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A B S T R AC T

The colour of the sky has always fascinated people throughout the ages. The blue sky, the colour of

the sun, the orange of the sunsets, the clouds, etc...

For centuries, physicists and mathematicians tried to explain with formulae what artists like Leonardo

da Vinci reproduced in their paintings, like the colour of the sky, the bluish colour of distant mountains,

fog, and several other nature effects.

In the area of computer graphics there is a great interest in recreating these natural effects, observ-

able everyday, as real as possible. The reproduction of these effects is essential for certain applications

such as flight simulators, video-games and other scientific applications, hence, the relevance of ren-

dering these effects in real time.

This project aims to present a state of the art on atmospheric scattering and so consolidate knowl-

edge on the subject.

Much work has been done with the purpose of recreating these effects digitally. In result many

algorithms, implemented using different techniques, are now available.

When evaluating atmospheric scattering there are several aspects that are considered such as the

light source, the density and size of particles in the atmosphere, among others.

In this thesis, only daylight models will be considered and in these models, the sun is considered

the only light source. The particles on the atmosphere can be divided in 2 main entities: air molecules

and aerosol particles.

The phenomenon can be explained as the result of the interaction between the rays that come

from the sun and the particles in the atmosphere. The most relevant interaction, regarding colour,

is scattering.

The atmospheric scattering models present methods and techniques to evaluate and recreate this

phenomenon. These models are very diverse but they base their techniques with the physics behind

the phenomenon.

Their evolution showed a path that went from quality to efficiency. Part of this evolutionary trait

came with the evolution on both hardware and software.

The early AS models had a greater concern in recreating with the most possible accuracy the atmo-

spheric scattering phenomenon. That concern passed, over the years, to recreate this phenomenon the

fastest way possible.

When talking about rendering the colours of the sky, is natural to want to render the other natural

effects such as clouds and light shafts. Therefore it is also valuable to present information of some

algorithms that can recreate these effects.



R E S U M O

A cor do céu sempre fascinou as pessoas ao longo dos tempos. O azul do céu, a cor do sol, os

pores-do-sol alaranjados, as nuvens, etc...

Durante séculos, físicos e matemáticos tentaram explicar com fórmulas o que artistas como Leonardo

da Vinci reproduziram nas suas pinturas, como a cor do céu, a cor azulada de montanhas distantes,

névoa, entre outros.

Na área de computação gráfica há um grande interesse em reproduzir com o maior realismo possivel

estes efeitos naturais observados no quotidiano. A reprodução destes efeitos é fundamental para

certas aplicações como simuladores de vôo, jogos e outro tipo de aplicações mais científicas, daí, a

importância em reproduzir estes efeitos em tempo real.

Este projeto tem como objetivo apresentar um estado da arte em dispersão atmosférica e assim

consolidar o conhecimento sobre o assunto.

Muito trabalho já foi feito com o propósito de recriar estes efeitos digitalmente. Para isso muitos

algoritmos, implementados usando diferentes técnicas, foram apresentados.

Ao avaliar o fenómeno de dispersão atmosférica existem vários aspectos que são considerados, tais

como a fonte de luz, a densidade e tamanho de partículas na atmosfera, entre outros.

Nesta tese, apenas os modelos diurnos serão considerados e nestes modelos, o sol é considerada a

única fonte de luz. As particulas existentes na atmosfera podem ser divididas em dois tipos principais:

moléculas de ar e aerosóis.

O fenómeno pode ser visto como o resultado da interacção entre a luz que vem do sol e as partículas

na atmosfera. A interação mais relevante, em relação a cor, é a dispersão.

Os modelos de dispersão atmosférica apresentaram métodos e técnicas que conseguem avaliar e

recriar este fenómeno.

Estes modelos são diferentes entre eles, mas todos têm como base a física por de trás do fenómeno.

A evolução destes modelos mostra um caminho que passou de maior qualidade para uma maior efi-

ciência. Parte desta característica evolutiva veio com a evolução tanto do hardware como do software.

Os primeiros modelos, tinham como preocupação principla recriar o fenómeno de dispersão atmos-

férica com a maior precisão possível. Essa preocupação passou, ao longo dos anos, para recriar este

fenómeno da maneira mais rápida possível.

Ao falar sobre como renderizar as cores do céu, é natural falar também sobre outros efeitos naturais

tais como nuvens e feixes de luz. Por isso, também é importante apresentar alguns algoritmos que

conseguem recriar estes efeitos.
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1

I N T RO D U C T I O N

1.1 C O N T E X T UA L I S AT I O N

In the area of computer graphics there is a great interest in rendering the colours of the sky and recreate

some of the natural phenomenons that can be seen everyday.

Atmospheric scattering is the natural phenomenon mainly responsible for the sky and sun colours,

and it can be described as the change in the direction of light due to the interaction with the particles

of the atmosphere.

The atmospheric scattering effects has always fascinated the computer graphics community. Any

attempt to recreate the beauty of images like the ones present in figure 1 is praiseworthy.

Figure 1: Images of the sky during different times of day (sunrise, noon and sunset) - by Paul Bates in
"http://paulbates.com"

Recreating the colours of the sky, sunsets and clouds is a real challenge because the nature of

scattering is complex.

Over the years many algorithms were presented to reproduce this phenomenon. The majority of

these algorithms are based on the theoretical foundations of the physicists Lord Rayleigh (Rayleigh

(1871a,b, 1881, 1889)) and Gustav Mie (Mie (1908)).

In this thesis, only daylight models will be considered, and the colour of the sky and sun are the

main concern. In these models, the sun is considered as the only light source. Due to the distance

between the Sun and Earth, it is assumed that the light rays/photons travel parallel to each other, and

unmolested through the empty space until they enter the earth’s atmosphere.
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1.2. Motivation

Upon entering the atmosphere these rays will interact with the particles in the atmosphere. When

evaluating atmospheric scattering there are several aspects that are considered such as the light direc-

tion, the density and size of particles in the atmosphere, among others. Most models consider two

types of particles: air molecules and aerosol particles, the latter being much larger than the former.

Air molecules can be found everywhere in the atmosphere where aerosols are more common closer

to earth’s surface. The result of the interaction between a photon and a particle is a function of the

photon’s wavelength and the size of the particle.

These interactions are responsible for the colour of the sky and sun throughout the day, as well as

the colour of other elements such as clouds and landscape.

1.2 M OT I VAT I O N

The existing models of atmospheric scattering can produce high-quality results. However, the infor-

mation about these models is too widespread, and there isn’t a very consistent evaluation about the

strong and weak points of each of these models. Also, there is not much information about getting

these models to work, i.e., there is not enough information about the values used in the atmospheric

scattering models that were used to obtain the results (images) present in the articles/proceedings.

Therefore its highly relevant to gather this information and make a thorough analysis of these algo-

rithms and thus consolidate the knowledge on this subject.

This project tackles this issue attempting to provide a complete description of the algorithms, cov-

ering the mathematical side with formulae, as well as the programmers view with code snippets.

The main focus of this work will be the atmospheric scattering phenomena under the context of

clear sky colour. For completeness a brief overview of other phenomena such as light shafts, clouds,

rainbows and lightning will also be a part of this thesis.

1.3 O B J E C T I V E S

The first goal is to understand the mechanics behind atmospheric scattering, namely how is a ray

affected by the interaction with a particle. This will be decisive to explain the colours of the sky and

sun.

After the theoretical part is understood, the goal will be to study how computer graphics researchers

have implemented this phenomenon. It is fundamental to understand what assumptions were made.

As this is a highly complex phenomenon, most models tend to make assumptions that simplify some

aspects of the theory to make it more performance friendly. Also, due to the complexity of the prob-

lem some researchers proposed the pre-computation of some part of the computations involved in an

attempt to speed up their algorithms. These, and other, approaches will be detailed for each method.
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1.4. Document Structure

The overall goal is to write a state of the art on the subject of sun and sky colour due to atmospheric

scattering. For completeness, a brief overview of other atmospheric related phenomena will also be

included.

1.4 D O C U M E N T S T RU C T U R E

In chapter 2 there will be a description of the atmospheric scattering phenomenon based on the

general mechanics of the atmospheric scattering models. Later, in chapter 3, a detailed description

of of the most relevant models and algorithms will be presented as well as some results obtained by

the implementation of some of those models. In chapter 4 it is presented content related to models

that can reproduce a variety of other weather phenomenons: clouds, fog, rainbows, light shafts, rain,

and lightning. Conclusions and considerations about the work done are presented in chapter 5
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2

AT M O S P H E R I C S C AT T E R I N G - T H E T H E O RY

The general theory behind this phenomena will be introduced in this chapter. This includes the math-

ematical formulation of the problem and an understanding of the mechanics of the photon-particle

interactions and their implication in the colours we perceive.

The first sections will detail how scattering affects the photons travelling direction, and ultimately

the light intensity and colour that reaches our eyes.

The last section will describe how scattering affects the colour of the sky, the sun, and the landscape

itself.

2.1 A N I N T RO D U C T I O N T O T H E S C AT T E R I N G E F F E C T

The sun is a source of light that sends a countless number of rays/photons, every second, towards the

Earth. Upon entering the atmosphere, sun rays will interact with particles in the atmosphere. There

are several types of interaction that can occur, but the most relevant one regarding colour is scattering.

Scattering occurs when a photon’s electromagnetic field hits a particle’s electric field in the atmo-

sphere and is deflected into another direction (Rayleigh (1871a)).

To better illustrate the implications of the light scattering phenomenon, lets follow a ray’s path since

it enters the atmosphere until it reaches the camera ( ray R1 in figure 2). Lets assume that a ray is

a set of photons travelling along a common trajectory.

Ray R1 travels from the sun and reaches the top of the atmosphere (Psun1) with a certain intensity

I0. Following the same direction we see that the ray interacts by the first time with a particle at point

P1.

This interaction has the potential to deflect the ray’s photons in all directions. Hence, only part of the

photons will maintain the initial direction, which results in the attenuation of the rays intensity along

the original direction. Each time the ray interacts with a particle its intensity gets further attenuated.

Still considering the initial direction, R1 further interacts with other particles until it reaches Pscatt.

The intensity of the ray upon reaching Pscatt, I1, can be computed with equation 1.

I1 = I0att(pA) (1)
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2.1. An Introduction to the Scattering Effect

Figure 2: Path of a ray in the atmosphere

where pA is the path from P1 to Pscatt. In this case, the value of att() represents the light attenuation,

which can be translated as the percentage of photons that will follow the same direction after travelling

a certain path in a medium, in this case the atmosphere.

Consider that at Pscatt some of the photons are scattered towards the camera. So a ray directed

towards the camera will leave Pscatt with an intensity value of Iscatt (equation 2).

Iscatt = I1 phase(θ) (2)

where phase(θ) determines the percentage of the photons that will travel in a direction with an

angle θ (figure 2), relative to the original direction. The process of deflecting the light towards a

given direction, in this case the direction towards the camera, is also called in-scattering.
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2.1. An Introduction to the Scattering Effect

Between Pscatt and the camera location, Pstart, the ray will suffer further attenuation as it interacts

with particles on the way, hence, the ray will reach the camera with an intensity I f inal (equation 3).

I f inal = Iscattatt(pB) (3)

where pB is the path between Pscatt and the camera. The loss of intensity by the deflection of

photons out of the original direction is also called out-scattering.

The total amount of intensity reaching the camera in a direction v can be computed as the sum of

all the in-scattering contributions caused by rays, parallel to R1 interacting with particles in the path

from the camera to the exit point (Pend) of the atmosphere along v.

A representation of the in-scattering and out-scattering events can be seen in (figure 3).

Figure 3: In-scattering and Out-scattering

Is important to mention that (as figure 3 shows) out-scattering has more influence than in-

scattering. This happens due to the nature of these types of scattering. While in-scattering can be

represented as a probability of a photon being deflected towards the camera through a specific solid

angle, out-scattering can be represented as the probability of a photon being deflected in the remain-

ing angles which represents an higher probability. Therefore an higher amount of photons are out-

scattered than in-scattered. Furthermore, scattering depends on the photon’s wavelength, hence not

all colours scatter with the same distribution.

John Strutt, also known as Lord Rayleigh, studied the light scattering phenomenon and presented

a series of equations capable of describing the behaviour of the interactions between light and small

particles (Rayleigh (1871a,b, 1881, 1889)). Gustav Mie later presented a more general light scattering

model that includes particles of all sizes (Mie (1908)).

The complete equation to compute the intensity arriving at the camera due to R1, according to the

diagram in figure 3 is:

I f inal = I0 att(pA) phase(θ) att(pB) (4)

The next sections will detail the scattering phenomena based on the work of Rayleigh (section

2.2) and Mie (section 2.3). Afterwards the process to compute the attenuation is presented (section

2.4). Once both scattering and attenuation are presented it is time to show how everything fits together
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2.2. Rayleigh Scattering

(section 2.5). To conclude, a brief discussion on the effects of these processes on the colours we

perceive (section 2.6).

2.2 R AY L E I G H S C AT T E R I N G

According to the Oxford Dictionary, Rayleigh scattering is The scattering of light by particles in a

medium, without change in wavelength (Oxford-Dictionaries (2014)). Rayleigh scattering describes

the interaction between light and small sized particles (10 times inferior to the photon wavelength)

like air molecules. To better understand the theory of Rayleigh lets consider a set of photons with

different wavelengths coming from the sun.

When the photons enter the atmosphere, they will interact with the particles in the atmosphere and

some of them will be deflected into different directions.

What Rayleigh realised is that photons with a certain wavelength (for example 475nm) react dif-

ferently when interacting with the particles of the atmosphere when comparing with photons with a

wavelength of 670nm, i.e., some photons have more potential of being scattered than others (figure

4).

Figure 4: Rayleigh scattering light behaviour - scratchapixel.com

According to Rayleigh, the intensity of light scattered by an air molecule, in a given direction θ and

for a given wavelength λ, can be described by the scattering cross section and the scattering phase

function, see equation 5.

I(λ, θ) = I0σR(λ)
phaseR(θ)

4π
(5)

In equation 5, phaseR(θ) represents the Rayleigh scattering phase function for air molecules

("mol"), σR(λ) represents the Rayleigh scattering cross section and I0 represents the intensity prior to

the interaction.

A phase function is a function of the deflection angle that describes the scattering distribution of

light.
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2.2. Rayleigh Scattering

Rayleigh’s phase function determines the probability of light being scattered in a certain direction

due to the the interaction with small sized particles (equation 6).

phaseR(θ) =
3
4
(1 + cos2(θ)) (6)

Figure 5: Rayleigh phase function

Clearly, the probability of a photon being scattered at an exact angle value is 0. Hence, we need

the concept of cross section. In physics, according to Oxford Online Dictionaries, cross section is

a quantity having the dimensions of an area which expresses the probability of a given interaction

between particles.

In other words, scattering cross section is a hypothetical area which describes the likelihood of light

being scattered by a particle, i.e., it explains the scattering potential of light into a solid angle due to

its interaction with a particle.

Is important to mention that phase functions have the property of energy conservation, i.e., the

integral over all directions must be equal to 1. Therefore, the phase function must be divided by the

all range of directions, in this case, by all range of areas (since the scattering event occurs over a solid

angle). So, the phase function must be divided by the all set of areas, in the case of a sphere, by 4π

which is the surface area of a sphere (equation 5).

A visual example of the concept of cross section can be seen in figure 6 (Wikipedia (2014m)).

On the right side of this figure there is the equation of Rayleigh’s scattering cross section.

σR(λ) =
24π3(n2

s − 1)2

λ4N2
s (n2

s + 2)2 (7)

Figure 6: Rayleigh scattering cross section

In equation 7, ns is the refractive index of air, λ is the light photon’s wavelength and Ns is the

particle density of air molecules (normally, ns = 1.0003 and Ns = 2.54743 ∗ 1019cm−3).

8



2.3. Mie Scattering

Another important aspect to retain concerns the difference in scattering potential regarding light/pho-

ton’s wavelength (figure 7).

In equation 7 Rayleigh states that the light scattering potential is inversely proportional to the

fourth power of wavelength (1/λ4), which means that, rays with shorter wavelengths, for example

blue (475nm), have far more scattering potential than rays with larger wavelengths like red (650nm).

In figure 7 there is a representation of the percentage scattering of direct sunlight according to

light (photon’s) wavelength.

Figure 7: Colour intensity of Rayleigh Scattering -
wikipedia

This difference in light scattering potential is

the main reason for the blue colour in the sky dur-

ing most of the day. As blue wavelengths have

one of the lowest frequencies, as well as violet,

there will be more of these violet and blue pho-

tons reaching the eye. According to this, violet

should be more predominant in the skies, how-

ever the colour is blue because the amount of vi-

olet is smaller than blue (table 2 in Preetham

et al. (1999)) and the human eye reacts more to

blue than to violet.

Further ahead (section 2.6.1), a more thor-

oughly explanation of the variations on the

colours of the sky will be presented.

2.3 M I E S C AT T E R I N G

Mie scattering theory, also known as the Mie solution to Maxwell’s equations, is a general theory

applicable to scattering caused by particles of any size (Mie (1908)).

However, in scattering models Mie scattering is mainly used to explain the result of the interac-

tion between light and larger particles, such as aerosols (larger than the ones considered in Rayleigh

scattering).

