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Resumo 

Tal como em línguas faladas, as línguas gestuais evoluíram ao longo do 

tempo, contendo gramáticas e vocabulários próprios, sendo assim oficialmente 

consideradas línguas. A principal diferença entre as línguas faladas e as línguas 

gestuais é o meio de comunicação, sendo dessa forma as línguas gestuais 

línguas visuais. Sendo que a principal língua falada entre a comunidade surda é 

a língua gestual, construir uma ferramenta que funcione como uma ligação que 

facilite a comunicação entre a comunidade surda e o resto das pessoas é o 

principal objetivo e motivação desta dissertação. 

O sistema desenvolvido tem como característica principal não ser 

intrusivo, descartando o uso de sistemas de “Data Gloves” ou sistemas 

dependentes de múltiplas câmaras ou outros aparelhos. Isto é conseguido 

usando um único aparelho, o Kinect One da Microsoft, que consegue captar 

informações de cor e profundidade. 

No desenvolvimento deste trabalho, quarto situações foram testadas: 

reconhecimento simples da configuração da mão; reconhecimento da 

configuração da mão em sinais; reconhecimento de sinais usando somente 

informação dos percursos das mãos; reconhecimento de sinais com o percurso 

das mãos e configuração das mãos. A primeira e terceira experiencias foram 

realizadas de forma a conferir o método de extração de features, enquanto a 

segunda e quarta experiencies foram conduzidas de forma a adaptar os 

primeiros sistemas ao problema real do reconhecimento de sinais em LGP. 

A primeira e segunda experiência obtiveram taxas de acerto de 87.4% e 

64.2% respetivamente enquanto as experiências respetivos ao reconhecimento 

de sinais obtiveram taxas de 91.6% para a experiência contendo só o 

movimento, e 81.3% com o movimento e a configuração das mãos. 



 

 

  



 

 

 

Abstract 

 

Just like languages, Sign Languages (SL) have evolved over time, 

featuring their own grammar and vocabulary, and thus, they are considered real 

languages. The major difference between SLs and other languages is that the 

first one is signed and the second one is spoken, meaning that SL is a visual 

language. SL are the most common type of language among deaf people since 

no sense of hearing is required to understand it. 

In this way, to build a bridge and ease the communication between deaf 

(and hard-of-hearing) people and people not familiarized with SL is the main 

motivation of this dissertation. The purposed system has as main features not 

being intrusive, discarding the usage of glove like devices or a setup with multiple 

cameras. This is achieved using the Kinect One sensor from Microsoft. Using a 

single device, it is possible to acquire both depth and colour information, yet this 

system makes usage only on the depth information. 

Four experimental situations have been performed: simple posture 

recognition, movement postures recognition, sign recognition using only 

movement information and sign recognition using movement and hand posture 

information. The first and third classes of experiments, were conducted, in order 

to confirm feature extraction method’s eligibility while the second and fourth 

experiments were conducted to address the problem. Recognition rates reached 

87.4% and 64.2% for the first and second experiments, respectively. In the 

experiments concerning signs, recognition rates of 91.6% for movement data 

only, and 81.3% for both movement and hand configuration data were achieved. 
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1- Introduction 

1 

1 Introduction 

1.1 Sign Language 

Just like languages, Sign Languages (SL) have evolved over time, 

featuring their own grammar and vocabulary, and thus, they are considered real 

languages. The major difference between SLs and other languages is that the 

first one is signed and the second one is spoken, meaning that SL is a visual 

language. SL are the most common type of language among deaf people since 

no sense of hearing is required to understand it.  

Up until the late 1960s, SL were not considered real languages, being 

many times assumed as sets of gestures that could be loosely connected to 

convey meaning to simple relations. Dr. William C. Stokoe, with the help of some 

of his deaf students from the University of Gallaudet, published in 1960 the 

monograph Sign Language Structure (a version can be found in (Stokoe, 2005)) 

where the author proposed that signs can be analysed as the composition of 

three different elements without meaning: shape of the hand, motion of the hand, 

and position occupied by the hand. This assumption permitted him to consider 

SL as a natural language. Although at the beginning his affirmations were seen 

with some repulsion due to the novel ideas, this study had a very important role 

in the publication of the first American Sign Language (ASL) dictionary based on 

linguistic principles. In this first dictionary, Stokoe organized the signs depending 

on its shapes (position of the hand, shape, motion, etc.) and not depending on its 

English translation. This publication was the beginning of research about the SL 

linguistics. 

The Portuguese government only recognized the Portuguese Sign 

Language (PSL) as an official Portuguese language, along with Portuguese and 

Mirandese, as in 1997. 

 

1.1.1 Stokoe’s Model 

In spoken language, the phonology refers to the study of physical sounds 

present in human speech (known as phonemes). Similarly, the phonology of SL 
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can be defined. Instead of sounds, the “phonemes” are considered as the 

different signs present in a row of hand signs. They are analysed taking into 

account the following parameters (Stokoe, 2005): 

1. Hand Configuration1  - hand shape configuration when doing the 

sign; 

2. Orientation of the hand – orientation where the palm of the hand is 

pointing to; 

3. Position - where the sign is done according to the rest of the body 

(mouth, forehead, chest, shoulder); 

4. Motion - movement of the hand when doing the sign (swaying, 

circularly). 

5. Contact point: dominant part of the hand that is touching the body 

(palm, fingertip, back of the fingers). 

6. Plane - where the sign is done, depending on the distance with respect 

to the body (first plane being the one with contact to the body and 

fourth plane the most remote one). 

7. Non-manual features (NMF) - refers to the information provided by 

the body (facial expression, lip movements, or movements of the 

shoulders). I.e. when the body leans to the front, it expresses future 

tense. When it is leaned back, expresses past tense. Also, non-

manual signs such has face expression, show grammatical 

information such as question markers, negation or affirmation, 

localization, conditional clauses, and relative clauses. 

1.1.2 Movement-Hold model 

While Stokoe’s work was the first to model and detail the SL, other models 

followed.  

In 1989 Lidell and Johansen (Liddell, Johnson, 1989) developed the 

movement-hold model which was summarized by Valli and Lucas (Valli, Lucas, 

1992): 

                                            

1 Throughout this work, Hand Configuration will be multiple times referred as posture or 
hand posture; 
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“The basic claim about the structure of signs in the Movement-Hold Model is that signs 

consist of hold segments and movement segments that are produced sequentially. 

Information about the handshape, location, orientation, and non-manual signals is 

represented in bundles of articulatory features...Holds are defined as periods of time 

during which all aspects of the articulation bundle are in a steady state; movements are 

defined as periods of time during which some aspect of the articulation is in transition. 

More than one parameter can change at once. A sign may only have a change of 

handshape or location, but may have change of both handshape and location, and these 

changes take place during the movement segment.”  

This model contrasts to the work of Stokoe where different components of 

the sign are described in different channels. While Stokoe’s model can be seen 

as a parallel model, in which the properties take their values, the movement-hold 

model is a sequence of many properties changing between Holds and 

Movements. 

Both models have similar approaches and conclusions and despite not 

being obvious how best to include these higher level linguistic constructs of the 

language, it is obviously essential for SLR to become reality. Within SLR both the 

movement-hold, sequential information from Liddell and Johnson and the parallel 

forms of Stokoe are acceptable annotations.  

Inter-signer differences are very large; every signer has their own style, in 

the same way that everyone has their own accent or handwriting. Signers can be 

either left handed or right handed. For a left handed signer, most of the signs will 

be mirrored.  

1.1.3 Portuguese Sign Language 

However, according to (Bela Baltazar, 2010) in the PSL a sign is composed 

by 5 features being the first 3 what compose the base of any sign: hands 

configuration, place of articulation, hands orientation, and the other 2: facial 

expression and body movement, with equal importance and which can 

distinguish signs with similar execution. In (Bela Baltazar, 2010) there are 

identified 14 facial expressions and 57 hand configurations for PSL. 

There are other properties similarly to what happens in the models 

described previously: 

Gender – the occurrence of the gender modifier only happens in the 

specific case of animated beings. Usually it is done with the usage of the signs 
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“man” or “woman”. However, the masculine is usually denoted by the absence of 

the modifier, while the feminine is predominantly marked by prefixing i.e. “queen” 

is the conjunction of the signs “woman” and “king” in that order. Other cases exist 

in which the feminine has a different sign than the masculine as in “father” and 

“mother”. 

Number – there are multiple ways of denoting the plural. The repetition of 

the sign (as in “coisa”/” coisas”), doing the sign with both hands, if originally is 

performed by only one (as in “pessoa”/”pessoas”), the usage of a numeral to 

specify small quantities (as in “quatro filhos” that is “filho” and “quatro”) or the 

usage of a determinative, to non-countable amounts (as in “muitos homens”, sign 

composed by “homem” and “muito”). 

Order of the elements in the phrase – as in other pairs of SL and its 

matching spoken/written language, PSL has a structure distinct from the 

Portuguese Language (PL). The predominant structure of a phrase in PL is the 

subject–verb–object (SVO) while in PSL the predominant structure is subject-

object-verb (SOV). Some examples can be: 

Table 1 – Differences between a phrase in PL and PSL. While the PL predominantly follows a SVO 

structure, PSL uses SOV. 

The meaning of the left sentence, in PL is “The student gave the teacher a 

flower” while the right one is “I go home” while in PSL is “Student flower professor 

give” and “(I) home go” respectively.  

From these examples it is possible to see that PSL does not use 

prepositions such as “o”, “uma” and “à” (“the”, “one” and “to”) and that in some 

cases, for instance, if the subject is implicit in the context, it is not always 

necessary to perform the sign of said subject (in the right sentence (“Eu”). 

Also observable in the examples is the property that all verbs are signed in 

the infinitive form (In the examples it is only observable in Portuguese and not in 

the English translation, since in English, the conjugation of the verbs “go” and 

“give”, in the first person for these particular verbs, match the infinitive form. The 

same does not happen in Portuguese). To show other temporal conjugation of 

Language Sentences 

PL “O aluno deu uma flor à professor.” “Eu vou para casa.” 

PSL “Aluno flor professora dar.” “(Eu) casa ir.” 
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the verbs, the time adverbs are added. In the absence of these adverbs the body 

moves, leaning forward to represent future or backwards to represent past. 

Type of sentence – to perform a question, the signer resorts to facial 

expression that can be combined with the use of interrogative pronouns, which 

appear at the end of the sentence. For the exclamatory sentence, other facial 

expressions are used as well as the posture of the torso and head can change. 

Negative Form – the negation of a sentence is accomplished with the 

usage of body expression such as the movement of the head, the execution of 

the gesture “no” or through the facial expression combined with the movement of 

the head. 

1.2 Motivation 

To build a bridge and ease the communication between deaf (and hard-of-

hearing) people and people not familiarized with SL is the main objective and a 

big motivational tool itself for the making of this dissertation, being this quest a 

few years old with only recent and significant breakthroughs (Capilla, 2012b). 

