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A B S T R AC T

In Service-Oriented Architectures (SOA), services are regarded as loosely-coupled components
interacting with each other via connection of their public interfaces. Such interaction follows
a (coordination) protocol usually established at design-time. However, in an environment
where change is the rule rather than the exception, several aspects may contribute to a need
for change in the way these services interact. To assess the consequences of applying these
changes beforehand is an ultimate requirement for SOA design.

This M.Sc. dissertation proposes a practical approach to model reconfigurations of service
coordination patterns. To achieve this, reconfigurations are specified (before being applied
in runtime) using a domain-specific language – ReCooPLa – which targets the manipulation
of software coordination structures, typically used in SOA. Then, a language processor, built
according the traditional approach for compiler construction, is presented. It comprises a
parser, a semantic analyser and a translator. The main outcome of this work is a reconfigur-
ation engine that takes ReCooPLa specifications conveniently translated into Java code, and
applies them to coordination structures.

This project is part of a broader research initiative aiming at formally modelling, reasoning
and analysing reconfigurations of coordination patterns in the context of SOA and cloud-
computing.
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R E S U M O

Em arquiteturas orientadas a serviços (SOA), os serviços são vistos como componentes inde-
pendentes que interagem uns com os outros através da ligação das suas interfaces públicas.
Tal interação segue um protocolo (de coordenação) que normalmente é estabelecido durante
o design. No entanto, num ambiente onde a mudança é a regra e não a excepção, vários
factores podem contribuir para uma necessidade de alterar a forma como estes serviços in-
teragem. Compreender as consequências da aplicação destas alterações com antecedência é
uma exigência final para desenho de uma SOA.

Esta dissertação de mestrado propõe uma abordagem prática para modelar reconfigurações
de padrões de coordenação de serviços. Para tal, as reconfigurações são especificadas (antes
de serem aplicadas em tempo de execução) através de uma linguagem de domínio específico
– ReCooPLa – que visa a manipulação de estruturas de coordenação de software, tipicamente
utilizadas em SOA. Posteriormente, é apresentado um processador para a linguagem, cons-
truído de acordo com a abordagem tradicional para a construção de compiladores. Este
processador inclui o parser, o analisador semântico e o tradutor. O principal resultado deste
trabalho é um motor de reconfiguração, que usa as especificações ReCooPLa convenientemente
traduzidas em código Java e aplica-as a estruturas de coordenação.

Este projeto é parte de uma iniciativa de pesquisa mais ampla que visa modelar e analisar for-
malmente reconfigurações de padrões de coordenação no contexto de SOA e cloud-computing.
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1

I N T RO D U C T I O N

Cloud computing is a recent paradigm based on three computational layers: infrastructure,
platform and software [BBG11]. These are provided as services by some organisations, and
their main objective is to provide high performance while keeping low degradation of Quality
of Service (QoS). This intrinsic objective of cloud computing is achieved by its main char-
acteristic — the elasticity — which is responsible for the provision of the right amount of
computational resources to the real-time demands of a software system. This sensation of in-
finite computational power and its need by the emerging software intensive systems, installed
a shift in the software development. Software developed to and deployed in the cloud inherits
its high performance, and is made available as a service (e.g., Google Docs). Thus, Software as
a Service (SaaS) deliver, over the web, a service to the end-users, regardless of their location,
which allows activities to be managed from central locations in a “one-to-many” model.

A service, in this context, is a loosely-coupled entity that offers some specific computational
functionality via published interfaces (APIs). A single service may result from the composition
of several other services that interact with each other, while completely unaware of their
surroundings. This notion of service and computation by interaction, gave rise to the adoption
of Service-Oriented Architectures (SOA) as the architectural style underlying modern software
systems [Erl09]. SOAs are then based on services often distributed by different organisations,
agnostic of programming language and deployment platform and are coordinated to provide a
desired functionality. Coordination of services (or the definition of their interaction protocols)
is usually kept in a layer separated from their internal functionality. Such coordination follows
protocols (or interaction policies) that may be encapsulated, for instance, using connectors
and are usually established at design time [Arb04]. However, SOAs are flexible, reliable
and naturally dynamic: although policies are pre-established, services may be discovered
and bound to the architecture only at runtime, rather than fixed at design time [FL13].
Dynamic bound of services is deeply related with QoS needs. Thus, in an environment where
change is the rule rather than the exception (e.g., the cloud), keeping QoS levels above some
quality contracted is essential and, in general, entails the need for reconfigurations such as the
dynamic binding/unbinding of services. But system requirements (whether they are functional
or non-functional) also change during the lifetime of a system, and therefore, changing the
way services interact play an important role to this end. For instance, considering a simple
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Chapter 1. introduction

interaction of services with a channel which has buffering capacity representing a queue of
requests; if we do a minor change on it such as append an additional channel (with same
capacity), we might improve substantially the whole system; in this case, the change will
allow enqueue more requests.

Reconfigurations in a SOA system usually targets the manipulation of services or the inter-
action protocols themselves. In the former, reconfigurations consist on the dynamic update of
service functionality, substitution of services with compatible interfaces (but not necessarily
the same behaviour) or removal of services [RC10, OMT98, HP06, MB08, SMR+11]. In the
latter, a reconfiguration is more low-level and target the way services interact with each other.
This sort of reconfigurations usually substitute, add or remove the components of the inter-
action (e.g., communication channels), move communication interfaces between components
and may even rearrange a complex interaction structure [Kra11, KMLA11a].

This dissertation intends to deliver a formal framework for modelling, reasoning and analys-
ing coordination reconfigurations in the context of SOA and cloud-computing, and it springs
from a project that aims at studying reconfiguration of a system architecture [OB13a, OB13b].

1.1 statement of the problem

To assess the consequences of applying changes in a system beforehand is an ultimate re-
quirement for SOA design. Software systems should adapt, at runtime, in order to meet new
requirements and environmental conditions to maintaining, for instance, QoS levels, as ini-
tially agreed with the system consumers. In particular, this may lead to a need for change in
the way services interact with each other.

In the last few decades, a number of (coordination) models have been designed, developed
and presented to abstract and encapsulate the details of communication between services. All
these models claim to provide a framework which enhances modularity, interoperability and
reuse of components. However, they differ from each other in the definition of coordination,
what is being coordinated and how coordination is achieved. They can be roughly divided,
by the type of coordination they provide, in two categories: endogenous and exogenous. The
main difference lies on the separation (or not) of the coordination and computation layers. In
the former exists a mixture of coordination and computation code within a process definition.
In the latter, on the other hand, there is a separation of concerns between coordination and
computation. Linda [CG89] and Bonita [RW97] are examples of endogenous coordination
models whereas Manifold [AHS93], ROAD [CH05] and Reo [Arb04] are examples of exogenous
coordination models. Coordination can also be seen on two other perspectives in the context
of SOA: orchestration (where components are coordinated without knowing each other) and
choreography (where components are coordinated taking into consideration each other).
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1.2. Objectives

However, there is a lack of rigorous (formal) methods to correctly design and analyse
(coordination-based) reconfigurations. In [OB13b], a formal model in which connectors are
represented by a graph of communication channels is introduced. The graph nodes stand
for interaction ports, where a subset of them constitute an interface for plugging concrete
services or other such graphs; and edges are labelled with channel identifiers and types de-
fining their behaviour. Such graphs are referred to as coordination patterns. A coordination
pattern encodes a reusable solution for an architectural (coordination) problem, which is the
description of interaction defined to answer to a set of requirements or constraints. In [OB13a]
reconfiguration mechanisms to actuate over such patterns are proposed. In this setting, re-
configurations are defined as a combination of elementary reconfiguration primitives. The
application of a reconfiguration to a coordination pattern yields a new coordination pattern.

Moreover, formal verification of requirements enclosed in such patterns and classification/or-
ganisation of reconfigurations are given as features of the framework discussed in [OB13a,
OB13b]. But to express and apply reconfigurations, in practice, is not yet incorporated in
such a framework, hindering its applicability. Thus, the following research question arises:
How to simulate a reconfiguration in their design?

1.2 objectives

This dissertation aims at developing a tool for rapid prototyping of coordination-based ar-
chitectural reconfigurations. This involves several tasks: design of a language to express
reconfigurations, through combination of primitive operations; development of a language
processor that should report errors from syntactic and semantic analysis; and development
of a engine for reconfigurations (based on the language), as an eclipse plugin, to model and
simulate reconfigurations of service coordination protocols.

The first task implies the design of a Domain Specific Language (DSL) – referred as Re-
CooPLa – that supports the model presented in [OB13a] and makes it a suitable tool for
the software architect. ReCooPLa provides a precise, high-level interface for the software
architecture to plan and experiment with reconfiguration strategies. Tailored to the area of
architectural reconfigurations, it makes possible to abstract away from specific details, such
as the effect of each primitive operation and their actual application, as well as to hide their
actual computation under a processor. The second task encompasses a few steps which ensure
that the specification is syntactically and semantically correct. These “steps” follow the tradi-
tional approach for compiler construction [ASU86] and include a Lexer, a Parser, a Semantic
Analyser as well as a Translator to obtain the necessary executable format. Finally, the last
task is developed in Java. Thus, as it often happens with DSLs, the design language must
be first translated into a subset of Java (by the language processor), which should be then
recognised and executed by an engine. The engine execute coordination-based reconfigura-
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Chapter 1. introduction

tions specified in the design language, and apply them to coordination patterns, which are in
turn defined in CooPLa [ROB14b], a lightweight language to define the graph-like structure
of coordination patterns. In addition, the reconfiguration primitives described in [OB13a] as
elementary operations, are also implemented in Java, to support the reconfiguration engine.

A suitable case study to test the reconfiguration engine is created. It is also intended to
make the engine part of the Eclipse Coordination Tools [AKM+08], a fairly known platform
for design and verification of Reo based coordination.

1.3 dissemination

During the research period a paper [ROB14a] named “ReCooPLa: a DSL for coordination-
based reconfiguration of software architectures” was written, submitted and accepted in an
international conference: the 3rd Symposium on Languages, Applications and Technologies
(SLATE’14). This paper was invited for extension by the ComSIS journal 1, which has a 2
years impact factor of 0.549. Thus, a new paper [ROB14b] named “Towards an engine for
coordination-based architectural reconfigurations” has emerged. This paper was also already
submitted and is waiting for acceptance.

All information concerning the reconfiguration engine is also accessible in the project web-
site 2.

1.4 document structure

The state of the art of this work is subdivided in two chapters: Chapter 2 and Chapter 3. The
former reviews some coordination models, giving emphasis to the Reo coordination model and
its formal models. Chapter 3 addresses reconfigurations in Software Architectures and, in par-
ticular, coordination based reconfigurations. Tools and languages, namely ADL, that already
exist to support the reconfigurations and their analysis are also presented in this chapter. In
addiction, the reconfiguration framework is also introduced by the end of this chapter, by ad-
dressing coordination protocols and coordination-based reconfigurations (e.g., reconfiguration
patterns). In Chapter 4, the language developed for processing reconfigurations, as well as the
respective processor and the supporting technologies, are presented and described. Chapter 5
describes the Reconfiguration Engine by presenting its model, architecture and development.
Furthermore, a set of translation rules is presented and their implementation described in this
chapter. Chapter 6 presents a case study in the context of self-adaptive systems, featuring
the ASK system. Finally, Chapter 7 concludes the dissertation and raises some issues for
future work.

1 http://www.comsis.org/indexing.php
2 http://coopla.di.uminho.pt/
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2

B AC KG RO U N D : C O O R D I N AT I O N M O D E L S

This chapter presents an overview of coordination through a set of distinct coordination
models. The Reo coordination model receives particular attention due to its relevance to this
work. Some formal models for Reo are also presented.

2.1 coordination

The increase of computational resources has allowed the development of new programming
paradigms based on distributed and parallel systems, which are able to, for instance, perform
tasks faster and be fault tolerant. This led to the design and implementation of more com-
plex applications and systems such as telecommunication networks, peer-to-peer networks,
distributed databases, real-time process control (e.g., aircraft control systems) and parallel
computation.

The emergence of these systems drew attention to issues such as reusability, compositional-
lity and extensibility [PA98]. In order to deal with them and provide interoperation between
systems, a blend of language models becomes necessary.

Coordination offers an alternative to mitigate the problems and address some of the issues
that arise with the development of complex distributed and parallel computer systems [PA98,
Arb98].

Actually, a programming model can be built through the combination of two distinct pieces:
the computation model (processes involved in manipulating data) and the coordination model
(responsible for the communication between the processes) [GC92, PA98]. According to Gel-
ernter and Carriero [GC92], a coordination model is “the glue that binds separate activities
into an ensemble”.

Coordination models are defined by three main components: coordination entities (e.g.,
threads, users, etc), coordination media (e.g., channels, tuple spaces, etc) and coordina-
tion laws (e.g., enact either synchronous or asynchronous behaviours for coordination en-
tities) [Cia96]. A coordination model can be embedded either in a coordination architecture
(e.g., client-server architecture) or in a coordination language. A coordination language is
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Chapter 2. background: coordination models

“the linguistic embodiment of a coordination model” [GC92]. It provides operations to create
computational activities and support communication between them.

All coordination models claim to provide a framework which enhances modularity, inter-
operability and reuse of components. They differ from each other in the definition of what is
being coordinated and how coordination is achieved.

2.1.1 Overview of coordination models

Papadopoulos and Arbab [PA98] argue that coordination models and languages can be clas-
sified as data-driven or control-driven. Briefly, in the former exists a mixture of coordination
and computation code within a process definition whereas in the latter there is a separation of
coordination from computational concerns. In the data-driven category, coordination tends
to be endogenous and is usually provided as a set of primitives which is mixed within some
“host” computational language (i.e., embedded within computational entities). This category
is mostly used for parallelising computational problems and coordinating manipulated data.
On the other hand, in the control-driven category, coordination tends to be exogenous and
is usually delivery as a language by itself (i.e., isolated from computational entities). This
category is mainly used for modelling systems and coordinating entities, such as system com-
ponents, since the structure and contents of data is of minor or no importance in it. Whereas
in the data-driven category coordinator processes directly handle and examine data values, in
the control-driven category processes are treated as black-boxes, whether coordination or com-
putational processes, and therefore the communication of processes with their environment is
achieved through well-defined interfaces (input and output ports).

Most of the coordination models in the data-driven category are deeply related to the notion
of a Shared Data-space. This is a language paradigm in which computations are performed
using a content-addressable communication medium with a tuple-like representation [RC90].

linda
Linda [CG89] is a data-driven and endogenous coordination language. It is based on generative
communication: if two processes need to communicate, the data producing process generates
a new data object, referred to as a tuple; on the other hand, to create processes (e.g., a
process needs to create a second one) the so-called “live tuple” is first generated and then
also turned into an ordinary data object tuple. In both cases, the tuple is stored in a shared
data-space called tuple-space. Then, herein the receiver can access the new tuple.

Linda offers very simple coordination entities (active and passive tuples, which represent
processes and messages, respectively), a unique coordination medium (tuple-space), and a
small number of coordination laws (embedded in four primitives only). The active tuples
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2.1. Coordination

representing processes in tuple space are turned into ordinary passive tuples right after the
completion of their execution.

The small set of coordination primitives provided by Linda to perform operations on the
tuples and tuple-space are: in(t), out(t), rd(t) and eval(p); where t stands for tuple
and p for process. The in(t) primitive retrieves a passive tuple t (i.e., atomically reads
and consumes a tuple) from the tuple-space. On the other hand, the out(t) primitive puts a
passive tuple t in the tuple-space. The rd(t) primitive retrieves a copy of passive tuple t (i.e.,
non-destructively reads a tuple) from the tuple-space. Lastly, eval(p) puts an active tuple
(i.e., a process p) in the tuple-space. While the out and eval primitives are non-blocking
primitives, the in and rd are blocking primitives and thus will suspend execution until the
desired tuple be found. If more than one tuple in the tuple-space matches, then one is selected
nondeterministically. However, these primitives also have non-blocking forms (inp and rdp)
which do not block if the required tuple is not found.

Linda is designed to be coupled with a host programming language and their primitives are
independent of this host language. There are many implementations and extensions of Linda
such as TSpaces (IBM) [WMLF98], JavaSpaces (Oracle) [FAH99], Bauhaus Linda [CGZ95],
LAURA [Tol96], Bonita [RW97] and LIME [PMR99] to name but a few. They are developed
using many host languages (C, Lisp, Pascal, Prolog, Java, etc) and paradigms (imperative,
functional, object-oriented, etc) [ACG86, CG89].

manifold
Manifold [AHS93, Arb96b, Arb98] is a control-driven and exogenous coordination language
that models external components as processes. This language is based on the Idealised Worker
Idealised Manager (IWIM) [Arb96a] model, which is an abstract model of communication
(through broadcast of events or point-to-point channel connections) that “supports the separ-
ation of responsibilities and encourages a weak dependence of processes on their environment”.
In other words, IWIM is focused on the separation of concerns (computation concerns isolated
from the communication ones) and anonymous communication (processes that intercommu-
nicate without knowing each other). This separation, along with the higher-level abstractions,
improve software productivity, maintainability, modularity, and even reusability.

