Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Master Course in Computing Engineering

Nuno Pereira

Concept Location based on System Dependency Graphs

Master dissertation

Supervised by: Pedro Rangel Henriques

Maria Joao Varanda

Braga, October 31, 2014

ABSTRACT

Software maintenance can be seen as the act of correct errors in the software and/or the addiction
of new features. This is one of the most difficult and frequent jobs of a software engineer and one of
the most important and expensive parts of software development.

Maintaining a software is very complex mainly because before making the change to the program,
software engineers need to find the location, or locations, where the changes will be made; in other
words, first they need to understand the program. Real applications are always huge and sometimes
these programs are old or were written by other person and it is difficult to find the location where
the change will be applied. There are various techniques to find these locations minimizing the time
spent, but this phase of software development continues to be one of the most expensive and longer.

The objective of this Master Work is to combine Program Comprehension techniques like comment
analysis and SDG visualization, creating a tool easy to use, that can simplify and decrease the time

spent understanding a program.

RESUMO

Manutencdo de software pode ser vista como o ato de corrigir erros no software e/ou de adicionar
novas funcionalidades. Esta € uma das tarefas mais frequentes e dificeis de um engenheiro de software
e uma das mais importantes e dispendiosas partes do desenvolvimento de software.

Manter um software € muito complicado principalmente porque antes de efectuar a alteracdo do
programa, o engenheiro de software precisa de encontrar o local, ou locais, onde a alteragdo serd
efectuada, ou seja, primeiro ele precisa de perceber o programa. Por vezes estes programas sio
antigos ou foram escritos por outra pessoa e ¢ dificil encontrar o local onde a alteragdo serd feita.
Existem muitas técnicas para encontrar estes locais minimizando o tempo despendido, mas esta fase
do desenvolvimento de software continua a ser uma das mais caras e demoradas.

O objetivo do presente Trabalho de Mestrado € combinar técnicas de Compreensio de Programas
tais como andlise de comentdrios e visualizacdo do SDG, criando uma ferramenta ficil de usar, que

consiga simplificar e diminuir o tempo despendido a perceber um programa.

CONTENTS

CONteNnts v v v it e e e e e iii
1 INTRODUCTION . . . i it et e e e e e e e e e e e e e e e e e e e
I.1 Objectives o v it e e e e e e

1.2 Research Hypothesis 5

1.3 Document StruCture v v vttt e e e e e e e e 5

2 PROGRAM COMPREHENSION: BASIC CONCEPTS 7

2.1 Programming Languages e 7

2.1.1 Context Free Grammar 7

2.1.2 Attribute Grammarso 9

2.1.3 ANTLRo 10

2.2 Understandinga Program L . 11

2.3 ConceptLocation e 13

2.3.1 Information Retrieval 14

2.3.2 Dariuso e e e e 14

2.4 Graphs. e 17

2.4.1 DOT ... e 19

2.4.2 JGraphX e 20

243 JUNGo e 23

2.5 System Dependency Graph 23

2.5.1 Whatisit? e 24

2.5.2 Tools that build a System Dependency Graph 25

3 DARIUSSDG: DESIGN oottt e e e e e e e 28

3.1 Requirements i e e e 28

3.2 Architecture L. e e e 30

4 DARIUSSDG: DEVELOPMENT iii ittt e 32

4.1 Comment Analyser for Concept Location 32

4.2 Building the System Dependency Graph 35

4.3 Designing the System Dependency Graph 39

4.4 Integration e e e e e e e 40

4.5 Testing. . . . o v i i e e e e 42

4.5.1 Loading, Analysing and Build SDG 43

4.5.2 Comments e e e e e 47

4.5.3 OtherTests o . i i 52

iii

5 CONCLUSION

Contents

iv

LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Evolution of maintenance costs 3
Representation of one production in an attribute grammar 10
ANTLRWorks interface, 11
How Software Reconnaissance works, 13
Darius Architecture Lo 15
Darius Graphical User Interface: Comment Statistics tab 16
Darius Graphical User Interface: Words Analysertab 16
Darius Graphical User Interface: Concept Locationtab 17
Directed Graphexample 18
Graph generated by aDOTtool 19
A System Dependence Graph 20
Styles that can be drawn with JGraphX 21
Sample graphs made with JGraphx 22
Anodeinsideanode oL, 23
Jung graphexample L L oL 24
A System Dependency Graph 25
JavaPDGinterface Lo oL 26
Architecture of DariusSDG oL, 31
Darius structure shown by NetBeans 33
How DariusSDG associates comments with methods 34
How DariusSDG associates comments with statements 34
How DariusSDG associates comments with methods 37
How DariusSDG handle DDG objects 39
DariusSDG graphical user interface 41
Excerpt of the Statistics showed by DariusSDG 44
NetBeans window that shows the structure of a test program 44
NetBeans window that shows the methods present in the IRS class . . 45
Detail of DariusSDG that shows the methods present in the IRS class . 45
Graph drawn by DariusSDG that shows a Do While loops 45
Excerpt of a graph drawn by DariusSDG that shows data dependencies edges 46
Search query executed in DariusSDG 48
Behaviour of DariusSDG when a comment is selected 49

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39
Figure 40

List of Figures

How DariusSDG associates a comment that is outside a method and before

ONE . o v v v e e e e e e e 50
How DariusSDG associates a comment that is outside a method and after all
methods e 50

How DariusSDG associates a comment that is inside a method and before a
Statement e e e e e e e e e e e e e 51
How DariusSDG associates a comment that is inside a method and in the
same lineasastatement 51

How DariusSDG associates a comment that is inside a method and after all

SLAtEMENESt e e e e e e e e e e e 51
DariusSDG Statistics window realtive to DatumBox 52
DariusSDG with DatumBox loaded example 53
DariusSDG resources consumption when loading DatumBox 54

vi

LIST OF EQUATIONS

Context Free Grammar representation oL
Production representation Lo
Context Free Grammar example L o .
Context Free Grammar example with BNF

Context Free Grammar example witheBNF

O© O O o0 0 o0

Attribute Grammar representation e e e e e

Directed Graph representation oo e e 18

00 N N Lt AW N~

Directed Edge representationo e 18

vii

LIST OF TABLES

Table 1
Table 2

Some graph options available in JGraphX
Main functions of the System Dependence Graph API

viii

LIST OF LISTINGS

2.1
2.2
23

4.1
4.2
4.3

DOTexample e e e e e e 19
Sample code to make two graphs using JGraphXo 21
ExcerptofalJavaprogram 25
Example method with a Do Whileloop 46
Example code that shows areassignment 46
Example of a method whit all five types of comments 50

ix

1

INTRODUCTION

This document introduces a master work, in the area of Program Comprehension. The development
of a thesis and its presentation in the format of a dissertation is a component of the second year of the

Master Degree in Informatics Engineering that is held at University of Minho in Braga, Portugal.

1.1 OBIJECTIVES

”Software Maintenance is defined as the modification of a software product after delivery to correct
faults, to improve performance or other attributes or to adapt the product to a changed environment”
Chikofsky and Cross (1990).

Software maintenance is one of the most expensive phases of software development. In Figure 1
(extracted from Engelbertink and Vogt (2010)) we can see that 80% to 95% of the overall costs are
spent in maintenance, and half the time spent in software maintenance is to understand the program
code and the instructions that have to be changed Erlikh (2000); Fjeldstad and Hamlen (1983).

100% = Total cost of software

100%

S50% Maintenance costs

1970 2009

Figure 1: Evolution of maintenance costs

These conclusions are easily understandable because before making the change to the program,
software engineers need to find the location, or locations, where the changes will be made. These
programs tend to be complex and huge, in terms of lines of code and number of files, are usually
written by different software engineers with different visions of the problem and different forms of

thinking. Moreover the variables and methods names in the source code may not be explicit and usu-

1.1. Objectives

ally these kind of programs (legacy programs) do not have good or updated documentation Forward
et al. (2002); de Souza et al. (2005).

There are various techniques to find these locations minimizing the time spent searching but the
most used techniques consists in navigating through the statements dependencies or search for key-
words that can indicate where the concept is implemented.

In the first technique, the software engineer navigate through the dependencies among elements,
usually the navigation start at the main function and a specific path is taken until he finds the desired
concept implementation. If the search is not successful, the software engineer must backtrack to the
previous point (e.g., class, method or conditional structure) and choose a different path.

The other technique consists in searching for certain keywords in the source code files (related to
the change that will be made) that can indicate the location, or locations, where the software engineer
needs to intervene.

When the software engineer search in the source code, he is not only searching in the program
instructions but also in the comments.

The best documentation for a program includes comments, and software engineers makes a lot
(and relevant) comments in the source code wherein about 19% of the source code are comments.
Comments can explain source code in a natural language connecting the program domain with the
problem domain Kernighan and Plauger (1978); Forward et al. (2002); de Souza et al. (2005).

Although being the most used, these techniques are used in a very ineffective way. The process of
navigating through dependencies till find the location that need intervention is slow and depends of
the quality of the code (explicit names) to find the right path.

The process of searching (finding concepts in the source code) can also be improved with other
techniques like stemming, which consists in reducing the word to its grammatical root, so when the
software engineer search for the keyword sales the program can return other similar words like sold
or sell. Also the search could be more ”smart” and find words at any order; so when the software
engineer search the terms user options results like options the user have could be returned.

There are very few applications that implement these two techniques (find concepts in the source
code comments and navigating through the statements dependencies) in order to speed up the process
of program comprehension.

Also, the tools are built focusing one Program Comprehension technique and, until now, there is no
application that join these two mentioned techniques. These two techniques complement each other,
giving semantic and structural information about the program, joining them in one application can
give a much clear vision of the program to the software engineer.

For all these reasons, becomes clear that it is challenging, interesting and useful to create a tool
with a friendly interface that allows to perform concept location over a System Dependency Graph
(SDG). The main idea is to visualize a dependency graph (control flow and data dependencies) and
locate the nodes that can be related to a given term. More than locate a set of hot instructions (based

on the associated comments) it will allow to detect the other instructions (the whole method).