The objective of this dissertation work goes through develop tools to collect 

and manage gesture data, build a training and testing database of captured 

gestures and develop and extend tools, algorithms and techniques for PSL 

recognition. 
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1.3 Problem Description 

In Gesture Recognition (GR), one of the most difficult challenges is to turn 

the sensed and acquired gesture raw data into something meaningful, for 

example, in the context of a gesture control system for an application, and the 

same happens with SL. The sequences of raw, static, or moving data that 

comprise a gesture or a sign, must be understood by the application. 

As explained above, a sign in SL is composed by smaller parts that despite 

being generally acknowledged in any SL model, are not entirely addressed yet in 

a single work with full proficiency and good results: hand configuration, 

orientation of the hand, position, motion, contact point, plane and non-

manual features. 

The position, motion, plane and the contact point of the sign are strictly 

connected and can be implicitly observed by analysing the hand path, which is 

the movement performed by the hands. 

Most of the works, and usually with very interesting results (Almeida, 2011; 

Capilla, 2012a; Chai et al., 2013; Vogler, Metaxas, 1999), focus solemnly on the 

gesture1 part of the sign that is performed by the hands (usually called the hand 

path), independently of being isolated sign or continuous sign recognition.  Other 

projects simply address the problem of recognizing the hand configuration, once 

again in isolated postures (Almeida, 2011; Kollorz et al., 2008) or in the purpose 

of finger spelling (Uebersax, Gall, 2011). Fewer works address both problems at 

once (Souza, Pizzolato, 2013), and even fewer do so in a non-intrusive and 

simple way, like with the Microsoft Kinect sensor (Souza, Pizzolato, 2013). 

The main problem that this thesis addresses is how to merge both hand 

depth information with the hands path to recognize and distinguish isolated signs, 

using only depth information in the context of PSL. 

1.4 Thesis Hypothesis 

 H1 - In the first hypothesis, it is stated that it is possible to extend and adapt 

state-of-the-art work in automatic sign recognition and in PSL recognition 

                                            

1  A gesture is: “A motion of the limbs or body to express thought or to emphasize speech.” 
(Dictionary, 2014)  
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(Almeida, 2011) by distinguishing signs in which the hands perform the same 

movement, but the hand configuration is different between those signs in 

PSL.  

 H2 - the second hypothesis is that an approach that uses both hand 

configuration classification and hand position information can outperform a 

system based only on the hand position, according to the problem of the first 

hypothesis using only depth information. 

1.5 Objectives 

The description of Portuguese Sign Language has its specific meanings 

and symbols, which differs from others. In this sense, it is important to verify if the 

work and results reported in the literature, regarding other Sign Languages, are 

also valid and possible to achieve in the case of PSL. It is the first objective to 

show that this research, is pairing with the peers in the literature, for simple and 

limited problems of Automatic Sign Language Recognition, with a specific 

application to PSL. 

From the hypothesis described above, the following objectives were 

enunciated: 

O1 – Posture Recognition System - specify, develop and test a system that 

uses fully 3D data structures to define, describe, record and classify the depth 

data of the hands and use that data in an efficient and effective manner, for real-

time automatic posture recognition for PSL hand configurations. 

O2 – Movement Recognition System - specify, develop and test a system 

that uses joint positions from both hand to define, describe, record and classify a 

sign in PSL, for real-time automatic sign recognition. 

O3 – Sign Recognition System – specify, develop and test a system that, 

using the systems developed in O1 and O2, defines, describes, records and 

classifies signs in PSL using depth images from hands and depth joints.  

Comparing the results of O3 and O2 addresses specifically the second 

hypothesis (H2).   

O4 – Software Application – develop and test a software application that, 

using systems O1, O2 and O3, lets the user record and view data from and for 

the hand configurations and signs systems in a useful way.  
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This work has the aim to collaborate with the research in order to increase 

the social inclusion of more than 100.000 hearing impaired people in Portugal 

(Bela Baltazar, 2010). Yet, are not objectives of this thesis to propose a final and 

unique solution to the immense problem that SLR presents. 

1.6 Document Structure 

After being presented some fundamental concepts about SLs for a good 

understanding of the context of the research presented in this thesis, the 

remaining portions of this document are structured as follows: 

Chapter 2: This chapter lists some of the critical related works, taken from 

the state-of-the-art, regarding the two steps that usually compose SLR systems, 

namely data collecting methods and analysis and classification methods. 

Chapter 3: In this chapter, the details of the proposed system architecture 

and the application Graphical User Interface (GUI) are presented, its design and 

implementation, and the description of the components for the developed system. 

It is also presented the data collection methods and properties, details about the 

Corpus used and recording specifications. 

Chapter 4: This chapter presents the results of the methods used for the 

Posture recognition and for the Sign recognition processes. The comparison 

between other works is also included in this chapter. 

Chapter 5: Conclusions and considerations about hypothesis coverage, 

objectives, and recommendations for future work are presented in this last 

chapter.

 

  



2 - State of Art 

9 

2 State of Art 

Automatic SLR is divided into two major problems, namely 

extracting/detecting features, and recognizing them. This section is divided into 

2 subsections. The first one, “Existing Data Collection Methods” addresses the 

feature extraction problem, this is, the way the data is captured and what data is 

capture. The data represents the information that the system has, in the previous 

states before identifying the sign (for instance). 

The second subsection, “Analysis and Classification Methods”, 

corresponds to the second major problem named before, the “recognizing”. This 

represents the problem of giving meaning to the data collected in the first phase. 

Decide which sign/gesture represents, or even convey meaning to entire 

“sentences” is the result of the classification part. 

2.1 Sign Language Recognition 

SL is not merely a mirror of spoken language, it has a sentence structure 

and grammar that can be quite different to the language it's derived from (Kadhim 

Shubber, 2013). Used worldwide by a multitude of individuals, being them people 

from the deaf communities and their teachers, or people associated with them, 

such as family or friends, have their citizens often segregated from the rest of the 

society by the difficulties in the communication with the rest of the people 

(Almeida, 2011). 

Typing and/or writing in Portuguese, or any other written language, isn't 

straight forward for deaf and hard-of-hearing people. For those who have been 

deaf their whole lives it's akin to learning a new language. 

Currently it is not possible for deaf and hard-of-hearing people to 

communicate with each other in their native language using computers. 

Essentially, they have to communicate in a foreign language whenever they need 

to communicate with someone unfamiliar with SL, by typing or writing for 

instance. 

Although, it has been explored for many years, is still a challenging 

problem for real practice. A more cohesive and robust approach was developed 

by Microsoft (Chai et al., 2013) recently for the problem of the recognition of SL. 
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Despite that fact, in the particular case of Portuguese Sign Language remains 

unknown an efficient system to perform automatic recognition of PSL gestures 

and communication. 

The Kinect, by being generated within a gaming purpose, rapidly saw its 

original purpose to be adapted to various usages because of its low-cost as depth 

sensor, being this activities very distinct, one of those, and most important to the 

matter, was the Sign and Gestures recognition.  

The main idea is to use the Kinect to capture the gestures by retrieving 

information from the depth sensor, while machine learning and pattern 

recognition programming helps to interpret the meaning of those gestures. 

By using the Kinect depth sensor to retrieve information from the scene, a 

lot of problems caused by, for instance, bad lighting in the scenario, disappear, 

once it is being analysed depth information and not only colour information. The 

older version of the Kinect device had most of its problems confined with the low 

resolution available, turning the recognition process a bit harder (Khoshelham, 

Elberink, 2012). This process is expected to suffer a substantial change with the 

Kinect expected to be used in this project, the Kinect One sensor. 

By using the segmentation from one posture to another and combining also 

the trajectory of the gesture (Chai et al., 2013),it is possible to use machine 

learning technology and pattern recognition technology to make the final decision 

of what's the meaning of the gesture. 

2.2 Existing Data Collection Methods 

Data Collection is the first step for a SLR system, being for that one of the 

big areas in the SLR studies done for some time. 
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Some early SLR systems used “data gloves” and accelerometers to 

acquire specific hand features. The measurements (position, orientation, velocity, 

others) were directly measured using a sensor such as the DataGlove (Kadous, 

1996; Vogler, Metaxas, 1997). Usually the data captured by the sensor was 

sufficiently discriminatory that feature extraction was almost inexistent and the 

measurements were directly used as features.  

 

Figure 1 – Data glove example. Usually, this glove devices feature precise data about the hands parts 

positioning in 3d space and also including accelerometers, giving other information like 

velocity/acceleration, etc. 

These gloves systems had several advantages when compared to simple 

video methods(Kadous, 1996): 

 The processing power and bandwidth required for real time video 

processing were extremely high in contrary to the data extracted 

from the gloves systems that were concise and accurate compared 

to all the information from video cameras. 

 Some specific data such as hand orientation, forward/backward 

motion and finger position and information (due to fingers 
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overlapping/ occlusion) are very difficult to extract from on simple 

video camera. 

 Gloves systems can be used regardless of the environment, 

whether complex backgrounds or signer garment. 

While glove systems gave the advantage of accurate positions, they had 

an obvious downside, they constricted the mobility of the signer, altering the signs 

performed. Some efforts were made to modify the glove-like device in order to 

make a less constricting device, but the evolution in video devices (both in costs 

and performance) made the use of vision more popular to address the problem 

of SLR. Along with the previous facts, it was beginning to be acknowledge that 

the hand tracking stage of the system does not attempt to produce a fine-grain 

description of hand shape, therefore the use of such detailed information could 

be less relevant for humans to interpret SL (Fang et al., 2004). 

The usage of vision input to address SLR problems started with a single 

camera. For this systems to solve the hands segmentation issue there were 

needed algorithms such as “skin detection algorithms” or other methods to 

segment the hand. Many works were done with this approach or similarly, ranging 

from (Freeman, Roth, 1995; Parish et al., 1990) to (Pashaloudi, Margaritis, 

2002b; Wilson, Bobick, 2000) and (Wang, Quattoni, 2006; Yang et al., 2010). 

Other approaches to solve this problem were the usage of coloured gloves to 

ease the segmentation issue. The 2D image usage as data input to solve the 

problem was also used in combination of multiple 2D cameras. 

Sequence of images are captured from a combination of cameras. Some 

examples are systems that use one or more cameras as: monocular (Zieren, 

Kraiss, 2004), stereo (Hong et al., 2007), orthogonal (Starner, Pentland, 1995) 

or other non-invasive sensors such as small accelerometers. In 1999 Segen and 

Kumar calibrated a light source (along with a camera) to compute depth through 

the shadow projections of the hands (Segen, Kumar, 1999). Other works 

(Brashear et al., 2003; McGuire, 2004; Starner, Pentland, 1995) used a front view 

camera in conjunction with a head mounted camera facing down on the 

subject’s hands to aid recognition, the last one also used accelerometers to aid 

the process.  



2 - State of Art 

13 

Plus the above methods, depth can also be inferred using side and vertical 

mounted video cameras (Athitsos et al., 2010) or other combination of positions, 

such as cameras in the 3 axis, as with in (Vogler, Metaxas, 1998).  

This systems don’t give much flexibility to “where to use” the system and 

are often accompanied with other restrictions, because most of them are created 

for controlled environments, and, in the case of multiple video cameras, require 

specific calibrations and settings for the cameras positions, requiring for that more 

space.  