Manifold is a strongly-typed, block-structured and event-driven language. Thus, the only
control structure that exists in it is an event-driven state transition mechanism and its entities
are events, processes, ports and streams (asynchronous channels). The Manifold events are
used purely for triggering state changes and do not carry data. In turn, a process is a black-
box component with well defined ports, connected between themselves by means of streams.
These processes are called Manifold coordinators which are, similarly to the most of the other
control-driven coordination languages, clearly distinguished from computational processes.
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The Manifold system runs on multiple platforms and consists of a compiler, a runtime
system library, a number of utility programs, and libraries of built-in processes. Furthermore,
Manifold has a visual programming environment called Visifold [BA96].

arc
In the past few decades, well-defined mathematical abstractions for concurrent computation
in a distributed environment such as CSP [Hoa78], π-Calculus [MPW92], and the Actor
model [Agh86] have been studied. The latter is used by the Actor, Role and Coordinator
(ARC) coordination model to model the concurrent computational part of an Open Distrib-
uted and Embedded (ODE) system. In addition, to deal with the coerced coordination part
of an ODE system, the ARC model introduces the concept of a role that provides an abstrac-
tion for coordinated behaviours, which in turn may be shared by multiple concurrent entities
called actors. The ARC model [RYC+06] is described by the authors as a “role-based decent-
ralised coordination model for ODE systems” that intends to better address the dynamicity
and scalability issues inherent in ODE systems while fulfilling the system’s QoS requirements.
These requirements are mapped to coordination constraints and imposed on actors through
message manipulations, which are carried out by roles and coordinators – the coordination
entities.

Furthermore, the ARC model can be seen as the composition of three layers, related to each
of the components of the model: actor layer, role layer and coordinator layer. The actor layer
is dedicated to functional behaviour and is independent from the coordination (composed by
the role and coordinator layers) which is exogenous and imposes the above mentioned QoS
constraints among the actors, preserving the semantics of the original model [Agh86]. The
actors – the computation entities – are single-threaded active objects which communicate with
each other only through asynchronous messages [SR11]. They have states and behaviours
which can only be changed by themselves while processing a message. An actor can perform
only three atomic primitive operations: create new actors, send messages to other actors and
become, while processing a message, to the actor assume a new state and behaviour. The
coordinators on the coordinator layer are responsible for the coordination among roles. The
role layer lies between the actor and coordinator layers and therefore acts as a bridge between
these two layers. A role may enable the coordination of a set of actors without requiring the
coordinator to have an accurate knowledge of the actors that play the role. A role can also
be seen as an active coordinator that manipulates the message sent and received by the actor.
In addition, a role may generate events (viewable by coordinators) and change its state. In
short, just as actors react to messages, roles and coordinators react to events. Due to the
introduction of roles, the coordination is divided into inter-role and intra-role coordination,
which are the responsibility of coordinators and roles, respectively. This allows a better
separation of concerns and reduces the complexity of the entities. Roles and coordinators
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themselves can be viewed as meta-actors and react to meta-messages and actor events. The
role meta-actors are able to observe and manipulate messages in the actor layer.

road
The Role-Oriented Adaptive Design (ROAD) [CH05] framework is a control-driven coordina-
tion model that extends work on object-oriented role and associative modelling [KO96, Ken00].
This model targets scalability issues of concurrent and distributed systems through a role-
based coordination model. Similarly to the ARC model, the elements being coordinated are
roles, which can be added to, and removed from, objects. These roles also abstract coordina-
tion behaviours among the objects that play them. However, they have different definitions.
Kristensen and Osterbye [KO96] provide a definition of roles based on the distinction between
intrinsic and extrinsic members of an object. Intrinsic members provide the core functional-
ity – i.e., the computational and communication capabilities – of the object, while extrinsic
members (methods and data) contain the functionality of the role.

The ROAD approach to create adaptive software systems is based on the distinction
between functional and management roles. Functional roles are focused on achieving the
desired application-domain output and constitute the process as opposed to the control of
the system. Since functional roles do not directly reference each other, they are associated by
contracts that mediate the interactions between them. In turn, the creation and monitoring
of these contracts is the responsibility of a concrete type of management role: the “organiser”
role.

ROAD contracts are association classes that express the mutual obligations and interactions
of the contract “parties” (i.e., modules or processes) to each other. Similarly to roles, con-
tracts have management and domain function levels. Management contracts specify the type
of communication acts and protocols that are permissible between the two parties whereas
functional contracts specify, among other things, the performance obligations and inherit
control relationships from these management contracts.

pbrd
The Reflective Russian Dolls (RRD) [MT02] is a model of reflective distributed object compu-
tation, based on rewriting logic. Rewriting logic [Mes92] is a formalism designed for modelling
and reasoning about concurrent and distributed systems. Its states are represented as ele-
ments of an algebraic data type and behaviour is given by local transitions between states
described by rewrite rules.

The RRD model uses reflection and hierarchical structure to provide a layered exogenous
coordination model, wherein each layer controls the communication and the execution of
objects, i.e., coordinators, in the layer below. A coordinator has an attribute that holds a
nested configuration of objects and messages and its behaviour is specified by rewrite rules.
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These rules also control delivery of messages in the configuration of a coordinator and specify
how peer-to-peer messages are processed.

Policy-based RRD (PBRD) [Tal06] is a restricted form of RRD in which communication con-
trol is specified by declarative policies to, for instance, ordering of message delivery, serialising
requests and recording a history of events. It is focused on logical communication constraints.
Similarly to the ARC model and based on the actor model of computation [Agh86], the ob-
jects coordinated in PBRD are actors and the coordinators are meta-actors [TSR11]. These
actors communicate by asynchronous message passing and encapsulate their state and thread
of control. On the other hand, requirements of the coordinators are specified by informal
constraints on the resulting interactions of the coordinated actors.

bip
Basu et al. [BBS06] introduced the Behaviour-Interaction-Priority (BIP) language for model-
ling heterogeneous real-time components. It supports the construction of hierarchically struc-
tured components from atomic components characterised by their behaviour and interfaces.
These components are obtained through the overlap of three layers: the lower one describes
behaviour; the middle layer models interactions between components, specified by a set of
connectors; and the upper layer is a set of priority rules (describing scheduling policies for
interactions). Any combination of behaviour, interaction and priority models meaningfully
defines a component. The connectors are used by the language to specify possible interac-
tions between components and priorities. Interactions express synchronisation constraints
between the composed activities of the components and priorities filter possible interactions
to guide system evolution in order to address the performance requirements. The combina-
tion of interactions and priorities defines an abstract concept of architecture separate from
behaviour.

BIP uses a parameterised binary composition operator on components, which allows incre-
mental construction, i.e., obtaining a compound component by successive composition of its
constituents. The language also provides a powerful mechanism for structuring interactions
involving strong (rendezvous) or weak (broadcast) synchronisation.

In contrast with other component frameworks, BIP executes atomic components concur-
rently and coordinates them in terms of high-level mechanisms such as protocols and schedul-
ing policies [BBB+11]. Since this language focuses on the organisation of computation between
components, it can be viewed as an ADL (see Section 3.3).

orc
Orc [Mis05] is a coordination model, focused on the paradigm of orchestration that supports
a structured model of concurrent and distributed programming. This model introduces the
concept of a site as a basic (web) service, such as sequential computation or data manipu-
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lation. It also provides constructs to orchestrate concurrent invocation of sites in order to
managing time-outs, delays and failure of components and communication. Orc is highly
asynchronous, naturally dynamic, based on ephemeral connections to services and deals well
with failure [PC08].

An Orc program is composed by an expression with a set of definitions. An Orc expression
can be a primitive site call, a reference to another expression, or a composition of expressions;
and it is responsible for (dynamically) initiate contact with external sites. A site call is written
as M(p), where p is a tuple of arguments which can be constants or variables. Orc’s semantics
is detailed in [Mis05].

Orc is built upon three composition operators for parallel computation, sequencing and
selective pruning. This model represents a multi-threaded computation by an expression
which has useful algebraic properties such as CSP [Hoa78] and π-Calculus [MPW92]. However,
unlike these, Orc permits integration of arbitrary components – the so-called sites – in a
computation, which introduces a distinction between it and the environment in which it
runs. Since Orc describes the structure of a distributed computation using primitives that
define common communication patterns, the author [Mis05] argues that it may be a viable
alternative to process calculi. This model can be applied in the development of workflow
systems since, according the author, there is no commonly-accepted theory of workflow.

piccola
PICCOLA [ALSN01] is a composition language and a formal model for component-based
application development that embodies the paradigm described by the authors as “Applic-
ations = Components + Scripts”. In other words, applications are seen as compositions of
components, which are black-box entities that encapsulate services behind well-defined inter-
faces whereas scripts encapsulate how the components are composed. Thus, it is made a clear
separation of computational elements (i.e., components) and their coordination (i.e., scripts).
This separations enhances the flexibility, extensibility, and maintainability of an application.

PICCOLA has a small syntax and a minimal set of features needed for specifying different
styles of software composition. Its constructs are translated into the πL-calculus [Lum99]
– polymorphic variant of the π-calculus [MPW92]. A component is regarded as a set of
interconnected agents used to model coordination abstractions. Its interface is represented as
a form, which is a special notion of extensible and labeled records, used to model extensible
interfaces and contexts. These agents communicate with each other by sending forms through
private channels instead of tuples. In fact, agents and forms are the foundation of this
composition language since they provide a good basis for specifying higher-level components
and connectors.

Despite the fact that the natural type of interaction described by the πL-calculus is directed
channel communication, PICCOLA defines also language constructs to simplify the encoding
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of other types of interaction such as event based communication or failures. These constructs
are functions, infix operators to support an algebraic notion of architectural style, and the
explicit notion of a (dynamic) context to encapsulate required services.

PICCOLA has a syntax similar to that of Python and Haskell and thus newlines and
indentation, for instance, are used rather than braces or end statements to delimit forms
or blocks. Forms, however, may also be specified on a single line by using commas and
brackets as separators. This language was implemented in Java and a gateway interface was
also defined in order to use external components into the PICCOLA system. The reflection
package of Java was used internally to embed arbitrary Java objects into PICCOLA scripts.
In turn, this scrips can be embedded into stand-alone Java applications, applets or servlets.

2.1.2 The Reo coordination model

Reo [Arb04] is a channel-based exogenous coordination model which defines the primitive
operations that allow for composition of channels into complex connectors.

Some of the models previously presented are highly expressive but the Reo model is more
mature, with several formal semantics and tools for analysis. This model is highlighted in
this work since it is the chosen one to describe the associated semantics of the reconfiguration
framework, presented in Section 3.5, which in turn is supported by ReCooPLa.

The word ”exogenous” means ”from outside”, so exogenous coordination means coordina-
tion from outside. Thus, Reo separates the computation layer from the coordination layer.
The Reo model, similarly to other control-driven models, isolate coordination by considering
functional entities as black boxes [SR11]. Reo extend the IWIM [Arb96a] model (see Man-
ifold description in previous section) by treating both computation both computation and
coordination components as composable Abstract Behaviour Types (ABT), which is, as well
as IWIM, a two-level control-driven coordination model where computation and coordination
concerns are achieved in separate and independent levels. Coordination in Reo is abstracted
as a Reo circuit specified by, for instance, a constraint automaton [BSAR06], while in the
PBRD [Tal06] model coordinations are described as informal rule specifications on the res-
ulting interactions of coordinated actors. Reo is closer to being a programming model, while
RRD – briefly presented before, along with the PBRD model – focuses on more abstract
specifications. A detailed comparison among the Reo, PBRD, and ARC model can be found
in [TSR11].

A connector in Reo explicitly represents an interaction between architectural components
and acts as ”glue-code” that connects these components and coordinates their activities in a
component-based architecture. Formally, a connector is defined as a graph of channels whose
nodes represent interaction points and channels have a behaviour that imposes a coordination
policy between two points.
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Connectors are bound to each other using their interfaces, which are defined by their bound-
ary channel ends. A connector can perform I/O operations — write and take — on these ends.
It is by synchronising these operations that coordination is achieved [CCA07].

channels
Channels constitute the primitive connectors in Reo. Each channel is defined as a medium
of communication with exactly two ends and a specific behaviour [Arb04]. Each channel end
can be a source or a sink end. The former accepts data into its channel and the latter expels
data out of its channel. Usually, a channel is directed, i.e., have a source and a sink end, but
Reo also accepts undirected channels, which have two ends of the same type.

Reo presents a plethora of primitive channels, offering different synchronisation, buffering,
lossy and even directionality policies. Figure 1 recalls the basic channels used in Reo that can
be used to built more complex connectors.

sync lossy drain fifoe

•

fifo f

Figure 1: Primitive Reo channels.

A channel can perform a write of some data on a source end, or a take on a sink end. The
write/take will succeed when the connector either accepts the data from a writer component,
or makes available data for a reader component.

A sync channel has a source and a sink end. This channel transmits data from one end to
another whenever there is a request at both ends synchronously, otherwise one request shall
wait for the other. Thus, this blocks a write operation on its source end or a take operation
on its sink end, as necessary, to ensure that these two operations succeed synchronously.

The lossy channel behaves likewise, but data may be lost whenever a request at the source
end is not matched by another one at the sink end. Thus, all write operations on its source
end are immediately succeed, which means that if exists a pending take on its sink end, data
will be transferred, otherwise the write operation succeeds but data will be lost.

The fifo channel has a buffering capacity of one memory position, therefore allowing for
asynchronous occurrence of I/O requests. Qualifier e or f refers to the channel internal state,
which can be empty or full, respectively. If the buffer is empty: a write operation on its source
end succeeds, and fills the buffer; a take operation on its sink end is delayed until buffer is
full. Then, if the buffer is full: a take operation on its sink end succeeds and removes the data
from the buffer; a write operation on its source end is delayed until buffer is empty again.

The synchronous drain channel accepts data synchronously at both ends and loses it, since
it has two source ends and does not have any sink end. Thus, it is not possible to take any
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data out of this channel, since all data entering is lost, when the operations on both source
ends are synchronised.

In Reo, channels can be joined together by their ends. The junction of ends defines nodes,
and altogether (channels and nodes) define complex coordination structures called connectors.

nodes
A node is composed of (one or more) channel ends, and are classified into three different types:
source, sink or mixed node. The node type depends on the type of their coincident channel
ends. If a node connects only source channel ends, it is classified as a source node. On the
other hand, if it connects only sink channel ends, it is classified as a sink node. Finally, if it
connects both kinds of channel ends, it is classified as a mixed node.

A node acts as a synchronous replicator when it connects more than one outgoing channel.
It replicates data to all outgoing channels, when a write operation can be performed in all of
them, synchronously.

On the other hand, a sink node acts as a non-deterministic merger when it connects more
than one incoming channel. It merges data from the incoming channels, when at least one
of them offers data (i.e., a take can be performed). In particular, if more than one channel
offers data, only one of them is selected non-deterministically, i.e., data is randomly chosen
from one of the channels with fairness.

A a mixed node combines both behaviour by consuming data from one of its sink ends and
replicating it to all source ends.

connectors
In Reo, connectors are built from channels and nodes and have an interface, or interaction
points, that correspond to a set of source and sink nodes. These connectors are entities that
provide the ”glue-code” for coordinating the interactions between architectural components.
In Figures 2 depict two examples of connectors.

a b
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Figure 2: Reo connectors: (a) Sequencer and (b) Exclusive Router

Figure 2 (a) presents a Sequencer connector composed by four sync and one fifo channels
connected together. Graphically, white circles represent the connector interface, i.e., source
or sink nodes. In turn, black ones represent mixed (internal) nodes.
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This connector implements a generic sequencing protocol that can be parameterised to have
as many nodes as required, by inserting more sync and fifo channel pairs [Arb04].

Figure 2 (b) shows an Exclusive Router connector that accepts data on its source node (a),
and depending on the context (i.e., depending on the existence of requests in one of the sink
ends), routes data synchronously to one of its two sink nodes (b or c).

If both sink nodes are able to accept data, only one of them is selected non-deterministically.
This is due to the fact that node k merges its inputs without priority, i.e., exactly one of the
sync channels is activated, replicating data on the active side to the corresponding sink node
(b or c); the data item on the other side is destroyed by its lossy channel [AKM+08, Kra11].

