
±±±±±±±±±±±±±±±±±±±±±

¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿

 ssssss ss ss ss ss sss

 mm m m m m mm

 5ssss s 5555

±±±±±±±±±±±±±±±±±±±±±

±¿¿¿¿¿±¿±±¿¿¿¿¿±¿¿±¿¿¿¿

¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿

 sss ss s ss s a as assas

 ssssss ss ss ss ss sss

 mm m m m m mm

 sss s s s 5s s ss a as assas

 s ss s ssss s s ss s ss ss s s

 m m m m m

 o o m m m

 5ssss s 5555

AC K N OW L E D G E M E N T S

I express my gratitude to my supervisors, Professor Alcino Cunha and Nuno Macedo. They main-

tained a constant presence and guidance throughout the project, by reviewing my work, helping me

stay on the right track, and pointing out possible routes and resources of relevance. Without their

support I would have faced many more obstacles and dead ends along the way.

I also thank my colleagues and members of HASLab who contributed to an inspirational work

environment, reviewed parts of my work, or have otherwise been helpful.

Last but not least, I thank my parents and Sofia for their personal support. They always listened to

me, even though at times they did not fully understand what I talked about.

A B S T R AC T

Software static analysis is a key component of formal software verification. It consists on inspecting

code, using automated tools, to determine a set of relevant properties without executing the program.

An example of such properties is the compliance with certain coding standards - sets of rules, subsets

of the programming languages, defined to achieve high-quality software, minimizing risks and main-

tenance costs. Some coding standards, such as MISRA C++ or HIC++, are highly adopted nowadays,

in safety-critical systems with high reliability requirements.

Recent developments in robotics increased human-robot interaction, and show a tendency to intro-

duce robots in safety-critical applications, such as transportation and health. As a consequence, it is

imperative to guarantee the reliability and quality of the software used to control these robots. This

research project shall evaluate the suitability of existing coding standards in the context of the Robot

Operating System (ROS), and then develop a generic platform to verify compliance with standards

and assure high quality robotics software. Kobuki, a ROS mobile robot, is used as a case study.

Keywords: static analysis, coding standards, Robot Operating System, software engineering

a

R E S U M O

A análise estática de software é parte integral da verificação formal de software, e consiste no uso

de ferramentas que inspecionam código e determinam um conjunto de propriedades de interesse, sem

nunca o executar. Um exemplo dessas propriedades, é o cumprimento de coding standards - conjuntos

de convenções definidos com o objetivo de produzir software de alta qualidade, minimizando custos

e riscos. Alguns coding standards, como MISRA C++ ou HIC++, são bastante adotados em sistemas

críticos com altos requisitos de fiabilidade.

Os desenvolvimentos recentes na robótica não só aumentam a interação entre humanos e robôs,

como aplicam cada vez mais os robôs em áreas críticas, como meios de transporte e saúde. Desta

forma, torna-se imperativo garantir a qualidade e fiabilidade do software usado para os controlar.

Neste projeto de investigação pretende-se avaliar a adequação de coding standards existentes no con-

texto do Robot Operating System (ROS), e desenvolver uma plataforma genérica para verificação de

conformidade com standards e garantia de qualidade de software de robótica, tendo como estudo de

caso o Kobuki, um robô móvel implementado sobre ROS.

Palavras-chave: análise estática, convenções de código, Robot Operating System, engenharia de

software

b

C O N T E N T S

1 I N T RO D U C T I O N 3

2 S TAT E O F T H E A RT 7

2.1 Coding Rules . 7

2.2 Coding Standards . 11

2.2.1 ROS C++ Style Guide . 13

2.2.2 Google C++ Style Guide . 14

2.2.3 High Integrity C++ Coding Standard . 14

2.2.4 MISRA C++ Coding Standard . 16

2.2.5 JSF Air Vehicle C++ Coding Standard . 17

2.2.6 CERT C++ Coding Standard . 18

2.2.7 JPL C Coding Standard . 20

2.3 Static Analysis Tools . 20

2.3.1 Free Tools . 21

2.3.2 Commercial Tools . 22

2.3.3 SonarQube . 23

2.4 Robot Operating System . 24

2.5 Summary . 27

3 C O N T R I B U T I O N 29

3.1 ROS Static Analysis Tool . 29

3.1.1 Analysis Component . 31

3.1.2 Graphic Component . 35

3.1.3 User Guide . 38

3.2 Case Study and Evaluation . 41

3.2.1 Cpplint and Cppcheck Plug-ins . 41

3.2.2 Analysis of Kobuki . 43

3.3 Summary . 46

4 C O N C L U S I O N S A N D F U T U R E W O R K 48

A A N A LY S I S RU L E S 56

iii

L I S T O F F I G U R E S

Figure 1 Example of a software development process. 12

Figure 2 Rule overlap between HIC++, MISRA C++ and JSF AV C++. 15

Figure 3 Simplified diagram of a ROS system. 25

Figure 4 Turtlebot 2, a robot that uses Kobuki as a mobile base. 26

Figure 5 Kobuki’s control system in a basic usage scenario. 27

Figure 6 Simplified workflow of the developed tool. 30

Figure 7 Standard graph view. Darker nodes represent more non-compliant packages. 36

Figure 8 Side bar menu with two active tag filters, ros and nasa-satc. 36

Figure 9 Side bar menu with the yocs_safety_controller package selected (blue outline). 37

Figure 10 Non-compliance details for a selected package. 38

Figure 11 Implemented rules by coding standard. 44

Figure 12 Non-compliance results, per package, detected using the plug-ins. 45

iv

L I S T O F TA B L E S

Table 1 Examples of coding rules and their categorisation. 11

Table 2 Example of a ROS specific rule. 13

Table 3 Example of rule demonstrability, as defined by HIC++. 15

Table 4 Example of a CERT rule concerning security. 19

Table 5 Support of paid tools for coding standards. 23

Table 6 Main categories of non-compliance detected by the plug-ins. 45

Table 7 Number of lines of code and rule violations per package. 46

v

L I S T O F L I S T I N G S

2.1 Example of rule demonstrability, as defined by HIC++. 15

3.1 Example of rule declaration, with two of the rules currently in use. 32

3.2 Summary of the Python class that provides an interface between the main tool and

plug-ins. 33

3.3 Example of an exported package summary with one package. 34

3.4 Example of exported analysis details for a package. 35

3.5 Usage example of the command line arguments supported by the tool. 39

3.6 Example structure of a plug-in, using a made up tool called py_verifier. 40

A.1 Rule set used in the case study. 56

vi

1

I N T RO D U C T I O N

The Third Industrial Revolution represents the transition from analog, mechanical and electronic tech-

nology to the digital technology we know and use today. It began somewhere in the late 1950s,

marking the beginning of what is known as the Information Age. Along with it, software was born

and quickly expanded to take control and make use of the emerging technologies, such as digital com-

puters, cell phones, the Internet and, recently, robots. As these technologies mature and adapt to new

contexts, software assumes more and more risks and responsibilities. Such risks range from monu-

mental monetary losses to threats to human lives, and cannot possibly be ignored. Thus arises the

need, and motivation, for certified development methodologies and safety guarantees in the software

industry (Jackson, 2006).

Similarly to software, robots have been a target of much development and expansion in their appli-

cability. Also similarly to software, robots have to assume increased risks and responsibilities, as they

interact with humans, or replace them altogether in various fields (Rifkin and Kruger, 1996), such

as military, industrial, transportation or medical devices. As robots became more autonomous and

the tasks assigned to them became more complex, hardware-based robots were replaced with robots

controlled by software, and the software became consequently more complex, as the tasks require

planning, navigation, or speech recognition, for instance.

With the uprise of software in robotics, a variety of re-implementations of algorithms and con-

trollers emerged, wasting valuable research and development time. This called for conventions, for

common, tested and reusable middleware, a software layer above the operating system that provides a

common interface for heterogeneous lower-level components. But, as Smart (2007) sets forth, speci-

fying middleware for robots is quite more challenging than specifying middleware in typical software

engineering environments, mainly due to the heterogeneity of the hardware and how robots are sus-

ceptible to its failures. However, this difficulty did not hold researchers back, and a variety of middle-

ware systems were developed, with some of them being open source systems (Mohamed et al., 2008;

Namoshe et al., 2008; Elkady and Sobh, 2012; Iñigo Blasco et al., 2012). Examples of successful open

middleware systems include Player (Vaughan et al., 2003), and the Robot Operating System (Quigley

et al., 2009). This project focuses on the latter.

3

The Robot Operating System1 (ROS) is a framework that offers functionalities similar to an oper-

ating system, oriented to robots, in order to promote the collaborative development of software for

robots. This open source system is developed in common general-purpose programming languages,

mainly C++ and Python, and it is free for investigation and commercial use, with its audience increas-

ing as of late. This growing community currently stands on tens of thousands of users worldwide.

Many diverse projects are already based on ROS, including humanoid robots, autonomous vehicles,

surgical robots (Hannaford et al., 2013) and industrial robots (ROS-Industrial2). These types of robots

are made to interact with humans, or to perform tasks a human would normally be assigned to do,

hence assuring the quality, reliability, safety and correctness of the software cannot be dismissed,

in order to consequently assure the safety of humans. This situation calls for advanced and formal

techniques of quality assurance.

Software static analysis consists on extracting valuable information about a program without the

need to execute it, usually relying on automated tools. Analysing a program without executing it is a

key component in software formal methods and quality assurance, since it avoids the manifestation of

dangerous errors during runtime or testing, while being able to detect them. This is particularly true

when testing is not feasible or easy, as is the case of the surgical robots mentioned above. Software

errors in industrial robots, for instance, may trigger sudden movement of massive robots that can injure

unaware human workers. These and other factors are part of what makes software static analysis a

requirement when developing safety-critical products.

One of the many practical applications of static analysis is to determine compliance of a piece

of software with certain coding conventions. Coding conventions, or coding standards, are rules or

guidelines about how a programming language should be spoken or, rather, written. They limit the

freedom and flexibility native to the programming language, in order to avoid common mistakes and

achieve a safer subset of the language, resulting in increased system integrity (Goforth, 2013). Besides

the impact they have in improving software quality, they are important for the effect they have on

people. In professional environments, coding standards have proven to improve the performance of

the programmers, and their ability to understand and solve problems efficiently (Soloway and Ehrlich,

1984).

Good coding standards strive to justify their rules, to base them on known best practices and to pro-

duce high-quality software. Examples of good coding standards include MISRA C (MISRA, 2004),

for the C programming language, and HIC++ (Programming Research Ltd., 2013) and JSF-AV C++

(Lockheed Martin Corporation, 2005), for the C++ programming language. These standards focus on

guiding the production of portable, maintainable, testable, safe and reliable software, targeting safety-

critical systems with high-reliability requirements. MISRA C, for instance, is widely adopted in the

automotive industry, among others. JPL C (Jet Propulsion Laboratory, 2009), a coding standard based

on MISRA C, played a key role in assuring the reliability of Curiosity, the Mars rover launched by

NASA, as shown by Holzmann (2014). Knowing that C++ has made its way into robotics systems,

1 http://www.ros.org/
2 http://rosindustrial.org/

4

http://www.ros.org/
http://rosindustrial.org/
http://www.ros.org/
http://rosindustrial.org/

and ROS, in particular, it stands to reason that these guidelines may also apply, or be adapted, to high-

quality robotics software. The ongoing development of ROS, its increasing adoption and the fact that

it is free software make ROS a good fit as a case study of the applicability of coding standards in the

production of high-quality robotics software.

Verifying compliance with coding standards, as stated before, is part of the static analysis process,

which relies on automated tools to be feasible. While there are plenty of capable static analysis tools

that verify compliance with coding standards, none of them is equipped to consider the specifics of

ROS (for instance, its package architecture). This lack of tools presents an opportunity to contribute to

the ROS community, with an unified ROS-specific static analysis platform. In particular, one capable

of verifying compliance with a set of standards, in order to promote better development practices, and

higher quality robotics software.

This research project focuses on this very topic, the use of coding conventions in ROS applications.

Its main aim is to study the applicability of existing coding conventions in high-quality robotics soft-

ware, and then explore how these conventions could be adapted or improved to fit this specific context.

Complementing these studies, the project also encompasses the development of a static analysis tool

for ROS systems. With this in mind, the following contributions are expected from this project.

i) The project shall comprise a study of existing relevant C++ coding standards, with emphasis on

high-reliability systems, and the tools available to check compliance with the studied standards.

ii) The project shall also include a basic study of ROS systems, in order to understand the entities

and concepts involved in developing ROS applications, and thus decide on which logical layer

the static analysis should focus on.

iii) A ROS static analysis tool shall be implemented, capable of verifying compliance of a ROS

code base with a given set of coding rules.

iv) The developed tool shall also be capable of presenting its analysis results in a user-friendly way,

using diagrams, colour schemes, filters, among other features, considering the specifics of ROS

systems.

v) A relevant ROS application shall be used as a case study for the developed tool, and any analysis

results shall be reported.

Chapter 2 presents the state of the art on this research topic, which provides more detail about ROS,

about coding rules, and a study on relevant coding standards in the industry, including static analysis

tools, mainly for the C++ programming language. Chapter 3 delves into the new tool developed under

this project, and the work behind it. It details the architecture of this tool, and provides information

on how users can use the tool, adapt it to their needs, and even extend its capabilities on their own.

This chapter also includes a case study, which encompasses the development of extensions for the

tool, and the analysis of the source code of an actual ROS robot, using this tool and the mentioned

5

extensions. Finally, Chapter 4 summarises the research and results involved in this project, and revisits

its expected contributions, while delving into each of them. It also provides some final remarks and

an overview of interesting open issues, as prospects for future work.

6

2

S TAT E O F T H E A RT

Static analysis is a key factor in software quality assurance, since it allows the discovery of poten-

tially hazardous vulnerabilities before the software is released, installed or otherwise deployed and

executed. It consists on using automated tools to analyse programs without executing them. This

analysis greatly varies in depth and complexity, ranging from type checking, to code metrics or even

abstract interpretation. One possible aspect of static analysis is the compliance of the software with

certain coding standards.

Coding standards, or coding conventions, are, in essence, sets of rules or guidelines designed to

govern the process of code production in a software project, based on industry best practices, and, as

such, they have been around for almost as long as programming itself. They are often applicable to

a specific programming language, library, framework or environment, but they can also be language-

independent, focusing mostly on style. In fact, style conventions are such a common concern that

we see them rise even in uncommon contexts (for programming purposes), such as LATEX, in Verna

(2011). Here, we focus on coding standards that may be applied in ROS systems, since our goal is to

improve the overall quality of robotics software. That is, coding standards related to the C++ language

(one of the main programming languages in ROS), or even to ROS itself, deserve special emphasis in

the context of this project.

This chapter covers the essentials to understand this project and its results. In particular, it cov-

ers coding rules, existing coding standards of relevance (which put together a set of coding rules),

automated tools to verify compliance with standards, and some background on ROS and the general

architecture of ROS systems.

2.1 C O D I N G RU L E S

Coding rules are the core elements of coding standards documents. They dictate what a developer

can and cannot do. Their scope of action ranges from stylistic and syntactic guidelines, to encour-

aging or discouraging the use of certain features of a programming language or library, and even to

adopted development methodologies and tools. There is no common origin for coding rules. They can

be representative of personal preference, based on industry best practices, consequence of imposed

requirements, or a result of some reasoning process. However, Corden (2013) says that a coding

7

2.1. Coding Rules

rule is only a good rule when it is unambiguous, enforceable, peer reviewed, and when it has a clear

justification, examples and benefits.

Given the broad scope of applicability of coding rules, it is not uncommon to have them classified

into categories, finer-grained scopes of what their guidelines refer to. Below follows a list of the rule

categories often found in C++ coding standards, and examples of each rule type.

G E N E R A L

This rule family deals mainly with language-independent issues. Rules concerning unnecessary

constructs, the C++ language, subsets of the language or compliance and deviation against the

standard all fit here.

General Rule Unnecessary Constructs
There should not be any unreachable code.

N A M I N G C O N V E N T I O N S

This family of rules addresses the names given to various relevant entities in the coding process.

These are often subclassified into file naming, type naming, function naming, variable naming,

among others.

Naming Rule Variable Naming
All words in a variable identifier will be composed of lowercase letters and sepa-

rated by an underscore character.

OT H E R S Y N TAC T I C A N D L E X I C A L C O N V E N T I O N S

Syntactic and lexical rules cover issues related to the syntax and lexicon of the language. Nam-

ing rules, albeit syntactic, have their own category. Character sets, character encoding, character

sequences, style and formatting, however, all fit in this category.

Syntactic Rule Formatting
No line of text in a code file should exceed 80 characters in length.

C O M M E N T S

Code comments are arguably syntactic issues, but they are sometimes considered a sufficiently

relevant entity on their own. These rules concern commented lines of code, code documentation,

explanatory comments, and license statements.

Comment Rule Code Documentation
The purpose of every line of executable code should be explained by a comment,

although one comment may describe more than one line of code (AV Rule 130,

Lockheed Martin Corporation, 2005).

T Y P E S A N D T Y P E C O N V E R S I O N S

These rules address types, type implementations, type casts, implicit type conversions and im-

plementation portability.

Type Rule Type Conversion
The constant NULL should not be used as an integer value.

8

2.1. Coding Rules

E X P R E S S I O N S

Expression rules encompass what is permitted in an expression. Issues related with expression

evaluation, expression side-effects, overflow, or operators fall under this category. Some stan-

dards do not make it clear whether rules regarding implicit type conversions during expression

evaluation should be addressed in this category, or under Types and Type Conversions.

Expression Rule Operators
The operands of binary logical operators shall not contain side effects.

S TAT E M E N T S

The use of specific language statements, such as continue or break, assertions, control flow

structures, or assignments are all governed by this category of rules.

Statement Rule Control Flow Structures
Never use floating point variables as loop counters.

D E C L A R AT I O N S A N D D E F I N I T I O N S

These rules manage issues related to the various types of declarations and definitions possible

within the language. The boundaries of this rule family are sometimes blurred with various

other families, but, in general, every rule concerning the scope of declarations, declarations of

variables, types or namespaces, or the placement of declarations within the source files falls

under this category.