Another data collection system that was used for SLR purposes was the 

Time Of Flight – TOF – camera (Kollorz et al., 2008). Despite this special camera 

being able to get depth information alone, it wasn’t extensively used due to its 

costs. 

2.2.1 Microsoft Kinect  

In 2008 Microsoft released the Kinect for Windows (v1) device for public 

use, along with an open library that allowed multiple uses for the device. The 

Kinect sensor featured a RGB video camera, an Infra-Red sensor and a multi-

array microphone, which contains four microphones for capturing sound. 

Because of this four microphones, it is possible to record audio as well as find 

the location of the sound source and the direction of the audio wave. The RGB 

video camera had a resolution of 1280 x 960 pixels with a FOV (Field of View) of 

43° vertical by 57° horizontal, while a depth image resolution of 640 x 480 pixels. 

In optimal conditions, this sensor managed to obtain 30 FPS of both colour and 

depth data. 

Because of these specifications, the Kinect sensor was adopted by 

multiple researchers to address the SLR problem, usually in a multimodal 

Figure 2 – 3 axis camera system (Vogler, Metaxas, 1998) 
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approach. It also had the ability to follow up to 2 persons with a complete skeleton 

composed by 20 joints. This way, in a single device, researchers can have both 

RGB and depth data and even some joint information, given by the Kinect’s 

library.  

Examples of Kinect usage for SLR systems are (Almeida, 2011; Capilla, 

2012b; Chai et al., 2013; Zafrulla et al., 2011). It was mostly used because of the 

cheap way of acquiring depth information, easing this way the process to obtain 

the hands positions, as well as other body parts. 

For this work, the new Kinect One sensor will be used. Released to public 

in the last September. It features a RGB camera that outputs 1920x1080 pixels 

of colour data, an infrared camera that produces a 514x424 pixels depth image. 

With this information the Kinect is able to estimate the body position and even 25 

joints. For each joint the sensor gives it’s positioning in a 3D space, in Cartesian 

coordinates (X, Y and Z). Despite having lower resolution on the depth image, 

the new sensor achieves has an improved accuracy on the depth values, as can 

be seen on Figure 3. 

2.3 Analysis and Classification Methods 

Due to the nature of the problem of SLR, soon became usual to establish 

the comparison between the speech recognition and because both systems had 

much in common: both aim to recognize some language conveyed through a 

medium (one audible, the other visual); both processes vary with time (are time-

 

Figure 3 – Kinect versions depth comparison. The left image corresponds to the first version of the 

Kinect sensor, released in 2008, while in the right it is the same scene with the new Kinect One sensor. 

(Microsoft, 2014a) 
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varying) showing statistical variations, making the use of HMMs plausible for 

modelling both processes. Both systems have to consider context and 

coarticulation effects. However, there are also important differences. Speech 

signals are well-suited for analysis in the frequency domain, whereas SL signals, 

due to their spatial nature, do not show such a suitability (Vogler, Metaxas, 1997). 

Another problem that distinguish both systems is the coarticulation. While in the 

speech (audible) problem, the coarticulation is denoted by silence between words 

or one or more words affecting the pronunciation, hence the sound, of following 

ones. This doesn’t exactly adds new sounds to the problem but change the 

existing ones. While in the sign recognition problem, the coarticulation between 

signs is often visible, as when one gesture, sign, ends in a determined pose and 

the next meaningful sign starts in a complete different pose. In order to position 

the hands for the second sign, the signer must make a new movement, 

movement which conveys no meaning to what the signer wants to express. This 

way, the problem of coarticulation in SLR is quite different from the Speech 

recognition because it adds new movements to the phrases. This problem is 

denominated “movement epenthesis” (ME). 

 

 

With such similarities, most of the early approaches applied the use of 

HMM from the speech recognition research to the SLR problem. Many examples 

of HMM can be found in multiple projects, many with distinct forms of data 

collection. 

Figure 4 – The red path in the left image represents the movement epenthesis 



2 - State of Art 
 

16 

In 1995, Starner and Pentland (Starner, Pentland, 1995) didn’t focus on 

the typical finger signing usually focused till then and instead, focused on 

gestures, which represent whole words, since real SL conversations usually can 

only proceed at the normal pace of spoken conversations due to this kind of 

gestures. Through the use of HMM this work achieved a low error rate on both 

training set and an independent test without invoking complex models of the 

hands (without modelling the fingers). They also conclude that with a larger 

training set and context modelling lower error rates are expected. 

In (Vogler, Metaxas, 1998) they improved his previous approach (Vogler, 

Metaxas, 1997) overcoming some limitations of the HMM method had by itself, 

by using Context-Dependent Modelling. They also used three-dimensional data 

for features, over the typical two-dimensional feature system. They also 

concluded that for continuous sign recognition, larger training set were required. 

Pashaloudi and Margaritis (Pashaloudi, Margaritis, 2002a) achieved 

85.7% recognition rate for continuous recognition of Greek Sign Language 

sentences. They used a 26 Greek words vocabulary, amongst them, nouns, 

pronouns, adjectives and verbs. Again, in this work it was concluded that their 

training was insufficient and gave low recognition rates for the continuous 

method. 

Despite the good results of HMM for isolated recognition, the HMM method 

by itself is not able to produce good results in continuous recognition due to the 

ME problem. Another problem of the HMM methods is the scalability. As the word 

count in the vocabulary increases, both combinations number and learning data 

for each sign is needed (in order to differentiate similar signs). 

(Fang, Gao, 2002) aid the typical HMM system with an improved Simple 

Recurrent Network (SRN) to segment the continuous Chinese Sign Language 

(CSL). Up until this work, a signer-independent SLR for continuous recognition 

was inexistent. This work demonstrated the use of HMM aided with other 

methods, in this case SRN, could be implemented to solve some SLR problems. 

A novel approach was presented in (Bowden et al., 2004) using Markov 

chains combined with Independent Component Analysis (ICA). In the first 

stage of classification, a high level description of hand shape and motion was 

extracted and then “fed” to the combination of methods previously mentioned. 

This procedure tried to work one of the bigger problems of the HMM methods, 
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the huge amount of training data needed for good results. Due to the 

generalisation of features, and therefore the simplification in training, chains 

could be trained with new signs “on the fly” with immediate classification. The true 

important achievement with this work was the ability to produce high classification 

results on ‘one shot’ training and to demonstrate real time training on one 

individual with successful classification performed on a different individual 

performing the same signs. 

Other machine learning techniques were used that were not based in HMM 

models. An example of such different techniques is the work of Capilla in (Capilla, 

2012b), which, using Kinect in the data collection part, and Nearest Neighbour - 

Dynamic Time Warping algorithm achieved an accuracy of 95 percent for a 

vocabulary of 14 homemade signs. Also using Kinect, for its obvious advantage 

of getting depth information, is the work of (Almeida, 2011), which implemented 

3D Path Analysis for isolated SR problem, achieving perfect recognition rates 

for the 10 word dictionary used. 

More recent approaches and with importance to the ME problem in the 

SLR was the work of (Yang et al., 2010) and (Chai et al., 2013).  

Yang et al. (Yang et al., 2010) developed an approach based in dynamic 

programming-based matching, as it does not place demands on the training data 

as much as probabilistic models such as HMMs do. With this method they also 

allowed the incorporation of grammar models. They compared the performance 

of their method with Conditional Random Fields (CRF) and Latent Dynamic-CRF-

based approaches. The results showed more than 40 percent improvement over 

CRF and LDCRF approaches in terms of frame labelling rate. They also got a 70 

percent improvement in sign recognition rate over the unenhanced DP matching 

algorithm that did not accommodate the ME effect. 

By using 3D Motion Trajectory Matching with 3D data from the Kinect, 

(Chai et al., 2013) achieved recognition rates up to 96 percent in a 239 word 

dictionary containing Chinese Sign Language words. In their database, each 

word was recorded by 5 times. 
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2.4 Summary 

In this section, firstly were introduced some of the more relevant and used 

data collection methods used in SLR from DataGloves to simple Video Cameras 

and ending in the method to be used in this project, the Kinect.  

After the data collection explained, it was enunciated the most commonly 

used machine learning techniques in SLR, with special attention and focus to the 

HMM usage, since it is one of the most used methods in GR.
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3 PhySaLiS 

In this chapter, the developed system, referred as PhySaLiS (Portuguese 

Sign Language System), is presented. The system requirements derived from the 

objectives are enunciated in the first section, being followed by the description of 

the system architecture and the application GUI in the second section. The 

following section, 3.3 describe the Corpus used for both postures and signs 

systems and the specifications of the data collection regarding the recordings 

such as number of signers, repetition of words, etc. The section 3.4 describes the 

pre-processing done to the raw data before the feature extraction is performed. 

3.5 explains the methods used for the feature extraction process in the hands 

configurations and in the movement data, and finally, section 3.6 explains the 

classifier creation methods and specifications. 

3.1 System Requirements 

To achieve the objectives purposed for this thesis, multiple requirements 

were set accordingly to each of the objectives. Both system requirements (SR) 

and GUI requirements (GR) are presented in Table 2. 

Table 2 – System Requirements definition. SR and GR codes correspond to System Requirements and 

GUI Requirements accordingly. For each requirement the requirement id, description, objective and status 

is shown. 

Requirement Description Objective Status 

SR1 

Develop/Apply a technique to extract and 

normalize hands information from the depth 

image to be used for the posture system 

O1,O3 Completed 

SR2 

Develop/Apply a technique to extract and 

normalize hands information from the joints 

information to be used for the sign system 

O2,O3 Completed 

SR3 

Collect hand configurations performed by 

multiple users, using depth data, allowing the 

creation of a structured dataset for training and 

testing 

O1, O3 Completed 
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SR4 

Collect signs performed by multiple users, using 

depth data, allowing the creation of a structured 

dataset for training and testing 

O1,O2 Completed 

SR5 
Develop a classification technique appropriate 

for the sign recognition task 
O2, O3 Completed 

SR6 
Develop a classification technique appropriate 

for the posture recognition task 
O1, O3 Completed 

SR7 
Use a previously collected dataset to train and 

test the posture classification system 
O1, O3 Completed 

SR8 
Use a previously collected dataset to train and 

test the sign classification system 
O2, O3 Completed 

GR1 Allow sign recording for multiple distinct signers O4 Completed 

GR2 Create tool to calibrate arm size for the signer O4 Completed 

GR3 
Start and stop sign recording, manually or 

automatically. 
O4 Completed 

GR4 Start and stop posture recording. O4 Completed 

GR5 
Load previously saved recordings, either for 

postures or signs systems 
O4 Completed 

GR6 

Present the classification for both hand 

configurations for each frame in the recorded 

signs 

O4 Completed 

GR7 

Allow tuning of parameters for the  classifier 

creation, such as kernel to use and kernel 

parameters, as well as type data to be used for 

the classifiers 

O4 
Not 

Completed 

 

3.2 System Architecture and GUI 

As previously mentioned, this thesis is focused on tackling a specific 

problem of Isolated Gestures, and to do that, a two layer system architecture is 

proposed.  
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Regardless of not being immediately visible in the diagram (Figure 5 –

System Architecture), the first layer represents the Posture system (depicted in 

teal colours), while the second layer represents the Sign system (depicted in 

reddish tones) which depends on the first layer.  