2.1.3 Formal models of Reo

In the last decade, many semantic formalisms for describing the behaviour of Reo connectors
have emerged, including coalgebraic models, operational models, and models based on graph-
colouring. [JA12] presents an overview of the existing semantic formalisms for modelling Reo
connectors.

In this section, we will focus on three of the most adopted models: Constraint Auto-
mata [BSAR06], Reo Automata [BCS12] and Connector Colouring model [CCA07].

constraint automata
Baier et al.[BSAR06] introduce an operational model for Reo called Constraint Automata
(CA), to describe the behaviour and possible data flow in coordination models that connect
anonymous entities to enable their coordinated interaction. CA yields a foundation for the
formal verification of coordination mechanisms, i.e., conceptual generalisations of automata
where data constraints, i.e. boolean expressions for the data values, influence applicable state
transitions. The automata states stand for the possible configurations (e.g., the contents of
the fifo channels of a Reo connector) while the automata transitions represent the possible
data flow and its effect on these configurations, i.e. the set of ports enabled and its constraints.

The constraint automaton of a given Reo connector is defined in a compositional way:
CA defines the Reo primitive channels, and through application of join and hide operations
compose them to devise the behaviour of a complex connector.

The constraint automata corresponding to the Reo channels (sync, lossy, drain and fifo),
as well as two connectors (Sequencer and Exclusive Router), can be seen in Figure 3. The
transitions of constraint automata are labeled with pairs consisting of a non-empty subset
N of {A1, ..., An} and a data constraint g. Data constraints can be viewed as a symbolic
representation of sets of data-assignments. Formally, data constraints are propositional for-
mulae built from the atoms “dA = d′′ where data item d is assigned to port A. The most
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commonly used boolean connectors are ∧ (conjunction), ⊕ (exclusive or), → (implication)
and ↔ (equivalence).

q

{a, b}, db = da

Sync

q

{a, b}, db = da

{a}

Lossy

q

{a, b}

Drain

p q(x)

{a}, x = da

{b}, db = x

Fifo

ex fx

{a, o1}, do1 = da ∧ dx = da

{b, o2}, db = dx ∧ do2 = dx

Sequencer

q
{a, b}, db = da

{a, c}, dc = da

ExclusiveRouter

Figure 3: Constraint automata for primitive Reo channels and two connectors.

The semantics of Reo connectors can also be given using Constraint Automata with State
Memory (CASM) [PSHA12]. There are several variations of ordinary CA and CASM is one
of them [JA12]. In CASM, communication and synchronisation is realised using port names,
and states can be enriched with local memory cells, which can be seen as finite representation
of data elements. These automata derive executable coordinator models from connectors (e.g.,
as generated Java code) in the Reo implementation, using the Extensible Coordination Tools
(ECT) [Kra11], presented in the section 3.4.

Notions of bisimulation equivalence and a simulation relation for CA that provide methods
for checking language equivalence or language inclusion for non-deterministic automata are
also introduced in [BSAR06].

In their basic form, CA cannot express context dependency. Context dependency en-
ables connectors to be more responsive to changes in their environment, and can express,
for instance, the priority of one behaviour over another. In CA, for instance, the constraint
automaton corresponding to lossy Reo channel c.f., Figure 3, allows data to be lost regardless
of the context, i.e., irrespective of the existence or not of a request (take) on sink end, thus
misinterpreting the intended operational semantics.

reo automata
Bonsangue et al. [BCS12] introduce a new automata-based semantic model for expressing
context-dependent Reo connectors, called Reo Automata. This model took into account the
failures and benefits of previous automata-based approaches such as CA [BSAR06], to provide
a behavioural description of Reo connectors. The Reo automata corresponding to primitive
channels are very compact and intuitive, with a small number of states and transitions, com-
paratively to other contemporary models [Cos10].
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Reo Automata extend the notion of context-dependent automata to include the modelling of
data flow, as in CA. Reo automata overcomes the CA deficient handling of context by explicitly
modelling both the presence and absence of requests on the channel ends, which means that
data can only be lost, in a lossy channel sink end, if a request does not exist on it. Thus, this
extra information correctly gives semantics to context-dependent channels and connectors,
such as the lossy channel or the exclusive router connector, as can be seen in Figure 4. The
Reo automata corresponding others Reo channels, as well as the sequencer connector, are also
depicted in Figure 4. Intuitively, a Reo automaton is a non-deterministic automaton whose
transitions have labels of the form g| f , where g is a guard (boolean condition) and f a set
of nodes that fire synchronously. In addition, g can be used to describe the negation of g. A
transition can be taken only when its guard g (or its negation) is true.

Each transition labeled by g| f satisfies two criteria: reactivity and uniformity. According
the former, data flows only on nodes where a request is pending. The latter captures two
properties: the request set corresponding precisely to the firing set is sufficient to cause
firing; and removing additional unfired requests from a transition will not affect the (firing)
behaviour of the connector [BCS12].

q

ab|ab

Sync

q

ab|ab

ab|a

Lossy

q

ab|ab

Drain

e f

a|a

b|b

Fifo

e fx

ao1|ao1

bo2|bo2

Sequencer

qabc|ab abc|ac

ExclusiveRouter

Figure 4: Reo automata for primitive Reo channels and the sequencer connector.

connector colouring
Clarke et al. [CCA07] present a semantic model based on connector colouring for resolving the
context dependent synchronisation and mutual exclusion constraints required to determine
the routing for data flow in Reo connectors. This model aims at facilitating the data flow
computation (and implementation) of Reo connectors in a distributed computing environ-
ment. It requires less mutual exclusion in a distributed implementation and does not require
backtracking.

One aspect of the CA model is that transitions are labelled with the collection of nodes
that synchronously succeed in a given step, at the exclusion of all other nodes present in the
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connector being modelled. Calculating this set based on the configuration of a connector is
precisely what connector colouring achieves. That is, the 2-colouring model of a connector
produces a set of colourings which can be compared with the transitions in the corresponding
CA. This set comprises a so-called flow and a no-flow colours. The former marks places in
the connector where data flows, and the latter marks the absence of data flow.

Using 3-colouring model, the no-flow colour of 2-colouring model is replaced with two
different no-flow colours to trace the exclusion constraints responsible for the no-flow back to
their origins, i.e. provide information about the reason for the absence of data flow, allowing
to properly model context-sensitive connectors.

The set of the 3-colouring model is Colour = {————,−− ◁−−,−− ▷−−}.
Graphically, the arrow indicates the direction of exclusion, i.e. it points away from the

exclusion reason and in the direction in which the exclusion propagates.
Connector colouring permits to capture context-dependent behaviour and therefore provide

semantics to context-dependent connectors, by considering the context (the presence or ab-
sence) of pending I/O operations at the ends of a connector. Thus, channels and other
primitive connectors determine the actual data flow based on the colouring of their ends.

Each colouring of a connector is a solution to the synchronisation and exclusion constraints
imposed by its channels and nodes.

In order to understand it better, let us present some primitive Reo channels using the
3-colouring model.

• sync channel
i) ———— ii) −− ▷−− iii) −− ◁−−

In configuration i) data flows through the channel. In ii) data does not flow through
the channel and the reason is given that a problem occurred in the input operation.
Finally, in iii) data does not flow through the channel and the reason to delay relates
to a problem occurred in the output operation.

• drain channel
i) ———— ii) −− ▷−− iii) −− ◁− −

The configurations are the same as for the previous channel, however with a slightly
different meaning on ii) and iii). In the former data flow is delayed due to a problem
in the input operation at the left source end, and in the latter, the data flow is delayed
due to a problem in the source end at the right.

• lossy channel
i) ———— ii) —— ◁−− iii) −− ▷− −
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Configuration i) occurs when both source and sink end perform their I/O operations
(write and take) synchronously. In ii), the input operation is performed, but the data is
lost because there is no output operation at the sink node. The arrow pointing to the
left propagates this reason to the point where data is lost. In iii) the data does not flow
because the input operation failed. The reason propagates into the direction of the sink
node as if it was a signal to explain what happened at the other side of the channel.

• fifo channel

i) —– − ▷− ii) − ▷−− ▷− iii) − ◁− —– iv) − ◁−− ◁−

This channel has four configurations: two for empty state plus two for full state. In i)
the input operation occurs, but the output operation does not, since the buffer is empty,
and thus no output operation may occur. In ii) the input operation fails and the reason
is propagated through the channel. In iii) the input operation is not performed since
the buffer is full. Nevertheless the output operation is performed. In iv) the output
operation is not performed, thus the buffer is still full and consequently the reason is
propagated to inform the source end of the channel that an input operation should be
delayed.
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3

S TAT E O F T H E A RT R E V I E W : S O F T WA R E R E C O N F I G U R AT I O N S

Nowadays SOA is in focus mainly due to the services interoperability that this architectural
style enables, regardless of the language in which each service was implemented or even the
hardware in which it runs. The emergence of cloud-computing also had an important role to
make SOA the paradigm underlying modern software systems.

A major concern in these systems is to maintain QoS levels, in particular, a continuous avail-
ability of services. For this, and in order to adapt a system to new requirements, environments
or failures [Per97, Wol97], their underlying architecture can be changed or reconfigured, either
by dynamically updating service functionalities, substituting, adding or removing services; or,
by changing the behaviour or structure of software connectors.

This chapter reviews the notion of reconfiguration in architectural design and introduces
the specific reconfiguration model implemented in this MSc dissertation.

3.1 architectural reconfigurations

The architecture of a software system consists, basically, of a set of interconnected components
and protocols that determine their interaction. In architecture design emerges the concept of
architectural style [SG96], i.e., some set of rules indicating which components can be part of
the architecture and how they can be properly interconnected.

Architectures usually are designed and changed in a static way by refining abstract com-
ponents or assembling subsystem architectures. However, in some architectures namely in
critical software systems, this might not be possible once stoping or even restarting a system
for changes or updates leads to reducing QoS levels and increasing costs and risks. Changes in
the configuration of the architecture of a running system are called dynamic reconfigurations.
Often, however, the facilities for runtime modification found in current operating systems,
distributed object technologies, and programming languages, do not ensure the consistency,
correctness, or desired properties of dynamic change [OMT98].

Dynamic software reconfiguration consists in changing the configuration of an architecture
at runtime. Some distributed systems use functional redundancy or clustering in order to
avoid the need for runtime change. Upgrades to web servers, for instance, are held by for-
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warding incoming network traffic to a redundant host while the original host is reconfigured.
However, due to the cost and even the risk that this approach implies, this is not always
feasible.

Software Architectures (SAs) have the potential to provide a foundation for systematic
runtime software modification and can support different types of software evolution, such as
corrective, perfective, and adaptive evolution [GJM02].

Oreizy et al. [OMT98] present an architecture-based approach to runtime software evolution
that operates at the architectural level. The main purpose of this approach is to reduce
the costs and risks typically associated with dynamic reconfiguration. Other approaches to
runtime software evolution have been proposed [GR91, GJB96, PHL97].

Gorlick and Razouk [GR91] present a data flow based approach to runtime change called
Weaves. A weave is an arbitrary network of tool fragments connected together by trans-
port services. In turn, each tool fragment is a small software component that performs a
well-defined function and may retain state. However, Weaves does not currently provide a
mechanism to check the consistency of runtime changes neither explicit support for represent-
ing change policies.

Grupta et al. [GJB96] describe an approach to modelling changes at the statement level
for a simple abstract imperative programming language. In this approach, applications must
be written entirely in the dynamic language to benefit from dynamism, which leads to a
performance overhead since every function invocation must be bound during runtime. In
addition, application behaviour and dynamism are not explicitly separated.

Peterson et al. [PHL97] present an approach to module-level runtime change based on
Haskell, a purely-functional programming language. This approach allows refined control
over runtime change, since software architects can implement change policies tailored to the
application. However, managing change in large systems can be complex since change policies
are not isolated in the application source code.

On the other hand, the approach in [OMT98] provide several benefits over previous ap-
proaches, such as a common representation for describing software systems and managing
runtime change, separation of computation from communication, and encapsulation of change
application policies and scope within connectors. In this approach, the design of dynamic-
ally reconfigurable software systems is focused on the behaviour of individual application
components.

Gomaa and Hussein [GH04] present an approach for dynamic reconfigurations based on soft-
ware reconfiguration patterns, which can be used with the design of self-adaptive component-
based software systems.

A software reconfiguration pattern defines how a set of components, forming an architecture
or design pattern, cooperate to change the current software configuration. A Reconfiguration
Framework for change management, presented in the mentioned work, initiates and controls
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the automatic reconfiguration of the software system from one dynamic configuration to
another.

Designing runtime reconfigurations at a software pattern level provides better organisation
and deeper understanding since it operates at a larger level of abstraction than the component
level does. For runtime evolution of a SA, it is important to consider how components
can coordinate their communication during the reconfiguration and then design such inter-
component behaviour as a reconfiguration pattern.

Bruni et al. [BLLMT08] discuss different reconfiguration mechanisms such as graph rewrite
rules (reconfigurations as graph transformations) and inductive reconfigurations. Since it
represents architectures by graphs, reconfigurations can also be seen as graph transforma-
tions, and to formalize them, graph rewrite rules are used. The use of graphs and graphs
transformations to model architectural styles has been previously proposed by several au-
thors [Roz97, LM98, Tae04, BHTV06, Gad07].

The approach presented in [BLLMT08] has some advantages over similar previous ap-
proaches namely [LM98], such as allowing for representing complex reconfiguration rules
because it is a hierarchical and inductively based approach. This approach also uses graph
rewriting as a unifying model to represent architectural design, behaviour and reconfiguration
while other approaches use separated formalisms for these issues.

Wermelinger and Fiadeiro [WF99] propose a uniform algebraic approach to address prob-
lems manifested in other languages such as low-level of specification. Thus, in this approach,
components are written in a high-level program design language and two existing frameworks,
for specifying architectures and rewriting labelled graphs respectively, are combined. Further-
more, this approach shows the relationships between reconfigurations and computations while
keeping them separate, because it provides a semantics to a given architecture through the
algebraic construction of an equivalent program. The authors introduce, as well, a program
design language that incorporates some of the usual programming constructs while keeping a
simple syntax to be formally manageable.

Bravetti et al. [BDGPZ12] introduce a core calculus of adaptable processes that allows
for expressing a wide range of patterns of process evolution and runtime adaptation. This
improves the kind of reconfiguration that can be expressed in existing (higher-order) process
calculi. The authors also study structural and behavioural characterisations and show that
such a distinction may make a difference in terms of process expressiveness and decidability
of reachability-like properties.

Grassi et al. [GMS07] present a model-driven approach to automatically transform a design
model into an analysis model, to support the model-based analysis of the effectiveness of recon-
figurable component-based applications. In particular, this approach relies on the existence
of intermediate languages and extends one of them to capture core features of a dynamically
reconfigurable component-based system.
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Bruni et al. [BLLMT08] propose Architectural Design Rewriting (ADR) as a declarative
rule-based approach for modeling reconfigurable SAs. ADR is a suitable and expressive frame-
work based on an algebraic presentation of graph-based structures and conditional rewrite
rules. In particular, these features enable the modelling of, for instance, hierarchical designs,
and inductively defined reconfigurations, besides ordinary computations. The features of
ADR are particularly tailored to understanding and solving Architecture Description Lan-
guage (ADL) problematics. In fact, an ADR can serve as the basis to formalise or extend
ADLs with features such as conditional reconfigurations.

3.2 coordination based reconfigurations

A reconfiguration of a service-based application may become necessary if one of the services
in use suddenly becomes unavailable, its Quality of Service (QoS) level becomes unacceptable
or its behavioural interfaces change. However, when a reconfiguration of an application is
needed, in particular at runtime, it is usually not possible to stop or to restart the intended
services since they can be supplied as third-party services.

While in some domains switching between a finite set of configurations to accommodate
the new requirements is sufficient, in others a rule-based approach for reconfiguration is more
suitable to perform structural changes [Kra11]. Krause proposes a rule-based rewriting ap-
proach for modelling distributed component connectors and their (dynamic) reconfigurations
based on distributed graph transformation concepts.

Due to the graph structure inherent to Reo networks, methods from graph transformation
presented in [Kra11] are suitable to model and implement reconfigurations in Reo. Import-
ant aspects of this approach include rule-based definition and atomic execution of complex
reconfigurations.