Declaration Rule Scoping
Declarations should be at the smallest feasible scope.

F U N C T I O N S

There are many rules regarding functions and methods that have nothing to do with their dec-

laration statements, their names, or the style of the code. Those rules impose restrictions on

function bodies, parameters, arguments or invocations, and they compose this rule family.

Function Rule Function Overloading
All overloads of a function must be visible from where it is called.

C L A S S E S

Just as with functions, there are rules regarding the use and definition of classes that do not fit

other rule families. Whether to use structures or classes, the use of inheritance or restrictions

over constructors and destructors are issues addressed by this set of rules.

Class Rule Inheritance
Do not use multiple inheritance.

T E M P L AT E S

This rule family provides guidelines on the use of templates, a C++ feature to write generic

code. These rules include when to use templates over derived classes, template instantiation

and template specialization.

9

2.1. Coding Rules

Template Rule Template Specialization
A template specialization should be declared before it is used.

E X C E P T I O N S A N D E R RO R H A N D L I N G

Rules related to the use of exceptions and to error handling belong to this rule family. What to

do when handling errors, how and where to report errors are issues addressed here.

Error Rule Exceptions
Use exceptions to report errors, instead of returning error codes.

P R E P RO C E S S I N G

C++ is one of the programming languages that allows the programmer to make use of its prepro-

cessor. Use of the preprocessor and its directives is also a target to various rules and guidelines.

This rule family governs file inclusion, conditional compilation, macros, among other features

available through the preprocessor.

Preprocessor Rule File Inclusion
Include directly the minimum number of headers required for compilation.

L I B R A R I E S

This set of rules provides the guidelines to follow regarding the use of libraries in a project,

which libraries are allowed and to what extent they are allowed.

Library Rule Standard Libraries
The signal handling facilities of signal.h shall not be used.

C O N C U R R E N C Y

Rules regarding the use and control of concurrency are very specific, yet relevant enough to

have their own rule family. Threads, data sharing and mutual exclusion are topics found here.

Concurrency Rule Mutual Exclusion
Within the scope of a lock, ensure that no static path results in a lock of the same

mutex.

T E S T I N G

Code tests are not always addressed by coding standards but, still, they represent a sufficiently

important topic in software development to warrant a rule category.

Testing Rule Unit Testing
Every publicly accessible function must be covered by unit tests.

M I S C E L L A N E O U S

The other rule categories capture much of what is typically specified with coding rules. How-

ever, there must be a family for uncommon rules that do not fit other categories. This rule family

governs non-conforming code, code deprecation, or development tools, for instance.

Miscellaneous Rule Deprecation
To deprecate a class, deprecate its constructor and any static functions.

10

2.2. Coding Standards

2.2 C O D I N G S TA N DA R D S

Coding standards are collections of coding rules, the logical unit directly above coding rules. While

coding standards can be somewhat informal, defined by a small team or corporation for internal use,

most adopted standards often take the form of an organised document, aiming to provide a formal

definition of their rules, the reasoning behind each rule, and whether (and how) compliance with those

rules may be verified. The main advantage of adopting coding standards, regardless of the formality

and reasoning of a standard, is to have consistency across a code base.

In practice, to a programmer, complying with coding standards means restricting oneself to a subset

of the programming language’s features or syntax rules, in virtue of consistency, robustness and code

readability, as said by Ambler (2000), Bloch (2008), among others. This tends to result in increased

team productivity and reduced maintenance and production costs. However, as noted by Li and Prasad

(2005), developers may show reluctancy in accepting and applying coding rules, especially when

working individually, or when still learning.

The rule classification shown previously helps visualize how coding rules can be structured into a

formal document, but it does not stop there. In some instances, the rules of a standard are also classi-

fied in compliance levels, usually required rules and advisory rules. That is, the authors of a standard

consider that a given piece of software may accomplish different levels of compliance with the stan-

dard, depending on its purpose or the requirements it must satisfy, making the standard flexible and

adaptable to various contexts. Furthermore, this categorisation puts into perspective the importance

and reasoning behind each rule, while also allowing justified deviations from lower priority rules.

Table 1 shows examples of how both categorisations can be applied.

Syntactic Rule Advisory
A line of code should not exceed 80 columns.

Declaration Rule Advisory
Header files should contain logically related declarations only.

Comment Rule Required
Every source and header file should contain a license and copyright statement at
the beginning of the file.

Error Rule Required
Do not throw an exception from a destructor.

Table 1.: Examples of coding rules and their categorisation.

With respect to software quality, adopting code standards may show little to no significant improve-

ment in the resulting software’s measurable quality, as Capiluppi et al. (2009) state in the context of

open source software projects, but it is not always so. When quality needs to be assured, a proper

11

2.2. Coding Standards

coding standard, a standard that is adequate to the context it is applied in, will discourage the use of

features that tend to lead to vulnerabilities, in favour of safer, verifiable features and code readability.

Thus, complying with a well-designed standard will often have a positive impact in the formal verifica-

tion of safety-critical code, while also improving code metrics, such as portability, maintainability or

testability. Yet, coding standards are not always about maintainability and readability, and sometimes

these desired properties conflict with the requirements at hand, for coding conventions and software

requirements, albeit related, are not interchangeable terms. Contexts where software security is re-

quired, for instance, call for conventions that favour security testability over code readability (Okubo

and Tanaka, 2007).

Coding standards impose restrictions on how to develop a software product, as said before, while

software requirements target the whole software product and the production process, describing what

should be done, and how it should be done. This means that requirements are a broader concept, and

coding standards, when adopted, are part of the software requirements, not the other way around. This

explains why requirements rightfully hold much more focus than coding standards in the industry, but

coding standards are far from disregarded. They are (at least informally) present in most software

projects, but it is in the safety-critical software industry that they play a decisive role. Some standards,

such as MISRA C and others discussed in the subsections below, are not only adopted but also required

in sectors including aerospace, automotive and medical devices (Programming Research Ltd., 2014).

Even though the use of coding standards in a project is generally advantageous, adopting a coding

standard is a decision that should not be taken lightly, since it affects practically the whole software

development process. Consider a typical software development process, as shown in Figure 1. Com-

plying with a coding standard is, in itself, a requirement, but it can also affect other requirements, thus

affecting requirement specification and verification. Since coding standards provide rules or guide-

lines to write code, it has an obvious impact in the implementation phase. The verification phase has

to include tools, or people, to verify the compliance with the adopted standards. Finally, the mainte-

nance phase also sees minor impact, since any new code to fix vulnerabilities also has to comply with

the standards, and any non-compliant code should also be refactored in this phase to be compliant.

Start

Requirements Design

ImplementationVerificationMaintenance

refinement

fixing vulnerabilities

improvement

Figure 1.: Example of a software development process.

12

2.2. Coding Standards

As we have seen so far, the field of coding conventions is immense, subject to much discussion and

opinion, and yet expanding as a sound component of software engineering. Most widely used pro-

gramming languages, if not all, are sure to have code conventions already in use. Naturally, the scope

of this project focuses on a relevant sample. This project focuses on the use of coding conventions in

safety-critical and high-quality software in robotics. Specifically, it focuses on software built on top

of ROS, and the software that makes up the core components of ROS, using the C++ language. The

remaining of this section presents the coding standards that form this relevant sample, selected for

analysis and discussion throughout the work of this project.

2.2.1 ROS C++ Style Guide

ROS is the focus of this research work, and so any conventions already in use deserve consideration.

As it turns out, ROS already provides developers with a C++ style guide, as seen in ROS C++ Style

Guide1. This is a work in progress for a non-strict guide. It provides guidelines, instead of literal rules,

meaning that developers are free to deviate, although it advises the use of documentation to justify the

reasoning behind deviations. Above all guidelines, it recommends consistency. New code should be

compliant with this guide, while edited code should be consistent with the local style in use.

As hinted by the name, a considerable part of the guidelines in this guide address stylistic con-

cerns. These include naming conventions, license statements, code formatting, code documentation

and code deprecation. On the technical side, it addresses some relevant and common concerns among

C++ coding standards, such as the use of the C++ preprocessor, class inheritance, exceptions, global

identifiers and code testing. It also discusses some less common issues, such as assertions and code

portability. Many of these guidelines reference the guidelines provided by Google’s C++ Style Guide

(see Section 2.2.2), making it an important standard to consider.

Besides this C++ guide, ROS also provides developers with a more general, language-independent

guide, seen in ROS Developer’s Guide2. Its guidelines are not very oriented at writing code, but

rather at the enveloping details of code production, common to all of ROS’s development languages.

These guidelines cover source control, debugging, compilation, licensing, releasing and documenta-

tion, among other issues. This way, it is possible to consider a new category of rules, for ROS specific

issues, besides the traditional rule categories mentioned in section 2.1. An example of such rules is

provided in table 2, regarding the package architecture used in ROS.

ROS Rule Packages
Every package must have a manifest.xml file, located in the package’s top direc-
tory.

Table 2.: Example of a ROS specific rule.

1 http://wiki.ros.org/CppStyleGuide
2 http://wiki.ros.org/DevelopersGuide

13

http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/DevelopersGuide
http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/DevelopersGuide

2.2. Coding Standards

2.2.2 Google C++ Style Guide

Google has its own C++ style guide which is freely available for anyone who wants to adopt it (see

Google C++ Style Guide3). This style guide has been revised several times, currently standing on

revision 4.45, since September 2014. Besides being a free C++ style guide, it also serves as the set

of coding conventions in use for C++ open-source projects developed by Google. Such projects are

compliant with this guide.

Even though this guide is a basis for a considerable part of the ROS C++ Style Guide described

in Section 2.2.1, there are considerable differences between the guides. This guide is more extensive,

covering more topics and features of the C++ programming language, and, contrary to ROS, some of

its rules are required, not advisory. Its rules are also more structured than those of ROS, in the sense

that a majority of them provides definitions, exceptions, examples and justification with upsides and

downsides. Not unlike ROS, however, this guide reinforces consistency, especially local consistency,

above all other rules, and its rules are only organised by topic or feature. Some rules do not state their

compliance levels clearly, leaving whether the rule is a requirement or recommendation to the reader’s

interpretation. The rules also lack indexing, they are structured mostly in statements or paragraphs

that sometimes encompass multiple smaller rules.

Regarding its contents, this guide is very focused on the actual coding. It covers formatting, naming

conventions, code comments, the C++ preprocessor, header files, scoping, classes, portability, excep-

tion handling, lambda expressions, libraries, among other features. Remarkably, it does not cover

testing or concurrency, for instance, but it does cover compliance verification. Google provides a tool,

Cpplint, to that end.

2.2.3 High Integrity C++ Coding Standard

The High Integrity C++ Coding Standard4 (or HIC++, Programming Research Ltd., 2013) was first

published on October 2003, by Programming Research Limited (PRQA), a provider of static analysis

tools with more than 25 years of experience in the field. It is a coding standard aimed at the production

of high-quality C++ code, with the guiding principles of maintainability, portability, readability and

safety. It is a widely adopted standard, having been downloaded more than 24,000 times since its

release.

PRQA was involved in the production of the MISRA C standard (MISRA, 1998). From MISRA

C’s success, and from the work and research in C++ best practices available at the time, they took the

opportunity to create one of the first professional C++ coding standards, HIC++ (Corden, 2013). This

standard was then the basis for other well established standards in the industry, such as MISRA C++

and JSF AV C++ (Sections 2.2.4 and 2.2.5, respectively). With the advent of ISO C++ 2011 (C++11),

3 http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
4 http://www.programmingresearch.com/high-integrity-cpp/

14

http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://www.programmingresearch.com/high-integrity-cpp/
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://www.programmingresearch.com/high-integrity-cpp/

2.2. Coding Standards

the language has undergone relevant changes, exposing gaps in the existing coding standards, both due

to guidelines that became invalid or irrelevant, and the introduction of new features. In October 2013,

celebrating the standard’s 10th anniversary, PRQA released version 4.0 of the standard, addressing

the language updates and revising previous rules, making the rules in the standard more enforceable

and manageable (Basalaj and Corden, 2013; Corden, 2014). Figure 2, taken from the white paper by

Basalaj and Corden (2013), shows the rule overlap between HIC++ (version 4.0), MISRA C++ and

JSF AV C++.

29 %

HIC++

7 %

HIC++ / MISRA C++

19 %

MISRA C++

7 %

MISRA C++ / JSF AV C++ 18 %

JSF AV C++

7 %

JSF AV C++ / HIC++

12 %

All

Figure 2.: Rule overlap between HIC++, MISRA C++ and JSF AV C++.

This standard classifies its rules by issue, covering most rule families defined before, but not by

compliance. All rules are requirements, and they are written in such a way that makes enforcement

by source code analysis possible (Basalaj and Corden, 2013). However, limited deviation is tolerated,

when necessary and supported by written justification. Some of its rules constrain expression values

and are, thus, theoretically undecidable. To solve this, HIC++ takes a different approach from other

common standards, introducing the concept of demonstrability. A rule is demonstrable, in a piece of

source code, if the issue it addresses cannot occur in practice, even though it could occur in theory.

That is, the constrained expression should be appropriately guarded, for instance using assertions, to

guarantee compliance. Table 3 and Listing 2.1, taken from the HIC++ Coding Standard as created by

PRQA, illustrate this concept.

HIC++ Rule 4.2.2 Required
Ensure that data loss does not demonstrably occur in an integral expression.

Table 3.: Example of rule demonstrability, as defined by HIC++.

#include <climits>

15

2.2. Coding Standards

#include <stdexcept>

#include <cstdint>

uint32_t inv_mult (uint32_t a, uint32_t b)

{

return ((0 == a) || (0 == b)) ? UINT_MAX

: (1000 / (a * b)); // @@- Non-Compliant: could wraparound -@@

}

void foo ()

{

inv_mult (0x10000u, 0x10000u);

}

uint32_t safe_inv_mult (uint32_t a, uint32_t b)

{

if ((b != 0) && (a > (UINT_MAX / b)))

{

throw std::range_error ("overflow");

}

return ((0 == a) || (0 == b)) ? UINT_MAX

: (1000 / (a * b)); // @@+ Compliant: wraparound is not possible +@@

}

Listing 2.1: Example of rule demonstrability, as defined by HIC++.

2.2.4 MISRA C++ Coding Standard

The C++ programming language has conquered significant territory in the world of embedded and

safety-critical systems, where previously C and Assembly were dominant languages. This is a con-

sequence of the widespread use of C++, its higher-level features, its flexibility, and the fact that the

programs generated by C++ compilers achieve similar performance marks as those generated by C

compilers. Besides everything else C++ had already inherited from C, including misunderstood and

dangerous features, it inherited the potential for some professional-level coding standards to emerge,

when critical systems became one of its targets.

The MISRA consortium has been involved in providing industrial-strength guidelines for critical

systems for more than twenty years, with works such as MISRA (1994) and later the MISRA C

Coding Standard (MISRA, 1998) for the C programming language. As MISRA C proved to be a

well established standard and C++ emerged in critical systems, MISRA released, in 2008, a coding

standard to make the best use of this language, the MISRA C++ Coding Standard5 (MISRA, 2008).

5 http://www.misra-cpp.com/

16

http://www.misra-cpp.com/
http://www.misra-cpp.com/

2.2. Coding Standards

MISRA C++ is a strict coding standard, effectively forming a safe subset of the C++ programming

language. Its rules were based on previous work in C++ coding standards, such as HIC++ and JSF AV

C++, and so it is expected that part of them overlap with these standards, as illustrated in Figure 2, even

though this figure addresses a later revision of HIC++. As stated by Basalaj (2011), MISRA C++ aims

to promote software readiness for production and safety analysis, eliminate or reduce unpredictability,

improve clarity and maintainability, avoid common programmer errors and incorporate good practices.

Contrary to other coding standards referenced here, MISRA C++ is not a free standard. A copy must

be purchased from MISRA, in order to use it.

The rules in this standard focus on features and the use of the language, leaving style conventions

to the user. In fact, the standard recommends that, in conjunction with it, the development team

should also adopt a style guide, focusing on style issues. The standard organises its rules by topics

(e.g.: expressions, declarations, exception handling), and then classifies them by compliance levels. It

defines three compliance levels, as follows.

A DV I S O RY Advisory rules should be followed, whenever possible. However the developer is free

to deviate if compliance is not practical. While these rules concern features of importance,

deviations are generally acceptable in the development process. Examples of such features

include commenting out code, using explicit integer sizes and signedness, or using recursion.

R E Q U I R E D Required rules are requirements, compliance is mandatory. If compliance is not pos-

sible, a formal deviation must be raised. These rules compose the majority of the document,

and cover the most diverse topics, such as exceptions, functions, classes, the preprocessor, and

more.

D O C U M E N T Document rules do not allow any kind of deviation, formal or otherwise. These rules

impose documentation requirements, such as documenting the use of static analysis tools, float-

ing point arithmetic, assembly, or character encodings.

Each rule provides the reasoning behind it, plus examples and exceptions, if applicable. Even

though the rules themselves do not cover it, the standard also provides guidelines regarding developer

training, developement tools, source metrics, testing, how to raise deviations against the rules, and

how to claim compliance with the standard.

2.2.5 JSF Air Vehicle C++ Coding Standard

The Joint Strike Fighter Air Vehicle C++ Coding Standard (Lockheed Martin Corporation, 2005) was

published in 2005, making it one of the first professional C++ coding standards. As implied by its

name, this coding standard was initially put together for use on the Joint Strike Fighter projects, whose

software is made for air vehicles. This standard was based on previous safety-critical coding standards

for C, such as MISRA C, and other literature on C++ best practices. It gathered experts in the C++

17

2.2. Coding Standards

language to propose and evaluate its rules, one of them being Bjarne Stroustrup6, the designer of the

C++ programming language.