These layers are divided in three modules, each of those represented by 

a dashed container, and in both layers, module 1 performs signal acquisition and 

pre-processing from the Kinect One input streams, namely, depth frames and 

“tracked body” information. The second module handles feature extraction. 

Finally, the third module produces and stores training data samples and creates 

the classifier and handles the recognition process. 

The Pre-processing module takes care of the Depth Data and Joint 

information collection process and some pre-processing before passing the data 

to the Feature Extraction module. 

It provides functions to estimate global speed of movements as well as 

determining when a movement starts or ends, while also allowing the calibration 

of the system to a particular signer, be that the hand size or the arm size, or the 

Figure 5 –System Architecture. The first module comprises the data collection and pre processing methods. The 

second one handles Feature Extraction, while the last one includes all the classifiers work, since creation to testing 

and usage. 
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application of Erode and Dilate filters to the depth stream (for noisier 

environments).  

The second module, “Feature Extraction”, adds the functionality needed 

for the feature extraction and processing. This feature extraction will provide 

information for real-time automatic GR and provides the training samples set, a 

critical data source for the GR process, which will be stored in a database.  

Like in (Almeida, 2011) postures refer to static hand configurations and 

signs to gesture representations. Both of these representations require a data 

structure and a set of methods to manipulate and provide the tools for the feature 

extraction process.  

The module also comprises of a set of posture acquiring functions to get 

and convert posture dimensions, get posture images from the respective joints 

(using the joint 3D position and the Depth Data frame), and also more general 

methods to perform adjustments, such as resizing, several types of translations 

on different axes as well as scaling and ratio transformation, and enabling dexel 

data normalization. 

Finally, the “Classifiers” module handles the management of the collected 

data and the creation of the system classifiers. It allows the creation of both 

Support Vector Machines and Hidden Markov Models classifiers and the viewing 

and deleting of postures and signs from the training sets. 

The module also implements the creation of bitmap images from postures 

and data charts from the hands movements for the signs, to aid in later analysis 

for automatic GR performance, reliability and accuracy.  

The recognition task, which is the usage of methods from the modules 1 

and 2 and the classifiers created in this same module, output a sign, or a hand 

configuration label.  

3.2.1 GUI - PhySaLiS Application 

PhySaLiS is the software application developed through this thesis. It got 

its name for being the fruit of hard work and for enclosing the acronym PSLS – 

PSL System, that is one of the objectives of this work. 
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Figure 6 – PhySaLiS logo 

The berry in the logo is green instead of the most commonly known images 

of the physalis fruit, which usually is red or orange. This is due to the application 

being able to grow and mature to produce a better system able to aid the sign 

language community, particularly, the PSL community. 

The application was developed in the Metro style, being composed by 

simple lines and effects. The “Home” screen is as follows: 

 

 

 

Figure 7 – PhySaLiS home screen. At the centre left are the buttons to access the functionalities concerning signs, at 

the right, functionalities concerning postures. 
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In this screen it is possible to go to any of the major functionalities of the 

system. These main functionalities can be divided in 2 major groups: Signs (left 

side) and Postures (right side) – labels in red. For each of those groups it is 

possible to do Data Recording (B and C), Data Analysis (F and G) and 

Recognition (D and E). 

The label A represents the header bar which contains the functionalities to 

load data of both for signs and postures subsystems, change settings for the 

application and to load and create classifiers, classifiers loaded will be used in D 

and E. The loaded data can be used either to create classifiers or to be analysed 

(functionalities F and G). It also contains the dropdown container with options 

concerning the Data Collection. This options include are: control the volume size 

that extracts the hand image, the movement tolerance for the sign system, the 

size of the hand image (“posture size”), the size of the erode and dilate filters to 

apply for the background extraction and the option to apply or not the background 

extraction. Through this menu is also possible to access the tool to calibrate the 

signer arm size. 

In the bottom of the application there is a status bar that shows information 

regarding operations that are done by the system and other status messages, 

represented with label H (Figure 7). 

 

Figure 8 –Data collection options. These options relate to normalizations done in both postures and signs 

systems. The hand depth start, end and size define the bounding box that extracts the hand depth image. The 

distance Tolerance to detect if the signer is moving or not. 
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3.2.1.1 Data Recording Screens 

The data recording for both signs and postures are done accessing B and 

D buttons respectively (Figure 7).  

In B - sign recording screen (Figure 9) - it is possible to choose where to 

save the data and initiate the recording giving a name for the signer (each signer 

goes in distinct folders). After given the name for the signer folder, it is possible 

to record the signs either automatically, being the “start recording” and “stop 

recording” signals given by estimating movement from the hand joints. For the 

automatic method, it is required that the signer is in a standing pose (Figure 16) 

before the start signal, otherwise the recording won’t activate. This way all signs 

start from the same place/ pose. For the manual mode, a simple recording button 

is available, so the user can start and stop the recording.  

 

Figure 9 – PhySaLiS sign recording screen. In this screen the user can create a new signer folder in which he 

can record new instances of signs. For the recordings, the user can define which hand behaves as 

the main hand, the sign and set to record and if the sign is recorded automatically or manually. 
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The user should also select which sign and which instance of the sign is 

being recorded so the recording has the right label for the classifiers. This mode 

also shows another smaller window to pass to another screen, or projector, to 

help in the recording process, being the signer able to see this “helper” window 

in the other screen. It contains simple information as the sign to perform, the 

information weather the system is recording, ready to record or idle, and the depth 

stream visualization. 

For D – posture recording screen (Figure 11) – as in the previously 

depicted screen it is possible to select the folder in which the postures are going 

to be stored as well as to select which posture to record and how many captures 

per second are done, this way it is possible to save multiple instances of the 

 

Figure 11 – PhySaLiS posture recording screen. In this the user can select which hand to track to 

perform de recording, select which posture to record and how many images per second are 

captured. 

 

 

 

 

Figure 10 – Sign recording helper window. The purpose of this window is to help the 

signer to know what sign to perform and when to perform it. 
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posture much faster (with small variations or not). By default, the right hand is 

recorded, but it is choosable which hand to record, either left or right. 

3.2.1.2 Data Analysis Screens 

F and G (Figure 7) give the user access for both Postures and Signs 

analysis screen. These screens serve the purpose of inspecting the recorded 

data sets for both signs and postures, as the names suggest. 

In both is possible to select the folder where to fetch the datasets, to 

inspect each instance of each class of the dataset, and to navigate through 

classes, and for the sign analysis, through users. 

In Postures Analysis Screen (Figure 12), each instance relate to an image 

of the hand, being each class composed by multiple images. In signs, each of the 

instances is composed by a movement and two images per frame, that 

correspond to the hand depth images, and it is possible to navigate through each 

of the frames composing the movement.  

 

Figure 12 – PhySaLiS posture analysis screen. In this screen it is possible to visualize the recorded 

postures as well as to eliminate selected posture instances. 
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In the movement analysis screen (Figure 13) it is possible to navigate 

between all the instances of movements previously recorded and loaded in the 

system. It is also possible to observe the label of each hand for the current 

movement and for the current frame (classified with the 43 postures classifier), 

and to view the movement data for both hands with or without applying the 

normalization or cut silence methods. 

3.2.1.3 Recognition Screens  

The recognition screens, accessible through D and E of the home screen 

(Figure 7) lets the user practically test the classifiers developed with the system 

in real time.  

For the Posture Recognition Screen (Figure 14), the user can choose 

which hand to track and recognize, and both posture classifiers are used. The 

result shown in the classification is the classified hand configuration that most 

occurred in the last 10 recorded frames. 

 

 

 

 

Figure 13 – PhySaLiS sign analysis screen. This screen gives visual representation of the data acquired 

and treated concerning signs. It is also possible to view any sign for any user recorded.  
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Similarly, in the Sign Recognition Screen (Figure 15), the user should 

choose the main hand of the signer, and both classifiers are used to recognize 

the sign performed by the signer. It is also showed the time each of the classifiers 

took to recognize the sign. 

 

 

Figure 14 – PhySaLiS posture recognition screen. In this screen is possible to perform postures with either 

left or right hand and to practically experiment the posture classifiers developed with the system. 

 

 

 

 

Figure 15 – PhySaLiS sign recognition screen. In this screen is possible to perform signs with either left or 

right hand as main hand and to practically experiment both sign classifiers developed with the system. At 

the right it is possible to choose which hand is the main hand and to observe the chart of the performed 

sign. 
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3.3 Data Collection  

3.3.1 Setup 

To collect the data for this work a setup with Kinect One sensor was used 

which had the following constraints: 

1. No direct sunlight in the room in which the recordings were to take 

place. This is needed so the Kinect depth information may work with 

the less noise possible (Andersen et al., 2012); 

2. The sensor is at about 1.3 meters from the ground, placed on a 

stable and horizontal surface; 

3. The signer/ user is between 1.5 and 3.5 meters away from the 

sensor, facing it; 

4. No object is between the signer and the sensor. 

5. Other sources of infrared light should not be present in the room 

since they may produce artefacts in the depth image; 

 

Other constraints such as specific artificial 

illumination are not an issue since the only 

information used is from the depth stream, which 

works on infrared light. 

The system had to be calibrated regarding the 

signer size, task done by a simple tool developed for 

the purpose, which, capturing the signer in a standing 

pose, estimated the arm length. After having the arm 

span information, the collection proceeded by simply 

making the selected sign. All signs started to be 

recorded automatically from the standing pose 

(Figure 16), being the start signal given by an 

estimated amount of movement, and the same 

happened to the stopping signal.  

 

Figure 16 – Example of a standing pose 

(Microsoft, 2014b). The back and legs 

stay straight, both arms fall along the 

torso and the head points forward. 
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3.3.2 Corpora 

An important aspect for any study involving human participants is to obtain 

the approval of a regulated ethics committee. As such, a detailed description of 

the data collections and associated studies/experiments were submitted for 

ethics approval. In the case of the experiments described in this thesis, all data 

collections participants gave informed written consent and were properly 

informed of the purpose of the experiment, its main features and that they could 

quit at any time. The experiments here reported have been evaluated and 

approved by the ethics committee of the University Institute of Lisbon (ISCTE-

IUL) regulated by the dispatch nº7095/2011.[JF1]. 

Signs 

The Corpus, or vocabulary, used in the system concerning signs was 

chosen to better address the problem at hands and to better illustrate the purpose 

of this work. It was not chosen by the meaning of the word in Portuguese, but by 

the sign properties in PSL that represented the word. 

The criteria used in the selection of the 29 words were: 

 Concerning individual signs : 

A. The “auxiliary” hand behaves similarly to the main hand 

(mirror); 

B. Only the main hand moves (performed with only one hand); 

C. The “auxiliary” hand acts as a support for the main hand. 

 Across Signs: 

1. Signs with the same or similar movement, but different 

configurations for the hand(s); 

2. Signs with the same posture but different movements of the 

hands; 

3. Signs with the same hand configuration and the same 

movement but different locations, i.e. According to (Bela 

Baltazar, 2010) the sign “mesa” is described as “Both hands 

in configuration ‘zeta’, positioned bellow the chest, start 

together at the centre and move apart to the sides” as for the 
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sign “balcão”, its definition is precisely “gesture identical to 

‘mesa’ but done higher (above the chest)”. 