In [Kra11, KMLA11b], a graph transformation rule is defined as a pattern which must be
matched, and a template which describes the changes to be performed to the system. Addi-
tional application conditions may further restrict the applicability of a transformation rule.
This approach allows to specify concretely in which situations and how a system should be
changed, including possible dependencies that must be updated. Furthermore, these rules can
be applied either locally or globally, i.e., wherever patterns match. With this approach com-
plex structural reconfigurations can also be achieved in an atomic step, instead of sequentially
performing low-level modifications on primitives.

The AGG [ABJ+10] tool and the Henshin [Tae04] framework are used to formally analyse
the reconfiguration approach in [Kra11]. Furthermore, [Kra11] refers that the AGG system
can be used to detect conflicting reconfiguration rules using critical pair analysis and the
Henshin can be used to generate state spaces and to do qualitative and quantitative model
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checking. The analysis tools in AGG and Henshin can also help to circumvent design errors
that occur when dealing with inaccurate implementations of reconfigurations.

As a complementary approach to critical pair analysis, model checking can be used as well
for verifying reconfiguration behaviour. In [Kra11] it is shown that using a model checking
approach, it is possible to analyse dynamic reconfigurations. One way of analysing dynamic
reconfigurations and the interplay of execution is by encoding both behavioural aspects in
the same formalism and then apply, for instance, model checking.

Krause et al. [Kra11, KAV09] follow the same approach of graph transformation to provide
a formal framework for modelling Reo connectors and their reconfigurations in a distrib-
uted setting. For this, it considers connectors which are distributed over a network, encap-
sulated (their internals are hidden from their surroundings) and linked together only via
their published interfaces. Reconfiguration of a network is achieved by reconfiguring its con-
stituent connectors (e.g., through a change in its interfaces) and is defined and performed
locally. However, it can be either triggered internally or invoked from the outside. Recon-
figuring a connector may also require connectors in its neighbourhood to reconfigure, which
implies a need for synchronising local reconfigurations into a consistent reconfiguration of
the connector as a whole [Kra11]. Nevertheless, in a distributed setting, it can not be as-
sumed the existence of a third-party that coordinates local reconfigurations. Thus, to ensure
the consistency of a reconfigured network other mechanisms should be used. In Krause’s
thesis [Kra11] some of them are used, presented and proposed: a framework of distributed
graph transformation [Tae99, EOP06]; a synchronisation mechanism based on the notion of
amalgamation [BFH87, CMR+96, TB94]; and a distributed strategy to organize the stepwise
reconfiguration of large networks.

Rooting on his initial approach for coordination reconfiguration [Kra11], Krause et al. [KLA08]
propose a framework for dynamic reconfigurations triggered by data flow, which relies on con-
nector colouring semantics [Cos10, CCA07]. This framework allows to define such dynamic
reconfigurations by annotating transformation rules with colourings, which leads to a notion
of dynamic connectors.

Transformations are automatically applied depending on the structure, the state and the
context of a connector. Connectors are reconfigured at runtime based on this information,
which leads to a powerful notion of dynamic connectors and dynamic reconfigurations.

Bozga et al. [BJMS12] propose Dy-BIP, which is a dynamic extension of the BIP language
(see Subsection 2.1.1) rooted in rigorous operational semantics for modelling dynamic archi-
tectures. This framework supports a powerful and high-level set of primitives for describing
dynamic interactions, which are (i) expressed as symbolic constraints offered by interacting
components and (ii) computed efficiently by an execution Engine.

Dy-BIP allows the construction of composite hierarchically structured components from
atomic components and relies on a clear distinction between behaviour and architecture. Each
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atomic component provides its own interaction constraints at each computation step. In turn,
interactions at some state may depend on interactions in the past and thus it is necessary
to parametrize interaction constraints by history variables. These variables keep track of the
interactions already executed, which avoid state explosion and duplication of ports.

An atomic component is an automaton extended with history variables. Each transition of
it is labeled by a port, an interaction constraint and a set of history variables to be updated.

The composition semantics has been implemented by using a centralised execution Engine,
which gathers current state interaction constraints from all atomic components. Thus, atomic
components interact and coordinate their execution through the Engine. Hereinafter, the
Engine builds – at every state reached at execution – the overall system of constraints, finds
the set of maximally satisfying interactions and then select and execute (atomically by all
involved components) one of them.

3.3 languages for reconfiguration

The Service Component Architecture (SCA) defines a framework for describing the compos-
ition and the implementation of services using components. Each component requires and
provides services. However, SCA does not provide support for context awareness [PBD09].
On the other hand, Fractal [BCL+06] is a hierarchical and reflective component model inten-
ded to implement, deploy, and manage complex software systems, that offers several features
as, for instance, composite components and dynamic reconfiguration. Several controllers
have been defined in the Fractal specification such as the binding controller, that allows the
dynamic binding and unbinding of component interfaces.

FPath and FScript notations [DLLC09] are two DSLs to encode dynamic adaptation of
Fractal-based systems. The former eases the navigation inside a Fractal architecture by
using queries. The latter, which embeds FPath, enables the definition of adaptation scripts
to modify the architecture of a Fractal application. FScript provides transactional support
for architectural reconfigurations in order to ensure the reliability and consistency of the
application if the reconfiguration fails at a given point.

ADLs provide a formal foundation for describing SAs by specifying the syntax and se-
mantics for modelling and describe components, connectors, and their configurations. Numer-
ous ADLs have been developed, each providing complementary capabilities for architectural
development and analysis. The use of ADLs has been limited to static analysis and system gen-
eration focused on design issues and, therefore, do not provide support for specifying runtime
architectural changes. However, a few ADLs, such as Darwin [MK96] or Rapide [LV95] can
express runtime modification to architectures providing that the modifications are specified
during the design of the application.
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Darwin [MDK92] is an ADL which allows distributed and parallel programs to be construc-
ted from hierarchically structured configuration descriptions of the set of component instances
(which communicate by message passing) and their interconnections.

In this language, components are characterised by the services they provide (to allow other
components to interact with them) and the services they require (to interact with other
components). The Darwin compiler checks that bindings are only made between required
and provided services with compatible interaction classes and datatypes. The interaction and
datatype information specified at the component interface is optional in this model since if
this information is necessary, the compiler infers the type of interface objects which are not
explicitly typed. Thus, Darwin descriptions are reusable and concise.

Magee and Kramer [MK96] describe two techniques used in Darwin to capture dynamic
structures: lazy instantiation and direct dynamic instantiation. The former allows a structure
to evolve according to a fixed pattern. These structures must have acyclic bindings and have
been found to be mainly useful in the domain of parallel processing. The latter, on the other
hand, allows the definition of structures which can evolve in an arbitrary way. It can be used
in a way which balances flexibility at runtime with the advantages of retaining a structural
description. In [MK96], support for dynamic binding both inside and outside Darwin is also
discussed.

Rapide [LV95] is a concurrent event-based simulation language for defining and simulating
the (dynamic) behaviour of system architectures and the properties such as synchronisation
and timing. It is one of the few architectural languages which also supports dynamic archi-
tectures, providing facilities for both dynamic connections and instantiation of components.

The approach in [OMT98], in contrast, can accommodate unplanned modifications of an ar-
chitecture and incorporate behaviour which was not anticipated initially; it augments current
ADLs with runtime change support. This approach consists of several interrelated mechan-
isms that apply, for instance, architectural changes to a system model. An accurate model of
a system architecture must be available during runtime in order to modify a system. Thus,
an architectural model – which describe the interconnections between components and con-
nectors, and their mappings to implementation modules – is deployed.

The modifications are expressed in terms of this architectural model. A modification de-
scription uses operations for adding, removing or replacing components and connectors as
well as changing the architectural topology. They are provided by multiple organisations and
applied by end–users based on their particular needs. The modifications that compromise
system integrity are restricted through the use of constraints.

The runtime architecture infrastructure maintains the consistency between the architec-
tural model and implementation as modifications are applied. It also reifies changes in the
architectural model to the implementation and prevents runtime changes from violating ar-
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chitectural constraints. In addition, it can support different component addition, removal,
and replacement policies and can be tailored for particular application domains.

There are still other approaches that provide a formal basis for architectural specification
such as Wright [All97] and Acme [GMW97].

Wright defines a set of standard consistency checks and it focuses on the concept of explicit
connector types, on the use of automated checking of architectural properties, and on the
formalisation of architectural styles [All97]. Wright was also extended to handle dynamic
aspects of architecture [ADG98].

Dynamic Wright allows to analyse statically the kinds of dynamic architectural changes that
can occur in a running system since it provides the localisation of reconfiguration behaviour. It
provides also a uniform representation of reconfiguration behaviour and steady state behaviour
and clearly delimits interactions between these two kinds of behaviour by using control events.
These control events are also used in a separate view of the architecture which describes how
they trigger reconfigurations.

The semantic foundations of Dynamic Wright are based on CSP [Hoa78] and thus it can
exploit traditional tools and analytic techniques based on process algebras. Dynamic Wright
is restricted to dynamic architectures that have a finite number of possible reconfigurations
in order to be able to provide strong support for static reasoning and automated analysis.

Acme is an extensible generic ADL for representing architectures and an annotation mech-
anism for describing additional semantics. This scheme allows subsets of ADL tools to share
architectural information that is understood by all, and tolerate the presence of information
that is not.

The software architect, in Acme, may state constraints using an extension Armani [Mon01].
The languages has also built-in support for dynamic reconfiguration, using Plastik [BJC05].

Armani extends Acme with a language for expressing architectural constraints over archi-
tectures. Thus, it can be used, for instance, to express constraints on system composition,
behaviour, and properties. These constraints are specified in first-order logic; predicates are
referred to as functions.

Acme may also be used to represent reconfigurable architectures by expressing the possible
reconfigurations in terms of Acme structures. This means that dynamic reconfiguration is not
originally addressed by Acme but it can be handled using the extensible mechanism of the lan-
guage. Thus, Plastik defines Acme extensions to represent different types of reconfigurations
at the architecture level.

Plastik is a meta-framework that arises from the integration of an ADL (an extension of
Acme/Armani enhanced with new constructs for dynamic reconfiguration) with a reflective
component runtime (OpenCOM [CBG+04]). In turn, the OpenCOM component runtime is
used to build reconfigurable systems software elements such as middleware and programmable
networking environments.
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Plastik supports both programmed and ad-hoc reconfiguration. The former is supported
at the ADL level and is related to changes that can be predicted at system design time. The
latter, on the other hand, is intended for changes that are not and cannot be predicted at sys-
tem design time. Nevertheless, it is intended to build general invariants into the specification
of the system and to accept any change as long as the invariants are not violated.

While ADLs focus on describing SAs for the purposes of analysis and system generation,
AMLs focus on describing changes to architecture descriptions and are thus useful for intro-
ducing unplanned changes to deployed systems. The Extension Wizard’s modification scripts,
C2’s AML [Med96], and Clipper [AHP94] are examples of such languages.

3.4 tool support for reconfigurations

Over the last years, tools to support (dynamic) reconfiguration of software architectures have
been developed. FraSCAti [SMF+09] is one of them.

FraSCAti is an open source Fractal-based SCA platform (see Section 3.3), endowed with
dynamic properties that enable reconfiguration of components at runtime. To adapt a running
system there should be identified the places where the changes have to be realized; and these
changes must be applied taking into account the safety of the system, regarding the states of
the components. For this, FPath and FScript [DLLC09] – presented in Section 3.3 – can be
used.

Oreizy et al. [OMT98] present ArchStudio, which is a tool suite that implements several
interrelated mechanisms for supporting the runtime reconfiguration of software architectures.
The tools comprising ArchStudio are implemented in the Java programming language, and
can modify C2-style applications written using the Java-C2 class framework [MOT97]. C2 is
a component- and message-based style designed to support of applications with a significant
Graphical User Interface (GUI) aspect [TMA+95]. Thus, this framework provides a set of
extensible Java classes for C2 concepts such as components and connectors. ArchStudio
includes three tools: Argo [RHR96], ArchShell [Ore96], and the Extension Wizard. Argo and
ArchShell are design tools for software architects to describe architectures and architectural
reconfigurations. Argo provides a graphical depiction of the architectural model that the
architect may manipulate directly. On the other hand, ArchShell is an alternative to Argo
that provides a command-driven interface for specifying runtime reconfigurations. Extension
Wizard is used to deploy a reconfiguration, after it has been specified and thus provides a
simple end-user interface for enacting runtime reconfigurations.

The Extensible Coordination Tools (ECT) is a powerful tool suite for Reo [AKM+08]. It
consists of several development tools, implemented as plug-ins for the Eclipse platform, for
modelling, simulation, animation and verification of Reo connectors. In particular, ECT con-
tains, among others, a graphical automata editor and a plugin for converting Reo connectors
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to CA, and allows for reconfigurations, i.e., changes in the topology of Reo connectors, using
algebraic graph transformation, via a basic reconfiguration view.

To support reconfigurations in ECT, Krause [Kra11] extends the Reo model with the pos-
sibility of associating reconfiguration actions with primitives and nodes. Through this, it is
possible to define reconfiguration rules in ordinary Reo files. A reconfiguration rule is a high-
level description of a set of primitive reconfiguration steps. They are used inside the editor,
for dynamic creation of connectors. Executable instances of connectors can be derived by gen-
erating code from Reo specifications or by interpreting these specifications. The graphical Reo
editor automatically highlights parts of a connector that are augmented with reconfiguration
actions. Reconfiguration rules can be applied in two different modes: local or global. A local
rule is applied exactly where it is defined. On the other hand, since global rules are defined
externally, they can not be applied where they were defined and thus they are applied to the
complete content of another Reo file. Reconfiguration rules are applied locally only in specific
regions of the connector. These regions are the reconfigurable parts of the connector that
can be formally viewed as disjoint sub-graphs that restrict the domain of the transformations.
Each of these regions has a number of reconfiguration rules attached [KCPA08]. Reconfigur-
ation rules can also be translated into Henshin transformation rules [ABJ+10] since the Reo
model is defined using EMF.

The Reo engine [KCPA08] includes two independent components to execute dynamic con-
nectors: one for computing colouring tables and to perform the data-flow, and one for com-
puting reconfiguration matches and executing the transformations.

ReoLive is a centralised implementation of dynamic reconfigurations that uses the CA based
interpreter engine of Reo. The deployment of connectors in ReoLive is achieved by uploading
Reo files. A constraint automaton is automatically generates from the Reo model by the
application, and then it can be executed on the ReoLive server.

3.5 a reconfiguration framework

This section provides an informal account of the reconfiguration model, introduced and formal-
ised in [OB13a, OB13b]. In particular, it presents the coordination protocols and coordination-
based reconfiguration notions, which are used later in the design of a reconfiguration language
and its supporting engine.

3.5.1 Coordination protocols

In the context of this framework, a coordination protocol abstracts the glue-code that defines
and constrains the interaction between components or services of a system. In the underlying
model, a coordination protocol is named coordination pattern and is seen as a reusable and
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composable architectural element. It is defined as a graph where nodes are interaction points
and edges are channels formally structured as follows

C ⊆ 2E × I × T × 2E ,

where E is the set of channel ends, I is the set of channel identifiers and T is a channel typing
system, for instance based on Reo channels [Arb04].

The formal structure of a coordination pattern is consequently

ρ ⊆ 2C × 2N ,

where 2C is a set of channels and the 2N is a set of nodes, i.e., a partition on the union of
all ends of the channels composing the pattern. It comprises all input and output nodes of
the coordination pattern as well as their internal nodes; and it holds information about the
connections of channels. The set of all coordination patterns is referred to as P .

In the following, a node with channel ends {a,b,c} is denoted as a.b.c.

Figure 5 presents two coordination patterns. The coordination pattern (cp1), for instance,
comprises two channels (a sync channel x1 and a lossy channel x2). The x1 channel has an
input end a and an output end b. The x2 channel has an input end c, and an output end d.
Since the channels x1 and x2 are connected through the ends b and c, in the nodes partition
a node b.c arises.

cp1=(
{(a, x1, sync, b),
(c, x2, lossy, d)},
{a, b.c, d}

)
cp2=(

{(g, x3, sync, h),
(i, x4, lossy, k),
(j, x5, fifo, l)},
{g, h.i.j, k, l}

)

a
b.c

d
x1 x2

cp1

g
h.i.j

k

l

x3

x4

x5

cp2

Figure 5: Two simple coordination patterns.
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3.5.2 Coordination-based reconfigurations

A reconfiguration is a modification of the original structure of a coordination pattern obtained
through a sequence of parameterised elementary operations, which are called reconfiguration
primitives.

The most simple reconfigurations are the identity (id) and the constant (const(ρ)) primit-
ives, where ρ is a coordination pattern. The former, returns the original coordination pattern
as is, and the latter replaces the original coordination pattern by ρ.