In fact Rayleigh scattering is a subset of Mie scattering. The scattering behaviour of light when

interacting with small and large particles can be seen in figure 8 (small particles on the left with

Rayleigh scattering; center and right are larger particles with Mie scattering).

Mie’s equations are highly complex because they require the calculation of infinite series and com-

plex integrals (Van De Hulst (1982); Box (1983); Hahn (2009); C.P. (2012)). They are more complex

and difficult to evaluate than the scattering equations of Rayleigh, therefore, and for matters of simpli-

fication, only some of Mie’s equations will be analysed next.
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2.3. Mie Scattering

Figure 8: Types of scattering and description of its behaviour - hyperphysics.phy-astr.gsu.edu

Mie scattering, which can be applied to all sized particles, computes the intensity of scattering with

equation 8.

I(λ, θ) = I0(λ)σM(λ)phaseM(θ) (8)

where σM is Mie’s scattering cross section and phaseM(θ) is Mie’s normalised phase function.

According to Mie’s theory the scattering of an electromagnetic wave by particles is usually charac-

terised by four scattering amplitudes S1, S2, S3 and S4 (Box (1983)). In the case of spherical particles

(the subject of Mie theory), symmetry requires that S3 = S4 = 0. Therefore the scattering of light

can be described resorting to S1 and S2:

S1(θ) =
∞

∑
n=1

2n + 1
n(n + 1)

[anπn(cos θ) + bnτn(cos θ)] (9)

S2(θ) =
∞

∑
n=1

2n + 1
n(n + 1)

[bnπn(cos θ) + anτn(cos θ)] (10)

were πn(cos θ) and τn(cos θ) are angular functions and are expressed in terms of the Legendre

polynomials (Wikipedia (2014g)), and an and bn are complex parameters expressed in terms of spher-

ical Bessel functions (Wikipedia (2014a)) evaluated at x (size of the particle) and ns (refraction index).

These mentioned parameters (an and bn) and the angular functions (πn(cos θ) and τn(cos θ)) are

not expanded here, but they can be found in (Box (1983); Hahn (2009)).

S1(θ) and S2(θ) describe not only the amplitude/intensity of light of a certain wavelength and

according to the angle of scattering, but they also describe the behaviour of the interactions of light

when interacting with particles with a certain size x. The way of computing these series depend on

the number of elements/series used to compute the equations S1(θ) and S2(θ).

In turn this number of series depends mainly on one factor: particle size. If the particle is small,

then the number of series necessary to describe the light-particle interaction behaviour will also be

small. On the other hand, when considering larger particles, the number of series will be higher.
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2.3. Mie Scattering

To evaluate the scattered intensity of light, these series are usually expressed via Stokes parameters,

see equation 11 (Wikipedia (2014n)):
Is

Qs

Us

Vs

 =


M11 M12 0 0
M21 M22 0 0

0 0 M33 M34

0 0 M43 M44




Ii

Qi

Ui

Vi

 (11)

were Ii, Qi, Ui and Vi represent the Stokes flux vector.

Regarding the scattering cross section and scattering phase function, from these parameters, the

most important is M11 because it identifies the intensity of light that is scattered (without polarisation)

and is given by:

M11(λ, θ) = (|S1(θ)|2 + |S2(θ)|2)
λ2

4π2 (12)

The total scattering cross section is given by:

σM(λ) = 2π
∫ π

M11(λ, θ) sin θ dθ (13)

According to Box (1983), M11 can also be seen as a combination of the phase function and the

scattering cross section:

M11(λ, θ) = phaseM(θ)σM(λ) (14)

These equations show that in fact equation 8 could be given by I(λ, θ) = I0(λ)M11(λ, θ).

Mie’s scattering equations are complex and the solution depends on the difference between the

particle size and the photons wavelength. Hence, Rayleigh scattering is commonly used for smaller

particles. For larger particles, computational models usually resort to an approximation of Mie’s

equations described in section 2.3.1.

2.3.1 Henyey-Greenstein Approximation

Henyey and Greenstein devised an expression which mimics the angular dependence of light scatter-

ing by particles, used to describe scattering of light by interstellar dust clouds.

The Henyey-Greenstein scattering function has proven to be useful in approximating the angular

scattering dependence of single scattering events. In other words, the Henyey-Greenstein phase func-

tion can also be used to evaluate the effect of the scattering events in the atmosphere.

In fact, its results are similar to the ones obtained with the Mie phase function, so, due to the high

complexity of the Mie scattering functions, some applications use the Henyey-Greenstein method in

order to enhance performance.
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2.4. Computing Light Attenuation

Figure 9: Henyey-Greenstein phase function

phaseHG(θ) =
1− g2

(1 + g2 − 2gcos(θ))3/2 (15)

Equation 15 depends on a parameter g, ranging from -1 to 1, that represents the scattering ori-

entation (figure 9). Positive values for g benefits forward-scattering, and negative values benefits

back-scattering. If g = 0 its values (for light distribution) are similar to the ones obtained with

Rayleigh scattering. When comparing this image with figure 8 we can see that, the values of g
should be chosen according to the size of the particle, i.e., if the particle size is huge, then the value

of g is closer to 1, if the particle size is smaller than, the value of g becomes closer to 0.

In figure 9 is a representation of the Henyey-Greenstein phase function when describing the

interaction of light with different values of g.

Is important to mention that, as in Rayleigh’s, the phase function used in the AS models could be

slightly different. The differences were a result of the experiments and colour testing that according to

their authors, presented a better approximation to reality. One example of this adaption can be found

in Nishita et al. (1993) (function proposed in Cornette and Shanks (1992) - equation 16).

P(θ) =
3(1− g2)

2(2 + g2)

1− g2

(1 + g2 − 2gcos(θ))3/2 (16)

2.4 C O M P U T I N G L I G H T AT T E N UAT I O N

Computing the attenuation requires, among other things, knowing the particle density. In AS models,

Earth’s atmosphere is assumed to have air molecules and aerosols as particles and they are distributed

all over the atmosphere. A possible representation can be found in figure 10.

In general, according to the works of Kaneda et al. (1991) and Nishita et al. (1993), the particle

density for a particular height h can be computed as

ρ(h) = exp(−h/HT) (17)

where HT is the scale height, i.e. the height at which the atmpsheric pressure decreases by a factor

of e Wikipedia (2014l). For example, in Nishita et al. (1993), for air molecules Hmol = 7994m and
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2.4. Computing Light Attenuation

Figure 10: Earth’s atmosphere density distribution - scratchapixel.com

for aerosol particles Haero = 1200m. We shall refer to the density of air molecules as ρmol and the

density of aerosols as ρaero.

This expression reflects the fact that both types of particles have an exponential distribution along

the atmosphere being more dense near the surface and this expression also shows that the concentra-

tion of aerosols is only meaningful much closer to the surface.

The size of the particles also affects the interaction with different wavelengths. Attenuation is

therefore a function of both the wavelength, λ, and particle density, ρ.

The Beer-Lambert’s law (derivation of the works in Beer (1852) and Lambert (1760)) describes

the extinction/attenuation of light due to out-scattering events. In other words, this law describes the

portion of light transported through a certain medium, in this particular case, the atmosphere.

This law, considering its application in a path (PA → PB), is usually represented as:

att(PA → PB) = exp
(
−
∫ PB

PA

β(x)dx
)

(18)

were β is the extinction coefficient, i.e., β represents the optical thickness of the atmosphere parti-

cles (air molecules and aerosol particles in this case).

We can see that according to equation 18 the value of attenuation varies exponentially with the

distance travelled by the light in the atmosphere.

As been mentioned before, in the case of atmospheric scattering models, the value of light atten-

uation is the portion of photons that are out-scattered due to air molecules (Rayleigh scattering) and

aerosol particles (Mie or Henyey-Greenstein scattering functions).

Using these scattering equations we can give values to the extinction coefficient in equation 18,

because, those functions explains how much photons(light) are out-scattered from their direction due

to interactions with a volume of particles in the atmosphere.
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2.5. Putting it all Together

Equation 19 shows how to compute the attenuation (for particles of type T, where T can be aero
(aerosol particles) or mol (air molecules)) of a ray after travelling in path s.

attT(s, λ) = exp
(
− 4πσT(λ)

∫ s
ρT(p)dp

)
(19)

where σT(λ) is the scattering cross section and
∫ s

ρT(p)dp is the expression for optical depth. In

some AS models the value for σT(λ) is replaced by a notation K
λ were this constant K is computed

according to the type of particle being considered, for example, in O’Neil (2005), for air molecules

Kmol = 0.0030, and in Nishita et al. (1993), Kmol is represented as a constant for the standard at-

mosphere (molecular density at sea level.) For aerosols, because the mie scattering cross section

is complex to evaluate, some AS models only adjust the value of Rayleigh using the scale of par-

ticle distribution (in O’Neil (2005) for aerosol the value of K is half of the value for air molecules

Kaero = 0.0015). The values used for σT(λ) will be mentioned with more detail in the AS models in

chapter 3).

When considering attenuation due to both types of particles, the value of attenuation of light when

travelling a path s in a medium with both air molecules (mol) and aerosol particles (aero) becomes:

att(s, λ) = exp
(
− (4πσmol(λ)

∫ s
ρmol(p)dp + 4πσaero(λ)

∫ s
ρaero(p)dp)

)
(20)

2.5 P U T T I N G I T A L L T O G E T H E R

Consider figure 11.

Figure 11: Evaluation of the intensity of a scattered ray along its path

The equation to compute the light intensity for a single ray, in a single wavelength λ that reaches

the camera located at Pcam, along a path s, and for a given type of particle T (aero or mol) is given by:

IT(λ, s, Pcam, Pscatt) = I0(λ)attTsun(Pscatt, λ)phaseT(θ)attTview(Pscatt, λ) (21)
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2.5. Putting it all Together

But the full amount of light that reaches the camera in a single wavelength λ that reaches the camera

located at Pcam, along a path s, and for a given type of particle T (aero or mol) is given by:

IT(λ, s, Pcam) =
∫ Pend

Pcam

I0(λ)attTsun(p, λ)phaseT(θ)attTview(p, λ)dp (22)

where attTsun(p) is the attenuation, for particles of type T, between the entrance in the atmosphere

until point p in path s, and attTview(p) is the attenuation between p and the camera position.

When considering the result from both types of particles (aero and mol), the final intensity can be

computed as:

I(λ, s, Pcam) =
∫ Pend

Pcam

I0(λ)attsun(p, λ)(phasemol(θ) + phaseaero(θ))attview(p, λ)dp (23)

In Equation 23, the attenuation functions (attview and attsun) are the ones represented by equation

20, where phasemol is the phase function for air molecules (Rayleigh), phaseaero is the phase function

for aerosol particles (Mie or Henyey-Greenstein).

As we can see, in equations 23 and 20 there is a necessity to solve integrals. The main difference

between the AS models resides in the way they solve these integrals. Some approximate the real value

by performing ray marching (Wikipedia (2014k)) or they simplify these mathematical expressions by

analytical functions.

So far, only single scattering events are being considered, i.e., ray R1 suffered only one event of

in-scattering towards the camera (figure 11). The full value of in-scattered light must also take into

account the scattering of light from rays that have been scattered multiple times before. An example

appears in figure 12.

Ray R2 (unlike R1) is scattered multiple times until it is finally scattered into the viewing direction

at point Pscatt.

In mathematical terms, the main difference between R1 and R2 is in the way attsun is computed.

While attsun for R1 represents the amount of particles that remained in the same direction, for R2,

attsun has a constant change in paths (see figure 13), therefore the intensity of R2 that reaches Pscatt

can be seen as:

attR2sun(λ) = I0 ∗ (att(Pm1)phase(θPm1)) ∗ (att(Pm2)phase(θPm2)) (24)

where att(Pm1) and att(Pm2) represent the attenuation of the rays intensity along the paths (Pm1 →
Pm2) and (Pm2 → Pscatt) respectively, and where phase(θPm1) and phase(θPm2) represent the amount

of light that was scattered into different directions (from point Pm1 to Pm2 and from point Pm2 to Pscatt

respectively).
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2.5. Putting it all Together

Figure 12: Path of a ray in the atmosphere (multiple scattering)

Hence, to take into account multiple scattering up to a n order of scattering events, (being n = 1
for single scattering, and n > 1 for the other orders) the term attsun, from equation 22, needs to be

replaced by a more complex expression (attsunMS) that can sum the contributions from all these rays,

which can be seen in equation 25.

attsunMS(n, λ) =
n

∑
i=1

j=i

∏
j=1

k=nk

∑
k=1

att(path(j), λ)phase(θj) (25)

where path(j) is the path travelled by the ray between two consecutive interactions, j − 1 and j,
phase(θj) is the angle between the direction of the ray prior to interaction j and the direction after

interaction j, and nk is the number of ray samples from which the light contributions are gathered,
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2.5. Putting it all Together

Figure 13: Representation of 2 rays, one scattered once (R1) and another scattered 3 times (R2)

i.e., unlike single scattering, where for one sample in the view direction we only consider a single ray

with a certain intensity, in multiple scattering more rays are considered which implies the usage of

sampling.

It is important to mention that, when evaluating the contribution from multiple scattering, all rays

reaching the atmosphere must be taken into account, as well as all scattering directions in every light-

particle interaction.

Evaluating the amount of scattered light ((R1 - figure 13)) is already complicated and costly just

considering single-scattering. With multiple scattering ((R2 - figure 13)) the complexity becomes

prohibitive from a computational point of view.

Since the amount of light coming from multiple scattering events is far less significant when com-

pared to the contribution of single scattering, due to the successive application of the phase functions,

some models evaluate only single scattering. Other models proposed to consider only a small number

of scattering events.

The usage of these phase functions is crutial to evaluate the amount of light scattered in the atmo-

sphere. For a better understanding on the comparison in using Rayleigh to evaluate the scattering of

light when interacting with small particles and Mie to evaluate the scattering of light when interacting

with large particles lets consider figure 14

Figure 14: Mie and Rayleigh scattering comparison
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2.5. Putting it all Together

This image shows the difference in scattering potential between small and large particles. In fact

the image shows how the Mie function contributes more for the colour of the sun, than to the colour

of the sky, where Rayleigh contributes more for the colours of the sky.

2.5.1 Sun Direction

There is an important factor that was not yet approached but that is crucial for any AS model: the

direction of the sun.

Due to the huge different in size between the sun and earth (sun approximately 109 times larger in

diameter than earth - Wikipedia (2014o) ), most AS models consider the sun component as a simple

direction of light.

There are a lot of algorithms that make possible to determine the position of the sun at any time of

the day and at any position on the Earth based on coordinates of latitude and longitude.

In here is presented an algorithm from Preetham et al. (1999) that provides the sun light direction

according to geographical coordinates, latitude and longitude, for a given time of day and date. With

this algorithm is possible to obtain the direction of sunlight from any place at any time (image 15).

Figure 15: Preetham sky model - Preetham et al. (1999)

The algorithm considers the following input data:

• the time of day in decimal hours

• the day number (1... 365)

• latitude and longitude in radians

• the standard meridian for the time zone in radians.

The standard meridian time can be computed as the hour difference to Greenwich Meridian Time

times 15 (an hour equals 15 radians).

Given a latitude (lat) and longitude (lon), the standard meridian for the time zone (Z), a time of day

(ts) and a day (D), the solar time in decimal hours, t, can be computed as:

t = ts + 0.170sin(
4π(D− 80)

373
)− 0.129sin(

2π(D− 8)
355

) +
12(Z− lon)

π
(26)
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2.6. The Colour of Things

The solar declination in radians, γ, can be approximated by

γ = 0.4093sin(
2π(D− 81)

368
) (27)

Finally the sun position is given by (θs, φs), where θs is given by

θs =
π

2
− arcsin(sin(lat)sin(γ)− cos(lat)cos(γ)cos(

πt
12

)) (28)

and φs is given by

φs = arctan(
−cos(γ)sin(πt

12 )

cos(lat)sin(γ)− sin(lat)cos(γ)cos(πt
12 )

) (29)

The direction of the sun is given in spherical coordinates, so, to obtain the vector of light direction

its only necessary to do the following:

• x = −sin(θS)sin(ΦS)

• y = cos(θS)

• z = sin(θS)cos(ΦS)

2.6 T H E C O L O U R O F T H I N G S

Scattering affects the perceived colour from the sky, the sun and the landscape itself. This section

describes the reasons for these colours.

2.6.1 The Sky and Sun

Lets focus in a particular spot in the sky. During the day the sky is generally blue (with clear sky

weather), and at sunset, near the horizon, the sky becomes reddish.

As mentioned before, according to Rayleigh, photons with shorter wavelengths (blue photons) pos-

sess more potential of being scattered when compared to photons with larger wavelengths (red pho-

tons).

The particle size plays an important role, affecting the dispersion of light. Small particles scatter

light almost equally in all directions while large particles scatter more light in directions similar to the

original direction of the ray (figure 8).

The distribution of particles in the atmosphere is also a relevant factor. The density increases with

the approximation to the Earth’s surface. So, the concentration of particles is larger near the surface

than at higher altitudes, particularly for particles of larger dimension like aerosols.
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2.6. The Colour of Things

Another important factor remains in the direction of light. Sunlight direction changes during the

day. This direction affects the amount of blue, red and green photons that our eyes receive. Figure

16 illustrates this statement.

