output,

it is always a good idea to first look at the data and try to isolate possibly valuable features.

A part of this heuristic feature extraction was already performed when rule id was extracted

from the extra data column, even though it will not be used while this investigation is con-

ducted. Another part was done when building the LogTraining table. The final version of

this table has twenty-four columns (excluding the log id column which was kept in order to

associate this table to the email tables that were also created), where one of them corresponds

to the label of each log (anomaly or not). Since its first version, the changes were rather

subtle - the removal of rule id and the addition of the path features and three existent id

fields in LogItems, as it will be explained below. The final version is presented in figure 4.1

(where it is associated with the email tables). As it can be seen, some columns are exactly

the same as they were in LogItems, with the difference that there are no missing values in this

table. The email recipient columns have disappeared, as they were stored in the new email

tables. Seven columns were left aside: log server date, log read only, log extra data, log guid,

log previous guid, log email subject and log email header. Both the “read only” and “email

header” columns are not being used by RightsWATCH at the present. The “extra data” col-

umn was discarded since, as already stated, only the rule id was needed and it was excluded

for now due to possible errors on the classification, given the bug that affected the value. The

guid columns refer to a property of protected data of that same name - which stands for Glob-

ally Unique Identifier - meant for information tracking. Each time the data is target of user

activity, it receives a new guid. These fields are dependent of the data the user is working

with and, accordingly, the user logs will show a different value in these columns every time

he/she works with a different document or email - they are not directly related to the user’s

behaviour and thus were excluded. Also excluded, for the same reason, was the “server date”

column. Finally, the “email subject” column was the hardest one to decide whether to retain

or to exclude from the dataset. Indeed, email subject might be important in data leak detec-

tion, but in order to use it the system would need to have some sort of dictionary, that would
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Figure 4.1: LogTraining schema.

gather all the words from the email subjects in the existent logs and use them to search for

anomalous word combinations or even unknown words. In spite of the fact that a system of

this kind can be complex and/or time consuming to implement, it would be built only for this

column in particular. So, it was decided to leave this column out of the dataset, at least in this

investigation’s time frame.

Two categorical columns were discarded for not bringing any new information to the dataset.

These were log mark name and log previous mark name - there is no need to have these when
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there are already two other columns with the mark’s full name. Other two columns, log path

and log previous path were initially removed due to the conviction they introduce too much

noise. However, they were later reinserted since the reason of their removal had no solid

ground to stand on. Most of the id columns were also discarded, being that the quantity of

information they bring is already assured by the other related (categorical) columns, with the

advantage of not risking the detection algorithm to induce some kind of numerical order on the

values. The two mark id columns were initially discarded as well, but were later brought back

as they were needed to find out the number of document encryptions. The reason for this will

be clarified in section 4.4.

The column log email item id from the LogItems table had its data transformed and its name

changed. As it was, this column had a numeric value that is possible to associate with the

guid, when a user attaches something to a protected email. When there are no attachments,

the value is null. The information of this column is somewhat related to the user’s behaviour,

in the sense that it is not null when the user attaches something to the email. Therefore, a

new column called log email has attachment was created, and it holds the information that

matters from the original column with only two values: “0” for all the null occurrences (recall

the missing values solution) and “1” for every item id. The actual ids were discarded since

there is no need to know them, but rather to know if the email had any attachment or not.

Two other id columns from the LogItems table, log type id and log state id, are foreign keys

to the other two original tables of the database, LogTypesDictionary and LogStatesDictionary,

respectively. In LogTraining ’s case, however, they are primarily used in the table construc-

tion query in order to fetch the log state name en and log type name en columns from their

respective tables via SQL join operations. The log type id column was initially used for some

time due to an idea born from a brainstorming session with the Watchful team, where it was

noted that it is of Watchful ’s interest that the system can somehow rate each log through the

relative danger of information disclosure it poses. This was named danger score, but it was

later discarded and will not be addressed in this investigation given its irrelevance regarding

the final results.

Any feature extraction process would not be complete without somehow testing the data as

it is extracted and studied. Although at this point the ADS framework was not yet ready to
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accept data, treat it, and feed it to a classifier, WEKA is already distributed with the nec-

essary tools in order to do so. In fact, WEKA also comes with a wrapper for libsvm, which

means that one needs only to specify the path for the .jar file (libsvm comes in a variety of

formats) at WEKA’s configuration file, and leave all the hard work to the program. Be that

as it may, the tides can turn when it comes to setting up WEKA’s connection to the database,

as configuration steps must be followed both in WEKA, by setting up the database connection

configuration file according to the database type, as well as choosing the conversion standard

for each data type, and in the operating system, by creating the type of connection through

some administrative tool (data sources, in Windows). The fact that the configuration varies

with the database type and operating system, allied to the not so clear WEKA documentation,

this process can easily backfire. Note that WEKA also accepts its input through files, but this

would imply that the data had to be converted into the proper format.

The first test was done with the very first version of the dataset - let it be called the rule id

version, as it is the only one that has this feature. The second test used the same data but

without the rule id variable. The third test, while not having the rule id as well, introduced

the path features.

As there are no anomaly examples, the ideal would be to set WEKA to use one-class classi-

fication. Unfortunately, this is not possible to achieve with this dataset in particular, unless

using only the data from a single user. Since there is no way to formally prove the capability

of the classifier to detect anomalies, successfully distinguishing the user from other users is

the closest thing one can get at this point. At a first glance, this can be easily achieved by

generating a classifier model with the one-class classification algorithm, and then using that

model to classify the observations gathered from other users. The problem is that, as the SVM

algorithms needs categorical data to be converted into binary data, WEKA starts by one-hot

encode the features into their respective feature subspace. So, given the nature of the dataset,

some users will then have features that other users do not (the most obvious example are the

path features). As such, WEKA will immediately complain of incompatible datasets. The

workaround for this was to use the standard SVM algorithm, that takes more than one class:

Although this algorithm does not fit into the problem, it would, in any case, help understanding

the data.

For this test process, two SVM types were used, and the default values for the SVM execution
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were left untouched. The first SVM type was C-Support Vector Classification, or C-SVC

(it is the common SVM algorithm in libsvm for two-class classification), with the RBF kernel

and C = 1. The second type was the one-class SVM, also with the RBF kernel and ν = 0.5.

The testing logic was as follows: firstly, the observations of a user were picked as standard ob-

servations, while the rest of the observations (from the other users) were marked as anomalous.

Afterwards, a dataset with observations from the “legitimate” user and one of the “anomalous”

users was handed to WEKA in order for it to create the classifier using the C-SVC method.

The classifier was created using 10-fold cross validation. For WEKA, this means performing

the usual cross validation algorithm (in this case, ten times) on the training set as a way to

get an average result of all the classifiers, and then running the algorithm an eleventh time,

but now on the whole dataset. This last run is what generates a classifier model that can be

deployed in practice. Finally, the process is repeated for the remaining two anomalous users,

and then another user is picked as the one with the standard logs, which starts this process all

over again, but excluding the user combinations that was already made, as the final result will

be the same even if their positions are inverted.

As a final test, each user is tested against himself with a classifier built using one-class clas-

sification. As a side note, the username and hostname features had to be removed from the

datasets - as they are unique to each user, the classification accuracy of the two-class SVM

would always be a hundred percent. The log email from feature was also excluded, since it can

also serve as an unique identifier for the users who use only one email address, and the client

time feature was fetched from the database in such a way that only the hour is retrieved.

Tables 4.1, 4.2 and 4.3 contain the C-SVC results for the first, second and third test respec-

tively. Table 4.4 aggregates the one-class classification results for each user, regarding each

test.

Each table exposes the correctly classified instances percentage between the four users’ datasets.

Of course, these values can be completely misleading. For instance, a classifier that just pre-

dicts legitimate actions, whatever the example type may be, will still have ninety percent of

classification accuracy with a dataset composed of nine hundred legitimate cases, and a hun-

dred of anomalous ones. Certain measures exist to counter this misleading effect and evaluate

the classifier’s quality with more precision. These will be used when actually testing the ADS

framework, on section 4.3.2.
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Looking at table 4.1, and keeping in mind that the dataset is not that different from the original,

the results are not so bad. The corresponding values for the one-class classification (table 4.4)

are lower due to the ν value. With a lower value, the percentages would be higher, but the

classifier would also be less strict towards classifying samples as anomalous, which means more

false positives. Regardless, this is not a concern for now.

On table 4.2, green coloured values correspond to values that are higher in comparison to

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4

User 1 67.7% 79.5% 71.1%
User 2 70.9% 67.5%
User 3 73.1%

Table 4.1: Classification accuracy results for the first version of the datasets without the
path features.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4

User 1 67.7% 78.9% 70.8%
User 2 70.6% 67.6%
User 3 73.2%

Table 4.2: Classification accuracy results for the version of the datasets without the rule id
feature and still without the path features.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4

User 1 64.7% 77.6% 70.7%
User 2 68% 63.5%
User 3 71%

Table 4.3: Classification accuracy results for the first version of the datasets with the path
features.

the previous table, and red coloured values correspond to the ones that are lower.

The majority of the results suffered a slight drop. Fortunately, the differences between both

cases are almost negligible, which did not influence the decision to remove the feature for the

reasons already explained.
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Classification Accuracy Results
hhhhhhhhhUsers

Feature sets 1 2 3

User 1 49.1% 49.5% 49.7%
User 2 50.4% 50.1% 50%
User 3 51.5% 46.6% 52.5%
User 4 49.9% 49.8% 49.9%

Table 4.4: Classification accuracy results for the users themselves.

Following the same logic on table 4.3, it is shown that all values are lower than their counter-

parts in the previous table, and this might be due to noise generated by the addition of the

path features. Indeed, at this point one can only guess, as it is impossible to know for certain

if this is the case. However, as seen in table 4.4, the classifier performed slightly better when

evaluating logs from the user it refers to. As such, the path features were still allowed to stay

in the dataset until further evidence of their degrading effect on the quality of the data.

The classification results can aid in assessing the overall quality of the data, but they cannot

provide any deeper insight on the features themselves (unless, of course, if every feature is

temporarily removed, and classification is done with the remaining ones, which would take

quite some time to achieve). The heuristic method of feature selection, along with the prelim-

inary tests that were shown, did help to transform the most obviously noisy/useless cases into

something more useful, but with these alone it is not possible to ensure that the tables only

contain valuable information, as it could be exemplified with the path features. To aid in this

validation attempt, the PCA method was employed.

4.2.3.2 A More Formal Approach - PCA

The Principal Component Analysis method is commonly used for two reasons. One of them

is visualisation: as the PCA process converts the observations into the principal components’

feature space, the once dull and apparently meaningless plotting of features is replaced by

possibly interesting patterns (clusters) that are achieved by plotting the principal components

against each other. It also allows for the visualisation of the correlation values between features,

through the correlation matrix.
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The other reason is the one for which the PCA method is most known for - data reduction.

Apart from reducing the complexity inherent to dealing with large quantities of data (memory

usage, disk space needed, etc.), reduction also helps speeding up the learning algorithm while

giving the researcher some insight on the data’s nature, through the ranking of its composing

features from the one(s) with the most variance to the one(s) with the least. Unfortunately,

WEKA does not order the raw features by their importance in an explicit fashion. Instead,

one has to do it manually, by looking at the principal components with the higher variance

and, from there, examine the coefficients attached to each feature. The higher the value,

either positive or negative, the higher the feature correlation with the PC - although one still

has to decide what does “high” really stands for, which depends on the purpose. Also, this

correlation between features and PCs can be seen when plotting PCs against each other. This

way, although not with absolute certainty, the researcher can get a feel of which features are

the most important, possibly even removing those that are neglectable.

In spite of this, no more features will be removed apart from those that already were. The

reason for this is also the main reason for conducting a PCA analysis on this investigation: as

there is no objective function - i.e., there are no anomalies - it is not possible to know for sure

which features should be used. Thus, PCA will allow for an deeper insight about the most

important (and/or influential) ones, through their variance.

A principal component generated by WEKA has the following naming format:

PCj =
m∑
i=1

cixi

j = 1, . . . , k,

k ≤ n,

(4.1)

where x is the feature’s name, c is a real number representing the correlation coefficient of the

feature, m is the number of features used, n is the number of original feature dimensions used

on the particular linear combination and k is the total number of principal components.

In this investigation, PCA was used over three different datasets. The first one had the base

features already described, excepting the paths and the emails. The second one is similar, but

only without the emails, and the third one had both feature sets. The reason for three different

setups was a suspicion that arose immediately after the first contact with the logs: using the
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file paths and all the email addresses is highly likely to introduce too much noise on the dataset,

possibly lowering the classifier’s efficiency. Part of this suspicion was already (more or less)

confirmed with the preliminary classification tests done earlier. So, apart from evaluating the

quality of the data, it was expected that by running PCA on these three datasets, the validity

of this suspicion would be clarified - and it was.

Let the datasets be known as A (the one with no file paths and no email addresses), B (the

one with paths but no email addresses) and C (the one with both the paths and addresses).

All three datasets are composed by 5714 records, but the number of features varies between

them. Dataset A has only 85 features. In dataset B, this value rises to 1554 by adding the file

paths, and in dataset C it goes even further by adding 858 email features, summing up 2412

features in total. Regardless of the dataset, PCA was executed with the parameters defined

to standardise the data - which means that the inherent distribution becomes a standard

normal distribution, i.e., N(0, 1) - and to cover up to 95% of the total variance. All three

datasets belong to user 1, as he is the one with the largest number of logs.

The first PCA run was on dataset A. The final number of PCs for this dataset was 39. Fig-

ure 4.2 demonstrates some of the resulting patterns. These were built plotting the top three

(a) Example pattern of dataset A. (b) Yet another example of the same dataset.

Figure 4.2: PCA clusters from dataset A. Plotting the PCs against each other, starting
from the most important ones and going down from there, will output similar patterns that

slowly degenerate to ellipsoid, almost linear clusters.

most important PCs : (a) was obtained by plotting PC one against PC two, and (b) by plotting

PC one against PC three. The selected PCs represent about 28.85% of the total variance. Due

to the sheer size of the PCs ’ names, their exposure here is out of the question. Fortunately, it

is not necessary in order to discuss them.
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As it turns out, there are no outstanding features. There are, of course, features with larger

coefficients associated to them than others, but adjacent coefficients are close in value, and the

largest ones range from 0.228 (first PC ) to 0.295 (second PC ). From these, they gradually de-

crease in value, until they reach zero. Interestingly enough, one of the features that would seem

more promising achieved low coefficients in all three PCs. This feature is the log client time,

and its lowest coefficient value is 0.013, verified in both the first and second PCs. This may be

due to the fact that this feature varies too much in comparison to the rest. Another interesting

aspect is that, although this user has about five different emails, the feature that represents

one of them is always on the top twenty, accompanied by the plugin feature related to the use

of Microsoft Outlook and the action type feature related to mark emails. On the other hand,

another log email from feature - the one that represents the empty email, i.e., the case where

the user does not send an email - and the action type features related to classifying documents

and files are also easily found amidst the larger coefficient values. In the same direction, the

attachment features scored very low in all three PCs. This might mean that the user’s work is

more or less distributed between sending emails and working directly with files and/or docu-

ments.