JSF AV C++ was made to be a strict standard that forms a safe subset of C++. It strives to produce

code that is reliable, portable, maintainable, testable, reusable, extensible and readable. Due to its

strictness and carefully picked rules, not only is it required for air vehicle software development, as it

is also recommended for other high-reliability software, as the standard states. In fact, some standards,

and standard revisions that came after it, reference its rules, as is the case of HIC++, discussed in

Section 2.2.3. This standard was also part of research in coding standards conducted at NASA, as said

by Goforth (2013). From it, another coding standard was made, the Orion Coding Standard, used in a

NASA flight software project.

The rules in this standard cover many topics of the C++ programming language, and the standard

organises them by the topics they cover. These include libraries, classes, templates, functions, and

expressions, among others. Conversely to HIC++ and MISRA C++, JSF AV C++ includes explicit

rules regarding testing and style conventions. Also conversely to these standards, JSF AV C++ pro-

hibits some features of the C++ language, such as C++ exceptions. Besides organization by topic, the

standard also classifies its rules by three levels of compliance, defined as follows.

S H O U L D RU L E S Rules with the word should are regarded as advisory. In order to deviate, the

developer must receive approval from the software engineering lead.

W I L L RU L E S Rules with the word will are mandatory, although they do not require verification. In

order to deviate, the developer must receive approval from the software engineering lead and

the software product manager.

S H A L L RU L E S Rules with the word shall are mandatory and must be verified. In order to devi-

ate, the developer must receive approval from the software engineering lead and the software

product manager, and must also document the deviation in the file that it occurs.

For each rule, the standard provides a rationale, references to MISRA rules, and examples and

exceptions when applicable. Anderson (2008) classified these rationales into seven categories: clar-

ity, predictability, simplicity, defense, compliance, process, and performance, with clarity being the

dominant rationale behind a rule. He also analyses the rule overlap between JSF AV C++ and other

safety-critical standards.

2.2.6 CERT C++ Coding Standard

The CERT C++ Coding Standard7 was published by the CERT Division8 of the Software Engineering

Institute (SEI) at Carnegie Mellon University, a group of experts in software security, and it is a

6 http://www.stroustrup.com/index.html
7 https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
8 http://www.cert.org/

18

http://www.stroustrup.com/index.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://www.cert.org/
http://www.stroustrup.com/index.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://www.cert.org/

2.2. Coding Standards

continuous work in progress. It is a community effort, and so its rules are freely available for use,

feedback and improvement. This standard takes a slightly different route from other standards, in that

its primary concern is software security. Since it is a work in progress, it is also more up to date than

other standards, in that it targets the C++14 update of the language.

Programs written in C++ are prone to have vulnerabilities that can often be traced back to common

programming errors. Seacord (2005), one of the authors of the standard and a member of CERT,

identifies many of these vulnerabilities and common errors, and provides guidelines to avoid them.

Most coding standards also provide guidelines to avoid vulnerabilities, but only from a safety per-

spective. CERT considered that this is insufficient, given the uprise in security attacks and exploits in

the software industry, and so they took the opportunity to define a secure coding standard (Seacord,

2006; Moore and Seacord, 2007). Unlike most coding standards, that aim for readability, portabil-

ity or maintainability, the CERT C++ coding standard strives for software security, dependability,

trustworthiness and survivability.

Table 4 illustrates a rule from CERT C++ that is not present in any of the remaining standards

studied here. This rule addresses the use of algorithmic pseudorandom number generators (PRNG).

In particular, it addresses the use of any PRNG that allows seeding, the ability to set the PRNG’s initial

state. Using a PRNG multiple times with the same initial state yields the same sequence of random

numbers. This is considered a vulnerability, for instance in security protocols, since an attacker is able

to predict the sequence of numbers after the first run of the program, effectively breaking the protocol.

A way to assure security is to avoid any predictable or controllable source for the seed (such as the

current time, or the process identifier), and instead use a sufficiently random source for the seed (such

as a hardware based random number generator) and reset this seed periodically.

Rule MSC32-CPP Required
Ensure your random number generator is properly seeded.

Table 4.: Example of a CERT rule concerning security.

This is the most detailed coding standard analysed here, in terms of rule structure. As said by Sea-

cord (2006), the standard makes a clear distinction between rules and recommendations. In essence,

rules address dangerous or exploitable features, and adherence is mandatory to claim compliance. Rec-

ommendations are guidelines that provide good practices, and should generally be followed, although

adherence is not required. The standard then goes further and provides a risk assessment section for

each guideline, where a guideline is assigned a level and priority, based on severity, likelihood and

remediation cost of the addressed issue. This allows a software product to claim compliance with the

standard by levels, where Level 1 compliance is the lowest and Level 3 compliance is full compliance.

With respect to the contents of the rules, the standard organises them by topic, as is common prac-

tice in most standards. These topics include the C++ preprocessor, expressions, memory management,

error handling, concurrency, among others. For each rule and recommendation, besides the risk assess-

19

2.3. Static Analysis Tools

ment, the standard provides a rationale, examples and exceptions (if applicable), references to other

standards and bibliography, and a list of tools that support automated verification of the guideline.

2.2.7 JPL C Coding Standard

The JPL C Coding Standard (Jet Propulsion Laboratory, 2009), developed by NASA’s Jet Propulsion

Laboratory, stands out from the other standards analysed in this project, because it is a coding standard

for the C programming language, as opposed to C++. While its guidelines will not cover C++’s

features, they are still useful guidelines in general. This standard is an effort to provide guidelines for

mission critical flight software used at JPL, for the C language, and it is strongly based on the MISRA

C Coding Standard (MISRA, 2004), and Holzmann (2006). Both references provide robust guidelines

for safety-critical software, but they do not address multi-threaded software. This standard aims to fill

that gap.

The standard covers the features of the C language, leaving out of its scope style conventions,

tools, test requirements, and other issues that are not directly related to code. Based on MISRA

C, the standard defines shall rules (requirements that must be verified) and should rules (deviations

are allowed, when adequately justified). It then defines six levels of compliance, where each level

addresses one section of the rules in the document. The first four levels concern language compliance,

predictable execution, defensive coding and code clarity, and are, in essence, an extension of the rules

in Holzmann (2006). The two last levels are related to compliance with MISRA C’s shall and should

rules.

This is a very strict standard, that highly promotes static verification of the code. To this end,

it inhibits potentially hazardous behaviour, such as recursion, dynamic memory allocation, or loops

without a statically determined upper bound.

2.3 S TAT I C A N A LY S I S T O O L S

It has been established that the adoption of coding standards in a software project is generally advan-

tageous. More so when the standards form safe subsets of the programming languages, and the safety

and reliability of the software product is of special concern. However, manually verifying compliance

with the standards is a daunting task, for any non-trivial project, if not even impossible in a reasonable

time period. To counter this obstacle, many tools in the field of software static analysis automate com-

pliance verification, when the rules do not require human analysis. For instance, a common naming

convention is for names to be meaningful and descriptive. This is a type of rule that tools cannot

generally verify.

In the case of C++, the programming language of interest in this project, given its widespread

use, many static analysis tools capable of checking compliance emerged, with some of them being

commercial, and others being free. The commercial tools are quite more capable than the free tools,

20

2.3. Static Analysis Tools

and they often pack many more analysis and management features. Commercial tools also directly

state their support for specific standards, while free tools are more extensible and of general utility.

This section presents an overview of some relevant free and commercial tools, and how they support

compliance verification.

2.3.1 Free Tools

Google provides a tool to verify compliance with their own coding standard, Cpplint9. Cpplint is a

Python script that reads a source code file and identifies coding style errors. It cannot verify every

rule from the standard, and it is known to report both false positives and false negatives, although

it provides a mechanism to annotate the source code and ignore false positives. Since it is an open

source script, it can naturally be adapted and extended to custom needs.

Clang10 is a compiler front-end for the LLVM compiler, and supports C, C++, Objective C and

Objective C++ programming languages. It was originally developed by Apple, and later became open

source. Clang by itself does not provide compliance verification, and its Clang Static Analyzer can

only detect some common errors. Instead, Clang is divided into a set of libraries that perform parsing,

semantic analysis, preprocessing and other compilation functions. These libraries, then, provide the

support for static analysis tools to be built on top of them. In other words, Clang parses the programs,

and provides other tools or extensions the data they need to check the rules they define.

Vera++11 is a free programmable tool for verification, analysis and transformation of C++ source

code. In essence, it is a parser for C++ source files which presents the results of parsing to user-defined

scripts. The scripts are the units responsible for processing and analysing the parsed source file names,

source lines and tokens for each file, making Vera++ a very flexible tool. Compliance with coding

standards, for instance, can be expressed in terms of rules, each rule being defined by a separate script.

The scripts can access the parsed information and perform actions related to the given rule. The user

can ask to run any given script or some defined set of scripts in a single program execution, and the

scripts are programmable in the TCL, Python and Lua programming languages.

Another free static analysis tool of interest is Cppcheck12, a tool for C and C++ code that performs

various checks beyond typical compiler capabilities. Its checks include memory leaks, index bounds,

dereferences to null pointers, unused or uninitialized variables, use of deprecated code, and more.

This tool is widely used, even in relatively large projects, such as OpenOffice and the Linux kernel.

Its usability is boosted by the fact that it comes integrated with other development tools, either out-of-

the-box or as a plug-in. While it is not bound to any particular coding standard, or even to the concept

of coding standards, some coding standards define rules against unused variables, for instance. As

such, its analysis capabilities can be translated to coding rules. Additionally, as is the case with other

9 https://google-styleguide.googlecode.com/svn/trunk/cpplint/cpplint.py
10 http://clang.llvm.org/
11 https://bitbucket.org/verateam/vera/wiki/Home
12 http://cppcheck.sourceforge.net/

21

https://google-styleguide.googlecode.com/svn/trunk/cpplint/cpplint.py
http://clang.llvm.org/
https://bitbucket.org/verateam/vera/wiki/Home
http://cppcheck.sourceforge.net/
https://google-styleguide.googlecode.com/svn/trunk/cpplint/cpplint.py
http://clang.llvm.org/
https://bitbucket.org/verateam/vera/wiki/Home
http://cppcheck.sourceforge.net/

2.3. Static Analysis Tools

free tools, Cppcheck is extensible, both with Python scripts and with XML rules, based on regular

expressions.

2.3.2 Commercial Tools

Goanna13 is a static analysis tool for C and C++ source code that is available either as a command line

tool, or as a plugin for some integrated development environments (IDE). Goanna’s analysis engine

supports program interprocedural analysis, and performs value analysis on the program’s variables,

using model checking techniques, to report accurate software quality issues. From the coding stan-

dards studied here, Goanna directly supports MISRA C++ and CERT C++. Since it supports MISRA

C, for the C programming language, and the JPL C standard includes MISRA C’s rules, Goanna

consequently supports part of the JPL C standard.

QA-C++14 is a static analysis tool for C++ environments, developed by PRQA, the author of the

HIC++ standard, providing compliance verification, dataflow analysis and code metrics. Its compli-

ance packages include the HIC++, MISRA C++ and JSF AV C++ coding standards. It also provides

configurable metric thresholds, to limit code complexity. More of its features include IDE integration,

a source code editor, and mixed projects with both C and C++. This is the tool recommended by

ROS15 to assess code quality, which is related to (but not focused on) coding standards, and includes

code metrics, for instance.

The LDRA Testbed16 is part of a tool suite that provides static and dynamic analysis engines, and

an interactive environment with code visualisation. LDRA’s code visualisation not only shows cod-

ing standards compliance and quality metrics, but also shows where the source code deviates from a

standard. LDRA’s coding standards compliance tools allow the user to select combinations of stan-

dards, rule subsets, and individual rules. This allows the tool to check compliance of a single code

base against multiple standards. It supports all coding standards studied here, except for ROS’s and

Google’s coding standards.

ECLAIR17 is a platform for the analysis, verification, testing and transformation of C and C++

programs. It covers a wide variety of coding standards, including all standards studied here, except

for ROS’s and Google’s standards. ECLAIR focuses on exact results, excluding false positives and

false negatives, when rules are decidable. For undecidable rules, it provides tradeoffs between com-

putational complexity, number of false positives and number of false negatives. It also provides code

metrics, that can be incrementally reported, showing where in the code the value was computed, or

aggregated (e.g., maximized, summed, averaged) over a single function, translation unit, program or

the whole project. At the verification level, ECLAIR comes with constraint propagation, symbolic

13 http://redlizards.com/
14 http://www.programmingresearch.com/products/qacpp/
15 http://wiki.ros.org/code_quality/installation
16 http://www.ldra.com/en/testbed-tbvision
17 http://bugseng.com/products/eclair

22

http://redlizards.com/
http://www.programmingresearch.com/products/qacpp/
http://wiki.ros.org/code_quality/installation
http://wiki.ros.org/code_quality/installation
http://www.ldra.com/en/testbed-tbvision
http://bugseng.com/products/eclair
http://redlizards.com/
http://www.programmingresearch.com/products/qacpp/
http://wiki.ros.org/code_quality/installation
http://www.ldra.com/en/testbed-tbvision
http://bugseng.com/products/eclair

2.3. Static Analysis Tools

model checking, and abstract interpretation engines. With respect to testing, this tool can automati-

cally synthesize sets of unit test inputs.

In summary, commercial tools often target high-quality software systems, and thus they provide no

direct support for ROS’s or Google’s coding standards, except for any rules that these standards may

have in common with other standards the tools support. Table 5 shows the support of the commercial

tools mentioned above for the coding standards studied in this project.

Tool Name HIC++ MISRA C++ JSF AV C++ CERT C++ JPL C

Goanna No Yes No Yes MISRA C Rules

QA-C++ Yes Yes Yes No No

LDRA Testbed Yes Yes Yes Yes Yes

ECLAIR Yes Yes Yes Yes Yes

Table 5.: Support of paid tools for coding standards.

2.3.3 SonarQube

SonarQube18, formerly Sonar, is an open source code quality management platform for software

projects, that allows teams to manage, track and improve the quality of their projects. It deserves

special consideration in this research project for a number of reasons, one of them being its popularity

as a static analysis tool.

SonarQube offers continuous quality analysis of the source code, with detailed dashboards and re-

ports, at the file, module or project levels. Its reports and dashboards can focus on measures, issues, or

customised data, and their changes over time, providing a new perspective of the improvement of the

team’s work. Its analysis capabilities cover code duplication, coding standards, lack of test coverage,

potential bugs, code complexity, documentation and design flaws. To ease access to these features,

and integration of the tool into a team’s development routines, SonarQube also offers integration sup-

port with many popular development tools, such as IDEs, build tools and other source code analysis

tools.

While SonarQube itself is free, in order to support more than twenty programming languages, it

adopts a plug-in system, and some of the plug-ins are commercial. In particular, the plug-in to analyse

C++ code is commercial, and supports the MISRA C and MISRA C++ coding standards. Anyone can

develop plug-ins for SonarQube, however, and this presents an interesting opportunity to extend an

already popular tool with custom analysis rules and reports for ROS projects. While this is not the

current route this project is following, this idea is kept as an open possibility for future work.

18 http://www.sonarqube.org/

23

http://www.sonarqube.org/
http://www.sonarqube.org/

2.4. Robot Operating System

2.4 RO B OT O P E R AT I N G S Y S T E M

Writing robotics software is hard. It has to cross a whole stack of abstraction levels, from the hard-

ware drivers to artificial intelligence and robotics algorithms. As more and more robotics researchers

realized this, more effort was put in designing and implementing a common middleware layer, so the

prototyping and development of robot applications could take a leap, reducing time and costs. Some

of these middleware frameworks are successful open source projects with growing communities, as

seen in a survey by Elkady and Sobh (2012). The Robot Operating System is one such project, and it

is the focus of this project for its large community and its increasing maturity.

The Robot Operating System19 (ROS) is an open source system that offers functionalities similar to

an operating system for robotics software, in the form of libraries (packages), tools and middleware.

It was originally created from a collaboration between Willow Garage, a team of experts in robotics,

and the Computer Science Department of Stanford University, as presented in Quigley et al. (2009).

In 2013, ROS’s stewardship transitioned to the non-profit Open Source Robotics Foundation, who

ensures that it remains free, open, and easy to share. ROS was designed with the goals of being a

thin, multi-lingual, open source framework, consisting on the interoperability of many small tools

and components, and based on a peer-to-peer architecture. This modularity allows users to determine

to what extent they need ROS’s functionalities, and allows ROS to interoperate with other robotics

frameworks. Although its main development languages are C++ and Python, it also offers support for

Java, LISP and others, to some extent, with support for C coming in ROS 2. This language neutrality

displayed by ROS is backed by its tool and peer-to-peer philosophy.

ROS uses Git repositories for its source code, hosting them freely on GitHub20, and the community

follows this rule when contributing to ROS. In fact, ROS has a distribution repository21 which hosts

distribution files for its various release versions. These distribution files contain all repositories and

packages featured in a release, the addresses of the remote repositories, the current version of each

package and the supported platforms for that ROS release. GitHub is, thus, a central service for the

ROS community. For ROS Indigo Igloo, the latest long-term support release of ROS, the distribution

file features about 700 repositories. Each repository may contain multiple packages, but packages are

considered the smallest build and release units in a ROS environment. Some packages are labelled as

metapackages, which is in essence a package of packages, an aggregation unit. Although a package is

a module, a logical component that depends on other components, packages could be categorised by

three main types: core packages, libraries and applications. Core packages are the main packages that

compose the ROS environment, tools and libraries. These provide the barebones of a ROS system and

its networks, and make a minimal ROS installation. Libraries may be developed by the community

and provide general utility, without a specific purpose. These are to be used as components for the

19 http://www.ros.org/
20 http://github.com/
21 https://github.com/ros/rosdistro

24

http://www.ros.org/
http://github.com/
https://github.com/ros/rosdistro
http://www.ros.org/
http://github.com/
https://github.com/ros/rosdistro

2.4. Robot Operating System

applications, packages that represent a robotics system, the high level controller of a robot with some

logic or instructions to execute (for instance, making a robot move in circles).