Figure 16: Path of different photons in the atmosphere at different times of day - scratchapixel.com

Lets take as an example sunlight direction at noon. If we look towards the sun, the colour our eyes

perceive is closer to yellow, however if we look to any other place in the sky the colour is blue. That

happens because, blue photons are more likely to scatter than green and red (figure 16), and by the

same reason, if we look at the sun we will receive more green and red photons (because they are less

likely deflected) and less blue photons that when looking towards the sky.

At sunset the light travels a greater path in the atmosphere, hence, not only blue but also green

photons are significantly out-scattered, causing an orange sun. Also, at sunset the sunlight direction

is closer to our normal view direction (we normally look towards the horizon) than at noon and that

favours the red photons that have less scattering potential.

To summarise, the colour of the sky and sun depends on several factors such as particle size and

light direction, but the major factor is the wavelength of the photons.

2.6.2 The Landscape and other Objects

As mentioned before, the only light source considered in an atmospheric scattering model is the Sun.

So the colour of an object will depend mainly on the intensity and direction of the sun light. The

major contribution for the colour of the object is the reflection of the sunlight from the object.

When looking towards the landscape, normally, distant entities (mountains for example) seems

bluer than closer ones. In fact this is a detail that helps us to perceive the relative distance between

objects, and it happens due to in-scattering and attenuation. The more distant an object is from the

eye, the more (blue) light will be scattered towards the eye, and at the same time, more of the object’s

"light" will be out-scattered from the viewers direction. This effect is usually called aerial perspective.

The bluish colour happens for the same reason that the sky is blue during the day. Photons with low

wavelengths, like blue, have more scattering potential, so more blue light will be scattered in the view

direction towards the eye.
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2.6. The Colour of Things

Figure 17 Shows the perceived colour of an object lit by the sun as a result of the reflected light

that travels from the object to the eye.

Figure 17: Reflection of a sun ray from an objects surface

The light reaching the eye is a result of the attenuation on the colour reflected by the object Obj
plus, the in-scattered light along the path between a camera at Pcam and the position of the object Pend.

In mathematical terms, the amount of light that reaches the eye in the path between the object and

the camera (considering only single scattering) is given in equation 30.

Iobj(Obj, Pcam, Pend) = Iobj(Obj, φ)attview(Pcam → Pend) + I(λ, s, Pcam) (30)

were Iobj(Obj, φ) is the intensity that is reflected at a angle φ (equation 31) and I(λ, s, Pcam) is

the amount of in-scattered light in path s (equation 22).

The reflected intensity also suffers attenuation, hence, the value of Iobj(Obj, φ) (considering only

single scattering) can be described as:

Iobj(Obj, φ) = I0(λ)attsun(pathsun−obj)colour(Obj)re f lect(φ) (31)

were attsun(pathsun−obj) represents the attenuation in the path between the top of the atmosphere

and the object’s surface (and is given by equation 20), colour(Obj) is the colour property of the

object and re f lect(φ) is the amount of light that is reflected in an angle φ according to the object

properties.

The equations above justify the fact that distant objects/nature elements, such as mountains, have a

more bluish/attenuated colour than closer objects.
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3

AT M O S P H E R I C S C AT T E R I N G - T H E M O D E L S

In Atmospheric Scattering rendering there are two main approaches:

• Physically based Model - Usage of methods based on ray marching mechanisms to solve com-

plex integrals using sampling

• Analytical Model - simplification of complex integrals and evaluating methods based on physi-

cal values

The physically based models usually present more accurate results when compared to the analytical

model, however, its performance is far worse.

The first rendering models like the models of Klassen (Klassen (1987)) are physically based models.

They perform ray marching to obtain samples and evaluate the amount of light reaching the camera.

In mathematical terms, this means that equation 23 becomes:

I(λ, s, nsamples) =
nsamples

∑
p=0

I0(λ)attsun(p)(phasemol(θ) + phaseaero(θ))attview(p) (32)

Dobashi et al. (Dobashi et al. (1997)) presented models of an analytical nature.

Most of the models use Henyey-Greenstein phase function (or the version proposed by Cornette

and Shanks) instead of Mie’s since it gives a reliable approximation to the Mie’s phase and avoids the

high complexity of Mie’s equations. In fact, of the models analysed here, only the model in Preetham

et al. (1999) uses Mie’s equations (analytical approximation with pre-computed values).

The most complete physically based models will evaluate multiple scattering events along the ray’s

path in order to obtain more rigorous values of light/colour intensity, resulting in more calculations

and, therefore, more rendering time (Nishita et al. (1996a) and Bruneton and Neyret (2008)).

On the other hand, the analytical models prefer to simplify the integrals and use variables that

module the intensity variation (for example Preetham et al. Preetham et al. (1999)). These methods

obtain results faster at the expense of accuracy.

There are other concerns regarding the process of rendering the colours of the sky, namely spectrum

of values and tone mapping.

Some AS models evaluate the amount of in-scattered light by evaluating up to 30 different light/pho-

ton wavelengths (e.g. aerial perspective model in Preetham et al. (1999)). This produces a colour spec-
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3.1. Atmosphere with two layers

trum far richer than RGB, but it does not allow direct representation of the colours on RGB model

displays.

In order to represent these values in a computer, this spectrum of values must be converted. For

example, in Preetham et al. (1999), the colour spectrum is converted to XYZ and then to RGB. The

result obtained with the colour spectrum is physically more accurate than the models that just compute

the colours of the sky for only 3 values of light wavelength.

Another issue is the values of light intensity. Sometimes those values overflow causing the resultant

colour to be too bright. To address this issue some models propose to use tone maps in order to fit the

values of light into valid range.

In the models, for a matter of simplicity, lets assume the concept of ray (or sun ray) as a group of

photons. Sometimes a ray will be described as a group of photons of different wavelengths and other

times as a group of photons of the same wavelength. The first concept is used to explain a general

idea, and the second is used for computational matters.

3.1 AT M O S P H E R E W I T H T W O L AY E R S

In 1987, Victor Klassen (Klassen (1987)) proposed a single scattering model of the atmosphere com-

posed by 2 layers, each with constant density (figure 18).

Figure 18: Earth’s atmosphere with 2 layers, outer layer with air molecules, and the inner layer with air
molecules and haze particles

Furthermore, the top layer is composed only by air molecules (haze free layer). The bottom layer,

closest to the Earth’s surface, is composed by both particle types (haze and air molecules). Klassen’s

model considers only single scattering and further assumes that it is very unlikely that an in-scattering

event will occur in the top layer.

Consider the mechanism of light/photon scattering as described in section 2.1 and figure 18.

The ray coming from the sun enters the atmosphere with an intensity I0. Since in-scattering events

occur only in the haze layer, in the top layer the attenuation is proportional to the distance covered by
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3.1. Atmosphere with two layers

the rays in that layer. When entering the haze layer the intensity of the ray (I1) is given by equation

33.

I1 = att(st, Dt)I0 (33)

where st is the path covered by the ray since it enters the atmosphere until it reaches the haze layer,

and Dt is the density of the top layer.

The intensity at the in-scattering point Pscatt can be computed as the product of I1 and the attenua-

tion between the entrance point on the haze layer, and the intersection with the view direction. So, the

intensity of the ray at that point IPscatt is given by equation 34.

IPscatt = att(sh, Dh)I1 (34)

where sh is the path covered by the ray in the haze layer until it intersects the view direction, and

Dh is the density of the haze layer.

At Pscatt part of the ray is deflected towards the camera. The ray leaves Pscatt with an intensity of

I2 that is given by:

I2 = phase(θ)IPscatt (35)

where phase(θ) represents the phase function, and θ is the deflection angle. From Pscatt to the

camera the light travels through path se. The ray’s intensity when it reaches the camera is Icam and is

given by:

Icam = att(se, Dh))I2 (36)

Putting it all together, considering this example the intensity would be given by:

Icam = att(se, Dh)phase(θ)att(sh, Dh)att(st, Dt)I0 (37)

The full amount of light in the view direction is obtained by sampling the view direction (marching

a ray), between the camera and the exit point of the haze layer, and computing at each sample the

in-scattering contribution. The equation, that evaluates the full amount of light reaching the camera,

is:

I f inal =
n

∑
i=0

att(sei, Dh)phase(θ)att(shi, Dh)att(sti, Dt)I0 (38)

where sei is the path between the camera and sample i, θ is the deflection angle between the view

direction and the sun rays, shi is the path of the sun ray inside the haze layer, and sti is the path of the

sun ray inside the haze free layer.
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3.1. Atmosphere with two layers

The attenuation itself is greatly simplified due to the assumptions of constant density within each

layer. For the top layer the attenuation can be given by equation 39 and for the bottom layer by

equation 40.

atttop(s, Dtop) = exp(−4πσmol(λ))length(s)Dtop) (39)

atthaze(s, Dhaze) = exp(−(4πσmol(λ) + 4πσaero(λ)))length(s)Dhaze) (40)

For the phase function, as in the bottom layer there are both aerosols and air molecules, the expres-

sion of phase(θ) in equation 38 can be written as:

phase(θ) = phaseR(θ) + phaseHG(θ) (41)

Using these equations, a CPU ray-marching solution was implemented in order to render the colours

of the sky using Klassen’s AS model. The results can be seen in figure 19.

Figure 19: Images using Klassen model of the atmosphere with 2 layers. Top: Sky at Sunrise, Midday and
Sunset, respectively. Bot: Sun at sunset and 16 hours

Klassen’s model can reproduce various types of day, like foggy days or days with clear sky by

adjusting the particle density and the height of the haze layer.

The results (see figure 19) were obtained by using the scattering coefficient values present in

Nishita et al. (1993) and Bucholt (1995), namely Dhaze = 4, Dtop = 2, σmol = Kmol
λ4 and σaero =

Kaero = Kmol/(10−25) (Kmol = 4.5864 ∗ 10−32). Eight samples were taken in each view direction,

and only three wavelengths were considered for red, green and blue using for each one of them a
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3.2. Atmosphere with Exponentially Decreasing Density

initial value of intensity of I0 = 20. The g coefficient of Henyey-Greenstein phase function used was

g = 0.99.

Algorithm 1 Klassen AS model

for each view direction view viewV do
sampleV = (intersectSphere(camPos, viewV , hazeRadius)− cameraP)/numSamples;
sampleP = cameraP + sampleV ∗ 0.5;
sampleLength = length(sampleV);
viewO f f set = 0.5 ∗ sampleLength;
θ = getAngle(viewV , sunDirV);
color = {0, 0, 0};
for n = 0..numSamples do

hazeP = intersectSphere(sampleP, sunDirV , hazeRadius);
topAtmP = intersectSphere(sampleP, sunDirV , atmRadius);
hazeDist = length(sampleP, hazeP);
hazeFreeDist = length(hazeP, topAtmP);
for n = 0..3 do

color[i]+ = att(viewO f f set, Dh, wavelength[i])∗ // equation 40
phase(θ)∗ // equation 41
att(hazeDist, Dh, wavelength[i])∗ // equation 40
att(hazeFreeDist, Dt, wavelength[i]); // equation 39

end for
viewO f f set+ = sampleLength;
samplep+ = samplev;

end for
render(viewV, color);

end for

The rendering process to obtain the images with Klassen’s AS model is present in code 1, where

intersectSphere(pos, dir, radius)) represents the point of intersection of a ray, starting from point

Pos and with direction dir, with a sphere of radius radius. In code 1 cameraP represents the camera

position relative to the center of the earth, hazeRadius the radius of the sphere that delimits the haze

layer, atmRadius is the total radius of the atmosphere, sunDir is the direction pointing towards the

sun, and wavelength is an array with the three wavelengths for RGB in meters.

On the same paper Klassen (1987) presents a model of fog, where fog is represented by another

layer very close to the Earth’s surface. In this model fog possesses an opacity coefficient and its used

to evaluated also the colour of objects. This will be detailed in section 4.3.

3.2 AT M O S P H E R E W I T H E X P O N E N T I A L LY D E C R E A S I N G D E N S I T Y

As mentioned before the atmosphere is not made of two distinct zones with constant density. In fact

the atmosphere is a single layer where the particle density has an exponential variation. The next AS

models become physically more accurate by considering this exponential variation.
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3.2. Atmosphere with Exponentially Decreasing Density

The exponential variation of the atmoshpere density was first explored in Kaneda et al. (1991),

where it implements single scattering with a continuous atmosphere as described in chapter 2.1.

This work uses Rayleigh’s scattering equations for air molecules and Henyey-Greenstein’s equations

for aerosols.

Optical depth integrals are approximated by marching a ray. While in Klassen’s model the ray is

only sampled from the view direction (v), this model extends the sampling to the full path of the ray

since it enters the atmosphere just like in figure 20 .

With a non-uniform atmosphere density, this model needs to evaluate the density of air molecules

and haze particles for each of these samples resulting in a closer approximation to the attenuation

equation (equation 19).

A comparison between the models of Klassen and Kaneda et al. can be seen in figure 20.

Figure 20: Comparison of Klassen’s AS model with 2 layers and Kaneda et al. with one layer with heteroge-
neous density

The increase in accuracy comes with a penalty regarding performance, as the model by Kaneda et

al. is significantly more expensive computationally wise. In Nishita et al. (1993) several performance

wise improvements were proposed. The main objective was to reduce the number of calculations

during rendering.

Consider a set of spheres as in figure 21 (left). According to Nishita et al., the best way to posi-

tion these spheres across the atmosphere is in a decreasing exponential distribution, matching the den-

sity distribution of the atmosphere, such that the density amplitude between any two adjacent spheres

is similar. The proposed formula to compute the radius of these spheres is given by equation 42.

r(i, nsamples) = rearth + log2(1−
i

nsamples
) ∗ H (42)

where rearth is the radius of the Earth and H = atmradius − earthradius.

Consider now a set of cylinders with the axis aligned with the sun direction and passing through the

centre of the earth. Figure 21 (right) shows a cylinder matching this description.
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3.2. Atmosphere with Exponentially Decreasing Density

Figure 21: Discretization of the atmosphere

Assuming the sun rays travel parallel to each other, and considering figure 22, it is clear that sun

rays entering the atmosphere have the same optical depth when reaching P1 and P2, since they cover

the same portion of the atmosphere. This is true for the any point in the circle that is the result of the

intersection of the cylinder with radius rC and the sphere with radius rS.

Nishita et al. propose to take advantage of this fact by pre computing the optical depths for pairs

(rC, rS) and storing them in a lookup table. Considering the atmosphere radius (Ratm) and the earth

radius (Rearth), 0 < rC < Ratm and Rearth < rS < Ratm.

Figure 22: Symmetry property for optical depths

The lookup table would provide, through interpolation, the optical depth for all rays in the sun

direction. Considering only single scattering, this would assist in the computation of the attenuation

of the sun rays for every sample point along the view ray. To perform the interpolation is mandatory

to identify at run-time the radius of the sample point and the radius of the cylinder. The radius is
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3.2. Atmosphere with Exponentially Decreasing Density

obtained with the distance between the earth’s centre and the sample point. For the cylinder radius, its

used the angle relation seen in figure 22, where this angle is made between the sunlight direction,

and the vector centreearth → P1. So, the radius of the cylinder is rc = cos(π/2− α).

Recall the equation to compute the attenuation along a path (equation 43), and its usage to

compute the intensity arriving at the camera (equation 44).

att(s, λ) = exp
(
− (4πσmol(λ)

∫ s
ρmol(p)dp + 4πσaero(λ

4)
∫ s

ρaero(p)dp)
)

(43)

I(λ, s, Pcam) =
∫ Pend

Pcam

I0(λ)attsun(p)(phasemol(θ) + phaseaero(θ))attview(p)dp (44)

The proposed pre computation corresponds to the integrals in equation43, for attsun in equation

44, which is a significant part of the required computations.

Results of using the model proposed by Nishita et al. can produce images as in figure 23:

Figure 23: Images using Nishita model of the atmosphere in clear sky. Top: Sky at Sunrise, Midday and Sunset,
respectively. Bot: Sun at sunset and 16 hours

These results were obtained by using coefficients like air and aerosol particles density, present

in Nishita et al. (1993), Bucholt (1995) and Nishita et al. (1996a), which were mentioned above in

chapter 2.1. The values for were the same used for the model of Klassen, namely, σmol = Kmol
λ4

and σaero = Kaero = Kmol/(10−25) (Kmol = 4.5864 ∗ 10−32). The photons wavelength (λ) was

used in meters. Eight samples were taken in each viewing direction and sunlight direction, and only

three wavelengths were considered: red, green and blue using for each one of them a initial value of

intensity of I0 = 20.
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3.2. Atmosphere with Exponentially Decreasing Density

Nishita et al. (1993) AS model uses Rayleigh’s phase function for air molecules ((equation 6),

and for aerosol particles uses a modified version of the Henyey-Greenstein phase function as presented

in equation 16. The g coefficient of used was g = 0.99.

In code 2 it is presented an algorithm to pre-compute the values of optical depth for a series of

sampling spheres (nspheres), sampling cylinders (ncylinders) and for a number of samples in the process

of marching the ray (numSamples). atmRadius is the total radius of the atmosphere and sunDir is the

direction pointing towards the sun.

