
Universidade do Minho

Escola de Engenharia

Daniel José Taveira Gomes
Voxel Based Real-Time Global
Illumination Techniques

Abril de 2015

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Daniel José Taveira Gomes
Voxel Based Real-Time Global
Illumination Techniques

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor António Ramires Fernandes

Abril de 2015

AC K N OW L E D G E M E N T S

I would like to express my deep gratitude to Professor Ramires for his patient guidance and
valuable suggestions and critiques throughout the development of this thesis.

I would also like to express my gratitude to all my friends, who heard my complaints when
things did not go as planned and provided advice whenever they could.

Finally, I wish to thank my parents for their invaluable support and encouragement during my
studies.

A B S T R AC T

One of the greater objectives in computer graphics is to be able to generate fotorealistic images
and do it in real time. Unfortunately the actual lighting algorithms are not able to satisfy both
objectives at the same time.

Most of the algorithms nowadays are based on rasterization to generate images in real time
at the expense of realism, or based on ray tracing, achieving fotorealistic results but lacking
performance, which makes them impossible to compute at interactive frame rates with the com-
putational power available in the present.

Over the last years, some new techniques have emerged that try to combine the best features
of both types of algorithms.

What is proposed in this thesis is the study and analysis of a class of algorithms based on voxels
to approximate global illumination in 3D scenes at interactive frame rates. These techniques use
a volumetric pre-filtered representation of the scene and a rendering algorithm based on cone
tracing to compute an approximation to global illumination in real time.

What is pretended through this study is an analysis on the practicability of such algorithms in
real-time applications and apply the new capabilities of the OpenGL API to simplify/optimize
the implementation of these algorithms.

a

R E S U M O

Um dos maiores objectivos da computação gráfica é conseguir gerar imagens fotorealistas e em
tempo real. Infelizmente os algoritmos de iluminação actuais não conseguem atingir ambos os
objectivos simultaneamente.

A maioria dos algoritmos actuais baseiam-se na rasterização para gerar imagens em tempo real,
à custa da perda de realismo, ou então em ray-tracing, conseguindo obter imagens fotorealistas,
à custa da perda de interactividade.

Nos últimos anos, têm surgido novas técnicas para tentar juntar o melhor dos dois tipos de
algoritmos.

Propõe-se neste trabalho o estudo e análise de uma classe de algoritmos baseados em vox-
els para calcular uma aproximação à iluminação global, de forma interactiva. Estas técnicas
usam uma pré-filtragem da cena usando uma representação volumétrica da cena e um algoritmo
baseado em cone tracing para calcular uma aproximação da iluminação global em tempo real.

Através deste estudo pretende-se por um lado analisar a viabilidade dos algoritmos em aplicações
em tempo real e aplicar as novas capacidades da API do OpenGL de forma a simplificar/opti-
mizar a sua implementação.

b

C O N T E N T S

Contents iii

1 I N T RO D U C T I O N 3
1.1 Objectives . 6
1.2 Document structure . 6

2 R E L AT E D W O R K 7
2.1 Shadow Mapping . 7
2.2 Deferred Rendering . 7
2.3 Reflective Shadow Maps . 9
2.4 Ray Tracing . 9
2.5 Voxelization . 11

3 R E A L - T I M E VOX E L - B A S E D G L O B A L I L L U M I N AT I O N A L G O R I T H M S 12
3.1 Interactive Indirect Illumination Using Voxel Cone Tracing 13

3.1.1 Voxelization . 15
3.1.2 Sparse Voxel Octree . 18
3.1.3 Mipmapping . 21
3.1.4 Voxel Cone Tracing . 23

3.2 Real-Time Near-Field Global Illumination Based on a Voxel Model 30
3.2.1 Voxelization . 30
3.2.2 Binary Voxelization . 32
3.2.3 Data Structure/Mip-Mapping . 32
3.2.4 Rendering . 33

3.3 Rasterized Voxel-Based Dynamic Global Illumination 37
3.3.1 Creation of the Voxel Grid Representation 38
3.3.2 Creation of Virtual Point Lights in Voxel Space 40
3.3.3 Virtual Point Lights Propagation . 40
3.3.4 Indirect Lighting Application . 41

4 I M P L E M E N TAT I O N 42
4.1 Technological Choices . 42
4.2 Interactive Indirect Illumination Using Voxel Cone Tracing 43

iii

CONTENTS

4.2.1 Voxel Cone Tracing with a Full Voxel Grid 43
4.2.2 Voxel Cone Tracing with a Sparse Voxel Octree 51

4.3 Rasterized Voxel-Based Dynamic Global Illumination 58
4.3.1 Data Structures . 58
4.3.2 Buffer Clearing . 59
4.3.3 Voxelization . 60
4.3.4 Direct Light Injection . 61
4.3.5 Direct Light Propagation . 61
4.3.6 Reflection Grid Creation . 62
4.3.7 Reflection Grid Mipmapping . 62
4.3.8 Global Illumination Rendering . 63

4.4 Real-Time Near-Field Global Illumination Based on a Voxel Model 64
4.4.1 Data Structures . 65
4.4.2 Binary Atlas Creation . 65
4.4.3 Pixel Display List Creation . 66
4.4.4 Voxel Grid Creation . 66
4.4.5 Mipmapping . 67
4.4.6 Indirect Lighting Computation . 67

5 C O N C L U S I O N S 69

iv

L I S T O F F I G U R E S

Figure 1 Rasterization vs Ray tracing. Source: http://www.cs.utah.edu/ jstrat-
to/state of ray tracing/ . 3

Figure 2 Geometry simplification. Information about the geometry is lost with
an increasing level of filtering. Source: Daniels et al. (2008) 4

Figure 3 Indirect illumination on a scene with a hidden object behind the column.
In the left image, only objects in camera space are taken into account
and thus the hidden objects are disregarded since they are not visible by
the current camera. Source: Thiedemann et al. (2011) 5

Figure 4 Voxels used to view medical data. Source: URL 5
Figure 5 Voxel-based Global Illumination. Source: Crassin et al. (2011) 12
Figure 6 Voxel Lighting. Source: Crassin (2011) 13
Figure 7 Voxel Cone Tracing. Source: Crassin et al. (2011); Crassin (2011) . . . 14
Figure 8 Voxelization. Red: projection along x-axis. Green: projection along

y-axis. Blue: projection along z-axis 15
Figure 9 Voxelization Pipeline. Source: Crassin and Green (2012) 16
Figure 10 Conservative Voxelization. Source: Schwarz and Seidel (2010) 17
Figure 11 Triangle Expansion in Conservative Rasterization. Source: Crassin and

Green (2012) . 17
Figure 12 Sparse Voxel Octree Structure. Source: Crassin et al. (2010) 18
Figure 13 Voxel Brick. Source: Crassin et al. (2011) 19
Figure 14 Steps for the creation of the sparse voxel octree structure. Source:

Crassin and Green (2012) . 20
Figure 15 Node Subdivision and Creation. Source: Crassin and Green (2012) . . . 20
Figure 16 Mipmapping Weighting Kernel. Source: Crassin et al. (2011) 21
Figure 17 Normal Distribution Function (NDF). 22
Figure 18 Opacity is stored as a single value inside a voxel, causing a lack of view

dependency. 23
Figure 19 Direct lighting injection and indirect lighting computation. Source:

Crassin et al. (2011) . 23

v

http://www.cs.utah.edu/\protect \unhbox \voidb@x \penalty \@M \ {}jstratto/state_of_ray_tracing/
http://www.cs.utah.edu/\protect \unhbox \voidb@x \penalty \@M \ {}jstratto/state_of_ray_tracing/
http://www.ustur.wsu.edu/graduateprojects/voxel/index.html

LIST OF FIGURES

Figure 20 Voxel Cone Tracing. Source: Crassin et al. (2010) 24
Figure 21 Estimating Soft Shadows trough Voxel Cone Tracing. Source: Crassin

(2011) . 26
Figure 22 Estimating Depth of Field Effects trough Voxel Cone Tracing. Source:

Crassin (2011) . 26
Figure 23 Data transfer between neighboring bricks and distribution over levels.

Source: Crassin et al. (2011) . 27
Figure 24 Node Map. Source: Crassin et al. (2011) 28
Figure 25 Anisotropic Voxel Representation. Source: Crassin et al. (2011) 29
Figure 26 Directions distribution. Source: Crassin et al. (2011) 30
Figure 27 Binary Voxelization. Source: Thiedemann et al. (2012) 31
Figure 28 Mip-mapping. Source: Thiedemann et al. (2012) 33
Figure 29 Hierarchy traversal. Blue lines: bounding box of the voxels in the actual

texel. Green and red lines: bitmask of the active texel (empty - green
and non empty - red). The green and red cuboids: history of the traversal
for the texel (no hit - green and possible hit - red). Source: Thiedemann
et al. (2012) . 34

Figure 30 Hierarchy traversal in 2 dimensions. The blue arrow represents the cur-
rent extent of the ray and in orange the bounding box of the current mip
map levels is displayed. Source: Thiedemann et al. (2011) 35

Figure 31 Near-field Indirect Illumination. Source: Thiedemann et al. (2011) . . . 36
Figure 32 Nested Voxel Grids . 37
Figure 33 Pipeline of the algorithm . 38
Figure 34 Orthographic Projection with a Voxel Grid in the View Frustum 39
Figure 35 Lit surfaces are treated as secondary light sources and clustered into a

voxel grid . 40
Figure 36 Virtual Point Light are propagated in the Voxel Grid 41
Figure 37 Projection of a triangle trough the three main axis of the scene. The Y

axis is chosen for the voxelization since it is the one that will generate
maximum number of fragments during rasterization. Source: https://developer.nvidia.com/content/basics-
gpu-voxelization . 45

Figure 38 Octree and Octree Pools. 52
Figure 39 Octree Subdivision. 53
Figure 40 Octree Mipmapping. 56

vi

https://developer.nvidia.com/content/basics-gpu-voxelization
https://developer.nvidia.com/content/basics-gpu-voxelization

L I S T O F L I S T I N G S

4.1 Voxel Fragment List . 44
4.2 Computation of screen coordinates with vertex swizzling 45
4.3 Indirect Draw Structure . 47
4.4 RGBA8 Image Atomic Average Function . 48
4.5 Sparse Voxel Octree Structure . 52
4.6 Indirect draw structure storing the nodes for each level of the octree 54
4.7 struct definition of a voxel in the voxel grid . 59

vii

1

I N T RO D U C T I O N

One of the greater objectives in computer graphics is to generate fotorealistic images.
The efficient and realistic rendering of scenes on a large scale and with very detailed objects

is a great challenge, not just for real-time aplications, but also for offline rendering (e.g. special
effects in movies). The most widely used techniques in the present are extremely inefficient
to compute indirect illumination, and the problem is aggravated for very complex scenes, since
calculating the illumination in this kind of scene is deeply dependent on the number of primitives
present on the scene.

Figure 1: Rasterization vs
Ray tracing. Source:
http://www.cs.utah.edu/ js-
tratto/s-
tate of ray tracing/

Therefore, the lighting calculation generates two problems:
how to do it efficiently (in terms of performance) and how to do it
correctly, or at least perceptually correctly (in terms of the quality
of the resulting image).

Over the last years, mostly due to the previously men-
tioned problems and the existing hardware, the algorithms that
have emerged have been focusing on solving only one of
the problems. Thus we have algorithms that focus on foto-
realism at the expense of performance, and other algorithms
that focus on performance at the expense of realism (Fig-
ure 1).

To reach fotorealism, several algorithms have been proposed,
such as recursive ray tracing (Whitted, 1980), bi-directional path-
tracing (Lafortune and Willems, 1993), photon-mapping (Jarosz
et al., 2008) or metropolis light transport (Veach and Guibas,
1997).

3

http://www.cs.utah.edu/~jstratto/state_of_ray_tracing/
http://www.cs.utah.edu/~jstratto/state_of_ray_tracing/
http://www.cs.utah.edu/~jstratto/state_of_ray_tracing/

However, all these algorithms share a drawback: their performance. All these algorithms try
to mimic the interactions of light rays between the objects in a scene, reflecting and refracting the
photons according to the characteristics of the materials of each object. This kind of simulation
is very computationally expensive, existing however some implementations that can generate
several frames per second and with a very good graphic result (e.g. Brigade 3).

To generate images in real-time, the most popular technique is rasterization. Rasterization is
simply the process of mapping the triangles that compose the geometry of the objects in a scene
to pixels. This process has been optimized over several years by the graphic card manufacturers
to maximize the number of triangles that can be processed, but however, due to the nature of tri-
angles and the rasterization process itself, the calculus of indirect illumination is very inefficient.
Also, since these algorithms are deeply dependent on the number of primitives in the scene, it is
necessary to simplify the geometry of the objects to be able to deal with scenes on a large scale
(Figure 2).

Figure 2: Geometry simplification. Information about the geometry is lost with an increasing level of
filtering. Source: Daniels et al. (2008)

The problem is then to keep the necessary detail and at the same time maintain the rasterization
at interactive frame rates and the memory consumption reasonable.

Since these previous approaches do not scale well with the required complexity level, the aris-
ing of new solutions is necessary.

Recently, new approaches have emerged that restrict the incoming light to the space visible by
the camera, which permits to compute an approximation to the global illumination at interactive
frame rates. It is possible to reach plausible results with these techniques but they still have some
problems, mostly due to the restrictions imposed by the camera space. Since only the lights
and objects visible by the camera are taken into account for the final illumination, this results in
shadows and indirect light that appear and disappear depending on the movements of the camera

4

http://raytracey.blogspot.pt/2013/10/brigade-3.html

and objects in the scene (Figure 3).

Figure 3: Indirect illumination on a scene with a hidden object behind the column. In the left image, only
objects in camera space are taken into account and thus the hidden objects are disregarded since
they are not visible by the current camera. Source: Thiedemann et al. (2011)

The name voxel comes from volumetric element and it represents the 3D generalization of a
pixel. Voxels are usually arranged on an axis-aligned grid which structures and subdivides space
regularly. Their main advantage is its own spatial representation and its regular structure, which
makes it easily manipulable. These features have turned voxel-based structures an excellent way
of representing volumetric data.

Voxels have been used to represent several types of scientific data such as 3D scans or tomo-
graphic reconstruction of radiological data (Figure 4). They are also used in simulation processes
such as fluid simulation based on Euler grids.

Figure 4: Voxels used to view medical data. Source: URL

5

http://www.ustur.wsu.edu/graduateprojects/voxel/index.html

1.1. OBJECTIVES

More recently, new approaches have emerged that use a pre-filtering of the scene using voxels
in order to simplify the scene and making it possible to approximately compute indirect illumi-
nation in real time. Since the whole scene is taken into account (or at least the volume that is
voxelized), these algorithms are not view-dependent such as the screen-space approaches.

1.1 O B J E C T I V E S

What is proposed in this thesis is a study of algorithms for solving the indirect illumination
problem in interactive frame-rates based on voxels to filter the scene. The proposed study is
based on a review of the state of the art and search for existing algorithms for solving the problem,
as well as their advantages and disadvantages.

This analysis seeks an evaluation in terms of performance of each step of the algorithms, as
well as a qualitative comparison with rasterization and algorithms based on ray tracing.

An analysis on the introduction of new features available in the most recent versions of
OpenGL is also intended. This features introduce new paradigms, which may imply a consider-
able redefintion of the initial algorithm.

1.2 D O C U M E N T S T RU C T U R E

This document will be divided in 5 Chapters:

• Chapter 1 describes the motivation behind the choice of this theme and the Objectives 1.1
of this work.

• Chapter 2 provides some theoretical background as well as the description of some tech-
niques used by the algorithms described in this thesis.

• In Chapter 3 the state-of-the-art of algorithms that calculate real-time indirect illumination
using pre-filtered voxelized versions of the scene are presented.

• A detailed description of the development and analysis of the algorithms is made in Chap-
ter 4, as well as a comparison of the several solutions obtained.

• Chapter 5 summarizes the work performed as well as the results obtained and proposes
several improvements for future work.

6

2

R E L AT E D W O R K

2.1 S H A D O W M A P P I N G

Shadow Mapping is a method published in 1978 (Williams, 1978) that allows to add shadows to
a 3D scene. Finding if a fragment is in shadow is the same as finding if the fragment is visible
from the light.

The basic shadow mapping algorithm consists in two separate passes. First, the scene is ren-
dered from the light point of view and a texture storing the depth of the objects in the scene is
created. This texture represents which pixels are lit and how far those pixels are from the light.
Then, it is possible to test if a fragment is visible or not from the light by finding its coordinate
as seen from the light and comparing it with the depth texture previously created (shadow map).