A typical ROS system consists on a number of processes, or nodes, connected under a peer-to-

peer topology. The nodes then communicate with each other following a publish-subscribe model,

where some nodes subscribe to topics of their interest, and other nodes publish messages (data) under

the appropriate topics (Quigley et al., 2009; Elkady and Sobh, 2012; Iñigo Blasco et al., 2012). These

nodes can represent various entities or fulfill various purposes. For instance, a sensor’s driver might be

implemented as a node, in which case it would publish the sensor’s data as messages under some topic,

while subscriber nodes would receive the messages and consume the sensor’s data. The messages

are specified in a neutral interface definition language which is then used to generate code for the

languages supported by ROS. Another means of communication between nodes is the use of remote

procedure calls (services in ROS terminology), which are very similar to topics, but the messages are

defined in request-reply pairs. At a finer grained level, sometimes a node can represent an entity that is

too large or too abstract, and further division is needed. This is accomplished using nodelets, subnodes

inside a node. Since each node is given its own process, nodelets are, instead, given a thread pool.

Nodelets favor the multithreading capabilities of the hardware, and have intra-process communication

at their disposal, reducing communication overhead. All these features make ROS incredibly flexible

and adaptable to heterogeneous environments and architectures. Moreover, ROS is designed in such

a way as to be compatible with robot simulators, such as Gazebo22, which makes testing possible, to

an extent, when a physical robot is not available. Figure 3 illustrates how these concepts connect to

each other in a typical ROS system.

Figure 3.: Simplified diagram of a ROS system.

22 http://gazebosim.org/

25

http://gazebosim.org/
http://gazebosim.org/

2.4. Robot Operating System

As an example of this architecture, we can see it in practice in Kobuki23. Kobuki is a low-cost

mobile robot base, implemented using ROS, and designed with education and research in robotics

in mind. It is used, for instance, as a base for Turtlebot 224, a popular ROS robot also used in re-

search and illustrated in figure 4. Kobuki alone already provides a set of interesting features, such as

keyboard remote operation, auto-docking and a safety controller, that overrides movement commands

based on sensor information. For instance, when launching in the Gazebo simulator a minimal Kobuki

application that makes the robot walk around randomly, while also allowing keyboard remote oper-

ation, it is possible to inspect (using the rosnode tool, provided by ROS) that there are eight active

nodes. One of the nodes is the simulator itself, that mimics the low level components of the robot and

subscribes to movement commands. There is a node to represent Kobuki’s base which makes use of

a number of nodelets, to reduce the overhead of internal communication, and provides the commands

for the low level components. Above this level, there are nodes for keyboard operation, prioritization

of commands, making the robot walk randomly, and essentially every loaded application. Kobuki’s

documentation25 provides a diagram (shown in figure 5) of a similar scenario, in which we can see

keyboard and Android operation, prioritization of commands (cmd_vel_mux) and a safety controller

that moves or stops the robot based on sensor information (kobuki_safety_controller).

Figure 4.: Turtlebot 2, a robot that uses Kobuki as a mobile base.

The main application field of ROS is in service robotics, with examples of robots folding towels,

cleaning up the office26, or cooking. However, ROS has also been used in applications as diverse as

autonomous cars27, micro air vehicles, and surgical robots (Hannaford et al., 2013). A project dedi-

cated to industrial robots (ROS-Industrial28) has also emerged, aiming to extend ROS’s capabilities to

manufacturing.

23 http://kobuki.yujinrobot.com/home-en/about/
24 http://kobuki.yujinrobot.com/home-en/about/reference-platforms/turtlebot-2/
25 http://wiki.ros.org/kobuki/Tutorials/Kobuki’s%20Control%20System
26 http://www.willowgarage.com/pages/software/ros-platform
27 http://www.ros.org/news/2010/03/robots-using-ros-stanfords-junior.html
28 http://rosindustrial.org/

26

http://kobuki.yujinrobot.com/home-en/about/
http://kobuki.yujinrobot.com/home-en/about/reference-platforms/turtlebot-2/
http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System
http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System
http://www.willowgarage.com/pages/software/ros-platform
http://www.ros.org/news/2010/03/robots-using-ros-stanfords-junior.html
http://rosindustrial.org/
http://kobuki.yujinrobot.com/home-en/about/
http://kobuki.yujinrobot.com/home-en/about/reference-platforms/turtlebot-2/
http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System
http://www.willowgarage.com/pages/software/ros-platform
http://www.ros.org/news/2010/03/robots-using-ros-stanfords-junior.html
http://rosindustrial.org/

2.5. Summary

Figure 5.: Kobuki’s control system in a basic usage scenario.

2.5 S U M M A RY

In this chapter, we have seen how coding standards play a part in high quality software, and how these

have been adopted in ROS, the robot middleware studied in this project.

Coding rules are important not only in defining a safe subset of a programming language, but also

for their effect on people. Having a clear set of rules from end to end of the developing process

helps people understand and review each other’s work, improves readability and consistency of the

code base, and lets people focus more on fulfilling requirements, rather than how to write a particular

solution. Furthermore, when assembling a standard, coding rules can be assigned various levels of

compliance and importance, often being labelled, at least, as either mandatory or advisory.

27

2.5. Summary

Given the broad context and possibilities for coding rules, it is no wonder that different standards

may opt to focus on different subjects. We have seen how Google and ROS define a sort of style guide,

emphasizing formatting and readability, while HIC++ and MISRA C++, for instance, are much stricter

standards with safety and quality concerns. It is also visible in the set of considered standards that, in

general, the more strict and reliability oriented a standard is, the better the document is structured and

organised. It is clear that, in order to pursue a quality oriented standard for ROS, it needs to take much

from the latter group of standards. Verification of compliance, however, is a complex subject on its

own. There are excellent and very capable tools, but these are commercial. Free tools for C++ static

analysis adopt a generic approach, being rather limited out-of-the-box and acting as a sort of parser,

while providing an extensible interface for the end user. In any case, but more so when limited to

free tools, it is probable that various tools have to be used in conjunction, in order to have a satisfying

analysis coverage. With such diverse interfaces and outputs, a single unified platform, such as the one

produced in this project, is of significant help when putting together a tool set.

Regarding ROS, we now know it is a package based system. Each package represents, essentially,

a library or component. This approach means that both the system and its applications are easily

extensible, and adaptable to various contexts, which are great qualities for an open source project. As

for the implementation of a ROS system, it is, in general, a short scale distributed system, in the sense

that each component has its own process, a node, and these processes communicate under a publish-

subscribe model. That is, when a node needs to share information, it sends a message to a certain

topic, and then the middleware handles the delivery of the message to all nodes that are subscribed to

that topic.

Summing up, this chapter covers about every major topic and concept of relevance to this project. It

provides an introduction to software quality based on coding standards, some popular coding standards

for the C++ language, tools to automate verification, and the Robot Operating System.

28

3

C O N T R I B U T I O N

This research project focuses on the code quality of projects developed for the ROS middleware, and

ways to assess these quality measurements. From the previous study on coding rules and standards,

it is clear that the only feasible way to measure quality of a non-trivial project is by using automated

tools. Hence the study of existing analysis tools and their adaptability and extensibility to analyse

ROS applications. Considering the limitations of the existing tools and the lack of ROS specific tools,

the development of a unified and generic tool (or, rather, a toolset) ensued, taking place as one of

the main contributions of the project. The main features this tool aims for are automatic source code

fetching, extensibility, analysis and quality measurements of the source code (especially with respect

to coding standards) through a plug-in system, and interactive reports of the analysis results using

graphic models, such as diagrams. Figure 6 illustrates the workflow of the developed tool, including

these features, while section 3.1 of this chapter discusses the tool in more detail, encompassing its

architecture, its functionality, other related tools, and how to use it in practice.

A case study followed the development of a basic version of the tool, as a way to leverage the tool’s

capabilities and observe its results in practice. In this case study we work through the adaptation of

Cpplint and Cppcheck (both free analysis tools, mentioned in section 2.3.1) into analysis plug-ins for

this tool. The former is adapted by altering its source code, while the latter is used as a child process

instead. The tool is then used to analyse an existing ROS project. Section 3.2 covers this adaptation

process, and an overview of the achieved results.

3.1 RO S S TAT I C A N A LY S I S T O O L

There are many tools to perform static analysis on C++ and Python code, the main development lan-

guages in ROS. However, as stated in section 2.3, when discussing some relevant tools, a considerable

part of these tools are paid services, and, even though they achieve excellent analysis results, none

of those tools is tailored to consider specific details of ROS. When developing a ROS application or

robot, one cannot ignore the concept of package, a way to organize source code files and to establish

dependencies between source files, a module, in essence. Packages are the smallest build and release

units in ROS software development. Being able to analyse code quality at function and file scopes

is a necessity, but being able to incorporate the package scope into the analysis allows for more rule

29

3.1. ROS Static Analysis Tool

Figure 6.: Simplified workflow of the developed tool.

definitions, and a more refined analysis report. Besides, some conventions in the ROS coding and

quality standards apply to packages, reinforcing their importance. With this in mind, developing a

new generic open source tool, specifically tailored for ROS projects, becomes justifiable.

Even though this project focuses on coding standards, software quality standards go beyond coding

conventions, to the domain of quality metrics, for instance. This tool should be suitable to as many

types of quality analysis as possible, and so a static analysis model based on rules and compliance,

as is generally the case with coding standards, was found to be the most flexible. Some relevant

quality standards already assume a compliance model, by declaring minimum and maximum allowed

values for each considered quality metric (thus, forming a rule: a metric must be within the allowed

range of values). By also assuming a compliance model, this tool can easily tell whether a package

is compliant with a given quality standard, it is a matter of whether there are any violations of the

standard’s rules. Other practical implications include a simplification of data structures (only non-

compliance occurrences need to be registered) and homogeneity of analysis reports.

The idea of performing some sort of quality analysis on ROS code and reporting the results through

interactive graphics is not new. The RosEco project1 already does this, to a limited extent. It narrows

its analysis to a few quality metrics, based on how active the source repositories are, or how many

dependencies a package has, and then assigns a score to each package, for each metric. This all

happens by looking at package manifests and by querying the source repositories, there is no quality

1 http://http404error.github.io/roseco/

30

http://http404error.github.io/roseco/
http://http404error.github.io/roseco/

3.1. ROS Static Analysis Tool

analysis at the source code level. The results are then rendered using a web browser, in the form

of a directed graph, where each node represents a ROS package. The nodes’ colour depends on their

metric scores, and the user interface offers some controllers for the user to focus the graph on a specific

package and its dependencies, or to change the selected quality metric, affecting how the nodes are

coloured. Since RosEco is an open source project, with a permissive license and equipped mostly

with features this project aims to achieve, it provided a solid start point to the development of a new,

more sophisticated tool. Some of the main differences between this tool and RosEco include:

• automatic fetching of source code from remote version control repositories;

• customisable package sets for analysis, not limited to the official ROS distribution;

• source code static analysis, based on a set of rules;

• customisable analysis rules, actions, and outputs through a plug-in system;

• a refined visualiser, with more user control knobs and extended analysis reports, besides graph

colouring.

Despite their differences, this tool kept some characteristics from RosEco, mostly from a software

architecture point of view. In particular, it kept a clear division between the component responsible

for performing the analysis and the component responsible for rendering the analysis results, to the

point that each of the components is implemented in different programming languages. Subsections

3.1.1 and 3.1.2 describe these components, respectively, while subsection 3.1.3 provides guidance in

using and extending the tool.

3.1.1 Analysis Component

The analysis component is the main component of the tool, and it is implemented in Python, as is

the case with RosEco. It runs as a console program, and it is responsible for everything but data

presentation. This includes managing source code repositories, running static analysis, and keeping

a database updated. Its execution is phased in startup operations, and then three stages, the update

stage, the analysis stage and the export stage.

During startup operations, the tool parses arguments provided by the user, and then loads a con-

figuration file. Through the startup arguments, users control which of the following stages will be

executed, and to what extent of their functionality. For instance, users can explicitly disable all oper-

ations that require a network connection. In the current version of the tool, the configuration file is

used only to provide a list of the plug-ins that should be dynamically loaded for later execution. This

concept of extending the tool via plug-ins is supported only for the analysis stage, since it is the only

stage that is entirely dependent of each user’s needs, and thus needs to adapt in order for the tool to be

31

3.1. ROS Static Analysis Tool

generic and flexible. A possible upgrade for the tool is to extend its plug-in support to the remaining

stages.

Following startup operations, the first stage of execution is the update stage, during which the

tool attempts to update its database and local source code files. In order to do so, the tool reads a

distribution file and a filter file. The distribution file is a concept taken from ROS. It is a file that

contains all known packages, and the address of their remote repositories, on GitHub. The filter file

is a smaller file that defines the set of packages that should be considered and analysed by the tool, in

the current execution. With this information, the tool proceeds to update the local source code and its

repository information. It either pulls changes from the remote repositories, or clones them entirely

if no local version exists. The repository information, although not currently used, was kept from

the RosEco project. It includes contributors to the repositories, repository issues, dates and statistics.

These operations require a network connection, and they can be skipped by users.

During the update stage, the tool also updates its analysis rules, so that it knows which rules are

available during analysis. The rules are declared in an external file, as a way to improve maintainabil-

ity and extensibility. This external file follows the YAML2 format, in order to keep it human-readable.

Listing 3.1 illustrates how rules are currently declared. For each rule, there is an identifier, a descrip-

tion, a scope and a set of tags. The description and scope hint at what the rule is, and how it is applied.

In the example given, a file scope means that the rule is meant to be applied to a whole source code file.

The tags are user-defined labels with no practical application in source code analysis. They serve as

a way to categorise, filter and sort rules, but their main application is in the visualisation component,

described in subsection 3.1.2.

%YAML 1.1

-

id: 1

name: MIN_COM_RATIO

scope: file

description: "Minimum lines of comments: 20%"

tags:

- metrics

- nasa-satc

- his

- uai

- ros

- comments

- comment-ratio

-

id: 2

name: MAX_COM_RATIO

scope: file

description: "Maximum lines of comments: 30%"

2 http://yaml.org/

32

http://yaml.org/
http://yaml.org/

3.1. ROS Static Analysis Tool

tags:

- metrics

- nasa-satc

- comments

- comment-ratio

Listing 3.1: Example of rule declaration, with two of the rules currently in use.

The tool verifies the source code in the analysis stage, looking for violations against the defined set

of rules. This may involve calculating code quality metrics, or checking that coding conventions are

respected, for instance. Implementing the static analysis checks for every rule one might be interested

in analysing is beyond the scope of this project, and it is not how this tool is intended to be used.

Instead, this tool supports extensibility through the aforementioned plug-ins.

A plug-in, in this context, is a subcomponent, dynamically loaded, responsible for performing a part

of the analysis process. The plug-in has access to a small interface, provided by the main component,

that abstracts the internal database and data structures, while allowing the plug-in to register its results.

Listing 3.2 illustrates how this interface is implemented as a Python class. For each non-compliance

occurrence, a plug-in registers the broken rule, the ROS package and, if possible, the source file, line

number and function name.

class PluginContext:

"""Constructor, internal data structures and helper functions omitted."""

def getRuleInfo(self, name=None):

"""Provides database entries for registered rules."""

def getPackageInfo(self):

"""Provides database entries for registered packages."""

def getFileInfo(self, ext=None):

"""Provides database entries for source code files."""

def writeNonCompliance(self, rule_id, package_id, file_id = None,

line = None, function = None, comment = None):

"""Registers a non-compliance occurrence.

The rule and package identifiers are mandatory.

Optional fields include the source file, line number,

function name, and a custom comment with additional information."""

Listing 3.2: Summary of the Python class that provides an interface between the main tool and plug-ins.

The current philosophy, regarding plug-ins and rule verification, is to have the plug-ins be a bridge

between free analysis tools, and this tool’s database, as a way to reuse the capabilities of other tools,

while adapting their results to fit the data structures in use here. However, free static analysis and code

33

3.1. ROS Static Analysis Tool

quality tools are limited. As the supported rules become more complex, or uncommon in other tools,

some analysis checks might still have to be manually implemented in a plug-in.

A result of separating rule declaration from rule verification (i.e., updating the rules database, as op-

posed to verifying the source code) is that the data structure for the analysis rules does not need to hold

any information on how compliance with the rules is verified, as seen in the example above. Another

result of this plug-in model is that the source code of the tool itself never changes to accommodate

new rules. Only the plug-ins and the configuration files loaded on startup need to adapt.

The final stage of execution for the analysis tool exports data files, with data from the database, as

a way to interoperate with other tools. In particular, this functionality is used to interoperate with the

visualisation component of this tool, that relies on these data files to present analysis results to the user.

In the current version of the tool, it exports a file with the rule set in use, a file with a summary of the

packages included in the initial filter file, and then exports a file with analysis details for each of those

packages. The package summaries contain general details about each package, such as their name,

their description, contributors, dependencies on other packages, and a count of rule violations per rule.

The analysis files contain information about each rule violation in the package, as detailed as possible,

with the same level of detail that is available to plug-ins when registering occurrences (rule, package,

file name, line number, function name and a custom comment), plus the list of tags associated with

the broken rule. All exported files are under the JSON3 format, as illustrated in listings 3.3 and 3.4.

[

{

"Name": "kobuki_keyop",

"Metapackage": false,

"Description": "Keyboard teleoperation for Kobuki: relays commands from a

keyboard to Kobuki.",

"Wiki": "http://ros.org/wiki/kobuki_keyop",

"Repositories": ["yujinrobot-release/kobuki-release", "yujinrobot/kobuki"],

"Authors": ["Daniel Stonier"],

"Maintainers": ["Daniel Stonier"],

"Analysis": {

"Noncompliance": {

"2": 2,

"3": 2,

"18": 1,

"20": 10,

"24": 13,

"10001": 15,

"10004": 55,

"10010": 2,

"10025": 12,

"10106": 6,

"10206": 4,

"10208": 1

3 http://json.org/

34

http://json.org/
http://json.org/

3.1. ROS Static Analysis Tool

}

},

"Edge": ["yocs_cmd_vel_mux", "yocs_velocity_smoother"]

}

]

Listing 3.3: Example of an exported package summary with one package.