Algorithm 2 Nishita et al. single scattering model - pre-computation

initSphereRadius() // equation 42
initCylinderRadius()
for each pair in (rs, rc) do

startP = getPointInIntersectionSphereCylinder(rC, rS)
endP = intersectSphere(startP, sunDirV , atmRadius)
sampleV = (endP − startP)/numSamples
opticalDepthaero = opticalDepthmol = 0
sampleP = startP
sampleLength = length(sampleV)
for n = 0..numSamples do

opticalDepthaero+ = exp(−height(sampleP)/Haero) ∗ sampleLength //Haero = 1200
opticalDepthmol+ = exp(−height(sampleP)/Hmol) ∗ ∗sampleLength //Hmol = 7994
sampleP+ = sampleV

end for
lookup[rC][rS].aero = opticalDepthaero
lookup[rC][rS].mol = opticalDepthmol

end for

In code 3 it is presented an algorithm to compute the colours of the sky. In the code there is

explicit the process of computing the attenuation value of the ray since it enters the atmosphere until

it reaches the eye. There is also the part with the condition of the lookup table improvement proposed

by Nishita et al. (lookup process). Like in code 2, atmRadius is the total radius of the atmosphere and

sunDir is the direction pointing towards the sun.

The functions of closestsphere and closestcylinder will fetch the closest (and at the same time the

lowest) entry in the lookup table for the radius of the sphere, and of the cylinders respectively.

Like Kaneda et al., Nishita et al. also presents a way to render clouds and extended to render also

the colour of the sea. The mechanism of scattering of light and optical depth is use to evaluate the

intensity of light that reaches the clouds and the sea, and in the case of clouds, the same mechanism

for atmosphere particles is used but with different extinction coefficients. Regarding the sea, the

calculation is based on the work of Gordon and McCluney Gordon (1973) McCluney and Center

(1974). This will be further detailed in section 4.2 further ahead.
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3.2. Atmosphere with Exponentially Decreasing Density

Algorithm 3 Nishita et al. single scattering model - run-time

for each view direction viewV do
endP = intersectSphere(cameraP, viewV , atmRadius)
sampleV = (endP − cameraP)/numSamples
sampleP = cameraP + sampleV ∗ 0.5
sampleLength = length(sampleV)
viewO f f set = 0.5 ∗ sampleLength
θ = getAngle(viewV , sunDirV)
opticalDepthaero = opticalDepthmol = 0
zeros(attenuation)
for n = 0..numSamples do

opticalDepthmol = exp(h(sampleP)/Hmol) ∗ viewO f f set
opticalDepthaero = exp(h(sampleP)/Haero) ∗ viewO f f set
rC = getCylinderRadius(sampleP)
rS = getSphereRadius(sampleP)
lightOpticalDepthmol = lookupAndInterpolatemol(rC, rS)
lightOpticalDepthaero = lookupAndInterpolateaero(rC, rS)
for i = 0..3 do

βmol = (opticalDepthmol + lightOpticalDepthmol)
4π.Kmol

waveLength[i]4

βaerosol = (opticalDepthaero + lightOpticalDepthaero)4π.Kaero
attenuation[i]+ = exp(−(βmol + βaero))

end for
sampleP+ = sampleV
viewO f f set+ = sampleLength

end for
for n = 0..3 do

color[n] = I0[waveLength[i]] ∗ attenuation[n] ∗ (phasemol(θ) + phaseaero(θ))
end for
render(viewV, color)

end for
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3.3. Multiple scattering in the atmosphere

3.3 M U LT I P L E S C AT T E R I N G I N T H E AT M O S P H E R E

The AS models presented above only considered single scattering events. In 1996, Nishita et al.

proposed a model to compute the colours of the sky by considering also the contribution of multiple

scattering (Nishita et al. (1996a)) providing a better approach to the real phenomenon.

The inclusion of multiple scattering in the evaluation of light scattering implies the inclusion of

more light samples to evaluate. The difference with these light samples is that instead of belonging to

the path from a certain point v to the sun, they belong to the path from v to other points vs inside the

atmosphere (figure 24).

For that purpose an AS model was proposed in which the atmosphere is divided in voxels, and they

will be used to store pre computed values of light intensity (both direct and in-scattered light).

Figure 24: Nishita et al. atmosphere with voxels

The basic idea is to gather in each voxel v (figure 24) not only the direct light intensity arriving

from the sun, but all light coming from pre defined sampling directions gathering light from neighbour

voxels (vs). In order to gather light into voxels, Nishita et al. presents a multi-pass algorithm that

accumulates different values of light at each pass. In turn, each pass represents an order of scattering,

i.e., a two pass algorithm will gather direct light and a 1st order of scattering (single scattering), a three

pass will gather direct light, single scattering and 2nd order of scattering, and so on (equations 22

and 25).

To gather direct light contribution for each voxel v, it is only necessary to compute the light atten-

uation of a sun ray with wavelength λ, travelling in a path s, starting at v and in the direction of the

sun since the moment it enters the atmosphere until it reaches v (Iv,0 = I0 ∗ attsun(s, λ)).

To explain the process to gather the higher orders of scattering lets consider the gathering of single

scattering in a voxel v (see figure 25).

To gather the 1st order of scattering in voxel v, it is necessary to gather the values of light that are

scattered at the sampling voxels vs (red circles in figure 25) on the various sampling directions

(sampledir), towards voxel v. Calculation is made using equation 21 using L0 as the value of
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3.3. Multiple scattering in the atmosphere

Figure 25: Voxels 1st order of scattering calculation

direct light stored in vs (Iv,0) and the angle θ as the angle made between the sunlight direction and the

sampling direction (sampledir).

The value that reaches voxel v from each voxel vs is Iv,1,vs = Ivs,0 ∗ phase(θ)attview(path(vs, v)).
So the amount of light in voxel v at this point is the sum of Iv,0 + Iv,1,vs . This process is repeated for

a number of neighbours.

To gather a 2nd order of scattering a similar process is done (see figure 26).

Figure 26: Voxels 2nd (or nth) order of scattering calculation

Just like in the 1st order of scattering, the objective is to gather scattered light on the sample voxels

v from the neighbour voxels vs. The difference is that the amount of light that goes from neighbour

voxels vs to voxel v is given by Iv,2 = Ivs,1 ∗ phase(θ)attview(path(vs, v), λ). This step is repeated

n times.
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3.3. Multiple scattering in the atmosphere

It is important to mention that at each step (i) the value of light (Iv,i) that is gathered from each

neighbour voxel becomes considerably smaller due to the phase function, which means that the value

of a 2nd order of scattering is more significant than a 3rd order of scattering.

Gathering light into voxels is performed as a pre computation. In run time the algorithm gathers

these values for each sampling direction and applies a phase function to determine which portion will

be deflected towards the camera. Note that the n orders of scattered light gathered in the voxels will

become a n+ 1 order when considering the point of view from the camera, i.e., the direct contribution

(order 0) will become the single scattering (order 1) for the camera, the single scattering for the voxel

(order 1) will become the second order of scattering for the camera (order 2), and so on.

Figure 27: Gather of scattered light

For each sample along the view direction it is necessary to determine the eight voxels closer to it and

interpolate these values. In the algorithm in code 5 the variable ivoxel is a virtual voxel centred at

the sample point and whose values are the result of the interpolation from the eight neighbour voxels.

The final result of this model can produce results like the ones present in figure 28.

According to Nishita et al. the values of intensity that comes with more than 2 orders of scattering

is very low, so respecting that, this results were obtained by gathering just 2 levels of scattering,

and coefficients such as air and aerosol particles density are those presented in Nishita et al. (1993),

Bucholt (1995) and Nishita et al. (1996a), and are the same as the ones presented in the previous

subsection. The g coefficient of Henyey-Greenstein phase function used was g = 0.99, σmol =
Kmol
λ4

and σaero = Kaero
λ0.84 = Kmol/(10−19) (Kmol = 4.5864 ∗ 10−32). The photons wavelength (λ) was used

in meters.

The number of samples for both the pre processing stage as well as the run time computation was

8.

Only three wavelengths were considered: red, green and blue using for each one of them a initial

value of intensity of I0 = 20.
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Algorithm 4 Nishita et al. multiple scattering model - pre-computation
createVoxels voxels[numVoxels]
// init voxels with direct light and directions to neighbours
for each voxel in voxels do

for n = 0..numNeighbours do
voxel.neighbour[n] = getVoxelNeighbour(n)
voxel.dir[n] = voxel.pos− voxel.neighbour[n].pos

end for
voxel.directLight = computeDirectLight(voxel.pos, sunDir)

end for
// compute scattered light
for for each voxel in voxels do

// 1st order pf scattering
// for each neighbour
for d = 0..numDir do

v = voxel.neighbour[d]
path = voxel.pos− v.pos
attenutation = att(v.pos, voxel.pos)
// collect light from all neighbours
for k = 0..numDir do

θ = getAngle(voxel.dir[d], v.dir[k])
voxel.order[1][d] = v.directLight ∗ phase(θ) ∗ attenutation

end for
end for
// 2nd and subsequent orders of scattering
for n = 2 .. order of scattering do

for d = 0..numDir do
v = voxel.neighbour[d]
path = voxel.pos− v.pos
attenutation = att(v.pos, voxel.pos)
for k = 0..numDir do

θ = getAngle(voxel.dir[d], v.dir[k])
voxel.order[n][d]+ = v.order[n− 1][k] ∗ phase(theta) ∗ attenutation

end for
end for

end for
// accumulate the intensities coming from the same direction
// considering different orders of scattering
for d = 0..numDir do

voxel.total Intensity[d] = voxel.directLight
for n = 1..orderso f scattering do

voxel.total Intensity[d]+ = voxel.order[n][d]
end for

end for
end for
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3.3. Multiple scattering in the atmosphere

Figure 28: Images using Nishita et al. model of the atmosphere in clear sky with multiple scattering. Top: Sky
at Sunrise, Midday and Sunset, respectively. Bot: Sun at sunset and 16 hours

In code 5, there is a description of the process to compute the colours of the sky using the AS

model of Nishita et al. with multiple scattering.
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Algorithm 5 Nishita et al. multiple scattering model - run-time

for each view direction viewV do
sampleV = (cameraP − intersectSphere(cameraP, viewV , atmRadius))/numSamples
sampleP = cameraP + sampleV ∗ 0.5
sampleLength = length(sampleP)
intensity = 0
for n = 0..numSamples do

// create a voxel with interpolated values
// considering the 8 voxels closer to sampleP
ivoxel = getVoxel InterpolatedValues(sampleP)
//collect direct light
θ = getAngle(sampleV , sunDirV)
sampleIntensity = ivoxel.directLight ∗ phase(θ)
// collect light coming from the other directions
for d = 0..numDirs do

θ = getAngle(sampleV , ivoxel.dir[d])
sampleIntensity+ = ivoxel.total Intensity[d] ∗ phase(θ)

end for
sampleIntensity∗ = att(cameraP, sampleP)
intensity+ = sampleIntensity
sampleP+ = sampleV

end for
render(viewV, intensity)

end for
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3.4. Modelling with Basis Functions

3.4 M O D E L L I N G W I T H B A S I S F U N C T I O N S

The main issues of the previous models, based on ray-marching, is the computational time required

to produce results with good quality. So, Dobashi et al. (1997) in 1995 (and Preetham et al. (1999)

in 1999) proposed to replace the scattering integrals with simpler analytical expressions to reduce the

number of computations necessary to obtain the colours of the sky.

To achieve this reduction both proposed a set of analytical functions that are capable of, given a

viewing direction and the position of the sun, describe the light intensity for a given light wavelength,

and consequently, the colour of the sky in that viewing direction.

In Dobashi et al. (1997) three alternatives are proposed to approximate the scattering integral. In

common to all these alternatives there is a preprocessing stage where samples are computed. The

model of Kaneda et al. (Kaneda et al. (1991)) is used to obtain the initial set of values of intensity.

Some alternatives imply the usage of basis functions, where as the simplest is based only on linear

interpolation.

In this work a coordinate system based on spherical coordinates is used where the sky is an hemi-

sphere whose centre is the viewpoint/camera (figure 29).

Figure 29: Dobashi et al. coordinate referential

In figure 29 φ and θ are the spherical coordinates of the viewing direction, with φ being the

elevation angle and θ the azimuth. The sun direction can also be characterised in spherical coordinates

as (φs, θs).

Assuming that θs is zero, i.e. the sun is always in the XZ plane, the intensity distribution of the

sky in a given view direction v(φ, θ) and for a given wavelength λ can expressed as Lsky(λ, φ, θ, φs).

Note that if θs is different from zero the above characterisation is still valid considering Lsky(λ, φ, θ−
θs, φs).

As mentioned before the simplest alternative proposed by Dobashi et al. is to use simple interpola-

tion. For that purpose the sky dome hemishpere is divided as a grid, and for each vertex of the grid,

where a vertex defines a viewing direction, it is stored a set of intensity values corresponding to the

the possible pairs of wavelength and sun altitude. According to Dobashi et al. this approach would

be extremely fast as only a bilinear interpolation operation would be required at runtime. The main
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argument presented against this approach is the memory required to store the precomputed values.

Although a valid argument at the time of the proposal, this would be a viable alternative today with

common graphics hardware having over 2GB of RAM.

The other alternatives imply the usage of basis functions. Note that the interpolation alternative can

also be described in terms of basis functions considering delta functions as noted by the authors, but

it is simpler to consider it simply as an interpolation approach.

Spherical harmonics (Green (2003a)) had been used before to represent reflectance functions as in

Cabral et al. (1987). For the majority of the sky this approach could be applied successfully as the

colour variation is smooth, i.e. there is no high frequency detail (Green (2003b)). However, according

to Dobashi et al., the number of degrees of spherical harmonic functions required to express the sharp

peak of intensity around the sun would be very high. Up to 20 degrees were used and still the errors

reported are too high for that particular area.

The third approach proposed by Dobashi et al. is uses cosine basis functions. According to the

authors, this method presented, when the paper was written (1995), the best trade-off between memory

usage and time consumption.

In this scenario the sky dome is divided in bands (figure 30). For each slice a set of cosine basis

functions are used for each wavelength and sun altitude angle. In each slice the value of Lsky can be

computed as described in (equation 45).

Figure 30: Dobashi et al. skydome

Lsky(λ, φ, θj, φs) =
Nj

∑
i=0

ci Wi,j(λ, φs) cos(iθ), (j = 1, ..., M) (45)

In equation 45 M is the number of vertical divisions, θj is the altitude angle for slice j, Nj is the

number of cosine functions used to represent the intensity distribution in direction thetaj, Wi,j(λ, φs)

is the weight for cosine function i in slice j, and ci is a normalising factor. When i = 0, ci =
√

1
π ,

and for other values of i, ci =
√

2
π .
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The weights are computed using numeric integration as shown in equation 46.

Wi,j(λ, φs) = ci∆θw

Kw

∑
k=0

(cos(ik∆θw)Lsky(k∆θw, φj, φs) (j = 1...M, i = 1...N) (46)

where Kw is the number of sample points used in the numerical integration, and ∆θw = π/Kw. In

this work the values of Lsky are produced by the AS model of Kaneda et al. (Kaneda et al. (1991)).

Dobashi et al. also explores the optimal number of cosine functions for each slice. This helps

to keep the number of basis functions under control, while at the same time not sacrificing quality.

For instance, when the altitude of the sun coincides with slice more functions are required to depict

accurately the area around the sun. On the other hand, if the sun is high the changes in the sun intensity

along a slice are smaller.

The authors present an error function to limit the error obtained in each slice. The method starts

with a single cosine function and evaluates an error measure. If the error value is above a user defined

threshold then the number of basis functions is incremented. The process is repeated until the error is

below the threshold.

The proposed measure is a mean square error between the the values of Lsky obtained using Kaneda

et al. (1991), and the intensity approximation using the basis functions (equation 47).

E(λ, i, j) =
∫ π

0

(
Lsky(λ, φ, θj, φs)−

i

∑
k=0

ck Wk,j(λ, φs) cos(kθ)
)2

dθ (47)

Since, as noted by the authors, cosine functions are orthogonal to each other, and normalised by ck,

this error measure can be rewritten as in equation 48.

E(λ, i, j) =
∫ π

0

(
Lsky(λ, φ, θj, φs)

)2
dθ −

i

∑
k=0

Wk,j(λ, φs) (48)

To simplify the choice of the threshold the error can be normalised as in equation 49.

EN(λ, i, j) =
E(λ, i, j)∫ π

0

(
Lsky(λ, φ, θj, φs)

)2
dθ

(49)

To obtain the colours of the sky for a certain view direction v(θ, φ) first it is necessary to com-

pute the intensity values at the slices above and below θ. Let θk be the altitude angle of the slice

below θ. Using equation 45 the values for Lsky(λ, φ, θk, φs) and Lsky(λ, φ, θk+1, φs) are computed.

Afterwards the intensity for view direction (φ,θ) can be computed as described in equation 50.