The par(ρ) primitive, where ρ is a coordination pattern, sets the original coordination
pattern in parallel with ρ, without creating any connection between them. Without loss of
generality, nodes and channel identifiers in both patterns are disjoint. Figure 6 presents the
resulting coordination pattern, after applying par(cp2) to cp1.

cp1=(
{(a, x1, sync, b),
(c, x2, lossy, d),
(g, x3, sync, h) ,
(i, x4, lossy, k),
(j, x5, fifo, l)},
{a, b.c, d, g, h.i.j, k, l}

)

a
b.c

d
x1 x2

g
h.i.j

k

l

x3

x4

x5

cp1

Figure 6: Resulting coordination pattern after applying the par primitive.

The join(E) primitive, where E is a set of ends, creates a new node by merging all ends
within E, into a single node in the nodes partition. The created node is a new input or
output port if all the ends of the given set are, respectively, input or output ports of the
coordination pattern. For instance, applying join(a,g) to cp1 (c.f., Figure 6) creates node
a.g, as presented in Figure 7.

The split(n) primitive, where n ia a node, is the opposite of join primitive because it
breaks connections within a coordination pattern by separating all channel ends coincident
in n. Figure 8 presents the resulting coordination pattern, after applying split(h.i.j) to
the cp1 from Figure 7. Notice that this reconfiguration primitive only affects – similarly
to previous primitives – the nodes partition of the coordination pattern. In particular, it
separates the node h.i.j into three nodes (h, i and j).

Finally, the remove(c) primitive, where c is a channel identifier, removes a channel from
a coordination pattern, if it exists. In addition, if it is connected to other channel(s), the
connection is also broken at the nodes partition as much as it happens with the split.
Figure 9 presents the resulting coordination pattern, after applying remove(x2) to cp1 from
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cp1=(
{(a, x1, sync, b),
(c, x2, lossy, d),
(g, x3, sync, h),
(i, x4, lossy, k),
(j, x5, fifo, l)},
{a.g, b.c, d, h.i.j, k, l}

)

a.g

b.c

h.i.j

d

k

l

x1

x2

x3 x4

x5

cp1

Figure 7: Resulting coordination pattern after applying the join primitive.

cp1=(
{(a, x1, sync, b),
(c, x2, lossy, d),
(g, x3, sync, h),
(i, x4, lossy, k),
(j, x5, fifo, l)},
{a.g, b.c, d, h, i, j, k, l}

)

a.g

b.c

h

i

j

d

k

l

x1

x2

x3
x4

x5

cp1

Figure 8: Resulting coordination pattern after applying the split primitive.
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Figure 8. Notice how node b.c was split and its composing end c, was removed with channel
x2.

cp1=(
{(a, x1, sync, b),
(g, x3, sync, h),
(i, x4, lossy, k),
(j, x5, fifo, l)},
{a.g, b, h, i, j, k, l}

)

a.g

b

h

i

j

k

l

x1

x3
x4

x5

cp1

Figure 9: Resulting coordination pattern after applying the remove primitive.

The application of these reconfiguration primitives upon a coordination pattern does not
leave isolated nodes. By applying two reconfigurations in sequence, the structure assumed
to exist in the coordination pattern for the second reconfiguration primitive may completely
disappear after applying the first, what would lead into reference problems. Theoretically,
if the arguments of each reconfiguration primitive are unrelated to the nodes or channel
names in the coordination pattern, its application should fail. However, the semantics of such
primitives, do not express any kind of restriction on the parameters and thus in these cases,
reconfiguration primitives may behave as the identity.

To define more complex reconfigurations, the primitives can be composed. These recon-
figurations are called reconfiguration patterns. A reconfiguration pattern can be seen as a
sequence of elementary reconfigurations, i.e. primitives, which affect significant parts of a
connector, are generic and reusable and focused on the interaction protocols. Figure 10 shows
a set of reconfiguration patterns that were first introduced in [OB13b].

removeP overlapP insertP

replaceP implodeP moveP

Figure 10: Reconfiguration patterns.
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The removeP(C) pattern, where C is a set of channel identifiers, removes from a coordin-
ation pattern each one of channel identifier within C, by successively applying the remove
primitive.

The overlapP(ρ, X) pattern, where ρ is a coordination pattern and X is a set of pairs of
nodes, overlaps two coordination patterns by joining nodes from both of them. The ρ is set in
parallel with the original coordination pattern. Then, the nodes of each pair in X, are joined.
Each pair of X is composed of a node of the original coordination pattern and another of ρ.

The insertP(ρ, n, mi, mo) pattern, where ρ is a coordination pattern and n, mi and mo

are nodes, puts both coordination patterns side by side, i.e., ρ in parallel with the original
coordination pattern. Then, it uses split to make room for a new coordination pattern to
be added. Finally, it uses join to re-build connections. In particular, after splitting n of the
original coordination pattern, all the resulting output ports are joined with the mi, which is
an input node of ρ, and the resulting input ports are joined with the mo, which is an output
node of ρ.

The moveP(c, ni, n f ) pattern, where c is a channel identifier and ni and n f are nodes, moves
a single end of c, corresponding to ni, to a different node, n f , in the coordination pattern.

The replaceP(ρ, C, X) pattern, where ρ is a coordination pattern, C is a set of channel
identifiers and X is a set of pairs of nodes, replaces a sub-structure of the original coordination
pattern by a new one. For this, the sub-structure corresponding to C, is firstly removed and
then, the new coordination pattern is overlapped, i.e., overlap(ρ, X) is applied.

In its turn, the implodeP(C, N) pattern, where C is a set of channel identifiers and N is
a set of nodes, collapses a sub-structure corresponding to C, into a new single node. For
this, firstly, the channels are removed, invoking removeP(C) pattern, and then the nodes are
joined, applying join(N).
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4

RECOOPLA: THE RECONFIGURATION LANGUAGE

This chapter presents the conceptual and formal description of a domain-specific language
— ReCooPLa — to design coordination-based reconfigurations. Moreover, it discusses the
relevant technologies to support its development.

The main objective of ReCooPLa is to support the formal model presented in Section 3.5
and make it a suitable tool for the working software architect.

Domain Specific Languages (DSLs) [vDKV00, MHS05, OPHdC09] are languages focused
on a particular application domain, used to bridge the gap between programming and specific
universes of discourse. Their level of abstraction is tailored to the specific domain, allowing
for embedding high-level concepts in the language constructs, and hiding low-level specificities
under their processors. Moreover, they allow for validation and optimisation at the domain
level, offering considerable gains in expressiveness and ease of use, compared with general-
purpose programming languages [KOM+10].

In this way, the language described in this chapter provides a formal and high-level interface
for the envisaged reconfiguration engine, abstracting away reconfiguration-based details.

4.1 conceptual description

ReCooPLa was designed to describe the coordination-based reconfigurations referred in Chapter 3.5.
Thus, the main concept of this language is that of a reconfiguration. ReCooPLa is comparable
to other programming languages. We assume reconfiguration to be a first call concept in the
language, as much as the function concept is in other programming languages. In fact, they
share characteristics: both have a signature (identifier and arguments) and a body which
assigns a specific behaviour. But in particular, a reconfiguration is always applied to, and
always returns a, coordination pattern (as defined in Section 3.5).

Reconfigurations accept arguments of the following data types: Name, Node, XOR, Set,
Pair, Triple, Pattern and Channel, each one with its specificities.

The reconfiguration body is a list of different sorts of instructions. We devote special
attention to the instruction of applying (primitive, or previously defined) reconfigurations,
since this operation is the only responsible for changing the internals of a coordination pattern.

39



Chapter 4. recoopla: the reconfiguration language

To support the application of reconfigurations, the language counts on other constructs that
mainly manipulate the parameters of each reconfiguration. In concrete, it provides means
to declare and assign local variables. Field selectors, specific operations for structured data
types and common Set operations (union, intersection and subtraction). Moreover, a control
structure is provided to iterate over the elements of a Set.

In brief, ReCooPLa is a small language borrowing most of its constructs from imperative
programming languages. Actually, reconfigurations are better expressed in a procedural/al-
gorithmic way, which justifies the choice of an imperative style.

4.2 formal description

In the sequel, we introduce the syntax of ReCooPLa by presenting (the most important) parts
of the underlying grammar. A number of language constructs are defined for further reference
in this document. Formally, a sentence of ReCooPLa specifies one or more reconfigurations.

reconfiguation
A reconfiguration (formally presented in Listing 4.1) is expressed by: the reserved word
reconfiguration; an identifier representing the name of the reconfiguration that matches
the usual regular expression for this kind of terminals; a list of arguments, which may be
empty; and a reconfiguration body, which is a list of instructions as explained later in this
section. In particular, each argument is aggregated by data type (i.e., data types are factored),
unlike conventional languages, where data types are replicated for every different argument.

reconfiguration
: 'reconfiguration' ID '(' args* ')' '{' instruction+ '}'

Listing 4.1: EBNF notation for the reconfiguration production.

The construct for a reconfiguration is given by: rc f g(n, t1, a1, . . . , tk, an, b), where n is the
name of the reconfiguration; each ai is an argument of type ti; and b is the body of the
reconfiguration.

data types
ReCooPLa builds on a small set of data types: primitives (Name, Node and Xor), generics
(Set, Pair and Triple) and structured (Pattern and Channel). Name is a string and represents
a channel identifier or a channel end. Node, although considered a primitive data type, is
internally seen as a set of names, to maintain compatibility with its definition in Section 3.5.
XOR is a particular case of Node, which has at least one input end and two (mutual exclusive)
output ends. The generic data types are based on the Java generics, therefore it is necessary
to give a type to their contents, as can be seen in Listing 4.2.
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datatype
: ...
| ('Set' | 'Pair' | 'Triple') '<' datatype '>'

Listing 4.2: EBNF notation for the datatype production.

The structured data types have an internal representation as shown in Figure 11.

Pattern

in: Set<Node>
out: Set<Node>

nodes: Set<Node>
names: Set<Name>

Channel

in: Set<Node>
out: Set<Node>
name: Name

Figure 11: Internal representation of structured data types.

This notation follows the traditional approach of UML class diagrams, i.e. the top part
contains the name of the structured data type, the middle part contains its attributes and the
bottom part mentions its operations. Each instance of these types is endowed with attributes
and operations, which can be accessed using selectors (later in this section).

The construct of a data type is either given as T() or TG(t), where T is a ReCooPLa data
type and t is a subtype of a generic data type TG.

reconfiguration body
The reconfiguration body is a list of instructions inclosed between curly brackets. An instruc-
tion can be a declaration, an assignment, an iterative control structure, or an application of
a reconfiguration.

A declaration is expressed as usual: a data type followed by an identifier or an assignment.
In its turn, an assignment associates an expression, or an application of a reconfiguration,
to an identifier. The respective constructs are, then, decl(t, v) and either assign(t, v, e) or
assign(v, e), where t is a data type, v a variable name and e an expression.

The control structure marked by the reserved word forall, is used to iterate over a set
of elements. Adopting a notation similar to Java, it requires a variable (of data type Set) to
iterate over, and the declaration of a local variable that in each iteration assumes the value of
each element in the provided set. Clearly, the data type of this variable shall be compatible
with the data type of the elements inside the set. Again, a list of instructions defines the
behaviour of this control structure.

In Listing 4.3 it can be seen the corresponding production rule. For a concrete account of
how this production derives, the reader is referred to the example given in Listing 4.8.
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forall
: 'forall' '(' datatype ID ':' ID ')' '{' instruction+ '}'

Listing 4.3: EBNF notation for the forall production.

The construct for this iterative control structure is given as f orall(t, v1, v2, b), where t is a
data type, v1, v2 are variables and b is a set of instructions.

The application of a reconfiguration, (c.f., reconfiguration_apply production in List-
ing 4.4), is expressed by an identifier (to which a reconfiguration is applied) followed by
’@’ operator and a reconfiguration name. The latter may be a primitive reconfiguration or
another reconfiguration previously declared.

The '@' operator stands for application. A reconfiguration is applied to a variable of
type Pattern. In particular, we can omit the variable (optional identifier in the production
reconfiguration_apply) when we want to refer to the pattern to which the reconfiguration
being defined is applied. This typical usage can be seen in Listing 4.8.

reconfiguration_apply
: ID? '@' reconfiguration_call

reconfiguration_call
: ('join'|'split'|'par'|'remove'|'const'|'id'|ID) operation_args

Listing 4.4: EBNF notation for the reconfiguration_apply production.

Application is used either as @(c) or @(p, c), where p is a Pattern and c a reconfiguration
call. Each reconfiguration call also has its own construct: r(a1, . . . , an), for r a reconfiguration
name, and each ai one of its arguments.

operations
An expression is composed of one or more operations. These can be specific constructors
for generic data types, including nodes, or operations over generic and structured data types.
Listing 4.5 shows these types of operations.

Each constructor is defined as a reserved word (S stands for Set, P for Pair and T for Triple;
and a list of values that shall agree to the data type. The corresponding production is given
in Listing 4.5 and exemplified in Listing 4.6.

constructor
: 'P' '(' expression ',' expression ')'
| 'T' '(' expression ',' expression ',' expression ')'
| 'S' '(' ( expression (',' expression)*)? ')'

Listing 4.5: EBNF notation for the constructor production.
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Pair<Node> a = P(n1, n2);
Triple<Pair<Node>> b = T(a, P(n1,n2), P(n3,n4));
Set<Node> c = S(n1, n2, n3, n4, n5, n6);

Listing 4.6: Constructors input example.

The constructs for these constructors are P(e1, e2), T(e1, e2, e3) and S(e1, . . . , en) for the Pair,
Triple and Set constructors, respectively; with each ei representing an expression.

For the Set data type, ReCooPLa provides the usual binary set operators: ‘+’ for union, ‘-’
for subtraction and ‘&’ for intersection. For the remaining data types (except Node, XOR
and Name), selectors are used to apply the operation, as shown in Listing 4.7 (production
rule operation). Symbol # is used to access a specific channel from the internal structure of
a pattern.

operation
: ID ('#' ID)? '.' attribute_call

attribute_call
: 'in' ( '(' INT ')' )?
| 'out' ( '(' INT ')' )?
| 'name' | 'nodes' | 'names'
| 'fst' | 'snd' | 'trd'

Listing 4.7: EBNF notation for the operation and attribute_call productions

An attribute_call correspond to an attribute or an operation associated to the last
identifier, which must correspond to a variable of type Channel, Pattern, Pair or Triple.
They are described below.

• in: returns the input ports from the Pattern and Channel variables. It is possible to
obtain a specific port refered by an optional integer parameter indexing a specific entry
from the set (seen as a 0-indexed array).

• out: returns the output ports from the Pattern and Channel variables. The optional
parameter can be used as explained for the in attribute call.

• name: returns the name of a Channel variable, also known as channel identifier.

• nodes: returns all input and output ports plus all the internal nodes of a Pattern
variable.

• names: returns all channel identifiers associated to a Pattern variable.

• fst, snd, trd: act, respectively, as the first, second and third projection from a tuple
(Pair and Triple variables).
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All these operations give rise to their own language constructs. The field selection construct
is •(v, c), where v is a variable and c a call to an operation. The construct of the ‘#’ operator
is #(p, n), where p is a pattern and n is a channel identifier. The constructs for the set
operators follow a similar definition: +(s1, s2), −(s1, s2) and &(s1, s2), for union, difference
and intersection, respectively, with s1, s2 being variables of the sort Set. The constructs for the
other operators are generalised as either oper(a) or oper(), depending whether the operation
with name oper has an argument a or not.

Listing 4.8 shows an example of valid ReCooPLa sentences. Therein, two reconfigurations
are declared: removeP and overlapP. The former removes from a coordination pattern an
entire set of channels by applying the remove primitive repeatedly. The latter sets a co-
ordination pattern in parallel with the original one, using the par primitive, and performs
connections between the two patterns by applying the join primitive with suitable arguments.
These reconfiguration patterns are the implementation of the informal definitions presented
in Section 3.5.2.
reconfiguration removeP (Set<Name> Cs ) {

forall ( Name n : Cs) {
@ remove(n);

}
}
reconfiguration overlapP(Pattern p; Set<Pair<Node>> X) {

@ par (p);
forall(Pair<Node> n : X) {

Node n1, n2;
n1 = n.fst;
n2 = n.snd;
Set<Node> E = S(n1, n2);
@ join(E);

}
}

Listing 4.8: ReCooPLa input example.

main
Finally, ReCooPLa allows for the specification of the actual application of reconfigurations to
coordination patterns. This is expressed in a special reconfiguration marked with the reserved
word main.

