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Abstract

Due to great technological advances in video cards over the last decade, several classical image-
rendering algorithms have recently been adapted to run on GPUs. This made it possible for several ray
tracing based global illumination techniques to perform faster and faster, achieving performance levels
which are, in some cases, suitable for real-time applications. However, despite these advances,
rasterization is still the most widely used technique in the Computer Graphics industry for real time
applications due to its efficiency generating images with reasonable visual quality. As the
implementation of photorealistic techniques using ray tracing in real-time is still out of reach of today's
hardware, there have been several attempts to combine rasterization and ray tracing, to obtain the
best of both worlds.

This dissertation seeks to demonstrate the benefits of an approach that combines the efficiency and
speed of rasterization, and lighting and visual effects provided by ray tracing. For this purpose, we
present an algorithm capable of identifying problematic pixels in shadow map using conservative
rasterization techniques, where the triangles are seen larger and smaller than normal. Once these
problematic pixels are identified, rays are created for each of these pixels for the ray tracer to correct
them. Accordingly two versions of the algorithms have emerged, one that takes into account the
adjacency information, explained in more detail in this document, and another in which the adjacency

information is ignored, originally developed by Stefan Hertel.

Both versions shown in this study were analysed in terms of image quality, where we determine how
many pixels are correct when compared with a method of ray pure tracing, in terms of performance
analysing the cost of correcting these problematic pixels using the engine of ray tracing OptiX Prime.
Both perspectives are equivalent, only having slight performance differences in the creation of the

shadow map or correction of problematic pixels.




Resumo

Devido aos grandes avancos tecnoldgicos nas placas de video ao longo da Ultima década, varios
algoritmos classicos de renderizacdo de imagens foram recentemente adaptados para correrem em
GPU’s. Isto tornou possivel que varias técnicas de iluminagdo global, como o ray tracing, serem
executadas em tempo real. Mas apesar destes avancos, a rasterizacao ainda € a técnica mais
utilizada na indlstria da Computagao Grafica em tempo real devido a sua eficiéncia no que toca a
gerar imagens com qualidade visual razoavelmente boa. Como a implementacao de técnicas
fotorealista com o uso de ray tracing em tempo real ainda estd fora do alcance do hardware de
hoje, tem surgido varias tentativas numa forma de combinar a rasterizacdo e ray tracing, de forma

a obter o melhor dos dois mundos.

Esta dissertagao procura demonstrar os beneficios de uma perspectiva que combina a eficiéncia e
rapidez da rasterizacao, e a iluminacao e os efeitos visuais fornecidos por ray tracing. Para esse
efeito, apresentamos um algoritmo capaz de identificar pixéis problematicos no shadow map com o
uso de técnicas de rasterizacdo conservativa, onde os tridngulos sao vistos maiores e menor que o
normal. Uma vez identificados esses pixéis problematicos, raios sdo criados para cada um desses
pixéis pelo ray tracer para corrigir-lhos. Deste algoritmo surgiram duas versdes, uma que toma em
consideragao a informagao de adjacéncia, explicada em mais detalhe neste documento, e outra

onde a informacdo de adjacéncia é ignorada, desenvolvida originalmente por Stefan Hertel.

As duas versdes mostradas neste trabalho foram analisadas em termos a qualidade de imagem,
onde fomos determinar quantos pixéis estdo correctos quando comparados com um método de ray
tracing puro, em termos de desempenho analisando o custo de corrigir estes pixéis problematicos
usando o motor de ray tracing OptiX Prime. Ambas as perspectivas sao equivalentes, apenas
apresando diferencas de desempenho na criagdo do shadow map ou na correcgao de pixéis

problematicos.
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Introducao

1 Introduction

1.1 Context

Currently, Computer Graphics is divided into several types of image rendering techniques, of which
the most prevalent are based on rasterization and ray tracing techniques. These techniques have

different philosophies when it comes to image generation.

The rasterization process produces images of reasonable quality with great efficiency, even
considering scenarios with a large number of triangles. However, the quality of the images
produced by rasterization is not comparable to the quality obtained through algorithms based on

ray tracing.

With advances in graphics hardware, ray tracing algorithms have been ported to work on the GPU
to speed up image synthesis, as demonstrated by PBRT (Physically Based Ray Tracer) [1], a ray
tracing engine with stat-of-the-art technology to generate image for different real-time applications
(film, video, gaming, among others). Other engines, especialy designed for real-time ray tracing,
have emerged since then, like NVIDIA's Optix™ [2] [3] , AMD's FireRays™ , and Intel’s Embree™ .

Despite these advances, the possibility of real-time full ray tracing is still far from current graphical
capabilities. In this context proposals that combine rasterization with ray tracing emerged [4]. The
main idea is to combine the best of both worlds, the performance of rasterization, and the details
that ray tracing is able to provide. Most of the work developed in this field has been mostly about
only one aspect like shadows, while some tried to implement all possible ray tracing effects into

rasterization using CPU and GPU parallel processing [5, 6].

A famous engine that uses this type of approach is the RenderMan by Pixar, a known engine that
uses an implementation of the REYES architecture [7], used for the creation of special effects in

the film industry, most known for its role in * 7oy Story" and “ Finding Nemo”.

For the production of the animation film “Cars” [8], the RenderMan was extended to use ray
tracing, because the characters in the film required high quality reflections, which was not possible
in the rasterization system they had. After this change, Pixar was able to include other effects to

film like ambient occlusion e precise shadows.
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After these developments, hybrid algorithms that combined ray tracing and rasterization became a
new topic of research. One of the resulting strategies was the use of deferred rendering, where
the rasterization process gathers the information of the scene and ray tracing uses that information
to create visual effects. The rasterization process can have three purposes: to produce an initial
image; collect information regarding the scenario (positions and normals) and identify possible

areas of intervention for the subsequent steps with ray tracing.

An example of such approach is Stefan Hertel et a/[9] work, where ray tracing is used to compute
the transition between light and shadow in the use of shadow maps. This rendering technique
produces high quality images when compared with rasterization, with performance that can be

considered acceptable in current graphical technology.

1.2 Motivation and Objectives

Both methods of producing rendered images have their benefits and flaws: rasterization is
designed to produce high quality objects, using the proprieties of the object and local
approximations of the light, but is incapable of processing visual effects that involve the entire
environment, not having easy access to the scenes proprieties, like geometry and placing of the
objects, resulting in more complex algorithms to apply little details, that add a new level a detail;
ray tracing is designed to produce images with high quality illumination. Due to its implementation
based on the studied behaviour of the light in the real world, obtaining visual complex effects like
global illumination, reflections and refractions result in simple implementations. However, this
comes with a heavy performance impact and high rendering times, since the light effects must
take into account the entire scene, and this is not commonly supported directly in hardware

graphical pipelines.

The objective of this dissertation is to produce an implementation of a hybrid rendering algorithm,
combining the fast and efficient first rendering that rasterization is capable to offer, with the
precision that ray tracing offers, hopefully overcoming the individual faults of these methods. This
implementation will be analysed from a qualitative and quantitative perspective, comparing with

both pure rasterization and ray tracing solutions.




Introducao

Since the implementation of this dissertation will use the ray tracing engine OptiX™ by NVIDIA, in
conjunction with the University of Minho’s 3D rendering engine Nau3D, another objective of this
dissertation is to add this hybrid approach, testing and improving Nau’s support with OptiX™
engine and enhancing the project’s capability of rendering high quality 3D environments in real-

time.

1.3 Outline

Besides this chapter, this documents will explain the principal concepts used in the shadow
mapping and ray tracing, as well as the ideas of conservative rasterization, wich are important for

the hybrid method that we'll present.

The second chapter will offers a state of the art of of the most important shadow mapping
algorithm that seek to correct the amount of incorrect pixels in the image. Futhermore, it will also

present other hybrid method that used rasterization and ray tracing to obtain hard shadows.

The third chapter will present the hybrid method developed in this document, it used a 2 layer
shadow map created using the concepts of conservative rastiration to identify problematic areas in

a image and sent the information of these areas to the ray tracer to correct them.

The forth chapter will present the testing results of the algorithm. In this chapter will compare to a
pure ray tracing and pure shadow mapping algoritmh to analyse the amount of correct and
incorrect pixels obtained using our approach, and also analyse the perfomance impact that our
hybrid method has compared to normal ray tracing method. Also in this chapter will compared to
the work of stefan hertel, another hybrid method that used the same principles as the method

presented here.

The fianl chapter will present our conclusions of the algorthim presented here, as well as future
work that can be futher added.
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2 Techniques

Shadows is the named called to an area not exposed directly to a light source, due to an
obstruction of the light by an object, creating a dark silhouette of the obscuring object in the area.
Shadow is composed of two components: umbra and penumbra. Umbra is the inner region of the
shadow, where the light source is completely blocked. Penumbra is the transition region of the

shadow, where the light source is partially obstructed, creating a gradient shadow.

penumbra

_l-.,-r"“ﬁvr‘ Light Source

Figure 1 — A diagram showing the composition of the shadow: the umbra is the interior of the shadow, and

the penumbra is the exterior of the shadow.

The recreation of this natural phenomenon in rendered images is extremely important, because it

establishes a sense of depth, facilitating the determination of spatial relation between objects.

Figure 2 — Shadows provide a valuable clue for the position of the objects.

2.1 Shadow Mapping

The most popular methods in rasterization to generate projected shadow are based on shadow
maps [10]. This is a 2-pass algorithm, where the first pass will render the depth values of all the
objects visible by the light into a 2D texture (shadow map). These depth values correspond to the
distances between to the light source and each visible point by the light, these values being
relative to the light point of view. In the second pass of the algorithm, the camera viewpoint is

then rendered, where each pixel is transformed to light-space to retrieve the depth value stored in
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the shadow map, and compare it to the distance from the corresponding point to the light. If the
depth value stored in the shadow map is less than the actual distance to the light, this means that
there’s another object occluding the point, therefore this pixel is in shadow. Otherwise the pixel is
lit.

Since shadows can be determined directly by using the light's point-of-view, the need of auxiliary
structures or information about the scene is removed, being an advantage over other methods to
create shadows in rasterization. But this technique possesses severe aliasing problems, where
shadows lose quality due to subsampling. The most common problems of this technique are
Perspective Aliasing and Projection Aliasing (other problems emerge when dealing with large scale

environments) [11].

undersamgsed oversampled

Figure 3 — While distant shadow have great detail, nearby shadows will not have sufficient resolution,
resulting in pixelated shadows due to undersampling.

Perspective Aliasing refers to the discrepancies between the perspectives of the eye and the light.
In the eye’s perspective, the objects closes to the eye are larger than the distant objects, creating
inconsistency in the sampling, where the closest shadows are less detailed and the distant
shadows get more detailed than required. Figure 3 shows a diagram where the green area
represents the oversampling of the shadow and the red area represents the undersampling of the
shadow. Projection Aliasing refers to the problem that appears when the surface of an object is
almost parallel to the light's direction, making the normal of that surface perpendicular to the light
direction. This causes the same depth value of the shadow map to become associated to a large
number of the pixels on the surface, resulting in discontinuous. This becomes more apparent when

there’s camera movement, since the shadows will flicker with each movement.
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b i

Figure 4 — The shadow map resolution for the shadow in the surface is too small, applying the same pixel (red

area) of the shadow map to surface seen by the observer (blue area).

These methods will be detailed in the next chapter.

2.2 Ray Traced Shadows

Considering point lights, shadows are easily created using ray tracing based algorithms. For every

pixel in the scene, a ray is sent from its world position to the light source.

: i \.;ight direction

A
A

,

shadow ray

primary ray

Figure 5 — Diagram for shadow ray in ray tracing.
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When a ray from the camera (primary ray) intersects an object, a new ray is created in the
intersected point (shadow ray). This ray is sent in the direction of the light source. If the shadow
ray intersects any object during its trajectory, then the intersected point is in shadow, if not the

intersected point is being illuminated.

This process of creating shadows is simple to implement, gaining projected shadows easily and

with great detail.

When considering area light sources, this implies that a single ray sampling the light source is not
enough to determine the shadow status. Not only the result would not be correct, but the

penumbra effect is not really observable in those conditions.

The reproduction of shadows with area lights needs to determine the percentage of the light
source visible for each point in the scenery. That task can be approximated by using multiples
samples of the light. This requires several shadow rays in different directions within the light
source. The percentage of rays that reach the light give an approximation of the area of visible

light. This allows the creation of penumbra effects.

In general, larger number of samples provides better results in the production of penumbra and

umbra regions, however, as a direct consequence, the render time of the image will be larger.

The importance of the sampling techniques in ray tracing is because the calculations used
determine the exact direction of the shadow ray for each intersected point, which can lead to
aliasing problems, where the penumbra edges appear sharp-edged, giving an surreal effect to the
shadow. The sampling process allow for multiple shadow rays for each intersected point, blurring

the penumbra edge, making it more natural for the observer.
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Figure 6 — A comparison of hard shadows (left) and soft shadows (right).

2.3 Conservative Rasterization

Many algorithms of collision detection, occlusion culling and visibility testing for shadow
acceleration present the problem of visual artefacts, due to the way rasterization is done in GPU’s.
This problem is usually fix by increasing the rendering resolution, but the majority of cases, this
increase of resolution only reduces the amount of artefacts in the images, because the sample size
is larger, but the errors still exist in the image. Another drawback of this solution is the increase of

the performance of the algorithms.

(a) (b)

Figure 7 — A comparison of standard (a) and conservative rasterization (b).

The methods presented in Jon Hasselgren show a different approach to sampling artefacts in
standard rasterization. The solution presented in his works consists in modifying the polygons

before the rasterization process, where a pixel cell (the rectangular region around a pixel in the
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pixel gird) moves along the border, applying one of the following transformations, depending on

the approach taken to the rasterization process:

o An overestimated conservative rasterization (Figure 8-a), all the pixels caught in the

pixel cell are added, dilating the edge.

) An underestimated conservative rasterization (Figure 8-b), all the pixels caught in the

pixel cell are erased, eroding the edge.
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Figure 8 — (a): overestimated conservative rasterization; (b): underestimated conservative rasterization.

Although Jon Hasselgren presents two implementations of the algorithm; this work will focus more
on the second implementation, since the first implementation requires multiple output vertices for
each input vertex to calculate the optimal bounding box, the second implementation obtains the

bounding polygon by intersecting the bounding triangle with an AABB, as showed in Figure 9.
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Figure 9 — The Optimal Bounding Polygon for a given triangle.