1.2. Research Hypothesis

The final objective of the tool proposed in this thesis, named DariusSDG, is to decrease the time
spent to locate concepts in source code in order to reduce the cost of maintenance tasks.

Finally, the language that will be our case of study is Java !. Java is one of the most used program-
ming languages in the world TIOBE (2014); LangPop (2013), it supports object-oriented design, has
an extensive API, it has web support and many third-party packages. By designing a tool that can

analyse Java code we can reach a much broader audience.

1.2 RESEARCH HYPOTHESIS

As mentioned before, software maintenance is one of the most important, expensive and poorly op-
timized phase of software development Stamelos et al. (2002); Brooks (1978); Gosling et al. (2005).
The time spent understanding the program can be minimized using techniques of Program Compre-
hension.

Hereupon, the objective of this thesis, is to create a tool (DariusSDG) easy to use that can show
various kinds of information about a program (structural and semantic) reducing the time spent in
program comprehension.

If the time spent to understand a program decreases the software engineer can correct the error, or
the implementation of a new feature quicker, reducing costs.

In this context, the research hypothesis underlying the present master work is that it is possible to
improve a tool (Darius, previously developed by our Research Group) designed for Concept Location,
based on Comment Analysis, with a navigation mechanism supported by the System Dependency
Graph.

1.3 DOCUMENT STRUCTURE

This chapter was an introduction to the document, describing the purposes and objectives of this
master work. In chapter 2, it is introduced the area of Program Comprehension, some concepts,
definitions and techniques which are fundamental to this master work. In the first section of the
chapter it is introduced the concept of Programming Language and how it is defined. In the following
section we will deepen some the Program Comprehension concepts. The third section of chapter 2
describes in more detail the Concept Location technique as well some tools that perform this kind of
search. The next section describe the concepts of graph theory. The chapter ends with an overview of
the System Dependency Graph technique. It also describes and analyses the existing tools that create
this kind of graph.

The architecture and design of DariusSDG are described in chapter 3.

Chapter 4 is divided in five sections. The first section will explain how the comment analyser

for concept location was implemented and used. How the System Dependency Graph was built is

1 More information in http://docs.oracle.com/javase/8/

1.3. Document structure

explained in the second section and how it was represented is described in the following section.
Section four is where the integration between the tools is explained. The last section presents some
tests that where made with the tool.

This document ends in chapter 5 where the conclusions about this master work are made and some

improvements are pointed out for future work.

2

PROGRAM COMPREHENSION: BASIC CONCEPTS

Program Comprehension is a component of Software Engineering discipline whose principal pur-
pose is to study how software engineers understand programs Storey (2005).

Software Maintenance is one of the most expensive phases of software development (as mentioned
in Chapter 1), being that half the time spent doing this task is understanding the program. Aware of this
fact, many techniques of Program Comprehension were created to streamline this phase of software
development. This chapter will refer some of these techniques as well as tools that implemented the
referred techniques. Other important concepts related to Program Comprehension are also explained

in this chapter.

2.1 PROGRAMMING LANGUAGES

Natural languages were created to facilitate the communication between humans and where created
before the rules, despite following a pattern they have a lot of exceptions. Formal languages, like
programming languages, works the other way around, first, very well defined rules were created and
them, based on those rules we create sentences/instructions which give origin to texts/programs.

A formal language is a set of elements (symbols, letters or tokens) and rules that explain how the
symbols can be related. These elements and rules are described in a formal grammar. If a sentence is

recognized by the grammar, that sentence belongs to the language.

2.1.1 Context Free Grammar

A context free grammar (CFQG) is a formal grammar which is used to represent a formal language,
it describes the elements (symbols, letters or tokens) the language can use and how to related them

(build sentences) Crespo (cop. 1998); Halfeld-Ferrari.

2.1. Programming Languages

Formally a context free grammar can be represented by a tuple:

CFG = (T,N,s,P) (1)
Where
e T is a set of terminal symbols
e N is a set of nonterminal symbols
e s is the initial nonterminal symbol, the axiom
e Pis a of set derivation rules, the productions
A terminal symbol can be a symbol, a letter or a token and a nonterminal symbol is an identifier.
A production is represented as:
P:ay— ay...a, 2)
Where
e P is the identifier of the production
® a ¢ is a nonterminal symbol

® a j...a, are terminal or nonterminal symbols

The left hand side (LHS) of the production (ag) derives in the right hand side (RHS) (a;...a,) of the
production. If the RHS of the production contains a nonterminal symbol we must check the production
that derives the nonterminal symbol till we have only terminal symbols.

A context free grammar that represent a list of zeros and ones separated by a comma can be:

zeros_and_ones = (T, N, s, P)

T=0,1,°"
N = List, Item
s = List

. (3)
P1: List — Item

P2 : List — Item, List
P3: Item — 0
P4 : [tem — 1

In the production P2 the nonterminal symbol List derives in the nonterminal symbol /fem, followed

’

by the terminal symbol ’,’, followed by the nonterminal symbol List.
When we have more than one production with the same right hand side, we must choose one of
them to continue the derivation. For example, when we have the nonterminal symbol List whe can

derive it into Item or into Item , List.

2.1. Programming Languages

The rules are grouped by the LHS of the production, so we can omit P2 and P4 left hand side of
the production, these notation is known as Backus—Naur Form (BNF) Garshol (2008).

P1: List — Item

P2: |Item, List
P3: Item — 0

P4 : I1

“4)

In P2 rule we use a recursive call to make the list as big as we want. The extended Backus—Naur
Form (eBNF) let us use three symbols of the regular expressions that can reduce the number of pro-
ductions.

The symbols are:

e ? which means optional occurrence
e *which means zero or more occurrences
e + which means one or more occurrences

Using the extended Backus—Naur Form we can join P/ and P2 produtions.

P1: List — Item(, [tem)*
P2 : Item — 0)
P3: 11

2.1.2 Attribute Grammars

An attribute grammar is a way to define attributes for the productions of a grammar Slonneger and

Kurtz (1978). Formally a attribute grammar can be represented by a tuple:

AG = (G,A,CR,CC,TR) (6)
Where

e G is a context free grammar

A is a set of attributes (associated to the terminal and nonterminal symbols of G)

CR is the set of contextual rules to obtain the value of the attributes in the productions of G

CC is the set of contextual conditions in the productions of G

e TR is the set of translation rules in the productions of G

2.1. Programming Languages

The attributes are divided into two groups: synthesized attributes and inherited attributes.

The inherited attributes transport information down the derivation tree. The child node inherit these
attributes from the parent nodes. The axiom and terminal symbols do not have inherited attributes.

The synthesized attributes transport information up the derivation tree. They are the result of eval-
uation rules. Terminal symbols have synthesized attributes (intrinsic) like the position, the line or the
text.

In Figure 2 we can see that the nonterminal symbol A derives in B and C. A inherits two attributes
and synthesises other two. B inherits one attribute from A and returns it another one. C inherits one

attribute from A and synthesize two attributes.

VVEEAA

VElA ViEAA

Figure 2: Representation of one production in an attribute grammar

The computational rules are mathematical expressions that are used to compute the values of the
attributes. These values can be computed using the synthesised attributes, the inherited attributes or
constants.

The contextual conditions are mathematical expressions to check the validity of the sentences. For
example, if a nonterminal symbol has an attribute day_of-the_month contextual condition shall restrict
the values to numbers from 1 to 31.

The attribute grammar can be seen as object oriented if we think that a production is an object and
the incoming attributes are the resources. The outgoing attributes must be computed only using the

available resources.

2.1.3 ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful and free tool for parsing formal
languages Parr (2014). It has an recognizer generator (parser and lexer) that can be used for reading,
processing or translating formal languages Aho et al. (1986); Waite and Goos (1984).

It has an development environment called ANTLRWorks (see Figure 3) where we can design the
grammar, debug it and test it with inputs. ANTLRWorks also have a navigation system, autocomple-

tion and a syntax diagram visualizer.

10

2.2. Understanding a Program

x
File Edit Find GoTo Grammar Refactor Generate Run Window Help
(2 C\Users\nuno\D« i SDG\src\ \ava.g o | 3w
BSL ¥ &= 3%
ava.g A modifiers returns [String str] BL)
B compiationUnit Binit{
B packageDedaration String tmp = " "5

B importDedaration

1
B) qualifiedimporthame Barter {

$modifiers.str = tmp:
B typeDedaration }

+ B dassOrInterfaceDedaration [}
- B modifiers
~ 8 variableModifiers

annotation {tmp += Sammotation.str;}
'public' {tmp += " public ";}

'protected’ {tmp += " protected ";
~ B dlassDedaration P {top P 1

(
|
|
| 'private’ {tmp += " private ";}
+ B normalClassDediaration | 'static’ {tmp += " static ";}
- B) typeParameters | ‘abstract’ {tmp += " abstract ";}
B typeParameter | 'final' {twp += " final ";}
B typeBound | 'mative' {mmp += " native ";} T AT EETER
| 'synchronized' {tmp synchronized ;}
8 enumDedaration | 'transient' {tmp += " transient ";}
8 enumBody | 'wolatile' {tmp += " volatile ":} Rename... Shift+F6
£ enumConstants | 'strictfp' {tmp += " strictfp ";} Extract Rule. v
“
? enumConstant 2T Inline Rule >
Find Usages Alt+FT ~

modifiers | {synpredl3 Java}? }—-{ annncatmn}

Show Rule Dependency Graph

I+ (synpredis savaj? |-+ PROTECTED |—»
= (synpredis gava}> || PRDATE|— o
= (synpredis_sava}> |-»] ABSTRACT | o

v

Show: []NFA [¥] Rule Name

Zoom

Syntax Diagram | Interpreter | Console | Debugger

225rules | 438:36 | Writable 25M of 253M

Figure 3: ANTLRWorks interface

ANTLR can be used for every formal language. To use it we must describe which language we
want to read/process/translate by using a context free grammar and using the extended Backus—Naur
Form (eBNF).