Most of the features achieve, more or less, the same coefficients throughout the three PCs.

There is no apparent “winning” feature, except perhaps from the confidentiality order features,

being that at least one of them is always ranked as one of the top five features with the largest

coefficients. Moreover, being it a current or a previous confidentiality order, a confidentiality

order related to public information is present in the top five features of all three PCs. This

can mean, for instance, that the user reclassifies public data into one of the classification levels

above with some frequency.

The second PCA run was on dataset B. The final number of PC s in this case is 1128. Fig-

ure 4.3 documents two of the outputted patterns. As before, both of the charts were created

by plotting the top three most important PCs : (a) was obtained by plotting PC one against

PC three, and (b) by plotting PC one against PC two.

As it can be expected from the number of resulting PCs, the three first ones do not represent

a large amount of the total variance - only 1.74%, to be precise. Regardless, they do reveal

some clues to which features may matter the most.

Again, there are no outstanding features. The largest coefficients range from 0.228 (first PC )
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(a) Example pattern of dataset B, still similar to those of dataset
A.

(b) A second example.

Figure 4.3: PCA clusters from dataset B. As in dataset A, the same degeneration tendency
is evident throughout the plots.

to 0.302 (second PC ). The overall behaviour for the coefficients is similar to that obtained from

dataset A. On the second and third PCs, the zero valued coefficients are all associated with

file paths. On the first PC, however, all of the zero valued coefficients are also attached to file

path features, except for one, which is attached to the client time feature. Even in the second

and third PCs, this feature scored coefficients close to zero - 0.032 and 0.01, respectively.

Going back to the file path features, it is also visible on all three PCs that the vast majority of

those who are not attached to a zero valued coefficient, are attached to the coefficients closer

to zero. Only when these features are extremely close to their limit (in an ascending order,

coefficient wise), do the rest of the features start to intermingle with them. This happens

near the largest coefficient values, where the remaining features lie. Note that there are some

exceptional cases though, as some file path features are among the features with the largest

coefficients. These represent in particular the empty path, regarding both current and previ-

ous file paths. In fact, the largest coefficient of the second PC is the empty previous file path.

These features can be understood as a clue to the user’s behaviour, that complements the clues

already uncovered with dataset A: it means that the majority of his classification operations

are either performed over new documents created by him, or over not yet classified documents,

and also that he sends a considerable amount of emails.

Following in the previous dataset’s footsteps, the remaining features retain similar coefficients

over the three PCs. Again, the confidentiality order features stand out, with at least one of

them always ranked as one of the top four features with the largest coefficient. Other than this,

the only thing that apparently remains constant is the ranking of all these features related to

the majority of the file path features.
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Taking the nature of the features and the previously seen classification results, it was expected

that the path features would introduce a considerate amount of noise into the plots. As it turns

out, this was not the case, and the axis limiting values of the plots from both datasets A and

B are close to each other. Apart from this, the plotting results are comparable. This might

indicate that the file path features possess some yet unseen potential.

While running PCA on dataset C, the final number of PCs was 1486. The resulting pattern

visualisation is documented in figure 4.4.

(a) Example pattern of dataset C. The observations are barely
visible. Also, the data range is much larger when in comparison
to the previously seen charts.

(b) A second example of the same dataset, more similar to those
of datasets A and B.

Figure 4.4: Examples of dataset C ’s patterns. As in the other two datasets, the same
degeneration behaviour applies.

Chart 4.4(a) is the result of plotting the first and second PCs. These considered some email

addresses to be the most important features. Curiously, most of these emails belong to the cc

recipients, and the coefficient values are the same for all of them until “non-email” features

appear - 0.16 and 0.171 for the first and second PCs, respectively.

On the other hand, chart 4.4(b) resulted by plotting the first two PCs that did not consider

an email address to be the most relevant feature: the fourth and the fifth PCs. Both of them

are similar to the PCs that were witnessed with dataset B. In fact, the described behaviour

for dataset B ’s PCs still partially holds for this dataset’s PCs - path and client time features’

coeficients are close to zero, if not zero, and none of the other features clearly distinguishes itself

from the rest, with the exception of the PCs where email addresses are the leading features.

Notwithstanding, the addresses that are not at the top follow the same pattern as the path

features: either with coefficients close to zero, or with zero valued coefficients. Also, more of

the “non email” features (file paths excluded) are found with zero valued coefficients, which

was not verified in the PCs from the first dataset.
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As it was already expected, the charts above are quite revealing regarding the effect that the

email addresses bring to the dataset. The majority of the email addresses are not used more

than once - which is exactly the case of the cc emails that “won” the first places in the first PC,

for instance. Also, the full set of emails correspond to approximately thirty-six percent of the

whole dataset. Belonging to a significant portion of a dataset while representing such sparse

occurrences is a common recipe for confusing learning algorithms. Indeed, the noise induced

by the email addresses can lead to either under and over training.

In all three PCA runs, the correlation between features was fairly poor. Except from the obvi-

ous correlations (for instance, the mark email action type feature is always heavily correlated

with the Microsoft Outlook plugin feature), most of the features have shown low correlation

values between each other.

Regarding the results, the only action that will be taken will be towards the recipient email

addresses. As it became clear, their presence in the dataset is a prelude to a noisy and er-

roneous classifier. In spite of this, simply discarding the emails is a waste of possibly useful

data. As such, a more conservative solution will be considered when testing the framework.

This solution has to do with the division of the recipient emails into their respective local and

domain parts. The local part is discarded, while the domain is retained as a feature. Of course,

this way it is not possible to distinguish, for example, if a user is sending a hundred emails to

a hundred different Gmail addresses, or a hundred emails to the same Gmail address. Still,

it is better than blinding the classifier with noise or not having any recipient email address

information at all.

Finally, and to conclude this section, the features produced by PCA or, in other words, the

principal components, are often used in place of the original features. In this investigation’s

scope, using the principal components would not be a wise decision, as the generated set of

features might, in fact, be a subset of a much larger set of features. This is especially true when

dealing with emails, as portrayed by the last set of plots. Anyhow, both feature extraction

processes were essential to create an deeper, albeit still imperfect, understanding of the data.

The next step is then to dive into the development of the ADS.
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4.3 The ADS Framework

While developing the ADS, a variety of different obstacles, regarding different problems and

modules, arose. These will all be exposed and discussed in section 4.3.1. Afterwards, sec-

tion 4.3.2 will describe the ADS first test results, as well as some improved results by tweaking

the learning algorithm’s parameters. Ultimately, section 4.3.3 will provide for a moment of

pause and reflection, related to the quality of the dataset so far, in the face of the last test

results obtained.

4.3.1 The Implementation and its Initial Challenges

The development of the ADS framework started with the Reader module. The base code for

establishing the database connections was borrowed from RightsWATCH. Also, the design of

all the modules follow the same design patterns and structure used in RightsWATCH, both to

provide for a better organisation and maintenance of the code, and to ease the future integra-

tion of the ADS into the software.

Several decisions regarding the final format of the features had to be taken while developing

the Reader module. The most notable one is that most of the categorical ones are, once pro-

cessed by this module, transformed into binary features. Since the detection algorithms that

were tested deal only with numeric data, the options here were to either use one-hot encoding

or to translate every categorical value to a numeric equivalent, for example, “1” for the first

value encountered, “2” for the second, and so forth. The latter, although easier to implement,

would induce a numeric order into something that is naturally unordered, which is incorrect

and known to confuse detection algorithms. For this reason, one-hot encoding was the chosen

method. As a consequence, the dimensionality of the dataset will increase, which consequen-

tially increases the complexity and workload of the detection algorithm.

The only exception to the one-hot approach was the categorical feature log client time. The

reason for this is clear: every day, hour, minute or second that passes imply the creation of

a new, unique entry. Consequently, the feature would literally be translated into noise. Still,
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it is unusable on its raw format, and therefore its processing by the Reader module is imper-

ative. The feature can be divided into two distinct features: date and time. The date itself

is too variant, but it can be used to discover the day of the week - this is useful to know, for

instance, the user’s working pattern throughout the week. The time, however largely variant

if minutes and seconds are accounted for, can be reduced to only twenty-four values, if only

the hours are considered. These options for both the date and the time are exactly what the

code does: it creates these two new features, day of the week and time of the day, that replace

log client time. Both features are numeric, being that day of the week goes from zero (Sunday)

to six (Saturday). It is important to note that day of the week was only added later and, by

that time, time of the day was also modified1.

Most machine learning algorithms are quite sensitive to data ranges, and SVM is no different.

Given this and the use of one-hot encoding for categorical features, all the remaining features

should be normalised between zero and one. Of course, the binary features are in this format

already, but the numeric features are not, which is why they are normalised to the [0, 1] inter-

val, once the framework processes them.

At last, two modifications regarding the name of the user had to be implemented. The first

one was to actually not use the log user field. This was a necessary step, considering the prime

objective of the framework: the anomaly detection system has to be capable of identifying

the user’s behaviour through the logs, and if the user’s name is part of the feature set, the

algorithm might eventually fall into the mistake of considering every log related to a certain

user as legitimate, since the user name will never change. The exclusion of the feature is also

ideal for privacy concerns. The second modification has to do with the same reasons of the first

one but it happens at runtime, and it is the removal of the user’s name from every directory

path, whenever it is present. For instance, for a path such as “Users\John\Sales Report.docx”,

the final result is just “Users\Sales Report.docx”.

These were all the transformations implemented on the dataset by the framework’s code. Note

that none of these changes directly affect the contents of the database tables.

After the preprocessing, the Reader module has to build the datasets. Note that the term

“datasets” here means both training and test sets. This building process has some details that

are very particular to the problem, especially regarding the test set. This dataset is necessary

1These changes will be explained in full detail on section 4.4.
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to infer the quality of the classifier. The prerequisite to build it though, is the same that WEKA

demanded: both the training and testing data must be composed by the same features. Only

this way can the testing of the classifier be considered valid.

To create both datasets, the logs that the user generated must be split into two parts. The

recommended ratio was considered: seventy percent of the total data for the training set, and

the remaining thirty percent for the test set.

The datasets are created in an sequential fashion - first the training set, and then the test set.

This order has to be maintained, as the features of the test set will depend on the training set.

In other words, a mapping of the training set’s features is stored after its creation. Then it is

used to confirm which features present in the test set’s data are valid - if the feature exists in

the mapping, it is considered a valid one; if it does not, it is excluded as if it does not belong

to the user. This closed world assumption point of view can accurately encompass the user’s

essence, but it will only do so until the end of the training set - that is to say, data that is

not present in the training set can exist, and if the test set happens to possess this data, this

process will go awry. For instance, it is not hard (at all) to imagine the creation of the test set

going wrong due to a large number of file paths that, although existing in this set, had never

been seen before on the training data. This is especially unsettling given the fact that the data

from different users is used to test the classifier for a specific user. Obviously, if test data from

the user itself has some of its features removed, the same will happen to test sets from other

users, and to a greater extent. In spite of this, the aforementioned process of dataset genesis

is still used, as it encloses a very conservative definition for “anomaly” which, concerning the

problem at hands and all the unknown variables involved, is the road to follow.

When the DatasetBuilder is done with the datasets, they are passed to the ClassifierBuilder

module, for the actual creation and testing of the classifier. At the core of this module, libsvm

does all the hard work of analysing the training data and creating a classifier. It also has meth-

ods to test and cross-validate data. Two very specific inner loops of libsvm were parallelised

with OpenMP for performance optimisation reasons: the loop in the get Q method of the

ONE CLASS Q class, and the loop related to one class classification, in the svm predict values

method. This way, kernel evaluations are parallelised in both testing and training steps.

Despite being a very complete SVM library, libsvm lacks simplicity of use. For this reason, the

ClassifierBuilder module was built as its wrapper: using libsvm’s methods as a solid base, it
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efficiently provides a variety of easy to use, intuitive methods for classifier creation and testing.

Apart from this it also implements new methods for error measurement and classifier quality

assessment, based on what was seen in WEKA: essentially, the classification results regard-

ing false/true positives/negatives are used to build a confusion matrix for human evaluation,

and then combined together to compute the precision and recall values. These performance

indicators evaluate different aspects of the classifier. Precision, or positive predictive value, is

obtained with the division of true positives by the sum of all the examples that were considered

positive (i.e., true positives and false positives) and represents the accuracy of the model in

correctly predicting the class. It can be though as a numerical representation of the model’s

exactness. Conversely, recall or sensitivity is calculated by dividing true positives by the sum

of true positives with false negatives which, in simpler terms, can be seen as the model’s ability

to classify observations from a class as cases from that actual class. It can be understood as the

classifier’s completeness. Both values vary between zero and one - zero being the worst case,

and one the best case. Low precision can be a sign of a large number of false positives, and low

recall can mean that the classifier is detecting too many false negatives. As such, the ideal is

to have both values as closer to one as possible. Often, there is an inverse relationship between

these two variables, which means that one can increase one value at the cost of decreasing the

other one. Also, it is not common for them to be used separately. In fact, they are either used

in conjunction by comparison between them or merged into a single value.

The ClassifierBuilder does both, calculating both measures and determinining the F1 score,

which is a combination of the two. F1 score can be interpreted as the weighted average of

precision and recall, and its computation is achieved through the harmonic mean2 of both val-

ues. As precision and recall, F1 score varies between zero and one, in the same terms. These

measures are used due to the fact that they are one of the best resources capable of efficiently

evaluating classifiers generated from skewed classes, which is commonly the case in anomaly

detection (Dokas et al., 2002).