One of the main problems of this algorithm is that it greatly depends on the resolution of the
shadow map. Some common optimizations are to add a small bias when comparing the depth
of the fragment with the shadow map, or using Percentage Close Filtering (PCF - Reeves et al.
(1987)). However, many other optimizations and algorithms are available in order to add shadows
to a scene. Some of the more popular techniques are Cascaded Shadow Maps (Engel, 2006), Vari-
ance Shadow Maps (Donnelly and Lauritzen, 2006), Exponential Shadow Maps (Annen et al.,
2008), or Light Space Perspective Shadow Maps (Wimmer et al., 2004).

2.2 D E F E R R E D R E N D E R I N G

In forward rendering, the vertices of the objects present in the scene are transformed and lighting
computations are performed for every fragment generated after rasterization. This approach
brings a problem with highly complex scenes. Since objects can be covered by several objects,
shading might be computed multiple times for nothing because only the closest fragment to the
camera counts. Another problem is that forward rendering does not scale well when multiple

7

2.2. DEFERRED RENDERING

light sources are added to the scene. The fragment shader computes lighting for every light, even
if the light is far away from the camera and its area of effect does not reach the corresponding
fragment.

Deferred shading is an idea that was first referenced in the paper ”The triangle processor and
normal vector shader: a VLSI system for high performance graphics” (Deering et al., 1988), but
the actual technique using G-Buffers was only introduced later in a paper called ”Comprehensible
rendering of 3-D shape” (Saito and Takahashi, 1990).

Deferred shading is a technique that allows to separate geometry computations from lighting
calculations. It can be divided in two steps: A first pass, called the Geometry Pass, in which
no shading is performed and a second pass, called the Lighting Pass, that actually performs the
lighting computations.

In the Geometry Pass, the geometric transformations are applied to the objects in the vertex
shader, but instead of sending the attributes to the fragment shader for lighting computations,
they are written into what is known as the Geometry Buffer (G-Buffer). The G-Buffer is simply
a group of several 2D textures that will store the vertex attributes, usually positions or depth,
normals and materials (one texture per vertex attribute). The attributes are written all at once
by using a feature available in OpenGL called Multiple Render Targets (MRT). Thanks to the
depth test, at the end of this pass the textures in the G-Buffer only contain the processed vertex
attributes for the fragments closer to the camera.

The Lighting Pass consists in the rendering of a full-screen quad and sample all the pixels
in the G-Buffer, performing lighting computations in the same way that they were done during
forward rendering. Since the G-Buffer only contains the fragments closer to the camera, the
lighting calculations are effectively only done once for each pixel on the screen. Another way
is to render a sphere (for point lights) or a cone (for spot lights) and only perform the lighting
calculations on the area relevant to the light source, discarding every fragment that is not inside
its area of influence.

The main advantage of deferred rendering is the ability to handle multiple light sources without
a significant performance hit by allowing the lighting computations to be calculated only for the
pixels that the light actually affects. The greater disadvantage of this algorithm is its lack of
support to transparent materials, as well as the need to store more data in the G-Buffer to allow
the use of multiple materials.

8

2.3. REFLECTIVE SHADOW MAPS

2.3 R E F L E C T I V E S H A D O W M A P S

Similarly to the deferred shading technique, Reflective Shadow Maps (RSM - Dachsbacher and
Stamminger (2005)) attach multiple render targets (MRT) to the shadow mapping output, extend-
ing the classical shadow mapping algorithm in order to view each pixel of the shadow map as a
virtual point light that emits light to the scene.

The scene is rendered from the point of view of the light and world-space position, normal and
flux are stored in multiple 2D textures attached using the MRT capability offered by OpenGL.
When the scene is rendered from the camera point of view, the pixels from the RSM can be
considered as a source of indirect illumination. By combining the attributes previously stored in
the 2D textures, it is possible to generate the irradiance of each pixel in the shadow map. The
sum of the irradiance of all pixels in the shadow map represents the indirect lighting contribution
in the scene.

Since a shadow map can contain a great number of pixels, only a randomly chosen subset
will be used to sample indirect lighting for each pixel on the screen, in order to keep rendering
feasible in real-time.

2.4 R AY T R AC I N G

In nature, a light source emits light rays that travel trough space until they hit the surface of an
object. When a photon hits a surface it can be absorbed, reflected or refracted, depending on the
properties of the material.

Ray tracing is a technique that tries to mimic what happens in nature. However, instead of
shooting rays from the light until they hit the view plane, which would need an enormous number
of rays in order to produce a satisfying result, the rays start from the view plane and are launched
into the scene.

The first ray tracing algorithm was called ray casting (Appel, 1968). The main idea of the ray
casting algorithm is to shoot rays from the view plane and terminate the traversal of the ray when
it intersects some object on the scene. It allows the computation of the shading of the objects,
but it does not mimic nature correctly since rays do not reflect and refract around the scene.

To address this issue, Recursive Ray Tracing was proposed (Whitted, 1980). This algorithm
extends the ray casting approach by shooting secondary rays after the primary ray has encoun-
tered an object. By shooting a ray in the reflection direction it is possible to generate mirror-like
materials and a refraction ray will create the effect of transparent materials. The algorithm is

9

2.4. RAY TRACING

recursive, which means it is possible to continue the traversal of the rays after hitting multiple
objects, rendering multiple reflections.

Apart from the rendering time, these ray tracing approaches also suffer from problems related
to aliasing and sampling. The problem is that shooting only one ray per pixel on the screen fails to
capture enough information in order to produce an anti-aliased output. One common solution to
this problem is using multisampling and sample each pixel multiple times with different offsets,
instead of always shooting rays trough the center of the pixels. However this increases even more
the amount of computation needed for the algorithm.

Cone Tracing (Amanatides, 1984) was proposed as a solution that allowed to perform anti-
aliasing with only one ray per pixel. The main idea is to shoot cones trough the screen instead
of rays, by attaching the angle of spread and virtual origin of the ray to its previous definition,
which only included its origin and direction. The pixels on the screen are viewed as an area of
the screen instead of a point, and setting the angle of spread of the cone such that it covers the
entire pixel on the view plane will guarantee that no information is lost during the intersection
process, producing an anti-aliased image. However, calculating the intersections between cones
and objects is complex. The intersection test must not return only information about whether the
cone has intersected any object, but also the fraction of the cone that is blocked by the object.

Since then, multiple algorithms have been proposed to speed the rendering process or generate
a higher quality rendering such as Bi-Directional Path Tracing (Lafortune and Willems, 1993),
Photon-Mapping (Jensen, 1996) or Metropolis Light Transport (Veach and Guibas, 1997).

Ray tracing techniques have also been applied to the rendering of 3D volumetric data sets.
One of the most commonly used volume rendering techniques is called Volume Ray Casting, or
Ray Marching (Levoy, 1990).

This algorithm allows the production of a 2D image from a 3D grid made of voxels, in which
each voxel contains an opacity and color value. The algorithm starts by casting rays from the
view plane into the volume, sampling it at equally spaced intervals. The data is interpolated
at each sampling point since the volume is usually not aligned with the camera (usually using
trilinear interpolation). The interpolated scalar values are then mapped to optical properties by
using a transfer function, forming an RGBA color value. The color values are composited along
the ray using front-to-back or back-to-front alpha blending until the ray exits the volume.

10

2.5. VOXELIZATION

2.5 VOX E L I Z AT I O N

Voxelization or 3D scan conversion is the process of mapping a 3D object made of polygons
into a 3D axis aligned grid, obtaining a volumetric representation of the object made of voxels.
The term ’voxelization’ was first referenced on the paper ”3D scan-conversion algorithms for
voxel-based graphics” (Kaufman and Shimony, 1987). Since then, multiple approaches have
been proposed to convert the surface of a triangle-based model into a voxel-based representation
stored as a voxel grid (Eisemann and Décoret, 2008; Zhang et al., 2007; Dong et al., 2004).
These can be classified in two categories: surface voxelization algorithms and solid voxelization
algorithms.

On surface voxelization, only the voxels that are touched by the triangles are set, thus creating
a representation of the surface of the object. Solid voxelization demands a closed object since it
also sets the voxels that are considered interior to the object (using a scanline fill algorithm for
example).

The voxelization process can store multiple values on the voxel grid (or grids), such as color
and normal values of the voxelized model, or simply store an occupancy value (0 or 1), in which
case it is usually referenced as a binary voxelization.

11

3

R E A L - T I M E VOX E L - BA S E D G L O BA L I L L U M I NAT I O N
A L G O R I T H M S

Figure 5: Voxel-based Global Illumination. Source: Crassin et al. (2011)

Over the past few years, there has been an increasing interest in algorithms based on ray-
tracing. With the rapidly increasing processing power of the graphics cards, these algorithms
that required a long time to generate an image have started to be able to generate a few frames
per second. But tracing polygons (in the classical sense, in which rays intersect with triangles) is
too expensive for real time applications.

Voxels have many benefits when compared with triangles, such as their ability to easily handle
transparency, reflections and refraction by using volume ray casting (section 2.4), thanks to their
volumetric representation. They are also cheaper to intersect than triangles, which makes them a
good choice for ray tracing.

Voxels can also be stored in an octree structure, which can be used to accelerate ray tracing
and store geometry on a compressed format at the same time.

But they also have their disadvantages, the greater of which being the memory consumption.
Voxel data sets tend to be considerably greater than polygon data (Foley et al., 1990). Also, using
a data structure such as an octree to store the voxel data makes it difficult to handle dynamic
objects, since the octree needs to be updated whenever an object changes places or form.

12

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Voxels have been used for diverse applications, such as fluid simulation (Crane et al., 2007)
and collision detection (Allard et al., 2010), but recently new algorithms for computing global
illumination in real time have been introduced. These algorithms are very similar in their struc-
ture, as will be demonstrated in the following chapter. These algorithms start by voxelizing the
scene, storing voxel data into some data structure and then use this structure to compute an ap-
proximation of the light interactions between the objects in the scene by utilizing a ray-tracing
based approach (Figure 5).

There are several algorithms and data structures to perform each of these steps, each of them
with advantages and disadvantages, but this dissertation will be focused on the recent algorithms
for computing global illumination in real time.

3.1 I N T E R AC T I V E I N D I R E C T I L L U M I N AT I O N U S I N G VOX E L C O N E T R AC I N G

In order to maintain the performance, data storage, and rendering quality scalable with the com-
plexity of the scene geometry, we need a way to pre-filter the appearance of the objects on the
scene. Pre-filtering not just the textures but the geometry as well will provide a scalable solution
to compute global illumination, only dependent on the rendering resolution, scaling with very
complex scenes (Crassin et al., 2011).

Figure 6: Voxel Lighting.
Source: Crassin
(2011)

Let us consider a volume in space containing multiple surfaces dis-
tributed more or less randomly. The overall light interactions inside
the volume can be estimated by ignoring the exact positions of these
surfaces inside the volume and using an overall density distribution
and an overall reflectance function to approximate the interaction of
light within this volume (Figure 6). This observation, that permits a
pre-filtering of the scene geometry into a volumetric representation,
was made by Perlin (Perlin and Hoffert, 1989) and Kajiya and Kay
(Kajiya and Kay, 1989).

Thus, when the geometry is pre-filtered in this way, the parameters
used to compute global illumination can be represented volumetrically
for a volume containing those surfaces, instead of using a simplified
surface. With this kind of volumetric representation, the geometry of
the scene can be represented by a density distribution associated with
the parameters of the shading model describing the way light is re-

13

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

flected inside a volume. One of the main advantages of transforming geometry in density distri-
butions is that filtering this kind of distribution is turned into a linear operation (Neyret, 1998).

This linear filtering is important since it allows us to obtain a multiresolution representation
of the voxel grid based on mipmapping, making it possible to automatically control the level of
detail by sampling to different mipmap levels of the voxel grid.

The general idea of this technique is to pre-filter the scene using a voxel representation (3.1.1)
and store the values in a sparse octree structure in order to get a hierarchical representation of the
scene (3.1.2). The leaves of the octree will contain the data at maximum resolution and all the
upper levels of the octree will mipmap the lower levels to generate data at different resolutions
(3.1.3), thereby obtaining the basis for controlling the level of detail based on the distance from
the camera.

After pre-filtering the scene, it is possible to compute an approximation to indirect illumination
using Voxel Cone Tracing (Figure 7, 3.1.4).

Figure 7: Voxel Cone Tracing. Source: Crassin et al. (2011); Crassin (2011)

However, this approach also has its problems. Besides the need for certain hardware features
only available on the latest generation graphics cards, it is not practical for scenes with a large
number of moving objects (Crassin, 2011). Updating the octree is a costly operation, so the
sparse voxel octree cannot be rebuilt in every frame. Static objects only need to be pre-filtered
once while dynamic objects need to be filtered in every frame. For a few moving objects it is
possible to update the octree an keep the algorithm rendering at interactive frame rates, however
increasing the number of dynamic objects eventually turns this operation too computationally
expensive, ruining the performance of the algorithm.

14

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

The update of dynamic elements in this kind of data structures is a problem that still needs to
be solved and new approaches to update these structures in a faster way need to emerge, or new
data structures that are more rapidly updated while keeping the advantages offered by octrees.

3.1.1 Voxelization

Figure 8: Voxelization. Red: projection along x-axis. Green: projection along y-axis. Blue: projection
along z-axis

Voxelization approaches can be separated into two different types: surface voxelization and
solid voxelization (section 2.5). For the scope of our problem, surface voxelization is preferred
since light is reflected at the surface of the materials.

Since the main objective is to compute indirect illumination in real-time, achieving very fast
voxelization of a triangle-based representation is critical. Static geometry can be voxelized as a
pre processing pass, but dynamic objects need to be voxelized in every frame.

This surface voxelization algorithm uses the GPU hardware rasterizer and the new image load-
/store interface exposed by OpenGL 4.2 to achieve a real-time voxelization of the triangles of the
mesh, performed during a single rendering pass (Figure 8).

The key element for this voxelization process is based on the observation made by Schwarz
and Seidel (2010) that a thin surface voxelization of a triangle can be computed by testing if the
triangle’s plane intersects the voxel and the 2D projection of the triangle along the dominant axis
of its normal intersects the 2D projection of the voxel. The dominant axis is merely the one (cho-

15

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

sen from the three main axes of the scene) that maximizes the surface of the projected triangle.

Based on this observation, the voxelization process can be divided in several steps (Figure 9).

Figure 9: Voxelization Pipeline. Source: Crassin and Green (2012)

First, the dominant axis of the triangle normal is determined. This axis is one of the three main
axes of the scene that maximizes the projected surface of the triangle, thus generating a larger
quantity of fragments during rasterization. Since this choice needs to be done for every triangle,
the geometry shader will be used for this purpose, where the information about the three vertices
of the triangle is available. The selected axis is the one that provides the maximum value for
l{x,y,z} = |n · v{x,y,z}| with n the triangle normal and v{x,y,z} the three main axis of the scene.

Once the dominant axis of the triangle normal has been selected, the triangle is projected along
this axis. This projection is simply a classical orthographic projection, setting its limits so that
the projection covers the entire scene to be voxelized, and this is still done in the geometry shader
by swizzling the vertices of the triangle to match this projection. A very important detail is the
need to disable the depth test in order to prevent early culling.

After passing by the geometry shader, the triangle is fed into the standard setup and rasteri-
zation pipeline to perform 2D scan conversion (rasterization). If the triangle is fed right after
projecting it along the dominant axis, a problem still subsists. During rasterization, each triangle
generates multiple 2D fragments corresponding to the pixels intersected by the triangle. The
problem is that only the coverage of the pixel center is tested during the rasterization process.
This can cause some artifacts on the voxelization process (Figure 10).

16

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Figure 10: Conservative Voxelization. Source:
Schwarz and Seidel (2010)

Thus, to ensure a proper voxelization, we need
to guarantee that every pixel touched by a triangle
will generate a 2D fragment. One way to do this
is to use multisampling, generating a fragment for
any of the multisampling locations covered by a tri-
angle. However, this method still does not guaran-
tee a proper voxelization. A more accurate way to
ensure a conservative voxelization is to use a tech-
nique known as conservative rasterization, and it
corresponds to the third step of the voxelization al-
gorithm.

This process is based on the work of Hasselgren et al. (2005). The general idea is to calculate
a bounding box for the triangle and slightly shift the edges of the triangle outwards, expanding it.
The bounding box can then be used later on the fragment shader to discard the excess fragments
generated in the rasterization pass by enlarging the triangle (Figure 11).

Figure 11: Triangle Expansion in Conservative Rasterization. Source: Crassin and Green (2012)

After rasterization, voxel attributes are computed within the fragment shader. These attributes
are any useful attribute we would want to store per voxel. Since the main objective is to compute
global illumination, shading parameters such as albedo and normals need to be stored. Also,
the 3D position inside the voxel grid must be determined in order to store these attributes in the
correct voxel.

17

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

This generates voxel fragments. A voxel fragment is the 3D generalization of the 2D fragment
and corresponds to a voxel intersected by a triangle.