As mentioned, the output of ANTLR is a lexer and a parser that recognize the language specified.
ANTLR can generate code in several programming languages.

Attribute grammars can also be used in ANTLR. ANTLR has a specific notation for inherit and
synthesized attributes. The actions (translation rules, contextual rules and contextual conditions) to
make in each production must be written directly in the production and in the programming language
that will be generated.

When the recognizer is being generated, the actions are embedded in the source code at the appro-
priate points.

ANTLR is a widely used tool and has a lot of grammars that users can download.

2.2 UNDERSTANDING A PROGRAM

Understanding a program depends on the knowledge the software engineers has about the program
that is being analysed, his experience and knowledge about the real world problem that the program
solves.

These two concepts, real world problem and how it is solved in a programming language, are

known in Program Comprehension as: Problem Domain and Program Domain.

11

2.2. Understanding a Program

Despite being related many times, Problem Domain concepts do not have a direct correspondence
to their implementation.

We can see Problem Domain as the concepts related to the problem, the relation between them and
how the problem can be solved. For instance, if a teacher needs to manage a school class there are
various concepts related to that problem like students, grades, faults, summaries and so on.

This problem has various tasks, or more small problems associated like:

how to add a summary?

how to register the information about the students?

how to register the grades? Should be part of the student record or be saved apart?

where is the information stored?

Program Domain is concerned with the programming language and with the implementation tech-
niques used to solve the problem in a computer. Taking the example above, we can say that in Program
Domain the concern is what data structures will be used to store the information (an array?), how the
information about the grades will be implemented (as attribute of the school class or the student?)
among others.

The time spent understanding a program also depends on the program that is being analysed: how
it was created, how it is being maintained, in which programming language is written and the changes
that should be implemented also have a strong influence in the effort and time required for program
comprehension.

When a software engineer analyses a program he constructs a Mental Model of the program, which
is updated when new informations are collected Storey et al. (1999). The software engineer needs to
know the flow of the program, which methods are called, by who, what these methods do, the data
dependencies and the effect a change may cause. As said before, programs tend to be huge (many
lines of code, many methods and many files) and it causes to be unworkable the task of knowing all
these details about the program by hand.

Every software engineer has its own way to understand a program, to capture information from the
source code Storey et al. (1999). To help him on this task there are several tools that can be used to
explore the source code. The choice depends on the needs of the user: static or dynamic source code
analysis, use of visualizations or textual information to show the results and so on. Moreover, almost
tools are programming language dependent and some of them adopt invasive approaches that modify
the source code with code inspection instructions da Cruz et al. (2009).

Some Program Comprehension techniques are used to extract the structural information from source
code like the System Dependence Graph. This technique enables software engineers to easily see
how the program executes, which methods are called, who call certain method, the order they are

called and other similar information. However, this artefact does not show all the information about

12

2.3. Concept Location

the program Maletic and Marcus (2001). It does not show informations about the relation between
Program Domain and Problem Domain, how the real world concepts are emulated in the source code.

The main focus of this master work are the System Dependency Graph and Concept Location based
on comments techniques, which will be discuss in the next sections as well as some tools that imple-
ment these techniques in order to have a complete tool that shows structural and semantic information

about a program.

2.3 CONCEPT LOCATION

Concept Location is a component of Program comprehension that has the objective to find in the
code where the concepts are implemented Rajlich and Wilde (2012).

We can find these concepts analysing/inspecting the code or the System Dependency Graph but that
can take a lot of time.

Software reconnaissance Wilde and Casey (1996), for example, is a technique that runs a set of
cases where the action that implements the concept occurs, and other set of cases where the action that
implements the concept does not occur. The traces tacked are analysed and compared. The differences
can indicated where the concept is implemented. In Figure 4 (extracted from Wilde (2012)) we can

see a graphical representation of this technique.

Wl

COmponents COmponents look here fivst
executed with executed without for
call forswranding call forwranding call forswranding

Figure 4: How Software Reconnaissance works

Other option is searching for certain keywords in the source code that can indicate where the con-
cept is being implemented. This is possible because the text present in the source code can give
us various kinds of semantic information about a program Carvalho et al.. If a method is called "re-
turn_average_grade” it is almost certain what the method returns. The problem is when these methods
or variables do not have an explicit name or are relevant to understand the context and the concepts
involved like result or auxiliary.

That is why comments are so important. Comments can explain source code in a natural language
connecting the Program Domain with the Problem Domain, like an interface between them Woodfield
et al. (1981a). By reading the comments we can understand what the software engineer was thinking

when was writing the code and what problem he was trying to solve Tenny (1988).

13

2.3. Concept Location

2.3.1 Information Retrieval

As we can see in Manning et al. (2009), the main goal of Information Retrieval is finding and
retrieving documents that satisfies a certain search or query.
An Information Retrieval System analyses several documents processing its text with the assistance

of some tools like:

Sentence tokenizer, that separates the text into sentences.

Word tokenizer, that separates the sentences into words.

Stemming, that reduce the word to its grammatical root.

Elimination, that eliminates words that do not have significance or value.

After complete all the tasks the user only needs to insert in the system the query (set of keywords)
to execute. The system perform the same process mentioned before in the query, to assure consistence,
and retrieves a set of documents that satisfy the search ranked them by relevance.

Rank the results, according to some criteria (query), is the main problem of Information Retrieval.

There are various algorithms designed to rank documents, however in the most famous are Vector
Space Model Zhao et al. (2006) and Latent Semantic Analysis Deerwester et al. (1990).

2.3.2 Darius

Comments in the code, as mentioned before, are one of the most important source of information
about the program. It is one of the best ways to understand what the software engineer was thinking
and how the Problem Domain and Program Domain were related.

Studies (Woodfield et al. (1981b) and Teny (1985)) conclude that programs that have more com-
ments are more easily understandable by software engineers and tend to be more stable Aman and
Okazaki (2008).

To the best of our knowledge, at present Darius is the only tool available that performs concept
location based on source code comments.

Darius is a tool built by José Luis Figueiredo de Freitas, in his master work de Freitas (2011) at
University of Minho, that use several techniques of Information Retrieval to analyse the various types

(inline, multiline and JavaDoc) of comments presented in the source code.

14

2.3. Concept Location

In Figure 5 we can see the architecture of Darius. Darius is composed by four main modules:

e A comment extractor
e A statistic calculator
e A word analyser

e A concept locator

Concept Locator

Documant Databasa

IR Maodals

Comment Extractor

Statistic Calculator

Words Analyzer

Figure 5: Darius Architecture

These three modules are presented in a graphical interface that is composed by three tabs.

The first tab (see Figure 6) uses the static calculator module and show to the user informations
about the commenting practice on the program previous loaded as other informations like the number
of files, the number of conditional statements and loops.

In the second tab, that is shown in Figure 7, the user can write some words to be analysed by Darius
and related them to the comments in the code (it uses the word analyser module).

The concept locator module is used in the last tab (see Figure 8) and offers the possibility to choose
between two different types of Information Retrieval techniques: Vector Space Model Zhao et al.
(2006) and Latent Semantic Analysis Deerwester et al. (1990). These two techniques are used to rank

documents i.e. decide which results are more important according to the criteria expressed in the

query.

15

2.3. Concept Location

Load Project/Program

J Comment Statistics T Words Analyzer T Concept Location]

Load Statistics

Number offiles: 10 L‘\
Number of comments: 28

Number of lines: 10
Number of comment lines: 28

AVG of comment lines: 2.8

AVG of Non Line Comment lines 1.0

Block Comments /|
Number. 0
Average Per File: 0.0

Line Comments
Number. 24
Average PerFile: 2.4

Java Doc Comments
Number. 4
Average PerFile: 0.4

Jml Block Comments
Number: 0
Average PerFile: 0.0

¥

Statistics Loaded

Figure 6: Darius Graphical User Interface: Comment Statistics tab

Load Project/Program

[Comment Statistics TWnﬁds Analyzer T Concept Location]

user Total words: 70

options Total domain words: 8

implementation Total domain words found: 3

Frequency of the domain words found: 0.114285715
Percentage of the domain words found: 1.0

Inline Comment Frequency: 0.20833333 (0.13333334)
Block Comment Frequency: NaN (null)
JavaDoc Comment Frequency: 0.0 (null)

Class Comment Frequency: 0.0 (null)
Interface Comment Frequency: NaN (null)
Method Comment Frequency: 0.0 (null)

If Comment Frequency: 1.0 (0.33333334)
Switch Comment Frequency: NaN (null)
‘While Comment Freguency: NaN (null)

Domain Analyzed

Figure 7: Darius Graphical User Interface: Words Analyser tab

16

2.4. Graphs

After Darius process the program the user can write queries in the text field of that tab. Next he
can choose which technique he wants to use and see the retrieved documents (in this case comments)
order by relevance. If he wants to see a more detailed information about a comment he must select
that comment and press the button with an arrow. This detailed information will appear in the text
field present in the bottom right corner of the window.

x

Load Project/Program

[Comment Statistics I Words Analyzer I Concept Location]

Load VSM Load LSA
aptions
Query Query

Query:

Comment | Sim... | when implement new options add it here
comments types java.JavaSingle.. 0,341
comments types java.JavaSingle 0,224
comments.types java.JavaDocCo 0
comments.types java.JavaSingle... 0 [ox]] Doct Projects\Fi Userjava
comments.types java.JavaSingle...
comments.types java.JavaSingle...
comments.types java.JavaSingle...
comments types java Javasingle
comments types java.JavaSingle
comments types java.JavaSingle
comments types java.JavaSingle
comments fypes java.JavaSingle
comments.types java.JavaSingle...
comments.types.java.JavaSingle...

if (botaolRSfoiClicado) {

7

coococococoocoo

EL

Query executed!