Finally, and apart from normal model selection and model testing features, the Classifier-

Builder is also able to gather everything into a loop that performs a grid search over the ν and

γ parameters with k-fold cross validation, using them to create one-class classifiers (SVDD, and

consequentially the search for the C parameter, were only introduced in section 4.5) with each

2F1 score = 2 · precision·recall
precision+recall
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of the four available kernels. The results of the four classifiers are then evaluated, and after-

wards stored along with the parameters used. When the grid search ends, the ClassifierBuilder

has both the kernel and the parameters of the classifier that performed best, along with results

from the performance metrics. Since this is done for each user, it is not viable to actually use

this in a real life environment, as the grid search takes too much time and real world companies

do not have just four users. To make matters worse, new classifiers still have to be created

with the best parameters, and then tested for quality assurance. Still, this configuration will

be maintained as a way to find if there are any kernels or parameter value ranges that produce

acceptable results most of the times, so that they can be used as starting points.

4.3.2 Initial Results

While the ADS framework was being developed, the users kept doing their usual work. When

the framework became finally ready to output classification results, the available data logs rise

from 13713 to 25777 - 10098, 5077, 6661 and 3761 logs belonging to user 1, 2, 3 and 4, respec-

tively. Of course, the new tests will make use of this increase in the available data. One might

argue if all the testing and feature extraction and selection processes that were previously done

should not be executed again, given the increase of approximately 187% in the total available

data. Regardless, this option was discarded for two simple reasons. The first reason was the

lack of time - the dataset creation phase had already consumed most of the time available

for the investigation. The second reason was the belief that having more data affects only

the classification results. Indeed, as the four test subjects kept performing the same type of

work activity, the nature of the data they generated remains the same as before, which would

consequentially produce, for instance, similar PCA results.

For the testing methodology, it was decided to follow, more or less, the procedure suggested by

libsvm’s authors: after converting the data to the libsvm format and properly scaling it, the

authors encourage the use of the RBF kernel, before any other. In this investigation, not only

the RBF kernel was used, but the other three kernels as well - every problem is a different

problem, and for this reason it is not possible to safely assume that the RBF kernel, although
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the most famous kernel for usually producing the best results, will also have the best perfor-

mance in this case. In fact, there are some cases, such as when the number of features is very

high, where a linear kernel will perform better than the RBF kernel. After the initial tests,

the next step is to find the best parameters C (or ν, in this case) and γ via cross-validation.

Finally, use the best parameters to train new classifiers and test them.

The models for the different kernels were trained on seventy percent of each user’s full data.

This way, thirty percent was left for testing, as well as all the data from the other users. Two

very similar training datasets, built from the same logs, were used for each user, which means

that in total every user has two classifiers. The only difference between the two datasets is

a subset of features - one of them does not have the features that are completely unique to

each user: hostname and user email addresses. This was done to evaluate the weight that such

features will have on the classifier’s decisions. Note that in a regular situation, these features

would be vital in the dataset. In this case, as most of the test sets were composed by data

from other users, it was expected that this set of features would introduce a strong bias on the

results. For similar reasons, the username feature was completely excluded from both datasets

as well.

Let dataset A be the full featured one, and dataset B the one without the unique features. For

this testing phase, the default values for the parameters - 0.5 to ν and
1

features
to γ - were

used. For the polynomial kernel, the degree was the default value of 3 (and it will remain this

way for the remaining tests). Due to space reasons, the classification results for both datasets

are kept in section B.1.1 of appendix B. The values for precision, recall and F1 scores were

computed only for the attacks with all the available test data and are available on the tables

below. These values were obtained from the confusion matrices documented in section C.1.1

of appendix C. For visualisation purposes, every decimal value was rounded from six to two

decimal places.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 1 0.65 0.79 1 0.11 0.19 1 0.53 0.69 1 0.58 0.73
RBF 0.16 0.68 0.26 0.10 0.25 0.14 1 0.52 0.68 0.24 0.74 0.37

Polynomial 0.26 0.84 0.39 1 0.09 0.17 1 0.55 0.71 1 0.25 0.40
Sigmoid 1 0.65 0.78 1 0.11 0.20 1 0.46 0.63 1 0.58 0.74

Table 4.5: Performance metrics for Dataset A.
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User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.14 0.65 0.24 0.08 0.57 0.14 0.22 0.53 0.31 0.06 0.55 0.11
RBF 0.14 0.78 0.24 0.07 0.71 0.14 0.18 0.41 0.25 0.06 0.71 0.10

Polynomial 0.15 0.76 0.25 0.07 0.49 0.12 0.22 0.51 0.30 0.05 0.21 0.08
Sigmoid 0.14 0.65 0.24 0.08 0.53 0.13 0.22 0.47 0.30 0.06 0.60 0.11

Table 4.6: Performance metrics for Dataset B.

Let the focus be on dataset A results, for now. The number of features vary between users

- 1781, 819, 377 and 761 for users 1, 2, 3 and 4, respectively. As it was expected, most of

the classifiers that were trained on full featured datasets were heavily influenced by the unique

features. Otherwise, it would be virtually impossible for any classifier to achieve a classification

accuracy of 100%, as it happens in so many cases. Regardless, it seems that most of the clas-

sifiers whilst easily recognising other users, struggle to recognise the user itself. A particularly

noteworthy case of this is user 2. As a clear case of the closed world assumption point of view

discussed in section 4.3.1, this user scored the lowest when tested against itself no matter the

kernel used and, as a consequence, had the lowest F1 score values too, given the low recall

results. Also, notice that regardless of the unrealistically high classification values that this

user achieved with the test dataset that comprises every user, the F1 score values resist this

tendency and provide for a more grounded analysis, which ends up proving the advantage of

using such a metric. As for the kernels themselves, the RBF kernel achieved the overall worst

results, while both linear and sigmoid kernels appear to be more suited to deal with this kind

of data, and/or this kind of problem.

The results are slightly different for dataset B. With a minimal decrease in features - 1775,

816, 374 and 758 for users 1, 2, 3 and 4, respectively -, the importance of the missing features

becomes even clearer, as the overall results are much lower in quality. With this dataset, the

classifiers had trouble both in distinguishing between users and in recognising the target user.

In addition, these results also prove that the default SVM parameters are, in this case, far from

optimal. Finally, the kernels maintained similar results between them, with the linear kernel

slightly outstanding itself from the rest, always within the highest F1 score values for all the

users. Note that in contrast with dataset A, the recall values for dataset B were always higher

than the corresponding precision - not due to an increase in recall values, but instead because

of a drastic decrease in precision.

After testing the kernels, the next proposed step is to search for the best (ν, γ) combination,

through cross-validation. To follow this step, the same seventy-thirty division was made for
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each user. The training sets were used in a 10-fold cross validation for a grid search on twelve

values for ν and fifteen values for γ (ν goes from 2−25 to 1, and γ from 2−25 to 25, with in-

crements to the exponent of 2 per iteration). In the end, the best performing combination

for each dataset is stored, and then used to create new models for the respective training set.

The reason for doing the grid search on only seventy percent of the data, instead of the whole

dataset, was that this division was already done in the initial kernel testing, and the best

parameter combination can be influenced by dataset size - of course, the same might happen

when subdividing the dataset in cross-validation but, in practice, the parameters obtained here

are suitable for the full training set as well.

The resulting grid search parameters are available in section D.1 of appendix D. Accuracy

values were rounded to one decimal place, while everything else was rounded to two decimal

places. Where two decimal places weren’t enough, scientific notation had to be used. Note

that the values were rounded only in the tables, for viewing purposes. In other words, the test

runs with the new parameters used their original values.

At a first glance, and judging by the accuracy values while knowing that the training sets

contain only information from the user that the classifier is supposed to infer a behavioural

pattern from, it seemed that these parameters would push the framework into producing overly

permissive classifiers. This has to do with the way that one-class SVM works: tampering with

the ν parameter has a direct impact on the number of observations that are accepted - the lower

the value, the more permissive the resulting classifier will be. The new classification results

and corresponding confusion matrices, accessible in sections B.1.2 and C.1.2 of appendices B

and C, respectively, portray this exact situation, particularly in dataset B results data. Below

are the performance metrics derived from the confusion matrices as before.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.99 0.97 0.97 1 0.2 0.33 0.99 0.99 0.99 0.99 0.99 0.99
RBF 0.17 0.98 0.29 0.04 0.54 0.08 0.17 0.97 0.28 0.06 0.99 0.11

Polynomial 1 0.95 0.98 1 0.19 0.32 0.2 0.72 0.31 1 0.97 0.98
Sigmoid 0.17 0.99 0.3 0.07 0.48 0.12 0.24 0.99 0.39 0.06 1 0.11

Table 4.7: Performance metrics for Dataset A after grid search.

Dataset A still demonstrates the importance of the user unique features. In spite of this, the

classifiers’ tolerance is evident especially through the confusion matrices. Also outstanding
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User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.16 0.98 0.27 0.07 0.97 0.14 0.11 0.99 0.2 0.05 0.99 0.1
RBF 0.16 0.98 0.28 0.07 0.99 0.13 0.09 0.99 0.17 0.05 0.99 0.1

Polynomial 0.16 0.93 0.27 0.08 0.94 0.14 0.16 0.72 0.27 0.06 0.95 0.1
Sigmoid − 0 − 0.07 1 0.13 0.09 1 0.17 0.05 1 0.1

Table 4.8: Performance metrics for Dataset B after grid search.

is the clear difference (in the ability to correctly classify both anomalous and legitimate in-

stances) between the linear kernel and the remaining three. The quality of this kernel was

already noticed before, but not to this extent. For every user, this kernel attained the best

F1 score. In fact, the F1 scores for this kernel are, for every user, better than those reported

in the results before grid search. Although, it was the only kernel to achieve such feat, as the

remaining F1 scores are mostly deplorable. Finally, the recall values for this dataset were, due

to the classifiers’ permissiveness, substantially higher than before, as most of the user’s own

observations were correctly evaluated.

The results for dataset B turned out to be even worse than before. Without the unique fea-

tures, and with such forgiving ν parameters, the classifiers declare a large part of the attacking

users’ instances as legitimate. In this dataset, apparently, no kernel outstood from the others,

and even with the high recall values, the F1 scores are simply unacceptable.

4.3.3 Conclusions

At a first glance, this investigation could end here. The linear kernel achieved good results with

dataset A, after the grid search. However, this does not prove that the linear classifier will

do an amazing job detecting anomalies. In fact, without the unique features (dataset B), the

classifier does not perform well, at all. What if the user himself leaked valuable information,

from his usual machine, with his usual email? Thanks to the unique features, the classifier

would likely detect the resulting log as legitimate. As such, it is not time to finish, but to stop

for a while. Time to pause and think about the causes of the results obtained with dataset B.

Was it the classification algorithm, or the data itself? It might have been both.

As it was stated on section 2.4.2.6, the ν parameter controls how many observations get mis-

classified, and how many turn into support vectors. For instance, if the ν parameter is set



Chapter 4. Experimental Setup 97

to 0.1 (recall that it is bounded between 0 and 1), it is guaranteed that at most 10% of the

training instances will be misclassified, and at least 10% of them will become support vectors.

The problem with upper bounding the misclassified training examples is that, consequently,

the size of the margin will be smaller, as the upper bound gets smaller. Also, notice that

by “misclassified training examples”, one is not referring to anomalous instances, but actually

referring to examples that are not classified as legitimate, i.e., do not fall on the correct side

of the hyperplane. All of this can be easily rephrased to explain the classification results both

before and after the grid search: Before the grid search, ν was the default libsvm value of 0.5.

This is a conservative value, which created classifiers incapable of correctly recognising their

legitimate user by setting a high upper bound for the outlier ratio. Then, the grid search chose

the parameters that allowed for the highest F1 scores. Which such low ν values, the upper

bound of outliers decreased, therefore letting more examples fall on the correct side of the

hyperplane. On the other side, assuming too small outlier ratios can easily allow anomalous

instances to fall on the legitimate side of the hyperplane, which indeed happened. Although

not exactly, what happened was similar to overfitting: the classifier performs amazingly well

with the training set, but fails to generalise on the test set. Of course, the γ parameter also

influences everything as well. This parameter defines how far the influence of a single training

example reaches: low values mean far and high values mean close. Before the grid search, the

value was dictated by the number of features, which means that it varied, depending on the

dataset, between ≈ 0.0006 and ≈ 0.001. The idea of using the inverse of the number of fea-

tures as the default value is simple: the more features a dataset has, the more influential each

training example should be. After the grid search, most of the γ parameters achieved values

that were higher than these inverses, which in turn diminished the influence of the training

instances.

All of this leads to one thought: the grid search method might prove effective with two class

problems, but the same might not apply to one-class classification, given the actual nature

of the optimisation problem, when performing it with cross-validation. Taking this into con-

sideration, a new grid search was performed, but now it was more like a brute force attack.

The classifiers were tested against data from both the user and the other users and, instead of

returning the parameters with the highest F1 score, the algorithm was modified to output all

the data it produces for each parameter combination - accuracy, confusion matrices, precision,
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recall and F1 score - to a file, so that each of the 552 classifiers (12 for the linear kernel and

180 for each of the other kernels) could be individually examined. The perusal of the data

confirmed the worst: there were no cases with dataset B where any of the classifiers managed

to successfully separate anomalous from legitimate records. The classifiers mostly bounced

between the two extremes - either classifying most of the cases as legitimate or as anomalous.

When this is not the case, the classification accuracy values just revolve around the fifty percent

mark, with very low standard deviation values.

Standing before these results, it was inevitable to consider the implementation of another clas-

sification algorithm, such as a neural network. Regardless, before any action of this nature

is taken, one has also to question the other side of the problem, the data itself. One of the

first impressions that arose when contacting for the first time with the available data, during

the data cleansing and data selection phases, was that it was possible for the examples to be

too fine grained for the SVM algorithm to be able to actually create effective classifiers from

them. The features are poorly correlated between them, and with the naked eye, at least, it is

next to impossible to distinguish between examples, if one ignores each users’ unique features.

Although this high granularity level is not confirmed, the obtained results do allow to consider

it as a reason for the classifiers’ poor quality. As such, it seems appropriate to rethink the way

the dataset is built, and how the information is used.

In summary, two very different options are being considered. The first one involves reinventing

the ADS framework by implementing a completely new anomaly detection algorithm. The sec-

ond one demands remaking the dataset by lowering the granularity of the data and therefore

remodelling the final dataset that the learning algorithm uses to produce a classifier. The best

option here would be to try both, but there is not enough time for that. Now, only the decision

of which one to try remains. After a discussion with the Watchful team, it was established that

the dataset option should be the one that is tested. The reason behind this choice has to do

with one of the final phases meant for the framework, i.e., the integration with RightsWATCH

Monitoring Console. Since the framework is designed to work as a decision support system, it

makes sense to have the information in such a format that a human system administrator is

capable of reasoning about the various features that comprise each instance. Indeed, with the

data as is, this task would be as difficult and stressful as trying to extract some meaning from

the logs in the source database. Hence, the next section contemplates the final transformation
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that the dataset underwent.