Once the voxel fragments are generated, they can be written into a buffer using image load/-
store operations, generating a voxel fragment list. This voxel fragment list is a linear vector of
entries stored inside a preallocated buffer object. It contains several arrays of values, one con-
taining the 3D coordinate of each voxel fragment, and all the others containing the attributes we
want to store for each voxel. To manage this list, a counter of the number of fragments of the list
is maintained as a single value stored inside another buffer object and updated with an atomic
counter.

Since we want to generate fragments corresponding to the maximum resolution of the octree,
the viewport resolution is set to match the lateral resolution of the voxel grid (e.g. 512× 512 for
a 5123 grid). Also, all framebuffer operations can be disabled since image access is used to write
the voxel data.

3.1.2 Sparse Voxel Octree

Figure 12: Sparse Voxel Octree Structure. Source: Crassin et al. (2010)

If the voxel fragments generated in the voxelization pass were stored in a regular 3D texture,
every voxel would be stored, not just the ones intersected by the mesh triangles, thus producing

18

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

a full grid and wasting a lot of memory with empty voxels. In order to handle large and complex
scenes, there is a need to use an efficient data structure to handle the voxels.

The data structure chosen is a Sparse Voxel Octree (Crassin et al., 2009; Laine and Karras,
2010), which has several benefits in this context, such as storing only the voxels that are inter-
sected by mesh triangles and providing a hierarchical representation of the scene, which is very
useful for the LOD control mechanism.

The sparse voxel octree is a very compact pointer-based structure (Figure 12). The root node
of the tree represents the entire scene and each of its children represents an eight of its volume.

Octree nodes are organized as 2× 2× 2 node tiles stored on linear video memory.
In order to efficiently distribute the direct illumination over all levels of the octree afterwards,

the structure also has neighbor pointers, allowing to rapidly visit neighboring nodes and the par-
ent node.

Figure 13: Voxel Brick. Source:
Crassin et al. (2011)

Since the nodes are encoded in 2× 2× 2 node tiles, some
information needs to be duplicated in the borders of neigh-
boring bricks to allow the use of hardware trilinear sampling
in the brick boundaries. If node centered voxels are used, a
one voxel border needs to be added to the bricks. This would
waste too much memory and introduce a lot of redundancy in
the stored data (specially when small bricks are used, such as
here). Instead, voxel attributes are associated with the node
tiles, stored as 3× 3× 3 bricks in texture memory and as-
sume that the voxel centers are located at the node corners
instead of the node centers (Figure 13). This method allows to have all necessary data for a cor-
rect interpolation in the octree nodes without needing to store a one voxel border for neighboring
voxels.

The sparse voxel octree is built from top to bottom by starting from the root node and subdivid-
ing non-empty nodes until the leaves are reached (Figure 14). After its creation, voxel fragments
(3.1.1) are written in the leaves and mipmapped into the interior nodes of the tree (3.1.3).

The subdivision of the octree is done in three steps (Figure 15). First, the nodes that need
to be subdivided are flagged using one thread per entry on the voxel fragment list. Each thread

19

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Figure 14: Steps for the creation of the sparse voxel octree structure. Source: Crassin and Green (2012)

traverses the octree from top to bottom until it reaches the current level and flags the node in
which the thread ended.

When a node is flagged, a new tile with 2× 2× 2 subnodes needs to be allocated and linked
to the node. In order to do so, one thread is launched per node on the current level of the octree
and each of them checks the flag of its node, allocating a new tile and assigning its index to the
childnode pointer of the current node if needed. Since allocations can occur at the same time,
they are controlled using a shared atomic counter.

The last step is to initialize the new nodes to null child pointers. This is performed in a separate
pass to allow using one thread per each node of the new octree level.

Figure 15: Node Subdivision and Creation. Source: Crassin and Green (2012)

Once the octree is built, the leaves of the tree need to be filled with the voxel fragments. This is
achieved using one thread per entry on the voxel fragment list and since multiple voxel fragments
may try to write their attributes in the same destination, atomic operations are needed. All values

20

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

falling in the same destination voxel will be averaged. To do so, all values are added using an
atomic add operation, updating at the same time a counter, so that the summed value can then be
divided by the counter value in a subsequent pass.

After the sparse voxel octree has its leaves filled with the voxel fragments, these values are
mipmapped into the interior nodes of the tree (3.1.3).

Dynamic and static objects are both stored in the same sparse voxel octree structure for an
easy traversal and unified filtering. Since fully dynamic objects need to be revoxelized every
frame and static or semi-static objects only need to be revoxelized when needed, a time-stamp
mechanism is used in order to differentiate each type of object and prevent overwriting of static
nodes and bricks.

3.1.3 Mipmapping

In order to generate an hierarchic representation of the voxel grid, the leaves of the sparse voxel
octree are mipmapped into the upper levels. The interior nodes of the sparse voxel octree struc-
ture are filled from bottom to top, in n-1 steps for an octree with n levels. At each step, one
thread is used to average the values contained in the eight subnodes of each non empty node in
the current level.

Figure 16: Mipmapping Weighting
Kernel. Source: Crassin
et al. (2011)

Since each node contains a 33 vertex centered voxel
brick, its boundary reappears in neighboring bricks. Con-
sequently, when mipmapping the values, each voxel has to
be weighted by the inverse of its multiplicity. This results
on a 33 Gaussian weighting kernel, which is an optimal re-
construction filter in this case (Crassin et al., 2011) (Fig-
ure 16).

Each voxel at a given level has to represent the light be-
havior of the lower levels (and the volume it represents). For
this purpose, normals and light directions are encoded with
distributions, since these are more accurate than single val-

21

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

ues (Han et al., 2007). However, to reduce the memory footprint, these distributions are not
stored using spherical harmonics. Instead, Gaussian lobes characterized by an average vector D
and a standard deviation σ are used. To ease the interpolation, the variance is encoded using the
norm |D| such that σ2 = 1−|D|

|D| (Toksvig, 2005). For example, the Normal Distribution Function
(NDF) can be computed from the length of the averaged normal vector |N| stored in the voxels
and σ2

n = 1−|N|
|N| .

The Normal Distribution Function describes the normals within a region, defined on the unit
sphere (Figure 17). The NDF and the Bidirectional Reflectance Distribution Function (BRDF)
are convolved, approximating the normals within a region accurately and turning the mipmap-
ping of these functions into a linear operation, thereby providing a smooth filtering between
mipmap levels.

Figure 17: Normal Distribution Function (NDF).

Occlusion information is estimated in form of visibility (percentage of blocked rays) based
simply on the transparency of all the intersecting objects. Only a single average value is stored
to keep voxel data compact, which is a disadvantage for large thin objects since it causes a lack
of view dependency (Figure 18).

Material color is encoded as an opacity weighted color value (alpha pre-multiplied) for better
interpolation and integration during the rendering stage, as well as the normal information in

22

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Figure 18: Opacity is stored as a single value inside a voxel, causing a lack of view dependency.

order to properly account for its visibility.

3.1.4 Voxel Cone Tracing

Before computing global illumination, information about the lighting needs to be added to the
sparse voxel octree. The scene is rasterized from all light sources in order to determine incoming
radiance (energy and direction) for each visible surface fragment. This data is then stored in the
leaves of the octree and mipmapped into the higher levels.

Figure 19: Direct lighting injection and indirect lighting computation. Source: Crassin et al. (2011)

23

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Afterwards, the scene is rendered from the camera and for each visible surface fragment, multi-
ple cones are launched along the hemisphere of the intersection point to perform a final gathering
Jensen (1996)) and collect illumination on the octree in order to estimate the diffuse contribution
for the indirect illumination.

A single cone is launched in the reflected direction to capture the specular contribution of the
indirect illumination. Finally, global illumination is obtained by combining direct and indirect
illumination (Figure 19).

This voxel cone tracing pass (Figure 20) is slightly different than true cone tracing (section 2.4).
The main idea is to step along the cone axis, retrieving the necessary data from the sparse voxel
octree at the level corresponding to the cone radius and accumulating the lighting contributions
according to the classical emission-absorption optical model (Max, 1995; Hadwiger et al., 2006).

Figure 20: Voxel Cone Tracing. Source: Crassin et al. (2010)

The classical emission-absorption optical model is based on geometrical optics. It assumes
that light propagates along a straight line when there is no interaction with matter. When light in-
teracts with matter, it can be absorbed, scattered or emitted by the material. This model neglects
scattering, representing only local light emission and absorption.

24

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Light emission (amount of energy emitted by the material) and absorption (amount of energy
that is absorbed by the material) affect the amount of light energy along a ray. This light energy
is described by its radiance I(x, ω), defining the radiation field in any point x, given the light
direction ω.

I(x, ω) = dQ
dA cos θdΩdt

The emission-absorption optical model leads to the volume rendering integral:

I(D) = I0e−
∫ D

s0 κ(t)dt +
∫ D

s0 q(s)e−
∫ D

s κ(t)dtds

with κ the absorption coefficient, q the emission and integration from the entry point into the
volume s = s0 to the exit point toward the camera s = D.

The volume rendering integral can be evaluated incrementally, with either a front-to-back or
a back-to-front compositing scheme. The preferred compositing scheme in this case is the front-
to-back, since it allows to stop the evaluation when the accumulated transparency reaches zero.

The front-to-back compositing scheme can be expressed as:

Cdst ← Cdst + (1− αdst)Csrc

αdst ← αdst + (1− αdst)αsrc

with α the opacity defined as α = 1− T and T the transparency.

This voxel cone tracing technique can also be used to approximate soft shadows and depth of
field effects very efficiently.

By shooting a cone instead of a single ray towards the light source and accumulating the opac-
ity along the cone it is possible to estimate how much of the light is occluded by objects. The
cone starting from the camera intersects the object, generating an impact volume. A cone will
then be launched from the object to the light source with its radius equal to the impact volume.
The traversal stops when the opacity value saturates, meaning that the object lies in shadow (Fig-
ure 21).

25

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Figure 21: Estimating Soft Shadows trough Voxel Cone Tracing. Source: Crassin (2011)

To approximate the depth of field blur effect, a similar technique is employed. The lens cone
radius (the radius of the cones launched from the camera) is modified depending on the aperture
of the lens and the focus plane, and the corresponding MIP-map level is chosen to estimate the
result (Figure 22). Since the sparse voxel octree does not need to be traversed so deeply, the
rendering becomes faster for an increased introduction of blur.

Figure 22: Estimating Depth of Field Effects trough Voxel Cone Tracing. Source: Crassin (2011)

Direct Illumination Injection

The scene is rendered from the light’s view (using rasterization) and outputs a world position,
generating a Reflective Shadow Map (section 2.3). Each pixel can be viewed as a photon that
will bounce in the scene, and it will be stored in the sparse voxel octree as a direction distribution
and an energy proportional to its angle with the light position. These photons are stored at the
leaves of the octree since they are located at the surface of the object. Since the octree has only
collapsed empty voxels to produce the sparse representation, there is no risk to attempt to store
data on a non existent leaf. Also, the resolution of the reflective shadow map is usually higher
than the lowest level of the octree, so multiple photons might end up in the same voxel. These

26

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

are combined by relying on an atomic add operation.

One of the main difficulties of this process is that voxels are repeated for neighboring bricks
in order to allow using fast hardware filtering. The approach selected to solve this problem is to
perform 6 passes, two for each axis (Figure 23).

In the first x-axis pass, each thread will add voxel data from the current node to the correspond-
ing voxels of the neighbor brick at its right. The next pass will simply copy data from the right
to the left. After these two passes, values on the x-axis are coherent and the same will be done
for the other y and z-axis. Since neighbor pointers have been added to the sparse voxel octree
during its building phase, it is possible to access the neighbors efficiently, and thread collisions
are avoided through this process, avoiding the need to use atomic operations.

Figure 23: Data transfer between neighboring bricks and distribution over levels. Source: Crassin et al.
(2011)

After this step, the lowest level of the sparse voxel octree has correct information and the
values need to be mip-mapped to the higher levels of the octree. In order to avoid unnecessary
computations arising from the duplicated neighboring voxels, this step is performed in three
separate passes, such that every thread has aproximately the same computational cost. The idea
is to only compute the filtered results partially and take advantage of the transfer between bricks
to complete the result (Figure 23).

The first pass computes the center voxel (yellow), the second pass computes half of the filtered
value for the voxels in the center of the node’s faces (blue), and the third pass computes a partial
filering for the corner voxels (green).

After these three passes, the voxels on the higher levels of the octree are in the same situation
as the leaves were after splatting the photons. Octree vertices might only contain a part of the

27

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

result, but by applying the previously mentioned process to sum values across bricks, the correct
result is obtained.

However, since direct light usually only affects a small part of the scene, launching one thread
per leaf node would waste too many resources, filtering nodes that do not contain any photon and
thus applying the filtering to zero values.

Figure 24: Node Map. Source: Crassin et al. (2011)

The approach used to reduce the number of threads and avoid filtering of zero values is to rely
on a 2D node map, derived from the light view map (Figure 24). This map is a Mip-map pyramid
where the lowest level stores the indices of the 3D leaf nodes containing the corresponding pho-
ton of the light view map and the higher levels store the index of the lowest common ancestor for
the preceding nodes of the previous level. One thread is still launched for all pixels in the lowest
node map but when a thread is descending the tree to find the node that it needs to compute the
MIP-mapped value, it first checks the node map to verify if there is no common ancestor with
another thread. If a common ancestor is found, it can assume that all threads passing through the
same path afterwards will end up in the same voxel and thus the desired behavior is to terminate
all threads except one. To achieve this, all threads that do not traverse the upper left pixel will be
terminated and the remaining thread is in charge of computing the remaining filtered values.

Another problem in this representation is known as the two red-green wall problem. It derives
from averaging the values in the octree to a pre-integrated visibility value. When two opaque
voxels with very different values are averaged in the upper levels of the octree, the result can be
different than what would be expected. For instance, two walls with different colors might end
up as if they were semi-transparent. The same problem occurs for opacity, when a 2× 2× 2
tile is half filled with opaque voxels and fully transparent ones, the resulting voxel would be

28

3.1. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

half-transparent.

To counter this problem, an anisotropic voxel representation is used (Figure 25). It is built
during the mip-mapping process, when building or updating the sparse voxel octree with the
lighting information. Instead of storing a single channel of non-directional values, six channels
of directional values are used, one for each major direction.

To generate the directional values, a first step of volumetric integration is performed in depth,
followed by an average of the 4 directional values obtained. At render time, the voxel value is
retrieved by finding the 3 closest directions to the view direction, and perform a linear interpola-
tion between them.

Figure 25: Anisotropic Voxel Representation. Source: Crassin et al. (2011)

Since storing this directional representation for all the properties only needs to be accom-
plished for voxels that are not located on the leaves of the sparse voxel octree, memory consump-
tion is only increased by 1.5x.

Indirect Illumination

For the indirect illumination computation, the shading of a voxel needs to be determined. In
order to do this, the variations in the embedded directions and scalar attributes and the span of
the cone that is currently accumulating the voxel need to be accounted for.

The chosen approach is to translate the BRDF, the NDF and the span of the view cone into con-
volutions. These elements can be translated into convolutions, provided that they are represented
as lobe shapes (Han et al., 2007; Fournier, 1992).

29

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

The Phong BRDF is considered, since its diffuse and specular lobes can be expressed as Gaus-
sian lobes. The NDF can be computed from the length of the averaged normal vector that is
stored in the voxels (σ2

n = 1−|N|
|N|) (Toksvig, 2005). The distribution to the view cone is repre-

sented with a Gaussian lobe of standard deviation σv = cos(ψ), where ψ is the cone’s aperture,
by observing that the distribution of directions going from a filtered voxel towards the origin of
a view cone is the same as the distribution of directions going from the origin of the cone to the
considered voxel (Figure 26).

Figure 26: Directions distribution. Source: Crassin et al. (2011)

In order to determine efficiently in which surface points indirect illumination needs to be com-
puted, deferred shading is employed. In each such surface point, a final gathering is performed
by sending a few cones to query the illumination distributed in the octree.

3.2 R E A L - T I M E N E A R - F I E L D G L O B A L I L L U M I N AT I O N B A S E D O N A VOX E L M O D E L

The main idea of this method for calculating global illumination in real-time is to generate a
dynamic, view-independent voxel representation of the scene by relying on a texture atlas that
provides visibility information of the objects in the scene. This voxelized representation of the
scene, in combination with reflective shadow maps, can then be used to compute one-bounce in-
direct illumination with correct occlusion inside the near-field at interactive frame-rates (Thiede-
mann et al., 2011).

3.2.1 Voxelization

The voxelization method used creates a binary voxelization of the scene (Eisemann and Décoret,
2006). First of all, the models must be mapped to a texture atlas. In this way, by rendering the
model into its corresponding texture atlas, a discretization of the surface of the object is created
and then used to generate a voxel grid (Figure 27). It borrows some ideas from depth-peeling

30

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

voxelization, but instead of peeling an object and saving its layers to textures before voxelization,
it renders the complete object to a single atlas texture image on a single rendering pass.