Figure 8: Darius Graphical User Interface: Concept Location tab

All the three tabs use the comment extractor module.
Besides the quality of the tool, one of the main advantages is that we have access to the source code.

This allows to adapt easily the code to the needs and improve some aspects.

2.4 GRAPHS
A graph is representation of a set of objects (called nodes or vertices) where some pairs of objects

are connected by lines (called edges or arcs). Usually a graph is represented in a diagrammatic form

as a set of dots (for the vertices) joined by lines (for the edges).

17

2.4. Graphs

The edges can have a direction making the graph a directed graph. A directed graph (like the
System Dependency Graph) is an ordered pair represented by:

D = (V,A) (7)
Where:
e Vs a set of vertices

e Ais aset of ordered edges

An directed edge is a pair of vertices represented by:

e = (v1,02) (8)

This representation indicates that the edge goes from v; to v;.
In Figure 9 we can see a definition of a directed graph and its representation (example extracted
from Schlag (2004)).

D, =(V;.A)

V,={a,b,c,d e} A =1a,a,a,a,,8,88,.8;}
a, =(a,b), a,=(b,c), a, =(c,c), a, =(a,e),

a. =(b,d), a;, =(d,e), a, =(c,e), a, =(e,a)

& e e

| /
I': II' _.'".

Ta,/ 8
@ RO,

Figure 9: Directed Graph example

18

2.4. Graphs

2.4.1 DOT

DOT is a graph description language very simple and powerful Gansner et al. (2006). It can describe
graphs that are easily read by humans and programs.
For example, the code listed in 2.1 is written in DOT and it outputs the graph in Figure 10.

digraph graphname {
a ->b —> c;
b —> d;

Listing 2.1: DOT example

Figure 10: Graph generated by a DOT tool

DOT is also largely adopted, there are a lot of tools, written in many different programming lan-
guages, that can read and write DOT format.

The tools that implement the DOT language have mechanisms to choose automatically the best
positions to the nodes (if not specified), which is an advantage, if we do not care about that but it is a
big issue if the positions of the nodes are important (like in a System Dependency Graph).

For example Figure 16 and Figure 11 represent the same program (the program shown in Figure
2.3) but, the position of the nodes are different. The System Dependence Graph in Figure 16 is more
easily understandable than the System Dependence Graph in Figure 11.

We can specify every detail of the graph: the position, the shape, the colour, the labels of the nodes
and edges among others. But that turns the language more complicated and it is laborious specify

every node position.

19

2.4. Graphs

call add 1 call add 2

legend

L control

\. dependence
—»

data
& A dependence
) =

Figure 11: A System Dependence Graph

2.4.2 JGraphX

JGraphX Benson and Alder (2014) is a Java Swing Diagramming library that provides functionality
for visualisation and interaction with graphs. It offers many methods to construct graphs, change
its appearance and behaviour. JGraphX has an enormous and well documented API. In Figure 12
(extracted from Bibliowicz (2011)) we can see some styles that JGraphX provides.

As mentioned the tool provides many methods and options to interact with the graph. Some of them
are listed in Table 1.

Despite being a powerful tool, JGraphX is also very simple. In 2.2 we can see the code that gives

origin to the graphs showed in Figure 13.

20

2.4. Graphs

VoY AN A\

rectangle [elipse | affubleElipte 6nmhus> —line image curve label [cvhnde?
A Nt A4 -
()] ST . £\
swirlane L /) S / \
connector Ao, ‘Y cloud { trianglé (nexagon)

|

OYERFLOW] 3
CPACITY. T_OPACI OVERFLOW] 1 VERFLOW| ROTATION GF) OF GRADJENT_DIRELTION

STROKECOLOR k) KEWIDEH ALIGN LABEL_POSITION D GLASS LABEL_BACKGROUNDCOLOR
VERTICAL_ALIGN
_— B [
VERTICAL_LABEL POSITION
— — N = ’_‘
LAEEL}_BDRDER@LOF ISHADOW| }DASHED} OUNDED)| é QWTFAMILY FONTSIZE FONTSTYL
= ; =
,,,,,,, Le |
et N OVERFLOW 3 N .
cPACITY (\

p ™ p ™ p Ve T . N ,/777\

fr_opac oferrLowt1 ferrLow) () fromaTon oF oR GRADfENT_DREETION
A0 AT AT AT AT VN AT AT

STREKECOLPR s @ H f"AUGN | {" | LAEEL}OS\T‘BN | {" | {"GLASS'\ {") LABEL_BACKGROUNDEOLOR
" ‘.\,,,/J ‘.’Eﬁ"{;ﬁjﬁi\l}“ "/ N/ "\7 7/" "\, ,/" N

VERTICAL_LABEL_POSITION

£ £ d £ BN A A £ A
L ABEL BORDERFOLOR [SHaD: (DAsHED fRounpen| (& | { + FQWTFAMILY FONTSIZE FONTSTYLE
A ! o AN - AN AN AN AN

Figure 12: Styles that can be drawn with JGraphX

mxGraph graph = new mxGraph () ;

Object parent = graph.getDefaultParent ();

graph.getModel () .beginUpdate () ;

Object objl = graph.insertVertex (parent, null, "obj 1", 20, 20, 110,30);
Object objl_1 = graph.insertVertex (parent, null, "obj 1.1", 20, 20, 110,30);
Object obj2 = graph.insertVertex (parent, null, "obj 2", 20, 20, 110,30);
Object obj2_1 = graph.insertVertex (parent, null, "obj 2.1", 20, 20, 110,30);
Object obj2_2 = graph.insertVertex (parent, null, "obj 2.2", 20, 20, 110,30);
graph.insertEdge (parent, null, "", objl, objl_1);

graph.insertEdge (parent, null, "", obj2, obj2_1);

graph.insertEdge (parent, null, "", obj2, obj2_2);
graph.getModel () .endUpdate () ;

mxGraphComponent graphComponent = new mxGraphComponent (graph) ;

Listing 2.2: Sample code to make two graphs using JGraphX

In the last example the parent used was the default parent but we can use an existing cell as the
parent being the result showed in Figure 14. Also the size of the nodes were specified but we can set

the auto-size property of the cells to fit its content.

21

2.4. Graphs

Function Description

setAllowLoops Specifies if loops are allowed.

setAutoSizeCells Specifies if cell sizes should be automatically updated after a label change.

setCellsEditable Specifies if the graph should allow in-place editing for cell labels.

setCellsMovable Specifies if the graph should allow moving of cells.

setCellsResizable Specifies if the graph should allow resizing of cells.

setCellsSelectable Sets cellsSelectable that specifies if the given cell is selectable.

setLocked Sets if any cell may be moved, sized, bended, disconnected, edited or selected.

setCellsDeletable Sets cellsDeletablet hat specifies if the given cell is deletable.

setMultigraph Specifies if the graph should allow multiple connections between the same pair
of vertices.

setConnectableEdges Specifies if edges should be connectable.

setTooltips Specifies if tooltips should be enabled.

Table 1: Some graph options available in JGraphX

obj 1 obj 2

obj 1.1 obj2.2

Figure 13: Sample graphs made with JGraphx

With JGraphX we can also apply automatic layout algorithms to the graph like:

e hierarchical
e swim-lane
e circle

e compact tree
e composite

e parallel edge
e partition

e radial tree

e stack

22

2.5. System Dependency Graph

abj 2
obj 2.1

Figure 14: A node inside a node

2.4.3 JUNG

JUNG, Java Universal Network/Graph Framework O’Madadhain et al. (2013), is an open source
library that allow the user to create and visualize graphs.

The framework has various layout algorithms like:

e balloon

e circle

Fruchterman Rheingold

Kamada Kawai

radial tree

e spring
e tree
JUNG also allows the user draw anything in the graph like graphics from Java (circles, rectangles,
triangles) or images. In Figure 15 (extracted O’Madadhain et al. (2013)) we can see a graph drawn
with JUNG that has a tree layout and Java graphics (circles) in the nodes.

JUNG also can read the graph content from a GraphML Committee (2007) file. GraphML is a file
format for graphs that describes its structural properties.

2.5 SYSTEM DEPENDENCY GRAPH
Static Code Analysis is one of the most used methods to extract data and return information from

a program Du et al. (2012); Baca et al. (2008). By doing that we can understand the workflow of the

program, which methods are called (and by who) and which variables are used.

23

2.5. System Dependency Graph

Figure 15: Jung graph example

Real world programs tend to be huge and it is impossible know all these details. Every time a
change need to be made in the program the software engineer needs to navigate in the methods and

discover the location where the change will take place. This is an enormous waste of time.

2.5.1 Whatisit?

The System Dependency Graph Livadas and Johnson (2000) is a visual artefact, created by program
comprehension researchers, that shows all the static dependencies of a program in the form of a graph.
The System Dependency Graph (SDG) is composed by two components: the Control Flow Graph
(CFG) and the Data Dependency Graph Du et al. (2012). The Control Flow Graph shows all the
dependencies and calls between methods and classes. It shows all the statements of the program and
how they are related. If a statement B is called by statement A, statement B is connected to statement
A and it is positioned one level below statement A. Just looking to the Control Flow Graph, a software
engineer can see the flow of the program and discover in which class, method and statement, he will do
the change (when a maintenance is needed). The Data Dependency Graph show where the variables in
the code are changed (variables dependencies). As in Control Flow Graph, when a variable is changed
in one statement it is connected to that statement showing that there is a dependency between them.
As mentioned above, when joined, these two graphs form the System Dependency Graph. A graph
where the software engineers can see all the static dependencies and workflow of the program in a

very easy and intuitive way.