[

{

"rule": "Maximum cyclomatic complexity: 10",

"file": "command.cpp",

"line": 210,

"function": "serialise",

"comment": "Cyclomatic complexity is greater than 10.",

"tags": ["metrics","nasa-satc","his","cyclomatic-complexity"]

}

]

Listing 3.4: Example of exported analysis details for a package.

3.1.2 Graphic Component

This data presentation component is implemented in HTML and JavaScript, as is the case with

RosEco’s graph viewer component. RosEco, in turn, is also based on another project, the X-Trace4

project. This component is, in essence, a web application that displays the data exported from the

analysis component, using graphs and other visual representations. It resorts to common web devel-

opment libraries, such as Angular and Angular Mobile to provide structure to the application, and D3

and Dagre for graph rendering.

From the package summaries exported by the analysis tool, this component builds a diagram, in the

form of a directed graph, where each node represents a package, and each edge represents a package

dependency. These summaries contain a count of non-compliance occurrences detected during analy-

sis, per rule, for each package. Such information is used to colour the nodes, in a lightness scheme in

which darker nodes have more reported non-compliance occurrences. Figure 7 shows an example of

a graph, as rendered by the application.

Each analysis rule has a set of associated tags (or labels), for categorisation purposes. Besides

rule categorisation, the tag system serves a second purpose as user-defined filters. The application

allows the user to filter the reported rule violations by a set of tags, as shown in figure 8, so that, for a

given package, it is possible to know both the total number of rule violations, and the total number of

4 http://www.x-trace.net/

35

http://www.x-trace.net/
http://www.x-trace.net/

3.1. ROS Static Analysis Tool

Figure 7.: Standard graph view. Darker nodes represent more non-compliant packages.

violations under some specific labels. Filtering works both ways, so that it is also possible to exclude

certain tags from the reported rule violations.

Figure 8.: Side bar menu with two active tag filters, ros and nasa-satc.

The component adjusts node colours to display the intersection of violations with the active sets

of tags. That is, when some tag filters are set, all nodes are drawn in the diagram, but each node is

coloured based on the sum of rule violations with any of the tags in the positive filter, minus the rule

violations with any tags in the ignore filter. Otherwise, when no tag filters are defined, the colours

represent the total number of rule violations for each package – which is equivalent to having every

possible tag in the positive filter. Take, for instance, a positive filter of a, an ignore filter of b, and a

package with violations in rules r1, r2 and r3. Assume that r1 is tagged as a, r2 is tagged as b, and

36

3.1. ROS Static Analysis Tool

r3 is tagged as both a and b. With these filters in place, such package would be coloured based on

the value violations(r1). Rules r2 and r3 would be ignored, in this case, because the tag b is being

ignored. If no filters were set, the package would be coloured based on the total number of violations,

violations(r1) + violations(r2) + violations(r3). The lightness of the resulting colour depends on

the difference between this sum and the maximum value in the set of analysed packages. In short, the

colouring system is relative. The darkest node does not necessarily represent a package with many

rule violations, it just represents the package with most rule violations in the graph.

Regarding user interaction, the graph allows zooming and panning, to accommodate various graph

sizes under various screen resolutions, and node selection. When a node is selected, the node, its de-

pendencies and the nodes that depend on it are highlighted and detailed information about the selected

node is shown to the user. This information includes the package name, the package description, a list

of dependencies, and the current value of non-compliance occurrences (taking tag filters into account).

Figure 9 depicts the effects of node selection on the graph and on the side bar. Additionally, users can

focus the graph on a node of their choice. Setting the focus reduces the visible graph to the focused

node, its dependencies and the nodes that depend on it. Clearing the focus renders the graph again

with all nodes.

Figure 9.: Side bar menu with the yocs_safety_controller package selected (blue outline).

In its current version, the component provides non-compliance details only at the package scope.

For a given package, the user can inspect which rules were violated, along with all the information

registered about each violation during the analysis (file name, line number, function name and more,

when available), as shown in figure 10. This detailed inspection is also subject to its own tag filters,

that work in the same way as in the general graph view. One possible enhancement for future versions

is to widen this range of scopes, allowing users to inspect particular files, classes or functions.

37

3.1. ROS Static Analysis Tool

Figure 10.: Non-compliance details for a selected package.

3.1.3 User Guide

When using the analyser, users can tune its execution to meet certain needs, or to avoid unneccessary

operations. There are mainly two tuning knobs: command line arguments and startup files.

Command line arguments allow the user to skip some stages of execution (see subsection 3.1.1

above), or to skip certain operations in each stage of execution. The arguments are given in an UNIX

fashion, using --argument [options], or -arg [options] when the argument has a short-

hand equivalent. When no arguments are provided, the tool goes through every step of its normal

execution flow. The following list describes the available arguments, and explains each of them.

U P DAT E The --update argument explicitly tells the tool to execute the update stage. It can receive

optional arguments to restrict what updates should be performed. The available options are

repos, to update source code and repository information, source, to update just the source

code (this is mutually exclusive with repos), and rules, to update the set of analysis rules.

It also provides the shorthand -u.

N O - U P DAT E The --no-update argument skips the execution of the update stage. It is mutually

exclusive with --update.

N O - N E T W O R K The --no-network argument skips operations that require a network connection,

such as updating source code, or repository information. It also provides the shorthand -n.

A N A LY S E The --analyse argument explicitly tells the tool to execute the analysis stage. It can

receive optional arguments to restrict the types of analysis performed. Currently, the only sup-

ported optional argument is rules, to analyse source code non-compliance. It also provides

the shorthand -a.

38

3.1. ROS Static Analysis Tool

N O - A N A LY S E The --no-analyse argument skips the execution of the analysis stage. It is mu-

tually exclusive with --analyse.

E X P O RT The --export argument explicitly tells the tool to execute the export stage. It can re-

ceive optional arguments to restrict what data is exported. The currently supported optional

arguments are packages, to export package summaries, rules, to export the active rule set,

and analysis, to export analysis results. It also provides the shorthand -e.

N O - E X P O RT The --no-export argument skips the execution of the export stage. It is mutually

exclusive with --export.

An usage example of these command line arguments is given in listing 3.5. In this example, the tool

executes all three stages, but the update stage skips source code and repository information updates,

since these require network operations (inhibited by the -n argument), and the export stage only

exports the detailed analysis results. The analysis stage is unaffected, and, thus, every analysis plug-in

is executed.

$ python main.py -n -e analysis

Listing 3.5: Usage example of the command line arguments supported by the tool.

The startup files include the configurations file, the rules file and the distribution filter file. In the

rules file, users can change the set of known analysis rules to the tool. Note, however, that editing or

removing existing rules may cause plug-ins to encounter errors or report inaccurate results. The dis-

tribution filter file allows users to change the set of analysed packages. The only restriction regarding

this filter, is that the packages included in the filter must be included in the complete distribution file.

In the configurations file, users can select which plug-ins the tool should load and execute, in their

respective execution stages. The only restriction is that plug-in names and file names must match. For

instance, a plug-in named plugin should be found in a file named plugin.py.

Besides using the tool itself, users can extend the tool’s functionality, by writing plug-ins for it.

Plug-ins start as Python scripts that the tool dynamically loads and runs. All that is required from a

plug-in is for it to define a function named plugin_run, which receives one argument and is the

entry point for the plug-in’s functionality. Analysis plug-ins rely on the interface provided by the tool

to register their results (see listing 3.2). An object with such interface is the argument passed by the

main tool to the plug-in, via the argument of the plugin_run function. From that point on, the

plug-in is free to perform its analysis and register its results as it sees fit. This includes, for instance,

spawning a subprocess to run another program.

Using plug-ins to spawn subprocesses is an useful practice, as it allows interoperability with existing

tools, or other frameworks, implemented in different programming languages. This reinforces the idea

that plug-ins are, ideally, a bridge between existing tools and this tool, converting analysis results into

non-compliance occurrences. Suppose that there is a Python analysis tool called py_verifier. Listing

3.6 presents the general structure of a plug-in that would reuse this tool to extract results.

39

3.1. ROS Static Analysis Tool

import os

import subprocess

This function is the entry point for the plug-in.

def plugin_run(api):

Retrieve every known Python file, by file name extension.

Each file is represented as a tuple, consisting of

(id, file name, relative path, package id)

files = api.getFileInfo(ext="py")

for f in files:

Calculate the absolute file path of the file,

using the relative path and the file name.

file_path = api.getPath(f[2], file_name = f[1])

Spawn a subprocess and collect its results.

results = run_py_verifier(file_path)

for r in results:

Register each non-compliance occurrence found,

using as much information as possible, even though

only the rule id and package id are mandatory.

api.writeNonCompliance(r["rule id"], f[3],

file_id=f[0], line=r["line number"],

function=r["function name"],

comment=r["informative comment"])

def run_py_verifier(file_path):

Call a subprocess with the tool, and convert its results.

...

Listing 3.6: Example structure of a plug-in, using a made up tool called py_verifier.

This example plug-in starts by using the provided interface (the api argument) to retrieve all

Python files known to the database. Note that these files belong only to the packages included in

the filter file defined before. This action is seen in the first line of code, by using the getFileInfo

function. This function returns a list of all files, representing each file as a tuple with the file identifier,

the file name, the relative file path (package and sub-directories) and the identifier of the package the

file belongs to. With the list of target files at hand, the plug-in proceeds to iterate over each file. For

each of the files, it uses the interface again to extract the absolute file path in the file system (the get-

Path function), and then spawns a subprocess using the made up py_verifier tool. Since it is a made

up tool, the example abstracts the conversion of the tool’s results to a format usable by the plug-in.

Finally, for each of the analysis results, the plug-in uses the writeNonCompliance function to

register a rule violation. In order to register a rule violation, only the rule and package identifiers are

mandatory. However, the plug-in tries to make the non-compliance occurrence as detailed as possible,

registering also the file identifier, line number, function name, and additional details, if available.

40

3.2. Case Study and Evaluation

3.2 C A S E S T U DY A N D E VA L UAT I O N

At this point, with a basic implementation of the analysis tool, the plug-in system, and the visualisation

tool, we are all set to take an existing ROS application as a case study of the tool. However, as per

the previous discussion up to this point, we know that the tool does not perform analysis by its own,

it needs analysis plug-ins. Thus, prior to delving into the case study itself, we work through the

integration of existing tools into plug-ins for this tool. Such tasks serve as an extended test of the

tool’s capabilities, its extensibility, and its performance when handling hundreds, or even thousands

of rule violations.

For this case study, we work with Cpplint and Cppcheck, both free C++ static analysis tools in

active development, and with Kobuki, as the chosen ROS application for its popularity. The former

tool, developed by Google, checks violations against Google’s C++ coding standard, and coding style

issues. In fact, at its current version, the tool has a strong focus on coding style, while its ability to

find programming issues is still limited. In contrast, the latter is not bound to any coding standard,

and focuses on programming errors often undetected by compilers, such as memory leaks, use of

redundant code, or use of deprecated functions. Kobuki, as mentioned in section 2.4, is a low-cost

mobile robot base, implemented using ROS, and designed with education and research in robotics in

mind. Subsection 3.2.1 covers the required first step of implementing the plug-ins, while subsection

3.2.2 overviews the analysis and its results.

3.2.1 Cpplint and Cppcheck Plug-ins

The choice of Cpplint for this case study came quite naturally, given the reasons to back it up. First,

and foremost, it is a free and open source tool for C++ code. C++ is one of the main development

languages in ROS applications, and the fact that this is an open source tool makes adaptation and

extensibility easier. Besides, Cpplint is implemented in Python, the same programming language

used in the analysis tool developed for this project, and the language in which plug-ins are developed.

This enhances interoperability between both tools. Regarding the coding standards, Google’s C++

coding standard is a well known standard, already adopted in existing projects, and it is also the basis

for the ROS C++ coding standard, which is one of the most important coding standards to consider in

this project, given our focus on ROS software. Finally, supporting the tool’s importance, one of the

official ROS packages, roslint, provides a wrapper for Cpplint, slightly modified to mind a handful of

differences between the two coding standards. Changing Cpplint into a plug-in for our analysis tool,

while also incorporating the changes made by the ROS team, we can cover some rule violations from

two coding standards with the same plug-in.

The reasons to back up the choice of Cppcheck as a second plug-in are similar. It is a free tool to

analyse C++ code, it is under active development, and it is a widely used tool, with achieved results in

large software projects. Its emphasis on finding programming errors also works well as a complement

41

3.2. Case Study and Evaluation

to Cpplint, allowing this couple of tools to have minimum overlap in their capabilities as plug-ins.

Since Google’s coding standard focuses more on style, finding programming errors and suspicious

patterns allows the analysis to cover other stricter standards, such as MISRA C++, HIC++ or JSF-AV

C++.

When adapting an existing tool to a plug-in, for this tool, there are essentially two options: either

the plug-in is a thin layer that creates a child process to run the existing tool and then processes the

output, or the tool’s source code is adapted or imported to fully integrate it in the plug-in. This case

study explores both routes. Since Cpplint is already implemented in Python, we opt for full integration

in the plug-in. This means that Cpplint’s source code must be adapted to change its entry point, as it

is no longer a stand-alone tool, and it must change its error reporting, from printing to the screen to

registering a non-compliance occurrence, using the plug-in interface. And these are, in essence, the

only amendments needed in the tool’s source code. Cppcheck’s plug-in, on the other hand, is a thin

layer over a child process that runs the Cppcheck tool. The plug-in does little more than running the

tool, redirecting its output, and then processing said output and convert it to rule violations.

Cpplint works by parsing user arguments (since it is a command-line tool), loading configuration

files, and then analysing the source code files. Contrary to some static analysis tools, it does not build

a model of the program, or an abstract syntax tree. Instead, it analyses files line by line, sometimes

looking ahead or looking back a few lines, in order to verify some rules that apply to structures that

may span across multiple lines of code. It keeps and updates some objects representing various parsing

states, so that it knows, for instance, if a certain line is inside a function or a class definition. It also

keeps some additional application state, such as the tool’s verbosity level, and output format.

The first step towards adapting Cpplint to a plug-in is discarding all code related to parsing user

arguments and configuration files. These provide no utility here, since the plug-in interface covers

everything these aspects provide, such as source file lists and locations. Then, its main function, its

entry point, is slightly modified to comply with the structure required by the plug-in interface (see

section 3.1.3 for a guide on writing plug-ins). Finally, the last modification required is also the most

laborious. Cpplint defines an error function that is called whenever it encounters a violation during

its verification process. This function writes formatted messages to the standard output, based on its

arguments that act as error details. The function has been modified, so that it now receives the rule

identifiers associated with the detected violations (Cpplint has no explicit concept of coding rule). As

a consequence, every call to this function – about 130 calls, in the current version – also had to be

modified, to include the specific rule that was violated. Additionally, most of these rules had to be

inserted in the rules file, described in previous sections, since they are specific to this standard and

tool, and, thus, were not covered yet.

The plug-in to leverage Cppcheck’s capabilities is not as laborious, at least for basic functionality.

In fact, its source code follows the same structure as the draft presented in listing 3.6, in the user guide

(section 3.1.3). It starts by collecting a list of the packages of interest and then, for each package,

calls Cppcheck as a subprocess. Cppcheck allows users to extend its rule set by defining an additional

42

3.2. Case Study and Evaluation

XML file with extra rules to check, but these rules are limited to regular expressions. This plug-in

makes use of this feature, in order to cover some simple rules of interest. After analysis, Cppcheck

produces XML output with its error and warning reports, for all analysed files in a package, which

is later parsed by the plug-in. Finally, the plug-in maps Cppcheck reports to specific rule violations,

and uses the plug-in API to register the occurrences. The current version is able to detect violations

of only 24 rules, though, related to unused or uninitialized variables, and other simple code patterns,

given its constraint to regular expressions for user-defined rules.

3.2.2 Analysis of Kobuki

One of the first steps in this project was to evaluate which type of ROS package the quality analysis

should focus on. We focus mainly on applications, as these are more representative of an individual

robot, in the sense that by validating the application that controls the robot, one is also validating

the robot itself. Thus, with the new plug-ins set in place, the next logical step would be to test them

with a relevant ROS application. As a case study, we cover a subset of Kobuki, the mobile robot

base discussed previously, in section 2.4. Since Kobuki’s source code is maintained as a set of ROS

packages, using ROS libraries and features, it is expected that a reasonable number of violations will

be detected using the Cpplint plug-in. In particular, a number of code formatting issues should be

raised, since Google and ROS differ in their coding style guidelines. The number of reported rule

violations is also an estimate of the real number of rule violations, since Cpplint clearly states that

some reports may be false positives. Cppcheck can also provide false positives, in particular when

inconclusive analysis is enabled. For these tests, inconclusive analysis was not enabled. With this in

mind, we now overview the analysis and the results gathered by the plug-ins.

In terms of coding rules, this analysis includes a total of 119 rules that both plug-ins should check.

These rules cover most of section 5 and sections 4 and 11 of the ROS C++ Style Guide (Formatting,

License statements and Namespaces, respectively). Given that the ROS C++ Style Guide is a work

in progress, is based on Google’s C++ Style Guide, and its tool, roslint, is mostly a clone of Cpplint,

it is safe to assume that Google’s rules apply whenever ROS has no explicit rule. As such, if we

consider this extended view of the ROS C++ Style Guide, the rule coverage amounts to about 90

rules, given that the plug-in incorporates both Cpplint and the rules added by roslint. Looking at the

guide, we can see that some of the rules that were left out are still related to syntax or text formatting,

and could potentially be implemented with additional effort, such as naming conventions and the use

of documentation throughout the code. Other rules require more specialised verification, beyond the

scope or capabilities of these tools. These rules regard inheritance, global variables, and the use of

exceptions and error codes.