In order to dilate/erode the edges of a triangle, the vertex information must be available, so the
implementation requires a geometry shader. The calculations shown below are done in screen
space. This is to reduce the complexity of the calculations to dilate/erode, since the x and y
coordinates represent the position of the triangle in the screen, and the z coordinate will indicate if

the triangle is visible in the screen.

2.3.1 Implementation

Given a triangle composed of the vertexes v0, v2 and v4, the first step of the algorithm is to

calculate the edges of the original triangle in screen space.

e0 =v2—-v0
el =v4 —v2 (1)
e2 =v0—v4

After all of the edges are calculated, we must calculate the perpendicular vector for each edge

(peX), as if they were planes.

peN = |(—eN.x), (eN.y)| (2)
These perpendicular edges represents the direction in which the triangle will be eroded or dilated
from, depending of the approach, as showed in the diagrams of Figure 7, the orange triangle

represents the original triangle and the blue triangle represents the modified triangle.

10
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Figure 10 — Transformation of the original triangle (orange) to the new triangle (blue); Left: Dilation; Right:

Erosion.

But the calculations done now only apply to the edges, in the shader the transformation apply to
the vertex, and since each vertex belongs to two edges, we must calculate the shifted positions of
each vertex following the direction of pedge that that vertex belongs to, the following equations

show an example for vertex v0, but these calculations apply for all vertexes.

sa0 = vec3(v0) + peO * pD (3)
sb2 = vec3(v0) + pe2 = pD

Where pD represents diagonal length of the pixel cell. The sa0 is the shifted position of vertex v0
following the direction pe0 and sb2 is the shifted position of v0O following the direction pe2. The
+ means that functions changes depending on the transformation, for erosion the + sign is used

and for dilation the — sign is used.

After calculating all shifted positions of the vertex, we can calculate the intersections of the new

edges to form the new triangle form by the vertexes v'0, v'2 and v'4. Here the formula for v'0.

11
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aN = (sbN.y — saN.y)
bN = (saN.x — sbN.x)
c0 = a0 *sa0.x + b0 * sa0.y
c2=a2+*sa2.x +b2x*sal.y 4)
delta = a0 * b2 — a2 » b0

(b2*c0 — b0 *c2,a0 *c2 — a2 = c0)
delta
After this step, we have obtained the positions of the new vertexes v'0, v’2 and v'4 in screen

v'0.xy =

space, but z component for all the vertexes. The z component of v’x can be easily calculated using

the plane equation as follows.

C
Therefore, the z coordinate for the v'0 can be calculated using the normal of the original vertex (n)

Ax+By+Cz+D=0>z= —

in the next equation:

D = —dot(n,v0)

6
0 (n.x*v'0.x+n.yx*xv'0.y+D) ©)
v'0.z= —

n.z

There might be cases where vertex, both the original and the transformed, are not visible in screen
space. This is because the triangle is perpendicular to the camera. Therefore, if the normal of the

normal of any vertex is 0, this process is skipped.

12
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3 State of the Art

3.1 Trapezoidal Shadow Mapping

Trapezoidal Shadow Mapping is a new approach of calculating shadows using trapezoidal shadow
maps which are derived from trapezoidal approximations of the eye’s frustum as seen from the
light. It addresses the resolution problems of the standard shadow mapping, resulting in enhanced
shadow map resolution for both static and dynamic objects from near and far, with no constraint
on the relative positions and motions of the eye and the light. The approach is efficient as only the
eight corners of the eye's frustum plus the centres of the near and far plane, rather the scene, are
needed to compute a good trapezoidal approximation, thus it scales well to large scenes. Figure 11

shows an example of this approach.

Frame i Frame i + 1
Bounding Box Approximation

e / -

Trapezoidal Approximation

i -

ye re

Figure 11 —Bounding Box Approximation (a) vs. Trapezoidal Approximation (b)

13
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3.1.1 Increasing Shadow Map Resolution

A shadow map can viewed as a simple construct that contains two types of positions of the eye’s
frustum: the positions within and the positions outside the frustum. It is clear that only the former
is useful to determine whether pixels are in shadow or not. Increasing the shadow map resolution
is to minimize the positions outside the frustum, which are collectively termed as wastage. In other
words, a good way to address the resolution problem is to better utilize the shadow map for the
area within the eye frustum in Figure 12 (denoted as E). This requires the calculation of an
additional normalization matrix N to transform the post-perspective space of the light to an N-
space in general, where N refers to the trapezoidal space and bounding box space, respectively in
Figure 12. The shadow map is constructed by transforming the pixel into the N-space, rather than

into the post-perspective space of the light, for depth comparison.

trapezoidal space

Iraperoid

light’s
posi—perspective space

I

bounding box

g

Figure 12 - Left: The eye frustum as seen from the light; Middle: example for trapezoidal (top) and

bounding box space

bounding box (bottom) approximations; Right: Wastage obtained in the shadow map with

approximations.

3.1.2 Constructing the Trapezoid

Since the trapezoid is recognized to be most similar shape to E, the aim of Martin et a/works is to
construct a trapezoid T to approximate E, with the constraint that each such consecutive

approximation results in a smooth transition of the shadow map resolution.

14
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The first step is to find two parallel lines in post-perspective space (L) of the light to contain the
base and the top edge of the required trapezoid (T). The aim is to choose the parallel lines such
that there is a smooth transition when the eye moves between frames. The algorithm to determine

those lines follows these steps:

1. Transform the eye's frustum into L of the light to obtain E;
Compute the central line I, which passes through the centres of the near and far plane of
E;
3. Calculate the 2D convex hull of E (which can contain up to six vertices on its boundary);
4. Calculate the top line (I,) that is orthogonal to [ and touches the boundary of the convex
hull of E. It intersects [ at a point closer to the center of the near plane and far plane of E.
5. Calculate the base line (I,,) which is parallel to (and different from) the top line (I,) (i.e.,
orthogonal to [ too) and touches the boundary of the convex hull of E.

The calculation of the centre line [ is important because it allows recalculating the [, and [,

accordingly to the eye’s movement, creating a smooth transition between frames.

3.1.3 Side Lines

The following step is to calculate the side lines of the trapezoid. Assuming the eye is more
interested in objects and their shadows within the first § distance from the near plane. That is, the
focus region of the eye is the eye’s frustum truncated at § distance from the near plane. Let p be a
point of § distance away from the near plane with its corresponding point p, lying on [ in L, as
seen in Figure 13. Let the distance of p, from the top line be §'. The trapezoid has to contain E, so

that N, maps p, to some pointin T.

15
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map to
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Figure 13 — A 1D homogenous perspective projection problem to compute g.

To do this, we must calculate a transformation matrix N_T which maps the four corners of the
trapezoid (t_0,t_1,t 2 and t_3) to the front of the unit cube. This can be done with the following

constraints:

(_1, _1, 1, 1)T = NT * to

(+1,-1,1, DT = Ny x t;

(+1l +11 1; 1)T = NT *tz (7)

(_1, +1, 1, 1)T = NT * t3
A straightforward way to determine n_t with these restrictions is to apply rotation, translation,
shearing, scaling, and normalization operations to the trapezoid to map it to the front side of the
unit cube. This is achieved by calculating the eight matrices: T_1, R, T_2, H, S_1, N, T_3 and S_2.

As the first step, T, transforms the centre of the top edge to the origin (Figure 14-(a)).

_ (ty +t3)
Y=m (8)
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10 0 —x
_lo1 0w
hi=1lo 0 1 o0
000 1

Then, the trapezoid T is rotated by applying R around the origin in such a way, that the top edge is
collinear with the x-axis (Figure 14-(b)):

(tz — t3)
u:—
[t; — t3]

Xu Yu 0 0 9)
R = Yw Xy 0 O

0 0 1 0

0 0 0 1

After the rotation, the intersection i of the tow side lines containing the two side edges (t,, t;) and

(t4, t,) is transformed, by applying T,, to the origin (Figure 14-(c)):

Uu=Rx*Ty *i

10 0 —Xu
7.0 1 0 D (10)
2710 0 1 o0

00 0 1

As a next step, the trapezoid has to be sheared with H, so that it is symmetrical to the y-axis
(Figure 14-(d)), i.e. that the line passing through the centre of the bottom edge and centre of the
top edge is collinear with the y-axis:u

_ Ty xR*Ty x(t; +t3)

2
1 —xy/y. 0 O (11)
H=|0 1 0 0
0 0 10
0 0 0 1

Now, the trapezoid is scaled by applying S, (Figure 14-(e)), so that the angle between the two side
lines containing the two side edges (t,, t;) and (t;, t,) is 90 degrees, and so that the distance

between the top edge and the x-axis is 1:

17
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u=Hx*T,*R*T; xt,

1/x, 0 0 0 (12)
s =| 0 /wm 00
1 0 0 1 0
0 0 0 1
The following transformation N (Figure 14-(f)) transforms the trapezoid to a rectangle:
1 0 0 O
101 0 1
N=1 01 o (13)
01 0 1

Then, the rectangle is translated along the y-axis until its centre is coincident with the origin. This
is done by applying T;(Figure 14-(g)). After this transformation the rectangle is symmetrical to the

x-axis as well:

u=Nx*xS *HxT, xR+xT; xt,
v=Nx*xS; *H*T,*R*T xt,

0
10 0
01 0 —(2+22)2 1)
T_
3_001 Wu WV
00 0 (1’

As a last step the rectangle has to be scaled with S, (Figure 14-(h)) along the y-axis so that it

covers the front side of the unit cube:

u=Ty*xN*S;*H*T, *R*T; xt_0

1 0 0 0
S, = 0 _Wu/Yu 0 0 (15)
2 0 0 1 0
0 0 0 1
Now the trapezoidal transformation N; (Figure 14-(i)) can be computed as follows:
Np=S,%T3*x N+S;*H+*T, *R*T, (16)

18
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Figure 14 — TSM transformations matrixes: (a) T;; (b) R; (¢c) T; (d) H; (e) S;; (f) N; (g) Ts; (i) The

final matrix Ny.

3.1.4 Focus Region on Shadow Maps

Figure 4 demonstrates one of the problems of the trapezoidal transformation N, to T, given a
trapezoid containing four triangles, like shown in (a). N, has the effect of stretching the top edge
of the into a unit length. In this case, the top edge is relatively short compared to the base edge,
and therefore the stretching results in pushing all the showed triangles towards the bottom of the
unit square as showed in (b). This means that the region near the top edge (i.e., close to the near
plane) eventually occupies a major part of the shadow map, which results in over-sampling of
objects near the eye, sacrificing resolution of the other objects (such as the second to fourth

triangles from the top show).
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0%
‘ 20 line
_‘_ .‘
= i
{a) trapezoidal (b} trapezoidal space {c) trapezoidal space
approximation in L due to the $0% mle

Figure 15 - For the trapezoid in (a), its corresponding T is shown in (b). In this case, we obtain an
over-sampling for a small region of E. (c) For a different trapezoid computed with the 80% rule
(having the same top and base lines), its trapezoidal transformation maps the focus region (the

upper part of the trapezoid) to within the first 80% in the shadow map.

The 80% rule allows to for all the p, with the distance 6 from the top line, when applied the
trapezoidal transformation N,, to be mapped to some point within the 80% line in T. This increases

the resolution of the far objects, while maintain a high detail for objects near the eye.

3.1.5 Conclusion

Trapezoidal Shadow Maps shows that it is practical and maps well to graphics hardware. It is a
reasonable heuristic to generate shadow maps of good resolution, but the issues on over-sampling
and under-sampling remain for various situations such as in the duelling frusta case where the

trapezoidal approximation does not have any particular advantage over other approximations.

20



Algorithm Descriptions

3.2 Parallel Split Shadow Maps

Parallel split shadow maps is a method to reduce the amount of aliasing error in shadow maps by
producing an optimized distribution of shadow map texels. In large-scale environments the shadow
map might not have enough resolution in order to create detailed shadows in the scene. PSSM
splits the shadow maps in continuous discrete layers, in order to maintain the detail despite the

distance of camera.

standard shadow map

-t

{cs) 7

1024x1024

.c/.f < v3 ﬂ_ paruliei sph'r shadow maps

spli planes
ABh 4

512x512 51 2x512 512x512

Figure 16 - Split the view frustum into three parts, and shadow maps with the same resolution are

generated for the split parts.

The processing steps of the PSSMs scheme are outlined in the following:

1. Split the view frustum into multiple depth parts;
Split the light's frustum into multiple smaller ones, each of which covers one split part also
the objects potentially casting shadows into the part;

3. Render a shadow map for each split part;

4. Render scene shadows for whole scene.

3.2.1 View Frustum Split

The “splitting” is basically dividing the view frustum in to smaller continuous planes, to which a

shadow map will be attributed to each of those planes. These planes are continuous because the
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“split” occurs according certain intervals along the z axis. Figure 16 shows an example of m split

planes along the z axis.

ight iy § § & U &
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Figure 17 - Along the z axis the view frustum is split into parts by using the split planes at

(cilo<i<sm}

In Figure 17, the light beams through a texel with the size ds x ds in normalized texture space
(i.e s € [0,1]) falls on a surface with the length dz in world space. The size of the view beams dp
on the screen projected form the surface is approximately ndy/z. ¢ and 6 denote the angles

between the surface normal and vector to the screen and the shadow map plane respectively.

Shadow map under-sampling occurs when dp is larger than the pixel size of the screen, this can
happen when perspective aliasing (dz/zds) or projection aliasing (cos ¢ / cos8) becomes large.
Projection aliasing usually happens when the light’s direction is almost parallel to the surface. Since
projections aliasing is heavily related to the scene’s geometry details, the only solution to the
problem is to increase the sampling density, inevitably increasing the scene analysis time. On the
other hand, perspective aliasing comes from the perspective foreshortening effect, which can be

reduced by applying a global transformation to warp the shadow map texels.
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Zhang et al works present three split schemes in order to deal with different distribution of

perspective aliasing errors:

e Logarithmic split scheme;
e Uniform split scheme;
e Practical split scheme.