 

The criteria A, B and C (Moita et al., 2011), are observed in every sign, 

being those properties a way to model sings. 

Properties 1, 2 and 3, describe some type of signs that enunciate the 

problem this thesis tries to address. 

The signs used were: 

Table 3 – List of signs selected to compose the corpus. Each group of colour stacked together represent 

signs in which the path of the hands are the same, or are very similar. i.e. the signs “balcão” and “mesa” 

have the exact same movement but in distinct positions, being the first one done above the chest and the 

second one under the chest. 

    Apoio (support) 

Apagar (to erase) 

  

Eclipse (eclipse) 

  

Cadeira (chair) 

Escrever (to write) Morrer (to die) Quente (hot) 

Graxa (shoe polish) Fio  (wire) Maravilha (wonderfull) 

Balança (scales) Tubo (fino) (thin pipe) Ajudar (to help) 

Avaliar (to evaluate) 
Tubo (médio) (medium 

pipe) 
Receber (to welcome) 

Discutir (to discuss) Balcão (counter) 
Comunicar (to 
communicate) 

Guerra (war) Mesa (table) Trabalhar (to work) 

Gritar (to scream) Testemunha (witness) Não (no) 

Cantar (to sing) Verdade (truth) Televisao (television) 

 

Nadar (to swim) 

 

The signers were previously briefed about the collection method and no 

signer had any background on PSL, having them to learn each of the performed 

signs prior to the data collection. 

The group of signers were composed by 5 men and 1 women, with ages 

between 23 and 31 with an average of 26, and heights between 1,52m and 

1.95m, and for each signer, eight repetitions of each of the 29 signs were 

collected. 

Postures 
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For the hand configuration sub-system two different recordings and 

consequently two classifiers were done. For the first recording, 52 different 

postures were recorded. Each of those postures were recorded around 50 times 

with some small variations, such as small hand orientation or fingers angles and 

was recorded with 2 signers. Those variations were minimal in order not to 

change the posture. Basically, the postures done were in the form of finger 

spelling, with the configuration clearly facing the sensor. This first experiment was 

conducted only to test the method used to extract the features and to have a 

comparison with previous works. 

The second recording for the hands configuration system was the one used 

in the sign recognition and was composed by 43 postures. For this recording, 2 

signers were used, and about 350 instances for each posture were recorded. This 

time, the postures could change its orientation to better accommodate what 

happens in signs. One example of this property is the word “abdicar” – abdicate: 

While the description for the word is “Dominant Hand in configuration ‘b’ passes 

along the non-dominant hand in configuration ‘1’” (Bela Baltazar, 2010), the hand 

configuration observed can be described as ‘q’. 

 

Figure 17 – Description of the sign "abdicar" (Bela Baltazar, 2010). The description of the sign 

“abdicar” in PSL is: “Dominant Hand in configuration ‘b’ passes along the non-dominant hand in 

configuration ‘1’” 
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Figure 18 - Hand configuration “q” (Bela Baltazar, 2010). On 

the left is the view of the signer, and on the left is the view of 

the “receiver” 

 

 

Figure 19 - Hand configuration "b" (Bela Baltazar, 2010) . On 

the left is the view of the signer, and on the left is the view of 

the “receiver” 

For both signs and hand configurations data collections, the above setup 

conditions were used. 

3.4 Pre-processing 

Concerning the sensor data acquisition, the data is acquired via de Kinect 

One Sensor described above. From this sensor, only the Depth Stream/ output 

and the derived Body Stream is used in this system. 

Generally, one of the first crucial steps in computer vision systems is the 

Segmentation. In this system, the first segmentation to be done is the Background 

removal, segmenting this way the background from the user, or signer.  

3.4.1 Background Removal 

Consider  𝐷1, 𝐷2, … , 𝐷30 as a sequence of 512 𝑥 424 of depth pixel values 

(16 bits) for the time instants 1, 2 . . . 30, respectively and 𝑀𝐷 the target mask to 

be created.  

 In the first instant we have (𝑛 =  1): 

𝑀𝐷 = 𝐷1 

                    

 For the instants n such as 1 <  𝑛 <  30: 

o 𝐷𝑛 As being the depth map for the instant n. 

o Consider the depth values 𝑝(𝑥, 𝑦), where 𝑥 ∈ {0. .512} and 𝑦 ∈ {0. .512} 

from 𝐷𝑛 and 𝑀𝐷 represented by 𝑑𝑛𝑥𝑦 and 𝑚𝑑𝑥𝑦 respectively. 

o 𝐼𝑓 𝑑𝑛𝑥𝑦 < 𝑚𝑑𝑥𝑦 𝑡ℎ𝑒𝑛  𝑚𝑑𝑥𝑦  =  𝑑𝑛𝑥𝑦 
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At the end of the 30 instants, 𝑀𝐷 will be the depth image containing the minimum 

depth values (or closest) observed during those frames. Assuming that the 

sensor only “sees” the scenario, meaning this that the user must be away from 

the sensor field of vision in the first 30 frames. 

 For the instants 𝑛 such as 𝑛 >  30: 

o Let 𝜆 =  50 be a sensor noise tolerance factor that represents 5cm. 

o Considering 𝐷𝑛 as being the depth map for the instant 𝑛 >  30. 

o 𝐼𝑓 𝑑𝑥𝑦 ≥ (𝑚𝑑𝑥𝑦 −  𝜆) 𝑡ℎ𝑒𝑛  𝑑𝑥𝑦 = 0 

This is the same process as applying a mask, where values from 𝐷𝑛 than 

the values on the Mask Depth image - 𝑀𝐷 will be eliminated. 

 

Figure 20 – Kinect sensor original depth input. 

The colour in the depth images is simply a form of 

representation, since the depth images contain 

only one value per pixel, corresponding to the 

distance of that point in space to the sensor in 

millimetres. 

 

Figure 21 – Kinect sensor depth input after applied 

the background subtraction. With background 

subtraction - the body silhouette becomes the only 

visible object as it is the only object that moves in 

the sensor field of view. 

 

After the background is subtracted, an erode filter is applied in order to 

remove some noise introduced in the depth image by sunlight, since the infrared 

sunlight reflected by other objects or refracted in windows might “damage” the 

Kinect depth image. 

3.4.2 Hands Segmentation 

The next step before the feature extraction process is to extract the hands 

depth image from the depth image. 
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For this process both the depth image and the hands position are needed, 

where the hands position are given by the Kinect sensor in the Body structure 

and the depth image comes from the previous step, Background Removal. 

By using a fixed size and a fixed depth, it is possible to extract the hand 

depth image from the global image doing simple math, and making use of the 

coordinates mapping from the Kinect SDK, that allows a conversion from the real 

space (camera space) to the depth space (depth image space), mapping real 

world coordinates into pixels from the depth image. 

3.5 Feature Extraction 

The features to be passed for the classifier come from the hands 3D 

coordinates (joint position) and from the hand image. 

Being the sign composed by many instants, and having in each instant 

both hand positions and both hands images, some normalizations are needed 

before passing the data onto the classifier, whether for training or recognizing 

purposes. These normalizations occur in two forms: 

 The hands positions normalization for each frame, which 

results in the Hands Paths. 

 The hands depth images normalization, which will be 

used in a first classifier that result in a posture label in each instant 

for each hand, representing the hands configurations for that instant. 

 

Figure 22 – Both depth and body inputs from 

Kinect in one frame. The red dots are the joints 

given by the Kinect. Each joint is represented by a 

point in 3D space. 

 

Figure 23 – Extracted hand depth image width the 

hand joint depicted as a red dot 
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3.5.1 Hand Path Normalization 

The Hand Path is also the moving part, or the gesture part, of the sign 

structure. The position values given by the Kinect sensor for each of the hands 

joints have as a centre of reference the body Spine Centre joint depicted in 

(Figure 24). 

Capturing 30 frames per second, the raw data resulting from capturing both 

hands during a sign is represented in Figure 25.  

In this raw data, it is possible to see that the only the coordinates X and Y 

are according to the spine centre joint. This brings an obvious problem that is, if 

from recording to recording, the signer is at distinct distance from the sensor, the 

hand z value will vary greatly. In order to bring down the hands to the same 

reference, and to be able to recognize signs further away or closer to the sensor, 

the Z coordinate for each hand is normalized according to the Body Absolute 

Position which is the same as the Spine Centre joint. 

 

Figure 24 – Kinect body joints. The Spine Centre joint used in the 

normalization method is the joint above the “HIP_CENTER” and below 

the “SHOULDER_CENTER” 
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 Being 𝐻(𝑥,𝑦,𝑧)  any of the hands joints Point given by the sensor and 

𝑆𝑝𝑖𝑛𝑒𝐶(𝑥,𝑦,𝑧) the Spine Centre Point, the first transformation for both hands is: 

𝐻 =  {

𝐻𝑥  =  𝐻𝑥

𝐻𝑦  =  𝐻𝑦

𝐻𝑧  =  𝑆𝑝𝑖𝑛𝑒𝐶𝑧 −  𝐻𝑧

 

This way, the problem of the signer distance to the sensor is eased.  

After the classifier was created to test this approach, it was noted that 

signers with distinct heights, hence distinct arm span for that matter, had distinct 

results. As the previous normalization step did nothing to ease this problem, 

 

Figure 26 – Hand data of the same instance of the sign "avaliar” shown in Figure 25 after the first 

step of normalization. Only the left hand chart is shown. Each frame/instant contains 3 values, being 

them the coordinates X, Y and Z. 

 

Figure 25 – Raw Hands data of an instance of the sign "avaliar”. The top chart corresponds to the 

left hand path while the bottom one is the right hand path chart. Each frame/instant contains 3 

values, being them the coordinates X, Y and Z. 
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another method was needed. This issue was diminished by warping the Hands 

Position space to a predefined value according to each signer arm size. 

The signer arm size is estimated with a method in the system that takes 

into account the joints from the hand to the shoulder and calculates the total 

distance between the joints.  