The main reconfiguration accepts a (possibly empty) list of arguments aggregated by data
type, as in a normal reconfiguration. The difference is that in the main reconfiguration, data
types are only references to available coordination patterns expressed in imported CooPLa
files. The arguments are assumed as new instances of the given patterns that are to be
reconfigured. These instances are defined with default stochastic information; and can not
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match an existing identifier of a stochastic instance declared in the imported CooPLa files.
An exception is the Empty pattern, which is a structureless pattern whose instance(s) can be
used in the body of the main to construct new patterns from nothing.

Listing 4.9 presents a partial grammar for the syntax of these main reconfigurations.

main : 'main' '[' main_args* ']' '{' main_instruction+ '}'
main_args : main_arg (';' main_arg)*
main_arg : CPNAME ids
ids : ID (',' ID)*

Listing 4.9: EBNF notation for the main production.

The construct for the main reconfiguration is (a special case of the construct for the normal
reconfiguration) given as main(cp1, a1, . . . , cpk, an, b), where each ai is an argument (instance
of a coordination pattern) of type cpi; and b is the body of the main.

The body of the main reconfiguration is a list of specific instructions, where an instruction
is either an assignment or an isolated application of a reconfiguration. Listing 4.10 presents
the grammar for the syntax of the body of the main.

main_instruction
: main_assignment | reconf_apply

main_assignment
: t=ID v=ID '=' p=ID '@' reconfiguration_call

reconf_apply
: ID '@' reconfiguration_call

Listing 4.10: EBNF notation for the main_instruction production.

An assignment in the main is a declaration, expressed as usually, with a data type and a
variable identifier, followed by a concrete application of a reconfiguration to the coordination
pattern instances (which are either passed as arguments, imported, or freshly declared). The
data type corresponds to a coordination pattern name, which may or may not exist in the
imported ones. If the pattern name does not exist, it becomes a new coordination pattern
and the variable identifier is added as its instance; otherwise the structure assigned to the
new instances is verified to ensure that it matches the expected coordination pattern. If the
structures are similar, then the identifiers are added as instances of the pattern; otherwise
they become instances of the multi-purpose pattern Reconfigured. The construct for this
specific instructions is assignm(t, v, p, r, e1, . . . , en) where t is a data type (coordination pat-
tern), v a variable name, p another coordination pattern (usually an argument of the main
reconfiguration), r a reconfiguration call with each ei one of its suitable argument.

An isolated application of a reconfiguration, directly changes the target instance of co-
ordination patter and associates it to the generic type Reconfigured, and remove it from its
original pattern. The @ symbol is again used to express the application of reconfigurations.
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The arguments of a reconfiguration are obtained from the arguments of the main and freshly
declared pattern instances, using the operations explained above to access nodes, channels
and alike. The construct for this specific instructions is recon fm(p, r, e1, . . . , en), where p is a
coordination pattern (an argument of the main reconfiguration or a freshly declared pattern
instance), r a reconfiguration call with each ei one of its suitable argument.

A simple example of a main reconfiguration is presented in Listing 4.11. Therein, a
Sequencer coordination pattern is reshaped through the application of the removeP recon-
figuration (previously presented in Listing 4.8). Notice both the import of the files where
patterns and reconfigurations were previously defined.

import patterns.cpla;
import reconfigs.rcpla;

main [Sequencer sseq] {
sseq @ removeP(S(sseq#s1.name));

}

Listing 4.11: Main reconfiguration in ReCooPLa

4.3 recoopla processor

This section presents the development of the language processor. It follows the traditional ap-
proach in compiler construction [ASU86]: the parser, the semantic analyser and the translator.
Suitable language engineering technologies (c.f., ANTLR and StringTemplate) were applied to
this end, which are briefly discussed next.

4.3.1 Technologies

ANother Tool for Language Recognition (ANTLR) [Par07] is a powerful parser generator for
reading, processing, executing, or translating structured text or binary files.1 It is widely
used in academia and industry to build all sorts of languages, tools, and frameworks.2 The
following are some representative examples of companies using ANTLR: Apple and IBM use
ANTLR for their high-profile projects; Twitter search uses ANTLR for query parsing, with over
2 billion queries a day; Checkmarx uses ANTLR to parse a large set of languages, which are
the object of queries to check for security properties of the code; Oracle uses ANTLR within
SQL Developer IDE and their migration tools; NetBeans IDE parses C++ with ANTLR; the
HQL language in the Hibernate object-relational mapping framework is built with ANTLR.

1 http://www.antlr.org/about.html
2 http://www.antlr3.org/showcase/list.html
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Moreover ANTLR is powerful, flexible, well documented and actively supported. It supports
the development of traditional compilers allowing a deep separation of concerns. A plus
is the possibility of using attribute grammars that formalise all the development process.
Competitor tools [Joh75, Kod04, HVM+05] fail to provide the features and the easiness of
use that AntLR provides. Based on this, we chose AntLR for developing ReCooPLa and its
processor.

Attribute grammars were first developed by Donald Knuth in 1968 to formalize the se-
mantics of a context-free language [Knu90]. Thus, an attribute grammar is a Context-Free
Grammar (CFG) that has been extended to provide context-sensitive information by adding
attributes, computation and translation rules, and contextual conditions. Context-sensitive
aspects of syntax of a language, such as check if an item has been previously declared, can be
specified using an attribute grammar, in particular, by using contextual conditions that check
the semantic validity of the concrete sentence. Attribute grammars can also be used to trans-
late – by using translation rules – the syntax tree directly into code for some specific machine,
or into some intermediate language, only if the semantics is valid. Each distinct symbol in the
grammar has associated with it a (possibly empty) set of attributes. In turn, each attribute
has a domain of possible values and can be evaluated in assignments or conditions.

Attributes can be classified as inherited or synthesised. The former transports contextual
information down the derivation tree and its value at a node in a tree is defined in terms of
attributes at the parent and/or sibling of that node. Thus, terminal symbols and the axiom do
not have inherited attributes. On the other hand, the latter synthesises information from the
“leafs” in the derivation tree and transports it up the tree. Thus, its value at a node in a tree
is defined in terms of attributes at the child of that node. The terminal symbols attributes, for
instance, which are intrinsic and pre-established, are seen as synthesised attributes. In short,
attribute grammars can pass values from a node to its parent, using a synthesised attribute,
or from the current node to a child, using an inherited attribute.

4.3.2 Development

After the design of the language, it is necessary to create a compiler for it that is efficient
and modular. A compiler is needed for the translation of the language into a form in which
it can be executed. To achieve this objective we followed the traditional approach for com-
piler construction [ASU86], by developing the necessary components (Lexer, Parser, Semantic
Analyser and Translator) to obtain the necessary executable format. These components were
developed with ANTLR. In Figure 12 the compiler scheme, comprising all of these components,
is depicted.
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Figure 12: The compiler scheme.

Lexer

The Lexer, the first component of the compiler, reads the stream of characters of “Input Text”
and groups them in meaningful sequences called lexemes. For each recognised lexeme, the
Lexer produces a token, by adding extra information like the line and the position in which
the lexeme appears in the text, among other useful data. Its output is a sequence of tokens.
This phase is traditionally called the lexical analysis.

Parser

The Parser, reads the sequence of tokens produced by the Lexer and check if they are in the
right order by using the LL(k) algorithm, which is a top-down approach for recognising the
input starting from the axiom of the grammar with the possibility of looking to k tokens ahead
so it can decide which grammar production to follow. It generates a tree-like representation
that depicts the grammatical structure of the token stream (i.e., the syntax tree). In order to
enhance the work and separate concerns, the parser was instructed to output an intermediate
representation: the Abstract Syntax Tree (AST).

Conceptually, an AST is obtained by removing the syntactic sugar that does not affect
the information retrieval from the input, increasing the efficiency and the ability to separate
concerns, through the construction of tree walkers increasing also the semantic legibility of
the language.

Formally, to obtain a AST, first is required to define in options section of the parser
that it will outputs an AST, as shown in Listing 4.12. Thus, the parser will create also
CommonTree tokens that can have parent and child tokens instead of the default tokens of
type CommonToken.
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parser grammar RecParser;

options{
tokenVocab=RecLexer;
output=AST;

}

Listing 4.12: Parser options section.

After add the output option, an AST can be created by using tree operators or rewrite
rules. The former are used to define a certain node as root or to exclude a certain node from
the tree by using the “ˆ” and “!” symbols, respectively. Listing 4.13 presents an example
where a production datatype is annotated using tree operators to change the output tree.
In this example, the SEP_START and SEP_END are separators matching “<” and “>” symbols,
respectively. They are both exclude from the tree since they are syntactic sugar that does
not affect the information retrieval from the input. Moreover, other_type becomes the root
of the sub-tree referring to the parser rule/production.

datatype
: ...
| other_type^ SEP_START! subtype SEP_END!

Listing 4.13: Tree operators example.

On the other hand, rewrite rules can be placed at the end of each derivation in a produc-
tion. A rewrite rule is denoted by “->” followed by ˆ(...), where the first token inside the
parenthesis will become the root of a sub-tree. In this approach, all tokens that are not in-
cluded in the rewrite rule will be removed from the AST. The rewrite rules are more flexible
since they allow, for instance, the rearranging of tokens, children of root, in a parser rule,
which is not possible using tree operators. Listing 4.14 presents an example where a same
production datatype is annotated using rewrite rules to create the same output tree that
would be created using tree operators in Listing 4.13.

datatype
: ...
| other_type SEP_START subtype SEP_END -> ^(other_type subtype)

Listing 4.14: Rewrite rules example.

If a parser rule has not any node suitable to promote root, a new token can be created
for this task. Thus, is possible to maintain the coherence and readability of the output AST.
First it is necessary to add a tokens section on the parser, right below the options section
and above the header section.
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tokens {
RECONFIGS;
IMPORT;
RECONFIGURATION;
ARGUMENTS;
INSTRUCTIONS;
DECLARATION;
ASSIGNMENT;
FORALL;
...

}

Listing 4.15: Tokens section in parser.

Then, the tokens previously defined can be used in rewrite syntax as shown in Listing 4.16.
declaration

: datatype var_def (',' var_def)*
-> ^(DECLARATION datatype var_def+)
;

assignment
: ID '=' assignment_member
-> ^(ASSIGNMENT ID assignment_member)

Listing 4.16: Rewrite rules using created tokens.

In Figure 13, an AST for the removeP reconfiguration pattern (c.f. Listing 4.8) is presented.

The generated AST can be then used by tree grammars in ANTLR. Essentially, a tree
grammar defines a walker that travels the glsast. These walkers were used in the construction
of the ReCooPLa compiler to separate code of multiple components like the Semantic Analyser,
or the Translator. With this approach, the compiler can be further extended with extra
functionality without the need for understanding or changing code within other components.

In a tree grammar, first should be declared the location of the tokens to be used and the
type of tree-tokens that it can expect on the options section, as shown in Listing 4.17. The
former is achieved by the set of the option tokenVocab = RecParser. This tokens match the
ones presented in Listing 4.15, in tokens section in parser. The latter is achieved by the set
of the option ASTLabelType = CommonTree.
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Figure 13: The removeP AST.

tree grammar RecIDTable;

options{
tokenVocab = RecParser;
ASTLabelType = CommonTree;

}

Listing 4.17: Tree grammar options section.

Three walkers were defined in the project which correspond to three components depicted
in Figure 12 and detailed next.

Ids Table Generator

The Ids Table Generator component was developed to obtain a table of identifiers found in the
input text. This component was separated from the semantic analysis for a proper separation
of concerns. Thus, the semantic analysis itself –presented later in this section– is simplified.

The natural approach to an identifiers table is to use a stack to save symbols. However,
this approach would not be feasible since should also be kept a hierarchical structure between
the scopes were the symbols are saved, in order to, for instance, ascertain if a variable has
already been declared.

We designed an Identifiers Table as a Map of identifiers to symbols. In this context, we
consider a symbol to be one of reconfiguration name, argument of the reconfiguration or
declared variable. Each symbol has some attributes to store the identifier information such
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as, for instance, the respective identifier name, data type (e.g., Pattern, argument, variable,
etc), as well as the line and position on the input file. If the identifier corresponds to a
reconfiguration name, as in Listing 4.1, the symbol has also an attribute which corresponds to
a list of tables where all the symbols within the reconfiguration are stored. The first element
of this list of tables stores the arguments and the declared variables, in the top-most scope.
The remaining elements stores the symbols of the iterative control structures (a table for
each control structure) within the reconfiguration. Each one of these (internal) tables comes
together with a pair of numbers: a current scope identifier, which is incremental for keeping
an order between tables; and the parent scope identifier, kept for ensuring a hierarchical
structure between identifiers tables and scopes. It goes without saying that these identifiers
are reset at each new reconfiguration symbol since this information is only useful in its context.
Listing 4.18 presents the identifier table for the removeP reconfiguration, as generated by the
Ids Table Generator component.

id_table = {
[removeP -> id: removeP,

datatype: [PATTERN],
classType: RECONFIG,
line: 1,
position: 16,
file: reconfig.rpla,
scopes: {

[Cs -> id: Cs,
datatype: [SET, NAME],
classType: ARG,
line: 1,
position: 35

],(0,0);
[n -> id: n,

datatype: [NAME],
classType: VAR,
line: 2,
position: 14

],(1,0)
}

]
}

Listing 4.18: Identifiers table for removeP reconfiguration.

Semantic Analyser

The semantic analyser component uses the AST generated by the parser and the information
in the the identifiers table to check the input text for semantic consistency with the desired
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semantics for ReCooPLa. If something is not as expected, an error is created and added to a
list of errors that is to be used further in the development of the ReCooPLa supporting tools.

The walker associated to this component implements an attribute grammar so that con-
textual conditions more explicitly define the meaning of the language. Contextual conditions
define constraints on the language that the syntax, by itself, can not recognise. The context
is given by the location in the AST where the walker is at a given processing phase, and by
the accessible resources therein. Such resources can be incoming attributes (synthesised or
inherited) or other constants, used in computation rules of the underlying attribute grammar.

However, in some semantic analysis as in this case where multiple attributes are needed, the
complexity that comes from passing the attributes by the tree quickly increases. To overcome
this issue, in some productions a section scope was added. This makes the work easier since
the attributes declared in such scope are accessible to all children of that production, without
having to be pushed down the tree to the place where the computation rule or contextual
condition is defined.

In Listing 4.19 is presented an example where an attribute current_scope is defined in
the scope of content production and computed using a given computation rule only at
instruction production. The typical usage is $name_of_production::attribute, as can
be seen in Listing 4.19.

content
scope{ SymbolsTable current_scope; }

: reconfiguration* main?
;

(...)
instruction
@init{ $content::current_scope = this.getScope($reclang::scopes.get(id)); }

: declaration | assignment | reconfiguration_apply | forall
;

Listing 4.19: Example of the scope of a production.

The value of attribute $current_scope is obtained from the identifiers table, generated
in the first tree walker, which is an input of the semantic analyser. This is accomplished
through the use of a method (getScope(Integer id)), wherein id is an element of the list
of scope identifiers filled in while the tree is traversed. The attribute is then used in some
contextual conditions to check the semantic validity of the concrete sentences of the input
text. Listing 4.20 presents an example where this happens, using attribute $current_scope.
In this example, the semantic analyser checks, for each declared symbol in that location, if it
is found in the current scope, has expected. Then, another contextual condition checks if its
position is the same as the stored in the identifiers table. If it is not, it means that a variable
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has been declared with the same name as another previously declared. Therefore, an error is
reported and added to the list of errors.

declaration returns[ArrayList <Error> errors]
@init{ ArrayList <Error> local_errors = new ArrayList <Error >(); }

: ^(DECLARATION datatype (ID
{

if ($content::current_scope.containsSymbol($ID.text)) {
Symbol s = $content::current_scope.getSymbols().get($ID.text);
if ( !($ID.line == s.getLine() && $ID.pos == s.getPosition()) ) {

local_errors.add( Error.report(ErrorType.ERROR,
Error.nameAlreadyDefined( ... ) );

}
}

)+
)
{ $declaration.errors = local_errors; }
;

Listing 4.20: Error reporting example.

The example in Listing 4.20 reflects part of the approach adopted to handle errors: Report,
Recover and Resume (RRR). By using this strategy, at first the error is identified and reported
conveniently. Then, an attempt is made to retrieve the processing in order to avoid, for
instance, cascading errors. This reduces the size of the list of errors and focus the developer
on the key errors. Finally, the analysis and processing of the input text are safely continued.

The error messages should be as clear as possible, in order to clearly identify the problem
and its severity (error, warning, ...), what is causing the problem and also its location, as
accurately as possible. In the example in Listing 4.20, the reported error would give rise to a
message such the one in Listing 4.21

"<TIME> ERROR file.rpla 5:3 >> "Name 'var' is already defined at line 2:9!"