C—Jover-sampling
Shadow Map Space —— under-sampling
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(a) uniform split scheme  (b) logorithmic split scheme (c) proctical split scheme

Figure 18 - Different types of spilt schemes

3.2.2 Logarithmic Split Scheme

Logarithmic split scheme is based on optimal distribution of perspective errors, which theoretically
evens distribution of perspective aliasing errors over the whole depth range. This scheme assumes
that the shadow map accurately covers the view frustum and no piece of the resolution is wasted
on invisible parts of the scene.

clo9 = n(f/n)im (17)

4

The main drawback of this split scheme is that the lengths of split parts near the viewer are too
small, so few objects can be included in these split parts. This is because of the main assumption
that the shadow map covers the view frustum, which requires that every z € [n, f] must be

mapped to a unique s € [0,1] in the normalized texture space, but this cant be satisfied in
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practice, resulting in under-sampling for parts further from the viewer and over-sampling for parts

nearer the viewer.

3.2.3 Uniform Split Scheme

The simplest split scheme is to place the split planes uniformly along the z axis:

CHMIOT™ — 4 (f —n)i/m (18)

i

This split scheme results in under-sampling at the points near the view and over-sampling in points
further from the view. In contrast to the logarithmic split scheme, uniform split scheme results in

the theoretically worst aliasing distribution.
Practical Split Scheme

Practical split scheme consists in combining the previous two split schemes to produce a moderate
result between the theoretically optimal and worst sampling densities in the extreme cases, the

objects near the viewer and the objects further form the viewer.

In Figure 18, practical split scheme produces moderate sampling for both near and far split parts.

Combining equations 17 and 18, the split positions C; can be calculated by the following equation

_ (Cilog + Ciuniform)

- + 8pigs, VO < i <m (19)

C;

The variable 6,;,; iS @ non-negative bias that can be used to accurately adjust clip positions, if

necessary for the application.
PSSMs and Scene Rendering

After the lights frustum is split into W;, each split part V; is rendered to a shadow map T;in the
W; space. These shadow maps can have a fixed size, which is helpful for the uniform and practical

splits.
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With the PSSMs generated in previous step, shadows shadow effects can be now synthesized into
the virtual scene. Like standard shadow mapping, each pixel should be transformed into the light

space when determining if the pixel is shadowed or not. The differences here are:

1. The correct shadow map T; must be selected;

2. The pixel has to be transformed into W; rather W.
After this, for each rasterized fragment, the sampling must come from the appropriate shadow
map based on the depth value of the fragment. Since the coordinates are measured in clip space,

C; is transformed to ¢/ below:

ciP = 7 i n(n - —) € [0,1] (20)

Then, the pixel in the fragment buffer with the depth value z°% , if the z¢#» € [¢iP ¢S

the shadow map T;, .., is Selected. Consequently, this fragment is transformed into the split light’s

frustum W;,, 4., for the depth comparison.

3.2.4 Conclusion

While parallel-split shadow maps is an intuitive and simple implementation of shadow rendering,
and using the practical split scheme, the quality of the shadows becomes superior to standard
shadow map, without complicated scene analysis. However, without using hardware acceleration,

the performance drop caused by multiple rendering passes.

3.3 Variance Shadow Mapping

Variance Shadow Mapping is a technique that calculates, besides the usual depth value, the depth-
squared values. These values will then be used to calculate the probability of each point being lit or
not. But due to the fact that the lower bound of brightness is an approximate value derived from
using only one single occluding object , if a scene has a high depth complexity, there might be

light leaking artefacts (areas appearing lit instead of shadowed).
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Figure 19 — Variance Shadow Map light leaking example.

3.4 Hybrid Methods

There are been developments to combine ray traced shadow effects with rasterization techniques
[17], the most common methods use shadow mapping, due to its very efficient algorithm
performance, to perform a first pass of the scene, indicating the areas in shadow with the shadow
map, followed by a selective ray tracing algorithm to determine the shadow of the pixel that have
a unreliable shadow status. This greatly reduces the number of ray being cast and intersection
calculations, going better results when compared to shadow maps initial results, with reduced

performance times when compared to pure ray tracing solution.
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3.4.1 Hybrid GPU-CPU Renderer

The Hybrid GPU-CPU Renderer [18] presented an algorithm to render shadows by mixing shadow
mapping and ray tracing. The algorithm creates a shadow map with a bilinear PCF. Then for each
pixel in the interpolated result and if the result is 0 or 1 then the four surrounding will agree and
the pixel will be lit (1) or shadowed (0). If the result is between 0 and 1, then the four surrounding
pixels aren’t in agreement the state of the pixel, so the pixel is marked. The ray-tracer will then

calculate the shadowing for each uncertain pixel marked in the shadow map.

This algorithm is also adaptable to the type of light source used in the scenery. If the light source
is a point light, the method describe before is used. But if the light source is an area /ight, the light
source will be replaced by eight point lights, one in the centre of the area and the other seven will

surround this area. In this case, the agreement will be done using the eight shadow maps.

Figure 20 — Shadow Demonstration. Left: Pixels that agreed to be shadowed; Middle: Green pixels indicate

the marked pixels for the ray-tracer; Right: Shadows computed for the marked pixels by the ray-tracer.

This algorithm is robust if the shadow map resolution is adequate to the tessellation of the scene,
but this is difficult because the scene has to be carefully model using a constant tessellation
parameter for all objects. Errors may still occur if the four pixels are in agreement are incorrect,

with four pixels indicated that a point is lit, yet the point should be in shadow.
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Figure 21 — Soft Shadow Demonstration. Left: Soft shadows by the eight shadow maps; Middle: Blue pixels

marked for the ray-tracer; Right: Soft shadows computed by the ray-tracer.

3.4.2 Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

The Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows is used to create alias-free
shadows. It creates a conservative shadow map (CSM) that similarly to the normal shadow map,
but in this case a triangle will be saved in a pixel if it overlaps said pixel in any plane, not only in

the centre. This is done as shown in Chapter 2.

The CSM consists of a 2 layer texture where one layer contains all the expanded triangles in the
scene (BGSM), and the other layer contains all of the shrunken triangles in the scene (SGSM). In
the scene rendering step, the pixel will be analysed using both layers in the CSM. If both layers are
in agreement with the stat of the pixel, the pixel will be light or shadowed in the final image. If the
layers disagree on the state of the pixel, the pixel will be classified as “uncertain”. Afterwards, for
each “uncertain” pixel discover is sent to a ray tracer to verify the state of the pixel. This ray-tracer
will use the information of the triangle saved by the pixel and a kD-tree in order to speed up
intersection tests. The information of the depth at which the triangle is found will allow for the ray-
tracer to only start testing for intersections from there, as there should be no other triangle

between this point and the light source.

As can be seen in Figure 22, there are many areas classified as uncertain that commonly produce
correct results using shadow maps, namely the triangle junctions for triangles in light. The
performance of this algorithm is highly dependent on the geometry tessellation hence for highly

tessellated models a large number of light rays will be required.
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Figure 22 — Example of the “uncertain” areas (green) when using the Hybrid GPU Rendering

Pipeline for Alias-Free Hard Shadows.
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4 Conservative Shadow Mapping with

Adjacency

In Hertel's work, the shadow map is created with 2 layers. One layer views the triangles of the
scene larger than normal, therefore each triangle is expanded a certain size A, which results in the
big geometry shadow map (BGSM). The other layer of the shadow map views the triangles in the
scene smaller than normal, therefore each triangle is shrunk a certain size A, which results in the

small geometry shadow map (SGSM).

The size A can be calculated by the following equation:

- G

Where I,,, and h,,, are the length and height of the shadow map layer, and 7 is a user defined

variable that indicates the amount of pixels each triangle will expand/shrink.

When the shadows are rendered in to the scene, the shades will look to the corresponding texel in

both layers and reach one of the following conclusions.

e If both texels agree that the pixel is in light (¢t = 1), the pixel in the scene will be in light;

e If both texels agree that the pixel is in shadow (t = 0), the pixels in the scene will be in
shadow;

e If both texels disagree on the state of the pixel, the pixel is classified as “uncertain” and a
ray is created to trace the final result.

Although Hertel’'s work allows for an effective method of determining “uncertain” pixels in scene,
the method could go further since many of the “uncertain” pixels are not that uncertain. Figure 23
shows the results of conservative rasterization on a simple plane consisting of two triangles. In the
BGSM (a), the triangles are individually expanded, resulting in overlapping in the centre of the
plane and the unbinding of the edges of triangles. Since this is a shadow mapping, the overlap is
not an issue and the edges can be easily clipped in the fragment shader to reduce further
inconsistencies. In the SGSM (b), the triangles are shrunken individually resulting in the tearing of

the geometry in SGSM. When comparing the SGSM with the BGSM, these tears will be considered
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in light in the SGSM and be shadowed in the BGSM, and as result of the test, will considered as
“uncertain” pixels and create rays to be traced to determine if they are shadowed or not. This is an

unnecessary test, since even normal shadow map method would have considered shadowed.

Figure 23 — Geometry Transformations on a pair of triangles that form a plane: (a) Expansion of
the triangles in BGSM; (b) Shrinking of triangles in SGSM, without adjacency information; (c)

Shrinking of triangles in SGSM, with adjacency information.

This work seeks to reduce the amount of “uncertain” pixels obtained by adding to Hertel’s work the

adjacency information to produce a more accurate SGSM (c).

OpenGL gives the geometry shader the information of a triangle and all triangles that share an
edge with it, as showed in Figure 24.
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Figure 24 — Central triangle (orange) and the adjacent triangles (green) provided to the geometry

shader

The geometry shader receives an array of vertices, vertex,,; = {v0,v1,v2,v3, v4,v5}. As shown in
Figure 24, the central triangle T0, is formed by {v0, v2,v4}, T1 is formed by {v0,v1,v2}, T2 and T3
are formed by {v2,v3, v4} and {v4, v5, v0} respectively.

As in conservative rasterization, we can calculate the edges of the new triangles. Following the

example of equation (1) in chapter 2.3, the other edges can be calculated like this:

elT1 = vl —v0; e2T1 = v2 — vl;
e1T2 = v3 — v2; e2T2 = v4d — v3; (22)
elT3 = v5 — v4; e2T2 = v0 — v5;

These edges are useful to determine if the adjacent triangle exists and determine the facing of the
triangles relative to the light. This can be done by the following algorithm for any adjacent triangle
(x €{1,2,3)):
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bool txLight //Indicator if the Tx is facing the light/exists

if (1 (elTx) < 0.001 )){ //Tx exist
//Calculate the normal of Tx
normalTx = ( (vec3(elTx), vec3(e2Tx) ));
if ( (normalTx, lightDir) > 0)
txLight = true; //Tx is facing the light
else
txLight = false; //Tx is not facing the light
}
else { //Tx doesn't exist
txLight = true;
}

The first “if"” condition is to determine that if the Tx vertex exists. In OpenGL, if adjacent triangle
doesn't exist the previous vertex is repeated. For example, if vl doesn't exist, vertex,,; =
{v0, v0, v2,v3,v4,v5}. The second “if” condition is to determine the facing of the adjacent triangle,
which will effect of the shrinking of the central triangle, to do this we calculate the normal of the
triangle Tx and produce the dot of the normal and the light direction. If it's positive, the triangle
Tx is facing the light, therefore it is in light. Otherwise, the Tx is not facing the light, therefore it is

in shadow.

Any adjacent triangle that doesn’t exist will be considered to be in light, in order to simplify the

shrinking of the central triangle.

We are only altering the triangles that are in shadow, since these triangles are the ones that the
shadow map technique uses to project the shadows into the scene, so we can assume that the
central triangle is in shadow. Since each central triangle has three adjacent triangles, at most, we'll

have to account the following scenarios:

¢ None of the adjacent triangles is in shadow;
e One of the adjacent triangles is in shadow;
e Two of the adjacent triangles are in shadow;
e All of the adjacent triangles are in shadow;

For all of these cases, the shrunken edges produced in normal conservative rasterization must be

calculated, since these edges are used to create the new triangle.
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4.1.1 0-in-Shadow

The simplest case is when none of the adjacent triangles is in shadow. Basically this case is treated
like it was a single triangle, following the same process as in normal conservative rasterization,

explained in chapter 2.3.

Figure 25 — 0-in-shadow case: the original triangle (orange) is shrunk using normal conservative

rasterization (blue).

This mostly occurred in isolated triangles in the scene or in particular geometry constructions
where only one triangle is in shadow, while the others are in light. Although this is a rare and

mostly unrealistic scenario, it is a possibility and therefore it must be dealt with.

4.1.2 1-in-Shadow

The idea of this case is to shrink only the edges of the triangles that are in light to maintain the

connection of the shadowed triangles. To do this we must calculate the intersection between the

34



Algorithm Descriptions

new lines formed by the shirking of the lighted edges, and the old line of the shadowed edge, as

demonstrated in Figure 26.
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Figure 26 - 1-in-shadow case: The new triangle (blue) is composed by {b2, al, v'4}.

Note that bx and ax in figure 4 are not the same points as the sbx and sax in Figure 10. The sbx
and the sax are the shifted position of the vertexes of the original triangle, while bx and ax are the
intersection points of the new edges. They can be the same, but it's not safe to assume so, due to

floating point errors.

Since we already calculated the shrunken triangle, 1’4 is already taken of. To determine the

vertices b2 and a1, we'll have to find the following line intersections:

e The intersection point of the old edge e0 with the new edge ¢’2, which will give us b2;
e The intersection point of the old edge e0 with the new edge e'1, which will give us al;

Using the /ineLinelntersection function described in chapter 2.3, these points can be easily

determined:
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b2 = lineLinelntersection(v0,v2,v'4,v'0,n, v0); (23)
al = lineLinelntersection(v0,v2,v'2,v'4,n, v2);

After obtaining the new vertices, the geometry shader emits the proper shrunken triangle that
maintains the connection with the adjacent shadowed triangle. Figure 27 shows all possible

scenarios where only one of the adjacent triangles is in shadow.

Figure 27 — Three simplified scenarios where the 1-in-Shadow occurs.

These are the easiest cases; there is only the need to calculate two more additional points in order

to create the appropriate shrunken triangle.

4.1.3 2-in-Shadow

In these cases, two of the adjacent triangles are in shadow, while the other is in light. The obvious
solution is to shrink the edge of the triangle in light. In the example showed in Figure 6, that would

result in a new triangle formed by the vertices {v0, a1, b1}.

But due to the restrictions of the adjacency information in OpenGL, the geometry shader only has
access to six vertices at a time, and v0 could be part of a triangle that could be in light, but in the
current group of vertices we don‘t have that information. The only safe assumption we can do is
consider that v0 is in light in another group of vertex,,;, so we'll cut out v0 of the set and creating

two new triangles in the geometry shader:
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i

Figure 28 — 2-in-Shadow case: The new geometry is formed by the triangle {b2, a1, b1} and the
triangle {b1, a0, b2}.