4.4 Dataset Refactoring

The current dataset is no more than a clean, filtered version of the raw data available in the

logging database. Each example is almost equivalent to its raw counterpart, lacking only the

information deemed unnecessary or repeated, while possessing two new features - client time

and email attachment verification - created from raw ones and concatenating information from

both the logging and email tables.

In this format, each data point represents an atomic user action - reading a document, sending

a protected email, classifying a file, for instance. In other words, this high granularity data

model falls into the point anomaly genre, where an instance alone can be considered anomalous

before all others. As seen until now though, lowering the granularity of the dataset is one of

the suggested actions to try and increase the classifiers’ success rate. For this reason, instead

of using the observations individually, the framework will aggregate them into larger sets, thus

producing new features that, in essence, summarise the feature values from every example

that comprises the given aggregated set. This way, the purpose of this phase is to morph

the dataset into a completely different, coarse-grained version of the initial data, where the

anomalies will now be of the collective type.

This is just the general idea. The real work comes when deciding which new features should

be developed, how they should be developed and why.

4.4.1 Feature Engineering

Feature engineering is the process of manually developing the input features that a machine

learning algorithm will use to produce a classifier. Although this was already done previously

to some extent when the client time and attachment verification features were developed, it

does not compare itself to what was done at this point.
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The first task that had to be done was to decide what kind of information should the features

represent. Since the idea is to summarise the original information, it seems appropriate to count

the frequencies of each original feature and/or combinations (Cartesian products) of different

ones. For instance, instead of checking if a given classification mark was applied on a single

log, the framework will account for the number of times it was used over n logs, as well as the

number of times it appears with each previous mark. This can be applied to most features,

both successful and meaningfully. However, there was a set of new features that were obtained

in a different fashion.

The first set was the group of path related features. Reusing the normal paths and counting

their frequencies would not output a result that different from the original one, as the majority

of the paths are used once. consequently, they were divided into three main groups: drive, file

type and directory. The first group, drive, encases the hard drive letters, like C or D. The file

type group has to do with all the features obtained by cross-referencing file extensions with

a modest file extension dictionary, thus obtaining the file type, such as spreadsheet, image or

pdf. The third and final group, directory, scans the full path and compares it to a list of well

known folders or directories that might exist on a personal computer. It then outputs the

associated folder, i.e., dropbox or google drive. Apart from these three groups, combinations

between different directories and different disk drives are also taken into account.

The client time feature, as it was, was eliminated given its poor results in the PCA evaluation.

In its place, a new feature with the same name was created. This feature stores the actual time

of the day - morning, night, etc - given the time that is recorded on the original client time

feature. Also, a new, although already mentioned feature, called day of the week, was added

at this point. Its job is to store the day of the week in a numerical format, from Sunday (zero)

to Saturday (six), extracted from the date in the original client time feature.

The mark id features were used to infer if the used marks were public or not, by accessing

RightsWATCH configuration database. This way, a new set of features that count the number

of encryptions, classifications3, decryptions and the number of times it is not possible to obtain

the used mark (i.e., unknown mark), due to some unknown error.

The last set of features is associated with the each action’s success. These features log the

success rate of each action - read, mark, unmark, etc - for all the occurrences of each one of

3If a file is marked with a public mark, it is a classification. If a file is marked with an RMS protected mark,
it is an encryption
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them throughout the logs that compose the new data point. On the other hand, the overall

success of every action together is also computed into a feature.

Joining all these new features is also another one called total actions. As the name suggests,

it stores the number of logs that were used to build up the new example. This brings forth an

extremely important issue that did not exist until now. Since the purpose now is to build new

instances by aggregating the older ones (i.e., turning point anomalies into collective anomalies),

the most important step right now is to decide on which criteria should different examples be

fused into one. As the logs are sequential, it becomes intuitive that they should be aggregated

in a sequential order as well - n sequential logs will produce one single, summarised, example.

What is not intuitive at all is the way that they should be aggregated - should the framework

aggregate n logs at a time? Should they be aggregated through the use of a sliding window? Or

should the framework consider the timing of their creation? In other words, should the frame-

work aggregate all the logs that were produced in a minute? An hour? A day? These are all

questions that cannot be answered without actually testing the possible aggregation methods.

At least, one cannot say without any doubt which of the above is the best method. With the

refactoring of the dataset, there is no time left to perform any tests related to this problem.

Alas, the framework will, for now, make use of the one method that seems most promising,

which is the creation of the new data points through the aggregation of the logs generated

in a given time frame. The sliding window method was also strongly considered, but it was

discouraged by the Watchful team as it was used in the past as the dataset creation method for

TypeWATCH (which has a similar problem to solve), with poor results. This does not mean

though that this method will not be tested in the future - If this new dataset is to be tested with-

out testing its creation methods, the time frame method just seems to be the safest (blind) bet.

4.4.2 Final Dataset

The final dataset has thirty-one main features, excluding the “Anomaly” feature that is added

to tell apart legitimate from anomalous observations. Most of these main features can then

be forked into n subfeatures, depending on the user. Table 4.9 contains all the main features

described, with examples of subfeatures, when applicable.
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The dataset is now completely numerical, instead of (mostly) binary as before, which helps

in reducing the number of final features per user. Each feature now represents a quantity of

a given aspect of the user’s behaviour, that can easily be interpreted by a human. The new

combination features are in essence the Cartesian product of every possible combination for

the given set of features. The combination is done in the format main feature= x vs. y , where

x is the feature that applies at the time when the individual log was created, and y is the

feature that was previously applied, in a previous action over the protected information. These

combinations bring about a few advantages: they allow for a better (human) visualisation of

the data, and for a more trustworthy comparison between users, as features like the file paths,

that could easily be unique to each user, are now considered in from a more coarse-grained

point of view. They also help to connect previous actions with newer ones, which can be really

helpful when allied to RightsWATCH ’s information tracking capabilities.

4.5 Final Results

The log aggregation process was performed considering each set of logs that was generated in

an hour. In other words, the set of logs generated in an hour became one collective log. The

starting time was defined by the very first log. This time frame was chosen for two reasons.

Firstly, it is feasible that a user generates more than one log in an hour. Secondly, it is still a

small enough time frame to allow for mitigating measures in case of a data leak.

With the aggregation, the number of available observations diminished significantly. Users 1,

2, 3 and 4 now have, respectively, 1576, 1722, 469 and 1466 total observations. The number

of features has also changed, as it was expected with the changes regarding the path features,

not to mention the fact that the features themselves are different than before. Using the same

distinction between datasets, dataset A now consists of 642, 355, 485 and 398 variables for the

four users (in that order), while dataset B contains 635, 349, 482 and 394 features. Note that

with this dataset, user 3’s training set will have a number of features higher than the number

of observations, which can consequentially reshape the final results.

The testing process was the same one used with the point anomaly dataset - before performing

a search for the best parameters, the default ones were used. The seventy-thirty division

between training and test sets still remains, but note that this division was established only
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Collective Anomaly Dataset

Main Features Description

totalActions Total number of actions (logs) that were used to build the collective one.

timeOfTheDay Set of features that represent the actual part of the day when a certain log was created (e.g.
timeOfTheDay=afternoon).

dayOfTheWeek Weekday in numerical form, from zero (Sunday) to six (Saturday).

encryptions Number of encryptions.

classifications Number of classifications.

decryptions Number of decryptions.

unknownMark Number of logs where the applied mark was impossible to determine.

drive The hard drive letter regarding the directory of the marked file (e.g. drive=C).

fileType The type of the marked file (e.g. fileType=Workbook).

directory Set of features related to specific directories (e.g. directory=dropbox.)

driveCombina-
tionFrequency

Set of features that consider the both drives of the current and previous action over a file (e.g.
driveCombinationFrequency=Cvs.D).

directoryCombi-
nationFrequency

Combination of the directories where the file is and was in the last time the user interacted with it
(e.g. directoryCombinationFrequency=dropboxvs.desktop).

successRate Features that store the success for each operation type (e.g. successRate=Mark file).

overallSuccess Sum of all the successRate values for the given example.

typeFrequency Number of times each type of action occurs (e.g. typeFrequency=Read).

stateFrequency Number of occurrences for each possible log state (e.g. stateFrequency=connected).

pluginFrequency Usage count for each RightsWATCH plugin (e.g. pluginFrequency=RightsWATCH for Office).

markFrequency Number of times each mark is applied (e.g. markFrequency=Do Not Disclose).

markCombina-
tionFrequency

Number of times each mark is applied after a given mark (e.g.
markCombinationFrequency=Internalvs.Public).

confOrderFre-
quency

Frequency of each confidentiality order throughout the individual logs (e.g. confOrderFrequency=5).

confOrderCombi-
nationFrequency

Combination of the confidentiality order of a mark that was applied to a given file/email and the
confidentiality order of the mark that it previously had (e.g. confOrderCombinationFrequency=7vs.5).

departmentFre-
quency

Number of times that any mark from a given department appears (e.g.
departmentFrequency=Workers).

departmentCom-
binationFre-

quency

Combination between the department of the applied mark and the department of the previously
applied mark (e.g. departmentCombinationFrequency=Workersvs.Finance).

companyFre-
quency

Number of times that any mark from a given company is applied (e.g. companyFrequency=Watchful).

companyCombi-
nationFrequency

Combination between the company of the applied mark and the company of the previously applied
mark (e.g. companyCombinationFrequency=Watchfulvs.Project X).

hostnameFre-
quency

Number of times that a hostname belonging to a machine owned by the user appears (e.g.
hostnameFrequency=192.168.1.79).

emailFromUsage-
Frequency

Number of times that an email is used to send protected information (e.g.
emailFromUsageFrequency=ricardo.costeira@watchfulsoftware.com).

emailAttach-
mentFrequency

Total number of attachments for all the individual logs that comprise the collective observation.

domainToUsage-
Frequency

Number of times that a certain domain is used as a “to” recipient (e.g.
domainToUsageFrequency=watchfulsoftware.com).

domainCcUsage-
Frequency

Number of times that a certain domain is used as a “cc” recipient (e.g.
domainCcUsageFrequency=criticalsoftware.com).

domainBc-
cUsageFrequency

Number of times that a certain domain is used as a “bcc” recipient (e.g.
domainBccUsageFrequency=gmail.com).

Table 4.9: Classification accuracy results for the first version of the datasets with the path
features.
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in the individual logs. Several hours of development would be needed in order to apply this

process to the new data, as it is created dynamically. Fortunately, with only the division

between the individual logs, the final division of the new data between training and test sets is

roughly eighty-twenty for users 1 and 3, and seventy-five-twenty-five for users 2 and 4, which

are still acceptable boundaries. Also, this will be an opportunity to test the impact of different

division ratios between the data.

The classification results are depicted in section B.2.1 of appendix B. As before, only the

performance metrics for the attacks with data from all the users were computed, via the matrices

in section C.2.1 of appendix C. These performance metrics are presented in the tables below.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.99 0.45 0.62 0.86 0.15 0.26 1 0.35 0.52 0.98 0.21 0.35
RBF 0.42 0.62 0.5 0.1 0.44 0.16 0.7 0.48 0.57 0.12 0.46 0.19

Polynomial 0.99 0.22 0.36 0.92 0.11 0.19 1 0.3 0.47 0.95 0.11 0.2
Sigmoid 0.99 0.45 0.62 0.86 0.15 0.26 1 0.35 0.52 0.98 0.21 0.35

Table 4.10: Performance metrics for the new Dataset A.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.22 0.45 0.3 0.12 0.2 0.15 0.12 0.33 0.17 0.1 0.22 0.14
RBF 0.26 0.63 0.37 0.11 0.52 0.18 0.15 0.48 0.23 0.09 0.46 0.16

Polynomial 0.21 0.25 0.23 0.24 0.1 0.15 0.12 0.3 0.17 0.09 0.08 0.09
Sigmoid 0.22 0.45 0.3 0.12 0.2 0.15 0.12 0.33 0.17 0.1 0.22 0.14

Table 4.11: Performance metrics for the new Dataset B.

Since the default parameters were used, these results are not unexpected. Indeed, they are

very similar to what happened before with the previous dataset. Dataset A exhibits the same

high precision and low recall values, while dataset B displays the same drop in precision, while

maintaining the recall values. Even the different kernels performed in an identical fashion. On

the other hand, the variation between the F1 scores of both dataset types is not wide enough

to allow for any kind of conclusion just yet.

The grid search for this dataset was slightly different from before. Given the possibly poor

and/or skewed results that might be obtained when using this method with this type of prob-

lem, its execution was altered to output every single result into a file, instead of just outputting

the supposedly best parameters. This way, every parameter combination can be manually ex-

amined, which takes more time, but is guaranteed to allow the selection of the best combination.
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Also, instead of performing the search through cross-validation, the algorithm attacked each of

the 552 classifiers with the test sets that contain information about all users. This was done

so that the obtained parameters were more adequate to the validation process. Indeed, in a

normal situation the parameters would be generated via cross-validation, as the data belonging

to the user would be the only data used. However, it was already seen that the classifiers are

able to accept logs as being legitimate, and thus the purpose now is to search for parameters

that can aid the classifiers into defining the best plane possible between both legitimate and

anomalous instances.

The following tables gather the performance metrics for the classification results generated by

attacking each user with both his and the other users’ data, by creating classifiers with the

grid search parameters visible in section D.2 of appendix D. All classification accuracy results

are stored in section B.2.2 of appendix B, while the matrices used to output the performance

metrics are in section C.2.2 of section C.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.57 0.72 0.64 0.25 0.41 0.31 29 0.79 0.42 0.19 0.74 0.3
RBF 0.79 0.60 0.68 0.69 0.26 0.38 1 0.62 0.76 0.72 0.27 0.39

Polynomial 0.89 0.86 0.87 0.8 0.74 0.77 0.94 0.84 0.89 0.95 0.81 0.87
Sigmoid 0.75 0.68 0.71 0.57 0.43 0.49 0.77 0.62 0.69 0.94 0.33 0.49

Table 4.12: Performance metrics for the new Dataset A after grid search.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.14 0.73 0.23 0.13 0.61 0.21 0.04 0.64 0.07 0.08 0.35 0.13
RBF 0.28 0.58 0.37 0.19 0.3 0.23 0.14 0.55 0.23 0.11 0.99 0.2

Polynomial 0.18 0.64 0.28 0.19 0.73 0.3 0.25 0.17 0.02 0.12 0.77 0.21
Sigmoid 0.18 0.64 0.28 0.14 0.62 0.22 0.27 0.17 0.21 0.1 0.69 0.17

Table 4.13: Performance metrics for the new Dataset B after grid search.