Lsky(λ, φ, θ, φs) =
φk+1 − φ

φk+1 − φk
Lsky(λ, φ, θk, φs)−

φ− φk

φk+1 − φk
Lsky(λ, φ, θk+1, φs) (50)
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Figure 31: Images of the sky at noon and at sunset and using basis functions - Dobashi et al. (1997)

This method is not as physically accurate as the ones presented before. Note that the error is only

limited in the slices. The interpolation process can produce results with error higher than the threshold,

which can be particularly meaningful in the area closer the sun. Nonetheless, it reduces much of the

necessary calculations and therefore reduces the amount of time necessary to produce images at run-

time.
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3.5 AT M O S P H E R E A N D T U R B I D I T Y

In 1999, Preetham et al. followed the same idea as Dobashi et al. but, instead of using basis functions

to compute the sky colours, a different set of functions proposed in Perez et al. (1993) were used.

Preetham et al. developed a method that, based on measurements of light intensity distributions in

different weather conditions, modelled analytic expressions to reproduce the colour of the sky.

For his model, Preetham et al. considers a term called turbidity that is a measure of the fraction of

scattering due to haze as opposed to molecules Preetham et al. (1999), hence, turbidity is a measure

of the thickness of the atmosphere. A higher value of turbidity means a more dense haze generating

fog, and a lower value means clearer sky.

As Preetham et al. states, "Although turbidity is a great simplification of the true nature of the

atmosphere, atmospheric scientists have found it a practical measure of great utility. Because it does

not require complex instrumentation to estimate turbidity, it is particularly well-suited for application

in graphics" - Preetham et al. (1999).

Preetham et al. presents 2 different models to compute the amount of light that is in-scattered

towards the camera. A skylight model, in which the colours of the sky are computed and an aerial

perspective model that is used to compute the amount of in-scattered light when computing the colour

of an object .

The skylight model proposed by Preetham et al. intended to use an analytical expression that given

a light direction provides give the spectral radiance, i.e, the amount of light that reaches the camera.

Figure 32: Preetham sky model - Preetham et al. (1999)

First Preetham et al. simulated and computed the sky spectral radiance function for a large number

of sun positions and values of turbidity.

For this simulations they used the method in Nishita et al. (1996a) (considering therefore multiple

scattering). With the results obtained with these simulations they needed a luminance formula capable

of reproducing the variations of colour and light in the sky. For that purpose they compared the models

of luminance present in CIE (1995), Dobashi et al. (1997) and Perez et al. (1993) and according to

Preetham et al. they found out that the luminance model presented in Perez et al. (1993) was more

accurate.
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This model of luminance would give the values of spectral radiance in the xyY colour space

(Wikipedia (2014c)), in which the values x and y represent chromaticity and Y represents luminance.

These values in the xyY colour space can than be converted to XYZ and then to RGB (Wikipedia

(2014c)).

The colour of the sky in a certain weather condition T (turbidity) for a given sunlight direction

s = (θs, φs) and a view direction v = (θ, γ) (figure 32) can be given by values of cromaticity (x
and y), and by a value of luminance (Y), which are given by:

Y = Yz
F(θ, γ)

F(0, θs)
, y = yz

F(θ, γ)

F(0, θs)
, x = xz

F(θ, γ)

F(0, θs)
(51)

where F(θ, γ) represents the luminance function of Perez et al. which describes the sky light

distribution according to the direction of incident sunlight and some factors, such as, darkening or

brightening of the horizon (A), luminance gradient near the horizon (B), relative intensity of the

circumsolar region (C), width of the circumsolar region (D) and relative backscattered light (E) (see

equation 52).

F(θ, γ) = (1 + AeB/cosθ)(1 + CeDγ + Ecos2γ) (52)

The values for the luminance function (A, B, C, D and E) as well as the values for the zenith lumi-

nance (Yz) and zenith cromaticities (xz and yz) were pre-computed according to the value of turbidity

and are present in the appendices in Preetham et al. (1999).

Figure 33: Images using Preetham model of the atmosphere in clear sky

The turbidity value used to obtain the results in figure 33 is 2. All the other values were men-

tioned before. The images 33 were obtained using Preetham et al. model values and tables according

to its paper Preetham et al. (1999).

The work of Preetham et al. allowed to obtain the colours of the sky faster without a significant loss

in quality due to the parameter fitting according to a high quality model Nishita et al. (1996a).

The work of Preetham et al. still is the base for many of the modern video-games and flight simula-

tors.
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3.6 I M P ROV E M E N T S T R AT E G I E S I N AT M O S P H E R I C S C AT T E R I N G M O D E L S

One of the first GPU optimisations was presented by Dobashi et al. in 2002 Dobashi et al. (2002). The

process of computing the colours of the sky is very similar to the one proposed in Nishita et al. (1993).

The main difference consisted in using sampling planes instead of sampling directions and for each of

the points in each of the planes equation 22 is used to compute light intensity values.

The objective was to use the GPUs capacity to process multiple calculations simultaneously. The

following workflow was proposed:

• Compute the camera parameters such as the view frustum and set the number of sampling planes

to be sent to the GPU and place them along the view frustum, perpendicular to the center view

direction;

• Order the sample planes by distance and send each plane at a time to the GPU (starting with the

more distant plane);

• For each point of sample in the sampling plane (vertices) compute the in-scattering value using

equation 21;

• Accumulate the result using blending.

This model presents a strategy to implement physical based models and perform ray-marching

using the GPU.

The contribution of Dobashi et al. (2002) is more focused on light shafts and cloud rendering. The

details for these light shafts and clouds will be discussed with more detail further ahead in sections

4.1 and 4.2.

In 2004 O’Neil (2004) analysed Nishita et al. (1993) and proposed a performance optimisation

improving the lookup table used in the original work.

The lookup table proposed by Nishita et al. was able to reduce the number of calculations by pre-

calculating the attenuation of the sunlight path (attsun). It is still required to compute the attenuation

from the point of scattering to the camera (attview), and the integral of in-scattering (the evaluation of

samples along the view ray).

O’Neil proposed a lookup table that pre-computed the optical depth of any ray based on the height

of the point where the ray is fired and its vertical angle.

The lookup table has two entries (x, y), where x represents a specific altitude from the ground and

y represents a vertical angle. The value of x goes from 0 (on the ground) to 1 (top of the atmosphere),

and the value of y goes from 0 to 180 degrees and represents the vertical angle (see figure 34 ).

Each table cell contains 4 channels, 2 for Rayleigh and 2 for Mie. For both Rayleigh and Mie

channels, one channel is used to store the atmosphere scale density at a given altitude x and the other

stores the optical depth of a ray fired from altitude x with a vertical angle y.
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This re-arrangement of the lookup table allowed to not only the fast gathering of the optical depth

of the light in its path from the sun into any point in the atmosphere, but also the optical depth of light

in the viewers direction. According to O’Neil, if the lookup tables are precise, i.e. a large number of

samples is used to build them, the number of runtime samples to approximate in-scattering integral

can be significantly lower than previous methods to obtain good result, with O’Neil reporting good

results with as few as 4 samples.

Recall the equation to compute the attenuation along a path (equation 53), and its usage to

compute the intensity arriving at the camera(equation 54).

att(s, λ) = exp
(
− (4πσmol(λ)

∫ s
ρmol(p)dp + 4πσaero(λ

4)
∫ s

ρaero(p)dp)
)

(53)

(λ, s, Pcam) =
∫ Pend

Pcam

I0(λ)attsun(p)(phasemol(θ) + phaseaero(θ))attview(p)dp (54)

A table lookup provides the values for both integrals found in equation 53 considering a ray

starting at a given height, and with a given direction provided by a vertical angle. To solve equation

54 it is required to compute the attenuation for multiple sun rays and view rays.

To better understand how to obtain these integral approximations consider figure 34.

Figure 34: lookup table elaboration by O’Neil

The process to obtain the optical depths to compute attsun is very simple. Consider the path P1 →
P2. To obtain the values relative to point P1 in a view direction with a vertical angle y2 a single lookup

(with interpolation) with the pair of values (x2, y2) is required.

On the other hand, the process to obtain the optical depths to compute attview is not so straight

forward. This is because the values in the lookup table store values of optical depth of a path that goes

from a given point in the atmosphere to the top of the atmosphere. To compute the optical depth of

the path Pcam → P1 two lookups are required.

To get the optical depth in path Pcam → P1, it is necessary to get the optical depth of Pcam with

values (x, y) and subtract the optical depth of P1 (by performing a lookup with the pair of values

(x2, y)). This would give the value of optical depth desired.
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Lets consider that the view ray from point Pcam intersects the earth. If the ray intersects the earth

in a point Pearth, the way to compute the optical depth from Pcam to Pearth is exactly like the same

method above because according to O’Neil the optical depth is computed just like there was no planet.

This means that to obtain the desired value, subtract the value of optical depth at Pearth to the value of

optical depth at Pcam.

In O’Neil (2005) a different approach was proposed. His goal was to implement atmospheric

scattering using only shader model 2.0, which does not allow texture fetches in the vertex shader.

The solution was to replace the lookup table with functions that would fit the computed data.

O’Neil plotted the results obtained for the various heights of x with the several angles of y and

proposed the usage of two analytical expressions: one that explained the exponential distribution in x,

and a scale/fit function that explained the difference in scale caused by varying angle y.

O’Neil used a scale of the Earth’s parameters in which there are two important values relative to

scale. The atmosphere thickness, that according to O’Neil is about 2.5 percent of the planet radius,

and the relative height at which the density achieves its average value, sDepth. O’Neil’s uses a value

of 0.25.

With this in mind, O’Neil plotted the results obtained for the various heights of x with the several

angles of y and realised that the lines of the graph followed a exponential distribution but the scale of

each line on the graph varied dramatically. He then decided to normalise the lines and found out that

the lines varied according to a an exponential function:

expx(x) = exp(−4x) (55)

Part of the problem was solved, as O’Neil says "the x dimension (height) of the lookup table is

being handled by exp(-4x)" - O’Neil (2005).

According to O’Neil, the only part of the optical depth that was not handled by the function

exp(−4x), was the scale used to normalise the lines on the graphs mentioned previously. Through a

new graph, where along the values of x were plotted the values of scale of y, O’Neil found that the

values fitted a polynomial curve (equation 56).

scaley(θ) =
1

sDepth
∗ exp(−0.00287 + c ∗ (0.459 + c ∗ (3.83 + c ∗ (−6.80 + c ∗ 5.25)))) (56)

where c = 1− cos(θ).
These simplifications allow to replace the lookups mentioned before by the computation of these

two functions. Hence, instead of using a lookup, to compute the optical depth of a ray starting from a

given height x and a direction provided by an angle θ equation 57:

opticalDepth(x, θ) = expx(x) scaley(θ) (57)

With this optimisations it was possible to avoid the shader bottleneck caused by the lookups.
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The results of this model can be seen in figure 35. In sum, these simplifications were necessary

to make the algorithm capable of producing results it real-time. One important factor to retain is that

the results obtained by O’Neil are not very different in quality when comparing to the results obtained

by Nishita et al, despite the simplifications performed.

Figure 35: Images using O’Neil model of the atmosphere in clear sky. Top: Sky at Sunrise, Midday and Sunset,
respectively. Bot: Sun at sunset and 16 hours

The scattering coefficients used to obtain these images, namely σmol(λ) = Kmol
λ4 where Kmol =

0.003 and σaero(λ) =
Kaero
λ0.84 where Kaero = 0.0015. The photons wavelength (λ) was used in microm-

eters. For each view ray, 5 samples were obtained.

Only 5 samples were computed for each view ray.

The process to render the colours of the sky is exposed in the code 6 and refers to the vertex and

fragment shaders to obtain the colours of the sky. The vertex shader is responsible for calculating

the optical-depth of both in-scattering and out-scattering per vertex, using equation 57 and the

fragment shader is responsible for using the interpolated values from the vertex shader and compute

the Rayleigh and Mie phase functions, based on the approximation proposed in Cornette and Shanks

(1992), and therefore the final value of colour of the pixel.

The following variables and constants were used in the code:

• cameraP: Camera position relative to a referential with origin in the center of the earth

• scale: 1
atmosphereradius−earthradius

• sunDirV : normalised vector pointing towards the sun

• scaleDepth: 0.35
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• scaleOverScaleDepth: scale
scaleDepth

• sunIntensity: The sun intensity.
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Algorithm 6 O’Neil AS model shaders
for each vertex v do

// view direction from camera to vertex in the sky dome
viewV = v− cameraP
// distance from camera to the vertex (top of the atmosphere)
distance = length(viewV);
// normalised view direction
viewV/ = distance
// compute scattering offset
cameraHeight = length(cameraP)
// vertical angle of viewV
angle = dot(viewV , cameraP)
sDepth = exp(scaleOverScaleDepth ∗ (earthRadius− cameraHeight))
opticalO f f set = sDepth ∗ scale(angle);
// compute the first sample and sample vector
sampleLength = distance/numSamples
sampleV = viewV/numSamples
sampleP = cameraP + sampleV ∗ 0.5
// compute real scale sample length
scaledLength = sampleLength ∗ scale
color = 0, 0, 0
for n = 0..numSamples do

height = length(sampleP)
sDepth = exp(scaleOverScaleDepth ∗ (earthRadius− height))
sunAngle = dot(sunDir, sampleP)/height
cameraAngle = dot(viewV , sampleP)/height
// optical depth from camera to sample point
opticalDepth = opticalO f f set− sDepth ∗ scale(cameraAngle)
// plus scatter for sun ray
opticalDepth+ = sDepth ∗ scale(sunAngle)
// compute attenuation summing Rayleight and Mie components

att = exp

(
− opticalDepth ∗

(
1

wavelengths4 × Kmol × 4× PI + Kaero × 4× PI
))

color+ = att ∗ sDepth ∗ scaledLength
sampleP+ = sampleV

end for
// these are the variables that are passed to the fragment shader
mieColor = color ∗ Kaero ∗ sunIntensity
rayleightColor = color ∗ 1

wavelengths4 ∗ Kmol ∗ sunIntensity
direction = viewV

end for
for each pixel p do

angle = dot(sunDir, direction)
color = rayleightPhase(angle) ∗ rayleighColor + miePhase(angle) ∗mieColor

end for
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3.7 P H Y S I C A L LY B A S E D M O D E L S A N D P R E - C O M P U TAT I O N

After the work of O’Neil, Schafhitzel et al. in 2007 (Schafhitzel et al. (2007)) and Bruneton and

Neyret in 2008 (Bruneton and Neyret (2008)) tried to improve even further the model of Nishita et

al. (Nishita et al. (1993)). For that purpose, these models wanted to combine high performance with

rendering quality. Hence, they tried to perform the highest number of pre-computations possible in

order to perform less operations in rendering time. While Schafhitzel et al. only consider single

scattering, Bruneton and Neyret propose a model that includes multiple scattering events.

Nishita et al. (1993) proposed to pre-compute optical depth for sunlight. O’Neil (O’Neil (2004))

went further and pre-computed the optical depth for any ray. Schafhitzel et al. pre-computed every

single integral by assuming not only every possible sunlight and viewing direction but also every

possible camera height, and store them in a 3D texture (figure 36).

Just like in the cases of Nishita et al. (1993) and O’Neil (2004), Schafhitzel et al. proposed to store

the values of optical depth in a table. The difference is that these values are stored in a 3D table/texture.

This texture parametrisation can be seen in figure 36.

Figure 36: lookup table elaboration by Schafhitzel et al.

The values stored in the texture 3D are computed using equation 32 for all combinations of view

direction angle (θ), angle to the sun/solar elevation (δ) and height of the point in the atmosphere (h).

This parametrisation is similar to the one proposed in O’Neil (2004) but with the consideration of two

angles ( view direction and sunlight) its possible to precompute the light intensity that reaches the

camera.

The intensity stored in the 3D texture represents the amount of light that reaches point Pcam in the

entire path Pcam → Pend with a sunlight direction δ (equation 58).

texture3D(h, θ, δ) =
∫ v(θ)

pos(h)
I0(λ)attsun(p, δ)(phasemol(θ− δ) + phaseaero(θ− δ))attview(p, θ)dp

(58)
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where h is the height of the camera, θ is the vertical angle of the view direction, and δ is the vertical

angle for the sun direction.

This means that, for any view direction, the colour of the sky can be obtained by a simple lookup in

the table. With this approach, the calculations of complex integrals have been replaced for the calcu-

lations of indexes in a 3D table, and so the amount of in-scattered light can be given by equation

59.

I(λ, h, θ, δ) = texture3D(h, θ, δ) (59)

Schafhitzel et al. considered only the wavelengths of RGB colour space.

This lookup is only valid if there are no objects or terrain to render. If indeed, are objects or terrain

that is to render, then the number of lookups change from 1 to 2. This process is very similar to the one

mentioned above when analysing the work of O’Neil (O’Neil (2004)) and is represented in figure

37.

Figure 37: lookup table elaboration by Schafhitzel et al.

To evaluate the amount of in-scattered light in the path Pcam → P1 its only necessary to perform a

lookup at point Pcam and subtract to the value of the lookup at point P1 (see equation 60).

I(Pcam, P1) = texture3D(h(Pcam), θ, δ)− texture3D(h(P1), θ, δ) (60)

where h(Pcam) and h(P1) represent the height at Pcam and P1 respectively, and θ = θ′ + δ. The

same can be said about P1. Another detail in Schafhitzel et al. model, is that for the terrain they

pre-compute all components of the scattering integral with the phase function separately in order to

obtain a better light precision.