This will result in the blue and light blue triangles in Figure 28. Like before we'll need to determine

the intersections of the old and new edges:

e The intersection point of the old edge e2 with the new edge e’1, which will give us b1;
e The intersection point of the old edge e0 with the new edge ¢’1, which will give us a1l;
e The intersection point of the new edge e’2 with the old edge 0, which will give us b2;
e The intersection point of the new edge e’0 with the old edge e2, which will give us a0;

Using the /JineLinelntersection function described in chapter 2.3, these points can be easily

determined:

b1 = lineLinelntersection(v4, v0, sal,sbl,n, v4);
al = lineLinelntersection(v0,v2,sal, sb1,n,v2); (24)
b2 = lineLinelntersection(v0, v2,sa2,sb2,n, v0);
a0 = lineLinelntersection(v4,v0, sa0, sb0,n, v0);
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After obtaining the new vertices, the geometry shader emits two triangles as depicted in Figure 29:
a large triangle, containing the central triangle (dark blue), and a smaller triangle, to cut the corner

between the adjacent triangles that are in shadow (light blue).

Figure 29 — Three simplified scenarios where the 2-in-Shadow occurs.

These cases are more complex than the previous ones, as they required the emission additional
geometry to maintain the connections. In a large number of triangles this method can become

more taxing on the GPU.

4.1.4 3-in-Shadow

In this case all the adjacent triangles are in shadow, therefore there is no actual edge to shrink.
However the issue that occurred in the 2-in-shadow cases still occurs, we don’t know if any of

vertexes in the original triangle is in light at another vertex,,;. Following the same assumption as
before, the only thing we can do is to clip the corners of the original triangle, as it's showed in

Figure 8. In order to do so, we must calculate all the following intersections:

e The intersection point of the new edge ¢’0 with the old edge 2, which will give us a0;
e The intersection point of the new edge e’0 with the old edge e1, which will give us b0;
e The intersection point of the new edge e’1 with the old edge 0, which will give us a1l;
e The intersection point of the new edge e’'1 with the old edge e2, which will give us b1;
e The intersection point of the new edge e’2 with the old edge e1, which will give us a2;
e The intersection point of the new edge e’2 with the old edge 0, which will give us b2;

Using the /fineLinelntersection function described in chapter 2.3, these points can be easily

determined:
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a0 = lineLinelntersection(v4,v0,v'0,v'2,n, v0);
b0 = lineLinelntersection(v2,v4,v'0,v'2,n,v2);

al = lineLinelntersection(v0,v2,v'2,v'4,n,v2); (25)
b1 = lineLinelntersection(v4,v0,v'2,v'4,n, v4);

a2 = lineLinelntersection(v2,v4,v'4,v'0,n, v4);
b2 = lineLinelntersection(v0,v2,v'4,v'0,n,v0);
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Figure 30 — 3-in-Shadow case: The new geometry is formed by the four triangles: {b1, a0, b2},
{b2,a1,b1}, {b1,al,a2} and {a2,al, b0}.

After obtaining the new vertices, the geometry shader emits four triangles, depicted by the blue

and light blue lines in Figure 8.

This is the worst case, since it's the most common situation when treating shadowed objects.

When a side of and objects is shadow, great number of those triangles that are part of the object
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will fall in this case, and for each of those triangles, four are emitted to shrink and maintain the
connectivity of the object.

4.1.5 Worst Case Errors

Despite these upsides, Figure 31 shows an example where our approach fails to completely
maintain the connections of all the triangles in the geometry. The plane formed by four triangles in
(b) is shrunk with our approach. While each triangle have the information of the adjacent triangles
that share an edge, the triangles with the same colour share only a single vertex, and so don't
appear in the adjacency list vertex,q;, Which causes the vertex in the middle to disappear, since
each triangle will clip it out, resulting in a hole in the geometry. This is due to the restrictions of
the adjacency information of only three adjacent triangles, and the resulting assumptions made in
2-in-Shadow and 3-in-Shadow. A way to counteract this problem is to provide the shader all of the
adjacency information of the scene before rendering, but in large scenes, this adjacency list would

have to list the adjacency of billions of triangles, which becomes impractical.
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Figure 31 - Worst Case Scenario: (a) Normal conservative rasterization; (b) Conservative
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rasterization with adjacency.
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Still, this provides a superior alternative that normal conservative rasterization, where the triangles
would a shrunk inwards and causer tears in the geometry. While at (a), rays would have to be
traced from all the pixels in the tears, in (b) the only pixels in the holes would have a ray created

to be traced.

4.1.6 Conclusion

This approach to conservative rasterization solves the problem of tearing when shrinking triangles
in the geometry. By takin in the adjacency information provided by OpenGL, we can determine
efficiently each edges of a triangle are safe to shrink to maintain the connectivity of the triangle.
Although these transformations will result in more triangles being emitted by the geometry shader,
this will not have an impact in the result of the shadow map, since these overlaps will occur in the
places where tears would occur normally, filling them in the fragment shader. The one perceivable
impact is in performance, since we are emitting more triangles than in the normal Conservative
Rasterization, but this leads to less rays being traced in the following step, as demonstrated in the

next chapters.

For future, the possibility of incorporating Embree’s ray tracing kernels, developed by Intel, can
help determine more accurately the cost of tracing a shadow ray from the scene, because
NVIDIA’s OptiX Prime does not encapsulate the entire algorithm of which ray tracing is a part,
thus, prime cannot refactor the computation for performance. This would also be useful as

comparition between NVIDIA’s OptiX engine and Intel’s Embree.
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5 Algorithm Testing

This chapter will start by presenting the scenes used and the ray tracing test results obtained by
OptiX Prime. After this, we'll demonstrate the pixels results obtained by using standard shadow
mapping, shadow map and ray tracing hybrid presented by Hertel’'s work, and our approach. As for

the specifics of the tests, each test will count the amount of pixels in different states:

e Pixels Facing the Light (PFL), i.e. dot(n,l) > 0

e Pixels Against the Light (PAL), i.e. dot (n,l) <0

e PFL — Pixels in Light;

e PFL — Pixels in Shadow.
The tables present percentages in relative to the size of the viewport, but also relative to the type
of pixels they represent, for example the PFL encapsulate the pixels in light and in shadow, so the
percentages will try represent the split between these cases within the PFL. Hertel’s and our
approach will contain two more states, to determine the amount of “uncertain” pixels found during

the rendering steps:

e Pixels in Light — “Uncertain”;
e Pixels in Shadow — “Uncertain”.
Since each of the “uncertain” pixels will be corrected into light or shadow, these percentages will

represent the amount of “uncertain” pixels that appeared in each state.

Finally, each shadow map test will be compared to the Optix Prime results to determine the

amount of similarity between the tests.

Tests were also done with shadow map resolutions of 512x512, 1024x1024, 2048x2048 and
4096x4096, with viewport resolutions of 512x512, 1024x1024 and 1920x1080 (FullHD). The view
frustum will have the minimum size needed to contain the objects being seen by the camera,

including also all the geometry that could influence lighting, from each one of the viewpoints.
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5.1 Test Scenes

The following images will show the scenes and that will be used for testing and the various

viewpoints that will be used for said tests.

The first scene consists of a scene with two trees, a lamp, a flower box and a bench on a plane.
The scene has a total of 55026 triangles. This scene will be called "Bench”. Information of light,

camera and field of view of this scene can be observed in Table 1.

Viewport Coordinates
X y z
Side Position -23,277 18,541 30,143
Direction 0,397 -0,644774 -0,652
With Position -37,034573 35,208973 -8,597797
Direction 0,605439 -0,732089 0,312232
Against Position 27,214222 27,875109 27,032139
Direction -0,560848 -0,777942 -0,283293
Light Direction 0,744 -0,408 0,527
View Frustum Far: 120,0 Near: 15,0 FoV: 60°

Table 1 -Information of viewports used for the Bench Scene.

Figure 32 - The side (left), with (centre) and against (right) viewpoints of the first scene.

The second scene, named “Flowers”, will also use the same models as the first scene, but will

closely observe the shadows cast by the flowers. The flowers are modelled with very small
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triangles, allowing the visualization the effect of small geometry on the algorithm. In Table 2 the

information of the camera of each viewpoint can be viewed.

Viewport Coordinates
X y z
Side Position -3,615331 22,376335 2,338565
Direction -0,387214 -0,852832 0,350347
With Position -17,561422 24,968716 4,010894
Direction 0,386402 -0,873032 0,297505
Against Position -3,263903 24,423452 12,998949
Direction -0,239566 -0,958412 -0,155095
Light Direction 0,744 -0,408 0,527
View Frustum Far: 120,0 Near: 15,0 FoV: 60°

Table 2 -Information of viewports used for the Flower Scene.

Figure 33 -The side (left), against (centre) and with (right) viewpoints of the second scene.

The third scene, called “Trees”, will use the same models as the second scene, but will focus

attention on an area of the ground where only the shadows of the trees will be seen. Since the

trees are constituted by big triangles, this will allow the evaluation of the effect of big triangles on

the results. Information of cameras of each viewpoint can be observed in Table 3.

Viewport Coordinates
X y z
Side Position 76,844704 28,391548 -31,870102
Direction -0,232891 -0,79644 0,558073
With Position 42,947086 24,103859 -27,831772
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Direction 0,415959 -0,784187 0,460467
Against Position 90,805244 35,846294 24,061787
Direction -0,421061 -0,852832 0,350347
Light Direction 0,744 -0,408 0,527
View Frustum Far: 120,0 Near: 15,0 FoV: 60°

Table 3 -Information of viewports used for the Trees Scene.

Figure 34 - The with (left), side (centre) and against (right) viewpoints of the third scene.

5.2 Ray tracing Scenes

First set of tests is to determine the number of pixel states obtain in OptiX Prime. Since the ray
tracing lighting is the most accurate method to determine the lighting of the scenes, these results

will serve as base of comparison of the accuracy for the rest of the methods.

As demonstrated in the following tables, the distribution of the pixels states maintain the same
thought the viewport sizes. The major change occurs when the aspect ratio changes to 1.78, as

demonstrated in the 1920x1080 viewport, where the ratios drastically change the results.

Table 4 shows the results for the best case test for many of the methods, since it doesn’t possess
many pixels not facing the light, since it most of the shadows are cast onto the floors by the trees,
and the majority are in light than in shadow. The change of ratio increased slightly the amount of

pixels in change, as well adding some PnFLs to the image.

Scene Side
Viewport Trees
Pixel Types Viewport Size

45



Algorithm Testing

512x512 1024x1024 1920x1080
PFL 262144 (100,00%) 1048576 (100,00%) 2073445 (99,99%)
PnFL 0 (0,00%) 0 (0,00%) 155 (0,01%)
PFL—in Light 168949 (64,45%) 675789 (64,45%) 1320285 (63,38%)

PFL—in Shadow

93195 (35,55%)

372787 (35,55%)

753160 (36,62%)

Table 4 — Optix Prime results for the best case: PFL represents the Pixels Facing the Light and

PnFL represents the Pixels not Facing the Light; The PFLs are then split into the pixels in Light and

the pixels in Shadow.

Figure 35 - Best Case Result for Prime; The Green Pixels represent the PnFL pixels; Viewport Size:

1920x1080.

Table 5 shows the results for the worst case test for many of the methods, due the flowers

possess very small triangles, which causes many of the errors in the shadow map techniques. The

change of ratio decreased the amount of PFnL pixels, while increasing the amount of light pixels
from almost half (~53%) to more than 2/3 of the image (~70%).

Scene Against
Viewport Flower
pixel Types Viewport Size
512x512 1024x1024 1920x1080
PFL 246986 (94,21%) 987819 (94,21%) 2006003 (96,74%)
PnFL 15158 (5,79%) 60757 (5,79%) 67597 (3,26%)
PFL—in Light 130890 (52,99%) 523452 (52,99%) 1399266 (69,75%)
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| PFL—in Shadow |

116096 (47,01%)

464367 (47,01%)

606737 (30,25%)

Table 5 - Optix Prime results for the worst case: PFL represents the Pixels Facing the Light and

PnFL represents the pixels; The PFLs are then split into the pixels in Light and the pixels in
Shadow.

Figure 36 - Worst Case Result for Prime; The Green Pixels represent the PnFL pixels; Viewport

Size: 1920x1080.

Table 6 shows the results for the average case test for many of the methods, since the errors in

the flowers still exist; these appear in smaller number, not becoming more prominent than the

projected shadows of the bench and trees.

pixels, while increasing the amount of light pixels from ~59% to ~60% of the image.

The change of ratio decreased the amount of PFnL

Scene Against
Viewport Bench
pixel Types Viewport Size
512x512 1024x1024 1920x1080
PFL 255894 (97,62%) 1023625 (97,62%) 2045839 (98,66%)
PnFL 6250 (2,38%) 24951 (2,38%) 27761 (1,34%)
PFL—in Light 151058 (59,03%) 604276 (59,03%) 1296685 (63,38%)

PFL —in Shadow

104836 (40,97%)

419349 (40,97%)

749154 (36,62%)
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Table 6 - Optix Prime results for the average case: PFL represents the Pixels Facing the Light and
PnFL represents the pixels; The PFLs are then split into the pixels in Light and the pixels in
Shadow.

N

Figure 37 - Average Case Result for Prime; The Green Pixels represent the PnFL pixels; Viewport
Size: 1920x1080.Shadow Mapping Errors

These sets of test will demonstrate the amount of pixels in light and shadow obtained by the
following techniques. We'll also compare the accuracy of these numbers to determine where the

techniques fail, the size of the error in the picture obtained.

For each case, we'll demonstrate the best case, worst case and average case. Since shadow
mapping results varies according to the size of the shadow map, for each view port will compare
the results for the different sizes of SM.

The PFL and PnFL obtained in the following test are not showed due to these maintain constant
thought the tests, which make sense, since the amount of pixels facing the light and not facing the

light are not influenced by the shading technique, but the geometry information.
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5.2.1 Normal Shadow Mapping

Now the shadow mapping results will be compared against the ray-tracer. Although, it maintains a

similar distribution of light pixels (64%) and shadow pixels (36%). The test performed show that

the majority of the errors of shadow map happen in the contours of the shadows.