24

2.5. System Dependency Graph

In Figure 16 we can see the System Dependency Graph of the source code in 2.3 (example extracted
from TONG et al. (2010)).

public static void main (String[] args) {

int sum, i;

sum = 0;
i=1;
while (i<11) {
sum = add(sum, 1i);

i = add(i, 1);
}
System.out.println("sum = " + sum);

System.out.println("i = " + 1i);

Listing 2.3: Excerpt of a Java program

',.-' Pt
entry main

legend
o e e ool
{ print) I._!‘E!tl.l m_/ dependence

B B data
dependence

i W - nlra. —
i eall add) (_i= addSresull, procedural

<~ 4 inter- =
procedural

_i=1 _(while i< {:’

rint sum)

R:call add) (sum= addSresult,

." ., . : . .". _,-"-- e .-".- . ."-- -‘.
Lsum) | F | (_add#result, ' L17)

"

Figure 16: A System Dependency Graph

2.5.2 Tools that build a System Dependency Graph

Creating by hand a System Dependency Graph for a given program is not an easy task. And despite
the fact that Java is one of the most famous programming language, there is a very small amount of
tools to analyse Java code and build its dependencies (packages, classes, variables, methods), and an

even more small number to build the System Dependency Graph.

25

2.5. System Dependency Graph

JavaPDG

JavaPDG Shu et al. (2013) is a "static analyser for Java bytecode, which is capable of producing
various graphical representations such as the system dependence graph, procedure dependence graph,

control flow graph and call graph”. It has two modules:

e SDG Generator: As the name implies, this module generate the System Dependence Graph of

a program and store the data into a database.
e Graph Viewer: This module can show the data stored in a visual mode.

Although it is a good tool, the possibility of building a graphical representation, like in Figure
17 (example extracted from Shu et al. (2013)) of the data does not serve the purposes of this thesis
because it is necessary making changes to the graph with the information from the comments found

in the comment analyser.

B savarnc =
[2-Testjava [][4-testTest [~]|[10-testTes..[~][pdg [+] By methodid [10 [prev. |[view] Next |[callGraph |
D:MWorkspace/pdgTestisrcitestiTest java [l | (Detailed information
1 |package test; —
2
= #erterk
{
3 public class Test{ — Instrid 112
5 public static void main(Stringl] aras) { el anty glo:adel:1 g_zwémnlt
B intsum=0; main ({[Ljavalang/String)V L.per;n 8‘
7 inti=1; 5 ine Mum:
g while (i< 11}{ —
9 sum = add(sum, i);

i=add(, 1),
11 1

printfi"sum="+ sumy);
printf"i="+i};

14 H

staticint add(int a, int) {
return (a + b);
18 3

static void printf{String str) {
System.out.printin(str);
22 }

h 4

£
iconst_1

106

icanst_1

103
actualout]

102
10 q

istore_2
123
7

b

104

istare_1

sum:22
a

Figure 17: JavaPDG interface

26

[«]

2.5. System Dependency Graph

The first module uses a database (Apache Derby) to store the results, which implies some configu-
rations. Or the tool created (DariusSDG) can automatize all the steps (or the great part of them) or the
software engineer will spent some time configuring the tool, and that can fend the software engineer
to use the tool. Another disadvantage is that JavaPDG needs a lot of memory to work.

JavaPDG uses the Java bytecode to construct the System Dependency Graph.

Java System Dependence Graph API

The Java System Dependence Graph API TONG et al. (2010) is a tool that can construct the System
Dependency Graph of a program and return the information collected to the user in a JSON (JavaScript
Object Notation) format.

As the name indicates, the objective of this tool is construct the System Dependence Graph and
provide methods to access it.

In the Table 2 are listed some of the main functions associated with the SystemDependenceGraph
object TONG et al. (2010).

Function Description

ControlDependenceBFS Breath first search following the control dependence edge.
ControlDependenceDFS Depth first search following the control dependence edge.
DataDependenceDFS Depth first search following the data dependence edge.

NodeCount Return the number of nodes in a SDG.
PDGCount Return the number of PDGs in a SDG.
PDGRetrieve Return a PDG by a call node.

Table 2: Main functions of the System Dependence Graph API

Despite being equivalent in terms of functionality (JavaPDG first module and Java System Depen-

dence Graph API), Java System Dependence Graph API have some advantages:
e does not need a database, therefore is easier to configure
e is open source, which means it can be customized to the needs
e has a very complete documentation about the methods available

Like JavaPDG, Java System Dependence Graph API uses the Java bytecode to construct the System
Dependency Graph.

27

DARIUSSDG: DESIGN

As mentioned in the Research Hypothesises (1.2) the objective of this tool is to join two Program
Comprehension techniques: Concept Location over source code comments; and System Dependency
Graphs. Thus software engineers can visualize both semantic and structural information about a
program and how they are related.

We named the tool as DariusSDG because it is an integration between an existing tool that performs
concept location over source code comments, named Darius, and other two tools that build the System
Dependency Graph of a Java program. In that way we believe that the name is easy to understand and
memorize, as it is the tool purpose: help in understanding the meaning of programs. A detailed
explanation about the choice of these tools and how they are integrated will be described in this
chapter.

3.1 REQUIREMENTS

As mentioned in the objectives, the language recognized by DariusSDG will be Java. Java is one
of the most used programming language in the world and it is platform independent which means it
can run in every equipment TIOBE (2014); LangPop (2013). With this we can reach a much broader
audience, helping more software engineers in their software maintenance work.

If the objective of the tool is to recognize Java, which is platform independent, it makes sense to
build a tool that is also platform independent. Hereupon DariusSDG will also be written in Java.

In order to build DariusSDG, three main components are required:
e A tool that can perform Concept Location over source code comments
e A tool that can build the System Dependency Graph
e A tool that can draw graphs

As mentioned in Chapter 2, the only tool we have knowledge that can perform Concept Location
over source code comments is Darius. Thankfully we also have access to Darius source code, enabling
us to do the necessary adaptions directly in the tool instead of building a complementary tool to meet

our needs.

28

3.1. Requirements

To the best of our knowledge, at present there is not any system that can build the System Depen-
dency Graph of a Java program based on the source code. The programs described in Chapter 2 can
build the System Dependency Graph of a Java program but based on its bytecode.

When the Java source code is compiled to Java bytecode (a intermediate representation that is
interpreted by Java Virtual Machines) the code is changed to that representation, it is optimized and
the comments are removed.

There are some tools, called decompilers, that can revert some changes made by the compiler
but, the comments can not be recovered. This occurs because the comments are removed while the
instructions are transformed and/or optimized; so it is possible to revert some changes. For example
unused code (also known as dead code) is removed and cannot be recovered. Also the increment of a

variable by one cannot be 100% recovered because there are many ways to increment a variable:
® it++;
e i=i+l;
o i+=1;
® ++i;

On account of that the decompiler is unable to decide the original version of the code.

Another obstacle to using these tools is that we need to relate the System Dependency Graph with
results out coming from the search done with the comment analyser. If the source code is modified
(comments are removed and instructions are optimized) it is extremely difficult to make that associa-
tion (comments with the SDG).

If a comment and its respective instruction is found, we want to highlight that instruction in the
System Dependency Graph. But we cannot make that because the two instructions (the one found in
the source code and the one in the SDG) do not have the same line number (to compare them) and
could have different syntax (because of the optimizations).

Also, when the software engineer is doing maintenance he wants to get the results from a PC tool at
the source code level (where he will do the change). If the tool does not show the exact location where
he needs to intervene he will spent even more time analysing the results of the tool slowing down the
process.

Hereupon it is necessary to develop a tool that can build the System Dependency Graph based in
the source code. The tool build will be called SDG Builder.

Scalability also can be a problem. The input program (received by DariusSDG) can be extremely
huge and consequently the System Dependency Graph will be extremely huge. Building so many
nodes and connections between them can reduce significantly the performance of the tool and difficult
the analysis. So, we decided to break the System Dependency Graph into smaller pieces: methods.
The software engineer has the same structural information about the program but split by methods,

becoming easier to understand and more scalable.

29

3.2. Architecture

In Section 2.4 some tools that can draw graphs were analysed. JGraphX is the tool that better fits
our needs and so is the tool chosen to build the graph. JGraphX is a Java library that provides many
functionalities for visualisation and interaction with graphs; it can automatically order the nodes in
an hierarchical structure (typical in a SDG); moreover, it has a very complete documentation and it is
simple to use.

The graph that DariusSDG will display must be “flexible”. The software engineer must be able to
move the nodes and the edges rearranging them the way he wants. With this the software engineer has
more power over the tool and could adapt the results to his needs. For example, if the data dependence
and the control flow edges are overlapping he can move them the way he wants, or move the nodes
(and consequently the edges) to a position where they do not overlap.

DariusSDG must also offer the possibility to turn off the data dependency edges making the graph
clearer and cleaner. The software engineer may not want to see the data dependence between the
nodes and only the flow of the program. Or the data dependence and control flow edges can be in such
a high number that the graph becomes confuse and this option (turn the data dependence edges off)
could help.

DariusSDG must have an input field where the software engineer can enter search terms that will be
compared with the comments extracted from Darius. It must show the results ordered by similarity and
when the software engineer pick a result (comment) it must show the associated method and instruc-
tion in the System Dependency Graph. The statement must be highlighted to be visually distinguished
from all the others and make clear that it is the one associated with the selected comment.

The software engineer must also be capable to navigate in the System Dependency Graph without
searching for terms. This navigation must be done by selecting the different methods present in the
loaded program.

Finally, the tool must also be intuitive, simple and easy to use. The objective is to simplified and

assist the software engineer reducing the time spent in maintenance.

3.2 ARCHITECTURE

In Figure 18 we can see the diagram that depicts the tool architecture, its structure, components and
connections among them. From this diagram it is possible to understand the steps that are taken by the
tool to build the result, which is the construction of the System Dependency Graph and the mapping
of the extracted information from source code comments with the nodes of the graph.

The tool receives the source code of a program as input. That program will be analysed by Darius
(described in Section 2.3.2) and retrieves a list of comments present in the program based on Vector
Space Model (VSM) technique.

The program will be also analysed by the SDG Builder (the tool we developed to build the System
Dependency Graph of a Java program). The SDG Builder was built using ANTLR which needs a Java

Grammar in order to transform the Java source code in a representation of the System Dependency

30

3.2. Architecture

Graph. The development of the SDG Builder will be described in more detail in the next chapter. The
SDG Builder outputs a representation of the SDG divided by methods (to overcome the scalability
problem mentioned in the previous section).