Because the values of light intensity are stored in a table, this allows to compute equation 32

with as much as samples as desired.

These improvement allow to obtain the colours of the sky with even less calculations than the AS

model of O’Neil.

51



3.7. Physically based models and pre-computation

In 2008, Bruneton and Neyret went further and pre-computed calculations for multiple scattering as

well (pre-computing attsunMS in equation 25). For this purpose Bruneton and Neyret pre-compute

and store the values of multiple scattering in tables. In a process similar to the one used by Nishita et

al. with mutiple scattering (Nishita et al. (1996a)), Bruneton and Neyret model uses multiple passes

to compute this table, and at each pass the result table sums the values of an order of scattering for

each sunlight direction (s), viewing direction (v) and camera position/height (x).

The light contributions in this AS model were decomposed in four main components (see figure

38):

• Direct light (L0(x, v, s)) - direct light coming from the sun in direction s

• Reflection (R(x, v, s)) - contribution of light due to reflection on earth’s surface

• Single scattering (S(x, v, s)) - contribution of light from single scattering events

• Multiple scattering (MS(x, v, s)) - contribution of light from multiple scattering events

Figure 38: Bruneton and Neyret atmospheric scattering model components

For all these components attenuation is evaluated. The values of attenuation are evaluated just like

in O’Neil (2004), i.e., for all combinations of camera height x and view direction v the attenuation

values are pre-computed and stored in a table (att(x, v) using equation 43).

The component of direct light is evaluated during run-time and is evaluated to obtain the colour of

the sun.

The value of in-scattered light is evaluated in a very similar process to the one presented in Schafhitzel

et al. (2007). For all combinations of camera height x, view direction v and sun light direction s, eval-

uate the amount of scattered light along the view direction using a variation of equation 32, where

the value of the phase function is only computed at run-time, which means that the value stored in the

table S(x, v, s) is S(x, v, s) =
∫ length(v)

x I0attsun(s, p)attview(v, p)dp.

The component of reflection is evaluated according to the amount of light that reaches a certain

point x in the earth’s surface, which is modelled as a Lambertian surface (equal value of reflection
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independent of the camera position - Wikipedia (2014e)) with a reflection function re f lect(w) that

describes the amount of light reflected into direction w.

The amount of light reaching the surface at point x is given not only from the sun, but also from the

multiple scattering of light.

To evaluate multiple scattering contributions consider figure 39.

Figure 39: Multiple scattering evaluation

Bruneton and Neyret evaluate and store these values in two different tables. The values of multiple

scattering for all combinations of camera height x, view direction v and sun light direction s are

stored in one table MS(x, v, s) (figure 39 on the left), and the values of multiple scattering for

all combinations of a surface point x0 and sunlight direction s are stored in another table Ir(x0, s)
(figure 39 on the right).

To evaluate the value to store in Ir(x0, s), for each point x0 (Pr in right figure 39) multiple rays

are marched into different sampling directions until the intersection of the top of the atmosphere. For

each sample along these rays, multiple rays are marched recursively, thereby providing the multiple

scattering effect. The degree of recursion determines the number ofscattering orders. It is also evalu-

ated the amount of light that that reaches x0 directly from the sun. Hence, the value of Ir(x0, s) will

take into account contributions from direct light, single scattering and n orders of scattering.

The value of Ir(x0, s) that will reach the camera (figure 39), considering a view direction v, is

then given by:

I(x0, s, v) = re f lect(−v) ∗ Ir(x0, s) (61)

The components of direct light and single scattering can be seen as follows:

1. for direct light: Ir(x0, s) = I0 ∗ att(x0, s)

2. for single scattering: Ir(x0, s) = ∑ndir
j=0

∫ length(j)
x0

I0 att(s, p)phase(θj)att(j, p)dp,

where ndir is the number of sampling directions at x0 and θj is the angle between s and the sam-

pling direction j. So, in fact, as single scattering is pre-computed and stored in table S(x, v, s),
then Ir(x0, s) can also be seen as Ir(x0, s) = ∑ndir

j=0 phase(θj) S(x0, j, s).
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The process to evaluate the values of multiple scattering that will be used to compute the multiple

scattering contribution in Ir(x0, s) and that will be stored in MS(x, v, s), for each point x (Pcam in left

figure 39) consists in marching a ray into the view direction until the intersects the atmosphere or

the earth’s surface. For each sample p in that ray and in n steps its evaluated the amount of light that is

in-scattered from multiple sampling directions sdir at p towards the camera. The value of MS(x, v, s)
will contain the n orders of scattering including single scattering and the light reflected at the earth.

MS(x, v, s) can be seen as:

MS(x, v, s) =
n

∑
i=2

ndir

∑
j=0

( ∫ length(j)

x0

att(q, j)
nmsdir

∑
k=0

inscatt(Ii−1, x, k, j)dq
)

(62)

where inscatt(Ii−1, x, k, j) is given by:

inscatt(Ii−1, x, k, j) = phase(θkj)Ii−1(p, k, j)
( ∫ length(k)

attview(k, p)dp
)

(63)

where Ii−1(p, k, j) is the total value of light of order i− 1 that was computed before at a point with

position p, view direction k and light direction j. This means that each pass i in n orders of scattering,

the value of in-scattering with this combination will be computed and stored in a temporary table of

type ∆MS(x, v, s). So, Ii−1(p, k, j) = ∆MS(p, k, j).
Ii−1(p, k, j) value depends if the sampling ray intersects the earth’s surface or the atmosphere. If the

sampling ray intersects the atmosphere then Ii−1(p, k, j) depends only on scattering from the samples

in the sampling ray, otherwise, if the sampling ray intersects the earth’s surface then its necessary to

add the contribution of reflected light. Lets consider single scattering. If the sampling ray intersects

the atmosphere, then inscatt(Ii−1, x, k, j) = S(p, k, j) which was pre-computed before. If the ray

intersects the earth’s surface inscatt(Ii−1, x, k, j) = S(p, k, j) + Ir(x0, s), where s is the sun light

direction and x0 is the point in the earth’s surface where the sampling ray hit. For the following n
scattering orders, it is only necessary to fetch the values pre-computed in the previous step.

The final value of intensity reaching the camera for a given view direction, sunlight direction is

given by:

Colour(x, v, s) = L0(x, v, s) + re f lect(−v) Ir(x0, s) + phase(θ) MS(x, v, s) (64)

where θ is the angle between the v and s.

Comparing with the multiple scattering computation with Nishita et al. of 1996, this model reduces

its complexity at run-time. Results can be seen in figure 40.

These images were obtained using the coefficients present in Nishita et al. (1993) and Nishita et al.

(1996a). The number of orders of scattering computed in this images were 4. For the attenuation pre-

computations, 500 samples were used, for the scattering calculations of S(x, v, s) 50 samples per view
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Figure 40: Images using Bruneton model of the atmosphere in clear sky. Top: Sky at Sunrise, Midday and
Sunset, respectively. Bot: Sun at sunset and 16 hours

direction and 16 sample directions were used to get multiple scattering. The values used to compute

the attenuation, were, σmol =
Kmol
λ4 and σaero = Kaero = Kmol/(10−25) (Kmol = 4.5864 ∗ 10−32). The

photons wavelength (λ) was used in meters.
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3.8 T U R B I D I T Y M O D E L R E V I S I T E D

The work of Preetham et al. had a huge impact in the computer graphics community with many

applications still using their AS model.

Their work was deeply analysed in Zotti et al. (2007). The authors compared the results in Preetham

et al. (1999) with actual measurements and the ISO/CIE 2003 on Illumination CIE (2004) for standard

general sky luminance distributions and conclude that the results for values of turbidity below 2.0 are

not correct. Furthermore, the Preetham model does not properly reproduce the noticeable darkening

of the sky in the antisolar hemisphere when the sun is low, with luminance values about 2–5 times

higher than expected. Also, the brightness peak towards the sun is not as steep as it can be measured

or as modelled by the CIE Clear-Sky models.

Based in the work of Zotti et al., Hosek and Wilkie (2012) proposed a more accurate analytical

method to the real values of skylight.

For that purpose, Hosek and Wilkie developed a path tracer that performed a huge variety of simu-

lations in different scenarios such as different weather conditions and values of ground albedo. These

simulations created a data base of results of the sky light distribution using the scattering equations

of Rayleigh, Mie and Henyey-Greenstein. These results were used to fit a new analytical function

capable of reproducing with accuracy the values obtained with the path tracer.

The result was an analytical function which consists in a variation of the function presented by

Perez et al. (Perez et al. (1993)).

Hosek and Wilkie realised that Perez equation had some limitations. One of those limitations

concerns the lack of reproducing a phenomenon (circumsolar ring) that resembles a glow around

the solar point. For that purpose Hosek and Wilkie introduced an anisotropy factor X(g, α), where g
controls the glow around the solar point. Factor X(g, α) resembles Henyey-Greenstein phase function

(equation 66).

Another issue concerns the extension of this glow. This extension is more notorious towards the

horizon than towards the zenith. For that purpose they added a term capable of applying this effect

(Icos
1
2 (θ)).

There was another issue with Perez et al. equation that would produce a problematic value when

the view direction would be at the horizon, i.e., when the value of θ = 90. This originated a division

by 0 (eB/cosθ) in equation 52). To solve that, a small fudge factor was included turning eB/cosθ in

eB/(cosθ+0.01).

The major changes mentioned above can be seen in equation 65:

F(θ, γ) = (1 + Ae
B

cosθ+0.01 ).(J + CeDγ + Ecos2γ + G X(H, γ) + Icos
1
2 θ) (65)
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where X(g, α) is given by:

X(g, α) =
1 + cos2α

(1 + g2 − 2g.cosα)
3
2

(66)

Equation 65 includes some factor when comparing to the original version of Perez et al. The

only terms not mentioned yet are G and J.

The G term controls the glow intensity introduced by anisotropy factor X. The term J is applied

due to the inclusion of the anisotropy factor. This term will act as a factor to normalise the value of

luminance obtained wiht equation 65.

As opposed of the skylight model of Preetham et al. that normalises the value of luminance coming

in a certain view direction by computing the luminance at the zenith, in Hosek et al. skylight model,

they decided to have a different approach, which can be seen in equation 67:

L(λ, θ, γ) = F(θ, γ)LMλ(γ) (67)

where LMλ(γ) is the mean value of intensity at a sun elevation angle γ. This makes F(θ, γ) as a

fitting factor where if F(θ, γ) = 1, that means that the mean value of light intensity for an angle γ

coincides with its mean value.

There is yet another difference between this model in relation to the model of Preetham et al. and

that regards the values from A..J in equation 65. While in Preetham et al. those values are a linear

function of the values of turbidity, Hosek et al. proposed to model these values using also bezier

curves (Wikipedia (2014b)), in order to obtain a better fit of the values of skylight when comparing to

the results obtained with the path tracer.

The authors claim to significantly improve the rendition of sunsets and high atmospheric turbidity

setups.

From a mathematical point of view the models are similar, with Hosek and Wilkie (2012) adding

more coefficients to gain more control and be able to produce more accurate results. These model can

produce images like the ones in figure 41.

Figure 41: Hosek model images for during the day (left) and at sunset (right) - Hosek and Wilkie (2012)
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3.9 M O D E L A N A LY S I S

The first model studied in this thesis was proposed by Klassen (1987). It is a single scattering model

that simplifies the atmosphere density model, considering only two layers with constant density. Fur-

thermore, it was assumed that in-scattering events only occurred in the bottom layer.

The first implementation with an exponential decreasing density atmosphere is proposed by Kaneda

et al. (1991). It is also a single scattering model and it computes the intensity values according to the

equations that describe the phenomena.

Nishita et al. (1993) proposed to pre compute the values of optical depth for sun rays, thereby

simplifying a significant part of the runtime algorithm. The model is similar to Kaneda et al.

Later, Nishita et al. (1996a) extended their original work to include multiple scattering events. In or-

der to achieve this in run time, a pre computation is performed that accumulates the multiple scattered

light in a voxel grid surrounding the planet. The quality of this work has been recognised in subse-

quent analytical based works that the values proposed by this work as the ground truth for function

fitting in later works.

Dobashi et al. (1997) proposed to approximate the integrals with cosine basis functions. It is the

first work that attempts an analytical approach. The model is only single scattering, and data from

Kaneda et al. (1991) was used as ground truth for function fitting.

In Preetham et al. (1999) the main parameter is turbidity, a measure of atmosphere thickness. The

model from Preetham et al. is multiple scattering. It is an analytical method that uses the Perez

function for luminance and defines a set of coefficients, linearly dependent on the turbidity value,

such that sky and sun colours can be reproduced.

The first usage of shaders to compute the colours of sky and sun is by Dobashi et al. (2002). It is

basically the same method as in Nishita et al. (1993), but instead of considering sampling points it

considers sample planes, allowing for an efficient implementation on the CPU.

The work in O’Neil (2004) goes one step further than Nishita et al. (1993) and pre computes the

optical depth for any ray given an height and vertical angle. This approach allowed a very significant

relief of the work load during run time.

Later, in O’Neil (2005), the pre computations are replaced with an analytical approach based on

function fitting. The original goal was to implement his previous algorithm using only Shader Model

2.0, which does not allow for texture access in the vertex shader (required for the lookup tables).

O’Neil’s functions effectively replace the lookup table in the previous work.

Schafhitzel et al. (2007) goes back to lookup tables, and adds the sun direction to the tables in

O’Neil (2004) as the third entry in the table. In this way, most of the single scattering process is pre

computed, leaving only the phase function for the run time (to render the terrain), since it provides

high frequency detail.

Following this trend is the work in Bruneton and Neyret (2008), adding multiple scattering, light

shafts and ground reflection. The goal is to pre compute as much as possible. As in Schafhitzel et al.
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(2007), Bruneton et al. also leave the phase function out of the pre computations but not only to the

colour of the terrain but also for the colours of the sky.

The last work described in here is Hosek and Wilkie (2012). This work is based on Preetham et al.

(1999) and a deep analysis by Zotti et al. (2007) of Preetham et al. results. Note that one of the authors

in Zotti et al. (2007) is also an author in Hosek and Wilkie (2012). The goal is to fix the issues that

were identified in the analysis. To achieve that the analytical expression used by Preetham et al. was

expanded to include more terms and coefficients. To provide more control these coefficients are now

the result of quintic interpolation, as opposed to linear in Preetham et al.

Figure 42 presents a graph containing the dependencies between these methods.

Figure 42: Connections between physically based AS models (red) and Analytical AS models (blue) along time

A summary of the features of the AS models described in this chapter are summarised in table 1.

AS Model Scattering Eval Approach Pre-computation
Klassen (1987) Single Physical No

Kaneda et al. (1991) Single Physical No
Nishita et al. (1993) Single Physical Yes
Nishita et al. (1996a) Multiple Physical Yes
Dobashi et al. (1997) Single Analytical Yes
Preetham et al. (1999) Multiple Analytical Yes
Dobashi et al. (2002) Single Physical Yes

O’Neil (2004) Single Physical Yes
O’Neil (2005) Single Analytical No

Schafhitzel et al. (2007) Single Physical Yes
Bruneton and Neyret (2008) Multiple Physical Yes

Hosek and Wilkie (2012) Multiple Analytical Yes

Table 1: Table with some aspects relative to the AS models presented in this chapter
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Only some of these models opted to compute multiple scattering, namely the models in Nishita

et al. (1996a), Preetham et al. (1999), Bruneton and Neyret (2008) and Hosek and Wilkie (2012). All

the others assumed that the contribution of the multiple scattered rays was not enough to compensate

the computational cost. Nevertheless, when comparing the results obtained in terms of quality the

multiple scattering approach gets brighter and more saturated skies, due to the increased contribution

gathered from multiple scattering.

The difference can be seen specially at sunset when looking towards the horizon. In the comparison

between the results of Nishita et al. single scattering (figures 23) and Bruneton and Neyret multiple

scattering (figures 40) we can see that the model with multiple scattering can reproduce with more

accuracy the colours of the sunset by having an orange horizon, while in the single scattering model of

Nishita et al. at sunset that characteristic orange horizon does not show, and due to the lack of bright

the colours are somewhat too dark.

When analysing the differences between the analytical and physical approaches to the problem of

evaluating atmospheric scattering, it is clear that there is no clear winner. While analytical models are

based on physical data, and hence provide only an approximation to the ground truth, in the analytical

this approximation is highly cost effective allowing for accurate models running in real-time.
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4

AT M O S P H E R I C S C AT T E R I N G - OT H E R E F F E C T S

This chapter’s goal is to provide some pointers relating to other atmospheric effects. It is included

mainly for completeness, rather than an attempt to do a full STAR on each of the subjects presented.

In this chapter other effects related with the atmospheric scattering phenomenon will be addressed.

These include light shafts (sec. 4.1), cloud modelling and rendering (sec. 4.2), fog effects (sec. 4.3),

simulating rain (sec. 4.4), rainbow rendering (sec. 4.5), and lightning recreation (sec. 4.6).