The bits of the RGBA channels of the texture atlas are used to encode the world-positions, pro-
ducing a binary voxel grid. However, it is also possible to encode any type of data (e.g. radiance,
normals) by using a 3D texture, creating a multivalued voxel grid.

Figure 27: Binary Voxelization. Source: Thiedemann et al. (2012)

This algorithm presents several advantages:

• Independent of the depth complexity of the scene.

• Does not exhibit problems with polygons parallel to the voxelization direction.

• Applicable to moderately deforming models. Strong deformations can corrupt the mapping
from the object to the texture atlas. If deformations are known in advance, it is possible to
use different atlas mappings for each stage of the deformation.

• Good performance, being suited to real-time applications.

31

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

3.2.2 Binary Voxelization

The algorithm can be divided in two steps. First, all objects are rendered, storing their world-
space positions to one or multiple atlas textures. However, having one texture atlas for each
object allows for a flexible scene composition, since objects can be added or removed without
having to recreate the whole atlas.

Before inserting the voxels into the grid, it is necessary to set the camera on the scene. Its
frustum will define the coordinate system of the voxel grid.

Then, for every valid texel in the texture atlas, a vertex is generated and inserted into a voxel
grid using point rendering. In order to identify valid texels, the texture atlas is cleared with an
invalid value (outside of the range of values) and this value is used as a threshold.

Altough the selection process could be done in the GPU (e.g. using a geometry shader to
emit only valid texels), it is done as a preprocess on the CPU. After an initial rendering into the
texture atlas, the values are read back to the the CPU and a display list is created, holding only
the vertices for the valid texels.

The display list is then rendered using point rendering, transforming the world-space position
from the texture atlas into the coordinate system of the voxel grid, according to the voxelization
camera. The depth of the point is then used in combination with a bitmask to determine the
position of the bit that represents the voxel in the voxel grid, and finally setting the correct bit on
the voxel grid. This is possible by relying on a unidimensional texture previously created on the
CPU that maps a depth value to a bitmask representing a full voxel at that certain depth interval.

In this way, each texel of a 2D texture represents a stack of voxels along the depth of the
voxelization camera, making it possible to encode a voxel grid as a 2D texture.

The atlas resolution should be chosen carefully. Using a low resolution for the texture atlas
can create holes in the voxel grid. However, if the resolution is too high, the same voxel will
be filled repeatedly, hurting the performance of the algorithm since the performance is directly
related to the number of vertices generated and rendered using the display list.

3.2.3 Data Structure/Mip-Mapping

This approach relies on a binary voxelization, stored in a 2D texture. Each texel represents a
stack of voxels along the negative z-axis of the voxelization camera, since each bit encodes the
presence of geometry at a certain depth along the voxelization direction.

32

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

This 2D texture is used to create a mip-map hierarchy by joining the texels along the x and y
axis. The depth resolution along the z axis is kept at each mip-map level in order to allow the
rendering algorithm to decide more precisely if the traversal of this hierarchical structure can be
stopped earlier. Each of the mip-map levels are generated manually and stored in the different
mip-map levels of a 2D texture by joining four adjacent texels of the previous mip-map level
(Figure 28).

Figure 28: Mip-mapping. Source: Thiedemann et al. (2012)

3.2.4 Rendering

In order to compute visibility, a ray-voxel intersection test is employed. A hierarchical binary
voxelized scene is used to compute the intersection of a ray with the voxel grid.

Since the binary voxelization is a hierarchical structure, it allows to decide on a coarse level
if an intersection is to be expected in a region of the voxel grid or if the region can be skipped
entirely (Figure 29).

This rendering method is based on the algorithm proposed by (Forest et al., 2009), but some
improvements have been made in order to increase its performance and functionality.

The first step of the algorithm is to find if there is an intersection with the ray. The traversal
starts at the texel of the hierarchy that covers the area of the scene in which the starting point
of the ray is located. To determine this texel, the starting point of the ray is projected onto the
mip-map texture and used to select the appropriate texel at the current mip-map level. If the texel
is found, a test is performed in order to determine if the ray hits any voxels inside the region it
represents.

33

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

Figure 29: Hierarchy traversal. Blue lines: bounding box of the voxels in the actual texel. Green and
red lines: bitmask of the active texel (empty - green and non empty - red). The green and red
cuboids: history of the traversal for the texel (no hit - green and possible hit - red). Source:
Thiedemann et al. (2012)

A bitmask is stored at each texel, representing a stack of voxels along the direction of depth
3.2.1. It is thus possible to use this bitmask to compute the bounding box covering the volume.
The size of the bounding box depends on the current mip-map level.

After computing the bounding box corresponding to the current texel, the ray is intersected
with it, generating two values: the depth where the ray enters the bounding box and the depth
where it leaves the bounding box. With these two values, another bitmask can be generated, rep-
resenting the voxels the ray intersects inside the bounding box. This bitmask (called ray bitmask)
is compared with the bitmask stored in the texel of the mip-map hierarchy in order to determine
if an intersection occurs and the node’s children have to be traversed (Figure 30). If there is no
intersection, the starting point of the ray is moved to the last intersection point with the bounding
box and the mip-map level is increased. If an intersection occurs, the mip-map level is decreased
to check if there is still an intersection on a finer resolution of the voxelization until the finest
resolution is reached. The algorithm stops if a hit is detected or if it surpasses the maximum

34

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

length of the ray (defined by the user).

Figure 30: Hierarchy traversal in 2 dimensions. The blue arrow represents the current extent of the ray and
in orange the bounding box of the current mip map levels is displayed. Source: Thiedemann
et al. (2011)

The next step of the algorithm is to compute near-field illumination. For this purpose a re-
flective shadow map is generated (Dachsbacher and Stamminger, 2005) that contains direct light,
position and normal for each pixel visible from the light position. Different techniques are em-
ployed for different types of lights: shadow maps are used for spotlights and cube maps for point
lights.

In order to compute the indirect light for a pixel in the camera view, a gathering approach is
employed to compute one-bounce near-field illumination (Figure 31). N rays are cast using a
cosine-weighted distribution, starting from the receiver position x with a maximum distance r.

Intersection tests are performed for each ray to determine the first intersection point. If a voxel
is hit along the ray, the direct radiance L̃i needs to be computed at the intersection point. This
is performed by back-projecting the hitpoint to the reflective shadow map, allowing to read the
direct radiance stored in the corresponding pixel of the reflective shadow map.

In case the distance between the 3D position of the hitpoint and the position stored in the pixel
in the reflective shadow map is greater than a threshold ε, the direct radiance is invalid, and thus
it is set to zero. The threshold ε has to be adjusted to the discretization v, the pixel size of the
reflective shadow map s, the perspective projection and the normal orientation α. This leads to
ε = max(v, s

cos α ·
z

znear
).

35

3.2. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

Since the sample directions are generated using a cosine distribution function the radiance Lo

at the receiver point x can be computed using Monte-Carlo integration with the formula (Thiede-
mann et al., 2012):

Lo(x) ≈ ρ(x)/π
N ∑N

i=1 L̃i(x, ωi)

where ρ(x)/π is the diffuse BRDF at the receiver point, ωi are N sample directions and
L̃i(x, ωi) is the radiance that is visible at the hitpoint in sample direction ωi.

Figure 31: Near-field Indirect Illumination. Source: Thiedemann et al. (2011)

Indirect light has to be computed on a lower resolution in order to be feasible in real-time.
Standard techniques like interleaved sampling and a geometry-aware blur filter are employed to
be able to compute indirect light on a subset of all pixels.

In contrast to other image-based approaches, this method does not depend on the camera
position, thus detecting senders and blockers that are invisible to the camera correctly.

However, due to the voxel discretization and the image-space blur, it is not possible to compute
glossy materials properly.

36

3.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

It is possible to modify the rendering algorithm in order to extend its capabilities to better
approximate global illumination, including compute glossy reflections. It is possible to create a
path tracer based on the voxelized scene representation and to evaluate the visibility of virtual
point lights ((Keller, 1997)) using the presented intersection test. Altough this technique presents
a better approximation to global illumination, it does not compute in real-time, and is thus out of
this context.

3.3 R A S T E R I Z E D VOX E L - B A S E D DY N A M I C G L O B A L I L L U M I N AT I O N

This method uses recently introduced hardware features to compute an approximation to global
illumination in real-time (Doghramachi, 2013).

First, a voxel grid representation for the scene is created using the hardware rasterizer. The
voxelization algorithm is similar to the one previously explained in Section 3.1.1.

Figure 32: Nested Voxel Grids

The scene is rendered and written into a 3D texture
buffer (voxel grid) using atomic functions, creating a
3D grid representation of the scene. This grid contains
the diffuse albedo and normal information of the ge-
ometry on the scene and is recreated each frame, thus
it is fully dynamic and does not rely on precalcula-
tions.

The voxel grid is kept at a relatively small size, thus
some techniques have to be used in order to handle
large environments. Several nested grids can be used,
in which each grid will have the same number of cells,
but the size of the cells is increased (Figure 32). This
allows to increase the detail of the indirect lighting near the viewer and use a coarser indirect
lighting when far away from the viewer. Linear interpolation should be performed between the
different grids to smooth the transitions between them.

After the grid has been created, the voxels are illuminated by each light source. The direct il-
lumination is then converted into virtual point lights stored as second-order spherical harmonics
coefficients and the resulting coefficients are combined for each light source using the blending

37

3.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

stage of the graphics hardware.

In order to compute the indirect illumination, the generated virtual point lights will be propa-
gated within the grid. This technique does not require the creation of a reflective shadow map nor
the injection of virtual point lights into a grid afterwards, as opposed to the light propagation vol-
ume technique (Kaplanyan and Dachsbacher, 2010). The proposed technique can be subdivided
into five distinct steps (Figure 33).

Figure 33: Pipeline of the algorithm

3.3.1 Creation of the Voxel Grid Representation

The voxel grid moves synchronously with the viewer camera and is snapped permanently to the
grid cell boundaries to avoid flickering due to its discrete representation of the scene (Figure 34).
To correctly map the scene to the voxel grid, an orthographic projection is used and thus, three
view-matrices are used for the three different directions of projection (x,y,z). A set of properties
for the cubic voxel grid also need to be defined: its extent, position and view-projection matrices.

The geometry inside the grid boundaries is rendered with disabled color writing and without
depth testing in order to generate a fragment for every voxel containing scene geometry.

The view-matrix is chosen according to the major axis of the normal, in order to maximize the
number of fragments generated for the primitive. The triangle is expanded using conservative

38

3.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

rasterization in order to guarantee that every part of the triangle touching a voxel will generate
a fragment. The resulting fragments are written into a 3D read-write structured buffer in the
fragment shader with the help of atomic operations.

Since the voxel grid is a simplification of the actual scene, geometric information on the objects
is lost during the voxelization pass. In order to amplify color bleeding for global illumination,
the color contrast value is calculated and used to write the fragments into the grid, thus giving
preference to high contrast colors (high difference in their color channels).

Figure 34: Orthographic Projection with a Voxel Grid in the View Frustum

The closest face of a tetrahedron to which the current normal is closest is also determined in
order to account that normals can be opposite in the same voxel. This allows to write the normal
into the normal mask channel corresponding to the tetrahedron face selected. Lately, this will
allow to select the closest normal to the light vector when the voxels are illuminated, so that the
best illumination can be computed. This leads however that sometimes the normal used is from
a different geometry face than the color. However, since voxels condense information of the
geometry inserted within its boundaries, this approximation will not have any negative impact
on the result (Doghramachi, 2013).

39

3.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

3.3.2 Creation of Virtual Point Lights in Voxel Space

For each light source located within the grid boundaries, a quad with the size of the side of the
voxel grid is rendered using hardware instancing.

Each instance corresponds to a depth value on the voxel grid, and all voxels that contain
geometry information are illuminated according to the type of the light source (Figure 35).

The voxels are converted into a second-order spherical harmonic representation of virtual point
lights, combining the results of all light sources by using additive hardware blending. The second-
order spherical harmonics coefficients for the three color channels are then written into three 2D
texture arrays, one for each spherical harmonics channel.

This way, virtual point lights that scale very well with an increasing number of light sources
of different types are created entirely from the previously generated voxel grid (Doghramachi,
2013).

Figure 35: Lit surfaces are treated as secondary light sources and clustered into a voxel grid

3.3.3 Virtual Point Lights Propagation

The propagation of the previously created virtual point lights across the grid is performed accord-
ing to the light propagation volume technique proposed by Kaplanyan and Dachsbacher (2010).

Each virtual point light cell propagates its light to its surrounding six neighbor cells. During
the propagation, the previously created voxel grid (3.3.1) is used to compute the occlusion of the
light transport to the neighbor cells in order to avoid light leaking. This step is then performed
again using the results from the first propagation in an iterative manner until the light distribution

40

3.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

is visually satisfying (Figure 36). In the first iteration no occlusion is used in order to let the light
distribute initially.

Figure 36: Virtual Point Light are propagated in the Voxel Grid

3.3.4 Indirect Lighting Application

The previously propagated virtual point lights are then applied to the scene to simulate indirect
illumination. In order to do this, a depth buffer and a normal buffer are needed. The depth buffer
contains information that allows to reconstruct the world-space position of the visible pixels and
the normal buffer contains the perturbed normal information of the pixels.

A full-screen quad is rendered and the world-space position and the normal of each pixel is
reconstructed. With the world-space position, the previously generated grid is sampled using
linear hardware filtering and the third dimension is manually filtered to achieve smooth results.
Lighting is then applied to the pixels using the sampled spherical harmonics coefficients and the
surface normal. This method allows the computation of diffuse indirect illumination. However,
a coarse approximation of the specular lighting is possible by extracting a dominant light source
from spherical harmonics coefficents (pike Sloan, 2008).

The final step is to clear the buffer used for the voxel grid.

41

4

I M P L E M E N TAT I O N

4.1 T E C H N O L O G I C A L C H O I C E S

For the implementation of the chosen algorithms, several technological choices had to be made.
The most important choices are between the programming language and the graphics program-

ming interface to use.
For real-time computer graphics, there are mainly two APIs that we can choose from: OpenGL

and DirectX.
OpenGL is a cross-platorm graphics API for drawing 2D and 3D graphics. It is well docu-

mented and a wide quantity of books and examples are available for free trough the internet.
Altough it is multi-platform, it lacks some functionalities such as resource loading and window
and input handling. There are however free libraries that offer these functionalities, turning this
into a small issue.

DirectX is a collection of APIs that can handle a large amount of functions related not just
to graphics, but multimedia in general. It provides libraries that can handle for example 3D
graphics, sound and input. However, it is closely bound to the Microsoft Windows platform.

Both are very capable and very well maintained APIs, but since OpenGL presents the advan-
tage of being cross-platform and its lack of some functionalities can be easily surpassed by using
some extra libraries, this has been the technology chosen to deal with the 3D graphics of the
applications.

The programming language chosen was C++. Since it will deal with the core of our appli-
cations, it has to be closely related to the other libraries used. Most of the libraries related to
computer graphics are written in C++, so it is an obvious choice since it allows to use the li-
braries without having to rely on additional wrappers. It also offers great performance, which is
essential for this kind of applications.

42

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Current GPUs offer the possibility to be used not only for graphical purposes, but also for
more general computation. Since GPUs offer many unified cores, they are perfect for very par-
allelizable tasks. There are some platforms used for this purpose, such as CUDA or OpenCL.
However, since we will use the most recent versions of OpenGL (and capable hardware), it is
also possible to use the OpenGL Shading Language (GLSL) to create compute shaders to per-
form these operations. DirectX also offers this functionality in the name of High-Level Shader
Language (HLSL).

Since OpenGL doesn’t offer asset import, window management, or input handling, some li-
braries have to be used to counter these problems. There are a lot of candidates for these functions.
However, there is a collection of libraries that simplify the interaction with OpenGL. It is called
Very Simple * Libs (VSL). It still depends on other libraries, but provides a wrapper to perform
all the operations in a very simple manner.

4.2 I N T E R AC T I V E I N D I R E C T I L L U M I N AT I O N U S I N G VOX E L C O N E T R AC I N G

The algorithm described in section 3.1 uses a Sparse Voxel Octree in order to reduce the memory
usage needed to store the voxels after voxelization. However, the use of this kind of data structure
introduces a higher access time to the data during the cone tracing pass, since the sparse voxel
octree has to be descended until the level desired.

In order to better assess the trade-off between the usage of a full voxel grid and a sparse voxel
octree, both versions of the algorithm have been implemented. Both are very similar in their
structure, but the introduction of the sparse voxel octree increases the number of passes per-
formed the algorithm, as well as the way the voxel data is stored.