More test results are present in section XX in the Appendix

Scene Side
Viewport Trees
Viewport Pixel Tvbes Shadow Map Size
Size yp 51212 102472 204872 4096”2
oiels in Lisht 168951 168878 168973 168929
g 64,45% 64,42% 64,46% 64,44%
oixels in Shadow 93193 93266 93171 93215
3555% 35,58% 35,54% 35 56%
. 167335 168094 168558 168723
5)1(2 Light - Correct 99,04% 99,54% 99,75% 99,88%
1616 784 415 206
512 ight -
Light - Incorrect 0,96% 0,46% 0,25% 0,12%
Shadow - Correct 91579 92411 92780 92989
98,27% 99,08% 99,58% 99,76%
Shadow - Incorrect 1614 855 391 226
1,73% 0,92% 0,42% 0,24%
oiels in Linht 675861 675618 675924 675793
& 64,46% 64,43% 64,46% 64,45%
oixels in Shadow 372715 372958 372652 372783
35 54% 35,57% 35,54% 35 55%
. 669218 672393 674183 674960
10X24 Light - Correct 99,02% 99,52% 99,74% 99,88%
6643 3225 1741 833
1024 ight -
0 Light - Incorrect 0,98% 0,48% 0,26% 0,12%
chadow - Correct 366144 369562 371046 371954
98,24% 99,09% 99,57% 99,78%
Shadow - Incorrect 6571 3396 1606 829
1,76% 0,91% 0,43% 0,22%
1920 oixels in Lisht 1321779 1319273 1320432 | 1320291
X g 63,75% 63,63% 63,68% 63,68%
1080 oiels in Shadow 751666 754172 753013 753154
(FullHD) 36,25% 36,37% 36,32% 36,32%
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Light - Correct 1304537 1311354 1316287 1318214
98,70% 99,40% 99,69% 99,84%
Light - Incorrect 17242 7919 4145 2077
1,30% 0,60% 0,31% 0,16%
Shadow - Correct 735918 745241 749015 751083
97,90% 98,82% 99,47% 99,73%
Shadow - Incorrect 15748 8931 3998 2071
2,10% 1,18% 0,53% 0,27%

Table 7 — Normal Shadow Mapping results for the best case;

As seen in Table 7, the errors in the contours appear more in the shadow pixels than in the light
pixels, with an average difference of 0,38%. The amount of errors decrease with the increase of
the shadow map resolution, with ~0,37% decrease in the light pixels and a ~0,50% decrease in
shadow pixels. But there is still around 4148 (0,2%) error pixels in the highest shadow map

resolution of in FullHD image,

Figure 38 - Best Case Result for Normal Shadow Mapping; Blue pixels represent the Light -
Incorrect and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow
Map Size: 4096x4096.

Scene Against

Viewport Flowers
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Viewport Pixel Tvpes Shadow Map Size
Size yp 51272 102472 204872 4096”2
oicels in Lisht 131133 131384 131536 131472
g 53,09% 53,19% 53,26% 53,23%
oivels in Shadow 115853 115602 115450 115514
46,91% 46,81% 46,74% 46,77%
. 128612 129437 130070 130367
> )1(2 Light - Correct 98,08% 98,52% 98,89% 99,16%
2521 1947 1466 1105
512 ight -
Light - Incorrect 1,92% 1,48% 111% 0,84%
chadow - Correct 113575 114149 114630 114991
98,03% 98,74% 99,29% 99,55%
Shadow - Incorrect 2278 1453 820 >23
1,97% 1,26% 0,71% 0,45%
oixels in Lisht 524600 525407 526086 525736
g 53,11% 53,19% 53,26% 53,22%
oiels in Shadow 463219 462412 461733 462083
46,89% 46,81% 46,74% 46,78%
. 514423 517695 520181 521321
1OX24 Light - Correct 98,06% 98,53% 98,88% 99,16%
10177 7712 5905 4415
1024 ight -
0 Light - Incorrect 1,94% 1,47% 1,12% 0,84%
chadow - Correct 454190 456655 458462 459952
98,05% 98,76% 99,29% 99,54%
Shadow - Incorrect 9029 5757 3271 2131
1,95% 1,24% 0,71% 0,46%
oixels in Lisht 1401605 1402284 1401876 1401839
& 69,87% 69,90% 69,88% 69,88%
oiels in Shadow 604398 603719 604127 604164
30,13% 30,10% 30,12% 30,12%
1920 Lieht - Correct 1382439 1389470 1393259 1395775
X & 98,63% 99,09% 99,39% 99,57%
1080 Leht - Incorrect 19166 12814 8617 6064
(FullHD) g 1,37% 0,91% 0,61% 0,43%
Shadow - Correct 587571 593923 598120 600673
97,22% 98,38% 99,01% 99,42%
chadow - Incorrect 16827 9796 6007 3491
2,78% 1,62% 0,99% 0,58%

Table 8 - Normal Shadow Mapping results for the worst case;
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As seen in Table 8, the errors in the contours appear more in the light pixels than in the shadow
pixels, with an decrease of 0,38%. The amount of errors decrease with the increase of the shadow
map resolution, with ~0,36%(600 pixels) decrease in the light pixels and a ~0,50% (600 pixels)
decrease in shadow pixels . But there is still around 9555 (0,46%) error pixels in the highest

shadow map resolution of in FullHD image.

Figure 39 — Worst Case Result for Normal Shadow Mapping; Blue pixels represent the Light -
Incorrect and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow
Map Size: 4096x4096.

Scene Against
Viewport Bench
Viewport Pixel Types Shadow Map Size
Size 5122 102472 204872 409672
pixels in Light 151978 151213 151170 151186
59,39% 59,09% 59,08% 59,08%
o 103916 104681 104724 104708
5)1(2 Pixels in Shadow 40,61% 40,91% 40,92% 40,92%
. 149154 149930 150431 150727
>12 Light - Correct 98,14% 99,15% 99,51% 99,70%
Light - Incorrect 2824 1283 739 459
1,86% 0,85% 0,49% 0,30%
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chadow - Correct 102012 103553 104097 104377
98,17% 98,92% 99,40% 99,68%
Shadow - Incorrect 1904 1128 62/ 331
1,83% 1,08% 0,60% 0,32%
oiels in Lisht 607887 604879 604717 604788
g 59,39% 59,09% 59,08% 59,08%
oixels in Shadow 415738 418746 418908 418837
40,61% 40,91% 40,92% 40,92%
. 596703 599765 601761 602945
1OX24 Light - Correct 98,16% 99,15% 99,51% 99,70%
11184 5114 2956 1843
1024 ight -
0 Light - Incorrect 1,84% 0,85% 0,49% 0,30%
chadow - Correct 408165 414235 416393 417506
98,18% 98,92% 99,40% 99,68%
shadow - Incorrect 7573 4511 2515 1331
1,82% 1,08% 0,60% 0,32%
oivels in Light 1294206 1298218 1297078 1297634
g 63,26% 63,46% 63,40% 63,43%
oixels in Shadow 751633 747621 748761 748205
36,74% 36,54% 36,60% 36,57%
1920 Lieht - Correct 1278358 1287139 1291451 1294148
X & 98,78% 99,15% 99 57% 99,73%
1080 Leht - Incorrect 15848 11079 5627 3486
(FullHD) g 1,22% 0,85% 0,43% 0,27%
chadow - Correct 733306 738075 743527 745668
97,56% 98,72% 99,30% 99,66%
shadow - Incorrect 18327 9546 5234 2537
2,44% 1,28% 0,70% 0,34%

Table 9 - Normal Shadow Mapping results for the average case;

As seen in Table 9, the errors in the contours appear more in the shadow pixels than in the light
pixels, with an average difference of 0,08%. The amount of errors decrease with the increase of
the shadow map resolution, with ~0,52% decrease in the light pixels and a ~0,50% decrease in
shadow pixels. But there is still around 6023 (0,29%) error pixels in the highest shadow map

resolution of in FullHD image,
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Figure 40 - Average Case Result for Normal Shadow Mapping; Blue pixels represent the Light -

—~

Incorrect and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow
Map Size: 4096x4096.

5.2.2 BGSM Shadow Mapping

Although this is not a specific method, these tests results show one of the main concepts of 2 layer

shadow mapping methods: the pixels in light in the BGSM are always correct. In all three cases,

this is proven true.

The number of pixels to expand the triangles (0) in all tests was set to 1.

More test results are present in section XX in the Appendix

Scene Side
Viewport Trees
Viewport Pixel Types Shadow Map Size
Size 51272 102472 204872 409612
Pixels in Light 159700 164373 166581 167779
19 60,92% 62,70% 63,55% 64,00%
N Pixels in Shadow 102444 97771 95563 94365
512 39,08% 37,30% 36,45% 36,00%
Light - Correct 159700 164373 166581 167779
100,00% 100,00% 100,00% 100,00%
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Light - Incorrect 0 0 0 0
0,00% 0,00% 0,00% 0,00%
Shadow - Correct 93195 93195 93195 93195
90,97% 95,32% 97,52% 98,76%
Shadow - Incorrect 9249 4576 2368 1170
9,03% 4,68% 2,48% 1,24%
Pixels in Light 638724 657464 666366 671111
60,91% 62,70% 63,55% 64,00%
Pixels in Shadow 409852 391112 382210 377465
39,09% 37,30% 36,45% 36,00%
. 638724 657464 666366 671111
1024 Light - Correct 100,00% 100,00% 100,00% 100,00%
X . 0 0 0 0
1024 Light - Incorrect 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 372787 372787 372787 372787
90,96% 95,31% 97,53% 98,76%
Shadow - Incorrect 37065 18325 9423 4678
9,04% 4,69% 2,47% 1,24%
pixels in Light 1227165 1273867 1296451 1308494
59,18% 61,44% 62,53% 63,11%
Pixels in Shadow 846280 799578 776994 764951
40,82% 38,56% 37,47% 36,89%
1920 Light - Correct 1227165 1273867 1296451 1308493
X 100,00% 100,00% 100,00% 100,00%
1080 Light - Incorrect 0 0 0 L
(FullHD) 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 753160 753160 753160 753159
89,00% 94,19% 96,93% 98,46%
Shadow - Incorrect 93120 46418 23834 11792
11,00% 5,81% 3,07% 1,54%

Table 10 — BSGM Shadow Mapping results for the best case;

As seen in Table 10, there is an increase in the number of shadow pixels in the image than in the
normal shadow mapping method, an average of %, in many cases. However, there is a decrease
of the shadow pixels as the shadow map resolution is increased (~%). This is because of the pixel
size A of chapter 4, since it is inversely proportional to the height and width of the shadow map, A
will decrease if © is not increased as well, resulting in smaller expanses. This, however, caused the

errors in the shadows to reduce slightly in the shadow maps.
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Figure 41 - Best Case Result for BGSM; Blue pixels represent the Light - Incorrect and the Red
pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow Map Size: 4096x4096.

Scene Against
Viewport Flowers
Viewport Pixel Types Shadow Map Size
Size 51212 102412 204872 409612
Pixels in Light 117262 123050 126589 128749
47,48% 49,82% 51,25% 52,13%
Pixels in Shadow 129724 123936 120397 118237
52,52% 50,18% 48,75% 47,87
. 117169 122888 126362 128445
5)1(2 Light - Correct 99,92% 99,87% 99,82% 99,76
. 93 162 227 304
512 Light - Incorrect 0,08% 0,13% 0,18% 0,24
Shadow - Correct 116003 115934 115869 115792
89,42% 93,54% 96,24% 97,93
Shadow - Incorrect 13721 8002 4528 2445
10,58% 6,46% 3,76% 2,07
1024 Pixels in Light 469026 492170 506215 514926
X 47,48% 49,82% 51,25% 52,13%
1024 Pixels in Shadow 518793 495649 481604 472893
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52,52% 50,18% 48,75% 47,87%
Light - Correct 468643 491504 505307 513672
99,92% 99,86% 99,82% 99,76%
Light - Incorrect 383 666 908 1254
0,08% 0,14% 0,18% 0,24%
Shadow - Correct 463984 463701 463459 463113
89,44% 93,55% 96,23% 97,93%
Shadow - Incorrect 54809 31948 18145 9780
10,56% 6,45% 3,77% 2,07%
Pixels in Light 1296876 1339411 1367053 1383087
64,65% 66,77% 68,15% 68,95%
Pixels in Shadow 709127 666592 638950 622916
35,35% 33,23% 31,85% 31,05%
1920 Light - Correct 1296594 1338802 1366241 1381899
X 99,98% 99,95% 99,94% 99,91%
1080 Light - Incorrect 282 609 812 1188
(FullHD) 0,02% 0,05% 0,06% 0,09%
Shadow - Correct 606455 606128 605925 605549
85,52% 90,93% 94,83% 97,21%
Shadow - Incorrect 102672 60464 33025 17367
14,48% 9,07% 5,17% 2,79%

Table 11 - BGSM Shadow Mapping results for the worst case;

As seen in Table 11, there is an increase in the number of shadow pixels in the image than in the

normal shadow mapping method, an average of %, in many cases. However, there is a decrease

of the shadow pixels as the shadow map resolution is increased (~%). This is because of the pixel

size A of chapter 4, since it is inversely proportional to the height and width of the shadow map, A

will decrease if © is not increased as well, resulting in smaller expanses. This, however, caused the

errors in the shadows to reduce slightly in the shadow maps (~%).

57



Algorithm Testing

Figure 42 - Worst Case Result for BGSM; Red pixels represent the Shadow - Incorrect; Viewport
Size: 1920x1080; Shadow Map Size: 4096x4096.