This analysis is not limited to the ROS C++ Style Guide, however. In particular, when using

the Cppcheck plug-in and Cppcheck’s XML extensions, some rules from the HIC++ standard are

also covered, little more than 20 in the current version. These rules concern, for instance, the use

43

3.2. Case Study and Evaluation

of deprecated features, such as keywords and libraries, or features that are prone to errors, such as

fall through in switch cases. As mentioned in the discussion about HIC++, its most recent version

references the MISRA and JSF AV C++ standards, and some of their rules overlap. Some of the

implemented rules are part of this overlapping set, and thus a minuscule portion of these two standards

(about 10 rules) is also covered in the analysis. Figure 11 puts these numbers side by side, ignoring

overlaps (that is, counting them multiple times). Another way to look at rules is by category, instead

of looking at them by standard. Close to half of the rules concern formatting issues. Code comments,

preprocessing, functions and deprecation are the leading categories afterwards, having about 10 rules

each. See Appendix A for the complete rule set file used in the analysis.

90

ROS/Google C++

23

HIC++

11

MISRA C++

8
JSF AV C++

Figure 11.: Implemented rules by coding standard.

Our code base sample consists of 11 packages, three of which are metapackages – a package of

packages, a logical aggregation of related packages into a single unit – and thus contain no C++

source code. This group of packages represents the source code necessary for Kobuki’s drivers, key-

board remote operation, safety controllers, and a random walker application that makes the robot

walk around, randomly changing its direction from time to time. It is a minimal sample of interest,

when considering real, complex applications. Still, this sample contains 68 C++ source code files,

amounting to more than 10 000 lines of code, and 2 913 rule violations, with the majority of these vio-

lations reported by Cpplint. Figure 12 depicts the distribution of rule violations per analysed package,

clearly showing that Kobuki’s driver, the package that contains most low-level code, is also the most

non-compliant package. Additionally, table 6 shows the main categories of violated rules detected by

the plug-ins. Figure 7, shown before, in section 3.1.2, depicts these results, as seen in the graphic

component of the tool. Overall, the obtained results clearly show the emphasis of the Cpplint plug-in

on coding-style, given that most rule violations fall under code formatting issues.

The Formatting column of table 6 refers both to code formatting issues, and issues related to license

statements. The second column, Function Parameters, includes violations related only to function

44

3.2. Case Study and Evaluation

1 815
kobuki_driver

660

kobuki_node

165

kobuki_random_walker

142

yocs_velocity_smoother

131

yocs_cmd_vel_mux

125 kobuki_safety_controller

103 kobuki_keyop
82 yocs_safety_controller

Figure 12.: Non-compliance results, per package, detected using the plug-ins.

Package Formatting Function Possible Deprecated

Parameters Errors Features

kobuki_driver 1367 66 223 43

kobuki_node 574 18 33 8

kobuki_random_walker 146 0 6 2

yocs_velocity_smoother 118 2 13 2

kobuki_safety_controller 113 2 6 0

yocs_cmd_vel_mux 96 1 18 0

kobuki_keyop 94 0 4 0

yocs_safety_controller 66 2 6 0

Table 6.: Main categories of non-compliance detected by the plug-ins.

parameters, such as declaring too many parameters, or declaring parameters as mutable, when they

could be declared as constant. The final column, Deprecated Features, is self-explanatory. It refers to

the use of features that are no longer supported or recommended. The third column, Possible Errors,

is composed of mostly every other violation that does not fall in the previous columns. Examples

of violations that fall under this column include unused variables, uninitialized class members, code

patterns that could be misinterpreted, or the use of features that may not be portable across different

environments. While, in general, these rule violations may not represent threatening issues, in terms of

software safety, they may have some impact in collaborative development. For instance, a contributor

to the source code might misread badly formatted code, or have difficulty reading and using a function

with too many parameters, especially when multiple parameters are of the same type. With that said,

45

3.3. Summary

the formatting rules with most violations concern the maximum line length and the placement of curly

braces (placing them on their own line versus placing them on the same line as the previous statement).

Table 7 shows yet another perspective on the analysis results. It contrasts the number of lines of

code, per package, with the number of rule violations detected. With these numbers it is possible

to calculate a ratio of rule violations per line of code, which helps visualise the dimension of non-

compliant source code. On average, this ratio is about 0.28, that is, it is about one rule violation

every four lines of code. While this ratio may be acceptable, especially considering the existence of

false positives and knowing that most of these violations concern formatting, it is still a considerable

number.

Package Lines Rule Violations per

of Code Violations Line of Code

kobuki_driver 5500 1815 0.33

kobuki_node 1940 660 0.34

kobuki_random_walker 530 165 0.31

yocs_velocity_smoother 430 142 0.33

kobuki_safety_controller 460 125 0.27

yocs_cmd_vel_mux 510 131 0.25

kobuki_keyop 680 103 0.15

yocs_safety_controller 310 82 0.26

Table 7.: Number of lines of code and rule violations per package.

3.3 S U M M A RY

Having a look at the analysis tools studied in the previous chapter, there are two impediments to

the adoption of an existing tool: free tools for C++ static analysis are rather limited out-of-the-box,

while commercial tools, although very capable in terms of analysis, are not accessible to the general

community and are not specifically suited for a ROS environment. Thus, the development of a new

generic tool ensued, taking place as one of the main contributions of the project. In short, it is a tool

for automatic source code fetching, analysis and quality measurements, and interactive visualisation

of the analysis results using graphic models, such as diagrams.

The possibility of implementing this tool as a set of plug-ins for the SonarQube platform was con-

sidered and put aside, given the time frame of the project, the requirements of the ROS environment

and the existence of RosEco, an open source tool that was in line with the main objectives pursued

here, although to a limited extent. RosEco does not cover static analysis, and its analysis results

and visualisation of them are not extensive enough. Nevertheless, it provided a solid foundation for

46

3.3. Summary

the development of a new tool, and a much quicker start, when compared to developing a tool from

scratch.

This new tool kept many ideas from RosEco, namely in terms of architecture. It is divided in two

almost independent tools, or components, one responsible for source code management and analysis,

while the other is responsible for the interactive reports and visualisation. The analysis component by

itself does not perform any analysis, because different users might be interested in different rules and

quality standards. As such, the tool provides an extensible interface for plug-ins, and delegates the

analysis responsibility to the plug-ins. This chapter also provides instructions to use and extend the

tool, with a description of its configuration parameters and a brief overview of its plug-in interface.

Finally, the chapter wraps up with a case study of the developed tool. We go through the adaptation

process of Cpplint and Cppcheck, two free C++ analysis tools, into plug-ins for this tool. While the

former tool is adapted by modifying its source code, the latter is used in its binary form, showing two

alternatives for reusing existing tools. This case study applies the plug-ins to Kobuki, a popular robot

using ROS, and we then review the analysis results. Even though these plug-ins have plenty of room

for improvement and completeness, they were able to pick up about 3 000 rule violations, in a code

base of more than 10 000 lines of code. Most rule violations concern formatting issues, and some of

the violations are false positives, but there are also legitimate results concerning code quality. All in

all, this shows the potential of this tool, and how straightforward it is to integrate existing tools.

47

4

C O N C L U S I O N S A N D F U T U R E W O R K

The field of Robotics is certainly a center of much attention and effort, and more so as it becomes avail-

able in education, industry, research and for the general public. This is not without merit, as robots

can incorporate ever larger and more complex software controllers, allowing them, in turn, to perform

more complex tasks. One of the impediments to this rapid growth was that the software was often

proprietary, closing doors to potential new researchers, but that is no longer the case. Open source

systems, such as the Robot Operating System, emerged and grew sizeable and active communities,

effectively pushing the limits of robotics. As a direct consequence, the safety and reliability of the

software becomes a concern, and assuring high quality robotics software becomes a necessity, instead

of a benefit. And, as it turns out, the field of robotics is still lagging behind, in terms of integrating

high quality assurance techniques in its development process. This research project contributes to this

integration, with a focus on ROS systems and the application of coding standards. In this final chapter

we go through some concluding remarks, but, since the project cannot possibly cover this topic in full

extent, there are also open possibilities of improvement and future work.

In chapter 2, we were able to harness an understanding of the fundamentals of coding rules and

standards, the ROS framework, as well as some of the most widely adopted coding standards in in-

dustry for the C++ language. Coding standards are regarded in the industry as a logical and necessary

component of software development, more so when large teams are involved, or when there is little

margin for software errors. Verifying compliance with coding standards, however, can be a daunting

task, if performed manually by an individual, given the amount and complexity of the rules a standard

can have. Besides, many small details could pass unnoticed by the human eye. Thus, it is often the

case that compliance verification is automated and delegated to tools. In the particular case of C++,

the most capable tools are commercial. The free tools available often do not commit to specific stan-

dards, but instead rely on some general rules of thumb, and open up opportunities for extensibility,

leaving most rules to be implemented by the users.

Regarding specific standards, the ROS C++ style guide is, without a doubt, one of the most impor-

tant standards here considered, since the project’s focus is on ROS software. However, it is mostly

focused on stylistic issues, and very much based on Google’s C++ style guide. These standards deliver

more in terms of code readability and consistency across a project, than in terms of code quality, from

a software engineering perspective.

48

Readability and syntactic consistency are complementary goals of attaining high reliability and

correctness. Reliable and correct software is not necessarily made up of readable or consistent code,

nor vice versa, but high quality software commonly exhibits both traits. Knowing that maintenance

and software failures are often the overwhelming source of costs in the software industry, and knowing

that both software and robots are increasingly applied in high reliability applications each day, such as

medical devices and transportation, it stands to reason that software quality should not be disregarded

when programming robots. This, then, presents a great research opportunity in the field of coding

standards and code quality: to establish a set of conventions for ROS, one of the most used open

source robotics frameworks, highly focused on the production and maintainability of reliable code.

The remaining considered standards, HIC++, MISRA C++, JSF AV C++, CERT C++ and JPL

C, are more organized in their structure, more restrictive in their rules, and much more focused in

delivering high quality software than the ROS and Google style guides. This is, in part, due to applying

rules on language constructs and the way they are used, instead of defining stylistic guidelines. These

quality centric coding standards are more appealing in the context of this project, as they are more

in line with the goals we try to achieve. They are, in most aspects, independent of context, meaning

that they do not encompass in any way the specifics of programming robots, much less when using a

specific framework such as ROS, but most of their rules should be applicable regardless, given their

broad scope, reasoning and general utility. Some of these standards even refer to each other, leading

to a significant rule overlap between them. Given their high adoption and success in the industry, it is

not implausible to think that these standards, or some of their rules, should also be a part of a set of

guidelines when programming ROS applications, thus improving the current ROS coding standard.

As said before, our first contribution was to put into perspective some important coding standards

for the C++ programming language, and for programming ROS applications. Still, as also pointed out

before, there is a strong opportunity for future research work in this area, by defining a new document,

a set of coding conventions for high quality ROS software, from scratch. From the knowledge gathered

in this study, such a standard would incorporate three types of rules:

• style and formatting guidelines,

• general quality, safety and feature centric rules, and

• context specific rules.

The first of these types of rules would come essentially from the current ROS style guide, in an

attempt to preserve as many conventions as possible, thus invalidating little to no existing code in this

matter. These style guidelines would be complemented with quality and feature centric rules, based on

HIC++, MISRA C++ and JSF AV C++. These rules are of general utility in programming, however,

and so this opens up some room for the third category, specific rules related to the ROS framework and

the best use of its libraries. Such rules could filter out functions that tend to be error prone, or highlight

scenarios in which certain features of the framework should not be used, for instance. This, however,

49

requires a deep understanding of the ROS framework and programming robot systems. Finally, in

terms of document and rule structure, the resulting document should follow a format similar to those

of HIC++, MISRA C++ and JSF AV C++, with rule categorization, the reasoning behind every rule,

and examples and exceptions. However, the rules themselves should follow the format of CERT C++,

with detailed levels of severity, risk and compliance. This way, the resulting document would take the

best from each of the existing standards.

Moving on to the tool department, after identifying a certain lack of free verification tools for com-

pliance with C++ coding standards, this project aimed to fill in that role, by developing an extensible

and generic tool for quality assurance of ROS software. Recalling the previous discussion on Sonar-

Qube, it seemed to be a promising platform to explore and extend, and so it is plausible to conceive

this tool as a SonarQube plug-in, or a series of plug-ins and utility tools. However, given the limited

time frame of the project, the challenges of incorporating ROS characteristics in SonarQube and the

existence of the RosEco project, starting an independent tool with basis on RosEco was deemed to be

the more advantageous route.

This new tool, described in chapter 3 and available on GitHub1, analyses ROS software following

a compliance model, meaning that users define rules and the tool identifies rule violations. It is

extensible through delegation of the actual analysis to a plug-in system, that users can use and extend

themselves. It is generic in the sense that it should be able to accommodate as many and as diverse

coding and quality standards as deemed logical, and its plug-in system presents a bridge between this

tool and existing, reusable tools. While the tool itself is little more than a database manager and a web

application that renders its data, there is much potential in its plug-in system, given that its plug-ins

have few restrictions imposed.

It is a fact that this tool is yet in a very early stage, and so there are many ways to improve it. Some

of these are:

• improving the tool’s performance and scalability to larger systems, by optimising the use of its

database connections;

• improving the tool’s interface to plug-ins, by extending its capabilities, thus making plug-ins

easier to write, and more versatile;

• improving the tool’s user interface, in the visualisation component, so that it handles large

amounts of data more efficiently;

• improving the tool’s user interface, by rendering similar diagrams for the files inside a package;

• extending the plug-in system so that plug-ins may be integrated in other stages of execution,

besides the analysis stage;

1 https://github.com/git-afsantos/haros

50

https://github.com/git-afsantos/haros
https://github.com/git-afsantos/haros

• improving the analysis system so that it detects whether two plug-ins disagree about a rule

violation (that is, one detects a violation while the other does not detect a violation on the same

rule);

• extending the analysis capabilities to identify ROS nodes and messages, possibly rendering

them in a diagram.

By further developing this tool, and equipping it with a set of plug-ins that harness existing free

tools and cover a relevant part of reputable coding and quality standards, this tool appears to be a

relevant and needed contribution to the ROS community. This community already has some efforts

in developing a static analysis tool, roslint, which focuses mainly on style issues. Roslint can be

fully integrated in this tool as a plug-in, as was demonstrated in the case study, keeping a sense of

backwards compatibility and further increasing the potential value of this contribution.

Summing up, this project delivers an overview of the ROS framework and some of the most relevant

coding standards for the C++ language, one of the main programming languages in ROS. It also

delivers a summary of the available tools to automate compliance verification, showing some lack

of free and open source tools. This served as a motivation for the remainder of the project and its

contributions, which delve into building such a tool and leveraging its capabilities with a case study.

Finally, it presents opportunities for future work, by defining a quality centric coding standard for

ROS, given that the community is currently lacking one, and by refining the implemented tool. As the

software industry tends to agree, and as this project hopes to show, coding standards are a crucial part

in building high quality software, and there is still plenty of room for improvement regarding robotics,

and ROS in particular.

51

B I B L I O G R A P H Y

Scott W Ambler. Writing Robust Java Code. The AmbySoft Inc Coding Standards for Java v17.01d,

January 2000.

Paul Anderson. Coding standards for high-confidence embedded systems. In 2008 IEEE Military

Communications Conference (MILCOM 2008), 2008. ISBN 9781424426768.

Wojciech Basalaj. HICPP, JSF++ and MISRA C++: a study of rule overlaps and effective compliance.

2011.

Wojciech Basalaj and Richard Corden. High Integrity C++ Coding Standard V4.0 - an overview.

2013.

David W Binkley. C++ in safety critical systems. Annals of Software Engineering, 4(1):223–234,

1997.

Joshua Bloch. Effective Java. 2008. ISBN 9780321356680. doi: 10.1016/B978-075067929-9/

50038-5.

Andrea Capiluppi, Cornelia Boldyreff, Karl Beecher, and Paul J. Adams. Quality Factors and Coding

Standards - a Comparison Between Open Source Forges. Electronic Notes in Theoretical Computer

Science, 233:89–103, 2009.

CERT Division of the Software Engineering Institute - Carnegie Mellon University. CERT C++

Coding Standard. https://www.securecoding.cert.org/confluence/pages/

viewpage.action?pageId=637. [Online; accessed 04-January-2015].

Richard Corden. Freeing C++ Developers with a Coding Standard. In using std::cpp,

Madrid, Spain, 2013. URL http://www.programmingresearch.com/resources/

seminars/4021-2/.

Richard Corden. V4.0 High Integrity C++ Coding Standard (HIC++), One Year On. 2014.

Ayssam Elkady and Tarek Sobh. Robotics Middleware: A Comprehensive Literature Survey and

Attribute-Based Bibliography. Journal of Robotics, 2012, 2012. doi: 10.1155/2012/959013.

Andre Goforth. The Role and Impact of Software Coding Standards On System Integrity. In

AIAA Infotech@Aerospace (I@A) Conference, Guidance, Navigation, and Control and Co-located

Conferences. American Institute of Aeronautics and Astronautics, August 2013. doi: 10.2514/6.

2013-5222. URL http://dx.doi.org/10.2514/6.2013-5222.

52

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://www.programmingresearch.com/resources/seminars/4021-2/
http://www.programmingresearch.com/resources/seminars/4021-2/
http://dx.doi.org/10.2514/6.2013-5222

Bibliography

Google. Google C++ Style Guide. http://google-styleguide.googlecode.com/svn/

trunk/cppguide.html, 2014. [Online; accessed 04-January-2015].

Blake Hannaford, Jacob Rosen, Diana W. Friedman, Hawkeye King, Phillip Roan, Lei Cheng, Daniel

Glozman, Ji Ma, Sina Nia Kosari, and Lee White. Raven-II: An open platform for surgical robotics

research. IEEE Transactions on Biomedical Engineering, 60:954–959, 2013. ISSN 00189294. doi:

10.1109/TBME.2012.2228858.

Les Hatton. Safer language subsets: An overview and a case history, MISRA C. Information and

Software Technology, 46(7):465–472, 2004.

Les Hatton. Language subsetting in an industrial context: A comparison of MISRA C 1998 and

MISRA C 2004. Information and Software Technology, 49(5):475–482, 2007.

Gerard J Holzmann. The power of 10: rules for developing safety-critical code. Computer, 39(6):

95–99, 2006.

Gerard J Holzmann. Mars code. Communications of the ACM, 57(2):64–73, 2014.