If the software engineer interacts with DariusSDG by entering search terms the tool will display
the list of comments and their respective similarity to the searched terms (the list will be ordered by
similarity). If the software engineer select a comment the corresponding part of the SDG will be
displayed using JGraphX and the associated instruction will be highlighted.

The software engineer can also interact with DariusSDG by selecting the methods that he wants to

see. The information about the System Dependency Graph is passed to JGraphX that draws it.

Program Java Grammar

—— |

m SDG Builder ANTLR

List of comments SDG divided by
using VSM methods
IUserinteraction User interaction

Detailed information Exhibition of the
about the comments
and exhibition of the

corresponding
SDG

corresponding SDG

Figure 18: Architecture of DariusSDG

31

DARIUSSDG: DEVELOPMENT

The objective of DariusSDG, the tool proposed in this thesis, is to join two Program Comprehension
techniques (System Dependency Graph and Concept Location over comments in the source code)
reducing the time spent to understand a program. To achieve this goal the development of DariusSDG

was divided in four steps:

e To improve and adapt Darius (a comment analyser tool for concept location)

e To build a tool that can extract the System Dependency Graph of a Java program based on its

source code
e To draw the System Dependency Graph using JGraphX

e To integrate all the tools

All these steps will be described in more detail in the following sections.
Despite being made tests during each development step, the last section will be used to describe the

tests made to the tool.

4.1 COMMENT ANALYSER FOR CONCEPT LOCATION

Comments in the code are one of the most important source of information about the program. It
is one of the best ways to understand what the software engineer was thinking and how the Problem
Domain and Program Domain were related Woodfield et al. (1981b); Teny (1985); Aman and Okazaki
(2008).

Darius de Freitas (2011) is the only tool that we have knowledge that can extract Java comments
(inline, singleline, multiline and Javadoc) present in the source code of a Java program and perform
concept location with them.

As mentioned before Darius extract the comments present in the source code, separates the text into
sentences and the sentences into words. The words that have no significance or value are eliminated
and the others reduced to its grammatical root. The system also performs these actions in the query

inserted to assure consistence.

32

4.1. Comment Analyser for Concept Location

Darius use two algorithms to rank documents (Vector Space Model Zhao et al. (2006) and Latent
Semantic Analysis Deerwester et al. (1990)) and let the user choose which one he wants to use. In
order to keep the tool simple, DariusSDG will only have one algorithm. The algorithm chosen is
the Vector Space Model because, according to José Luis Freitas thesis de Freitas (2011), was more
effective and faster in the tests performed.

When searching for comments, Darius not only save the text present in the comment but also some
associated information like the file where it was found, the next line after the comment and the type
of comment.

The same comment can occur more than once in the same file, so we need more information about
the comment in order to associate them with the instruction in the System Dependency Graph. In
order to associate the comments with the SDG, Darius source code was changed. As we can see in
Figure 19 Darius is not a small program, it contains 42 classes and 295 different methods. Before
we make changes to Darius program we needed to understand how it works, how was constructed
and the right locations we needed to intervene in order to achieve the objectives. In other words, we

performed a complex task of reusing a software.

P —— TR s

=& Darius
-3 Source Packages
- comments

{:J comments.content.sentences
{::} comments.content. words

{:_} comments, content.words. stemmer
---{_J comments. content. words. stemmer.ext
---L_} comments.domain

W== comments. domain. program
comments.extractor

comments, types

comments. types.c

comments. types.java
comprehension. bottomUp
comprehension. topDown

ir

ir.matrix

w-E libs
G- project

B project.sourcefile

---L_} project.sourcefile.java
{:; statistics

B-[[@ TestPackages

B-I@ Libraries

B-I[§ TestLibraries

Figure 19: Darius structure shown by NetBeans

As the System Dependency Graph will be divided by methods, Darius was adapted to associated
the name of the method to each comment.

33

4.1. Comment Analyser for Concept Location

If the comment is inside a method then it belongs to it but, if a comment is outside methods which
method does it belong? Initially we think in a audacious strategy that consists in finding expressions
in the comment that can indicate if the comment was referring the last or the next method, but that
was not viable. So we decided that comments outside methods are referring to the next method and
if the comment was in the end of the file, without a method following, the comment was referring to
the last method declaration. In Figure 20 we can see an example of how we associate comments with

methods.

public static void main(String[] args) {

out.println("Enter your VAT number:"):;

Scanner sc = new Scanner (System
String nif = sc.nextline();

out.println("Your VAT number is "+nif):

mmm) Refers to

Figure 20: How DariusSDG associates comments with methods

To associate the comment with the exact instruction in the SDG, Darius was also changed to store
the line where the comment starts (it can be multiline). That association can not be made with the
line after comment offer by Darius because the line after a comment could be a parentheses, and a
parentheses is not represented in the System Dependency Graph.

The rules to associate a comment to a statement are basically the same used to associate a comment
to a method. If a comment is in the same line as the statement (inline comment) the comment is
referring it. If a comment is before a statement, it is referring to that statement. Lastly, if a comment
is inside a method but after all the statements, the comment is referring to the last instruction in that

method. In Figure 21 we can see an example of how we associate comments with statements.

public static void main(S5tring[] args) {

c out.println("Enter your VAT number:");
Scanner sc = new Scanner (System.in):

String nif = sc.nextLine(): U
c:::.println(“'i ur VAT number is "+nif);

mmm) Refers to

Figure 21: How DariusSDG associates comments with statements

34

4.2. Building the System Dependency Graph

4.2 BUILDING THE SYSTEM DEPENDENCY GRAPH

In Section 2.5 we described and analysed some tools that build the System Dependency Graph of a
Java program but none of them does what we need: build the SDG of a program based on its source
code. Therefore we decided to develop a tool that builds the System Dependency Graph based on the
source code of a Java program. We named the tool SDG Builder.

The tool that was created needs to analyse the source code recognizing when a statement is using a
variable (to make a data dependency connection, that will be showed in the Data Dependency Graph);
it also needs to "know” that when a set of statements are inside an if-then block they depend on the
condition that is defined on the if-then statement and so on.

Java is a very big and complex language; it allows for multiple ways to achieve the same thing,
like loops, conditional structures or variable declaration. Java give us the possibility of doing many
things like inheritance, encapsulation, polymorphism, threads, graphics and so on. But, despite all
this, Java is a formal language; it has very well defined rules that allow computers understand what
was specified in the source code without ambiguity Power (2002).

As mentioned in Section 2.1, ANTLR is a powerful tool that can generate a processor to parse a
formal language like Java. It also has a specific notation to use attributes and translation rules, since
we are going to transform a Java program in its System Dependency Graph representation.

To accomplish this task, the first step is to build a grammar that can recognize the Java programming
language. Fortunately Terence Parr, the creator of ANLTLR, already created a grammar for it, that
was updated by the community in order to recognize new Java syntax.

Before we started developing the tool we made some tests to verify if the Java grammar could
correctly parse Java source code files. We passed various files to it and check if everything was
correctly parsed and it was. The next step was to study the grammar in order to understand how it was
constructed and where we needed to add transformation rules in order to create a representation of the
System Dependency Graph.

We divided the process of building the System Dependency Graph in two phases: first we build the
Control Flow Graph (CFG) and then the Data Dependency Graph (DDG). Basically, after we have the
CFG we only need to specify the data dependency connections.

To build the CFG we need to save all the statements in the program and the relation between them.

When the program starts to be parsed a list of nodes is created and it increases every time a new
statement is parsed. A Java class was created to save the nodes of the program. That class has six
fields:

e anode identifier
e the content of the node (statement)
e the line where the statement starts

e the method to which it belongs

35

4.2. Building the System Dependency Graph
o the name of the class to which it belongs

e the father node identifier

We need to save the class and method name because a statement (for example return id;) can occur
in multiple methods, and a method (for example ger_ID) can occur in multiple classes.

Every Control Flow Graph has an entry point which is represented by a node usually called entry.
All the ”independent” nodes are connected to the entry node, the entry node is the father of these
nodes. A node can also have children, for example an if-then statement have a set of instructions that
are executed if the condition evaluates to true. These instructions are children of the if-then node.

A node could have a list of nodes (their children) but it is simpler and faster to have a node identi-
fying its father. Instead of a list that needs to be updated when new children nodes are parsed we only
need to save one identifier (the father). This is the last field of our class.

When a new method starts to be parsed the node entry is created as well as a list of father nodes.
The entry node is added to the list. As the method gains deepness the list becomes bigger, when the
method lose deepness the list becomes smaller. For example, if a instruction while is parsed it is added
to the list of father nodes. All the instruction inside the while block have the while identifier as father.
When the block ends the while node is removed from the father nodes.

Also, when a statement starts to be parsed, token by token, the statement content (tokens) is being
stored in a variable till it is fully parsed. When this happens a node (with all the fields mentioned
before) is created and added to a list that contains all the nodes of the program.

In Figure 22 we can see some steps that exemplifies how the parse is done and what is stored in the
list of nodes and in the list of father nodes..

One problem we faced when constructing the Control Flow Graph was the parsing of the do-while-
loop. The CFG is build with levels (the parent and the children), usually the instruction in Java are in
this order. In for-loop the condition appears first (the father) and the children appear in the block that
succeeds the condition. However in the do-while-loop the condition appears in the end of the block.
In this case we save the node that contains the token do and when the condition is parsed (at the end
of the block) we update the do node with the condition.

Despite the fact that the statements inside the do-while-loop execute even when the condition is
not met it seems more logical that the do-while-loop follow the same structure of the while-loop. We
cannot omit the condition and also cannot put it bellow the block because that means it depends of the
block which is wrong. So we write it the node the text ’DO WHILE CONDITION".