Scene Against
Viewport Bench
Viewport Pixel Types Shadow Map Size
Size 51212 102412 204872 409612
Pixels in Light 141648 145423 147885 149403
55,35% 56,83% 57,79% 58,38%
Pixels in Shadow 114246 110471 108009 106491
44,65% 43,17% 42,21% 41,62%
. 141606 145360 147806 149311
5)1(2 Light - Correct 99,97% 99,96% 99,95% 99,94%
. 42 63 79 92
512 Light - Incorrect 0,03% 0,04% 0,05% 0,06%
Shadow - Correct 104794 104773 104757 104744
91,73% 94,84% 96,99% 98,36%
Shadow - Incorrect 9452 5698 3252 1747
8,27% 5,16% 3,01% 1,64%
1024 Pixels in Light 566488 581669 591554 597633
X 55,34% 56,82% 57,79% 58,38%
1024 Pixels in Shadow 457137 441956 432071 425992
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44,66% 43,18% 42,21% 41,62%
Light - Correct 566355 581445 591283 597326
99,98% 99,96% 99,95% 99,95%
Light - Incorrect 133 224 271 307
0,02% 0,04% 0,05% 0,05%
Shadow - Correct 419216 419125 419078 419042
91,70% 94,83% 96,99% 98,37%
Shadow - Incorrect 37921 22831 12993 6950
8,30% 5,17% 3,01% 1,63%
Pixels in Light 1209260 1248611 1270168 1282411
59,11% 61,03% 62,09% 62,68%
Pixels in Shadow 836579 797228 775671 763428
40,89% 38,97% 37,91% 37,32%
1920 Light - Correct 1209175 1248375 1269881 1282096
X 99,99% 99,98% 99,98% 99,98%
1080 Light - Incorrect 85 236 287 315
(FullHD) 0,01% 0,02% 0,02% 0,02%
Shadow - Correct 749069 748918 748867 748839
89,54% 93,94% 96,54% 98,09%
Shadow - Incorrect 87510 48310 26804 14589
10,46% 6,06% 3,46% 1,91%

Table 12 - BGSM Shadow Mapping results for the average case;

As seen in Table 12, there is an increase in the number of shadow pixels in the image than in the

normal shadow mapping method, an average of %, in many cases. However, there is a decrease

of the shadow pixels as the shadow map resolution is increased (~%). This is because of the pixel

size A of chapter 4, since it is inversely proportional to the height and width of the shadow map, A

will decrease if © is not increased as well, resulting in smaller expanses. This, however, caused the

errors in the shadows to reduce slightly in the shadow maps (~%).
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Figure 43 - Average Case Result for BGSM; Red pixels represent the Shadow - Incorrect; Viewport
Size: 1920x1080; Shadow Map Size: 4096x4096.

5.2.3 SGSM Shadow Mapping without Adjacency

Although this is not a specific method, these tests results show the other of the main concepts of 2
layer shadow mapping methods: the pixels in shadow in the SGSM are always correct. In all three

cases, this is proven true.

The number of pixels to expand the triangles (8) in all tests was set to 1. This is the method used

in Hertel's work.

More test results are present in section XX in the Appendix

Scene Side
Viewport Trees
Viewport Pixel Types Shadow Map Size
Size 51272 102472 204872 409612
Pixels in Light 209204 190225 179873 174545
519 79,81% 72,57% 68,62% 66,58%
N Pixels in Shadow 52940 71919 82271 87599
512 20,20% 27,43% 31,38% 33,42%
Light - Correct 168949 168949 168949 168949
80,76% 88,82% 93,93% 96,79%
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Loht - Incorrect 40255 21276 10924 5596
g 19,24% 11,18% 6,07% 3,21%
Shadow - Correct 52940 71919 82271 87599
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
oixels in Lisht 836946 761014 719526 698102
& 79,82% 72,58% 68,62% 66,58%
oivels in Shadow 211630 287562 329050 350474
20,18% 27,42% 31,38% 33,42%
675789 675789 675789 675789
Light -
10X24 ight - Correct 80,74% 88,30% 93,92% 96,80%
161157 85225 43737 22313
1024 ight -
Light - Incorrect 19,26% 11,20% 6,08% 3,20%
Shadow - Correct 211630 287562 329050 350474
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
oiels in Lisht 1688936 1519716 1423627 1373075
g 81,46% 73,29% 68,66% 66,22%
oixels in Shadow 384509 553729 649818 700370
18,54% 26,71% 31,34% 33,78%
1920 Lieht - Correct 1320285 1320285 1320285 1320285
X g 78,17% 86,88% 92,74% 96,16%
1080 Loht - Incorrect 368651 199431 103342 52790
(FullHD) g 21,83% 13,12% 7.26% 3,84%
Shadow - Correct 384509 553729 649818 700370
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%

Table 13 — SGSM Shadow Mapping without Adjacency results for the best case;

As seen in Table 13, there is an increase in the number of light pixels in the image than in the
normal shadow mapping method, an average of %, in many cases. However, there is a decrease
of the light pixels as the shadow map resolution is increased (~%). This is same problem showed
BGSM Testing, the pixel size A is inversely proportional to the height and width of the shadow map,
as such A will decrease if © is not increased as well, resulting in smaller expanses. This, however,

caused the errors in the light to reduce slightly in the shadow maps (~%).
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Figure 44 - Best Case Result for SGSM without Adjacency; Blue pixels represent the Light -
Incorrect; Viewport Size: 1920x1080; Shadow Map Size: 4096x4096.

Scene Against
Viewport Flowers
Viewport Pixel Tvbes Shadow Map Size
Size yp 51272 102412 204872 4096”2
oiels in Linht 175739 159084 148869 143392
& 71,15% 64,41% 60,27% 58,06%
oixels in Shadow 71247 87902 98117 103594
28,85% 35,59% 39,73% 41,94%
. 130890 130890 130890 130890
5)1(2 Light - Correct 74,48% 82,28% 87,92% 91,28%
c1 Loht - Incorrect 44849 28194 17979 12502
& 2552% 17,72% 12,08% 8,72%
Shadow - Correct 71247 87902 98117 103594
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
L 703074 636365 595683 573420
10X24 Pixels in Light 71,17% 64,42% 60,30% 58,05%
284745 351454 392136 414399
1024 ixels i
0 Pixels in Shadow 28,83% 35,58% 39,70% 41,95%

62



Algorithm Testing

Light - Correct 523452 523452 523452 523452
74,45% 82,26% 87,87% 91,29%
Light - Incorrect 179622 112913 72231 49968
25,55% 17,74% 12,13% 8,71%
Shadow - Correct 284745 351454 392136 414399
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
pixels in Light 1710675 1592873 1516077 1474234
85,28% 79,41% 75,58% 73,49%
oixels in Shadow 295328 413130 489926 531769
14,72% 20,59% 24,42% 26,51%
1920 Light - Correct 1399266 1399266 1399266 1399266
X 81,80% 87,85% 92,30% 94,91%
1080 Light - Incorrect 311409 193607 116811 74968
(FullHD) 18,20% 12,15% 7,70% 5,09%
Shadow - Correct 295328 413130 489926 531769
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%

Table 14 - SGSM Shadow Mapping without Adjacency results for the worst case;

As seen in Table 14, there is an increase in the number of light pixels in the image than in the

normal shadow mapping method, an average of %, in many cases. However, there is a decrease

of the light pixels as the shadow map resolution is increased (~%). This is same problem showed

BGSM Testing, the pixel size A is inversely proportional to the height and width of the shadow map,

as such A will decrease if © is not increased as well, resulting in smaller expanses. This, however,

caused the errors in the light to reduce slightly in the shadow maps (~%).
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Figure 45 - Worst Case Result for SGSM without Adjacency; Blue pixels represent the Light -
Incorrect; Viewport Size: 1920x1080; Shadow Map Size: 4096x4096.

Scene Against
Viewport Bench
Viewport Pixel Tvbes Shadow Map Size
Size yp 51272 102472 204872 4096”2
oiels in Linht 195282 179985 168381 161806
& 76,31% 70,34% 65,80% 63,23%
oixels in Shadow 60612 75909 87513 940883
23,69% 29 ,66% 34,20% 36,77%
151058 151058 151058 151058
Light -
5)1(2 ight - Correct 77,35% 83,93% 89,71% 93,36%
c1 Loht - Incorrect 44224 28927 17323 10748
& 22,65% 16,07% 10,29% 6,64%
Shadow - Correct 60612 75909 87513 940883
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
L 781372 719876 673732 647250
10X24 Pixels in Light 76,33% 70,33% 65,82% 63,23%
242253 303749 349893 376375
1024 ixels i
0 Pixels in Shadow 23,67% 29,67% 34,18% 36,77%
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Light - Correct 604276 604276 604276 604276
77,34% 83,94% 89,69% 93,36%
Light - Incorrect 177096 115600 69456 42974
22,66% 16,06% 10,31% 6,64%
Shadow - Correct 242253 303749 349893 376375
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
pixels in Light 1678582 1532075 1432109 1374738
82,05 74,89% 70,00% 67,20%
oiels in Shadow 367257 513764 613730 671101
17,95 25,11% 30,00% 32,80%
1920 Light - Correct 1296685 1296685 1296685 1296685
X 77,25 84,64% 90,54% 94,32%
1080 Light - Incorrect 381897 235390 135424 78053
(FullHD) 22,75 15,36% 9,46% 5,68%
Shadow - Correct 367257 513764 613730 671101
100,00 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00 0,00% 0,00% 0,00%

Table 15 - SGSM Shadow Mapping without Adjacency results for the average case;

As seen in Table 15, there is an increase in the number of light pixels in the image than in the

normal shadow mapping method, an average of %, in many cases. However, there is a decrease

of the light pixels as the shadow map resolution is increased (~%). This is same problem showed

BGSM Testing, the pixel size A is inversely proportional to the height and width of the shadow map,

as such A will decrease if © is not increased as well, resulting in smaller expanses. This, however,

caused the errors in the light to reduce slightly in the shadow maps (~%).
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Figure 46 - Average Case Result for SGSM without Adjacency; Blue pixels represent the Light -
Incorrect; Viewport Size: 1920x1080; Shadow Map Size: 4096x4096.

5.2.4 SGSM Shadow Mapping with Adjacency

Like in the previous test, the tests results showed here prove that the pixels in shadow in the

SGSM are correct, but some cases, errors occur in the shadow map. However, the three cases

shown here, this error are not very significant, even on the worse case.

The number of pixels to expand the triangles (©) in all tests was set to 1.

More test results are present in section XX in the Appendix

Scene Side
Viewport Trees
Viewport Pixel Types Shadow Map Size
Size 51272 102412 204812 409612
512 Pixels in Light 181191 174086 171371 170151
X 69,12% 66,41% 65,37% 64,91%
512 Pixels in Shadow 80953 88058 90773 91993

66



Algorithm Testing

30,88% 33,59% 34,63% 35,09%
Light - Correct 168949 168945 168947 168948
93,24% 97,05% 98,59% 99,29%
Light - Incorrect 12242 5141 2424 1203
6,76% 2,95% 1,41% 0,71%
Shadow - Correct 80953 88054 90771 91992
100,00% 100,00% 100,00% 100,00%
0 4 2 1
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
pixels in Light 724807 696446 685591 680636
69,12% 66,42% 65,38% 64,91%
o els in Shadow 323769 352130 362985 367940
30,88% 33,58% 34,62% 35,09%
. 675789 675768 675782 675787
10X24 Light - Correct 93,24% 97,03% 98,57% 99,29%
. 49018 20678 9809 4849
1024 Light - Incorrect 6,76% 2.97% 1,43% 0,71%
Shadow - Correct 323769 352109 362978 367938
100,00% 99,99% 100,00% 100,00%
0 21 7 2
Shadow - Incorrect 0,00% 0,01% 0,00% 0,00%
pixels in Light 1446755 1372853 1345997 1332759
69,78% 66,21% 64,92% 64,28%
oixels in Shadow 626690 700592 727448 740686
1920 30,22% 33,79% 35,08% 35,72%
X Light - Correct 1320285 1320183 1320259 1320282
1080 91,26% 96,16% 98,09% 99,06%
(FUIHD) [ correct 126470 52670 25738 12477
8,74% 3,84% 1,91% 0,94%
Shadow — Correct 626690 700490 727422 740683
100,00% 99,99% 100,00% 100,00%
Shadow — Incorrect 0 102 26 3
0,00% 0,01% 0,00% 0,00%

Table 16 — SGSM Shadow Mapping with Adjacency results for the best case;
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Figure 47 - Best Case Result for SGSM with Adjacency; Blue pixels represent the Light - Incorrect;
Viewport Size: 1920x1080; Shadow Map Size: 4096x4096

Scene Against
Viewport Flowers
Viewport Pixel Types Shadow Map Size

Size 51272 102472 204872 409612
pixels in Light 150616 144661 140993 139043

60,98% 58,57% 57,09% 56,30%

ohels in Shadow 96370 102325 105993 107943

39,02% 41,43% 42,91% 43,70%

. 130890 130889 130890 130888

5)1(2 Light - Correct 86,90% 90,48% 92,83% 94,13%

. 19726 13772 10103 8155

>12 Light - Incorrect 13,10% 9,52% 7,17% 5,87%
Shadow - Correct 96370 102324 105993 107941
100,00% 100,00% 100,00% 100,00%

0 1 0 2

Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%

pixels in Light 602335 578718 564043 556039

1024 60,98% 58,59% 57,10% 56,29%
X b els in Shadow 385484 409101 423776 431780
1024 39,02% 41,41% 42,90% 43,71%
Light - Correct 523452 523436 523447 523450
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86,90% 90,45% 92,80% 94,14%
Light - Incorrect 78883 55282 40596 32589
13,10% 9,55% 7,20% 5,86%
chadow - Correct 385484 409085 423771 431778
100,00% 100,00% 100,00% 100,00%
Shadow - Incorrect 0 16 > 2
0,00% 0,00% 0,00% 0,00%
Pixels in Light 1526314 1489878 1457862 1442713
76,09% 74,27% 72,68% 71,92%
oivels in Shadow 479689 516125 548141 563290
23,91% 25,73% 27,33% 28,08%
1920 Light - Correct 1399264 1399217 1399241 1399263
X 91,68% 93,91% 95,98% 96,99%
1080 Light - Incorrect 127050 90661 58621 43450
(FullHD) 8,32% 6,09% 4,02% 3,01%
Shadow - Correct 479687 516076 548116 563287
100,00% 99,99% 100,00% 100,00%
2 49 25 3
Shadow - Incorrect 0,00% 0,01% 0,00% 0,00%

Table 17 - SGSM Shadow Mapping with Adjacency results for the worst case;

Figure 48 - Worst Case Result for SGSM with Adjacency; Blue pixels represent the Light - Incorrect;
Viewport Size: 1920x1080; Shadow Map Size: 4096x4096
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Scene Against
Viewport Bench
Viewport Pixel Tvbes Shadow Map Size
Size P 51212 102472 204872 4096”2
oixels in Lisht 175437 168081 160927 157355
g 68,56% 65,68% 65,30% 63,23%
oixels in Shadow 80457 87813 94967 98539
31,44% 34,32% 34,20% 36,77%
. 151058 151051 151048 151055
5)1(2 Light - Correct 86,10% 89,87% 89,71% 93,36%
24379 17030 9879 6300
512 ight -
Light - Incorrect 13,90% 10,13% 10,29% 6,64%
Shadow - Correct 80457 87806 94957 98536
100,00% 99,99% 100,00% 100,00%
Shadow - Incorrect 0 / 10 3
0,00% 0,01% 0,00% 0,00%
oixels in Light 701856 672305 643616 629354
g 68,57% 65,68% 62,88% 61,48%
oiels in Shadow 321769 351320 380009 394271
31,43% 34,32% 37,12% 38,52%
. 604276 604252 604250 604262
10X24 Light - Correct 86,10% 89,88% 93,88% 96,01%
97580 68053 39366 25092
1024 ight -
Light - Incorrect 13,90% 10,12% 6,12% 3,99%
Shadow - Correct 321769 351296 379983 394257
100,00% 99,99% 99,99% 100,00%
0 24 26 14
Shadow - Incorrect 0,00% 0,01% 0,01% 0,00%
oiels in Linht 1465035 1413356 1361801 1335043
g 71,61% 69,08% 66,56% 65,26%
oixels in Shadow 580804 632483 684038 710796
28,39% 30,92% 33,44% 34,74%
1920 Lieht - Correct 1296685 1296622 1296669 1296664
X g 88,51% 91,74% 95,22% 97,13%
1080 Leht - Incorrect 168350 116734 65132 38379
(FullHD) g 11,49% 8.26% 4,78% 2.87%
Shadow - Correct 580804 632420 684022 710775
100,00% 99,99% 100,00% 100,00%
0 63 16 21
Shadow - Incorrect 0,00% 0,01% 0,00% 0,00%
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Table 18 - SGSM Shadow Mapping with Adjacency results for the average case;
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Figure 49 - Average Case Result for SGSM with Adjacency; Blue pixels represent the Light -
Incorrect; Viewport Size: 1920x1080; Shadow Map Size: 4096x4096.