Pablo Iñigo Blasco, Fernando Diaz-del Rio, Ma Carmen Romero-Ternero, Daniel Cagigas-Muñiz,

and Saturnino Vicente-Diaz. Robotics software frameworks for multi-agent robotic systems de-

velopment. Robotics and Autonomous Systems, 60(6):803–821, 2012. ISSN 09218890. doi:

10.1016/j.robot.2012.02.004.

Daniel Jackson. Dependable Software by Design. Scientific American, 294(6):68–75, 2006.

Jet Propulsion Laboratory. JPL Institutional Coding Standard for the C Programming Language,

March 2009.

Ajith K. John, Babita Sharma, A. K. Bhattacharjee, S. D. Dhodapkar, and S. Ramesh. Detection

of Runtime Errors in MISRA C Programs: A Deductive Approach. In Proceedings of the 26th

International Conference on Computer Safety, Reliability, and Security, SAFECOMP’07, pages

491–504, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-75100-9, 978-3-540-75100-7.

URL http://dl.acm.org/citation.cfm?id=2392550.2392609.

Xiaosong Li and Christine Prasad. Effectively teaching coding standards in programming. In Pro-

ceedings of the 6th Conference on Information Technology Education, SIGITE ’05, pages 239–244,

New York, NY, USA, 2005. ACM. ISBN 1-59593-252-6. doi: 10.1145/1095714.1095770. URL

http://doi.acm.org/10.1145/1095714.1095770.

Lockheed Martin Corporation. Joint Strike Fighter Air Vehicle C++ Coding Standard for the System

Development and Demonstration Program, 2005.

53

http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://dl.acm.org/citation.cfm?id=2392550.2392609
http://doi.acm.org/10.1145/1095714.1095770

Bibliography

Bruce MacDonald, David Yuen, Sylvia Wong, Evan Woo, Rowan Gronlund, Toby Collett, Félix-

Étienne Trépanier, and Geoff Biggs. Robot programming environments. In ENZCon’03: Proceed-

ings of the Tenth Electronics New Zealand Conference : 1-2 September, 2003, University of Waikato,

Hamilton, New Zealand, University of Waikato, Hamilton, 2003.

MISRA. Development Guidelines for Vehicle Based Software. MIRA Limited, November 1994. ISBN

0952415607.

MISRA. Guidelines for the Use of the C Language in Vehicle Based Software. Motor Industry

Research Association, 1998. ISBN 9780952415695. URL https://books.google.pt/

books?id=XomKAQAACAAJ.

MISRA. MISRA-C:2004: Guidelines for the Use of the C Language in Critical Systems. MIRA, 2004.

ISBN 9780952415626. URL https://books.google.pt/books?id=j6oXAAAACAAJ.

MISRA. MISRA-C++:2008: Guidelines for the Use of the C++ Language in Critical Systems.

MIRA Limited, 2008. ISBN 9781906400040. URL http://books.google.pt/books?

id=q5p6MwEACAAJ.

Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Middleware for robotics: A survey. In

2008 IEEE Conference on Robotics, Automation, and Mechatronics, pages 736–742, 2008. ISBN

9781424416769. doi: 10.1109/RAMECH.2008.4681485.

James W Moore and Robert C Seacord. Secure Coding Standards. CrossTalk, (March):9–12, 2007.

Molaletsa Namoshe, N. S. Tlale, C. M. Kumile, and G. Bright. Open middleware for robotics. In

2008 15th International Conference on Mechatronics and Machine Vision in Practice (M2VIP),

pages 189–194, December 2008. ISBN 9781424437795. doi: 10.1109/MMVIP.2008.4749531.

Günter Obiltschnig. C++ for Safety-Critical Systems. URL http://www.appinf.com/

download/SafetyCriticalC++.pdf.

Takao Okubo and Hidehiko Tanaka. Secure software development through coding conventions and

frameworks. In 2007 2nd International Conference on Availability, Reliability and Security (ARES),

pages 1042–1051. IEEE, 2007.

Open Source Robotics Foundation. ROS C++ Style Guide. http://wiki.ros.org/

CppStyleGuide, 2014a. [Online; accessed 04-January-2015].

Open Source Robotics Foundation. ROS Developer’s Guide. http://wiki.ros.org/

DevelopersGuide, 2014b. [Online; accessed 04-January-2015].

Programming Research Ltd. High-Integrity C++ Coding Standard Manual, 2013.

54

https://books.google.pt/books?id=XomKAQAACAAJ
https://books.google.pt/books?id=XomKAQAACAAJ
https://books.google.pt/books?id=j6oXAAAACAAJ
http://books.google.pt/books?id=q5p6MwEACAAJ
http://books.google.pt/books?id=q5p6MwEACAAJ
http://www.appinf.com/download/SafetyCriticalC++.pdf
http://www.appinf.com/download/SafetyCriticalC++.pdf
http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/DevelopersGuide
http://wiki.ros.org/DevelopersGuide

Bibliography

Programming Research Ltd. MISRA C and MISRA C++ Compliance. http://www.

programmingresearch.com/solutions/coding-standards/misra/, 2014. [On-

line; accessed 04-January-2015].

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In ICRA Work-

shop on Open Source Software, 2009. URL https://www.willowgarage.com/sites/

default/files/icraoss09-ROS.pdf.

Jeremy Rifkin and Ellen Kruger. The end of work. Social Planning Council of Winnipeg, 1996.

Robert C. Seacord. Secure Coding in C and C++. Pearson Education, 2005. ISBN 9780768685138.

URL https://books.google.com/books?id=jfn1IAN3dvwC.

Robert C. Seacord. Secure coding standards. In Proceedings of the Static Analysis Summit, volume

500-262 of NIST Special Publication, pages 14–16, 2006. URL http://samate.nist.gov/

docs/NIST_Special_Publication_500-262.pdf.

William D. Smart. Is a common middleware for robotics possible? Proceedings of the IROS

2007 workshop on Measures and Procedures for the Evaluation of Robot Architectures and

Middleware, 2007. URL http://www.cs.wustl.edu/~wds/library/papers/2007/

iros-ws2007.pdf.

Elliot Soloway and Kate Ehrlich. Empirical Studies of Programming Knowledge. IEEE Transactions

on Software Engineering, SE-10(5), 1984. ISSN 0098-5589. doi: 10.1109/TSE.1984.5010283.

Maj Stenmark, Jacek Malec, and Andreas Stolt. From High-Level Task Descriptions to Exe-

cutable Robot Code. In Intelligent Systems’2014, volume 323 of Advances in Intelligent Sys-

tems and Computing, pages 189–202. Springer International Publishing, 2015. ISBN 978-3-

319-11309-8. doi: 10.1007/978-3-319-11310-4_17. URL http://dx.doi.org/10.1007/

978-3-319-11310-4_17.

Richard T. Vaughan, Brian P. Gerkey, and Andrew Howard. On device abstractions for portable,

reusable robot code. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003

IEEE/RSJ International Conference on, volume 3, pages 2421–2427. IEEE, October 2003. ISBN

0-7803-7860-1. doi: 10.1109/IROS.2003.1249233.

Didier Verna. Towards LaTeX coding standards. In TUGboat, volume 32, pages 309–328, 2011. URL

http://tug.org/TUGboat/tb32-3/tb102verna.pdf.

55

http://www.programmingresearch.com/solutions/coding-standards/misra/
http://www.programmingresearch.com/solutions/coding-standards/misra/
https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://books.google.com/books?id=jfn1IAN3dvwC
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://www.cs.wustl.edu/~wds/library/papers/2007/iros-ws2007.pdf
http://www.cs.wustl.edu/~wds/library/papers/2007/iros-ws2007.pdf
http://dx.doi.org/10.1007/978-3-319-11310-4_17
http://dx.doi.org/10.1007/978-3-319-11310-4_17
http://tug.org/TUGboat/tb32-3/tb102verna.pdf

A
A NA LY S I S RU L E S

The following listing shows the rules file used during analysis, as mentioned in section 3.2.2. These

rule declarations use the YAML syntax, as also mentioned before. Each rule has a description of what

it is, and a set of tags for categorisation and filtering. Whenever a rule belongs to a specific standard,

the standard is featured in its tags. The coding standard tags are assigned as follows:

RO S - C P P ROS C++ Style Guide

G O O G L E - C P P Google C++ Style Guide

H I C P P High Integrity C++ Coding Standard

M I S R A - C P P MISRA C++ Coding Standard

J S F - AV- C P P Joint Strike Fighter Air Vehicle C++ Coding Standard

%YAML 1.1

Rules file.

-

id: 1000

name: MAX_FUNCTION_PARAMETERS

scope: function

description: "Maximum number of function parameters: 6"

tags:

- code-standards

- functions

- parameters

- hicpp

-

id: 10000

name: MIXED_LINE_ENDINGS

scope: file

description: No file should mix LF and CRLF line endings.

tags:

- code-standards

56

- formatting

- whitespace

- newline

-

id: 10001

name: MAX_LINE_LENGTH

scope: file

description: No line should exceed 80 characters in length.

tags:

- code-standards

- formatting

- line-length

- google-cpp

-

id: 10002

name: MAX_LINE_LENGTH

scope: file

description: No line should exceed 120 characters in length.

tags:

- code-standards

- formatting

- line-length

- ros

- ros-cpp

-

id: 10003

name: SPACES_OVER_TABS

scope: file

description: Indent each block by 2 spaces. Never insert literal tab

characters.

tags:

- code-standards

- formatting

- whitespace

- indentation

- ros

- ros-cpp

- google-cpp

-

id: 10004

name: OPEN_CURLY_BRACE

scope: file

description: The open curly brace should almost never be on its own line.

tags:

- code-standards

- formatting

- curly-braces

57

- google-cpp

-

id: 10005

name: OPEN_CURLY_BRACE

scope: file

description: The open curly brace is always on its own line.

tags:

- code-standards

- formatting

- curly-braces

- ros

- ros-cpp

-

id: 10006

name: SHORT_FUNCTIONS

scope: function

description: If a function exceeds about 40 lines, think about whether it

can be broken up without harming the structure of the program.

tags:

- code-standards

- formatting

- function-size

- google-cpp

-

id: 10007

name: BAD_CHARACTERS

scope: file

description: Non-ASCII characters should be rare, and must use UTF-8

formatting.

tags:

- code-standards

- formatting

- character-encoding

- google-cpp

-

id: 10008

name: NEWLINE_AT_END_OF_FILE

scope: file

description: Files should end with a newline character.

tags:

- code-standards

- formatting

- newline

- end-of-file

- google-cpp

- ros

- ros-cpp

58

-

id: 10009

name: ALIGNED_CLOSING_CURLY_BRACE

scope: file

description: Closing brace should be aligned with the beginning of class

or structure.

tags:

- code-standards

- formatting

- curly-braces

- indentation

- google-cpp

-

id: 10010

name: INDENT_ACCESS_MODIFIERS

scope: class

description: Access modifiers should be indented by one space.

tags:

- code-standards

- formatting

- indentation

- access-modifiers

- google-cpp

-

id: 10011

name: BLANK_LINES_IN_CODE_BLOCKS

scope: function

description: Leave no redundant blank lines in code blocks.

tags:

- code-standards

- formatting

- whitespace

- functions

- code-blocks

- google-cpp

-

id: 10012

name: WHITESPACE_BEFORE_BRACKETS

scope: function

description: You shouldn’t have spaces before your brackets, except maybe

after ’delete []’ or ’return []() {};’

tags:

- code-standards

- formatting

- whitespace

- brackets

- google-cpp

59

-

id: 10013

name: WHITESPACE_AROUND_COLON

scope: function

description: Colons in range-based for loops should be preceeded and

followed by a whitespace.

tags:

- code-standards

- formatting

- whitespace

- colon

- for-loop

- range-based-for

- google-cpp

-

id: 10014

name: WHITESPACE_AROUND_ASSIGNMENT

scope: function

description: Assignment operators should be preceeded and followed by

whitespace.

tags:

- code-standards

- formatting

- whitespace

- assignment

- google-cpp

-

id: 10015

name: WHITESPACE_AROUND_BINARY_OPERATOR

scope: function

description: Binary operators should be preceeded and followed by

whitespace.

tags:

- code-standards

- formatting

- whitespace

- binary-operator

- google-cpp

-

id: 10016

name: WHITESPACE_AROUND_UNARY_OPERATOR

scope: function

description: Unary operators should have no whitespace around them.

tags:

- code-standards

- formatting

- whitespace

60

- unary-operator

- google-cpp

-

id: 10017

name: WHITESPACE_BEFORE_PARENTHESIS

scope: function

description: There should be a space before a (when it is preceeded by an

if, switch, for or while.

tags:

- code-standards

- formatting

- whitespace

- parenthesis

- google-cpp

-

id: 10018

name: WHITESPACE_INSIDE_PARENTHESIS

scope: function

description: Whitespace inside parenthesis should be consistent, and

should consist of either zero or one space.

tags:

- code-standards

- formatting

- whitespace

- parenthesis

- google-cpp

-

id: 10019

name: WHITESPACE_AFTER_COMMA

scope: function

description: There should be a space after a comma.

tags:

- code-standards

- formatting

- whitespace

- comma

- google-cpp

-

id: 10020

name: WHITESPACE_AFTER_SEMICOLON

scope: function

description: There should be a space after a semicolon, if it does not end

the line.

tags:

- code-standards

- formatting

- whitespace

61

- semicolon

- google-cpp

-

id: 10021

name: WHITESPACE_BEFORE_OPENING_BRACE

scope: file

description: Except after an opening parenthesis, or after another opening

brace (in case of an initializer list, for instance), you should have

spaces before your braces.

tags:

- code-standards

- formatting

- whitespace

- curly-braces

- google-cpp

-

id: 10022

name: WHITESPACE_AFTER_CLOSING_BRACE

scope: file

description: There should be a space after a closing brace, if it does not

end the line (for instance, ’} else {’).

tags:

- code-standards

- formatting

- whitespace

- curly-braces

- google-cpp

-

id: 10023

name: WHITESPACE_BEFORE_SEMICOLON

scope: function

description: Don’t leave spaces before a semicolon at the end of a line.

tags:

- code-standards

- formatting

- whitespace

- semicolon

- google-cpp

-

id: 10024

name: BLANK_LINE_BEFORE_SECTION

scope: class

description: The line before an access modifier (public, private,

protected) should be blank, unless it is the beginning of the class.

tags:

- code-standards

- formatting

62

- whitespace

- access-modifiers

- google-cpp

-

id: 10025

name: ELSE_STATEMENT_ON_ITS_LINE

scope: function

description: The else statement should be on the same line as the

preceeding closing brace.

tags:

- code-standards

- formatting

- whitespace

- if-else

- curly-braces

- google-cpp

-

id: 10026

name: ELSE_BRACES

scope: function

description: If an else has a brace on one side, it should have it on both

.

tags:

- code-standards

- formatting

- if-else

- curly-braces

- google-cpp

-

id: 10027

name: SINGLE_LINE_ELSE_IF_ELSE

scope: function

description: The else clause of an else-if clause should be on its own

line.

tags:

- code-standards

- formatting

- if-else

- google-cpp

-

id: 10028

name: SINGLE_LINE_DO_WHILE

scope: function

description: do/while clauses should not be on a single line.

tags:

- code-standards

- formatting

63

- do-while

- google-cpp

-

id: 10029

name: SINGLE_STATEMENT_IF_ELSE

scope: function

description: There should not be more than one semicolon statement in a

single-line if or else statement, unless it is part of a lambda expression

, or the if/else body is enclosed in curly braces.

tags:

- code-standards

- formatting

- if-else

- single-line-statements

- google-cpp

-

id: 10030

name: AMBIGUOUS_IF_ELSE_INDENTATION

scope: function

description: Statements that are not part of an if body should have an

indentation level equal to or less than the if statement.

tags:

- code-standards

- formatting

- whitespace

- indentation

- if-else

- ambiguous-indentation

- google-cpp

-

id: 10031

name: WHITESPACE_AT_END_OF_LINE

scope: function

description: Do not leave whitespace at the end of a line.

tags:

- code-standards

- formatting

- whitespace

- google-cpp

-

id: 10032

name: SPACE_INDENTATION

scope: file

description: Use 2 spaces for indentation.

tags:

- code-standards

- formatting

64

- whitespace

- indentation

- google-cpp

-

id: 10033

name: ONE_COMMAND_PER_LINE

scope: function

description: Avoid more than one command per line.

tags:

- code-standards

- formatting

- google-cpp

-

id: 10034

name: IF_ON_ITS_OWN_LINE

scope: function

description: An if should start on its own line. Avoid constructs such as

’} if’.

tags:

- code-standards

- formatting

- if-else

- google-cpp

-

id: 10035

name: NAMESPACE_INDENTATION

scope: namespace

description: Do not indent within a namespace.

tags:

- code-standards

- formatting

- indentation

- namespace

- google-cpp

-

id: 10036

name: CLOSE_CURLY_BRACE

scope: file

description: The closing curly brace is always on its own line.

tags:

- code-standards

- formatting

- curly-braces

- ros

- ros-cpp

-

id: 10100

65

name: LICENSE_STATEMENT

scope: file

description: Every source and header file must contain a license and

copyright statement at the beginning of the file.

tags:

- code-standards

- comments

- license

- copyright

- google-cpp

- ros

-

id: 10101

name: MULTILINE_COMMENTS_END

scope: file

description: Multi-line comments must have an end.

tags:

- code-standards

- comments

- multiline-comments

- invalid-code

- google-cpp

-

id: 10102

name: COMPLEX_MULTILINE_COMMENTS_AND_STRINGS

scope: file

description: Strings and /**/-comments should not extend beyond one line.

tags:

- code-standards

- comments

- strings

- multiline-comments

- multiline-strings

- google-cpp

-

id: 10103

name: END_OF_NAMESPACE_COMMENT

scope: namespace

description: Namespaces should have a comment at the end.

tags:

- code-standards

- formatting

- comments

- namespace

- google-cpp

- ros

- ros-cpp

66

-

id: 10104

name: WHITESPACE_AFTER_PARENTHESIS

scope: file

description: Except in if/for/while/switch, there should never be space

immediately inside parens (eg "f(3, 4)"). We make an exception for

nested parens ((a+b) + c).