4.2.1 Voxel Cone Tracing with a Full Voxel Grid

In order to compute an approximation to global illumination using Voxel Cone Tracing, a hier-
archic voxel representation of the scene has to be created. The algorithm is divided in several
passes:

1. Voxelization

2. Light Injection

3. Mipmapping

43

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

4. Voxel Cone Tracing

Data Structures

In order to compute an approximation to global illumination using cone tracing, a voxel based
representation of the scene must be created. The first step is to voxelize the scene in order to
determine the necessary information to fill the voxel grid. After voxelization, voxel fragments
are outputted to a buffer called a voxel fragment list (Listing 4.1).

// Voxel fragment

struct FragmentData

{

uint position;

uint color;

uint normal;

};

// Voxel fragment list

layout(binding = 1, std430) buffer Fragments

{

FragmentData fragmentList[];

};

Listing 4.1: Voxel Fragment List

The voxel fragments will be used later in the light injection pass to fill a 3D texture with the
lighting information in the scene. This 3D texture is created with a size matching the voxelization
resolution and with a RGBA8 texture format.

Voxelization

Each time the scene is voxelized, the voxel grid must first be cleared in order to avoid inconsis-
tencies. This is done using an empty framebuffer object.

During initialization, a framebuffer object is created having no texture attachments bound to
it. Then, when the grid has to be cleared, the framebuffer is bound, the 3D texture storing the
voxel grid is attached to one of the color attachments of the framebuffer object and the texture is
cleared using the glClear command.

44

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

The objective of the voxelization pass is to convert the surface of the objects represented with
triangles to a volumetric representation stored in a voxel grid. The first thing to do is to define
the volume that has to be voxelized.

To do that, an orthographic projection is defined, in such a way that its frustum covers the area
to be voxelized. Since every triangle inside the orthographic volume has to generate fragments
in order to avoid missing information in the voxel grid, the depth test and face culling need to
be disabled prior to the rendering call. Also, the resolution of the voxelization is controlled by
altering the viewport before issuing the draw call.

This voxelization algorithm uses a vertex shader, geometry shader and fragment shader to
produce voxel fragments that will be stored in a voxel fragment list (Listing 4.1).

The vertex shader simply outputs the world position, normal and texture coordinates to the
geometry shader.

Figure 37: Projection of a triangle trough the three main axis of the scene. The Y axis is chosen for
the voxelization since it is the one that will generate maximum number of fragments during
rasterization.
Source: https://developer.nvidia.com/content/basics-gpu-voxelization

In order to produce the maximum number of fragments per triangle, each triangle must be
projected along its dominant axis (Figure 37). The first step is to determine the normal of the tri-
angle and finding which of the x,y,z components has the greater value. Since information about
the three vertices of each triangle is needed to compute its normal, this is done in the geometry
shader. The next step is then to swizzle the vertices of the triangle, in such a way that it matches
the orthographic projection during rasterization. Then, by multiplying the swizzled vertice coor-
dinates by the projection matrix, the screen coordinates of the triangle are obtained (Listing 4.2).

vec4 screenPos[3];

if (dominantAxis == eyeSpaceNormal.z)

{

45

https://developer.nvidia.com/content/basics-gpu-voxelization

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

screenPos[0] = projection * vec4(vPosition[0].xyz, 1.0);

screenPos[1] = projection * vec4(vPosition[1].xyz, 1.0);

screenPos[2] = projection * vec4(vPosition[2].xyz, 1.0);

}

else if (dominantAxis == eyeSpaceNormal.y)

{

screenPos[0] = projection * vec4(vPosition[0].xzy, 1.0);

screenPos[1] = projection * vec4(vPosition[1].xzy, 1.0);

screenPos[2] = projection * vec4(vPosition[2].xzy, 1.0);

}

else if (dominantAxis == eyeSpaceNormal.x)

{

screenPos[0] = projection * vec4(vPosition[0].zyx, 1.0);

screenPos[1] = projection * vec4(vPosition[1].zyx, 1.0);

screenPos[2] = projection * vec4(vPosition[2].zyx, 1.0);

}

Listing 4.2: Computation of screen coordinates with vertex swizzling

Since the 2D fragments generated after rasterization only take into account pixels that intersect
triangles trough their center, the triangles must be expanded so that every pixel touched by a
triangle generates a fragment. This is done by shifting the screen coordinates of the triangle
outwards by the size of a pixel’s diagonal.

This process, known as conservative rasterization (Figure 10) implies the computation of a
screen space bounding box of the triangle before shifting its vertices outwards. This bounding
box will serve to discard extra fragments generated during rasterization in the fragment shader.

Finally, the fragment shader is in charge of storing the voxel fragments into the voxel fragment
list. First, the fragment is tested against the bounding box passed by the geometry shader. If the
fragment is not inside the bounding box, it is discarded, and thus not appended to the voxel
fragment list. Then, the voxel data is stored with the help of an atomic counter in order to avoid
voxel fragments overwriting each other.

Light Injection

In order to fill the voxel grid with the voxel fragments, the number of fragments written in the
previous pass need to be determined. This information is stored in the atomic counter used to
store the voxel fragments in the voxel fragment list.

46

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

To avoid reading the data back to the CPU to launch the draw call, the attribute-less capability
of the core profile in OpenGL is used, allowing to issue a draw call with no vertex buffer attached
in order to launch a certain number of threads. A draw call with rasterization disabled and only
one vertex is issued in order to launch a single thread that is in charge of altering the values of
an indirect draw call structure (Listing 4.3).

struct DrawArraysIndirectCommand

{

GLuint count;

GLuint primCount;

GLuint first;

GLuint baseInstance;

};

Listing 4.3: Indirect Draw Structure

Now that the buffer containing the draw call parameters has the correct values, an indirect draw
call is issued once again with attribute-less rendering, where the number of vertices are read from
the indirect draw buffer, launching in this way one thread per entry on the voxel fragment list.

In the vertex shader, each thread uses the gl VertexID implicit input in order to access its
corresponding entry in the voxel fragment list, retrieving the world position, color and normal of
each fragment. The normal and color of the voxel fragment are used together with a shadow map
section 2.1 and the light parameters to determine the shading of each fragment, according to the
Phong reflection model.

Now that the shading of each fragment is known, the fragments need to be stored in the corre-
sponding voxel in the voxel grid, averaging the values that fall into the same voxel.

Since multiple fragments can try to store data into the same voxel, atomic operations have to
be used. However, image atomic operations have severe limitations in OpenGL: image atomic
operations can only be used on integer images, either signed or unsigned, with the GL R32I/r32i
or GL R32UI/r32ui formats.

In order to surpass this limitation, it is possible to emulate an atomic average in RGBA8 images
using the imageAtomicCompSwap function (Crassin and Green, 2012), (Listing 4.4).

The idea of the algorithm is to loop on each write, exchanging the value stored in the voxel
grid with the moving average. The loop stops when the value stored in the voxel grid has not
been changed by another thread. The moving average is computed using the alpha component of
the RGBA format as a counter of the number of fragments that have been joined together. This

47

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

creates a problem: the final alpha value stored in the grid, which should represent the opacity of
that voxel, is not correct.

To correct the opacity value, a thread must be launched for each voxel of the voxel grid. Each
thread will simply access its corresponding voxel and if it is not null, modify the alpha value so
that the voxel is considered fully opaque (alpha = 1).

Since the number of threads necessary is known beforehand, the correction of the alpha values
of the voxel grid is performed simply by launching a compute shader with the number of threads
matching the resolution of the voxel grid.

vec4 convRGBA8ToVec4(uint val)

{

return vec4(float((val & 0x000000FF)), float((val & 0x0000FF00) >> 8U),

float((val & 0x00FF0000) >> 16U), float((val & 0xFF000000) >> 24U));

}

uint convVec4ToRGBA8(vec4 val)

{

return (uint(val.w) & 0x000000FF) << 24U | (uint(val.z) & 0x000000FF) <<

16U | (uint(val.y) & 0x000000FF) << 8U | (uint(val.x) & 0x000000FF);

}

void imageAtomicRGBA8Avg(layout(r32ui) coherent volatile uimage3D grid,

ivec3 coords, vec4 value)

{

value.rgb *= 255.0;

uint newVal = convVec4ToRGBA8(value);

uint prevStoredVal = 0;

uint curStoredVal;

while((curStoredVal = imageAtomicCompSwap(grid, coords, prevStoredVal,

newVal)) != prevStoredVal)

{

prevStoredVal = curStoredVal;

vec4 rval = convRGBA8ToVec4(curStoredVal);

rval.rgb = (rval.rgb * rval.a); // Denormalize

vec4 curValF = rval + value; // Add

curValF.rgb /= curValF.a; // Renormalize

newVal = convVec4ToRGBA8(curValF);

}

48

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

}

Listing 4.4: RGBA8 Image Atomic Average Function

Mipmapping

Now that the 3D texture has data about the lighting on the scene at maximum resolution, it is
necessary to create the lower mipmap levels in order to have an hierarchic representation of the
lighting in the scene to use during the voxel cone tracing pass.

This is done level by level, launching a compute shader with a number of threads equal to the
resolution of the mipmap level to be filled. Each thread accesses the next higher mipmap level
and samples the eight voxels that correspond to the voxel to be filled, averaging their values and
storing the result using an image store operation. Since the mipmapping is performed level by
level, no atomic operations are needed in order to ensure that the results stay coherent.

Voxel Cone Tracing

The voxel grid encodes information about the geometry of the scene (all voxels containing geome-
try have an occlusion higher than zero) and the direct lighting information at multiple resolutions,
providing an hierarchic representation of the scene.

With this information it is possible to compute an approximation to indirect illumination by
launching cones and sampling the voxel grid at different resolutions, according to the cone aper-
ture.

This pass is performed using a deferred rendering approach (section 2.2). A full-screen quad
is rendered and the fragment shader simply samples the geometry buffer in order to retrieve the
positions, normals, colors and direct illumination.

With this information it is possible to compute the direction of the reflected ray and a single
cone with a small aperture is launched in order to capture the specular contribution to indirect
illumination. For the diffuse indirect illumination, 5 cones with a large aperture are launched in
the hemisphere around the normal. A cone is launched in the direction of the normal, while the
other four are launched in different directions, making an angle of 45 degrees with the normal,
with the help of the tangent and bitangent vectors. The cones are weighted according to the angle
made with the normal.

Tracing cones trough the voxel grid is very similar to using volume ray casting (section 2.4).
The difference is that instead of shooting rays and sampling them at equally spaced intervals,

49

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

the rays have a thickness that increases along the tracing path and the distance between samples
increases as the sampling position gets farthest from the cone apex.

The information needed to trace a cone is: its starting point, its direction, its aperture and the
maximum distance that will be traveled until the tracing is stopped.

The first thing to do is set the starting point. The fragment position that has been retrieved from
the geometry buffer corresponds to the world position of the surface of an object to which indirect
illumination has to be computed. However, that surface also has had its lighting contribution
added to the voxel grid. So, in order to avoid self intersection, the starting point of the cone has
to be advanced by the size of the diameter of a voxel on the last level of the voxel grid.

The maximum distance and the aperture are set by the user, but the aperture is actually repre-
sented as the the cone diameter to height ratio. The idea is then to sample the voxel grid from
the starting position along the direction of the cone, accumulating the samples using front-to-
back alpha blending, until the maximum distance set by the user is surpassed or the alpha value
containing the accumulated occlusion saturates.

The distance to the next sample is increased by the cone’s diameter of the current sample
and by associating the volume that a voxel represents in each sample with the diameter of the
cone, the volume increases increases between each sample. The proper mipmap level is chosen
according to the size of that volume, since each voxel corresponds to a different volume in space
in different mipmap levels. Since the full grid is stored in a 3D texture, it is possible to sample
the voxels using hardware quadrilinear filtering.

This algorithm already allows to compute a very good approximation to indirect illumination.
However, some artifacts are noticeable. Since the start position and stepping size between each
sample during the cone tracing is the same for every cone with the same aperture, some banding
artifacts can appear when tracing glossy reflections. This is a well-known problem on volume
rendering approaches , and common ways to solve the problem are to reduce the stepping size,
increasing in this way the number of samples taken for each cone, and jittering the start position
of the cone. The approach taken was to reduce the stepping size by half during the traversal, thus
doubling the number of samples taken. This approach had a small impact on performance, and
it was sufficient to remove visible banding on the scene.

Another problem is that since voxels define a volume in space, when tracing cones it is possible
to accumulate some lighting contributions from objects that are occluded from the view point,
thus leading to light leaking. To reduce these artifacts, five more voxel grids are needed, one
for each direction, in order to be able to filter the irradiance anisotropically during the mipmap
pass. The mipmap pass is altered in order to perform alpha blending in one of the six directions,

50

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

followed by the averaging of the resulting four values and the result is stored in the corresponding
voxel grid. Then in the cone tracing pass, instead of sampling only one grid, three samples are
taken from the three directional 3D textures weighted by the cone direction. Although the visual
quality of the result is increased, this approach has some drawbacks: the memory consumption
is greatly increased and the cone tracing pass has to do more texture calls, thus increasing the
rendering time.

Another problem is that the glossy reflections are only single bounce. This means that the
specular reflections do not take into account multiple reflections and only directly lit surfaces are
shown. In order to view every object in the scene, not just the ones directly lit, it is possible to
add some ambient lighting to the scene during voxelization. However, multiple reflections are
still ignored.

4.2.2 Voxel Cone Tracing with a Sparse Voxel Octree

This algorithm extends the previously described algorithm by using a different data structure to
store the voxel grid. Instead of a full 3D texture, a sparse voxel octree is created that allows
to collapse empty voxels in order to reduce the memory usage. However, the reduced memory
consumption comes at the cost of an extra step: the creation of the sparse voxel octree structure
before light injection. Also, the octree has to be traversed before retrieving the desired informa-
tion stored in the voxels. The steps performed by the algorithm are very similar to the previously
described approach (subsection 4.2.1). However, some of these passes are different, due to the
change of the data structure storing the voxel grid:

1. Voxelization

2. Sparse Voxel Octree Creation

3. Mipmapping

4. Light Injection

5. Voxel Cone Tracing

Voxelization

The voxelization pass is exactly the same used for the full voxel grid approach (subsection 4.2.1).
At the end of this pass, a fragment list containing voxel fragments is available (Listing 4.1), with
the information needed for the light injection pass and for the creation of the sparse voxel octree.

51

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Sparse Voxel Octree Creation

The sparse voxel octree structure is a data structure composed by two components: the node pool
and the brick pool.

Figure 38: Octree and Octree Pools.

Each node from the sparse voxel octree stores multiple pointers to access data at different
levels during the traversal of the sparse octree structure (Listing 4.5). More precisely, it stores
the address to its eight children (which are grouped in node tiles, allowing to access each of the
eight children with a single address), the address of its corresponding brick in the brick pool, as
well as the three x, y, z neighbor nodes which will come in handy during the light injection and
mipmapping passes (Figure 3.1.4).

The brick pool is a 3D texture storing the voxel data in bricks composed by 33 voxels in order
to allow to use hardware trilinear filtering when sampling the voxels during the cone tracing pass
(Figure 13). Each brick stores voxel data corresponding to each node tile of the sparse voxel
octree.

struct OctNode

{

uint nodePtr;

uint brickPtr;

uint neighborX;

52

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

uint neighborY;

uint neighborZ;

};

layout(binding = 1, std430) buffer Octree

{

OctNode octree[];

};

Listing 4.5: Sparse Voxel Octree Structure

Figure 39: Octree Subdivision.

The creation of the octree is performed in multiple passes using attribute-less rendering. Level
by level, starting from the root node, the octree is subdivided until the leaves are reached and the
voxel fragments are written into their corresponding voxel bricks Figure 39. The subdivision of
the octree is performed in three passes:

1. Neighbors finding

2. Octree tagging

3. Octree subdivision

53

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Before starting the octree subdivision, the number of threads for the indirect draw call must be
set. Similarly to 4.2.1, a draw call is issued in order to read the atomic fragment counter value
and modify the indirect draw structure parameters in order to be able to launch 1 thread for each
entry in the voxel fragment list.

The first pass is in charge of finding the three x, y, z neighbors of a voxel and storing their
addresses in the octree node. To do that, each thread reads the world position from the voxel
fragment list and traverses the octree using the kd-restart algorithm. The traversal starts from the
root node, computing the volume dimensions for the node and comparing it to the world position
retrieved from the voxel fragment list in order to find out to which child the traversal must be
continued. Traversal stops when an empty node is found. Now that the current leaf node is found,
the world position is increased in each axis separately by the size of the current node’s volume
and the traversal is restarted with each neighbors world position until the same depth is reached
and the neighbor node address is written into the corresponding field in the octree node.

The second pass tags the octree nodes in order to distinguish which ones should be subdivided.
To do that a draw call is issued, launching one thread for each entry in the voxel fragment list.
Each thread in the vertex shader accesses its corresponding world position in the voxel fragment
list and uses it to traverse the octree until an empty or tagged node is found. The 30th bit of the
node pointer of the octree node is then set in order to mark the node for subdivision.