5.2.5 Conservative Shadow Mapping without Adjacency

In these test, the full algorithm present in Hertel’'s Work is implemented: the first step the render
the shadows with the information of the BGSM and SGSM (without adjacency), and identifying the
light, shadow and “uncertain” that they can determine. Following this step, a ray is created for

each “uncertain” pixel and sent to the ray-tracer to trace that ray.
The light and shadow pixels found during the first step are not showed in these tables because:

o the number of light pixels found is equal to the number of light pixels found in the SGSM
(without adjacency);
e the number of shadow pixels found is equal to the number of shadow pixels found in the
BGSM.
This occurs since these are the ones where both shadow maps agree, i.e. the correct light pixels in
the BGSM also exist in the SGSM, and the correct shadow pixels in the SGSM also exist in the
BGSM. So the “uncertain” pixels are created in the gap between the light pixels of the SGSM and
the shadow pixels in the BGSM. This is further analysed in the following tables.
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Like before, the number of pixels to expand the triangles (©) in all tests was set to 1.

For more detailed information of all the tests made, consult section XX in the Appendix

Scene Side
Viewport Trees
Viewport Pixel Types Shadow Map Size
Size 51272 102472 204872 409672
Light - “Uncertain” 10236 8538 4378 2173
6,06% 5,05% 2,59% 1,29%
chadow - “Uncertain® | 40255 21276 10924 5596
43,19% 22,83% 11,72% 6,00%
c1 Light - Correct 168949 168949 1168949 168949
) 100,00% | 100,00% 100,00% 100,00%
. 0 0 0 0
512 Light - Incorrect 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 93195 93195 93195 93195
100,00% | 100,00% 100,00% 100,00%
0 4 2 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
Light - “Uncertain” 40958 34113 17445 8676
6,06% 5,05% 2,58% 1,28%
shadow - “Uncertai | 161157 85225 43737 22313
43,23% 22,86% 11,73% 5,99%
. 675789 675789 675789 675789
1024 Light - Correct 100,00% | 100,00% 100,00% 100,00%
X . 0 0 0 0
1024 Light - Incorrect 0,00% 0,00% 0,00% 0,00%
chadow - Correct 675789 675789 675789 675789
100,00% | 100,00% 100,00% 100,00%
0 21 7 2
Shadow - Incorrect 0,00% 0,01% 0,00% 0,00%
Light - “Uncertain” 103196 87300 44580 22262
7,82% 6,61% 3,38% 1,69%
1920 | ¢ cortain | 368651 199431 103342 52790
X 48,95% 26,48% 13,72% 7,01%
1080 Light - Correct 1320285 | 1320285 1320285 1320285
(FullHD) 100,00% | 100,00% 100,00% 100,00%
Light - Incorrect 0 0 0 0
0,00% 0,00% 0,00% 0,00%
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Shadow - Correct 753160 753160 753160 753160
100,00% | 100,00% 100,00% 100,00%
0 102 26 3
Shadow - Incorrect 0,00% 0.01% 0,00% 0,00%

Table 19 — Conservative Shadow Mapping without Adjacency results for the best case;

Figure 50 - Best Case Result for CSM without Adjacency; Blue pixels represent the Light - Incorrect

and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow Map

Size: 4096x4096.

Scene Against
Viewport Flowers
Viewport Pixel Types Shadow Map Size
Size 51272 102472 204812 4096”2
Light - “Uncertain” 15491 14669 8566 4577
11,84% 11,21% 6,54% 3,49%
Shadow - “Uncertain” 44849 28189 17928 12391
512 38,63% 24,28% 15,45% 10,68%
X Light - Correct 130890 130890 130890 130890
512 100,00% 100,00% 99,96% 99,92%
Light - Incorrect 0 > o1 11l
0,00% 0,00% 0,04% 0,08%
Shadow - Correct 116096 116091 116045 115985
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100,00% | 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
bt - “Uncertain” 61938 58356 34240 18378
g 11,83% 11,15% 6,54% 3,51%
shadow - “Uncertain | 179622 112884 72022 49509
38 68% 24,31% 15,52% 10,67%
. 523452 523452 523452 523452
10X24 Light - Correct 100,00% 99,99% 99,96% 99,91%
0 29 209 459
1024 ight -
Light - Incorrect 0,00% 0,01% 0,04% 0,09%
chadow - Correct 464367 464338 464158 463908
100,00% | 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
bt - “Uncertain” 118376 109903 60529 33109
& 8,46% 7,85% 433% 2,37%
chadow - “Uncertaimy | 311409 193607 116727 74568
51,33% 31,91% 19,24% 12,30%
1920 Lieht - Correct 1399266 | 1399266 1399266 1399266
X g 100,00% | 100,00% 99,99% 99,97%
1080 Light - Incorrect 0 0 84 400
(FullHD) g 0,00% 0,00% 0,01% 0,03%
Shadow - Correct 606737 606737 606653 606337
100,00% | 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%

Table 20 - Conservative Shadow Mapping without Adjacency results for the worst case;
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Figure 51 - Worst Case Result for CSM without Adjacency; Blue pixels represent the Light -
Incorrect and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow
Map Size: 4096x4096.

Scene Against
Viewport Bench
Viewport Pixel Types Shadow Map Size
Size 51272 102412 204872 4096”2
Light - “Uncertain” 10471 9553 5423 3172
6,93% 6,32% 3,59% 2,10%
Shadow - “Uncertain” 44224 28926 17322 10746
42,18% 27,59% 16,52% 10,25%
512 Light - Correct 151058 151058 151058 151058
y 100,00% 100,00% 100,00% 100,00%
. 0 1 1 2
512 Light - Incorrect 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 104836 104835 104835 104834
100,00% 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
1024 Light - “Uncertain” 41859 38164 21908 12707
X 6,93% 6,32% 3,63% 2,10%

75



Algorithm Testing

1024 [ (| 17709 115596 69452 42967
42,23% 27,57% 16,56% 10,25%
Light - Correct 604276 604276 604276 604276
100,00% | 100,00% 100,00% 100,00%
. 0 4 4 7
Light - Incorrect 0,00% 0,00% 0,00% 0,00%
chadow - Correct 419349 419345 419345 419342
100,00% | 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
Light - “Uncertain” 96939 83989 46011 26135
7,48% 6,48% 3,55% 2,02%
chadow - “Uncertai | 381897 235390 135423 78046
50,98% 31,42% 18,08% 10,42%
1920 Light - Correct 1296685 | 1296685 1296685 1296685
X 100,00% | 100,00% 100,00% 100,00%
1080 Light - Incorrect 0 0 L /
(FullHD) 0,00% 0,00% 0,00% 0,00%
chadow - Correct 749154 749154 749153 749147
100,00% | 100,00% 100,00% 100,00%
0 0 0 0
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%

Table 21 - Conservative Shadow Mapping without Adjacency results for the average case;
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Figure 52 - Average Case Result for CSM without Adjacency; Blue pixels represent the Light -
Incorrect and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow
Map Size: 4096x4096.

5.2.6 Conservative Shadow Mapping with Adjacency

In these test, the full algorithm we presented is implemented: the first step the render the
shadows with the information of the BGSM and SGSM (without adjacency), and identifying the
light, shadow and “uncertain” that they can determine. Following this step, a ray is created for

each “uncertain” pixel and sent to the ray-tracer to trace that ray.
The light and shadow pixels found during the first step are not showed in these tables because:

e the number of light pixels found is equal to the number of light pixels found in the SGSM
(without adjacency);

e the number of shadow pixels found is equal to the number of shadow pixels found in the
BGSM.

This occurs since these are the ones where both shadow maps agree, i.e. the correct light pixels in
the BGSM also exist in the SGSM, and the correct shadow pixels in the SGSM also exist in the
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BGSM. So the “uncertain” pixels are created in the gap between the light pixels of the SGSM and
the shadow pixels in the BGSM. This is further analysed in the following tables.

Like before, the number of pixels to expand the triangles (©) in all tests was set to 1.

For more detailed information of all the tests made, consult section XX in the Appendix

Scene Side
Viewport Trees
Viewport Pixel Tvoes Shadow Map Size
Size yp 51272 102472 204872 4096”2
Leht - “Uncertain” 10236 8534 4376 2172
& 6,06% 5,05% 2.59% 1,29%
Shadow - “Uncertain” 12242 5141 2424 1203
13,14% 5,52% 2,60% 1,29%
. 168949 168945 168947 168948
>12 Light - Correct 100,00% | 100,00% 100,00% 100,00%
X 0 0 0 0
512 Light - |
ight - Incorrect 0,00% 0,00% 0,00% 0,00%
chadow - Correct 93195 93195 93195 93195
100,00% | 100,00% 100,00% 100,00%
0 4 2 1
h oy
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
bt - “Uncertain” 40958 34092 17438 8674
& 6,06% 5,04% 2,58% 1,28%
chadow - “Uncertai | 49018 20678 9809 4849
13,15% 5,55% 2,63% 1,30%
675789 675768 675782 675787
Light -
1024 ight - Correct 100,00% | 100,00% 100,00% 100,00%
X 0 0 0 0
1024 ight -
Light - Incorrect 0,00% 0,00% 0,00% 0,00%
chadow - Correct 372787 372787 372787 372787
100,00% 99,99% 100,00% 100,00%
0 21 7 2
Shadow - Incorrect 0,00% 0,01% 0,00% 0,00%
) . 103196 87198 44554 22259
19X20 Light - “Uncertain 7 82% 6,60% 3.37% 1,69%
j | 126470 52670 25738 12477
(Ft?ﬁ_loD) Shadow - “Uncertain 16,79% 6,99% 3.42% 1,66%
Light - Correct 1320285 | 1320183 1320259 1320282
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100,00% 100,00% 100,00% 100,00%
Light - Incorrect 0 0 0 0
0,00% 0,00% 0,00% 0,00%
Shadow - Correct 753160 753160 753160 753160
100,00% 99,99% 100,00% 100,00%
Shadow - Incorrect 0 102 26 3
0,00% 0,01% 0,00% 0,00%

Table 22 - Conservative Shadow Mapping with Adjacency results for the best case;

Figure 53 - Best Case Result for CSM with Adjacency; Blue pixels represent the Light - Incorrect
and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow Map
Size: 4096x4096.

Scene Against
Viewport Flowers
Viewport Pixel Types Shadow Map Size
Size 51272 102412 204812 4096”2
Light - “Uncertain” 15491 14668 8566 4575
1o 11,84% 11,21% 6,54% 3,49
. Shadow - “Uncertain” 19726 13767 10052 8044
512 16,99% 11,86% 8,66% 6,94
Light - Correct 130890 130889 130890 130888
100,00% 100,00% 99,96% 99,92
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Light - Incorrect 0 > >1 111
0,00% 0,00% 0,04% 0,08
Shadow - Correct 116096 116091 116045 115985
100,00% | 100,00% 100,00% 100,00
0 1 0 2
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
Light - “Uncertain” 61938 58340 34235 18376
11,83% 11,15% 6,54% 3,51%
Shadow - “Uncertai” | 78383 55253 40387 32130
16,99% 11,90% 8,70% 6,93%
. 523452 523436 523447 523450
10X24 Light - Correct 100,00% 99,99% 99,96% 99,91%
. 0 29 209 459
1024 Light - Incorrect 0,00% 0,01% 0,04% 0,09%
Shadow - Correct 464367 464338 464158 463908
100,00% | 100,00% 100,00% 100,00%
0 16 5 2
Shadow - Incorrect 0,00% 0,00% 0,00% 0,00%
Light - “Uncertain” 118374 109854 119041 33106
8,46% 7,85% 4,32% 2,37%
shadow - “Uncertai | 127050 90661 60504 43050
20,94% 14,94% 9,65% 7,10%
1920 Light - Correct 1399264 | 1399217 1399241 1399263
X 100,00% | 100,00% 99,99% 99,97%
1080 Light - Incorrect 0 0 84 400
(FullHD) 0,00% 0,00% 0,01% 0,03%
Shadow - Correct 606737 606737 606653 606337
100,00% 99,99% 100,00% 100,00%
Shadow - Incorrect 2 49 25 3
0,00% 0,01% 0,00% 0,00%

Table 23 - Conservative Shadow Mapping with Adjacency results for the worst case;
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Figure 54 - Worst Case Result for CSM with Adjacency; Blue pixels represent the Light - Incorrect
and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow Map

Algorithm Testing

Size: 4096x4096.