This is the same as creating a virtual box around the signer, which varies 

with the signer arm span, and for that, firstly it is needed to define the boundaries 

of said box for each instant: 

𝑀𝑖𝑛𝑥 = 𝑆𝑝𝑖𝑛𝑒𝐶𝑥 − 𝐴𝑆 , 𝑀𝑎𝑥𝑥 = 𝑆𝑝𝑖𝑛𝑒𝐶𝑥 + 𝐴𝑆 

𝑀𝑖𝑛𝑦 = 𝑆𝑝𝑖𝑛𝑒𝐶𝑦 − 𝐴𝑆 , 𝑀𝑎𝑥𝑦 = 𝑆𝑝𝑖𝑛𝑒𝐶𝑦 + 𝐴𝑆 

𝑀𝑖𝑛𝑧 = 𝐴𝑆 , 𝑀𝑎𝑥𝑧 = −𝐴𝑆 

Where AS is the Arm Size value 

Having the arm size, the new coordinates for any hand for each instance 

becomes:  

𝐻𝛼 =
𝑂𝑙𝑑𝐻𝛼 − 𝑀𝑖𝑛𝛼

𝑀𝑎𝑥𝛼 − 𝑀𝑖𝑛𝛼

 , 𝑤ℎ𝑒𝑟𝑒 𝛼 ∈ {𝑥, 𝑦, 𝑧} 

𝑤ℎ𝑒𝑟𝑒 𝐻𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝛼 𝑎𝑛𝑑 𝑂𝑙𝑑𝐻𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑙𝑑 𝑜𝑛𝑒 

After this normalization, signers with distinct heights are less of a problem, 

since now, the hands positions along any movement with any signer are 

normalized to the same space. 

 

Figure 27 – Hand data of the same instance of the sign "avaliar” shown in Figure 25 after the 

second step of normalization. Only the left hand chart is shown. Each frame/instant contains 3 

values, being them the coordinates X, Y and Z. 
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Once that the recording of the movement starts and stop automatically, 

being the start signal given by the start of movement, and the end by an estimate 

of movement which might not be precise due to noise on the joint detection by 

the sensor, the next step is to remove the frames at the end of the recorded 

movement with irrelevant information. This noisy frames are recorded due to the 

system recording the sign automatically with an estimate of movement. To 

compensate for this noise, some frames of the end part of the movement. By 

observing both hands movements, starting from the end of the movement, all 6 

coordinates (3 coordinates from each hand) are observed in a window of 3 

frames. While all the coordinates, in this 3 frame window have variations lower to 

a fixed threshold, then the frame is eliminated from the movement. It is possible 

to see, comparing Figure 27 and Figure 28, that after this method is applied, from 

the final to near the frame 40, the frames were eliminated. 

The last step to create the feature vector is to normalize the movements’ 

size, that is, make all movements have the same number of instants. A movement 

is created by all the positions from both hands along the size, in the form of an 

array per each of the axis (x, y and z) for each of the hands, giving a total of six 

arrays to describe a movement. 

A recorded movement, after passing through the previous processes, has 

the following representation:  

 

In this case (Figure 29) the recorded sign has about a little less than 40 

frames, while in others might have more or less, so it is needed to normalize all 

 

Figure 28 – Hand data of the same instance of the sign "avaliar” shown in Figure 25 after the third 

step of normalization. This third step removed information at the end of the sign, in which the hands 

are halted, hence considered “silence”. Only the left hand chart is shown. Each frame/instant 

contains 3 values, being them the coordinates X, Y and Z. 
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movements to the same number of frames, or instants in order to work within the 

classifier. 

When normalizing the movement, depending on the size of the movement 

to be normalized, one of two situations will occur. If the original size is greater 

than the target size, or normalized size, the average value of the removed 

positions is used. When the size of the original is smaller than the target’s, the 

inserted positions will have a value linearly interpolated with the previous and 

next positions. The inserted or removed positions are defined by the relation 

between the original and normalized sizes.  

In the end of the process, the movement graphic looks like: 

3.5.2 Hands Depth Images Normalization 

The original Hand image concerning the depth stream, given in the 

subsection Hands Segmentation that can be illustrated by Figure 23 is not 

enough to solve some simple problems, such as: 

a) Left and Right hands are not the same – in PSL both hands can take any 

configuration needed for the sign, and as in a written language, there are 

signers who are right handed while others are left handed. Because of the 

previously stated, it is needed that the system can compare both left and right 

images as equals. 

b) Signer distance to sensor - since the hand depth image is taken from the total 

depth image of the Kinect output, in which objects closer to the sensor have 

values closer to 0, and objects farther have increasingly bigger values; 

 

Figure 29 – Hand data of the same instance of the sign "avaliar” shown in Figure 25 after the final 

step of normalization. This fourth step normalizes all signs to the same length. Only the left hand 

chart is shown. Each frame/instant contains 3 values, being them the coordinates X, Y and Z for 

each hand. 
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c) Signer hand size – once the volume that is used to extract the hand image is 

a fixed sized volume, a smaller hand occupies less image proportion than a 

bigger hand, resulting in images with bigger areas without information for 

smaller hands;  

To address the problem (a), when the hand depth image was 

correspondent to the right hand, it was only needed to flip or mirroring the image 

by the vertical axis, being this way, left and right hand images equivalent. 

After the mirror, both hands become comparable as an image (Figure 31). 

 

 

Figure 30 – Depth data input for the both hands. At the left side is the left hand and at the right side the right hand. The 

middle image is the original depth input after applying the background extraction. At the top right corners it is possible to 

see the original size of the hand image. The colour representation is merely visual since the input for depth values varies 

from 0 (the sensor) to the max range the sensor can infer depth (accurately is only 4.5 m, hence 4500. 

 

 

 

Figure 31- After mirroring one of the hands, the images become very similar. At the top right corners it is possible to see 

the original size of the hand image. The colour representation is merely visual since the input for depth values varies 

from 0 (the sensor) to the max range the sensor can infer depth (accurately is only 4.5 m, hence 4500. 
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For problem (b), the solution to eliminate the variable distances of the hand 

to the sensor was to assume that the closest value of the image, hence the one 

with the lower value that was different from 0, had the minimum value, that is, 1. 

This method is simply a shift on all the values of the image pixel values (depth 

values). This shift is equal to the minimum pixel value of the original image minus 

1. This operation is not as much observable from an image point of view, as in 

previous operations because of the representation used (converting 16bits grey 

image to 32bit RGBA image) yet it normalizes the distances of the hands to the 

sensor.  

To solve (c), a scaling was done to the hand image so the hand would 

occupy the largest area possible. As the hand images used in the posture 

configuration recognition are 32x32 and the hand image size recorded is usually 

considerably larger (varies with the signer hands distance to the sensor), a 

resizing is done in the image size. Two different methods were tested, one that 

would conserve the original ratio of the hand portion in the image (called “Stretch 

Ratio”), and another method that does not conserve the ratio of the hand (simply 

called “Stretch”). Figure 32 shows the results from the first method – “Stretch 

Ratio”. 

 

 

 

 

Figure 32 – At the left side is the hand depth image before applying any stretch method while in the right side is the result 

of the “Stretch Ratio” method. In both images, in white is the total size of the image while in yellow is the size of the 

square that contains the hand part in the image. The size is in the form AxB where A is the width and B the height. 
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 The stretch method conserves the ratio of the hand portion. The pixel 

values are calculated by linear interpolation according the width values, this is, 

by horizontal lines. 

The other tested method, not conserving the ratio of the hand portion of 

the image, distorts the original image, in some cases in an insignificant amount. 

Despite not seeming a natural approach to the problem, tests were conducted to 

verify this approach. Figure 33 show the result the “Stretch” method. 

Similarly to what happened in the previous method, the pixel values are 

calculated by linear interpolation according by horizontal lines. 

 

3.6 Classifiers 

This section specifies the methods that have the role of creating and 

managing the posture and sign database and sample data (known as the training 

set) for the learning and classification processes.  

To be able to classify recorded postures and signs, the system must first 

be trained to create those same classifiers. This training is accomplished in both 

scenarios using SVM on the collected dataset. 

SVM can only solve binary problems, however, several approaches have 

been suggested to perform multi-class classification using SVM. In this thesis, it 

is used a one-against-one strategy for multi-class classification, dividing the multi-

class problem into a set of binary problems. This set of binary problems should 

 

Figure 33 - At the left side is the hand depth image before applying any stretch method while in the right side is the result 

of the “Stretch” method. In both images, in white is the total size of the image while in yellow is the size of the square that 

contains the hand part in the image. The size is in the form AxB where A is the width and B the height. 
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compare all classes between each other. Redundant options can be discarded, 

such as comparing one class with itself (i.e. A vs A) and one of the two pairs of 

the same comparison (i.e. in the case of comparing A vs B and B vs A, B vs A 

can be ignored). Removing this redundant comparisons, a typical decision 

problem can be decomposed in the following subset of binary problems: 

𝑆 = (𝑛 × (𝑛 − 1))/2 

Where S is the number of necessary SVM and n is the number of classes. 

To decide for a class, a voting scheme is used. The class which receives more 

votes wins the decision process.  

3.6.1 Postures Classifier 

For the postures classifying system, two classifiers were created.  

 The first posture classifier was created to verify the capture 

normalizations method.  

 The second one was created to merge with the sign classifier. 

The first classifier had a dataset composed by 52 different postures, where 

this postures had minor variations, while the second one had 43 different postures 

to address the problem of hand configurations varying position and palm 

orientation in signs, as described in subchapter Corpora. This way, the first and 

second classifiers are composed by 1326 and 861 machines respectively. 

Any recorded posture from any class (hand configuration) used in both 

classifiers was transformed in a feature vector by transforming the hand depth 

image (normalized by the methods described above), which is a two dimensional 

image with pixel values varying from 0 to 65536, 16bit, in a one dimensional 

vector of real values. 

This classifier gives a result ranging from [0...52] and [0...43] for the first 

and second cases respectively, that correspond to the hand configuration 

recognized. 

To train and test the classifier, a k-fold cross-validation method was 

applied. In k-fold cross-validation, the original sample is randomly partitioned into 

k equal size subsamples. A k=10 value was used and despite the subsamples 

being randomly generated, it is assured that each subsamples has various 

instances from each hand configuration.  
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In each fold of the algorithm, of the 10 subsamples, 1 subsample is used 

as the validation data for testing the model, and the remaining 9 subsamples are 

used as training data. This process is repeated then 9 more times (performing a 

total of 10 folds), with each of the 10 subsamples being used exactly once as 

validation data. The results from the folds are then averaged to produce a single 

estimation. The advantage of the cross validation method is that all observations 

are used for both training and validation, and each observation is used for 

validation exactly once. No further testing was done with data not used in training 

neither in validation, mainly due to the low amount of data available. 

Table 4 – Kernels tested for the SVM (implementations from Accord.net Framework (Souza, o. J.)) 

Linear Gaussian Quadratic 

Inverse Multiquadratic Histogram Intersection Polynomial(2) 

Polynomial(3) Laplacian Power 

 

A set of 9 different kernels were tested for the SVM (see Table 4), creating 

the respective classifiers and saving the one that obtained the best accuracy 

results to be used by the system. The tolerance value used on the sequential 

minimal optimization was set to 0.01. To be able to identify misrecognition 

patterns, over fitting, dominant classes and to assess the classifier’s accuracy for 

each sign of the vocabulary, a confusion matrix was created as well as the 

training and validation accuracies for each of the eight folds. 

3.6.2 Signs Classifier 

To compare approaches and to address the hypothesis H1 (Thesis 

Hypothesis), two distinct sign classifiers were used. Both were created with the 

same SVM techniques explained for the postures classifiers. Both sign 

classifiers, by having 29 classes, are composed by 406 machines. 

 The first sign classifier relies solely on the hand path, hence, the 

movement component of the sign, or the gesture part. 