Since the octree is sparse, only some nodes have been marked for subdivision and only those
nodes have to subdivided. In order to be able to launch one thread per node on each level of
the octree, the nodes per level have to be kept on each step of the octree subdivision. The draw
indirect structure has been extended in order to store an array of unsigned integers corresponding
to the number of nodes on each level of the octree (Listing 4.6).

layout (std430, binding = 0) buffer IndirectBuffer

{

uint count;

uint primCount;

uint first;

uint baseInstance;

uint nodesPerLevel[];

} DrawArraysCommand;

Listing 4.6: Indirect draw structure storing the nodes for each level of the octree

So, before launching the octree subdivision pass, a draw call with one single thread is issued
for the purpose of altering the indirect draw structure parameters so that the next indirect draw

54

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

call will start from the address of the first node on the current level and with a number of threads
equal to to the number of nodes in the current octree level.

Now that the indirect draw structure has the correct values, an indirect draw call is launched
with the purpose of subdividing the nodes of the octree in the current level. Each thread checks
the node pointer to its children and if the node has been marked for subdivision, an address is
computed with the help of an atomic counter. The value returned by this atomic counter is also
used in order to compute the address to a brick in the brick pool, and the values are written into
the octree node. In case the node currently being subdivided belongs to the last level of the octree,
the atomic counter is only used to compute a brick address, since leaf nodes do not have children.

Now that the sparse voxel octree structure has been created, the bricks must be filled. The
voxel fragment list contains normal and material information for each fragment that need to be
inserted into the leaves of the octree and then mipmapped into the upper levels.

An indirect draw call is issued with a number of threads equal to the number of fragments in
the voxel fragment list (the indirect draw structure is altered as before). Each thread retrieves
world position from its corresponding entry in the voxel fragment list and uses it to traverse
the octree until the last level is reached. The brick address is then retrieved and used to store
color and normal information from the voxel fragment into the color and normal brick pools,
respectively, using an RGBA8 image atomic average operation (Listing 4.4). Since each brick
contains 33 voxels that represent 22 octree nodes (and some information from their neighbors,
in order to use hardware trilinear filtering), the voxels are actually stored and averaged into the
corner voxels of the brick. In a following pass, one thread is launched for each of the leaf nodes
using an indirect draw call. Each thread retrieves the brick address from the node and samples
the corner voxels. The occlusion (stored in the alpha channel) is then corrected since the RGBA8
image atomic average uses the alpha value and the corner values are then spread trough the whole
voxel brick.

Now the only thing missing from the bricks in leaf nodes of the octree is the neighbor informa-
tion. The neighbor transfer consists of three passes, one on each direction (x, y, z) and uses the
neighbor addresses stored into the octree nodes in order to rapidly access the neighbor nodes in
the octree. Using attribute-less rendering, one thread per leaf node is issued. Each of the threads
samples the node address and one of the neighbors of its corresponding leaf, checking if either
of them is empty. If both of the leaf nodes exist, the brick address and neighbor brick address are
retrieved and used to average voxels in the direction desired.

55

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

Mipmapping

Since bricks store information about neighboring voxels in order to allow using hardware trilinear
filtering when sampling them, the mipmapping needs to be done manually. The mipmapping of
the sparse voxel octree is done level by level, in n-1 steps for an octree with n levels. On each
step, multiple passes are performed.

Figure 40: Octree Mipmapping.

The indirect draw call parameters are altered using the number of nodes stored previously,
launching indirect draw calls for the nodes on the current level. Each pass samples the cor-
responding octree node, retrieving the address to the brick and its children. The address of the
children nodes is then used to retrieve the brick address of each child in order to sample the higher
resolution bricks. However, some information could be missing from the children’s bricks. In
fact, only the center voxel has access to all the voxels it needs to compute the averaged voxel.
For the rest of the voxels, some information has to come from neighboring bricks in order to
complete the result. So, the approach taken is to compute only a partial averaged value using

56

4.2. INTERACTIVE INDIRECT ILLUMINATION USING VOXEL CONE TRACING

the children bricks, and then complete the result using the same neighbor transfer scheme used
to complete the result on the leaves of the sparse voxel octree. Corners, edges, sides and center
voxels are mipmapped in separate passes, since they need information about a different number
of voxels from the higher resolution bricks and because voxels sampled from the children bricks
reappear in neighboring bricks, the sampled values have to be weighted in accordance to their
multiplicity in order to generate a correct result (subsection 3.1.3).

Light Injection

Since the color, opacity and normal of the fragments have already been averaged into two brick
pools, there is no need to compute the irradiance directly from the fragments and storing them in
the voxel grid. Instead, a reflective shadow map is generated section 2.3 containing information
about the world position from the fragments seen from the light’s perspective, and a full-screen
quad with a viewport corresponding to the reflective shadow map is rendered. The world posi-
tion is sampled in the fragment shader and converted to voxel grid coordinates ([0, voxel grid
resolution]) and the sparse voxel octree is traversed until the leaf node is encountered, retrieving
the address corresponding to one of the four corners of the corresponding brick in the brick pool.
Now that the brick address where the light has to be injected has been found, the averaged color
and normal can be sampled from their corresponding brick pools and used to compute the irra-
diance using the Phong reflection model , storing the result in the irradiance brick pool. After
filling the leaf nodes of the sparse voxel octree with the direct lighting information, the irradiance
brick pool is completed with the lower mipmap levels by performing a mipmap pass in the same
way as before for the color and normal brick pools.

Voxel Cone Tracing

The voxel cone tracing pass is essentially the same described in subsection 4.2.1. The difference
lies in the way voxels are sampled during the traversal of the cone. For the full voxel grid, the 3D
texture was sampled using hardware quadrilinear filtering, using simply the voxel grid coordinate.
Now, the sparse voxel octree has to be traversed up to the desired mipmap level, retrieving the
brick address in order to perform sampling of the desired voxel in the brick pool. Since voxels are
stored in bricks, it is not possible to simply use the quadrilinear filtering offered by the hardware.
To bypass this limitation, hardware trilinear filtering is used and the filtering between mipmap
levels is performed manually.

57

4.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

4.3 R A S T E R I Z E D VOX E L - B A S E D DY N A M I C G L O B A L I L L U M I N AT I O N

The algorithm has suffered some changes since the original work (Doghramachi, 2013) was pub-
lished. It initially only allowed to compute an approximation of the diffuse indirect illumination.
However, it has been later extended to be able to approximate glossy reflections. This comes
to the cost of an extra higher resolution grid that will be sampled using Voxel Cone Tracing to
approximate glossy reflections.

This changes not only the data structures needed for the execution of the algorithm, but also
its structure, since some extra steps are needed during its execution.

Also, the buffers clearing pass has been moved in this implementation from the last to the
initial step. This was simply a choice that does not really change the behavior of the algorithm,
it just allows to avoid clearing the buffer after its creation during the initialization.

Thus, the algorithm can now be subdivided into 7 distinct steps:

1. Clear Buffers

2. Voxelization

3. Direct Light Injection

4. Direct Light Propagation

5. Reflection Grid Creation

6. Reflection Grid Mipmapping

7. Global Illumination Rendering

4.3.1 Data Structures

For this implementation, two grids are used for diffuse indirect illumination. They both have the
same size (323), but cover a different frustum. The grids can be static and thus cover always the
same volume on the scene, or they can move along with the camera, defining a volume around
it. For the grids to move along with the camera without introducing artifacts, some care must be
taken during the voxelization pass. Since each voxel represents a small volume in space, moving
the frustum slightly may cause different fragments to be joined together, causing flickering each
time the camera moves. To avoid this problem, the frustum must be adjusted so that it moves

58

4.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

only the size of a voxel at a time. The frustum is defined as an orthographic projection of the
scene.

The grids are created as a Shader Storage Buffer, which is a linear buffer storing an array of
structures. These structures are defined as an unsigned integer that encodes the color and occlu-
sion of that voxel, and a vector of four elements that encodes the normal information.

struct Voxel

{

uint colorOcclusionMask;

uvec4 normalMasks;

};

Listing 4.7: struct definition of a voxel in the voxel grid

The reflection grid is a higher resolution grid (2563) that covers the same frustum as the small-
est grid of the indirect diffuse illumination. It is defined as two mipmapped 3D texture that
only store a single unsigned integer encoding color and occlusion. One for the voxelization pass,
and one to store illumination after the light propagation of the direct illumination into the lower
resolution grids is performed.

Since lighting will be encoded as virtual point lights using a spherical harmonics representa-
tion, three buffers (one for each color channel) are needed. Instead of 2D texture arrays as in
the original implementation, 3D textures are used to encode the virtual point lights. This allows
to use hardware quadrilinear filtering instead of sampling trilinearly each slice of the array and
performing linear interpolation manually between the different slices.

4.3.2 Buffer Clearing

The algorithm starts by clearing the buffers storing the grids. For this, a compute shader with 4×
4× 4 work groups and with a local size of 8× 8× 8 is created. This allows us to launch actually
32× 32× 32 threads and query the 3D voxel each thread needs to clear with gl GlobalInvocationID.

Each thread then clears its corresponding voxel with a null value using image store operations.

59

4.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

4.3.3 Voxelization

The voxelization pass is actually very similar to the one previously explained in section 4.2. It
is performed once for each grid (fine, coarse and reflection grids). A viewport size of 64× 64
is used for the low resolution grids and a viewport size of 512 × 512 is used for the higher
resolution reflection grid.

As before, depth testing and the color mask/depth mask are disabled and an orthographic
projection is used. The difference now is that the frustum of the orthographic projection is
different between the fine/reflection grids and the coarse grid. These parameters are set by the
user and will affect the voxelized area of the scene, and thus the area that will have approximate
indirect illumination.

The vertex shader simply passes the world position, texture coordinates and normal to the
geometry shader.

The geometry shader finds the dominant axis for the normal and computes its projection along
that axis. Instead of using three different matrices for the projection of the triangle along the
dominant axis, the same method used before is employed and a swizzle matrix is computed and
used to swizzle the vertices of the triangle towards the dominant axis of its normal. The edges
of the triangle are then expanded outwards in order for the rasterizer to generate fragments for
every pixel touched by a triangle. This time however, no bounding box is computed to discard
the excess fragments later in the fragment Shader.

The fragment shader retrieves the RGB material color and encodes it in linear space into the
last 24 bits of an unsigned integer. The higher 8 bits are then used to encode the contrast value
(difference between the color channels) computed from the retrieved color in linear space, as well
as the occlusion. Since the values are written into the buffer/3D texture using atomicMax/im-
ageAtomicMax operations, colors with a higher contrast value will automatically dominate.
For the fine and coarse grids it is still needed to compute and encode normal information for
writing in the buffers. Since fragments in the same voxel can have opposite normals, special
care has to be given when writing normal values. The dot product between the normal and the
face of a tetrahedron is determined and written into the highest 5 bits of the normal mask. Each
channel of the normal is then encoded in 9 bits (1 for the sign and 8 for the value) and written in
the remaining bits of the normal mask. Finally, according to the dot product, the normal mask is
written into the corresponding channel of the vector in the buffer using an atomicMax operation.
This way, the closest normal to the tetrahedron will automatically dominate.

60

4.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

4.3.4 Direct Light Injection

For the light injection, a 32× 32 quad is rendered using instanced rendering. 32 instances are
rendered in each pass, and this is performed for the fine and coarse grid only.

The vertex shader simply outputs the vertex position and the gl InstanceID to the geometry
shader. The geometry shader then emits the vertices and the corresponding instance ID of the
triangle to the fragment shader. Finally, the fragment shader uses the input variable gl FragCoord
and the instance ID passed by the geometry shader to retrieve the corresponding voxel from the
attached buffer. The color and normal are then decoded and the world-space position is computed
using the voxel grid coordinate. With this information, a shadow map is used to compute diffuse
direct illumination depending on the type of the light.

The last step is to encode the diffuse albedo into a virtual point light using a second order spher-
ical harmonics representation and write each channel into the corresponding 3D texture. For this,
a clamped cosine lobe function oriented in the Z direction is encoded as spherical harmonics.
Since it possesses rotational symmetry around the Z axis, the spherical harmonic projection re-
sults in zonal harmonics, which are simpler to rotate than general spherical harmonics. This way,
each channel of the diffuse albedo is multiplied by zonal harmonics, rotated into the direction of
the voxel normal and stored into the corresponding 3D texture using image store operations.

4.3.5 Direct Light Propagation

Now that the spherical harmonics grids (which represent our virtual point lights) are lit with the
direct illumination, they have to be propagated trough the grid in order to add their contribution
to neighbor voxels. To do this, a compute shader with 4× 4× 4 work groups and with a local
size of 8× 8× 8 is created. Similarly to the buffer clearing pass, this allows to obtain the index
into the voxel grid of each thread by querying the gl GlobalInvocationID input variable. We
initialize the voxel values with the spherical harmonics coefficients of the current grid position
and then the contributions from the six neighboring voxels is computed. We start by determining
the direction from the neighbor voxel to the current cell and its corresponding solid angle. From
here, it is possible to obtain the spherical harmonics coefficients for that direction and compute
the flux from the neighbor cell to the face of the current cell by weighting them by the solid
angle. However, we also need to account for the occlusion in order to perform the light propa-
gation accurately. The grid buffer that contains the color/occlusion mask and the normal masks

61

4.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

is accessed to obtain the information for the neighboring voxel. The normals are decoded and
the closest to the specified direction is calculated. By using the same zonal harmonics function
utilized in the previous pass, the occlusion coefficients are computed. Finally, summing all the
contributions from the neighboring voxels correcly weighted by the occlusion coefficients pro-
vides the lighting contribution of the neighboring virtual point lights. This contribution is added
to the initial value and each channel is stored in the corresponding 3D texture using image store
operations. This process is repeated multiple times to allow the lighting to propagate trough the
grid. In the first pass, no occlusion weight is used to allow an initial propagation of the virtual
point lights.

4.3.6 Reflection Grid Creation

The creation of the reflection grid is done using a compute shader with 32 × 32 × 32 work
groups and with a local size of 8× 8× 8, since the 3D texture for this reflection grid has a 2563

resolution. First, the color/occlusion is retrieved from the grid previously generated during the
voxelization pass. Then, the spherical harmonics coefficients of the finest voxel grid are sampled
(since the reflection grid has the same frustum). In this way, an ambient term is extracted from
the corresponding voxel. If the grid center is snapped to the camera position, glossy reflections
only cover a small area around the camera. To ensure that no popping artifacts are introduced
when the camera is moving, the ambient term is faded out with the distance to the grid center.
This ambient term is then stored in the lit reflections 3D texture and the previously generated
reflection grid is cleared. In this way, no extra pass is needed to clear the grid.

4.3.7 Reflection Grid Mipmapping

In the original algorithm, the author used the DirectX API to automatically generate 4 mipmap
levels for the 3D texture. In OpenGL however, altough the specification states that the mipmap
generation function (glGenerateMipmap) accepts 3D textures as the target to generate the mipmaps,
in practice the function call would not operate properly and no mipmaps were created in the hard-
ware used for testing. To bypass this issue, a manual mipmapping was implemented using the
compute shader capabilities. First of all, the memory for the mipmaps has to be allocated during
the initialization. Since only 4 mipmaps are needed, only 4 levels need to be allocated. However,

62

4.3. RASTERIZED VOXEL-BASED DYNAMIC GLOBAL ILLUMINATION

OpenGL once again would not behave properly if only 4 texture levels were allocated/defined.
For the texture object to function properly, all mipmap levels needed to be allocated. To perform
the mipmapping, the compute shader is invoked 3 times, one for each lower mipmap level, and
with a decreasing number of thread groups for each level (16, 8 and 4) in order to launch the
correct number of threads for each level. The local size continues with the same size as with
the other compute shader invocations in previous passes. Each thread will then sample the eight
voxels on the upper level corresponding to the voxel grid coordinate (once again determined with
gl GlobalInvocationID), average them and store the result using an image store operation.

4.3.8 Global Illumination Rendering

To compute global illumination, a full-screen quad is rendered using deferred rendering, and
world-space positions, normals and material are retrieved.

Global illumination can be subdivided in two components: direct and indirect illumination.
Direct illumination has already been computed in a previous pass using deferred shading. Indi-
rect lighting can in its turn be subdivided in two other components: diffuse and specular (in this
case, glossy) indirect lighting.

To compute diffuse indirect illumination, we start by computing spherical harmonics coeffi-
cients for the normal in the current world-space position. Once again, zonal harmonics are used
to generate these coefficients. Then, the 3D texture coordinates for the corresponding position
are computed and the three 3D textures containing the propagated virtual point lights are sam-
pled and weighted by the normal coefficients to generate indirect diffuse illumination. Since two
grids are being used, both have to be sampled and the distance from the center of the grid is used
to interpolate between their results to obtain a smooth transition between them.