4.1 L I G H T S H A F T S

The term light shafts describes an optical phenomenon that is perceived as beams of light in a shad-

owed environment, radiating from the light source (Prast and Fruehstueck (2013)). These shafts of

light can be distinct as beams from the darker ambiance because the small particles in the air scatter

the incoming light in different directions, namely into our eyes.

Examples of this phenomenon can be found everywhere, like beams of light piercing through a

cloud, or beams of light coming from a window, or even from trees in the forest (figure 43).

Figure 43: Light shafts in the forest by Greg Paupst

As light shafts are perceived due to scattering of light coming from a light source, then rendering

light shafts could be done using atmospheric scattering render equations, as long as shadows are taken

61



4.1. Light Shafts

into account. In figure 44 is represented a simple view of the problem. Along the view direction,

only some sections receive direct light from the sun.

Figure 44: Light shafts representation

So a way of computing this effect consists in using the equations 22 and 19 as follows:

I(λ, θ, s, n) =
i=n

∑
i=0

I0(λ)attsun(s, n, i)phase(θ)attview(s(i), n) (68)

where attview(s, n) is given by:

attview(s, n) = exp(
4πK
λ4

i=n

∑
i=0

ρ(s(i))ds) (69)

and attsun(s, n, i) is given by:

attsun(s, n, i) = exp(
4πK
λ4

j=n

∑
j=0

ρ(s(i))ds)shadow(i) , shadow(i) ∈ {0, 1} (70)

The difference between these equations and the originals reside in the shadow(i) factor, i.e., if

the sample point i is in shadow, then it does not receive direct light from the sun (shadow(i) = 0),

therefore the camera does not receive in-scattered light from that sample point. Otherwise, the sample

receives direct light from the sun (shadow(i) = 1) and the process to compute the light that reaches

the camera is the same as before.

The process described above is only valid if we just consider single scattering. For multiple scatter-

ing the calculations becomes more complex. Nevertheless, if we use as base, equation 25, than a

possible expression to evaluate the shadow areas taking into account multiple scattering can be:

attsunMS(s, n, i) =
n

∑
k=0

j=k

∏
j=1

att(path(j))phase(θj)shadow(i, j) , shadow(i, j) ∈ {0, 1} (71)
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where shadow(i, j) is 1 if between sample point i and sample point j is any obstacle that prevents

the light from point j to reach i. Otherwise shadow(i, j) = 0.

Regarding the identification of the shadowed areas, the presented algorithms to render light shafts

resort to shadow maps and shadow volumes.

One of the first methods proposed to render light shafts was presented in Kaneda et al. (1991)

(although they mention it as light beams in fog) and it consisted in sampling the viewing ray along

its path and performing shadow tests for each sample, so, for each lit sample, compute light intensity

using equation 23.

The method was improved, performance wise, in 2002 by Dobashi et al. (2002). The main differ-

ence was the usage of GPUs. Instead of sampling the view direction, Dobashi et al. used sampling

planes. Their strategy was to use the structure of the view frustum, pyramid shape, and place some

sampling-planes along that pyramid.

If the difference in the values between planes was very different, for example, if the values of

intensity in sample (i, j) of plane k was very different fro the values in sample (i, j) of plane k + 1
(which happens due to shadow zones), then it was necessary to place additional sub-planes between

those planes in order to increase the detail in those areas.

The algorithm work-flow can be described as follows:

1. n sampling planes are placed equally distant along the view frustum/pyramid

2. for each sample s(i, j) of every plane k, compute the amount of light reaching it and test if it is

in shadow

3. for every consecutive plane k and k + 1, if the values of the samples are similar then continue,

otherwise if s(i, j) are very different (value surpassing a threshold value η), then place sub-

samples and repeat this step until the value of difference is below η

4. collect the values of all sampling-planes and blend them

A representation of this sub-planes can be seen in figure 45.

Figure 45: Evaluation of shadow using planes (green) and sub-planes to add detail (blue)
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This is made in order to to reduce the number of computations necessary to obtain the values of

light intensity reaching the camera.

The problem of this method is that it stills need to use sampling to solve the scattering equations

and to identify the shadowed areas.

Some years later in Bruneton and Neyret (2008) from 2008, Bruneton and Neyret, proposed a

different approach. Taking advantage of pre-computing the attenuation of light for every possible

camera position, view angle and sun position, they proposed the following:

• Using a geometry shader they apply an algorithm that extrudes the silhouette edges of objects

observed from the sun, as in a shadow volume.

• With this it is possible to compute the full length of the shadowed areas (figure 46 out− in)

• Knowing the length and using the pre-computed values is possible to compute the amount of

light that would be in-scattered in the shadowed zones in and out and subtract it to the final

value of light reaching the camera

Figure 46: Light shafts

So the final value of light intensity could be seen as:

I(λ, θ, s, n) = I(λ, θ, s, n)− I(λ, θ, in_shadow(s), n) (72)

In Engelhardt and Dachsbacher (2010), Engelhardt and Dachsbacher proposed a rendering tech-

nique for textured light sources in single-scattering media. They realised that the in-scattered light

values varies orthogonally, but most smoothly, along crepuscular rays and light shafts. This aspect

allowed the sampling in image space by using epipolar geometry and can be seen in figure 47.

We can see in figure 47, that along the red line the value of in-scattered light varying in a

predictable way. This red line can be seen as a epipolar line (line that goes from the light source (sun

in this case) to the end of the screen space).
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Figure 47: Epipolar analysis of the light intensity - Engelhardt and Dachsbacher (2010)

So, the proposal of Engelhardt and Dachsbacher passes by sampling several epipolar lines in order

to compute the amounts of light reaching the camera taking into account the occluded/shadow areas.

The shadowed areas are computed and stored in shadow/depth maps.

It is important to mention that this method requires to change the coordinate system from rectangu-

lar coordinates to epipolar coordinates and vice-versa.

The epipolar lines are usually placed like in figure 48).

Figure 48: Epipolar Sampling

These marked samples on the view space (epipolar samples) will be used to generate a 3D texture

were values of in-scattered light will be stored. So, the entries in the 3D texture, that coincide with

the view rays passing by the epipolar samples, will compute the amount of in-scattered light using

equation 68. The other entries in-scattered light values will be interpolated from the other entries.

This method was improved in 2011 by Chen et al. Chen et al. (2011). They realised that it was

possible, by using epipolar geometry, to create an efficient shadow map made essentially from a one-

dimensional height map (figure 49).

With this structure, shadow test is intrinsically a check if current position on the ray is under this

height map or above it. So they proposed constructing a 1D min/max binary tree and use this structure

to identify lit and shadowed regions on the ray. This structure was able to speed up the calculations.

The methods discussed before were discussed in Yusov (2013), and from that an implementation

came that can produce results like the ones in figure 50.
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Figure 49: Epipolar Sampling and improved shadow map - Chen et al. (2011)

Figure 50: Images of the sky and light shafts using an implementation of Egor Yusov - Yusov (2013)

4.2 C L O U D S

When we look at the sky we usually don’t only see the sun and a vast blue mantle, but also clouds.

Clouds are an integral feature of the sky and without them synthetic outdoor scenes seem unrealis-

tic (Harris (2002)). They have many shapes and sizes and they result of air in Earth’s atmosphere

becoming saturated due to cooling and addition of water vapour.

Figure 51: Clouds - "Fir0002/Flagstaffotos"

Luke Howard was the first to present a nomenclature system for clouds in 1802 (Wikipedia (2014h)).

From that moment on, several researches were made to understand all the aspects behind cloud for-

mation, radiometry, dynamics and so on.

66



4.2. Clouds

The computer graphics community have always had an interest in rendering clouds. The rendering

of clouds generated a huge amount of publications on the subject. Different approaches were made to

address this issue from modelling the clouds into physically based animation and illumination.

It is possible to divide the cloud rendering algorithms in 3 parts: modelling, illumination and dy-

namics.

For cloud modelling, there were many proposed algorithms such as clouds based of particle systems,

metaballs/blobs structures (figure 52), voxel volumes and clouds made from procedural noise and

textured solids.

Figure 52: Scheme of a cloud using metaballs

Clouds based in particle systems, present in Reeves (1983) and Harris and Lastra (2001), are sys-

tems where the particles represent volumes and they possess some attributes like radius, colour and

texture. The clouds are made of a set of these particles.

Other models are based in metaballs/blobs and ray marching. These blobs represent volumes with

centre and radius that may or may not overlap (Nishita et al. (1996b)).

Some models use voxel volumes/grids to store the information of the clouds positioning (Kajiya

and Von Herzen (1984) and Harris et al. (2003)). Textured solids result from the application of noise

on the surface of a solid like an ellipsoid (Gardner (1985)).

Some of these models use procedural noise (Perlin (1985)) to model clouds density.

To simulate cloud dynamics there were 2 different methods: physical methods that solved equations

of motion, fluid and thermodynamics, and simple methods based in simpler assumptions.

Figure 53 shows the action of wind on a cloud (in this case just cloud shift).

Figure 53: Action of wind

On the early models there was a concern on the memory usage in order to render clouds. Another

concern was the time required to render the clouds. That fact led to the usage of algorithms based
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in assumptions and analytical expressions that could get realistic but achieving those results in a fair

amount of time.

An example of this is the model proposed by Dobashi et al. in 2000 Dobashi et al. (2000). In their

work, they proposed a model of generating and moving clouds according to cellular automata. The

space was divided in voxels, and in each voxel there was a logical system capable of regulating the

generation and dissolution of cloud cells. This system is based in attributing a series of variables to

each cell like, humidity, temperature, cloud, extinction and so on. These variables have values of 0 or

1 and they are changed according to probabilities.

Figure 54: Voxel system of Dobashi et al.

This means that the cell has to pass by some stages before being a cloud cell, i.e, to form a cloud cell,

first it must have enough water vapor and humidity. Then if the temperature becomes cold enough,

then the water vapor begins to condensate. After this process the cloud cell is formed.

In figure 54 is possible to see a representation of Dobashi et al. system. The logical variables,

humidity and water vapor (square), temperature (triangle) and cloud (circle), are regulated using ran-

dom generated numbers, i.e, in each cell, for both humidity, temperature and cloud there is associated

a variable (between 0 and 1) that has the value of probability of that state becoming active (coloured

symbols in figure 54). So the process can be seen as follows:

1. The cell starts with all logical variables equal to zero, which means that there are no clouds

2. In the next frame, for each cell 3 random numbers (humidity, temperature, cloud) are generated

and if those numbers are larger than the cells variables, then the cell change its state according

to the rules:

• If the cell as not the conditions of humidity required, than none of the other conditions can

be valid (top cell on the right)

• If the humidity conditions are valid (random number for humidity is larger than the value

for humidity in the cell), then the cell becomes in the state humidity (cell with square filled

- middle bottom cell)

• If the cell is in the humidity state and if the conditions of temperature are valid (cold

enough to condensate) then the cell passes to the stage temperature (cell with filled triangle

and square - bottom right cell)
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• If the cell is in the temperature state and if the conditions to create a cloud cell becomes

valid, than the cell passes to the state cloud (cell with filled completely filled figures - cell

on the top left)

Regarding motion, Dobashi et al. simulates wind effect by using a vector that moves the cells

information into neighbouring cells according to the vector direction and magnitude. This is very

simplistic but it is very fast to calculate.

With the evolution of graphics hardware, it was possible to use more physically based method.

Hence, in 2003 Harris et al. (2003) solves a series of equations to simulate cloud moving and creation

like the Navier-Stokes equations (Wikipedia (2014i)). Like in Dobashi et al. (2000), Harris et al.

also divides the space in a voxel grid but for each cell it computes the equations of motion, the

thermodynamic equation, and the water continuity equations. The result of these is a grid with the

information of the voxels that are cloud cells.

Another work presented in 2014, more concretely, the work in Duarte et al. (2014), presented a

method to generate and create clouds from real weather forecast data, using diagrams. Instead of solv-

ing the Navier-Stokes equations like in Harris et al. (2003), (which according to Duarte et al. (2014)

consume a huge amount of resources) they propose to use SkewT/LogP diagrams (weather service

(1979)). These diagrams allow to determine 3 fundamental parameters in the cloud generation pro-

cess: temperature, condensation and equilibrium level. By evaluating these 3 parameters is possible

to simulate cloud generation and movement along the atmosphere.

To evaluate these values is first necessary to create the diagrams and for that, values gathered by

weather balloons are posted in websites like "http://www.woweather.com", will feed information and

therefore create the SkewT/LogP diagrams.

For each of the 3 parameters (temperature, condensation and equilibrium level), the diagram will

represent 3 lines relating amtmosphere temperature with pressure. By analysing a particle temperature

and pressure conditions is possible to determine its state, i.e., if the particle is, or not, in a cloud state.

These diagrams are used to simulate the cloud in 2 steps: cloud particle generation and ascension.

The particle generation occurs when the value of temperature at ground level reaches a certain limit

(visible in the SkewT/LogP diagram), particles start to be generated. Then the particle ascend and

its temperature and pressure starts to diminish. When the value of temperature and pressure of the

particle reaches the ambient temperature (also visible in the SkewT/LogP diagram) the particle starts

to condensate and passes to a water vapour state. Afterwards, the particle continues to ascend until it

reaches a state where it does not move vertically. That happens when the particle reach the equilibrium

level. With this the particle reaches the cloud state.

To generate a cloud, several particles are generated. The usage of these diagrams allow to perform

a faster simulation of the cloud generation than using complex equations.

For cloud illumination most models use light scattering equations. When computing atmospheric

scattering, it is possible to use only single scattering to evaluate the colour of the sky with a certain

amount of quality. With clouds that is not possible, because the density of atmospheric particles is
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much smaller than the density of the particles inside the clouds. This density requires that, to evaluate

the colour of the clouds, it is necessary to compute multiple events of light scattering (figure 55).

Figure 55: Illumination of a cloud using metaballs and voxel grid

To solve this problem it is necessary to compute the atmospheric scattering effect. The common

approach is to use analytical expression (basis functions and spherical harmonics) or ray marching

with sampling.

Some use ray marching to evaluate single scattering and get multiple scattering by using analytical

expressions Kajiya and Von Herzen (1984). Other models like Nishita et al. (1996b) get single and

multiple scattering by gathering in a voxel grid, the values of scattering (multi-pass algorithm).

In some more recent methods like Harris et al. (2003) and Bouthors et al. (2008), the problem of

multiple scattering is simplified by reducing the direction of the scattering events to only a forward

direction (scattering can deflect the photons to any direction).

In 2014, Yusov presented an algorithm for cloud rendering where the problem of cloud illumination

is solved by pre-computing the values of light scattering and attenuation and storing them in a set of

textures (Yusov (2014)).

In this model, the space is divided in a 3D grid and each cell of the grid has a value of density,

where cloud cells will have bigger values of density than other cells. Yusov generates particles in the

grid and attributes value of density according to a composition of 3D noise functions.

Using the idea present in Bruneton and Neyret (2008), Yusov pre-computed the values of multiple-

scattering and stored them in a 4D table, with the difference of the table considering not only the

height of the camera, the view and sunlight direction, but also a parametrised value of the particle

density.

With this, the final value of colour for each view ray is obtained by doing lookups in the 4D table

according to the values of density in the 3D grid.

70



4.2. Clouds

The algorithms presented above are not mutually exclusive. Most of the work done on cloud render-

ing was an attempt to obtain the best possible trade-off between quality and rendering time by using a

mix of these algorithms.

As an example of cloud rendering, lets focus on the algorithm in Yusov (2014). and explain the

normal steps taken into the process to obtain the colour of the cloud.

The mathematical expression to obtain the colour of the cloud, with the camera in a position Pcam

in a view direction v is very similar with the expression in equation 23 with multiple scattering

(attsunMS em vez de attsun - equation 25). The major change remains in the evaluation of the cloud

particles, i.e, the interaction of the sunlight with the other particles in the atmosphere its still used both

Rayleigh and (in this case) Henyey-Greenstein phase functions, but for cloud particles, only the phase

function of Henyey-Greenstein is used. This happens because cloud particles are considered as large

particles.

With this in mind a possible expression to represent the value of light intensity reaching the camera

in a view direction v can be given by equation 73:

L(v) = Lin(v) + Lcloud(v) + attcloudattinLbg(v) (73)

where Lin(v) represents the amount of light that is in-scattered due to particles on the atmosphere

between the camera and the cloud, Lcloud(v) represents the amount of in-scattered light coming from

inside the cloud, Lbg(v) represents the amount of in-scattered light behind the cloud particles and that

is attenuated (attenuation computed with the attenuation due to the cloud particles (attcloud) and the

atmosphere particles (attin))

Expressions Lin and Lbg are given by equation 23, and Lcloud is given by equation 22 with

Henyey-Greenstein phase function.

As mentioned before, Yusov idea passes by pre-computing the value of single and multiple scat-

tering for every view and sunlight direction not only for the normal atmospheric scattering (Lin and

Lbg) but also, pre-compute values for a cloud particle (Lcloud). For matters of simplicity lets represent

the pre-computed table for atmospheric scattering as tablescatt and the pre-computed table for clouds

with tablecloud.