 The second sign classifier uses the hand path combined with the 

hands configuration. 
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For each sign on the dataset, the feature vector is an array with a fixed 

number of positions, being this the chosen normalized size for a sign (normalized 

method explained above). 

Each position of this vector contains, for the first case of sign classifier, 6 

doubles, corresponding the first three to the hands coordinates, X, Y and Z in that 

order, for the right hand, and the following three positions to the same coordinates 

of the left hand. 

For the second signs classifier, each frame of the sign is described with 8 

values, being the first three the hands coordinates for the right hand, the fourth 

value corresponding to the label for the hand configuration of the right hand 

(recognized with the posture classifier with 43 classes described above), and the 

four remaining values having the same scheme as the first four values but for the 

left hand. 

The posture labels, values in the fourth and eight positions of the feature 

vector, are normalized to have a similar range as the other features. The other 

features, X, Y and Z range from [0...1] for all 3 coordinates. The normalization 

done to the original posture label value, which originally vary from [0...42], is 

dividing the value by 43. This way, the posture label value given to the feature 

vector has the range [0...1]. 

To test the classifiers, in both cases, a k-fold cross-validation method was 

applied, similarly to what was done with the postures classifiers. A k=8 value was 

used to ensure a correct division of the dataset, since it includes 48 repetitions of 

each sign (8 repetitions for each signers times 6 signers). Despite the 

subsamples being randomly generated, it is assured that each subsamples has 

one instance of a sign from each of the signers. Again, the same kernels tested 

in the posture classifiers were used to create both sign classifiers. 

Although it could be possible to achieve better results with a thorough 

exploration of the tested kernels parameters and even other kernels or machine 

learning techniques, considering the available time for realization of this thesis 

and considering that its main aim is not to explore the machine learning field, 

each kernel was used with the default values of the framework implementations.  
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4 Results and Evaluation 

4.1 Posture Recognition 

After collecting the data and creating the classifiers for the posture system, 

the cross validation method was used to test the classifiers accuracy. For the 9 

tested kernels, the 2 best kernels were the Gaussian Kernel and the Histogram 

Intersection Kernel, but only the results of the second one will be shown in order 

to simplify the visualization. For the 52 postures classifier multiple experiments 

were conducted in order to compare with other works. There were created 

classifiers with the depth information, and others with binary information (shape 

of the hand). Variations in the hand depth image normalization process were also 

tested, being the first classifiers tested without addressing the problem of the 

signer hand size (showed in 3.5.2), while in the others, the full normalization 

process was included. And finally, variations in the feature vector size were also 

tested, with feature vector sizes of 64(images with 8x8), 256(16x16), 1024 

(32x32) and 4096(64x64). Since no significant differences obtained for the last 

three sizes, but since the size of 32x32 obtained usually higher accuracy, this 

was the selected feature size. 

Table 5 – Postures classifiers results for the data with 52 postures and with the 3 distinct normalization 

methods. The kernel used was the Histogram Intersection. Underlined are depicted the similar results from 

different feature sized vectors (32x32 and 64x64). The Training and Validation values are averaged 

accuracy values from all folds. 

 Normalization Method 

Features No Stretch Stretch Ratio Stretch 

Type Size Training Validation Training Validation Training Validation 

B
in

a
ry

 

8x8 0,554 0,475 0,584 0,498 0,666 0,583 

16x16 0,730 0,630 0,713 0,606 0,791 0,700 

32x32 0,758 0,654     0,815 0,720 

64x64 0,763 0,654     0,818 0.725 

D
e

p
th

 

8x8 0,800 0,650 0,852 0,704 0,907 0,800 

16x16 0,910 0,770 0,913 0,772 0,961 0,861 
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From analysing the values, firstly, it is possible to see that it is best to use 

the depth information than the binary information in this problem. This was 

expected since depth features contain more information than the binary ones. 

The feature size selected to be used in this problem, in this conditions, was the 

32x32 feature vector size. The processing workload needed to use the feature 

vector of 64x64 doesn’t increment the results in a statistically relevant amount, 

once that the posture system is to be used within the sign recognition system, 

having to classify both hands in each of the sign instants. In top of that, and 

because of the data collection method and sensor, the original input concerning 

the hands, has sizes varying from 130x130 pixels to 40x40 if the signer is farther 

away from the sensor but still in the acceptable range (1 to 3 meters). So, in some 

scenarios, if the size of 64x64 is used, the original Kinect data for the hand will 

be smaller therefore the feature vector must be scaled up. 

With the “Stretch” method applied, the performance of the classifiers 

increased in an average of 9% in comparison to the “No Stretch” classifiers, and 

an average of 9% for the “Stretch Ratio” classifiers.  

Analysing the data in Table 5, we can see that the best classifier uses 

32x32 features with depth data, and the stretch method on the normalization of 

the hand depth image. In appendix 0 is the cross matrix table for the chosen 

classifier. It is possible to see that were 340 false positives out of 2703 

recognitions, 30 postures had a recognition rate above the average 87.28% while 

the standard deviation was 9.12%.  

Comparing with similar works, (Almeida, 2011) made use of Kinect v1 

using only depth information. It achieved a 100% recognition rate on the 26 letters 

from the PSL alphabet (against this example’s 52 postures) using a Skeletal-

based Template Matching adaptation. His data set contained only one user, and 

the testing was done with the same user present in the data set, but with new 

recordings. Also with the Kinect v1 and relying only on depth information, (Souza, 

Pizzolato, 2013) achieved a recognition rate of 95.0% for 46 postures of the 

Brazilian Sign Language, also known as LIBRAS. Souza’s system was multi-user 

and he used SVM with a Gaussian Kernel, using an estimated parameter 𝛿. Using 

32x32 0,930 0,800 - - 0,968 0,874 

64x64 0,942 0,809  - - 0,970 0,871 
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also depth information, but instead of the Kinect, a TOF camera, (Kollorz et al., 

2008) achieved a recognition rate of 95.12% for 12 hand configurations. Also 

making use of a TOF camera, (Uebersax, Gall, 2011), achieved an average 

recognition rate of 76.1% for the 26 letters of the ASL alphabet. 

After testing what was the best method to use, there was created and 

tested the second classifier with the dataset containing 43 postures.  

Table 6 – Testing results for the posture classifier for the dataset containing 43 postures. With the best 

method for normalization, depth data and Histogram Intersection kernel chosen, only the feature vector 

changes were experimented, mainly due to the computational and time costs of creating new classifiers. 

The Training and Validation values are averaged accuracy values from all folds. 

Being this dataset composed by less postures (43) than the previous one, 

but having a lot more variation concerning the hand orientation, its accuracy 

dropped considerably comparing to the previous classifier. A similar approach 

and comparison, using only depth information from the hands, was done in 

(Souza, Pizzolato, 2013). To address the same problem of classifying hands in 

signs, and with a set of 46 hand postures, it achieved a validation accuracy of 

47.90%. Both performances are rather low when compared to the previous 

classifier because of the nature of the problem addressed in this second case 

(3.3.2). Despite the results, this is the only suitable classifier to be used to 

recognize hand configurations with the motion of the hands in the middle of the 

signs. 

4.2 Sign Recognition 

For the sign recognition system, that was the main aim of this work, there 

were created 2 classifiers as well. In both cases, despite the 9 kernels were 

tested, as explained in 3.6.2, only the 3 best results will be discussed. 

Features Stretch 

Type Size Training Validation 

D
e

p
th

 8x8 0,619 0,536 

16x16 0,723 0,616 

32x32 0.80 0.642 
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For the first classifier, that only concerned the moving part of the sign, that 

is, the hand path, the results were as follows: 

Different feature normalization sizes for the movements were tested, being 

the movements of the dataset normalized to that size with the method described 

in 3.5.1.Analysing the data in Table 7, it is possible to see that the best classifier 
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maravilha 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 48 1,0000

apagar 0 46 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 48 0,9583

escrever 0 1 41 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 48 0,8542

graxa 0 3 9 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 48 0,7500

balanca 0 0 0 0 42 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 42 48 0,8750

avaliar 0 0 0 0 11 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 35 48 0,7292

discutir 0 0 0 0 0 0 43 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 48 0,8958

guerra 0 0 0 0 0 0 6 41 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 48 0,8542

eclipse 0 0 0 0 0 0 0 1 44 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 48 0,9167

morrer 0 0 0 0 0 0 0 0 2 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 48 0,9583

fio 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 47 48 0,9792

tubo(fino) 0 0 0 0 0 0 0 0 0 1 1 37 6 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 37 48 0,7708

tubo(medio) 0 0 0 0 0 0 0 0 0 0 0 6 40 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 40 48 0,8333

testemunha 0 0 0 0 0 0 0 0 0 0 0 0 0 37 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 37 48 0,7708

verdade 0 0 0 0 0 0 0 0 0 0 0 0 0 12 35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 35 48 0,7292

mesa 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 47 48 0,9792

balcao 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 45 48 0,9375

gritar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 48 48 1,0000

cantar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 48 48 1,0000

apoio 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 1 0 0 0 0 0 47 48 0,9792

cadeira 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 1 0 0 0 0 0 46 48 0,9583

quente1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 45 48 0,9375

televisao1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 1 47 48 0,9792

ajudar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 48 48 1,0000

receber3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 48 48 1,0000

comunicar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 48 48 1,0000

trabalhar 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 1 46 48 0,9583

nao 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 48 48 1,0000

nadar 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 46 48 0,9583

1275 1392 0,9159

Table 8 – Confusion matrix created in the classifier testing phase using the cross validation method. An average 

recognition rate of 91.59% was achieved for the selected vocabulary. 

Table 7 – Testing results for the signs classifier using only the Hand Path as features. Various normalization sizes were 

tested, as well as 9 kernels. Only the best 3 are presented. The Training and Validation values are averaged accuracy 

values from all folds. 

  Kernel 

Features Gaussian Quadratic Laplacian 

Type Size Training Validation Training Validation Training Validation 

M
o

v
e

m
e

n
t 10 0,813 0,779 0,866 0,836 0,945 0,88 

20 0,834 0,8 0,932 0,878 0,98 0,901 

30 0,841 0,802 0,962 0,9 0,99 0,907 

40 0,843 0,805 0,976 0,916 0,996 0,916 

50 0,844 0,805 0,982 0,916 0,997 0,915 
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uses features resized to 40 frames and the used kernel was the Laplacian. In is 

the confusion matrix table for the chosen classifier.  

It is possible to see that were 117 false positives out of 1392 recognitions, 

10 postures had a recognition rate below the average 91.59% while the standard 

deviation was 8.93%. In Table 3, presenting the corpora, were also depicted signs 

with similar or with the same movement. As it was expected, the signs that had 

lower recognition rate were precisely those that have the same movement, that 

are the pairs “escrever” and “graxa”, “balança” and “avaliar”, “discutir” and 

“guerra” and lastely “tubo(fino)” and “tubo(médio)”. Also, signs with similar 

movement as “eclipse” and “morrer” and “testemunha” and “verdade”, that have 

small differences only in the positioning of the sign, verified a lower accuracy rate. 