Scene Against
Viewport Bench
Viewport pixel Types Shadow Map Size
Size 51272 102472 204872 409612
Light - “Uncertaln” 10471 9546 5413 3169
6,93% 6,32% 3,58% 2,10%
Shadow - “Uncertain” 24379 17029 9878 6298
23,25% 16,24% 9,42% 6,01%
. 151058 151051 151048 151055
>12 Light - Correct 100,00% | 100,00% 100,00% 100,00%
X . 0 1 1 2
512 Light - Incorrect 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 104836 104835 104835 104834
100,00% 99,99% 99,99% 100,00%
0 7 10 3
Shadow - Incorrect 0,00% 0,01% 0,01% 0,00%

81



Algorithm Testing

Light - “Uncertain” 41859 38140 21882 12693
6,93% 6,31% 3,62% 2,10%
Shadow - “Uncertain” 97580 68049 39362 25085
23,27% 16,23% 9,39% 5,98%
. 604276 604252 604250 604262
10X24 Light - Correct 100,00% | 100,00% 100,00% 100,00%
. 0 4 4 7
1024 Light - Incorrect 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 419349 419345 419345 419342
100,00% 99,99% 99,99% 100,00%
Shadow - Incorrect 0 24 26 14
0,00% 0,01% 0,01% 0,00%
Light - “Uncertain” 96939 83926 45995 26114
7,48% 6,47% 3,55% 2,01%
Shadow - “Uncertain” 168350 116734 65131 38372
22,47% 15,58% 8,69% 5,12%
1920 Light - Correct 1296685 1296622 1296669 1296664
X 100,00% 100,00% 100,00% 100,00%
1080 Light - Incorrect 0 0 L /
(FullHD) 0,00% 0,00% 0,00% 0,00%
Shadow - Correct 749154 749154 749153 749147
100,00% 99,99% 99,99% 100,00%
Shadow - Incorrect 0 63 16 21
0,00% 0,01% 0,01% 0,00%

Table 24 - Conservative Shadow Mapping with Adjacency results for the average case;
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Figure 55 - Average Case Result for CSM with Adjacency; Blue pixels represent the Light - Incorrect
and the Red pixels represent the Shadow - Incorrect; Viewport Size: 1920x1080; Shadow Map
Size: 4096x4096.

5.3 Perfomance Testing

In this section, we'll compare the execution time of the conservative shadow mapping algorithms,
Herel's and ours. We'll first analyse the computation cost involved in the creation of the shadow
map texture, for that will compare the algorithms to standard shadow mapping process. Then,
we'll analyse the computation costs of traced rays that originate with “uncertain” pixels. We'll use
the execution time of the OptiX Prime to set a comparison between the pure ray tracing method

and these hybrid approaches.
The examples showed here are same as in the previous sections, following the same parameters.

For more tables of the test performed, consult section XX of the Appendix

5.3.1 Best Case

Table 25, shows the amount of time required for the creation of the shadow map for the best case

test (Side-Trees). As expected, the conservative shadow maps required more time to create the
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shadow map, due to the calculations of the geometry shader, resulting in an average increase of
2ms in the CSM without Adjacency (CSMa) and an average increase of 5ms in the CSM with
Adjacency (CSMA).

There is also a great difference of execution time between the CSMa and the CSMA of about 4ms,
on average. Due to the amount of additional geometry created to take account the adjacent
triangles. It's natural that this difference occurs between the two, although at higher viewport

resolutions the differences tend to become less severe,

. . . Execution time (ms)
Viewport Size | SM size
NSM | CSMa (no Prime) | CSMA (no Prime)
512x512 1,57 2,31 6,38
1024x1024| 1,48 1,95 6,22
512 x 512
2048x2048 | 1,68 2,28 6,83
4096x4096 | 1,39 2,01 6,47
512x512 2,12 3,06 7,35
1024x1024 | 2,09 2,96 7,84
1024 x 1024
2048x2048 | 2,54 3,01 8,52
4096x4096 | 2,48 2,93 9,25
512x512 3,11 3,76 8,98
1024x1024| 3,05 3,59 9,13
1920 x 1080
2048x2048 | 15,34 16,37 16,76
4096x4096 | 3,34 3,91 10,65

Table 25 — Execution times of the shadow map rendering for the best case (Side-Trees); NSM:
Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without Adjacency; CSMA:

Conservative Shadow Mapping with Adjacency.

Table 26, demonstrates the amount of time required for the ray tracing step for the best case test
(Side-Trees). Since the pure ray tracing will render all the pixels in the viewport, these results will
demonstrate the differences of execution time to render the “uncertain” pixels vs. all the pixels. As
showed, there is a gradual difference between the pure and hybrid (CSMa & CSMA) method, that
increases as the viewport size. There is also a significant difference between the CSMa nad CSMA,
while in 512x512 viewport the execution times of the CSMa are lower than CSMA, while the larger

viewports the execution times of the CSMA are lower or almost equal to those obtained in the
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CSMa. This proves the amount of “uncertain” pixels in the tears obtained in the CSMa hinder it's

performance.
. . . Execution time (ms)
Viewport Size | SM size
Optix Prime | CSMa (no Prime) | CSMA (no Prime)
512x512 14,67 12,47 11,51
1024x1024 14,14 8,52 11,29
512 x 512
2048x2048 14,48 7,06 11,54
4096x4096 141 7,92 11,06
512x512 48,67 41,12 32,37
1024x1024 48,58 28,4 25,75
1024 x 1024
2048x2048 50,19 22,2 23,61
4096x4096 49,11 19,24 23,51
512x512 98,3 90,69 64,81
1024x1024 128,75 60,4 54,59
1920 x 1080
2048x2048 136,82 49,35 48,17
4096x4096 128,36 41,77 44,73

Table 26 - Execution times of the ray tracing step for the best case (Side-Trees); CSMa:

Conservative Shadow Mapping without Adjacency; CSMA: Conservative Shadow Mapping with

Adjacency.

The following graphics (Figures 56-58) show a visual representation of these differences showed in

Tables 25 and 26.
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Figure 56 — Graphical representation of the execution time in the 512x512 viewport, showed in

tables 25 and 26; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without

Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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Figure 57 — Graphical representation of the execution time in the 1024x1024 viewport, showed in
tables 25 and 26; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without
Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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Figure 58 — Graphical representation of the execution time in the 1024x1024 viewport, showed in
tables 25 and 26; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without
Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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5.3.2 Worst Case

Table 27, shows the amount of time required for the creation of the shadow map for the worst
case test (Against-Flowers). As expected, the conservative shadow maps required more time to
create the shadow map, due to the calculations of the geometry shader, resulting in an average
increase of 2ms in the CSM without Adjacency (CSMa) and an average increase of 5ms in the CSM
with Adjacency (CSMA).

There is also a great difference of execution time between the CSMa and the CSMA of about 4ms,
on average. Due to the amount of additional geometry created to take account the adjacent
triangles. It's natural that this difference occurs between the two, although at higher viewport

resolutions the differences tend to become less severe.

. . . Execution time (ms)
Viewport Size | SM Size
NSM | CSMa (no Prime) | CSMA (no Prime)
512x512 | 1,73 2,41 6,60
1024x1024 | 1,58 2,03 6,48
512 x 512
2048x2048 | 1,53 2,11 6,94
4096x4096 | 1,48 2,11 6,97
512x512 2,37 2,98 7,78
1024x1024 | 2,36 3,18 8,31
1024 x 1024
2048x2048 | 2,67 3,16 8,91
4096x4096 | 2,65 3,26 10,06
512x512 3,32 4,05 9,70
1024x1024 | 3,49 4,02 9,51
1920 x 1080
2048x2048 | 16,26 16,42 16,8
4096x4096 | 3,35 3,88 11,00

Table 27 - Execution times of the shadow map rendering for the worst case (Against-Flowers);
NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without Adjacency; CSMA:

Conservative Shadow Mapping with Adjacency.

Table 28, demonstrates the amount of time required for the ray tracing step for the worst case test
(Against-Flowers). Since the pure ray tracing will render all the pixels in the viewport, these results
will demonstrate the differences of execution time to render the “uncertain” pixels vs. all the pixels.
As showed, there is a gradual difference between the pure and hybrid (CSMa & CSMA) method,

that increases as the viewport size. There is also a significant difference between the CSMa and
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CSMA, while in 512x512 viewport the execution times of the CSMa are lower than CSMA, while the

larger viewports the execution times of the CSMA are lower or almost equal to those obtained in

the CSMa. This proves the amount of “uncertain” pixels in the tears obtained in the CSMa hinder

it's performance.

. . . Execution time (ms)
Viewport Size | SM size -
Optix Prime | CSMa (no Prime) | CSMA (no Prime)
512x512 28,24 21,62 20,50
1024x1024 27,72 16,88 19,44
512 x 512
2048x2048 27,45 15,6 17,26
4096x4096 27,07 14,5 18,46
512x512 84,81 66,86 57,2
1024x1024 86,24 55,02 48,69
1024 x 1024
2048x2048 84,89 44,74 45,29
4096x4096 86,75 38,77 42,41
512x512 127,23 107,23 85,8
1024x1024 128,75 60,4 54,59
1920 x 1080
2048x2048 136,82 49,35 48,17
4096x4096 128,36 41,77 44,73

Table 28 — Execution times of the ray tracing step for the worst case (Against-Flowers); CSMa:
Conservative Shadow Mapping without Adjacency; CSMA: Conservative Shadow Mapping with

Adjacency.

The following graphics (Figures 59-61) show a visual representation of these differences showed in

Tables 27 and 28.
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Figure 59 — Graphical representation of the execution time in the 512x512 viewport, showed in

tables 27 and 28; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without

Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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Figure 60 — Graphical representation of the execution time in the 1024x1024 viewport, showed in

tables 27 and 28; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without

Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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Figure 61 - Graphical representation of the execution times in the 1920x1080 viewport, showed
in tables 27 and 28; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping
without Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.

5.3.3 Average Case

Table 29, shows the amount of time required for the creation of the shadow map for the average
case test (Against-Bench). As expected, the conservative shadow maps required more time to
create the shadow map, due to the calculations of the geometry shader, resulting in an average
increase of 2ms in the CSM without Adjacency (CSMa) and an average increase of 5ms in the CSM
with Adjacency (CSMA).

There is also a great difference of execution time between the CSMa and the CSMA of about 4ms,
on average. Due to the amount of additional geometry created to take account the adjacent
triangles. It's natural that this difference occurs between the two, although at higher viewport

resolutions the differences tend to become less severe.
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. . . Execution time (ms)
Viewport Size | SM size
NSM | CSMa (no Prime) | CSMA (no Prime)
512x512 1,63 2,31 6,21
1024x1024| 1,55 2,14 6,34
512 x 512
2048x2048 | 1,44 2,11 7,03
4096x4096 | 1,50 2,08 6,79
512x512 | 62,50 64,22 66,55
1024x1024 | 2,22 2,72 3,85
1024 x 1024
2048x2048 | 2,21 2,73 8,03
4096x4096 | 2,12 3,11 9,41
512x512 3,21 3,91 9,41
1024x1024| 3,32 3,84 9,53
1920 x 1080
2048x2048 | 3,29 4,04 10,17
4096x4096 | 3,24 3,81 10,79

Table 29 - Execution times of the shadow map rendering for the average case (Against-Bench);

NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without Adjacency; CSMA:

Conservative Shadow Mapping with Adjacency.

Table 30, demonstrates the amount of time required for the ray tracing step for the average case

test (Against- Bench). Since the pure ray tracing will render all the pixels in the viewport, these

results will demonstrate the differences of execution time to render the “uncertain” pixels vs. all

the pixels. As showed, there is a gradual difference between the pure and hybrid (CSMa & CSMA)

method, that increases as the viewport size. There is also a significant difference between the
CSMa and CSMA, while in 512x512 viewport the execution times of the CSMa are lower than CSMA,

while the larger viewports the execution times of the CSMA are lower or almost equal to those

obtained in the CSMa. This proves the amount of “uncertain” pixels in the tears obtained in the

CSMa hinder its performance.

. . . Execution time (ms)
Viewport Size | SM size
Optix Prime | CSMa (no Prime) | CSMA (no Prime)
512x512 18,4 14,91 16,36
512 x 512
1024x1024 17,69 13,05 15
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2048x2048 17,69 11,04 13,08
4096x4096 17,93 10,91 14,3
512x512 61,31 106,5 105,07
1024x1024 61,77 39,17 37,74
1024 x 1024
2048x2048 61,17 31,95 32,76
4096x4096 60,14 26,64 30,58
512x512 99,9 79,94 63,8
1024x1024 100,29 60,4 54,59
1920 x 1080
2048x2048 100,29 49,35 48,17
4096x4096 101,38 41,77 44,73

Table 30 — Execution times of the ray tracing step for the average case (Against-Bench); CSMa:

Conservative Shadow Mapping without Adjacency; CSMA: Conservative Shadow Mapping with

Adjacency.

The following graphics (Figures 62-64) show a visual representation of these differences showed in
Tables 29 and 30.
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Figure 62 — Graphical representation of the execution time in the 512x512 viewport, showed in
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tables 29 and 30; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without

Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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Figure 63 - Graphical representation of the execution time in the 1024x1024 viewport, showed in

tables 29 and 30; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without

Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.
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Figure 64 - Graphical representation of the execution time in the 1920x1080 viewport, showed in
tables 30 and 31; NSM: Normal Shadow Mapping; CSMa: Conservative Shadow Mapping without
Adjacency; CSMA: Conservative Shadow Mapping with Adjacency.

97



Conclusions and Future Work

6 Conclusions and Future Work

The rendering of 3D images using pure ray tracing techniques is beyond the reach of current video
cards, but certain hybrid ray tracing algorithms have been implemented alongside rasterization
processes to produce high-quality images. This allows for the creation of accurate shadows,
however shadow mapping techniques still the most time efficient methods to implement, and with

many improvements made to the original algorithm, the allow deceptively accurate shadows.

We presented two version of a hybrid algorithm, Conservative Shadow Mapping, where the
rasterization produces two shadow maps, with larger (BGSM) and smaller (SGSM) triangles, to
determine problematic or “uncertain” pixels in the shadow map, and send these pixels to the ray
tracer to correct them. The main difference between versions comes in the SGSM, the algorithm
we developed takes account the adjacency information supplied by the geometry shader. Although
these algorithms provide approximately the same performance and image quality, there is impact
in certain steps, depending is the adjacency information is used or not. Without the adjacency
information, more “uncertain” pixels are created, which increased the amount of rays to be created
and process in the ray tracer, increasing its execution time. With the adjacency information the
number of rays crated is reduces, resulting in a decrease in the execution time, but the creation of

the shadow map is delayed to take account all the adjacency cases of the triangles.
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