Dataset A achieved better results, as expected. Note that these are worse than those obtained

with the previous dataset. Notwithstanding, the easiness of data evaluation and understanding

that this dataset brings for the system administrator in a way compensates this decrease. What

was not expected at all was the clear victory of the polynomial kernel over all the others. This

kernel managed to obtain good results even when the others wavered.

Recall that the only reason for working on a completely different dataset had to do with dataset

B disappointing results. As it turns out, the new dataset B performance metric results are
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similar to the old ones - although, from a more optimistic point of view, when looking at both

the classification and confusion matrices results, these classifiers performed clearly better, with

no exception. In fact, these are good news, since there are still so many possible ways to per-

form the log aggregation that were not investigated. In other words, one (or more than one)

of these other options might prove itself to be more successful.

In this dataset, the polynomial kernel was not able to outstand itself from the others. Actually,

while still among the kernels with best overall results, it is tied with the RBF kernel as both

won the prize for the best kernel with two of the users.

A curious pattern emerged with both datasets. With only two exceptions (tables B.23 and B.27

- both curiously for the polynomial kernel, but for different datasets), users 1 and 3 always

scored the top classification results. This is most certainly related to the data division between

training and test sets. Recall that these two users are the ones with the eighty-twenty division

- more data to train the classifier with, and less data to test it. As it is known, the more

data there is, the more accurate should the classifier be. However, this same pattern is noted,

although to a lesser extent, on section B.1.2.2 tables, which might suggest that there is more

to it than the data division.

Alas, two different dataset configurations produced different results. Although these last results

were not that bad, they are still behind the desired outcome. Even considering the fact that

attacking the classifiers with data from other users is not the desired/recommended testing

and/or validation procedure as it deviates from the root of the problem, it was expected that

at least this last dataset would finally bring triumph. For this reason, and right before the

ending of this dissertation, a last attempt at producing effective classifiers was launched. This

attempt involved the use of another classification method, also related to SVM s - the Support

Vector Data Description method.

4.6 The Last Attempt - SVDD

The SVDD method was stumbled upon while updating the SVM library. It is not part of

the standard library, but it is maintained by the authors as an extension. Its applications

are similar to those of the one-class classification SVM, although using a different algorithmic
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logic.

This detection method was used only on the same dataset that was used in the previous

section. In fact, the whole procedure was the same as the previous section’s. Regardless, as

this investigation went for quite some time at this point, this section aimed only to satisfy the

curiosity around this new method, and therefore only results for tests with all the available

data were performed.

The following tables unveil the performance metrics for the framework first run with the SVDD

algorithm, using the default values suggested by the authors. Recall that, for this algorithm,

the regularisation parameter C (with the default value of 1) is used in place of ν. All the

remaining information generated with this algorithm are stored in appendix E, being that

the classification results and confusion matrices related to these tables are documented in

sections E.1.1 and E.1.2, respectively.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.1 1 0.19 0.14 0.99 0.24 0.03 0.96 0.05 0.11 0.99 0.2
RBF 0.1 1 0.19 0.14 0.99 0.24 0.03 0.96 0.05 0.11 0.99 0.2

Polynomial 0 0 − 0.14 0.99 0.24 0.02 0.99 0.05 0.09 0.02 0.05
Sigmoid 0.1 0.99 0.19 0.14 0.99 0.24 0.03 0.96 0.05 0.11 0.99 0.2

Table 4.14: Performance metrics for Dataset A with SVDD.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.1 1 0.19 0.14 0.99 0.24 0.03 0.96 0.05 0.11 0.99 0.2
RBF 0.1 1 0.19 0.14 0.99 0.24 0.03 0.96 0.05 0.11 0.99 0.2

Polynomial 0 0 − 0.14 0.99 0.24 0.02 0.99 0.05 0.18 0.02 0.04
Sigmoid 0.1 0.99 0.19 0.14 0.99 0.24 0.03 0.96 0.05 0.11 0.99 0.2

Table 4.15: Performance metrics for Dataset B with SVDD.

These are clearly the worst results obtained so far with the default SVM parameters. Be that

as it may, it seems that this algorithm has a stronger resistance to the unique features, as

results from both datasets were quite similar. This is actually a good omen as this resistance is

ideal in order to obtain a classifier with good generalisation capabilities. Now the only question

remaining is whether the optimal parameters are able to improve the classifier’s accuracy or

not.

The grid search process for this test followed the same brute force methodology described in

the previous section. As such, each and every classification result, for every user, every kernel,
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and every parameter combination was individually analysed and compared to the remaining.

The best parameters were selected and organised into the tables in section E.2, along with the

respective classification result and F1 score. Through the confusion matrices in section E.3.2,

the following tables were built. The corresponding classification results are in section E.3.1.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.31 0.68 0.42 0.11 0.55 0.18 0.2 0.62 0.3 0.12 0.83 0.2
RBF 0.8 0.62 0.7 0.75 0.28 0.41 1 0.61 0.76 0.78 0.32 0.45

Polynomial 0.16 0.7 0.25 0.11 0.7 0.19 0.05 0.7 0.1 0.09 0.64 0.16
Sigmoid 0.62 0.62 0.62 0.11 0.56 0.19 0.31 0.62 0.42 0.16 1 0.27

Table 4.16: Performance metrics for Dataset A with SVDD after grid search.

User 1 Metrics User 2 Metrics User 3 Metrics User 4 Metrics

Kernels Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Linear 0.21 0.68 0.32 0.12 0.62 0.2 0.07 0.61 0.13 0.09 0.49 0.16
RBF 0.26 0.62 0.37 0.2 0.36 0.26 0.15 0.57 0.23 0.11 0.3 0.16

Polynomial 0.17 0.69 0.28 0.11 0.72 0.2 0.04 0.72 0.08 0.1 0.69 0.18
Sigmoid 0.22 0.68 0.33 0.1 0.36 0.14 0.09 0.54 0.15 0.08 0.34 0.13

Table 4.17: Performance metrics for Dataset B with SVDD after grid search.

Similarly to what happened before, both datasets had somewhat similar results, with dataset

A classifiers sometimes underachieving when compared to those of dataset B, but most of the

times surpassing them and, in some instances, by a large margin. As such, results with dataset

A are worse than those of the previous section, while those for dataset B seem similar to the

ones obtained in the previous section.

Both datasets had the same kernel outstanding itself from the rest. On dataset A, the RBF

kernel was always ahead of the other three, easily achieving the best scores. On the other hand,

this distinction was not so clear with dataset B, where the RBF kernel was even surpassed by

the polynomial kernel, on the tests with user 4.

Again, the same classification evidence concerning users 1 and 3 that was perceivable in the

previous section is clear in these results. Another noticeable aspect of the tests with this

classification method is that, for each user, the C regularisation parameter is mostly constant

throughout the different kernels, which leads to the belief that this regularisation parameter is

stronger and more influential than the ν on the one-class classification method, which might

be directly involved in this method’s resistance to the unique variables. In other words, it

is possible that the classifiers produced by SVDD are more stable than the ones generated
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through the one-class classification ν-SVM.

This investigation is now finished. Both the SVDD and one-class ν-SVM methods outputted

similar results, with some slight differences. These results were not that bad, but they were

not that good either. The next section discusses the steps that can and/or should be taken

from here.



Chapter 5

Final Conclusions and Future Work

“We shall not cease from exploration, and the end of all our exploring will be to arrive where

we started and know the place for the first time.” - T.S. Elliot

RightsWATCH is an immensely complex product. When important companies and organisa-

tions buy it and use it, they also invest a great deal of trust in the software’s ability to keep

their sensitive information safe. Indeed, RightsWATCH performs amazingly well with data.

However, it has next to no control at all on how the company’s collaborators use it, which is

a problem in a time when the actual companies and organisations are realizing that the most

dangerous threats come from the inside, especially with the Bring Your Own Device (or

BYOD) culture. This is why RightsWATCH has a data monitoring console, and this is why

this investigation is so relevant, possibly not only for Watchful but also for anyone or any entity

that needs to ensure data safety, as the framework was built so that it can be relatively easy to

adapt to new data sources. Apart from this, the fact that the framework reshapes the data into

something that a human can visualise in order to gain a general perspective over user activity

is also important.

Also important was the study conducted over feature impact and/or importance. Although no

specific features could stand out from the rest, it was shown that they all have a part to play

in defining the user’s behaviour. Note that this does not mean in any way that no more (yet

to be defined) features are needed - it is still an area to explore.

In spite of these aspects, the main conclusion is that, as the obtained results suggest, it is

possible to define a user behaviour pattern through the features outputted by RightsWATCH,

110
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that can be used to identify possible data leaks through deviating behaviour. Unfortunately,

without any real anomaly examples from the actual users, one cannot assure that this frame-

work would perform as expected in a real world situation. Nonetheless, it is a good start. The

journey was long and strenuous, but the final results do show promise even if they are not as

good as desired. Regardless, even while a large amount of work was completed, there is still so

much more to do.

With the knowledge about what has been already done and how, it becomes easy to define a

high level roadmap for the framework. The first step is to test all the different options for log

aggregation that remain untested: tests for aggregating logs considering different time frames,

considering a fixed number of logs and considering the use of a sliding window should be con-

ducted. If the classifiers’ performance do not improve, it might be advisable to start testing

with different classification methods other than SVM s. Even if no other methods are tested

though, there is actually a machine learning methodology different from the one used so far,

whose testing with SVM s (and, if possible, implementation) is mandatory (the only reason

why it was not tested already is because it would give birth to a whole new dissertation). This

methodology is called online learning. Online or incremental1 machine learning is similar

to the standard “offline” machine learning, with the difference that the model is still updated

even after the initial training, as new datapoints arrive. This would allow the framework to

continuously improve the classifier, even if the user changed is behavioural pattern. In a very

interesting article, Laskov suggests a way to extend the already known one-class and SVDD

classification methods to this learning method (Laskov et al., 2006), but of course, there are

many more implementation suggestions, considering both linear and non-linear kernels. This

Stack Exchange link2 also provides an interesting list of some notorious tools that support

incremental SVM s (although not necessarily for classification with only one class).

After finally defining how should the logs be aggregated, as well as how the classifiers should

be created, everything is prepared to set the next step in motion. Watchful has sold its ser-

vices to companies with more than 100 000 users. Therefore, there is the need to engage the

framework in performance/workload testing in order to make sure that when deployed to a

customer, the framework would perform all its tasks in an acceptable time and would not take

over the machines’ resources. After running these tests and changing what needs to be changed

1Online learning and incremental learning are considered to be the same thing as often as they are not.
2http://stats.stackexchange.com/a/51989

http://stats.stackexchange.com/a/51989
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accordingly, it will finally be time to start the integration with RightsWATCH itself. The in-

tegration process will be divided into two main stages: First, deal with the server-side issues

of automatically fetching the logs, send them to the monitoring console and getting the false

negatives (legitimate datapoints that were considered anomalous) back to update the classifier,

if online learning is being used. Second, prepare the client part, i.e., the monitoring console,

by creating a new tab for anomaly detection and the corresponding window.

The two final steps are not as essential as the previous ones, but they should be approached

nonetheless. After the integration with RightsWATCH, an investigation should occur to infer

if there is something else that RightsWATCH can capture on the end-user, to aid in the con-

struction of his behavioural pattern. Another option that is being considered is to do this with

TypeWATCH, i.e., use both classifications to determine the user’s authenticity. The last and

final step (for now), is to fetch usage logs from other sources, such as AD RMS.

This is what the future has in store for the ADS framework. And with this, this dissertation

has reached its conclusion. What remains now is to, again, thank everyone who supported me,

and to thank Watchful Software for the opportunity to work with them - a pleasure I wish to

keep having for many years: “Work hard, play hard”!



Appendix A

Logging Database Schema

Figure A.1: Logging database original schema.
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Appendix B

Classification Results

This appendix holds all the classification results both prior and after the grid search. The

“All” column represents the values for the test sets with data from every other user plus the

test data of the user whom was being tested.

B.1 Individual Logs Dataset

This section documents all the classification results obtained with the first fully functional

dataset, that was composed of a clean and somewhat improved version of each log.

B.1.1 Before the Grid Search

B.1.1.1 Dataset A - Full Featured

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 64.7% 100% 100% 100% 94.3%
User 2 100% 10.8% 100% 100% 93.9%
User 3 100% 100% 51.7% 100% 95.5%
User 4 100% 100% 100% 61.9% 97.8%

Table B.1: Classification accuracy results for dataset A with linear kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 68.3% 27% 26.4% 41.7% 36.5%
User 2 77.2% 24.5% 93.2% 83.3% 79.5%
User 3 100% 100% 48% 100% 95.4%
User 4 83.6% 84.8% 96% 73.8% 86.9%

Table B.2: Classification accuracy results for dataset A with RBF kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 83.7% 64.3% 37.4% 66.8% 58.4%
User 2 100% 9% 100% 100% 93.8%
User 3 100% 100% 55% 100% 95.7%
User 4 100% 100% 100% 24.9% 96.1%

Table B.3: Classification accuracy results for dataset A with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 64.5% 100% 100% 100% 94.3%
User 2 100% 11.2% 100% 100% 93.9%
User 3 100% 100% 46.2% 100% 94.9%
User 4 100% 100% 100% 58.3% 97.9%

Table B.4: Classification accuracy results for dataset A with sigmoid kernel.