The grammar ignores the white spaces and new lines that appear in the source code. This happens
because the source code can have multiple white spaces or new lines and the objective is not capture
them. But, as the instructions will be showed to the user we need to insert white spaces between the
tokens in order to make a more readable statement.

With this we have a list with all the statements. Each statement has information that can be used to

create the connections between them in order to build the Control Flow Graph.

36

4.2. Building the System Dependency Graph

15tep
int a = 1; Father Nodes:
int b = 2; -entry
int c;
while (a<b) { Nodes:
if ({a%2=0) { inta=1:
a++; !
H
else {
a = a+i;
H
b++:
¥
c = atb;
4 5tep
int a = 1: Father Nodes:
int b = 2; -entry
int o: -while (a<b)
while (a<b) {
if (a3 2 =101 { MNodes:
a++: -inta=1;
} -intb=2;
else { -intc;
a = a+d; -while (a<h)
}
b+
}
o = atb;
6 Step
int a = 1; Father Nodes:
int b = 2; -entry
int c; -while {a<b)
while {(a<b) { —ifl{a%2==0}
if (a3 2 =0} {
Eiati Modes:
' -inta=1;
slse Sintb=2;
a = at2; . ’
; -intc;
biss -while {a<b)
) -if (a%2 ==0)
o = atb; et
7 Step
int a = 1: Father Nodes:
int b = 2; -entry
int c; -while (a<hb)
while (a<b) {
if (a%2==0){ MNodes:
a++; -inta=1;
¥ -intb=2;
glse { -intg;
a = a+; -while {a<b)
! -if (a%2==0)
b++: _att
! -else
c = a+b; 37 _a =g+
b+

]

Figure 22: How DariusSDG associates comments with methods

4.2. Building the System Dependency Graph

As mentioned, the System Dependency Graph will be divided in methods and the user will be
allowed to navigate between them. It was created another class that represents a method and has four
fields:

e the name of the method
e the name of the class to which it belongs
e the line where the method starts

e the line where the method ends

When a new method is parsed it is created an instance of that class and added to a list of methods
in the program. When the parse is over, the instance is updated in order to save the line where the
method ends.

We use a different approach to save the data dependencies between the variables. Instead of save
the name of the method and class of that variable we save the method (defined before) to which the
variable belongs. Also, instead of saving the father we save a list of children. The fields of the class

are listed below:

e a variable identifier

e the name of the variable

e the line where the variable is

o the method to which it belongs

e a list with the dependent variables

We also create a list that will store all the DDG objects found in the source code.

When a variable is parsed we check if that variable is already in the list; if it is not, a new instance
of the mentioned class is created and it is added to the list. If the parsed variable is in the list we check
the next token to assure if is an attribution or a use of the variable. If is an attribution it means that the
variable is “independent”; its value only depends on that attribution. So a new instance of the class is
created and added to the list. If is not an attribution (but an use of the variable), a link will be created
to the last occurrence of that variable in the list, because it depends on the last assignment. In Figure
23 we can see step by step how the list is populated and updated.

At the end of the parsing we have three lists:

e a list with all methods and respective class (class defined before)
e a list with all statements and how they are connected (class defined before)

e a list with all variables and their dependencies (class defined before)

38

4.3. Designing the System Dependency Graph

1 5tep
int a = 1; List of DDG objects:
int b = a + 1; - DDG obj: al Dependent Vars:
a = 3;
int ¢ = a + b:

2 Step
int a = 1: List of DDG objects:
int b =a + 1: -DDG obj: al Dependent Vars: bl
a = 3; - DDG obj: b1 Dependent Vars:
int ¢ = a + b:

3 Step
int a = 1: List of DDG objects:
int b = a + 1; - DDG obj: a1l Dependent Vars: bl
a = 3; - DDG obj: bl Dependent Vars:
int © = a + b; - DDG obj: a2 Dependent Vars:

4 Step
int a = 1; List of DDG objects:
int b = a + 1; -DDG obj:al Dependent Vars: bl
a = 3: -DDG obj: b1 Dependent Vars: cl
int = =

=a + by -DDG obj: a2 Dependent Vars: cl
-DDG obj: ¢l Dependent Vars:

Figure 23: How DariusSDG handle DDG objects

4.3 DESIGNING THE SYSTEM DEPENDENCY GRAPH

As said before, the System Dependency Graph is an important and useful tool due to its graphi-
cal representation. The tool built as described in the last section only offers methods to access the
different nodes and connections between them (edges) in a text representation. On account of that,
it is necessary a tool to build the graphical representation of the SDG. JGraphX Benson and Alder
(2014) is a Java Swing library that provides functionality for visualisation and interaction with graphs.
It offers many methods to construct the graph, change the colour of the nodes or the edges and can
order the graph in a hierarchical form (which is the typical form of a System Dependency Graph). By
combining these two tools it is possible to build a System Dependency Graph of any Java program.

At this stage, we will have as input the three lists generated during the parsing (described in the
section before) that contain all the information about the nodes of the System Dependency Graph,
their control and data dependencies. The System Dependency Graph is divided by methods, so as
input we also need to know which class and which methods will be displayed.

After that, the nodes in list that will be drawn, i.e., the nodes that have the same class and method as
the input, will be inserted in the graph ordered by the identifier, which is also the order of appearance.

In JGraphX first we insert the nodes and then we make the connections. The nodes are “visited”

39

4.4. Integration

again to make the connections between them using the identifier that corresponds to the position in
the graph.

After the graph contains the nodes and the flow connections (Control Flow Graph) we apply the
hierarchical layout of JGraphX.

The last step is to create the data connections between the nodes. The list that contains the data
dependencies is traversed and for each node in the list we check its dependants. For each dependant a
new connection is created.

In order to distinguish easily the two types of edges, the data dependency connections are drawn in
white and the flow dependencies are drawn in blue. We also set the autosize property of the nodes to
true in order to adjust them according to the contents automatically. This feature has a small bug: the
autosize only works on an update, not in the creation. So, when we create the node and insert it to the
graph the size of the node does not fit the text it have; we need to update the node (with the same text)
in order to resize the node according to the size of the text.

Lastly the options that allows the user to move the node and edges without detaching it are activated.

This allows the user to isolate nodes in order to get a clear view.

4.4 INTEGRATION

As mentioned before, DariusSDG is a combination between tools (Darius, JGraphX and SDG
Builder). The construction of SDG Builder and the adaptation of the other tools where described
in the last sections. In this phase we need to create a User Interface, easy to use and visual appealing
that connect all the tools. This integration also includes the navigation between the methods and the
representation of the statements/nodes that match the comment selected.

The interface was made using Swing which is a Java GUI toolkit that provides an API to create
graphical interfaces. With Swing we can create frames, panels, buttons, text fields, grids, labels and
all the components that are needed to build a GUI.

We build a simple interface, that can be seen in Figure 24, which is divided in four sections:

e in the right is the list of methods presented in the program
¢ in the middle of the window is the graph that represents the selected method
e in the top are the buttons and a text field that allow the user to interact with DariusSDG

e in the left is the list of comments presented in the loaded program and some informations about

each comment

As mentioned, in the right of the window there is a list that contains of all methods that are used
by the program (and the name of the class they belong). By clicking on an item in the list the corre-
sponding part of the System Dependency Graph will be drawn in the centre of the window. The user

can navigate in the SDG by clicking the different methods in the list.

40

4.4. Integration

x
INFO: Query executed! Load Project DDG is ON Graph Zoom:
Search Terms: | ulilizador nif | Search Show Statistics D -
Comment | Simil...|

pede o nif ao utilizad 0.40. .

o objecto utilizador .. 023 T\
le o nif com ajudad.. 0.1

*+ @author nuno 0.0

add more options h 0.0
options user can se.. 0.0
nada 0.0
percebo 0.0

nao 0.0

da? 0.0

que 0.0

sera 0.0

ou 0.0

da 0.0

nao 0.0
senac 0.0
omentarios 0.0
muitos 0.0
seraqueestaadar? 0.0

*+ @author nuno 0.0

* = @author nuna 0.0

*+ @author nuno 0.0

** @author nuno 0.0
metodo que calcula... 0.0
comentario 0.0 =
* * @author nuna 00 v

Comment: pede o nif ao utilizador
Type of Comment:
JavaSingleLineComment

File:
C\Users\nunc\DocumentsiNetBe
ansProjects\Financasisrcifina
ncas\Financas java

Class: financas'Financas
Method: main

Line: 19

Next Line: outprintin{’insira o seu |

MIF);

f

E
L

canner 2 = e Seanner { System) St nif = <0 nextline 7 g paseword - 5o nextUne (3

Il

[

Class | Method |
financas\Fin..__main i

financasUMl Il I
financas\MI totallMipago
financasUMT IMT
financasUMT totalPage
financasiRC IRC
financasiRC showOptions
financasURC totalPaga
financasiRS IRS
financasURS caleulaDC
financasiRS calculaDE
financasURS calculaRB
financasiRS calculolRS
financasiRS gefTaxa
financasiRS showOptions
financasURS totalPagar
financaslUC 1UC
financasiUC showOptions
financaslUC totalPaga
financasVA VA
financasUVA quantidadel
financas\Re RecibosVer.
financasiRe.. numeroReci

financas\User User
financas\User gumb1
financas\User dumb2
financas\User dumb3
financas\User dumb4
financas\User dumb5
financas\User dumb8
financas\User dumb7?
financas\User entrareaut
financas\User gethIF
financas\User getPassword
financas\User sethIF
financas\WUser setPassword f
financas\User userArea

financas\ser verificaUtiliz.. | ¥

Figure 24: DariusSDG graphical user interface

Despite being a simple interface, facilitating the use, in the top of the window there is also a section

that indicates the steps the user needs to follow. In the top section, there are also six buttons:

e graph zoom in

e graph zoom out

e activate and deactivate the Data Dependency edges

e load project

e show statistics about the program

e cxecute the query

The first three buttons are used to improve the visualization of the graph. Even with the System

Dependency Graph divided by methods (decreasing the size of the graph significantly) the method

can have many instructions and dependencies making the graph a little confuse. The data dependency

edges can be deactivate, i.e., when the graph is drawn the dependency edges are not. It is also possible

zoom in or zoom out in the graph (using methods provided by JGraphX) becoming easier to read the

statements that are inside the nodes or to have a different view of the graph.