Listing 4.21: Error message example.

There are several types of semantic errors identified by this walker in the context of the
semantic analysis, such as a variable/reconfiguration name already defined, an assignment of
a variable that is not yet defined, an element of a set with a wrong data type and an attribute
used by a variable of an incorrect type. The semantic errors found are not all related to types
of variables. Examples of this are an incorrect number of arguments of a reconfiguration, use
of a reconfiguration that was not previously defined and an import of a file that does not
exist or is not valid.

The syntactic erros are also collected in a similar way, by the parser, using the same data
structure than the semantic analyser. These errors correspond to the existence of chains of
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tokens that are not recognised by the language. For instance, if a semicolon is missing at the
end of an instruction, a syntactic error will occur.

By itself, ANTLR provides a powerful mechanism for detecting and recovering from an
error, whether lexical or syntactic, so that all text input is consumed. By default, ANTLR
throws the error messages to stderr. For that, it provides a method (emitErrorMessage())
that originally receives an error message and throws it to the stderr. However, since it is
intended to collect these errors to a data structure and merge it with the errors coming from
the semantic analyser (for further usage), this method was overridden.

To achieve this, within the action @members on the parser, the emitErrorMessage method
is rewritten, as presented on the Listing4.22.
@members{

private ArrayList <Error> syntax_errors = new ArrayList <Error >();

@Override
public void emitErrorMessage(String msg) {

syntax_errors.add(Error.report(ErrorType.ERROR, msg, file_path));
}

public ArrayList <Error> getErrors() {
return this.syntax_errors;

}
}

Listing 4.22: emitErrorMessage method rewriting.

In the Listing 4.22, first a list of syntax_errors is declared as a private attribute of the class
(the parser of the language). Then, between lines 4 and 7 the rewritten emitErrorMessage
method takes a String as an argument corresponding to the error message and add it to the
list of errors, in the proper format, also used in the semantic analysis. Finally, between lines 9
and 11 a method to access the syntax_errors attribute is declared, keeping the encapsulation
of the generated class. Thereby, a list of syntactic errors, which is then accessible outside of
parser (for instance, in the reconfiguration engine) and compatible with the list of semantic
errors, is obtained.

If there are no errors during the syntactic and semantic analysis, the ReCooPLa processor
should proceed to the language translation and code generation.
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5

T H E R E C O N F I G U R AT I O N E N G I N E

This chapter introduces the reconfiguration engine, which executes reconfigurations specified
in ReCooPLa. In particular, it goes through a conceptual description of both the model of
the engine, and the associated ReCooPLa translation schema. The actual implementation of
the engine is delivered along with the architecture and details on the implementation of an
integrated editor for ReCooPLa.

5.1 technologies

Due to the possibility of integrating this work with Reo Tools [AKM+08] the Eclipse platform
was chosen as the IDE on which the reconfiguration engine was to be developed. Consequently,
Java was the chosen programming language because the Eclipse plugin API is supported only
for Java. But being forced to use both Eclipse and Java is not a bad thing. Their multi-
platform availability is actually a good characteristic that opens possibilities for more people
using our system. Moreover, Java is an object-oriented programming language, fast, secure
and reliable. It is largely adopted both in academia and industry. Documentation and
support are available everywhere. In turn, Eclipse originally created by IBM in November
2001, is a project focused on providing an open development platform. It is an Open Source
IDE, mostly provided in Java, but the development language is independent and can be
extended by tools and plugins. The Eclipse Foundation, created in January 2004, is a member
supported corporation that hosts the Eclipse Project and helps cultivating both an open source
community and an ecosystem of complementary products and services.1

StringTemplate is a code generator that emits text using templates. In turn, a template is
basically a “document with holes”, where values called attributes can be set. An attribute
can be an object, a variable, a template instance or a sequence of attributes, and it is, by
default, enclosed in angle brackets. The remaining text outside of attribute expressions is
ignored by StringTemplate and assumed as regular text to print out.

1 http://www.eclipse.org/org/
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StringTemplate is designed to be embedded inside other applications and is distributed as a
small library with no external dependencies apart ANTLR. A template can be directly created
in code, loaded from a directory or loaded from a file containing a collection of templates called
template group file (stg). The latter was the chosen approach and thus the templates were
all specified on a single template group file and then given as input of the translator, to
streamline the translation process.

Templates definitions are similar to functions with untyped arguments. Then, the content
of the template is defined through a kind of attribution, denoted by “::=” and enclosed in
double angle brackets once it is a multi-line template. If it was a single line template it would
be enclosed in double quotes. All content of the template is processed as regular text except
that enclosed in angle brackets, corresponding to the attributes of the template.

5.2 the engine model

As it often happens with domain specific languages, ReCooPLa is translated into a subset of
Java, which is then recognised and executed by an engine. This engine, referred to as the
Reconfiguration Engine, is developed in Java to execute reconfigurations specified in ReCooPLa
over coordination patterns, which are defined in CooPLa [OB13b], a lightweight language to
define the graph-like structure of coordination patterns. The model of the engine is as simple
as it can be, taking into account only a few entities. Figure 14 presents the corresponding
Unified Modelling Language (UML) class diagram.

Package cp.model, represented as a shaded diagram, concerns the model of a coordination
pattern. This is actually, the implementation of the formal model presented in Chapter 3.5.
Both CoordinationPattern and Channel classes provide attributes and methods that match the
attributes and operations of the Pattern and Channel types in ReCooPLa. In Table 1 can
be seen the complete mapping of the attributes and operation of ReCooPLa structured data
types to the corresponding methods of the Reconfiguration Engine classes.

The remaining entities of the diagram are concerned with reconfigurations themselves, and
assumed to belong to a cp.reconfiguration package. Clearly, classes Par, Const, Remove, Join,
Split and Id are the implementation of the corresponding primitive reconfigurations also in-
troduced in Chapter 3.5. The relationships with the elements of the cp.model package define
their arguments. Moreover, these classes have a common implicit method (given by the inter-
face IReconfiguration): apply(CoordinationPattern p), where the behaviour of these primitives
is defined as the combined effect of their application to the coordination pattern p given as
argument.

The Reconfiguration class represents a generic reconfiguration that requires its concrete
classes to implement the apply(CoordinationPattern p) method. The careful reader may have
noticed that the concrete classes of Reconfiguration are greyed-out, and also that they are not
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IReconfiguration
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Reconfiguration
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Reconfiguration
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<<implement>>

Figure 14: The Reconfiguration Engine model

Table 1: Mapping between the ReCooPLa structured data types and the Reconfiguration Engine classes
ReCooPLa structured data types Reconfiguration Engine classes

Pattern.in → CoordinationPattern.getIn()
Pattern.in[i] → CoordinationPattern.getIn(int i)
Pattern.out → CoordinationPattern.getOut()

Pattern.out[i] → CoordinationPattern.getOut(int i)
Pattern.nodes → CoordinationPattern.getNodes()
Pattern.names → CoordinationPattern.getNames()

Channel.in → Channel.getIn()
Channel.in[i] → Channel.getIn(int i)
Channel.out → Channel.getOut()

Channel.out[i] → Channel.getOut(int i)
Channel.name → Channel.getId()

all presented. This is where the most interesting part of the engine comes into play. In fact,
there are no such concrete classes at design time. All of them are created dynamically, at
runtime, by the ReconfigurationCreator class, taking advantage of reflection in Java Virtual
Machine (JVM). This implementation follows a similar approach to the well-known Factory
design pattern, but instead of creating instances, it creates concrete classes of Reconfiguration.
The idea is that each reconfiguration definition within a ReCooPLa specification gives rise to
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a class with an apply(CoordinationPattern p) method. The content of such method is derived
from the content of the ReCooPLa reconfiguration, taking advantage of the translation schema
presented in Section 5.3. This creates a Java file for each reconfiguration in the ReCooPLa
specification. These files are compiled in runtime, into Java class files and, via reflection,
loaded into the running JVM. Each reconfiguration in a ReCooPLa specification yields a new
class, which extends the abstract class Reconfiguration, whereas the main reconfiguration
yields a single class Run, which uses, via reflection, the reconfigurations previously generated.
Thus, the application of reconfigurations becomes as simple as calling, in the the Run class,
the apply method from instances of such classes.

However, for this to be possible, it is first necessary to correctly translate ReCooPLa con-
structs into the code accepted by the Reconfiguration Engine. Section 5.3 goes through the
details of such a translation.

5.3 recoopla translation

This section presents the translation of ReCooPLa into the model of the Reconfiguration En-
gine. First, an overview of the translation process is provided, where a formal translation
scheme is defined for the ReCooPLa constructs. Then details on the translation implementa-
tion are given, along with examples of obtained results.

5.3.1 Translation overview

Throughout this section, it is assumed the existence of Java classes to match the types in
ReCooPLa. This means that, besides the classes already mentioned in Figure 14, the follow-
ing ones are also assumed: Pair, with a getFst() and a getSnd() methods to access its fst
and snd attributes; Triple, extending Pair with an attribute trd and method getTrd(); and
the LinkedHashSet from the java.util package, which is abbreviated to LHSet for increased
readability.

In order to keep exposition simple, some minutiae like imports, semicolons, annotations,
auxiliary variables, control or try-catch structures and efficiency concerns are not taken into
account, for simplicity sake. Moreover, abstractions are used to wrap complex constructions;
for instance, method mkRecfg(n, t1, a1, …, tk, an, b) abstracts details of the creation of a
Reconfiguration class with name n; attributes a1, …, an of type t1, …, tk; and method apply
with body b, which always ends with a return p instruction, where p is the argument of apply.

This being said, the translation of ReCooPLa constructors into the Reconfiguration Engine
is given by the rule-based function T (C), where C is a constructor of ReCooPLa as presented
in Section 4.2. The definition of T ()2 goes in Table 2.
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Table 2: Translation rules for ReCooPLa constructs
T (rc f g(n, t1, a1, ...tk, an, b)) → mkRcfg(n, T (t1), a1, ... T (tk), an, T (b))

T (T()) → T
T (TG(t)) → TG <T (t)>
T (Set(t)) → LHSet<T (t)>

T (decl(t, v)) → T (t) v
T (assign(t, v, e)) → T (decl(t, v)) = T (e)
T (assign(v, e)) → v = T (e)

T ( f orall(t, v1, v2, b)) → for(T (t) v1 : v2){T (b)}
T (@(r(e1, . . . , en))) → r rec = new r(T (e1), …, T (en)); rec.apply(p)

T (@(r(p, e1, . . . , en))) → r rec = new r(T (e1), …, T (en)); rec.apply(p)
T (P(e1, e2)) → new Pair(T (e1), T (e2))

T (T(e1, e2, e3)) → new Triple(T (e1), T (e2), T (e3))
T (S(e1, . . . , en)) → new LHSet<T>(){{add(T (e1)); …; add(T (en)); }} 3

T (N(n1, . . . , nn)) → new Node(new LHSet<String>(){{add(n1); …; add(nn); }})
T (+(s1, s2)) → (new LHSet(s1)).addAll(s2)
T (−(s1, s2)) → (new LHSet(s1)).removeAll(s2)
T (&(s1, s2)) → (new LHSet(s1)).retainAll(s2)
T (#(p, c)) → p.getChannel(c)
T (•(v, c)) → v.T (c)
T (in(i)) → getIn(i)

T (out(i)) → getOut(i)
T (ends(p)) → getEnds(p)
T (oper()) → getOper()

T (main(cp1, a1, ...cpk, an, b)) → mkMain(Run, T (cp1, a1), ... T (cpk, an), T (b))
T (cp, a) → CoordPatt a = new CoordPatt(patterns.get(cp)) 4

T (assignm(t, v, p, r, e1, . . . , en)) → CoordPatt v; v = T (@(r(p, e1, . . . , en))); S(v, t) 5

T (recon fm(p, r, e1, . . . , en)) → T (@(r(p, e1, . . . , en))); S(v,Reconfigured)

A translation can only occur when the ReCooPLa specification is syntactically and se-
mantically correct. The ReCooPLa parser ensures syntactic correctness; on the other hand,
the semantic analyser detailed in Section 4.3.2 reports errors concerning structure, behaviour
and data types.

2 By convention n is used for identifiers; t, ti for data types; ai for arguments; b for set of instructions; T for
non-generic data type; TG for generic data type, except Set; v, vi for local variables; e, ei for expressions; p for
patterns; si for sets; c for channel names; i for numbers; and finally oper for the operations enumerated in
Section 4.2.

3 T comes from the context where the construct appears or the type of composing expressions ei.
4 For horizontal space reasons, CoordinationPattern is abbreviated to CoordPatt.
5 S(v, t) abstracts the action of storing variable v as an instance of coordination pattern named t.
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5.3.2 Translation implementation

The translator –the last component of the compiler– uses the AST generated by the parser
presented in Section 4.3.2 to translate ReCooPLa specification into Java code. This is done
in accordance with the translation schema presented in Table 2 and taking advantage of the
identifiers table, generated in previous steps of the ReCooPLa processor. In order to ease the
translation, the StringTemplate 6 technology (c.f., Section 5.1) is applied.

Listing 5.1 presents the template mkclass, which is responsible for defining the complete
structure of a Reconfiguration class as already anticipated.

mkclass(name, fields, constructor , method) ::= <<
public class <name> extends Reconfiguration {
<fields>
<constructor >
<method>
}
>>

Listing 5.1: Template for the Reconfiguration classes.

After the templates are defined, they are used in the translator, in the context of rewrite
rules. Listing 5.2 shows how the mkclass template is used in the translator component. The
arguments of mkclass template are of different types: variables (e.g., class_name), lists of
values (e.g., $args.values) and others string templates (e.g., $instructions.st). Each
argument is obtained in the context of the production reconfiguration, taking advantage of
the underlying attribute grammar. Lines 4 and 5 define the name of the class (forcing it
to start with capital letter, as required by Java); Line 8 actually directly uses the mkclass
template with the suitable parameters.

reconfiguration
: ^(ID
{

String class_name = Character.toUpperCase($ID.text.charAt(0))
+ $ID.text.substring(1);

}
args? instructions )
-> mkclass(name={class_name}, fields={$args.values},
constructor={$args.st}, method={$instructions.st})
;

Listing 5.2: Template usage.

6 http://www.stringtemplate.org/index.html
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Finally, a map is created and filled for be able to handle the translation result on the
reconfiguration engine. This map has as key the name of the reconfiguration, and as value
the content of the translation of that same reconfiguration. Listing 5.3 presents an excerpt
from the code written to save the translation result.

@members{
private HashMap<String,String> reconfigurations;
public HashMap<String,String> getReconfigurations(){

return this.reconfigurations;
}

}
(...)
content

: ( element { reconfigurations.put($element.name, $element.st); } )*
( main { reconfigurations.put($main.name, $main.st); } )?

;

Listing 5.3: Collection to save the result of the translation.

At the action @members, a private attribute reconfigurations is added. Then a public
method to access this attribute is declared, keeping also the encapsulation of the generated
class.

The translation result is further treated by the Reconfiguration Engine, in particular, by a
single class Run, via reflection. Figure 15 shows the result of applying the translation rules to
the OverlapP ReCooPLa reconfiguration documented in Listing 4.8.

Figure 15: Example of a ReCooPLa reconfiguration translated.
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5.4 a practical example

Consider a company that sells training courses on line and whose software system originally
relied on the following four components: Enterprise Resource Planner (ERP), Customer Re-
lationship Management (CRM), Training Server (TS) and Document Management System
(DMS). In seeking an expedite expansion of the company and its information systems, a ma-
jor software refactoring project was launched adopting a SOA solution. This entailed the need
to change from the original structure of monolithic components into several services and their
integration and coordination with respect to the different business activities.

One of the most important activities for the company concerns the updating of user inform-
ation, which is accomplished taking into account the corresponding new user update services
derived from the original ERP, CRM and TS components. Originally such an update was de-
signed to be performed sequentially as shown in the coordination pattern of Figure 16. Each
channel is identified with a unique name and a type (::t notation). It defines an instance
of a sequencing pattern, where UUerp executes first, then UUcrm and finally UUts with data
entering in port i. nodes.

i

UUerp UUcrm UUts

j1 j2 j3s1

:: f i f oe

s 2

::
sy

nc

f1

:: f i f oe

s 3

::
sy

nc

f2

:: f i f oe

s 4

::
sy

nc

Figure 16: The User update coordination pattern.