B.1.1.2 Dataset B - No Unique Features

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 64% 31.8% 16% 33.3% 31.8%
User 2 63.8% 56.9% 27.4% 55.6% 50.9%
User 3 83.9% 76% 46.5% 77.29% 77.8%
User 4 64.5% 55.6% 36.1% 55.4% 53.8%

Table B.5: Classification accuracy results for dataset B with linear kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 77.7% 7.5% 6.7% 15.7% 20.4%
User 2 38.2% 71.2% 29.9% 37% 37.8%
User 3 82.9% 78.1% 42.8% 78.2% 76.9%
User 4 39.5% 32.3% 26.7% 75.6% 35.8%

Table B.6: Classification accuracy results for dataset B with RBF kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 76.1% 22.1% 10.2% 23.6% 26.9%
User 2 65.8% 48.9% 26.3% 59% 51.6%
User 3 84.6% 74.7% 51.1% 78.3% 77.9%
User 4 88.5% 80.8% 60.9% 21.5% 75.4%

Table B.7: Classification accuracy results for dataset B with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 64.8% 31.8% 16% 33.3% 31.8%
User 2 65.9% 52.8% 30.5% 57.7% 52.9%
User 3 85.7% 79.1% 47.4% 79.9% 79.4%
User 4 62.7% 52.5% 30.4% 59.6% 50.9%

Table B.8: Classification accuracy results for dataset B with sigmoid kernel.

B.1.2 After Grid Search

B.1.2.1 Dataset A - Full Featured

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 97.5% 99.9% 100% 100% 99.6%
User 2 100% 19.5% 100% 100% 94.5%
User 3 99.9% 100% 98.7% 99.9% 99.9%
User 4 99.9% 100% 100% 98.9% 99.9%

Table B.9: Classification accuracy results for dataset A with linear kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 98.5% 5.9% 6.7% 12.5% 22.6%
User 2 13.4% 54.2% 10.1% 13.9% 15.3%
User 3 47.6% 47.6% 97.1% 52.8% 53.2%
User 4 13.6% 8.3% 8.1% 99.9% 15.3%

Table B.10: Classification accuracy results for dataset A with RBF kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 95.1% 100% 100% 100% 99.2%
User 2 100% 19.2% 100% 100% 94.5%
User 3 73.9% 64.7% 71.9% 67.4% 70.3%
User 4 100% 100% 100% 96.5% 99.8%

Table B.11: Classification accuracy results for dataset A with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 99.8% 9.9% 5.7% 10.9% 23.2%
User 2 45.5% 47.9% 69.4% 43.6% 52.5%
User 3 67.5% 65.2% 99.5% 67.2% 69.9%
User 4 10.5% 7.9% 5% 100% 12.9%

Table B.12: Classification accuracy results for dataset A with sigmoid kernel.

B.1.2.2 Dataset B - No Unique Features

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 97.8% 1.2% 0.1% 0.7% 16.3%
User 2 18.9% 97.2% 1.3% 5.2% 16.6%
User 3 25.7% 9.1% 98.9% 14.3% 26.5%
User 4 9.2% 1.6% 0.2% 98.9% 9.5%

Table B.13: Classification accuracy results for dataset B with linear kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 98.4% 0.2% 0.1% 0.1% 16%
User 2 0.6% 99% 0% 0.6% 7.2%
User 3 1.9% 0.3% 98.5% 0.9% 10.5%
User 4 0.5% 0.4% 0% 99.7% 5.4%

Table B.14: Classification accuracy results for dataset B with RBF kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 93.5% 4.3% 1.7% 2.8% 17.5%
User 2 27.1% 93.7% 2.8% 9.8% 21.4%
User 3 63.7% 59.8% 72.2% 57.4% 62.4%
User 4 20.4% 6.6% 2.6% 95.4% 16%

Table B.15: Classification accuracy results for dataset B with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 0% 100% 100% 100% 83.8%
User 2 0.1% 100% 0.03% 0.1% 6.9%
User 3 0.1% 0% 100% 0.1% 9.5%
User 4 0.1% 0.1% 0% 100% 5.2%

Table B.16: Classification accuracy results for dataset B with sigmoid kernel.

B.2 Collective Logs Dataset

This section gathers the classification results obtained with the second and final dataset, where

each example is the result of merging all the logs that were generated in a specific time frame

into one.

B.2.1 Before the Grid Search

B.2.1.1 Dataset A - Full Featured

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 45.22% 99.92% 100% 100% 94.38%
User 2 99.76% 15.47% 99.74% 99.36% 88.12%
User 3 100% 100% 34.83% 100% 98.45%
User 4 99.92% 99.92% 100% 21.19% 91.15%

Table B.17: Classification accuracy results for dataset A with linear kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 62.1% 95.81% 69.21% 90.71% 87.28%
User 2 32.01% 44.34% 18.16% 50.09% 38.29%
User 3 98.57% 100% 48.31% 100% 98.29%
User 4 44.61% 77.58% 31.84% 45.65% 56.14%

Table B.18: Classification accuracy results for dataset A with RBF kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 21.98% 99.92% 100% 100% 92.02%
User 2 99.92% 10.85% 100% 99.73% 87.71%
User 3 100% 100% 30.34% 100% 98.34%
User 4 99.92% 99.92% 100% 11.41% 90.1%

Table B.19: Classification accuracy results for dataset A with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 45.22% 99.92% 100% 100% 94.39%
User 2 99.76% 15.47% 99.74% 99.36% 88.12%
User 3 100% 100% 34.83% 100% 98.45%
User 4 99.92% 99.92% 100% 21.19% 91.15%

Table B.20: Classification accuracy results for dataset A with sigmoid kernel.

B.2.1.2 Dataset B - No Unique Features

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 45.22% 90.38% 54.47% 81.33% 78.12%
User 2 78.68% 19.63% 56.84% 82.42% 69.3%
User 3 92.39% 94.1% 32.58% 95.45% 92.46%
User 4 67.75% 88.83% 57.37% 22.01% 69.69%

Table B.21: Classification accuracy results for dataset B with linear kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 62.74% 90.61% 45.26% 78.23% 77.77%
User 2 28.68% 52.19% 16.58% 46.54% 36.62%
User 3 85.82% 97.67% 48.31% 96.63% 92.19%
User 4 30.82% 64.1% 22.11% 45.92% 44.5%

Table B.22: Classification accuracy results for dataset B with RBF kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 24.84% 93.64% 69.74% 91.62% 82.96%
User 2 96.36% 10.39% 87.37% 95.81% 83.36%
User 3 94.06% 93.41% 30.34% 95.72% 92.8%
User 4 89.62% 92.86% 79.74% 8.42% 80.69%

Table B.23: Classification accuracy results for dataset B with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 45.22% 90.38% 54.47% 81.33% 78.12%
User 2 78.61% 19.63% 56.84% 82.42% 69.27%
User 3 92.39% 94.1% 32.58% 95.45% 95.46%
User 4 67.67% 88.75% 57.37% 22.01% 69.63%

Table B.24: Classification accuracy results for dataset B with sigmoid kernel.

B.2.2 After Grid Search

B.2.2.1 Dataset A - Full Featured

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 71.66% 95.19% 88.16% 94.35% 91.63%
User 2 80.75% 40.88% 85% 78.87% 75.17%
User 3 93.74% 95.42% 78.65% 96.99% 94.92%
User 4 43.74% 81.07% 46.84% 74.18% 62.08%

Table B.25: Classification accuracy results for dataset A with linear kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 60.19% 99.92% 88.95% 99.45% 94.35%
User 2 98.34% 26.1% 94.74% 99.09% 88.31%
User 3 100% 100% 61.8% 100% 99.09%
User 4 97.86% 100% 97.11% 26.9% 90.69%

Table B.26: Classification accuracy results for dataset A with RBF kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 85.99% 98.91% 98.68% 98.63% 97.47%
User 2 96.59% 73.9% 96.84% 97.72% 97.92%
User 3 99.92% 99.69% 84.27% 100% 99.49%
User 4 98.97% 99.69% 100% 80.71% 97.33%

Table B.27: Classification accuracy results for dataset A with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 67.52% 97.91% 92.63% 98.45% 94.35%
User 2 95.88% 42.96% 97.89% 92.9% 87.87%
User 3 99.37% 99.53% 61.8% 99.82% 98.66%
User 4 99.6% 99.84% 99.74% 32.88% 92.27%

Table B.28: Classification accuracy results for dataset A with sigmoid kernel.

B.2.2.2 Dataset B - No Unique Features

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 73.25% 52.06% 32.63% 50.36% 51.21%
User 2 30.59% 60.51% 34.21% 40.53% 38.54%
User 3 41.52% 74.01% 64.04% 59.56% 58.56%
User 4 33.12% 66.56% 38.95% 35.05% 47.07%

Table B.29: Classification accuracy results for dataset B with linear kernel.
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Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 57.64% 92.32% 43.42% 85.25% 80.23%
User 2 82.88% 29.56% 55.53% 84.97% 73.05%
User 3 87.8% 93.79% 55.06% 94.72% 91.12%
User 4 2.14% 5.74% 0.53% 98.64% 14.13%

Table B.30: Classification accuracy results for dataset B with RBF kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 63.69% 79.6% 41.32% 62.57% 67.19%
User 2 53.96% 73.21% 29.21% 52.64% 53.17%
User 3 98.26% 99.07% 16.85% 99% 96.82%
User 4 24.25% 37.01% 15% 77.17% 34.07%

Table B.31: Classification accuracy results for dataset B with polynomial kernel.

Classification Accuracy Results
hhhhhhhhhhLegitimate

Anomalous User 1 User 2 User 3 User 4 All

User 1 64.01% 78.12% 41.32% 61.93% 66.37%
User 2 30.19% 62.36% 33.16% 46.45% 40.56%
User 3 98.34% 99.22% 16.85% 99.09% 96.92%
User 4 18.07% 26.3% 16.58% 69.02% 26.8%

Table B.32: Classification accuracy results for dataset B with sigmoid kernel.



Appendix C

Confusion Matrices

This appendix holds the confusion matrices for the cases where the classifier is tested against

data all the users. Legitimate observations are classified as “1”, while anomalous ones are

classified as “−1”.

C.1 Individual Logs Dataset

This section depicts the confusion matrices obtained with the first fully functional dataset

regarding, of course, only the tests where the data from all the users was used to attack each

user.

C.1.1 Before Grid Search

C.1.1.1 Linear Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1970 0
−1 1059 15679

Table C.1: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1962 11686
−1 1067 3993

Table C.2: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 164 0
−1 1359 20700

Table C.3: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 867 10247
−1 656 10453

Table C.4: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1052 0
−1 946 19116

Table C.5: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1052 3738
−1 946 15378

Table C.6: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 686 0
−1 496 21836

Table C.7: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 655 10101
−1 527 11735

Table C.8: Confusion matrix for User 4
- Dataset B.

C.1.1.2 RBF Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2051 10907
−1 978 4772

Table C.9: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2372 14229
−1 657 1450

Table C.10: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 373 3410
−1 1150 17290

Table C.11: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1082 13389
−1 441 7311

Table C.12: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1033 0
−1 965 19116

Table C.13: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 824 3697
−1 1174 15419

Table C.14: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 872 2698
−1 310 19138

Table C.15: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 841 14429
−1 341 7407

Table C.16: Confusion matrix for User 4
- Dataset B.

C.1.1.3 Polynomial Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2535 7287
−1 494 8392

Table C.17: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2304 12947
−1 725 2732

Table C.18: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 137 0
−1 1386 20700

Table C.19: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 744 9975
−1 779 10725

Table C.20: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1099 0
−1 899 19116

Table C.21: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1020 3692
−1 978 15424

Table C.22: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 294 0
−1 888 21836

Table C.23: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 254 4744
−1 928 17092

Table C.24: Confusion matrix for User 4
- Dataset B.

C.1.1.4 Sigmoid Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1954 0
−1 1075 15679

Table C.25: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1962 11686
−1 1067 3993

Table C.26: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 171 0
−1 1352 20700

Table C.27: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 804 9743
−1 719 10957

Table C.28: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1099 0
−1 899 19116

Table C.29: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1020 3296
−1 1051 15820

Table C.30: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 689 0
−1 493 21836

Table C.31: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 704 10817
−1 478 11019

Table C.32: Confusion matrix for User 4
- Dataset B.

C.1.2 After Grid Search

C.1.2.1 Linear Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2952 1
−1 77 15678

Table C.33: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2962 15584
−1 67 95

Table C.34: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 297 0
−1 1226 20700

Table C.35: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1481 18500
−1 42 2200

Table C.36: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1972 2
−1 26 19114

Table C.37: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1977 15494
−1 21 3622

Table C.38: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1170 2
−1 12 21834

Table C.39: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1169 20808
−1 13 1028

Table C.40: Confusion matrix for User 4
- Dataset B.

C.1.2.2 RBF Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2983 14443
−1 46 1236

Table C.41: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2981 15662
−1 48 17

Table C.42: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 826 18120
−1 697 2580

Table C.43: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1506 20615
−1 17 85

Table C.44: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1940 9813
−1 58 9303

Table C.45: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1969 18874
−1 29 242

Table C.46: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1181 19498
−1 1 2338

Table C.47: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1178 21768
−1 4 68

Table C.48: Confusion matrix for User 4
- Dataset B.

C.1.2.3 Polynomial Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2882 0
−1 147 15679

Table C.49: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 2831 15232
−1 198 447

Table C.50: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 292 0
−1 1231 20700

Table C.51: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1427 17382
−1 96 3318

Table C.52: Confusion matrix for User 2
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1436 5713
−1 562 13403

Table C.53: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1442 7388
−1 556 11728

Table C.54: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1141 0
−1 41 21836

Table C.55: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1128 19275
−1 54 2561

Table C.56: Confusion matrix for User 4
- Dataset B.

C.1.2.4 Sigmoid Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 3028 14363
−1 1 1316

Table C.57: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 0 0
−1 3029 15679

Table C.58: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 738 9772
−1 785 10928

Table C.59: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1523 20688
−1 0 12

Table C.60: Confusion matrix for User 2
- Dataset B.



Appendix C. Confusion Matrices 131

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1988 6340
−1 10 12776

Table C.61: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1998 19108
−1 1 8

Table C.62: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1182 20033
−1 0 1803

Table C.63: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 1182 21818
−1 0 18

Table C.64: Confusion matrix for User 4
- Dataset B.

C.2 Collective Logs Dataset

This section gathers the confusion matrices obtained with the second and final dataset, for the

test cases pertaining data from all the users as attacking data.

C.2.1 Before Grid Search

C.2.1.1 Linear Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 142 1
−1 172 2766

Table C.65: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 142 502
−1 172 2265

Table C.66: Confusion matrix for User 1
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 67 11
−1 366 2729

Table C.67: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 626
−1 348 2114

Table C.68: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 31 0
−1 58 3649

Table C.69: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 29 222
−1 60 3427

Table C.70: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 78 2
−1 290 2929

Table C.71: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 81 713
−1 287 2218

Table C.72: Confusion matrix for User 4
- Dataset B.