tags:

- code-standards

- formatting

- whitespace

- parenthesis

- google-cpp

-

id: 10105

name: WHITESPACE_BEFORE_PARENTHESIS

scope: file

description: There should never be a space before a (when it is a

function argument. Closing parenthesis should not be preceded only by

whitespaces.

tags:

- code-standards

- formatting

- whitespace

- parenthesis

- google-cpp

-

id: 10106

name: WHITESPACE_BEFORE_COMMENTS

scope: file

description: At least two spaces is best between code and comments.

tags:

- code-standards

- formatting

- whitespace

- comments

- google-cpp

-

id: 10107

name: WHITESPACE_BEFORE_COMMENT_TEXT

scope: file

description: Use one space before comment text.

tags:

- code-standards

- formatting

- whitespace

- comments

67

- google-cpp

-

id: 10108

name: TODO_COMMENT_FORMAT

scope: file

description: "To-do comments should look like ’// TODO(my_username): Stuff

.’."

tags:

- code-standards

- formatting

- comments

- todo-comment

- google-cpp

-

id: 10109

name: INCLUDE_DIRECTORY_IN_HEADER

scope: file

description: Include the directory when naming header files.

tags:

- code-standards

- naming

- headers

- include

- google-cpp

-

id: 10200

name: HEADER_GUARD

scope: file

description: All headers must be protected against multiple inclusion by #

ifndef guards.

tags:

- code-standards

- header

- header-guard

- preprocessor

- google-cpp

- ros

- ros-cpp

-

id: 10201

name: HEADER_GUARD_FORMAT

scope: file

description: The format of the symbol name should be <PROJECT>_<PATH>_<

FILE>_H_.

tags:

- code-standards

- header

68

- header-guard

- preprocessor

- google-cpp

-

id: 10202

name: HEADER_GUARD_FORMAT

scope: file

description: The format of the symbol name should be <PACKAGE>_<PATH>_<

FILE>_H.

tags:

- code-standards

- header

- header-guard

- preprocessor

- ros

- ros-cpp

-

id: 10203

name: HEADER_GUARD_CLOSE

scope: file

description: The format of the guard’s end should be "#endif // <PROJECT>

<PATH><FILE>_H_" or "#endif /* <PROJECT>_<PATH>_<FILE>_H_ */".

tags:

- code-standards

- header

- header-guard

- preprocessor

- google-cpp

-

id: 10204

name: INCLUDE_OWN_HEADER

scope: file

description: In general, every .cc file should have an associated .h file.

tags:

- code-standards

- header

- include

- preprocessor

- google-cpp

-

id: 10205

name: TEXT_AFTER_ENDIF

scope: file

description: Uncommented text after #endif is non-standard. Use a comment

instead.

tags:

- code-standards

69

- preprocessor

- invalid-code

- google-cpp

-

id: 10206

name: INCLUDE_ORDER

scope: file

description: Include files in alphabetical order, and in the following

order. 1. preferred location 2. c system files 3. cpp system files 4.

deprecated location 5. other headers

tags:

- code-standards

- include

- preprocessor

- formatting

- google-cpp

-

id: 10207

name: UNNAMED_PARAMETERS

scope: function

description: All parameters should be named in a function.

tags:

- code-standards

- parameters

- functions

- naming

- google-cpp

-

id: 10208

name: INCLUDE_WHAT_YOU_USE

scope: file

description: Include all required headers for what you use.

tags:

- code-standards

- include

- headers

- preprocessor

- google-cpp

-

id: 10209

name: UNAPPROVED_HEADERS

scope: file

description: Do not include unapproved C++11 headers.

tags:

- code-standards

- include

- headers

70

- preprocessor

- invalid-code

- cpp11

- google-cpp

-

id: 10210

name: UNAPPROVED_CLASSES_AND_FUNCTIONS

scope: file

description: Do not use unapproved C++11 classes and functions.

tags:

- code-standards

- class

- functions

- invalid-code

- cpp11

- google-cpp

-

id: 10211

name: C_SYSTEM_HEADERS

scope: file

description: Do not include the C standard headers. Use the C++ headers

instead.

tags:

- code-standards

- include

- headers

- preprocessor

- deprecation

- c

- hicpp

-

id: 10212

name: DEPRECATED_FUNCTIONS

scope: file

description: Do not use deprecated STL library features.

tags:

- code-standards

- deprecation

- functions

- hicpp

-

id: 10213

name: REGISTER_KEYWORD

scope: file

description: Do not use the deprecated register keyword.

tags:

- code-standards

71

- deprecation

- register

- cpp11

- hicpp

-

id: 10214

name: THROW_SPECIFICATION

scope: function

description: Do not use throw exception specifications. Use noexcept

instead.

tags:

- code-standards

- deprecation

- cpp11

- exceptions

- throw

- hicpp

-

id: 10215

name: C_STANDARD_LIBRARY

scope: file

description: Wrap use of the C Standard Library.

tags:

- code-standards

- c

- libraries

- c-standard-library

- hicpp

- misra-cpp

-

id: 10300

name: INVALID_INCREMENT

scope: file

description: Do not use the invalid increment form *count++.

tags:

- code-standards

- increment

- pointer

- invalid-code

- google-cpp

-

id: 10301

name: STORAGE_CLASS_BEFORE_TYPE

scope: file

description: Storage class should come before the type.

tags:

- code-standards

72

- invalid-code

- storage-class

- google-cpp

-

id: 10302

name: INVALID_FORWARD_DECLARATION

scope: file

description: Inner-style forward declarations are invalid.

tags:

- code-standards

- invalid-code

- forward-declaration

- google-cpp

-

id: 10303

name: DEPRECATED_OPERATORS

scope: file

description: Do not use non-standard or deprecated operators (e.g. >? and

<?).

tags:

- code-standards

- invalid-code

- deprecation

- operators

- google-cpp

-

id: 10304

name: EMPTY_STATEMENT

scope: function

description: Don’t use a semicolon to denote an empty statement. Use {}

instead.

tags:

- code-standards

- formatting

- empty-statement

- semicolon

- empty-block

- google-cpp

-

id: 10305

name: RVALUE_REFERENCE

scope: function

description: Do not use RValue references.

tags:

- code-standards

- invalid-code

- rvalue-reference

73

- google-cpp

-

id: 10306

name: POINTLESS_EMPTY_STATEMENT

scope: function

description: Do not use meaningless empty statements.

tags:

- code-standards

- empty-statement

- ambiguous-code

- google-cpp

-

id: 10307

name: CHECK_EQ_INSTEAD_OF_CHECK

scope: function

description: To check for equality, use CHECK_EQ(a, b) instead of CHECK(a

== b).

tags:

- code-standards

- macros

- equality

- google-cpp

-

id: 10308

name: ALTERNATIVE_TOKENS

scope: function

description: Do not use alternative tokens instead of operators (e.g. ’and

’, ’or’).

tags:

- code-standards

- tokens

- alternative-tokens

- operators

- google-cpp

-

id: 10309

name: INCLUDE_TWICE

scope: file

description: Do not include the same file twice.

tags:

- code-standards

- include

- headers

- preprocessor

- google-cpp

-

id: 10310

74

name: INCLUDE_CPP_FILES

scope: file

description: Do not include non-header files from other packages.

tags:

- code-standards

- include

- preprocessor

- implementation-files

- google-cpp

-

id: 10311

name: C_TYPES

scope: function

description: Do not use the verboten C basic types.

tags:

- code-standards

- types

- deprecation

- google-cpp

-

id: 10312

name: OPERATOR&_OVERLOAD

scope: file

description: Do not use the unary operator&.

tags:

- code-standards

- operators

- overload

- google-cpp

-

id: 10313

name: FORMAT_STRING_VARIABLES

scope: function

description: Avoid using variables as format string arguments. Use ’printf

("%s", var)’ instead.

tags:

- code-standards

- formatting

- strings

- potential-bugs

- google-cpp

-

id: 10314

name: NAMESPACE_USING_DIRECTIVES

scope: file

description: Do not use namespace using-directives. Use using-declarations

instead.

75

tags:

- code-standards

- namespace

- using-directives

- using-declarations

- google-cpp

- hicpp

- misra-cpp

-

id: 10315

name: VARIABLE_LENGTH_ARRAYS

scope: file

description: Do not use variable-length arrays.

tags:

- code-standards

- arrays

- variables

- constants

- google-cpp

-

id: 10316

name: UNNAMED_NAMESPACES

scope: file

description: Do not use unnamed namespaces in header files.

tags:

- code-standards

- namespace

- unnamed-namespace

- headers

- google-cpp

-

id: 10317

name: STRING_CONSTANTS

scope: file

description: Use C-style strings for static and global string constants.

tags:

- code-standards

- strings

- constants

- google-cpp

-

id: 10318

name: SNPRINTF_ARGUMENTS

scope: function

description: Avoid using literals as the second argument for snprintf.

tags:

- code-standards

76

- literals

- potential-bugs

- google-cpp

-

id: 10319

name: STRING_PRINT_C_FUNCTIONS

scope: function

description: Avoid string printing C functions (sprintf, strcpy, strcat).

Use snprintf instead.

tags:

- code-standards

- deprecation

- library

- strings

- google-cpp

-

id: 10320

name: NON_CONST_REFERENCE_PARAMETERS

scope: function

description: Avoid non-const reference parameters. Use const or pointers.

tags:

- code-standards

- parameters

- const

- pointers

- references

- google-cpp

-

id: 10321

name: DEPRECATED_CASTING

scope: function

description: Don’t use deprecated casting styles.

tags:

- code-standards

- casting

- deprecation

- google-cpp

-

id: 10322

name: DANGEROUS_ADDRESSES

scope: function

description: Avoid using dangerous addresses, such as addresses from casts

, or addresses dereferenced from casts.

tags:

- code-standards

- potential-bugs

- addresses

77

- casting

- google-cpp

-

id: 10323

name: MAKE_PAIR_TEMPLATE

scope: file

description: Either omit template arguments from make_pair, or use pair

directly, or construct a pair directly.

tags:

- code-standards

- cpp11

- compatibility

- templates

- pair

- google-cpp

-

id: 10324

name: DEFAULT_LAMBDA_CAPTURES

scope: function

description: Do not use default lambda captures.

tags:

- code-standards

- invalid-code

- lambda

- default-lambda-capture

- google-cpp

-

id: 10325

name: REDUNDANT_VIRTUAL_DECLARATION

scope: function

description: Do not declare a function as both "virtual" and "override" or

"final".

tags:

- code-standards

- functions

- virtual

- override

- final

- rendundancy

- google-cpp

-

id: 10326

name: REDUNDANT_OVERRIDE_DECLARATION

scope: function

description: Do not declare a function as both "override" and "final".

tags:

- code-standards

78

- functions

- override

- final

- rendundancy

- google-cpp

-

id: 10400

name: INITIALIZE_MEMBER_VARIABLES

scope: class

description: All member variables of a class should be initialized after

calling the constructor.

tags:

- code-standards

- classes

- member-variables

- uninitialized-variables

- constructors

- google-cpp

- jsf-av-cpp

- misra-cpp

- hicpp

-

id: 10401

name: UNUSED_VARIABLES

scope: file

description: There shall be no unused variables.

tags:

- code-standards

- variables

- unused-variables

- misra-cpp

-

id: 10402

name: REDUNDANT_EXPRESSIONS

scope: function

description: Ensure that no expression is redundant.

tags:

- code-standards

- redundancy

- hicpp

-

id: 10403

name: SMALLEST_SCOPE

scope: file

description: Declarations should be at the smallest feasible scope.

tags:

- code-standards

79

- scope

- jsf-av-cpp

-

id: 10404

name: CASE_FALL_THROUGH

scope: function

description: Non-empty case blocks must not fall through to the next case.

tags:

- code-standards

- switch

- case

- fall-through

- hicpp

-

id: 10405

name: MIN_TWO_CASES

scope: function

description: A switch should have at least two cases distinct from the

default case.

tags:

- code-standards

- switch

- hicpp

- misra-cpp

- jsf-av-cpp

-

id: 10406

name: ENUM_BASE

scope: file

description: Ensure that an enum has a specified base type able to

accomodate all its values.

tags:

- code-standards

- enum

- types

- hicpp

-

id: 10407

name: ASM_DECLARATIONS

scope: file

description: Do not use asm declarations.

tags:

- code-standards

- assembly

- asm

- hicpp

-

80

id: 10408

name: MAX_POINTER_INDIRECTION

scope: file

description: Use at most one level of pointer indirection.

tags:

- code-standards

- pointers

- multiple-pointers

- hicpp

-

id: 10409

name: MAX_POINTER_INDIRECTION

scope: file

description: Use at most two levels of pointer indirection.

tags:

- code-standards

- pointers

- multiple-pointers

- misra-cpp

- jsf-av-cpp

-

id: 10410

name: UNIQUE_POINTER_CONST_REFERENCE

scope: function

description: "Do not pass a std::unique_ptr by const reference."

tags:

- code-standards

- pointers

- std-unique-ptr

- const

- references

- hicpp

-

id: 10411

name: DEFAULT_ARGUMENTS

scope: function

description: Do not use default arguments.

tags:

- code-standards

- functions

- default-arguments

- arguments

- parameters

- hicpp

-

id: 10412

name: STD_VECTOR_BOOL

81

scope: file

description: "Do not use std::vector<bool>. It does not conform to the

requirements of a container."

tags:

- code-standards

- std-vector

- boolean

- hicpp

- misra-cpp

-

id: 10413

name: UNIONS

scope: file

description: Do not use unions. Use a safe polymorphic abstraction,

instead.

tags:

- code-standards

- unions

- polymorphism

- type-safety

- hicpp

- misra-cpp

- jsf-av-cpp

-

id: 10414

name: INTEGER_TYPES

scope: file

description: Do not use integer types directly. Use size-specific typedefs

, for instance from <cstdint>.

tags:

- code-standards

- integer-types

- type-safety

- portability

- hicpp

- misra-cpp

- jsf-av-cpp

-

id: 10415

name: ORDER_OF_EVALUATION

scope: file

description: Do not rely on the sequence of evaluation within an

expression.

tags:

- code-standards

- evaluation-order

- expressions

82

- hicpp

- misra-cpp

- jsf-av-cpp

-

id: 10416

name: FLOAT_ACCURACY

scope: file

description: Do not write code that expects floating point calculations to

yield exact results.

tags:

- code-standards

- floats

- floating-point

- hicpp

-

id: 10417

name: OVERLOAD_SPECIAL_OPERATORS

scope: function

description: Do not overload operators with special semantics, such as

’&&’, ’||’, ’,’ or ’&’.

tags:

- code-standards

- overload

- operators

- hicpp

- misra-cpp

- jsf-av-cpp

-

id: 10418

name: STD_ARRAY_RVALUE

scope: function

description: "Do not create an rvalue reference of std::array."

tags:

- code-standards

- std-array

- rvalue-reference

- hicpp

-

id: 20000

name: THREAD_SAFE_FUNCTIONS

scope: file

description: Avoid using thread-unsafe functions, when thread-safe

variants are available.

tags:

- code-standards

- multi-threading

- thread-safety

83

- google-cpp

-

id: 30000

name: LOGGING_LEVELS

scope: file

description: Use VLOG with a numeric argument.

tags:

- code-standards

- logging

- library

- google-cpp

-

id: 30001

name: DISALLOW_MACRO

scope: class

description: If copying and assignment are disabled with a macro such as

DISALLOW_COPY_AND_ASSIGN, it should be at the end of the private section,

and should be the last thing in the class.

tags:

- code-standards

- macros

- class

- constructors

- google-cpp

-

id: 30002

name: STRING_FORMATTING

scope: file

description: Do not use deprecated or unconventional string formattings.

tags:

- code-standards

- strings

- string-formatting

- deprecation

- invalid-code

- google-cpp

-

id: 30003

name: INVALID_CHARACTER_ESCAPES

scope: file

description: Do not use invalid escape sequences.

tags:

- code-standards

- strings

- escape-sequences

- invalid-code

- google-cpp

84

-

id: 30004

name: CONST_STRING_REFERENCES

scope: file

description: Do not use const string& members. Use pointers or simple

constants instead.

tags:

- code-standards

- strings

- references

- constants

- google-cpp

-

id: 30005

name: EXPLICIT_CONSTRUCTORS

scope: class

description: Zero-parameter constructors, single-parameter constructors

and constructors callable with one argument should be marked explicit.

tags:

- code-standards

- explicit

- constructors

- google-cpp

-

id: 30006

name: NON_EXPLICIT_CONSTRUCTORS

scope: class

description: Constructors that require multiple arguments should not be

marked explicit.

tags:

- code-standards

- explicit

- constructors

- google-cpp

-

id: 30007

name: DISALLOW_MACROS_IN_PRIVATE

scope: class

description: DISALLOW macros must be in the private section.

tags:

- code-standards

- macros

- class

- private

- google-cpp

Listing A.1: Rule set used in the case study.

85

	1 Introduction
	2 State of the art
	2.1 Coding Rules
	2.2 Coding Standards
	2.2.1 ROS C++ Style Guide
	2.2.2 Google C++ Style Guide
	2.2.3 High Integrity C++ Coding Standard
	2.2.4 MISRA C++ Coding Standard
	2.2.5 JSF Air Vehicle C++ Coding Standard
	2.2.6 CERT C++ Coding Standard
	2.2.7 JPL C Coding Standard

	2.3 Static Analysis Tools
	2.3.1 Free Tools
	2.3.2 Commercial Tools
	2.3.3 SonarQube

	2.4 Robot Operating System
	2.5 Summary

	3 Contribution
	3.1 ROS Static Analysis Tool
	3.1.1 Analysis Component
	3.1.2 Graphic Component
	3.1.3 User Guide

	3.2 Case Study and Evaluation
	3.2.1 Cpplint and Cppcheck Plug-ins
	3.2.2 Analysis of Kobuki

	3.3 Summary

	4 Conclusions and future work
	A Analysis Rules