The classifier was also able to distinguish signs with a significant positioning 

difference but with the same movement, as the case of the pair “mesa” and 

“balcão”. That the sole difference is that the second one is performed bellow the 

chest, and the second one above the chest. Yet, despite “balcão” having the 

similarity with “mesa”, it also shares a similar positioning with the pair of signs 

“tubo”. 

Comparing again with (Almeida, 2011), that achieved a 100% recognition 

rate on the 10 signs from the PSL alphabet (against this example’s 29 signs) 

using an algorithm of 3D Path Analysis. His data set contained only one user, 

and the testing was done with the same user present in the data set testing the 

system on the fly. In Rui’s work, of the 10 signs, only one pair shared similar hand 

paths. Similar approach to this thesis problem took (Souza, Pizzolato, 2013), 

testing first the system using only the hand trajectory information. He achieved a 

recognition rate of 55.24% for 13 signs of LIBRAS. Souza’s system was multi-

user and he used HCRF to address this problem. 

After validated the method of recognizing the movement part of the sign, 

by analysing the results and comparing with other works, the final step towards 

the solution of the hypothesis H1 can be done. 

The second sign classifiers created have to merge both movement 

information (hand path information) with the hand configuration. The classifier 

explained in 3.6.2 yield the following results: 
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 Comparing this approach, that uses both movement and hand 

configurations information, with the previous approach, that uses only 

movements, there is a decrease of 10.3% comparing the best classifiers from 

both cases. After evaluating and validating the performance of the system using 

only the movement information a possible assumption is that this decreasing in 

the accuracy is due to the hand labels, that, despite normalized to fit the feature 

vector, introduce instability to the dataset. In the confusion matrix for this second 

sign classifier is possible to see that no sign increased recognition. Besides 

introducing error in the signs that were not supposed to benefit from this approach 

(signs that had no similar nor equal movement), the hand labels weren’t helpful 

in distinguishing the pair of signs (Table 3) that should actually benefit from it. 

Table 9 – Testing results for the signs classifier using the Hand Path and the Hand labels in each frame were used as 

features. Various normalization sizes were tested, as well as 9 kernels but only the best 3 are presented. The Training and 

Validation values are averaged accuracy values from the 8 folds. 

  Kernel 

Features Gaussian Quadratic Histogram Intersection 

Type Size Training Validation Training Validation Training Validation 

M
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e
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+
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ls
 10 0,866 0,65 0,987 0,654 0,862 0,774 

20 0,918 0,731 0,99 0,732 0,885 0,796 

30 0,936 0,751 0,99 0,751 0,897 0,813 

40 0,942 0,759 0,99 0,746 0,896 0,809 

50 0,944 0,764 0,99 0,752 0,903 0,808 
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The most similar work is (Souza, Pizzolato, 2013) that for the sign 

recognition with hand information also included the hand and face orientations 

information. Souza’s achieved an 84.41% accuracy using a SVM with a Quadratic 

kernel for classifying the hand configuration and Hidden Conditional Random 

Fields to merge all the information. In his work, there was a substantial increase 

of the accuracy when comparing the systems without the hands information 

(55.24%) and this approach.
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maravilha 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 48 1,0000

apagar 0 28 10 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 28 48 0,5833

escrever 0 5 25 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 25 48 0,5208

graxa 0 10 10 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 25 48 0,5208

balanca 0 1 0 0 36 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 36 48 0,7500

avaliar 0 0 0 0 13 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 23 48 0,4792

discutir 0 0 0 0 0 0 35 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 35 48 0,7292

guerra 0 0 0 0 0 0 5 39 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 39 48 0,8125

eclipse 0 0 0 0 0 0 0 0 42 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 48 0,8750

morrer 0 0 0 0 0 0 0 5 4 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 48 0,8125

fio 0 0 0 0 0 0 1 0 0 0 40 1 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 40 48 0,8333

tubo(fino) 0 0 0 0 0 0 0 0 0 1 3 27 9 0 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 27 48 0,5625

tubo(medio) 0 0 0 0 0 0 0 0 0 0 1 13 29 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 29 48 0,6042

testemunha 0 0 0 1 0 0 0 0 0 0 0 0 0 36 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 48 0,7500

verdade 0 0 0 0 0 3 0 0 0 0 0 0 0 13 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 48 0,6667

mesa 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 46 48 0,9583

balcao 0 0 0 0 0 0 0 0 0 0 2 2 5 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 39 48 0,8125

gritar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 48 48 1,0000

cantar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 48 48 1,0000

apoio 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 3 0 0 0 0 0 40 48 0,8333

cadeira 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 1 0 0 0 0 1 0 0 46 48 0,9583

quente1 0 0 0 0 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 37 48 0,7708

televisao1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 47 48 0,9792

ajudar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 43 0 0 0 0 0 43 48 0,8958

receber3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 47 0 0 0 0 47 48 0,9792

comunicar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 47 0 0 0 47 48 0,9792

trabalhar 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 46 48 0,9583

nao 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 48 48 1,0000

nadar 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 46 48 0,9583

1132 1392 0,8132

Table 10 – Confusion matrix created in the sign classifier testing phase using the cross validation method. This classifier 

used both movement and configuration information. An average recognition rate of 81.32% was achieved for the selected 

vocabulary. 
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5 Conclusions and Future Work  

5.1 Conclusions 

In this work, there were presented, detailed and conducted experiments in 

the problem of sign language recognition in the context of Portuguese sign 

language using Support Vector Machines and the Kinect One sensor. First there 

were detailed the main components of the Portuguese Sign Language and there 

were specified the main problems this work proposed to tackle. In the 

development of the system, it was presented the two step signs classification 

proposed in the architecture. This system was created using only depth 

information retrieved with the Kinect One sensor.  

The first hypothesis (H1) suggested that was possible to extend current 

works on PSL to distinguish a specific set of properties in signs: signs with the 

same movement but different hand configurations. While proved in (Gineke, 

Reinders, 2010; Souza, Pizzolato, 2013) that hand information was crucial for the 

sign recognition process and that it could increase the sign recognition accuracy, 

this was not verified in this system. Using only depth information, Souza and 

Pizzolato used hand depth images deriving also hands and facial orientation to 

achieve those conclusions. It can be concluded that analysing both hands at each 

frame with a single image is not a viable approach because of the posture 

classifier used. This system was able to correctly distinguish the paired signs of 

the classes 2 and 3 proposed in 3.3.2 because of the analysis of the hand path, 

but failed to distinguish pairs of the type 1 because of the hand configuration 

classification. Despite this work not being able to distinguish said classes of signs, 

it extended PSL state-of-art by using 53 postures of PSL and 29 signs, improving 

the previous 26 postures and 10 signs from (Almeida, 2011), researching and 

implementing some of the suggested future work, such as handling multiple 

signers. It was also able to verify that the approach to the movement part can be 

taken into consideration for other works, and for future work, by, as previously 

mentioned, being able to distinguish those specific classes of signs. 
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5.2 Future Work 

As a future work of this research, it would be necessary to implement a 

better system to classify hand configurations. Other approaches to be 

implemented and tested could be: coupling other information with the hand depth 

image, such as hand orientation; use an appearance based model of the hand 

for each frame or a set of frames; try to assert the hand configuration analysing 

a set of frames for the movement or even the whole movement, instead of 

classifying many instants. Other future work, to improve the case of other signs 

must go through detecting facial expressions, either similarly to what was done 

in (von Agris et al., 2008) or merging this system with the ViKi (Visual Kinect) 

developed by Hélder Abreu (Abreu, 2014) with interesting results in the analysis 

of the lips. Analysing other body parts and movements is also a crucial step for a 

Sign Language system being able to identify all classes of signs. Concerning the 

machine learning, other approaches should be tested, either by a thorough 

investigation and manipulation in the kernels used or in new kernels, or by using 

other machine learning techniques such as HMM or even Neural Networks. A 

final improvement after the previous mentioned ones implemented, should be 

addressing the continuous sign language recognition problem.
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Appendix 

A.CROSS MATRIX FOR 52 POSTURES CLASSIFIER 
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 %

a 40 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 41 0,9756

b 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 43 47 0,9149

c 0 0 45 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 45 50 0,9000

e 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 53 0,8679

f 0 0 0 0 49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 50 0,9800

g 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 1 0 8 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 38 51 0,7451

h 0 0 1 0 0 0 45 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 45 50 0,9000

i 0 0 0 1 0 0 0 44 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 44 53 0,8302

j 0 0 0 0 0 0 1 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 44 50 0,8800

k 0 0 0 0 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 46 50 0,9200

l 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 49 50 0,9800

m 0 0 0 0 0 0 0 0 0 0 0 55 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 57 0,9649

n 0 0 0 0 0 0 0 0 0 0 0 3 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 49 0,9388

o 0 0 0 0 0 1 0 0 0 0 0 0 0 48 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 48 55 0,8727

p 0 0 0 0 0 0 0 0 0 0 0 0 0 1 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 57 0,9298

q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 51 0,9608

r 0 0 1 0 1 0 4 0 0 0 0 0 0 0 0 0 46 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 46 54 0,8519

s 0 0 0 1 0 7 0 1 0 0 0 0 0 0 0 3 0 30 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 45 0,6667

t 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 37 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 37 48 0,7708

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 56 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 56 62 0,9032

v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 51 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 60 0,8500

w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 0 43 53 0,8113

x 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 55 0,9455

y 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 47 49 0,9592

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 47 50 0,9400

2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 2 0 0 0 0 41 53 0,7736

3 0 0 0 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 30 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 46 0,6522

4 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 45 50 0,9000

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 52 55 0,9455

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 46 0,9130

7 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 55 59 0,9322

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 50 53 0,9434

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 60 0,9667

bicoaguia 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 53 0,8679

bicopassaro 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 48 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 52 0,9231

bicopato 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 51 0,9804

concha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 52 54 0,9630

ganchoduplo 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 4 0 0 47 56 0,8393

garraaberta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 2 0 0 0 0 1 0 3 0 0 0 0 0 48 54 0,8889

garrafechada 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 45 0 0 0 0 0 2 0 0 0 0 0 0 45 51 0,8824

indicativa 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 42 1 0 0 0 0 0 0 0 0 0 0 42 46 0,9130

maoaberta 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 2 0 2 0 1 0 0 0 48 57 0,8421

pincafechada 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 56 58 0,9655

pistola 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 9 0 0 0 0 44 58 0,7586

punaiseaberta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 45 4 1 0 0 0 0 0 45 54 0,8333

punaisefechada 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 38 6 0 0 0 0 0 38 49 0,7755

eta 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 1 0 1 2 30 0 0 4 1 0 30 49 0,6122

gama 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 43 0 0 0 0 43 53 0,8113

teta 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 1 0 0 0 0 0 0 39 0 1 0 39 47 0,8298

zeta 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 5 1 0 32 0 0 32 49 0,6531

lambda 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 42 0 42 52 0,8077

iota 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 46 48 0,9583

2363 2703 0,8729

Figure 34 - Using histogram intersection kernel with 32x32 feature vector size, depth information, and the full normalization process (with stretch method) 
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B. HAND CONFIGURATIONS (BELA BALTAZAR, 2010)  
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