C.2.1.2 RBF Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 195 273
−1 119 2494

Table C.73: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 197 568
−1 117 2199

Table C.74: Confusion matrix for User 1
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 192 1717
−1 241 1023

Table C.75: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 226 1804
−1 207 936

Table C.76: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 43 18
−1 46 3631

Table C.77: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 43 246
−1 46 3403

Table C.78: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 168 1247
−1 200 1684

Table C.79: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 169 1632
−1 199 1299

Table C.80: Confusion matrix for User 4
- Dataset B.

C.2.1.3 Polynomial Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 69 1
−1 245 2766

Table C.81: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 78 289
−1 236 2478

Table C.82: Confusion matrix for User 1
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 47 4
−1 386 2736

Table C.83: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 45 140
−1 388 2600

Table C.84: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 27 0
−1 62 3649

Table C.85: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 27 207
−1 62 3442

Table C.86: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 42 2
−1 326 2929

Table C.87: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 31 300
−1 337 2631

Table C.88: Confusion matrix for User 4
- Dataset B.

C.2.1.4 Sigmoid Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 142 1
−1 172 2766

Table C.89: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 142 502
−1 172 2265

Table C.90: Confusion matrix for User 1
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 67 11
−1 366 2729

Table C.91: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 627
−1 348 2113

Table C.92: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 31 0
−1 58 3649

Table C.93: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 29 222
−1 60 3427

Table C.94: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 78 2
−1 290 2929

Table C.95: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 81 715
−1 287 2216

Table C.96: Confusion matrix for User 4
- Dataset B.

C.2.2 After Grid Search

C.2.2.1 Linear Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 225 169
−1 89 2598

Table C.97: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 230 1419
−1 84 1348

Table C.98: Confusion matrix for User 1
- Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 177 532
−1 256 2208

Table C.99: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 262 1779
−1 171 961

Table C.100: Confusion matrix for User
2 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 70 171
−1 19 3478

Table C.101: Confusion matrix for User
3 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 57 1517
−1 32 2132

Table C.102: Confusion matrix for User
3 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 273 1156
−1 95 1775

Table C.103: Confusion matrix for User
4 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 129 1507
−1 239 1424

Table C.104: Confusion matrix for User
4 - Dataset B.

C.2.2.2 RBF Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 189 49
−1 125 2718

Table C.105: Confusion matrix for User
1 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 181 476
−1 133 2291

Table C.106: Confusion matrix for User
1 - Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 113 51
−1 320 2689

Table C.107: Confusion matrix for User
2 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 128 550
−1 305 2190

Table C.108: Confusion matrix for User
2 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 55 0
−1 34 3649

Table C.109: Confusion matrix for User
3 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 49 292
−1 40 3357

Table C.110: Confusion matrix for User
3 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 99 38
−1 269 2893

Table C.111: Confusion matrix for User
4 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 363 2828
−1 5 103

Table C.112: Confusion matrix for User
4 - Dataset B.

C.2.2.3 Polynomial Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 270 34
−1 44 2733

Table C.113: Confusion matrix for User
1 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 200 897
−1 114 1870

Table C.114: Confusion matrix for User
1 - Dataset B.



Appendix C. Confusion Matrices 138

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 320 80
−1 113 2660

Table C.115: Confusion matrix for User
2 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 317 1370
−1 116 1370

Table C.116: Confusion matrix for User
2 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 75 5
−1 14 3644

Table C.117: Confusion matrix for User
3 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 15 45
−1 74 3604

Table C.118: Confusion matrix for User
3 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 297 17
−1 71 2914

Table C.119: Confusion matrix for User
4 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 284 2091
−1 84 840

Table C.120: Confusion matrix for User
4 - Dataset B.

C.2.2.4 Sigmoid Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 212 72
−1 102 2695

Table C.121: Confusion matrix for User
1 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 201 923
−1 113 1844

Table C.122: Confusion matrix for User
1 - Dataset B.
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Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 186 138
−1 247 2602

Table C.123: Confusion matrix for User
2 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 270 1723
−1 163 1017

Table C.124: Confusion matrix for User
2 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 55 16
−1 34 3633

Table C.125: Confusion matrix for User
3 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 15 41
−1 74 3608

Table C.126: Confusion matrix for User
3 - Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 121 8
−1 247 2923

Table C.127: Confusion matrix for User
4 - Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 254 2301
−1 114 630

Table C.128: Confusion matrix for User
4 - Dataset B.



Appendix D

Grid Search Results

This appendix documents the SVM parameters that achieved the best results on the grid

search. Together with the parameters, the respective accuracy and F1 score that they attained

for each kernel is also shown.

D.1 Individual Logs Dataset

This section provides the grid search results for the individual logs dataset, with the SVM

parameters that were assumed as optimal for each kernel.

D.1.1 Dataset A - Full Featured

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 99.2% 0.99 3.05× 10−5

RBF 98.3% 0.99 1.95× 10−3 7.81× 10−3

Poly 96.4% 0.98 4.88× 10−4 0.13
Sigmoid 99.9% 0.99 4.88× 10−4 0.5

Table D.1: Best parameters for User 1 - dataset A.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 98.9% 0.99 4.88× 10−4

RBF 98.2% 0.99 1.95× 10−3 1.95× 10−3

Poly 96.5% 0.98 1.22× 10−4 0.5
Sigmoid 99.9% 0.99 7.63× 10−6 0.5

Table D.2: Best parameters for User 2 - dataset A.
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Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 99.2% 0.99 7.63× 10−6

RBF 98.8% 0.99 1.95× 10−3 1.95× 10−3

Poly 98.3% 0.99 0.03 1.22× 10−4

Sigmoid 99.9% 0.99 1.22× 10−4 0.13

Table D.3: Best parameters for User 3 - dataset A.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 98.3% 0.99 1.22× 10−4

RBF 97.7% 0.99 1.95× 10−3 1.95× 10−3

Poly 95.5% 0.98 1.92× 10−7 8
Sigmoid 99.9% 0.99 3.05× 10−5 0.5

Table D.4: Best parameters for User 4 - dataset A.

D.1.2 Dataset B - No Unique Features

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 99.1% 0.99 1.22× 10−4

RBF 98% 0.99 1.95× 10−3 1.95× 10−3

Poly 95.9% 0.98 1.22× 10−4 8
Sigmoid 100% 1 4.88× 10−4 8

Table D.5: Best parameters for User 1 - dataset B.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 98.8% 0.99 4.88× 10−4

RBF 98.2% 0.99 1.95× 10−3 7.81× 10−3

Poly 96.2% 0.98 1.22× 10−4 8
Sigmoid 100% 1 4.88× 10−4 2

Table D.6: Best parameters for User 2 - dataset B.
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Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 99.3% 0.99 4.88× 10−4

RBF 98.8% 0.99 4.88× 10−4 7.81× 10−3

Poly 98.2% 0.99 0.03 1.22× 10−4

Sigmoid 99.9% 0.99 4.88× 10−4 2

Table D.7: Best parameters for User 3 - dataset B.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 98.4% 0.99 1.95× 10−3

RBF 97.5% 0.99 7.81× 10−3 1.95× 10−3

Poly 95% 0.97 4.88× 10−4 0.13
Sigmoid 99.9% 0.99 3.05× 10−5 0.5

Table D.8: Best parameters for User 4 - dataset B.

D.2 Collective Logs Dataset

This section gathers the grid search results for the final dataset. This grid search was performed

by attacking the user with data from both himself and all the other users, instead of cross-

validation only his data.

D.2.1 Dataset A - Full Featured

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 91.6% 0.64 4.77× 10−7

RBF 94.4% 0.68 1.95× 10−3 0.5
Poly 97.5% 0.87 1.19× 10−7 0.5

Sigmoid 94.4% 0.71 1.95× 10−3 1.22× 10−4

Table D.9: Best parameters for User 1 - dataset A.
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Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 91.6% 0.64 4.77× 10−7

RBF 88.3% 0.38 1.95× 10−3 0.5
Poly 93.9% 0.77 2.98× 10−8 2

Sigmoid 87.9% 0.49 4.88× 10−4 4.88× 10−4

Table D.10: Best parameters for User 2 - dataset A.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 94.9% 0.42 0.13
RBF 99.1% 0.76 1.95× 10−3 0.5
Poly 99.5% 0.89 4.88× 10−4 3.13× 10−2

Sigmoid 98.7% 0.69 0.13 3.05× 10−5

Table D.11: Best parameters for User 3 - dataset A.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 62.1% 0.3 1.95× 10−3

RBF 90.7% 0.39 1.95× 10−3 0.5
Poly 97.3% 0.87 2.98× 10−8 2

Sigmoid 92.3% 0.49 0.13 7.63× 10−6

Table D.12: Best parameters for User 4 - dataset A.

D.2.2 Dataset B - No Unique Features

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 51.2% 0.23 0.13
RBF 80.2% 0.37 4.88× 10−4 0.5
Poly 67.2% 0.28 7.81× 10−3 1.95× 10−3

Sigmoid 66.4% 0.28 7.81× 10−3 2.98× 10−8

Table D.13: Best parameters for User 1 - dataset B.
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Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 38.5% 0.21 4.77× 10−7

RBF 73.1% 0.23 4.88× 10−4 0.5
Poly 53.2% 0.3 3.13× 10−2 7.81× 10−3

Sigmoid 40.6% 0.22 3.13× 10−2 4.88× 10−4

Table D.14: Best parameters for User 2 - dataset B.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 58.6% 0.07 4.77× 10−7

RBF 91.1% 0.23 7.81× 10−3 0.5
Poly 96.8% 0.2 0.13 2.98× 10−8

Sigmoid 96.9% 0.21 0.13 2.98× 10−8

Table D.15: Best parameters for User 3 - dataset B.

Grid Search Best Results

Kernels Accuracy F1 Score ν γ

Linear 47.1% 0.13 4.77× 10−7

RBF 14.1% 0.2 1.22× 10−4 3.13× 10−2

Poly 37.1% 0.21 1.95× 10−3 3.13× 10−2

Sigmoid 26.8% 0.17 7.81× 10−2 4.88× 10−4

Table D.16: Best parameters for User 4 - dataset B.
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Results for the SVDD Method

This appendix gathers all the data generated from tests with the SVDD detection method.

For all the tests regarding this detection method, only the datasets that use the data from all

users as attacking data were used.

E.1 Before Grid Search

E.1.1 Classification Results

Classification Accuracy Results
```````Users

Kernels Linear RBF Polynomial Sigmoid

User 1 11.81% 12.82% 89.76% 11.94%
User 2 13.8% 13.84% 13.74% 18.8%
User 3 21.27% 21.7% 4.41% 21.59%
User 4 13.46% 13.76% 89.09% 14.03%

Table E.1: Classification accuracy results for dataset A.

Classification Accuracy Results
```````Users

Kernels Linear RBF Polynomial Sigmoid

User 1 11.07% 11.3% 89.74% 11.07%
User 2 13.8% 13.8% 13.74% 13.8%
User 3 13.86% 13.56% 4.79% 13.14%
User 4 11.88% 11.97% 87.91% 11.88%

Table E.2: Classification accuracy results for dataset B.
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E.1.2 Confusion Matrices

E.1.2.1 Linear Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 314 2717
−1 0 50

Table E.3: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 314 2740
−1 0 27

Table E.4: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 430 2732
−1 3 8

Table E.5: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 431 2733
−1 2 7

Table E.6: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 2939
−1 4 710

Table E.7: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 3216
−1 4 433

Table E.8: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 365 2852
−1 3 79

Table E.9: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 365 2904
−1 3 27

Table E.10: Confusion matrix for User 4
- Dataset B.
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E.1.2.2 RBF Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 314 2686
−1 0 81

Table E.11: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 314 2733
−1 0 34

Table E.12: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 431 2732
−1 2 8

Table E.13: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 431 2733
−1 2 7

Table E.14: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 2923
−1 4 726

Table E.15: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 3227
−1 4 422

Table E.16: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 364 2841
−1 4 90

Table E.17: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 365 2901
−1 3 30

Table E.18: Confusion matrix for User 4
- Dataset B.
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E.1.2.3 Polynomial Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 0 1
−1 314 2766

Table E.19: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 0 2
−1 314 2765

Table E.20: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 432 2736
−1 1 4

Table E.21: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 432 2736
−1 1 4

Table E.22: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 88 3572
−1 1 77

Table E.23: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 88 3558
−1 1 91

Table E.24: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 9 1
−1 359 2930

Table E.25: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 9 40
−1 359 2891

Table E.26: Confusion matrix for User 4
- Dataset B.
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E.1.2.4 Sigmoid Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 313 2712
−1 1 55

Table E.27: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 313 2739
−1 1 28

Table E.28: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 430 2732
−1 3 8

Table E.29: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 431 2733
−1 2 7

Table E.30: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 2927
−1 4 722

Table E.31: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 85 3243
−1 4 406

Table E.32: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 364 2832
−1 4 99

Table E.33: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 365 2904
−1 3 27

Table E.34: Confusion matrix for User 4
- Dataset B.
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E.2 Grid Search Results

E.2.1 Dataset A - Full Featured

Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 81% 0.42 1.95× 10−3

RBF 94.6% 0.7 0.13 0.5
Poly 58.33% 0.25 1.95× 10−3 3.13× 10−2

Sigmoid 92.31% 0.62 1.95× 10−3 0.13

Table E.35: Best parameters for User 1 - dataset A.

Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 32.6% 0.18 1.95× 10−3

RBF 88.9% 0.41 1.95× 10−3 0.5
Poly 16.7% 0.19 1.95× 10−3 7.81× 10−3

Sigmoid 34.6% 0.19 1.95× 10−3 8

Table E.36: Best parameters for User 2 - dataset A.

Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 93.3% 0.31 7.81× 10−3

RBF 99.1% 0.76 0.13 0.5
Poly 65.5% 0.1 7.81× 10−3 7.81× 10−3

Sigmoid 95.9% 0.42 7.81× 10−3 3.13× 10−2

Table E.37: Best parameters for User 3 - dataset A.
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Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 27.8% 0.2 7.81× 10−3

RBF 91.4% 0.45 7.81× 10−3 0.5
Poly 25.3% 0.16 1.95× 10−3 7.81× 10−3

Sigmoid 40.1% 0.27 1.95× 10−3 8

Table E.38: Best parameters for User 4 - dataset A.

E.2.2 Dataset B - No Unique Features

Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 71.1% 0.32 1.95× 10−3

RBF 78% 0.37 7.81× 10−3 0.5
Poly 63% 0.28 1.95× 10−3 0.5

Sigmoid 71.8% 0.33 1.95× 10−3 3.13× 10−2

Table E.39: Best parameters for User 1 - dataset B.

Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 32.1% 0.2 1.95× 10−3

RBF 70.9% 0.25 1.95× 10−3 0.5
Poly 20.3% 0.2 1.95× 10−3 7.81× 10−3

Sigmoid 41% 0.14 1.95× 10−3 0.13

Table E.40: Best parameters for User 2 - dataset B.
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Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 80.2% 0.13 7.81× 10−3

RBF 91% 0.23 3.13× 10−2 0.5
Poly 62.7% 0.1 7.81× 10−3 7.81× 10−3

Sigmoid 85.8% 0.15 7.81× 10−3 4.88× 10−4

Table E.41: Best parameters for User 3 - dataset B.

Grid Search Best Results

Kernels Accuracy F1 Score C γ

Linear 41% 0.16 1.95× 10−3

RBF 65.5% 0.16 0.13 0.5
Poly 29.9% 0.18 1.95× 10−3 7.81× 10−3

Sigmoid 50.9% 0.13 1.95× 10−3 0.13

Table E.42: Best parameters for User 4 - dataset B.

E.3 Afer Grid Search

E.3.1 Classification Results

Classification Accuracy Results
```````Users

Kernels Linear RBF Polynomial Sigmoid

User 1 81.01% 94.58% 58.33% 92.31%
User 2 32.59% 88.91% 16.74% 34.57%
User 3 93.34% 99.06% 65.46% 95.88%
User 4 27.77% 91.39% 25.34% 40.13%

Table E.43: Classification accuracy results for dataset A.

Classification Accuracy Results
```````Users

Kernels Linear RBF Polynomial Sigmoid

User 1 71.11% 77.99% 63% 71.79%
User 2 32.05% 70.94% 20.33% 41.03%
User 3 80.23% 91.01% 62.65% 85.85%
User 4 41.04% 65.47% 29.95% 50.92%

Table E.44: Classification accuracy results for dataset B.
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E.3.2 Confusion Matrices

E.3.2.1 Linear Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 212 483
−1 102 2284

Table E.45: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 214 790
−1 100 1977

Table E.46: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 237 1943
−1 196 797

Table E.47: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 270 1993
−1 163 747

Table E.48: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 55 215
−1 34 3434

Table E.49: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 54 704
−1 35 2945

Table E.50: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 307 2322
−1 61 609

Table E.51: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 180 1757
−1 188 1174

Table E.52: Confusion matrix for User 4
- Dataset B.
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E.3.2.2 RBF Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 195 48
−1 119 2719

Table E.53: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 196 560
−1 118 2207

Table E.54: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 112 41
−1 311 2699

Table E.55: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 157 646
−1 276 2094

Table E.56: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 54 0
−1 35 3649

Table E.57: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 51 298
−1 38 3351

Table E.58: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 116 32
−1 252 2899

Table E.59: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 109 880
−1 259 2051

Table E.60: Confusion matrix for User 4
- Dataset B.
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E.3.2.3 Polynomial Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 219 1189
−1 95 1578

Table E.61: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 218 1044
−1 96 1723

Table E.62: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 302 2511
−1 131 229

Table E.63: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 311 2406
−1 122 334

Table E.64: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 62 1264
−1 27 2385

Table E.65: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 64 1371
−1 25 2278

Table E.66: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 235 2330
−1 133 601

Table E.67: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 255 2198
−1 113 733

Table E.68: Confusion matrix for User 4
- Dataset B.
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E.3.2.4 Sigmoid Kernel

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 195 118
−1 119 2649

Table E.69: Confusion matrix for User 1
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 215 770
−1 99 1997

Table E.70: Confusion matrix for User 1
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 243 1886
−1 190 854

Table E.71: Confusion matrix for User 2
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 158 1596
−1 275 1144

Table E.72: Confusion matrix for User 2
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 55 120
−1 34 3529

Table E.73: Confusion matrix for User 3
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 48 488
−1 41 3161

Table E.74: Confusion matrix for User 3
- Dataset B.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 368 1975
−1 0 956

Table E.75: Confusion matrix for User 4
- Dataset A.

Confusion Matrix
hhhhhhhhhClassified as

Actually 1 −1

1 126 1377
−1 242 1554

Table E.76: Confusion matrix for User 4
- Dataset B.
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Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller. Incremental support

vector learning: Analysis, implementation and applications. The Journal of Machine Learn-

ing Research, 7:1909–1936, 2006.

Wenke Lee and Salvatore J Stolfo. Data mining approaches for intrusion detection. Defense

Technical Information Center, 2000.

Teresa F Lunt, Ann Tamaru, Fred Gilham, R Jagannathan, Caveh Jalali, Peter G Neumann,

Harold S Javitz, Alfonso Valdes, and Thomas D Garvey. A real-time intrusion-detection

expert system (IDES). SRI International, Computer Science Laboratory, 1992.

Matthew V Mahoney and Philip K Chan. Learning nonstationary models of normal network

traffic for detecting novel attacks. In Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 376–385. ACM, 2002.

Constantine Manikopoulos and Symeon Papavassiliou. Network intrusion and fault detection:

a statistical anomaly approach. Communications Magazine, IEEE, 40(10):76–82, 2002.

Fabian Monrose and Aviel D Rubin. Keystroke dynamics as a biometric for authentication.

Future Generation Computer Systems, 16(4):351–359, 2000.

H. Motulsky. Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking. Oxford

University Press, 3rd edition, 2014. ISBN 9780199730063. Appendix F.

RIPE NCC. Internet engineering task force (ietf), August 2012. URL http://www.ripe.net/

internet-coordination/internet-governance/internet-technical-community/ietf.

[Online; accessed 17-January-2014].

Emanuel Parzen. On estimation of a probability density function and mode. The annals of

mathematical statistics, 33(3):1065–1076, 1962.

Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques: Existing

solutions and latest technological trends. Computer Networks, 51(12):3448–3470, 2007.

http://www.ripe.net/internet-coordination/internet-governance/internet-technical-community/ietf
http://www.ripe.net/internet-coordination/internet-governance/internet-technical-community/ietf


Bibliography 163

Kanubhai Patel and Bharat Buddhadev. An architecture of hybrid intrusion detection system.

International Journal of Information and Network Security (IJINS), 2(2):197–202, 2013.

URL http://iaesjournal.com/online/index.php/IJINS/article/view/1753.

A.S.K. Pathan. The State of the Art in Intrusion Prevention and Detection. Taylor and

Francis, January 2014. ISBN 9781482203516. URL http://www.google.pt/books?id=

o39cAgAAQBAJ.

C.P. Pfleeger and S.L. Pfleeger. Security in Computing. Prentice Hall professional technical

reference. Prentice Hall PTR, 2003. ISBN 9780130355485. URL http://books.google.pt/

books?id=O3VB-zspJo4C.

Ponemon Institute. 2013 cost of data breach study: Global analysis. Tech-

nical report, 2308 US 31 North, Traverse City, Michigan 49686 USA, May

2013. URL https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_

Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf.

Phillip A. Porras. Stat: A state transition analysis tool for intrusion detection. Master’s thesis,

University of California at Santa Barbara, Santa Barbara, CA, USA, July 1992.

Phillip A. Porras and Alfonso Valdes. Live traffic analysis of tcp/ip gateways. In NDSS. The

Internet Society, 1998. ISBN 1-891562-01-0. URL http://www.sdl.sri.com/projects/

emerald/live-traffic.html.

Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection with unlabeled data using

clustering. In In Proceedings of ACM CSS Workshop on Data Mining Applied to Security

(DMSA-2001, pages 5–8, 2001.

D Romano. Data mining leading edge: Insurance & banking. In Proceedings of Knowledge

Discovery and Data Mining, pages 144–152. Unicom, Brunel University, 1997.

Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection. John Wiley

& Sons, Inc, 1987.

Karen Scarfone and Peter Mell. Guide to intrusion detection and prevention systems (idps).

NIST Special Publication, 800(2007):94, 2007.

http://iaesjournal.com/online/index.php/IJINS/article/view/1753
http://www.google.pt/books?id=o39cAgAAQBAJ
http://www.google.pt/books?id=o39cAgAAQBAJ
http://books.google.pt/books?id=O3VB-zspJo4C
http://books.google.pt/books?id=O3VB-zspJo4C
https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
http://www.sdl.sri.com/projects/emerald/live-traffic.html
http://www.sdl.sri.com/projects/emerald/live-traffic.html


Bibliography 164

Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and John C

Platt. Support vector method for novelty detection. NIPS, 12:582–588, 1999.

Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to network anomaly

detection. Information Sciences, 177(18):3799–3821, 2007.

Stephen E Smaha. Haystack: An intrusion detection system. In Aerospace Computer Security

Applications Conference, 1988., Fourth, pages 37–44. IEEE, 1988.

Steven R Snapp, James Brentano, Gihan V Dias, Terrance L Goan, L Todd Heberlein, Che-

Lin Ho, Karl N Levitt, Biswanath Mukherjee, Stephen E Smaha, Tim Grance, et al. Dids

(distributed intrusion detection system)-motivation, architecture, and an early prototype. In

Proceedings of the 14th national computer security conference, pages 167–176. Citeseer, 1991.

Paul Spirakis, Sokratis Katsikas, Dimitris Gritzalis, Francois Allegre, John Darzentas, Claude

Gigante, Dimitris Karagiannis, P Kess, Heiki Putkonen, and Thomas Spyrou. Securenet:

A network-oriented intelligent intrusion prevention and detection system. Network Security

Journal, 1(1), 1994.

Thomas Spyrou and John Darzentas. Intention modelling: approximating computer user in-

tentions for detection and prediction of intrusions. In SEC, pages 319–336, 1996.

Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for anomaly detection.

J. Mach. Learn. Res., 6:211–232, December 2005. ISSN 1532-4435. URL http://dl.acm.

org/citation.cfm?id=1046920.1058109.

Internet Security Systems. Realsecure network sensor and gigabit network sensor frequently

asked questions, a. URL http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/

com.ibm.legacy.doc/rsn_faq.pdf. [Online; accessed 08-February-2014].

Internet Security Systems. Realsecure network sensor and gigabit network sensor installa-

tion guide version 7.0, b. URL http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/

topic/com.ibm.legacy.doc/RS_NetSensor_IG_7.0.pdf. [Online; accessed 08-February-

2014].

David MJ Tax and Robert PW Duin. Support vector domain description. Pattern recognition

letters, 20(11):1191–1199, 1999.

http://dl.acm.org/citation.cfm?id=1046920.1058109
http://dl.acm.org/citation.cfm?id=1046920.1058109
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/rsn_faq.pdf
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/rsn_faq.pdf
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/RS_NetSensor_IG_7.0.pdf
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/RS_NetSensor_IG_7.0.pdf


Bibliography 165

James Theiler and D. Michael Cai. Resampling approach for anomaly detection in multispectral

images. In IN PROC. SPIE, pages 230–240, 2003.

Hank S Vaccaro and Gunar E Liepins. Detection of anomalous computer session activity. In

Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on, pages 280–289. IEEE,

1989.

Dr. V. CH. Venkaiah, Dr. M Sreenivasa Rao, and G. Jacob Victor. Intrusion detection sys-

tems - analysis and containment of false positives alerts. International Journal of Computer

Applications, 5(8):27–33, August 2010. Published By Foundation of Computer Science.

Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, 30 Corporate Drive, Suite 400, Burlington, MA 01803,

USA, 3rd edition, February 2011. ISBN 9780123748560.

M. Wood and M. Erlinger. Intrusion detection message exchange requirements, March 2007.

URL http://tools.ietf.org/search/rfc4766. [Online; accessed 17-January-2014].

http://tools.ietf.org/search/rfc4766

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	Abbreviations
	1 Introduction
	1.1 The Problem
	1.1.1 The Value of Information
	1.1.2 Data-Centric Information Protection

	1.2 Goals
	1.3 Research Methodology
	1.4 Report Structure

	2 Intrusion Detection Systems
	2.1 Definition
	2.2 Architecture Types
	2.2.1 Scope
	2.2.2 Location

	2.3 Reaction After Detection
	2.4 Detection Methods
	2.4.1 Misuse Detection
	2.4.2 Anomaly Detection
	2.4.3 Hybrid Approach

	2.5 Real World Applications and Prototypes
	2.5.1 TypeWATCH
	2.5.2 IDES
	2.5.3 Haystack
	2.5.4 NSM
	2.5.5 RealSecure
	2.5.6 NetRanger
	2.5.7 Snort

	2.6 Conclusions

	3 Proposed Model and Architecture
	3.1 Initial Approach
	3.2 Architecture

	4 Experimental Setup
	4.1 Testing and Development Environment
	4.1.1 RightsWATCH Users
	4.1.2 Technologies

	4.2 Dataset Creation
	4.2.1 The Horrors of Industrial Databases
	4.2.2 Data Preparation and Cleansing
	4.2.3 Data Selection and Feature Extraction

	4.3 The ADS Framework
	4.3.1 The Implementation and its Initial Challenges
	4.3.2 Initial Results
	4.3.3 Conclusions

	4.4 Dataset Refactoring
	4.4.1 Feature Engineering
	4.4.2 Final Dataset

	4.5 Final Results
	4.6 The Last Attempt - SVDD

	5 Final Conclusions and Future Work
	A Logging Database Schema
	B Classification Results
	B.1 Individual Logs Dataset
	B.1.1 Before the Grid Search
	B.1.2 After Grid Search

	B.2 Collective Logs Dataset
	B.2.1 Before the Grid Search
	B.2.2 After Grid Search


	C Confusion Matrices
	C.1 Individual Logs Dataset
	C.1.1 Before Grid Search
	C.1.2 After Grid Search

	C.2 Collective Logs Dataset
	C.2.1 Before Grid Search
	C.2.2 After Grid Search


	D Grid Search Results
	D.1 Individual Logs Dataset
	D.1.1 Dataset A - Full Featured
	D.1.2 Dataset B - No Unique Features

	D.2 Collective Logs Dataset
	D.2.1 Dataset A - Full Featured
	D.2.2 Dataset B - No Unique Features


	E Results for the SVDD Method
	E.1 Before Grid Search
	E.1.1 Classification Results
	E.1.2 Confusion Matrices

	E.2 Grid Search Results
	E.2.1 Dataset A - Full Featured
	E.2.2 Dataset B - No Unique Features

	E.3 Afer Grid Search
	E.3.1 Classification Results
	E.3.2 Confusion Matrices


	Bibliography