However, other configurations were considered and studied taking advantage of the Re-
CooPLa language and the underlying reconfiguration reasoning framework. For instance,
another configuration for the user update activity may be given by the coordination pattern
in Figure 17. This can be obtained from the initial pattern by application of a reconfiguration
that collapses nodes and channels into a single node. In ReCooPLa, this is easy to define, as
shown in Listing 5.4, resorting to removeP already defined in Listing 4.8.

reconfiguration implodeP(Set<Node> X; Set<Name> Cs){
@ removeP(Cs);
@ join (X);

}

Listing 5.4: implodeP reconfiguration pattern.

This reconfiguration pattern takes as parameters the set of nodes and channels relative to
the structure one pretends to implode. Channels are removed and the nodes are joined. The
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translation mechanism of ReCooPLa specifications produces a Java class similar to the one
presented in Listing 5.5.
public class ImplodeP extends Reconfiguration {

private LHSet<Node> X;
private LHSet<Name> Cs;
public ImplodeP(LHSet<Node> arg1,LHSet<Name> arg2) {

this.X = arg1;
this.Cs = arg2;

}
public CoordinationPattern apply(CoordinationPattern pat) {

RemoveP removeP;
Join join;
removeP = new RemoveP(this.Cs);
removeP.apply(pat);
join = new Join(this.X);
join.apply(pat);

return pat;
}

}

Listing 5.5: ImplodeP class generated.

In this example, applying implodeP({j1, j2, j3}, { f1, f2}) to the original coordination pattern
would result in the one depicted in Figure 17, where (for reading purposes) node k is used to
represent the union of j1 and j2. The coordination pattern presented defines an instance of a
parallel pattern, where UUerp, UUcrm and UUts execute in parallel with data entering in port
i.

i

UUerp

UUcrm

UUts

ks1

:: f i f oe
s 2:: sy

nc

s4

:: sync

s5

:: sync

Figure 17: The User update coordination pattern reconfigured.

5.5 architecture and development

The Reconfiguration Engine is part of a broader system implemented as an eclipse plugin,
comprising language processors, editors and other associated tools.
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As expected, one of the processors is the ReCooPLa ’s. The other is for processing CooPLa
specifications, in order to provide the coordination patterns up on which reconfigurations are
applied. Figure 18 presents the high-level system architecture with such components.

Figure 18: The System high-level architecture.

Let’s now focus on the Editor component of the system. It is an Eclipse plugin developed
in Java as a plug-in to allow the creation of CooPLa and ReCooPLa files specifications. The
ReCooPLa part of the editor borrows features of the ReCooPLa processor to analyse the code,
dynamically, and then annotate it with markers pointing to errors detected in the syntactic
and semantic analysis. This is accomplished by adopting the reconciling techniques fomented
in editor development within Eclipse. The reconciler entity allows for running the ReCooPLa
processor in the editor background, in a separated thread, so that the editor does not freeze.
The ReCooPLa processor is invoked periodically (e.g., when the user stops coding) and it takes
the input text with all the changes performed. The captured (syntactic and semantic) errors
are then used by the reconciler to create annotations and problem marks, and add them to
the editor view. Figure 19 presents how these are presented by the editor. The errors are
pointed out by the annotations and problem markers provides some more details about the
error. The annotations can provide also the error message when the user hovers the mouse
over the red marks on both sides of the editor.

If there are no errors, the reconfigurations can be executed, according to the main re-
configuration, specified in ReCooPLa. Once this feature of the editor is started, a group of
procedures are performed. First of all, before translating the reconfigurations, it is ensured
that the specifications are syntactic and semantic valid. Then, the Java files, corresponding
to the reconfigurations, are created by taking advantage of the translation obtained through
the process presented in Section 5.3. These files are afterwards properly compiled taking into
account the required dependencies. After compiling them, the created coordination patterns
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Figure 19: Annotations and problem markers on the editor.

specified in the main of ReCooPLa (i.e., the results of the application of the reconfigurations)
are obtained. This is achieved using Java Reflection, which is a powerful and useful technique
that allows the inspection and modification of the structure and behaviour of an application
at runtime as well as the instantiation of a new object, invocation of methods, and some other
features.

The generated coordination patterns have a particular data structure that besides their
structural information, also contains information about their stochastic instances, the envir-
onment and nodes. Each one of these data structures is converted into a graph structure and
then sent to an Eclipse View, called “Patterns Created”. Figure 20 shows the result after a
simple reconfiguration, where a simple Pattern2 with only one fifo channel is inserted into
an existing one (Pattern1 which has two sync channels).

Additionally, it is given to the user the possibility to save the internal representation of
the generated coordination patterns to a CooPLa file in the file system. Figure 21 shows the
dialog presented to the user to save the created patterns.
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Figure 20: Patterns Created View as part of the editor.

Figure 21: File dialog to save created patterns.
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C A S E S T U DY

This chapter presents a case study that shows how the ReCooPLa engine can be used in
the context of self-adaptive systems and integrated in an approach that deals with both the
design and runtime monitoring of these demanding systems. Such an approach is proposed
by Oliveira and Barbosa [OB14] and has roots on the reconfiguration framework presented
in Section 3.5 and supporting tools. Essentially, it follows the feedback control loop MAPE(-
K) model [KC03], where an active transition system of reconfigurations, referred to as the
Reconfiguration Transition System (RTS), is integrated and plays a central role.

The RTS is a transition system model where states define architectural configurations and
transitions, labelled with applicable reconfigurations, define the reconfiguration operations
that transform a configuration into another. This model lays down reconfiguration strategies
planed and prepared at design time by taking into account partial knowledge about relevant
environment attributes.

At runtime, the RTS is integrated in the control loop. This loop is responsible for monitor-
ing the system and the environment, acquiring data that is delivered to an analyser module.
This module uses that data and a pool of possible system configurations from the current one
(picked from the RTS); and resorting to suitable quantitative analysis tools, analyses each
possible configuration providing relevant results for each one. A decider module verifies the
results and by matching them with system properties and adaptation logic triggers, decides
whether it is necessary to reconfigure the system and which reconfiguration shall be applied.
In case of need for adaptation, an executer module receives the decision previously made and
enacts the reconfiguration at runtime.

More details on this approach can be found in [OB14]. In the referred paper, an application
case was developed to simulate the runtime adaptation of the Access Society’s Knowledge
(ASK) system. The case study presented in this chapter is, in fact, the design-time necessary
part of that work, where the RTS is constructed with the help of the ReCooPLa engine.
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6.1 the ask system

ASK is a communication software developed by a Dutch company – Almende – to mediate
consumers and services provides. It serves as a bridge between the interveners of the system
according to their needs and profiles, in order to achieve the best consumer-provider match
in the lower time possible, while keeping the entailing costs low.

The architecture of ASK comprises a web-based front-end (for user interaction), a database
(for storing business data) and a contact engine (for matching the contacting interveners). The
contact engine is the core of the architecture. It collects the requests, from the users of the
system, and converts them into tasks. These are then processed to generate requests to a
component called Executor, where they are placed in a queue – Execution-Queue (EQ) –,
until a web service – HandleRequestExecution (HRE) – is ready to take and convert them
into connections between service providers and consumers. The HRE service runs on a server
separated from the EQ, but which is not dedicated; having the limit of spawning 20 HRE
service instances in parallel.

The ASK system was previously studied regarding performance and resource allocation
concerns from a static point of view [MAS+11, Moo11, OSB15]. These studies revealed
bottlenecks and performance decay when environment changed with time, for example, due
to the the increasing of the number of user requests at a given time of day or the downtime
of a server. Such environment changes may contribute, for instance, to undesired financial
losses for the company.

This leads to the proposal, design and implementation of a system whose architecture is
able to adapt to the environment changes, referred to the Adaptable-ASK system.

6.2 adaptable-ask design

The Alemende’s solution was to evolve ASK into an adaptive system, which is able to change
its architecture far adaptation to the environmental settings, in order to acquire the right
amount of resources and continuing performing within desirable levels of QoS.

According to [OB14], by taking into account the system requirements and foreseen environ-
ment changes, it can be defined a suitable set of configurations and respective reconfigurations
with the objective of creating a graph-like structure relating the two – the RTS.

In order to design the control loop, following the RTS-based approach briefly presented
above, the ReCooPLa engine was used. The objective of this case study is exactly to show
how the reconfiguration engine, along with ReCooPLa, can be used to design suitable config-
urations and reconfigurations and derive, from there, such an RTS to be used in the context
of adaptable systems. Its focus is set only on the executor component and its architectural
adaptation, bypassing the conversion of user requests into tasks, which, in fact, does not in-
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sert any performance disturbance on the system. The initial work was to design (in CooPLa)
the basic coordination layer for this component. Communication between the users and the
HRE service is asynchronous, with requests being enqueued in a FIFO-like structure. This
coordination pattern in Figure 22 (named Original) became then a building block that could
be used in reconfigurations to produce more sustainable configurations of the ASK system.

f e hre
f1

Figure 22: Original coordination pattern.

By creating a stochastic instance of mentioned coordination pattern and using the CooPLa
processors, analysable assets were generated for quantitative analysis. Such an exercise was
done, taking user request rates as the relevant environment change. When the number of
requests increased, this architecture, with only one server hosting limited instances of the HRE
service, has shown not to be enough. In this context, it may be necessary to add a second
server to increase production. The coordination pattern in Figure 23 (named ExRouter)
is a useful building block that can be used to achieve the addition of a new server to the
architecture1, while rearranging the coordination between such architectural elements.

a

hre1

hre2

s1

s2

s3

Figure 23: ExRouter coordination pattern.

At that moment, one could use (one stochastic instance of) this coordination pattern to
design a reconfiguration that leads the architecture into the desired configuration of two HRE
servers. Figure 24 shows how this was implemented with the ReCooPLa engine. In particular,
it shows the ReCooPLa implementation of a reconfiguration to scale-out the Adaptable-ASK
system from the original configuration.

The resulting coordination pattern was saved in a file named scaledout.cpla. It was then
processed with CooPLa tools for being analysed with user request fluctuations retrieved from
the logs of the ASK system. This has shown to be a suitable configuration for most of the
request demands, but when the requests decrease, the company loses money from the rental
of the second server. Thus it may be necessary to go back to the original configuration when
such is the context. However, when the requests reach a peak, this solution was still not the
best fit. Figure 25 shows a reconfiguration solution for these two problems. This solution is
a ReCooPLa implementation of three reconfigurations where: the first is an auxiliary one to

1 Symbol represents a node that routes data for one of its outgoing channels in a mutual-exclusive fashion.
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Figure 24: ReCooPLa implementation of the scaled-out reconfiguration.

preserve the scaled-out configurations; the second scales-in the Adaptable-ASK system from
the scaled-out configuration; and the third takes the scaled-out configuration to the original
one. The solution resulted in three exported coordination patterns, where only the second
one was saved in a scaledinout.cpla file (the other patterns already exist in CooPLa files).

The reconfigurations must be well managed to increase the efficiency. However, the costs
management is out of the scope of this case study. This work of designing reconfigurations
ends up in the construction of the RTS as desired in the approach for self-adaptive systems
described above. Figure 26 shows the RTS that is constructed from the partial study herein
presented. The backwards reconfigurations are omitted for readability sake.

It includes also a state for a configuration where a log service is added to record information
related to the user requests, using the reconfiguration presented in log_sout.rpla. From
this reconfiguration, results another exported coordination pattern (log_scaledout.cpla).
Figure 27 shows how this was implemented with the ReCooPLa engine.

Certainly, the complete RTS for the Adaptable-ASK has more states and transitions. For
instance, a state representing a configuration where a certain amount of requests is acceptable
to be lost, may make sense for some environmental conjuncture. The beauty of this approach
is that the RTS may be changed at runtime with new or revised reconfigurations. If something
goes wrong, the implemented reconfigurations should be revised and therefore, this is a cyclical
process.

72



6.2. Adaptable-ASK design

Figure 25: ReCooPLa implementation of three reconfigurations.

log_sout.rpla

...

...

...

... sinout_orig.rpla

sout.rpla

sinout_orig.rpla

...

...

...

scaledinout.cpla

scaledout.cpla

log_scaledout.cpla

original.cpla

Figure 26: Partial RTS for the design of the Adaptable-ASK system.
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Figure 27: ReCooPLa implementation of a reconfiguration to add a log.
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C O N C L U S I O N S A N D F U T U R E WO R K

Throughout this dissertation it was shown that the adaptation of a system to new require-
ments or environments, is possible via reconfiguration of their architecture, notably, their
coordination protocols.

To the time of writing of this dissertation, and apart from Krause’s approach [Kra11]
embedded in the ECT [AKM+08], there are no other approaches that directly target the
specific reconfiguration of software coordination layer. With effect, the main objective of this
master work, an engine for coordination-based reconfigurations, extends the state of the art,
hopefully, as a suitable alternative to [Kra11].

To meet the objectives initially defined, a survey and study of adjacent concepts was made.
To guide the research execution, a plan was also defined, with the main objective of developing
a tool for rapid prototyping of coordination-based architectural reconfigurations. This involves
the following tasks:

• Design of a formal language to express reconfigurations, through combination of prim-
itive operations, based on the formal model presented in [OB13a].

• Development of a processor for the language that should report errors from syntactic
and semantic analysis.

• Development of the engine for reconfigurations (based on the language) as a plugin for
eclipse.

• Evaluation of the tool by means of a suitable case-study.

The first research topic (design of a formal language to express reconfigurations) was com-
pleted with success. To achieve this, a DSL named ReCooPLa was designed and also docu-
mented in this dissertation. ReCooPLa supports the model presented in [OB13a] and make
it a suitable tool for the software architect. This language differs from other architectural
languages by focussing on reconfigurations rather than on the definition of architectural ele-
ments like components, connectors and their interconnections. This work also led to a pa-
per [ROB14a], invited to a special issue of a indexed journal with impact factor.
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The second topic (development of a processor for the language) was completed with success.
This processor is comprised of a few steps which ensure that the specifications are syntactically
and semantically correct. The processor is the element that fills the gap between the ReCooPLa
and its engine.

The third topic (development of the engine for reconfigurations as a plugin for eclipse) was
also completed with success. As it often happens with DSLs, ReCooPLa is translated into a
subset of Java, which is then recognised and executed by an engine. This engine, referred to
as the Reconfiguration Engine, is a plugin of the CooPLa Editor1 (an eclipse plugin itself). It
is developed in Java to execute reconfigurations specified in ReCooPLa over graph-based struc-
tures – coordination patterns – which are defined in CooPLa [OB13b], a lightweight language
to define the graph-like structure of coordination patterns. In addition, the reconfiguration
primitives described in [OB13a] as elementary operations, were also implemented in Java,
to support the reconfiguration engine. The ReCooPLa engine takes advantage of reflection
features, associated to the Java programming language, to compile and dynamically load the
generated Java files into the running ReCooPLa engine. It differs from other architectural
reconfiguration tools due to its focus on the coordination layer rather than on the high-level
architecture.

It can be argued that instead of generating Java files, compile and load them into the engine,
one could have resorted to reflection packages such as Javassist2 to dynamically create the
classes, bypassing the external compilation stage. However these packages still fall short in
some aspects of recent versions of the Java language. We stepped into that direction at a
first attempt, but coping with Java generics in Javassist has shown to be a cumbersome, time
consuming task.

In order to fulfil the last task mentioned above, a case study was described. The case
study answers the research question initially presented (How to simulate a reconfiguration
in their design?). In particular, it showed that despite ReCooPLa engine be targeted to the
early stages of software development; i.e., the design of reconfigurations and their analysis
against requirements; it may play an important role in the design and maintenance of adaptive
systems.

In addition to these objectives, another one existed that was not completely reached:

• Engine integration with the Reo coordination system (ReoTools).

This integration depended on the cooperation of third parties and, unfortunately, it has
not been possible to perform it in due time. However, the CooPLa Editor is able to import
and export the Reo visual language (to and from equivalent CooPLa specifications). This
integrates, somehow, these tools, since the reconfigured patterns may be stored into CooPLa
sentences.

1 coopla.di.uminho.pt
2 http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
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This project also has a capacity of evolution insofar as some additional features can be
developed. The physical integration of the engine with the ReoTools is one of such features.

For future work is also planned the import of architectural configurations specified in
Wright, ACME, or similar ADLs, whenever their connectors are suitable instances of coordin-
ation patterns expressed in CooPLa. This would allow for taking advantage of ReCooPLa and
its engine to define reconfigurations of the coordination layer, while having a full specification
of a system architecture. This will make possible for the ReCooPLa engine to be part of a
control loop for adaptive systems.

In the future, the ReCooPLa editor could also be extend with a feature for visualisation of the
stages of reconfigurations, i.e., with a visual debug. This would allow a better understanding
of the reconfiguration process as well as a faster and accurate identification of a possible error
in the specification.
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