For glossy reflections, a very different process is used. Similarly to section 4.2, voxel cone
tracing is used to accumulate lighting contributions from the voxels along the cone axis. We
start by computing the reflected direction from the eye to the world-position of the fragment and
launch a ray in that direction, accumulating color and occlusion from the lit reflection grid until
total occlusion is reached. Since different mipmap levels are sampled depending on the traced
distance from the starting point and the cone aperture, the ray actually resembles a cone. The
difference now is that the sampled values are faded out according to the maximum propagation
distance and the distance to the grid center in order to ensure a smooth fade-out of the reflection
as the camera moves trough the scene.

63

4.4. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

Finally, direct, diffuse indirect and glossy reflections are added together to generate the ap-
proximation to global illumination.

Since the center of the voxel grids can be kept synchronous with the viewer camera and keeps
the global illumination to a limited frustum around it, this algorithm does not depend on the
size of the scene, being perfectly capable of handling large scenes without losing its interactivity.
Another great advantage is that the reflection grid is created in separate passes, making it very
easy to disable it and spare memory and processing time if the indirect diffuse contribution is
sufficient for the current scene.

4.4 R E A L - T I M E N E A R - F I E L D G L O B A L I L L U M I N AT I O N B A S E D O N A VOX E L M O D E L

Differently from the other algorithms implemented, this one also performs some computation
on the CPU. First of all, it computes some bitmasks and stores them into 1D and 3D textures in
order to send them to the shaders when needed. Also, after the voxelization process, a display
list is created in order to discard invalid texel values from the texture atlas. However, its greatest
disadvantage is the need for the models surfaces used during the voxelization process to be
mapped to a texture atlas. This is done simply by generating another definition of the object (for
example using a Wavefront .obj format) in which the texture coordinates are used to map the
vertices of the object to a position in the texture atlas. Then, when rendering the object during
voxelization, the atlas texture coordinates are simply read from the texture coordinates passed to
the shader.

The algorithm can be subdivided into several passes:

1. Voxelization

a) Binary Atlas Creation

b) Pixel Display List Creation

c) Voxel Grid Creation

2. MIP-mapping

3. Indirect Lighting Computation

The main difference with the other algorithms described in this thesis is that no direct light
injection pass is performed. Since the voxel grid only encodes a binary representation of the

64

4.4. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

scene, direct lighting will have to be sampled differently. Direct lighting will be sampled during
the indirect lighting computation pass, using a Reflective Shadow Map generated previously.

4.4.1 Data Structures

Several bitmasks need to be created. These are simply 1D textures storing information about the
bitmasks in an unsigned integer RGBA format of size 128. .

A 2D texture is used to encode the bitmasks for the rays launched during the indirect ilumi-
nation pass. This texture is created by attaching the texture to the framebuffer and drawing a
full-screen quad with a viewport of size 128, using one of the bitmasks previously created. Then,
in the fragment shader, the x and y coordinates of the fragment (retrieved using the gl FragCoord
variable) are used to fetch the bitmask for each coordinate and generate the final result using the
bitwise exclusive or operator (XOR).

For storing the binary atlas, a 2D texture with half size floating point RGBA values is created.
Its size is a user-defined value, since it greatly depends on the object, in order to avoid holes or
overdraw during the voxelization and creation of the voxel grid (section 3.2).

The voxel grid will be used to store the binary representation in our scene after voxelization.
It is a MIP-mapped 2D texture storing RGBA unsigned integers. Its size is defined in accordance
with the voxelization resolution and each texel represents a stack of oxels along the voxelization
depth.

To compute the diffuse indirect lighting, two buffers are needed. One is used to bounce the rays
around the scene and the other actually stores the diffuse indirect illumination after computation,
so that it can be added to direct lighting afterwards. Both are defined as 2D textures storing RGB
values at half floating point precision and with a size matching the window extents.

For a better sampling of the diffuse indirect illumination, an auxiliar texture is used to rotate
the rays randomly. It is defined as a small 2D texture storing random data in RGB floating point
format.

4.4.2 Binary Atlas Creation

In order to be able to insert or remove objects to the scene without having to recompute the
whole atlas, the scene is rendered once for each object, with different atlas textures attached to

65

4.4. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

the framebuffer, so that each object will have its corresponding texture atlas. The model loaded
uses a previously generated description of the object that contains the mapping of the surfaces of
the object to a texture atlas in the texture coordinates definition. The vertex shader simply com-
putes the world-space position, sending it to the fragment shader, and transforms the atlas texture
coordinate into Normalized Device Coordinates (NDC). The fragment shader simply outputs the
received world-space position into its corresponding position in the atlas texture. In order to be
able to identify invalid texels in the next pass, the atlas texture is cleared with some value that
will serve as a threshold to discard invalid texels.

4.4.3 Pixel Display List Creation

Now that the atlas texture contains the world-space positions of the surfaces of the object, it
would be possible to generate one vertice for each texel in the texture atlas and issue a draw call
that would insert these vertices into the voxel grid. However, a lot of texels contain invalid values
that we wish to discard to reduce the amount of vertices issued in the draw call. For this, the atlas
texture is read back to the CPU and traversed, discarding all invalid texels using the previously
defined threshold value with which the atlas texture was cleared. For each valid texel, a point
is generated using the texture coordinates (which vary between 0 and the atlas resolution) and
inserted into a pixel display list. The point size can be increased in order to attempt to close holes
if the resolution of the texture atlas is too small.

4.4.4 Voxel Grid Creation

The next step is to generate the voxel grid. For this purpose, the pixel display list is rendered
with the voxel grid texture bound to the framebuffer. An orthographic projection is defined in
order to be able to transform the world-space positions into voxel grid coordinates. This way, the
extents of the orthographic projection control the region that is voxelized. Since we are using
a binary voxelization, the channels of the voxel grid texture encode the voxels using a bitmask.
To be able to do this, a logical OR operation has to be defined for the framebuffer (Eisemann
and Décoret, 2006). The vertex shader fetches the world-space position from the atlas texture
using the texture coordinate (passed as a vertex). The vertex coordinate is transformed (using
the orthographic view and projection matrices) and the Z coordinate of the vertex is passed to

66

4.4. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

the fragment shader, mapped to [0, 1] . Since each texel of the voxel grid actually represents a
stack of voxels along a certain depth, this Z coordinate is actually the coordinate that needs to
be retrieved from the bitmask texture and outputted by the fragment shader in order to set the
correct bit in the voxel grid.

4.4.5 Mipmapping

The voxel grid needs to be mipmapped in order to generate a binary hierarchic representation of
the scene. To perform the mipmapping, a full-screen quad is rendered for each of the lower levels
of the mipmapped texture and with the respective mipmap level bound to the framebuffer. The
fragment shader then samples the 4 neighbor texels in the upper level of the mipmap hierarchy.
Since a texel represents a stack of voxels along the depth axis, the depth is kept for each mipmap
level, so only the x and y axis are joined. To achieve this, the 4 texels are simply joined using a
logical OR operation.

4.4.6 Indirect Lighting Computation

To compute diffuse indirect lighting, several rays will be launched for each pixel. For each of
these rays, the voxel grid is used to compute a ray/voxel intersection, writing the hit positions
into a buffer called the hit buffer. The hit buffer is then read in another pass and diffuse indirect
illumination is computed with the help of reflective shadow maps.

Let us start with the creation of the hit buffer. A full-screen quad is rendered and the world-
position is fetched from the g-buffer. This world-space position is the starting point of the re-
flected ray. By using a cosine weighted distribution, a direction for the reflected ray is computed.
Then, to avoid self-shadowing, the starting point of the ray is advanced by an offset at least the
size of the voxel diagonal. The start and end point of the ray are then defined. The intersection
test is performed in a loop, advancing the ray in small steps and testing against the mipmap
hierarchy if an intersection is encountered. In order to limit the computation time, a number
of maximum iterations is defined by the user. Also, the sampling does not initiate at the finest
mipmap level (the root node), but is advanced by at least 1 level since the intersection with the
root node was already computed. Since voxels are encoded in groups, they can be represented
with an Axis Aligned Bounding Box (AABB). So, to perform the intersection test, a ray/AABB

67

4.4. REAL-TIME NEAR-FIELD GLOBAL ILLUMINATION BASED ON A VOXEL MODEL

test is employed. If the ray intersects the bounding box, the bitmask is tested against the ray’s
bitmask computed during initialization using a bitwise operation AND to check whether there
are bits that intersect the ray. The intersection point is then used to compute and write the voxel
position of the intersection point (in unit-coordinates) into the hit buffer.

Now that the hit buffer is filled with the hit positions, all the information necessary to com-
pute diffuse indirect illumination is available. The algorithm starts by fetching the intersection
point from the hit buffer and transform it into light space using the view and projection matrices
from the shadow map pass. Then, this coordinate is projected into the reflective shadow maps to
retrieve the corresponding position, normal and direct lighting color. The direct radiance is only
valid if the distance from the hit position to the world-space position retrieved from the reflective
shadow map is smaller than certain threshold, or else the hit point lies in the shadow of the source.
Also, since only front faces are lit and reflect indirect light, the normal is used to check whether
the hit point lies in the front face of the surface.

Finally, direct and indirect illumination are combined by rendering a full-screen quad and
summing the contributions of each pixel. However, since indirect lighting is computed for a much
lower resolution that the window size, the indirect lighting result is blurred using a geometry
aware blur before adding its contribution to the global illumination result.

68

5

C O N C L U S I O N S

Several algorithms for computing an approximation to global illumination in real-time appli-
cations were presented in this thesis. It has been shown that these algorithms share a similar
structure, requiring the scene to be pre-filtered using some kind of voxelization algorithm.

In section 4.2, the voxelization pass creates a fragment list storing information about the world
positions, colors and normals of the scene by rasterizing the triangles of the scene in the direction
of the dominant axis of their normal.

This fragment list is then used to create a pre-filtered hierarchic representation of the lighting
in the scene in order to be able to launch cones to gather indirect illumination. One cone is
launched in the direction of the reflection in order to gather the specular contribution to indirect
illumination, while five cones are launched in the the hemisphere around the normal vector in
order to gather the diffuse indirect illumination.

The cone tracing pass steps along the cone axis, sampling the data structure storing voxel data
at different mipmap levels based on the cone diameter, and alpha-blending is used to accumulate
the samples (thus treating voxels as a participating media) until opacity saturates.

The voxel cone tracing approach was tested against a full voxel grid, which allowed for an
easier and faster access to the data structure, speeding most of the steps of the algorithm, at the
cost of an higher memory usage. To reduce memory usage, a sparse voxel octree was created
entirely on the GPU, allowing to reduce the memory footprint of the voxel grid, at the cost of
having to traverse the octree each time a voxel has to be sampled or updated.

The algorithm presented in section 4.3 shares some similarities with the voxel cone tracing
approaches. The main differences are in the way diffuse indirect illumination is computed. It
uses two cascaded grids for the diffuse indirect illumination and one higher resolution grid to
compute glossy reflections.

69

The first thing to do is to create a voxelized representation of the scene by rasterizing the
triangles in the direction of the dominant axis of their normal. Then, the resulting fragments are
used to encode color based on their contrast, and normals using the closest face to a tetrahedron,
storing them in a buffer.

Next, the fragments in the buffer are used together with a shadow map to compute diffuse
albedo, storing the result into the voxel grids using a second order spherical harmonics represen-
tation. This generates voxel grids containing virtual point lights that are then propagated along
the three axes of the grid.

The grids storing the propagated virtual point lights are sampled in order to generate diffuse
indirect illumination, while the higher resolution grid is mipmapped in order to use voxel cone
tracing to sample glossy reflections.

The algorithm described in section 4.4 maps the vertices of the objects in the scene to a 2D
texture atlas. This process, called binary voxelization, encodes the world positions of all the
geometry in the scene into the texture atlas, generating a binary representation of the scene.

The texture atlas is read back to the CPU and all valid texels are used to generate a pixel
display list. This pixel display list is the rendered in order to insert all the texels into a voxel grid,
encoded as a 2D texture. Since a 2D texture is being used, each texel in the voxel grid represents
a stack of voxels in the voxelization depth and a texture storing bitmaps (previously generated
on the CPU) is used in order to encode the voxels correctly.

The voxel grid is then mipmapped by joining the texels in the x and y directions, keeping the
depth with the same precision between mipmap levels since it is already limited by the choice to
use each texel as a stack of voxels.

Diffuse indirect illumination is then computed by launching rays trough the scene, intersect-
ing them with the voxel grid. When an intersection is found, a reflective shadow map is used to
sample the direct lighting contribution of the sampling position.

All these approaches use a voxel grid representation of the scene in order to compute an ap-
proximation to global illumination. This voxel grid can be encoded in multiple ways, such as a
3D texture, a 2D texture or a sparse voxel octree. All of these data structures have advantages
and disadvantages. Full grids stored in 3D textures waste a lot of memory with empty voxels,
but are accessed faster. Sparse voxel octrees in the other side are costly to generate and maintain
updated, but reduce the memory footprint of the voxel grid by collapsing empty voxels. 2D tex-
tures are smaller than 3D textures but they are only suitable to store a binary representation of

70

the scene, due to the need to use the texels to store a stack of voxels along the voxelization depth,
which in turn decreases the visual quality of the obtained result.

In order to counter these problems, new approaches need to arise in order to decrease the
memory cost of the voxel grids, allowing at the same time to rapidly update and access them. One
way to decrease the wasted memory is to use the empty space of the 3D texture storing the voxel
grid to encode necessary data to compute other visual effects. For example, voxel grids have
been used for atmospheric effects (Vos, 2014) and fluid simulation (Roble et al., 2005). More
recently, Nvidia has presented a new technique in order to approximate global illumination based
on voxel cone tracing, called VXGI (https://developer.nvidia.com/vxgi) that uses 3D clipmaps to
encode voxel data.

71

https://developer.nvidia.com/vxgi

B I B L I O G R A P H Y

Allard, Jérémie; Faure, François; Courtecuisse, Hadrien; Falipou, Florent; Duriez, Christian,
and Kry, Paul G. Volume contact constraints at arbitrary resolution. ACM Trans. Graph., 29
(4):82:1–82:10, July 2010. ISSN 0730-0301. doi: 10.1145/1778765.1778819. URL http:

//doi.acm.org/10.1145/1778765.1778819.

Amanatides, John. Ray tracing with cones. SIGGRAPH Comput. Graph., 18(3):129–135, Jan-
uary 1984. ISSN 0097-8930. doi: 10.1145/964965.808589. URL http://doi.acm.org/

10.1145/964965.808589.

Annen, Thomas; Mertens, Tom; Seidel, Hans-Peter; Flerackers, Eddy, and Kautz, Jan. Exponen-
tial shadow maps. In Proceedings of Graphics Interface 2008, GI ’08, pages 155–161, Toronto,
Ont., Canada, Canada, 2008. Canadian Information Processing Society. ISBN 978-1-56881-
423-0. URL http://dl.acm.org/citation.cfm?id=1375714.1375741.

Appel, Arthur. Some techniques for shading machine renderings of solids. In Proceedings of

the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages
37–45, New York, NY, USA, 1968. ACM. doi: 10.1145/1468075.1468082. URL http:

//doi.acm.org/10.1145/1468075.1468082.

Crane, Keenan; Llamas, Ignacio, and Tariq, Sarah. Real Time Simulation and Rendering of 3D

Fluids, chapter 30. Addison-Wesley, 2007.

Crassin, Cyril. GigaVoxels: A Voxel-Based Rendering Pipeline For Efficient Exploration Of

Large And Detailed Scenes. PhD thesis, UNIVERSITE DE GRENOBLE, July 2011. URL
http://maverick.inria.fr/Publications/2011/Cra11. English and web-
optimized version.

Crassin, Cyril and Green, Simon. CRC Press, Patrick Cozzi and Christophe Ric-
cio, 2012. URL http://www.seas.upenn.edu/˜pcozzi/OpenGLInsights/

OpenGLInsights-SparseVoxelization.pdf,ChapterPDF.

Crassin, Cyril; Neyret, Fabrice; Lefebvre, Sylvain, and Eisemann, Elmar. Gigavoxels : Ray-
guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Symposium

72

http://doi.acm.org/10.1145/1778765.1778819
http://doi.acm.org/10.1145/1778765.1778819
http://doi.acm.org/10.1145/964965.808589
http://doi.acm.org/10.1145/964965.808589
http://dl.acm.org/citation.cfm?id=1375714.1375741
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/1468075.1468082
http://maverick.inria.fr/Publications/2011/Cra11
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf, Chapter PDF
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf, Chapter PDF

BIBLIOGRAPHY

on Interactive 3D Graphics and Games (I3D), Boston, MA, Etats-Unis, feb 2009. ACM, ACM
Press. URL http://maverick.inria.fr/Publications/2009/CNLE09. to ap-
pear.

Crassin, Cyril; Neyret, Fabrice; Sainz, Miguel, and Eisemann, Elmar. Efficient Rendering of

Highly Detailed Volumetric Scenes with GigaVoxels. In book: GPU Pro, chapter X.3, pages
643–676. A K Peters, 2010. URL http://maverick.inria.fr/Publications/

2010/CNSE10.