It was also mentioned that the clouds are modelled with spherical volumes positioned in the at-

mosphere. These spherical volumes possess a centre (cx,y,z) and a radius r. In order to be able to

pre-compute the optical depth inside these volumes, the density in the volumes is parametrised ac-

cording to the distance to the centre of the volume. So, the pre-computed 4D table consists in the

calculations for every view direction ((θv, φv)), sunlight direction (θs) and parametrised density.

To understand the render process lets focus on figure 56.

The render process consists in for every view ray v, intersect the ray with the cloud particles, and if

the ray intersects with a cloud, obtain the point of entry (Pentry) and exit (Pexit) of the view ray in the

cloud. With this information perform 2 lookups on tablescatt to obtain Lin and Lbg according to a light

direction ldir (Lin = lookup(Pcam, Pentry, ldir) and Lbg = lookup(Pexit, Pend, ldir)). Perform another

71



4.3. Fog

Figure 56: Cloud illumination

lookup on tablecloud to obtain Lcloud (Lcloud = lookup(Pentry, Pexit, ldir, d), where d is the value of

density inside the cloud particle).

To obtain the values of attenuation attcloud and attin, another auxiliary tables are used to store the

pre-computed values for optical depth (for cloud and atmospherical scattering).

This model can produce results like the ones in figure 57

Figure 57: Images of clouds using Yusov model - Yusov (2014)

Some other aspects concerning efficiency in this model can be further explored in Yusov (2014).

4.3 F O G

Fog appears when the particle density in the atmosphere become higher. Fog reduces our vision range

because the higher density of particles will cause the scattering away of all the coming from objects

(figure 58).

The majority of the methods proposed to render fog derive from methods of computing atmospheric

scattering, so most of them compute the fog effect with light scattering equations.
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Figure 58: Fog in the landscape

The early attempts in rendering fog were very simple. The fog was considered a layer/component

with constant density and was rendered with ray marching with light scattering equations. An example

is in Klassen (1987) and Kaneda et al. (1991).

The assumptions made were an extension of the rendering method for atmospheric scattering. Lay-

ers were adjusted, or a layer with higher density was added. The higher density would cause a greater

attenuation of light. By controlling the density values it was possible to control the intensity of the

fog.

In 1999, Preetham et al. proposes an analytical method based on a value of turbidity (Preetham

et al. (1999)). This value would control the optical thickness of the medium and generate the density

of the atmosphere.

The problem of these early models were the assumption of fog as a layer with constant density and

with a global range. In fact, fogs are volumes near surface with higher and non-homogeneous particle

density (figure 59).

Figure 59: Fog density evaluation

Some researchers addressed this issue, namely in Biri et al. (2002) were the fog was modelled by

a set of cosine functions. Other example of usage of basis functions can be seen in Giroud and Biri
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(2010), were the basis function are used to draw the area of the volume as a fog map. That fog map

would have different values that would correspond to different densities inside the fog.

Another mechanism to implement fog volumes was proposed by Wenzel (2006). These volumes

would be as simples as boxes or ellipsoids, but the density of the fog inside the volumes would be

modelled with 3D noise.

In Wronski (2014) there was a proposal to render volumetric fog. The fog would be modelled with

perlin noise functions and vertical attenuation. This information would be stored in a grid aligned with

the camera frustum (up, right, depth) so that the gathering of light would be just a 2D ray marching in

that grid (marching in depth).

So in a certain perspective, fog can be modelled by adjusting the atmosphere density and its possible

to obtain fog by using the AS models presented in section 1.8.

However, there is an interest in rendering the localised phenomenon. This localisation brings also

something important that is, the majority of the particles in the fog can considered as large, which

means that this variation in density is not only localised, but also of a specific type of particles (in this

case the increase of aerosol particles). The immediate consequence is the increase of importance of

the Mie scattering equations (although many models use the function of Henyey-Greenstein).

An example of rendering foggy scenes using the method in Wronski (2014), can be found in

figure 60

Figure 60: Images of clouds using Wronski model - Wronski (2014)

The process to render foggy scenes using scattering equations is very similar to the ones described

along chapter 3.

4.4 R A I N

Rain is a complex phenomenon where water particles drop from clouds and descend to Earth’s surface.

The process to render such a phenomenon accurately is complex.

Along the years several algorithms were proposed to render the various effects of rain, specially

rainfall (figure 61). Other effects like rain droplet splashing were also studied.
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4.4. Rain

Figure 61: Rain

Some of the most important work on rain rendering appeared in 2006 with the work of Garg et al.

Garg and Nayar (2006) and Garg and Nayar (2007). In their works they proposed methods to render

rainfall and splash distribution.

The method in Garg and Nayar (2006) was off-rendering where they take in videos with information

of depth and gathered rain drops from other images and them implement them in the videos.

However these methods were not applied in real-time. In 2006 Wang et al. and using particle

systems they proposed a method to render realistic rain. Each particle consists of a rain stroke matte

that is randomly chosen from rain stroke samples, a sphere model, and attributes such as velocity

Wang et al. (2006).

In 2008 Changbo et al. proposed a method to simulate rainfall by generating a series of rain streaks

made from previously elaborated models.

According to them, rain streaks are not only lines, but the product of the oscillations that are caused

by the aerodynamic forces and the surface tension acting on the water droplet Changbo et al. (2008).

So based on real rain streaks, they generated different rain streaks shapes and store them in textures.

These different streaks are then associated to rain particles and blended to the scene.

In 2010 Lopez (Lopez (2010)) studied the methods of rain rendering and proposed a new method

that consisted in using particle systems. His algorithm had 2 stages. A pre-computed stage were the

information of the rain would be generated. This information consists in the zones of the particle

generation and the shapes of the rain streaks.

The zone of origin of the particles consist in setting a spacial reference element, for example an

horizontal oriented quad, and in that reference set a rain particle generation probability modelled or

by a function or by a texture.

In other words, for each sample point in that reference generate a random number, and if that

number surpasses a certain value, then generate a rain particle.
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4.4. Rain

According to Lopez, this generation could also be simulated for the scene and in this case, a groups

of particles that would be generated at the same time would be set in a pack (figure 62). These

packs would have information about the velocity of descent, vector of descent, and would be rendered

at the same time.

Figure 62: Rain particle generation

The second pass would be the generation of particles according to the pre-computed information

and rendered using blending functions. The rain streak packets will be represented as billboards, i.e,

for each packet particle, evaluate the velocity of descent and vector and fetch the correspondent rain

streak.

The method proposed takes into account occlusion, so that the particles behind an object are not

rendered.

To better understand the process to render rain streaks, lets focus on the model proposed by Lopez:

1. Generate the spaces were the rain will be generated. For example place a texture (with values

between 1 and 0) horizontally oriented in world space

2. For each time t of the simulation, traverse the texture in step 1 and generate for each sample a

random number between 0 and 1. If the value is higher than the value on the texture generate

particles and compute their position over a 3D grid with associated values of velocity and length

3. for each group of particles generated in each time t with the same characteristics associate to a

packet

4. In run-time generate the packets according to the simulation:

a) In the vertex shader compute the positions of the packets on the world space and exclude

the ones out of the space generated in step 1 and that are occluded by any object or land-

scape (camera depth buffer test)

b) In the geometry shader for each particle passed by the vertex shader associate a billboard

with the rain streak ( line with a certain length according to the values of velocity and

length of the particles)

c) In the fragment shader blend the rain streak into the scene
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Figure 63: Images of rain using Lopez model - Lopez (2010)

An example of the results using this method can be seen in figure 63.

4.5 R A I N B O W S

After rain, sometimes is possible to see a natural colourful phenomenom - rainbows. The rainbow

phenomenon has always fascinated people, so its inclusion and rendering in graphical contexts is

important.

Figure 64: Rainbow

Some models presented to render rainbows can also reproduce fogbows. The difference between

rainbows and fogbows is that instead of rendering colourful bows due to rain, fogbows are rendered

due to fog. From the several works presented about the subject there were some that attempted to

render rainbows using texture based mechanisms (nVidia (2004)). These mechanism were based on

using texture colour lookup using software MiePlot (Laven (2014)) to produce the values of colour

according to scattering angle and water droplet radius.

To render the rainbows it is necessary to perform a lookup the colour in the texture and blend it into

the scene (figure 65). In nVidia (2004) the blend is done according to a moisture factor that is set

by the scene.
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Figure 65: Rainbow lookup

Frisvad et al. (2007) proposed to use an even simpler method based on a theory by Aristotle in

approximately 350 B.C. Aristotle considered the sky as a hemisphere and that rainbows appear at a

certain angle between the sunlight direction and the view direction. With this assumption the colours

of the rainbow are rendered in a sky dome.

In 2011 Sadeghi et al. proposed a physically based model to render rainbows (Sadeghi et al. (2011)).

Their proposal relies in simulating accurate phase functions for rainbows instead of using the phase

functions of the Mie theory.

Their argument is that water droplets are not spherical and, as Mie’s theory only considers spherical

particles, then it is more accurate to use a phase function that takes into account the geometrical shape

of a water droplet.

So, to generate a new phase function, Sadeghi et al. module a series of object with different possible

water droplet shapes. To each one of those objects trace a series of parallel rays (in order to simulate

a directional light source), and for each one of these rays trace their path through a n number of

interactions (reflection and refraction) and collect the exit ray in an outer sphere.

This outer-sphere will have the general distribution of the light behaviour when interacting with the

water droplet. This distribution analysis will allow to module a function that according to an angle

(relation between a direction of light and point of exit) will give the distribution of light, just like a

normal phase function.

The simulation itself takes a huge amount of time because its necessary to do it for each wavelength

(in Sadeghi et al. (2011) they spent 350 minutes for 33 wavelengths). On the other and this phase

function generation allows to compute the behaviour for different types of water droplets.

As an example of rainbow rendering lets focus on the model in Nvidia’s white paper (nVidia

(2004)).

The first step consists in using a software like "Mieplot" to compute to a texture the values of colour

according to scattering angle and water droplet radius.

MiePlot generates Lee diagrams (Lee (1998)) and these diagrams show how the colour of a rainbow

changes as the radius of a water droplet changes. Lee diagrams are 2D images in which each pixel

represents the colour of scattered light corresponding to a given angle of deviation (scattering angle)

on one axis and radius of water droplet on the other axis (nVidia (2004)).
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For each view direction compute the angle of scattering and get the value of colour of the texture ob-

tained in the first step(depending on the water droplet radius considered in the scene). Then, compute

the scene colours and blend the value of step 2 in the scene.

The models described before, for example, the model in Sadeghi et al. (2011) can produce results

like the ones in figure 66.

Figure 66: Images of rainbow with Sadeghi et al. model comparing the usage of Mie theory(a) and the new
method(b) - Sadeghi et al. (2011)

4.6 L I G H T N I N G

Lightning is a sudden flow of electricity or electrostatic discharge that occurs during an electric storm.

Lightning occurs when there is a high electric potential and a high resistant medium (figure 67).

Like other natural phenomena, there are attempts to reproduce this effect in CG.

Figure 67: Lightning
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One of the first attempts to generate a lightning model was proposed by Niemeyer et al. in 1984,

where they analysed the fractal dimension of various types of dielectric breakdown, including light-

ning (Niemeyer et al. (1984)). To model the path of the lightning Niemeyer et al. uses the Laplace

equation (Wikipedia (2014f)) to assign probability of the path of the lightning branches on a mesh

(figure 68).

Figure 68: Lightning shape using a grid

In 2004 Kim et al., proposed a method to render lightning based on the model of Niemeyer et al.

(1984) (Kim and Lin (2004)). They generate the paths of the lightning and then use APSF (Atmo-

spheric Point Spread Function) to evaluate the amount of light that flows in each of those paths. APSF

are a particular type of point spread functions (PSF Wikipedia (2014j)) that are related to the atmo-

sphere, i.e., APSF are functions that describe the response of light distribution in a medium, in this

case atmosphere, around a particular point of light. In Kim and Lin (2004), the APSF are a series

expansion of the Henyey-Greenstein phase function.

The paths are rendered using lines and the values of light intensity are used for a glow effect in

order to turn the paths more similar to lightning.

In Kim and Lin (2007), Kim et al. improved the method of render by using octrees in order to

simulate the 3D path generation of the lightning. Kim et al. proposed to solve the path generation and

solving the Laplace equations by using balanced octrees. This structure allowed to obtain speed ups

in an order of magnitude of 2.

In LaPointe and Stiert (2009), they pointed out that the rendering process in Kim and Lin (2004)

and Kim and Lin (2007), presents artifacts and a flat appearance.

To better understand out to render lightning lets focus on the model of LaPointe and Stiert (2009).

LaPointe and Stiert, proposed an algorithm of 2 main steps: lightning shape and colour.

In a first step they use L-Systems (Wikipedia (2014d)) to simulate the shape and create a volumetric

lightning. This step consists in taking in a line segment S and using the L-System’s rules, subdivide

the segment at the midpoint and displaced at an angle perpendicular to itself with a magnitude M
(figure 69).

This process is repeated for both line segments in S’ until the number of levels of detail, n, is

reached. According to LaPointe and Stiert, on each iteration, the maximum random magnitude that M
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Figure 69: Lightning shape using a l-system

can be is halved. This origins a single line with a series of deformations. But if we look at lightning

they usually have several branches.

To do that, they applied in the subdivision step, a probability of a new branch being created (in

LaPointe and Stiert (2009) the probability is about 0.5). An example of this new branch can be seen

in figure 70.

Figure 70: Lightning branch

The line segments are then stored in a volume buffer.

The second step consists in give to each segment a value of colour and intensity. The colour is

usually the same for all segments (in LaPointe and Stiert (2009) they use colour = (0.5, 0.5, 1.0, 1.0)).
For intensity, the main segment S has the highest value of intensity I (I = 1) and for each branch the

value is halved, i.e., 1-level branches will have I = 0.5, 2− level branches will have I = 0.25 and so

on.

The values of intensity are then brightened to give a glow effect to the lightning.

To render this structure, in LaPointe and Stiert (2009) they put the lightning inside an axis aligned

bounding box, and use a ray-tracing algorithm to intersect view rays with the lightning structure.

Depending on the distance the value of colour is attenuated according to a δ.

An example of the results with this method can be seen in figure 71.
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Figure 71: Images of simple (left) and multiple (right) lightnings using the method of LaPoint and Stiert -
LaPointe and Stiert (2009)
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C O N C L U S I O N

The natural phenomenon of atmospheric scattering was thoroughly studied along the years. A large

set of models were proposed to recreate, among other natural effects, the beautiful colours of the sky.

All AS models had the concern to compute these effects with most efficiency and quality as possible.

The core of these models was the mechanism used to solve the scattering equations presented by Lord

Rayleigh in the late 19th century and Gustav Mie in the early 20th century.

The atmospheric models evolution showed a path that went from quality to efficiency.

The early AS models, like the ones presented by Klassen in 1987, Kaneda et al. in 1991 and Nishita

et al. in 1993, had a greater concern in recreating with the most possible accuracy the atmospheric

scattering phenomenon.

That concern passed, over the years, to recreate this phenomenon the fastest way possible. With

this appeared the AS models presented by Preetham et al. in 1999, followed by the GPU models of

O’Neil in 2005 and, Bruneton and Neyret in 2008.

Despite the improvement in efficiency, the modern AS models had the concern of speeding up the

process of rendering without loosing quality.

With respect to the quality of the results, one thing that can be concluded is that when comparing

analytical and physically based models, the differences, in some circumstances are so tiny, that is

difficult to perceive differences. One example of this can be seen in the comparison of the results

obtained using the physically based algorithm in Nishita et al. (1993) (figure 23) and the analytical

simplification made in O’Neil (2005) (figure 35).

When talking about rendering the colours of the sky, is natural to want to render the other natural

effects such as clouds and light shafts.

So, along side the evolution of the AS models, there was also an evolution on the algorithms that

could recreate clouds and shadows. For example, on the light shafts, there was an evolution on the

shadow map/volumes techniques, on the fog there was an evolution in the modelling of local densities.

The possibility of rendering the colours of the sky in real-time, would be almost unthinkable in

1987, when Klassen presented his AS model. The computers capacity at that time was very limited.

This is also a factor to take into account: the models/algorithms have also evolved along side with the

computers hardware and software.
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Another important thing to mention is that the information about the atmospheric scattering models,

and the algorithms behind light shafts, clouds and lightning, is huge and at the same time is highly

dispersed.

So there is an interest in the analysis and evaluation of these methods and algorithms, because many

different and creative methods were presented in these models and there is a possibility in the future

that these different methods may be used together and create a better model to render the colours of

the sky. For example, there might be a way to compute a complex dynamic using these methods that

could allow to simulate in real-time something like the appearance of clouds that will lead to rain and

consequent rainbow formation.

One interest thing that appeared in some of the models analysed in this project concerns the usage

of real data to create and evaluate atmospheric phenomenons. The model in Duarte et al. (2014) uses

data coming from websites like the values of atmosphere pressure and temperature and uses them to

simulate cloud generation.

This can be extended to other atmospheric scattering models, i.e., it was an interesting idea to

use real-time data like atmospheric particle density, temperature and intensity of incoming light to

calculate in a certain place and time (on Earth) the colours of the sun and sky.

The atmospheric scattering models allowed the creation and improvement of a series of applications

that goes from flight simulators, that are useful tools in pilot training, to applications like video-games

and films.
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