Crassin, Cyril; Neyret, Fabrice; Sainz, Miguel; Green, Simon, and Eisemann, Elmar. Interactive
indirect illumination using voxel cone tracing. Computer Graphics Forum (Proc. of Pacific

Graphics 2011), 2011. URL http://research.nvidia.com/publication/

interactive-indirect-illumination-using-voxel-cone-tracing,

NVIDIApublicationwebpage.

Dachsbacher, Carsten and Stamminger, Marc. Reflective shadow maps. In Proceedings of the

2005 Symposium on Interactive 3D Graphics and Games, I3D ’05, pages 203–231, New York,
NY, USA, 2005. ACM. ISBN 1-59593-013-2. doi: 10.1145/1053427.1053460. URL http:

//doi.acm.org/10.1145/1053427.1053460.

Daniels, Joel; Silva, Cláudio T.; Shepherd, Jason, and Cohen, Elaine. Quadrilateral mesh
simplification. ACM Trans. Graph., 27(5):148:1–148:9, December 2008. ISSN 0730-0301.
doi: 10.1145/1409060.1409101. URL http://doi.acm.org/10.1145/1409060.

1409101.

Deering, Michael; Winner, Stephanie; Schediwy, Bic; Duffy, Chris, and Hunt, Neil. The triangle
processor and normal vector shader: A vlsi system for high performance graphics. SIGGRAPH

Comput. Graph., 22(4):21–30, June 1988. ISSN 0097-8930. doi: 10.1145/378456.378468.
URL http://doi.acm.org/10.1145/378456.378468.

Doghramachi, Hawar. Rasterized voxel-based dynamic global illumination. In Engel, Wolfgang,
editor, GPU Pro 4, pages 155–171. CRC Press, 2013.

Dong, Zhao; Chen, Wei; Bao, Hujun; Zhang, Hongxin, and Peng, Qunsheng. Real-time vox-
elization for complex polygonal models. In Proceedings of the Computer Graphics and Appli-

cations, 12th Pacific Conference, PG ’04, pages 43–50, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2234-3. URL http://dl.acm.org/citation.cfm?

id=1025128.1026026.

73

http://maverick.inria.fr/Publications/2009/CNLE09
http://maverick.inria.fr/Publications/2010/CNSE10
http://maverick.inria.fr/Publications/2010/CNSE10
http://research.nvidia.com/publication/interactive-indirect-illumination-using-voxel-cone-tracing, NVIDIA publication webpage
http://research.nvidia.com/publication/interactive-indirect-illumination-using-voxel-cone-tracing, NVIDIA publication webpage
http://research.nvidia.com/publication/interactive-indirect-illumination-using-voxel-cone-tracing, NVIDIA publication webpage
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1409060.1409101
http://doi.acm.org/10.1145/1409060.1409101
http://doi.acm.org/10.1145/378456.378468
http://dl.acm.org/citation.cfm?id=1025128.1026026
http://dl.acm.org/citation.cfm?id=1025128.1026026

BIBLIOGRAPHY

Donnelly, William and Lauritzen, Andrew. Variance shadow maps. In Proceedings of the 2006

Symposium on Interactive 3D Graphics and Games, I3D ’06, pages 161–165, New York, NY,
USA, 2006. ACM. ISBN 1-59593-295-X. doi: 10.1145/1111411.1111440. URL http:

//doi.acm.org/10.1145/1111411.1111440.

Eisemann, Elmar and Décoret, Xavier. Fast scene voxelization and applications. In ACM SIG-

GRAPH Symposium on Interactive 3D Graphics and Games, pages 71–78. ACM SIGGRAPH,
2006. URL http://maverick.inria.fr/Publications/2006/ED06.

Eisemann, Elmar and Décoret, Xavier. Single-pass gpu solid voxelization for real-time appli-
cations. In Proceedings of Graphics Interface 2008, GI ’08, pages 73–80, Toronto, Ont.,
Canada, Canada, 2008. Canadian Information Processing Society. ISBN 978-1-56881-423-0.
URL http://dl.acm.org/citation.cfm?id=1375714.1375728.

Engel, Woflgang F. page 197–206. Charles River Media, Boston, Massachusetts, 2006.

Foley, James D.; van Dam, Andries; Feiner, Steven K., and Hughes, John F. Computer Graphics:

Principles and Practice (2Nd Ed.). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1990. ISBN 0-201-12110-7.

Forest, Vincent; Barthe, Loı̈c, and Paulin, Mathias. Real-time hierarchical binary-scene voxeliza-
tion. J. Graphics, GPU, & Game Tools, 14(3):21–34, 2009.

Fournier, Alain. Normal distribution functions and multiple surfaces. In Graphics Interface ’92

Workshop on Local Illumination, pages 45–52, Vancouver, BC, Canada, 11 May 1992.

Hadwiger, Markus; Kniss, Joe M.; Rezk-salama, Christof; Weiskopf, Daniel, and Engel, Klaus.
Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006. ISBN 1568812663.

Han, Charles; Sun, Bo; Ramamoorthi, Ravi, and Grinspun, Eitan. Frequency domain normal
map filtering. ACM Trans. Graph., 26(3), July 2007. ISSN 0730-0301. doi: 10.1145/1276377.
1276412. URL http://doi.acm.org/10.1145/1276377.1276412.

Hasselgren, Jon; Akenine-Mö ller, Tomas, and Ohlsson, Lennart. Conservative Rasterization,
pages 677–690. GPU Gems 2. Addison-Wesley Professional, 2005.

Jarosz, Wojciech; Jensen, Henrik Wann, and Donner, Craig. Advanced global illumination using
photon mapping. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08, pages 2:1–2:112, New
York, NY, USA, 2008. ACM. doi: 10.1145/1401132.1401136. URL http://doi.acm.

org/10.1145/1401132.1401136.

74

http://doi.acm.org/10.1145/1111411.1111440
http://doi.acm.org/10.1145/1111411.1111440
http://maverick.inria.fr/Publications/2006/ED06
http://dl.acm.org/citation.cfm?id=1375714.1375728
http://doi.acm.org/10.1145/1276377.1276412
http://doi.acm.org/10.1145/1401132.1401136
http://doi.acm.org/10.1145/1401132.1401136

BIBLIOGRAPHY

Jensen, Henrik Wann. Global illumination using photon maps. In Proceedings of the Eu-

rographics Workshop on Rendering Techniques ’96, pages 21–30, London, UK, UK, 1996.
Springer-Verlag. ISBN 3-211-82883-4. URL http://dl.acm.org/citation.cfm?

id=275458.275461.

Kajiya, J. T. and Kay, T. L. Rendering fur with three dimensional textures. SIGGRAPH Comput.

Graph., 23(3):271–280, July 1989. ISSN 0097-8930. doi: 10.1145/74334.74361. URL http:

//doi.acm.org/10.1145/74334.74361.

Kaplanyan, Anton and Dachsbacher, Carsten. Cascaded light propagation volumes for real-time
indirect illumination. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games, I3D ’10, pages 99–107, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-939-8. doi: 10.1145/1730804.1730821. URL http://doi.acm.org/10.

1145/1730804.1730821.

Kaufman, Arie and Shimony, Eyal. 3d scan-conversion algorithms for voxel-based graphics. In
Proceedings of the 1986 Workshop on Interactive 3D Graphics, I3D ’86, pages 45–75, New
York, NY, USA, 1987. ACM. ISBN 0-89791-228-4. doi: 10.1145/319120.319126. URL
http://doi.acm.org/10.1145/319120.319126.

Keller, Alexander. Instant radiosity. In Proceedings of the 24th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pages 49–56, New York,
NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. ISBN 0-89791-896-7. doi:
10.1145/258734.258769. URL http://dx.doi.org/10.1145/258734.258769.

Lafortune, Eric P. and Willems, Yves D. Bi-directional path tracing. In PROCEEDINGS OF

THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL GRAPHICS AND VISU-

ALIZATION TECHNIQUES (COMPUGRAPHICS ’93, pages 145–153, 1993.

Laine, Samuli and Karras, Tero. Efficient sparse voxel octrees. In Proceedings of the 2010 ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pages 55–63, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-939-8. doi: 10.1145/1730804.1730814.
URL http://doi.acm.org/10.1145/1730804.1730814.

Levoy, Marc. Efficient ray tracing of volume data. ACM Trans. Graph., 9(3):245–261, July 1990.
ISSN 0730-0301. doi: 10.1145/78964.78965. URL http://doi.acm.org/10.1145/

78964.78965.

75

http://dl.acm.org/citation.cfm?id=275458.275461
http://dl.acm.org/citation.cfm?id=275458.275461
http://doi.acm.org/10.1145/74334.74361
http://doi.acm.org/10.1145/74334.74361
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/319120.319126
http://dx.doi.org/10.1145/258734.258769
http://doi.acm.org/10.1145/1730804.1730814
http://doi.acm.org/10.1145/78964.78965
http://doi.acm.org/10.1145/78964.78965

BIBLIOGRAPHY

Max, Nelson. Optical models for direct volume rendering. IEEE Transactions on Visualization

and Computer Graphics, 1(2):99–108, June 1995. ISSN 1077-2626. doi: 10.1109/2945.
468400. URL http://dx.doi.org/10.1109/2945.468400.

Neyret, Fabrice. Modeling, animating, and rendering complex scenes using volumetric textures.
IEEE Transactions on Visualization and Computer Graphics, 4(1):55–70, January 1998. ISSN
1077-2626. doi: 10.1109/2945.675652. URL http://dx.doi.org/10.1109/2945.

675652.

Perlin, K. and Hoffert, E. M. Hypertexture. SIGGRAPH Comput. Graph., 23(3):253–262, July
1989. ISSN 0097-8930. doi: 10.1145/74334.74359. URL http://doi.acm.org/10.

1145/74334.74359.

pike Sloan, Peter. Stupid spherical harmonics (sh) tricks, 2008.

Reeves, William T.; Salesin, David H., and Cook, Robert L. Rendering antialiased shadows with
depth maps. SIGGRAPH Comput. Graph., 21(4):283–291, August 1987. ISSN 0097-8930.
doi: 10.1145/37402.37435. URL http://doi.acm.org/10.1145/37402.37435.

Roble, Doug; Zafar, Nafees bin, and Falt, Henrik. Cartesian grid fluid simulation with irregular
boundary voxels. In ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05, New York, NY, USA,
2005. ACM. doi: 10.1145/1187112.1187279. URL http://doi.acm.org/10.1145/

1187112.1187279.

Saito, Takafumi and Takahashi, Tokiichiro. Comprehensible rendering of 3-d shapes. SIG-

GRAPH Comput. Graph., 24(4):197–206, September 1990. ISSN 0097-8930. doi: 10.1145/
97880.97901. URL http://doi.acm.org/10.1145/97880.97901.

Schwarz, Michael and Seidel, Hans-Peter. Fast parallel surface and solid voxelization on gpus.
ACM Trans. Graph., 29(6):179:1–179:10, December 2010. ISSN 0730-0301. doi: 10.1145/
1882261.1866201. URL http://doi.acm.org/10.1145/1882261.1866201.

Thiedemann, Sinje; Henrich, Niklas; Grosch, Thorsten, and Müller, Stefan. Voxel-based global
illumination. In Symposium on Interactive 3D Graphics and Games, I3D ’11, pages 103–110,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0565-5. doi: 10.1145/1944745.1944763.
URL http://doi.acm.org/10.1145/1944745.1944763.

76

http://dx.doi.org/10.1109/2945.468400
http://dx.doi.org/10.1109/2945.675652
http://dx.doi.org/10.1109/2945.675652
http://doi.acm.org/10.1145/74334.74359
http://doi.acm.org/10.1145/74334.74359
http://doi.acm.org/10.1145/37402.37435
http://doi.acm.org/10.1145/1187112.1187279
http://doi.acm.org/10.1145/1187112.1187279
http://doi.acm.org/10.1145/97880.97901
http://doi.acm.org/10.1145/1882261.1866201
http://doi.acm.org/10.1145/1944745.1944763

BIBLIOGRAPHY

Thiedemann, Sinje; Henrich, Niklas; Grosch, Thorsten, and Müller, Stefan. Real-time near-field
global illumination based on a voxel model. In Engel, Wolfgang, editor, GPU Pro 3, pages
209–229. A K Peters, 2012.

Toksvig, Michael. Mipmapping normal maps. J. Graphics Tools, 10(3):65–71,
2005. URL http://dblp.uni-trier.de/db/journals/jgtools/jgtools10.

html#Toksvig05.

Veach, Eric and Guibas, Leonidas J. Metropolis light transport. In Proceedings of the 24th An-

nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pages
65–76, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. ISBN 0-
89791-896-7. doi: 10.1145/258734.258775. URL http://dx.doi.org/10.1145/

258734.258775.

Vos, Nathan. Volumetric light effects in killzone: Shadow fall. In Engel, Wolfgang, editor, GPU

Pro 5, pages 127–147. CRC Press, 2014.

Whitted, Turner. An improved illumination model for shaded display. Commun. ACM, 23(6):
343–349, June 1980. ISSN 0001-0782. doi: 10.1145/358876.358882. URL http://doi.

acm.org/10.1145/358876.358882.

Williams, Lance. Casting curved shadows on curved surfaces. SIGGRAPH Comput. Graph.,
12(3):270–274, August 1978. ISSN 0097-8930. doi: 10.1145/965139.807402. URL http:

//doi.acm.org/10.1145/965139.807402.

Wimmer, Michael; Scherzer, Daniel, and Purgathofer, Werner. Light space perspective shadow
maps. In Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques,
EGSR’04, pages 143–151, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics As-
sociation. ISBN 3-905673-12-6. doi: 10.2312/EGWR/EGSR04/143-151. URL http:

//dx.doi.org/10.2312/EGWR/EGSR04/143-151.

Zhang, Long; Chen, Wei; Ebert, David S., and Peng, Qunsheng. Conservative voxelization. Vis.

Comput., 23(9):783–792, August 2007. ISSN 0178-2789. doi: 10.1007/s00371-007-0149-0.
URL http://dx.doi.org/10.1007/s00371-007-0149-0.

77

http://dblp.uni-trier.de/db/journals/jgtools/jgtools10.html#Toksvig05
http://dblp.uni-trier.de/db/journals/jgtools/jgtools10.html#Toksvig05
http://dx.doi.org/10.1145/258734.258775
http://dx.doi.org/10.1145/258734.258775
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/965139.807402
http://doi.acm.org/10.1145/965139.807402
http://dx.doi.org/10.2312/EGWR/EGSR04/143-151
http://dx.doi.org/10.2312/EGWR/EGSR04/143-151
http://dx.doi.org/10.1007/s00371-007-0149-0

	Contents
	1 Introduction
	1.1 Objectives
	1.2 Document structure

	2 Related Work
	2.1 Shadow Mapping
	2.2 Deferred Rendering
	2.3 Reflective Shadow Maps
	2.4 Ray Tracing
	2.5 Voxelization

	3 Real-time Voxel-based Global Illumination Algorithms
	3.1 Interactive Indirect Illumination Using Voxel Cone Tracing
	3.1.1 Voxelization
	3.1.2 Sparse Voxel Octree
	3.1.3 Mipmapping
	3.1.4 Voxel Cone Tracing

	3.2 Real-Time Near-Field Global Illumination Based on a Voxel Model
	3.2.1 Voxelization
	3.2.2 Binary Voxelization
	3.2.3 Data Structure/Mip-Mapping
	3.2.4 Rendering

	3.3 Rasterized Voxel-Based Dynamic Global Illumination
	3.3.1 Creation of the Voxel Grid Representation
	3.3.2 Creation of Virtual Point Lights in Voxel Space
	3.3.3 Virtual Point Lights Propagation
	3.3.4 Indirect Lighting Application

	4 Implementation
	4.1 Technological Choices
	4.2 Interactive Indirect Illumination Using Voxel Cone Tracing
	4.2.1 Voxel Cone Tracing with a Full Voxel Grid
	4.2.2 Voxel Cone Tracing with a Sparse Voxel Octree

	4.3 Rasterized Voxel-Based Dynamic Global Illumination
	4.3.1 Data Structures
	4.3.2 Buffer Clearing
	4.3.3 Voxelization
	4.3.4 Direct Light Injection
	4.3.5 Direct Light Propagation
	4.3.6 Reflection Grid Creation
	4.3.7 Reflection Grid Mipmapping
	4.3.8 Global Illumination Rendering

	4.4 Real-Time Near-Field Global Illumination Based on a Voxel Model
	4.4.1 Data Structures
	4.4.2 Binary Atlas Creation
	4.4.3 Pixel Display List Creation
	4.4.4 Voxel Grid Creation
	4.4.5 Mipmapping
	4.4.6 Indirect Lighting Computation

	5 Conclusions