In the top of the window is a Show Statistics button that shows various statistics about the program

like the number of source code lines, the number of comment lines, the total number of inline com-

ments, block comments and javadoc comments, the number of files, the number of if conditions or

41

4.5. Testing

the number of while loops. All these informations are collected and displayed by Darius. These infor-
mations are also showed after the user load the project in order to have an overview of the program
and the commenting practice.

The Load Project button has a mechanism associated that crosses all the files and folders to find
Java source code files. This means that the user only need to select the folder that contains all the files.

Finally there is also a text field to the user enter search terms in the comments. When the user
press the Search button the list of comments present in the source code are showed in the list of the
left ordered by similarity according to the searched terms. When the user click a comment some
information about it is showed. These informations are showed in the bottom left of the window
(bellow the list of comments). In this section we can see the comment itself, the type of comment
(inline, singleline, multiline and Javadoc), the line after the comment, the file, the class, the method
and the line number where it is located. These informations are also produced by Darius, some of
them already existed and some where added as explained in Section 4.1.

When the user clicks a comment the associated method and class are passed to the other two sec-
tions” of the DariusSDG. The corresponding row on the list of methods (the one in the right) is se-
lected; the corresponding SDG is drawn in the center and the node referred by the comment is painted
in red.

As explained in the Section 4.1 if a comment is in the same line as the statement (inline comment)
the comment is referring it. If a comment is before a statement, it is referring to that statement. If
a comment is after all the statements, the comment is referring to the last instruction in that method.
Lastly if a comment is outside a method it refers to the whole method, the entry node is painted in red.

From the SDG Builder we have the line where the statement starts and from Darius we have the
line where the comment starts. We compare the line numbers in order to paint the correct node in red.

Finally, as mentioned in the last section, it is possible to drag the nodes changing its original position

getting a different view of the System Dependency Graph.

4.5 TESTING

Software testing is a very important phase of software development. The objective of this phase is
to assure that the final software is free of bugs and meet the defined requirements.

There are various kinds of test methods and techniques that can be performed; we can directly
inspect the source code, interact with the tool simulating user actions or write a program to test the
results from the methods. We can also test part of a method (like a loop or if condition), we can test
the method input and output, the class, the package or the whole program. The number of possible

tests is practically infinite.

42

4.5. Testing

The tests also can be performed in many stages of the development. In this specific case (testing
DariusSDG) we divided the tests in three phases:

o First we check if the tools that we wanted to use where working according to the requirements

(which was described in Chapter 2).

e During the development we perform tests to check if conditions, loops, methods or buttons were

behaving as expected (which was described in the last sections).

e Lastly we perform tests when the tool is integrated and complete, which will be described in

this section.

The tests that will be described in this section consist of interactions that the user will do when using

the tool. We have simulated various input scenarios and checked if the results were the expected.

4.5.1 Loading, Analysing and Build SDG

The first test we made consisted in loading a program (that we have created) and check if the
DariusSDG does not fail or produce exceptions. To load a program we click in the Load Project button
and choose the source code folder. After the program is loaded a window with statistics about it is
shown. In that window we can see the number and type of comments present in the loaded program,
the number of files, classes and methods. In Figure 25 we can see parts of the information collected
about the program we loaded. By inspecting the code and counting by manual the comments we
verified that the results produced where correct. In Figure 26 we can see the structure of the program
loaded and if the number of files and classes are according to the information shown in Figure 25.

At this point we can assume that all the files of the program where correctly load to DariusSDG and
the Darius statistics collector is working correctly.

After we closed the statistics window, it can be seen in the right side of DariusSDG screen a list
which contains all the methods and the associated classes present in the loaded program. Once again,
by inspecting the code we could see that the results produced where correct. In a specific case, we
can see that the methods NetBeans detects for the class IRS (see Figure 27) are the same that where
detected by DariusSDG (see Figure 28). This proves that all the files where correctly passed to the
SDG Builder, where correctly parsed and the informations about the methods were correctly saved.

When we click in the different methods in the list of methods (that is in the right side of the window)
the corresponding graph is showed in the middle window. By inspecting the source code we confirm
that the Control Flow Graph showed by DariusSDG was correct. This means that the parsing and the
construction of the CFG where performed correctly. As mentioned in Section 4.2, the do-while-loop
is not built like the other nodes; it needs to be updated with the condition when the block ends.

In Figure 29 we can see the graph representation of the source code in Figure 4.1 that contains a do-

while-loop. The graph is constructed as expected showing that this specific case is well implemented.

43

4.5. Testing

B Statistics Ex
Mumber of files: 10 £
Mumber of comments: 23

Line Comments
Mumber: 19

Java Doc Comments
Mumber: 4

If
Mumber: 5

Clazs
Mumber: 10

Method
Mumber: 40

Figure 25: Excerpt of the Statistics showed by DariusSDG

EI& Financas

EP[E Source Packages
EI@ financas

Financas.java

IMI.java

IMT .java

IRC.java

IRS.java

IUC java

IVA.java
RecbosVerdes.java
ser.java

e 6 5) 6 5 6 6

- eFatura.java
G-I[@ Libraries

Figure 26: NetBeans window that shows the structure of a test program

44

4.5.

Testing

- IRS - Navigator

1 =

Members View

-y RS
-~ & IRSQ

coo@oo

getTaxa() :
showOptions()
totalPagar() : int

- (0 calculaDC) « double
calculaDE() : double
calculaRB() ¢ double
calculoIRS() ¢ double

double

Figure 27: NetBeans window that shows the methods present in the IRS class

Class | Method |
financasimMl totallMlipaga A
financas\UMT IMT
financas\MT totalPago
financas\iRC IRC
financas\iRC showOptions
financas\RC totalPago
financasiRE IRS
financas\iRS calculaDC
financas\RE calculaDE
financas\iRE calculaRB
financas\RS calculolRS
financas\iRS getTaxa
financasiiRS showOptions
financas\iRS totalPagar
financasiuc IUC

Figure 28: Detail of DariusSDG that shows the methods present in the IRS class

¥
System . out . print { "valus of x: "+ %); |

Figure 29: Graph drawn by DariusSDG that shows a Do While loops

v
|intx=10|

|do while (x = 20)|

System . out . prirt (0") ;
| |

|System _out . print ("value of a: "+a); |

| System . out . print (") ;

45

4.5. Testing

public void showOptions () {

int x = 10;

do {
System.out.println("value of x : " + x);
X++;

System.out.println ("\n");
}while (x < 20);

for(int a = 10; a < 20; a = a+1l;) {
System.out.println("value of a : " + a);

System.out.println ("\n") ;

Listing 4.1: Example method with a Do While loop

Lastly, concerning the construction of the System Dependency Graph, we checked if the depen-
dency edges were well constructed. In Figure 30 we can see a fragment of the graph produced corre-
sponding to the code listed in 4.2. In this specific example we can see that when a variable is used
an edge is create linking the node where it was assigned and used one. Also we can see that when a
variable is reassigned the edge created is between its reassignment and its use, which was the expected

behaviour since it depends on the new value.

Y
intb=a+1

Figure 30: Excerpt of a graph drawn by DariusSDG that shows data dependencies edges

private double calculoIRS () {
int a = 0;

int b = a + 1;
int ¢ = 0;

b=Db *x 2 + c;

Listing 4.2: Example code that shows a reassignment

46

4.5. Testing

4.5.2 Comments

Now we will described the tests made to the features related with comment search. As described
in Chapter 2, Darius features where tested to check if the tool meets the requirements. Also the new
features added where tested during the development (see Section 4.1). At this stage we must test again
the features to assure that the integration is working.

When we write some keywords in the text field (left upper corner of the screen) and click in the
Search button a list with all comments found in the program appears in the left side of the window.
We manually check the source code to see if the results were correct, i.e. if all the comments present
in the source code were listed. Thankfully they were.

We search for the keywords options implementation to test three different situations:

e test if the tool can find the keywords in the comments independent of the order they occur

e test if the tool can find the keywords even if they do not occur in the comments (reducing the

word to its grammatical root)

e Check if the order/relevance of the results shown are correct

As we can see in Figure 31, Darius found two comments that have some similarity to the searched
terms. The first comment in the list is “when implement new options add it here”; we can see that
the keywords searched do not appear in the same order neither one next to another. Also the keyword
implementation was reduced to its grammatical root and Darius found the word implement. Lastly
the first comment have more similarity to the searched terms than the second comment, which is
“here is the user area. it shows the options user can see after login”. Which is correct since the first
comment contains the two keywords (or its grammatical root) and the second comment only contain
one keyword. By manual inspection we check that the other comments do not contain the searched
terms and that is why they similarity is zero.

When we click in a comment the corresponding information about it (name of the file, class, method,
next line and number of the line where it is located) that appear bellow the list of comments has proven
to be correct. Also, as we can see in Figure 32, the corresponding graph is shown in the middle window

and the correct method is selected in the window at the right side.

47

4.5. Testing

e —— | '
Search Terms: | 2ptions implementation Search [

Comment | Simi.. |

entr

when implement pa... 023 e
here isthe user area.. 0.18.. -

** @author nuno 0.0
end of the class 0.0
the password will be . 0.0 o - L~
__,_——'_'_ /
saves the parameter... 0.0 e -
class constructor 0.0
irs = | fi i : ire =]
map values (id = us.. 0.0 FRS irs = new IRS ()] llrs.shoWOptlons(),| |IRC irc = new IRC (NI)|
the array is alreadyi.. 0.0

loop through the has... 0.0
this array is ordered 0.0
map values {id-=stri... 0.0

initialize the array 0.0
ifthe string is null 0.0
null check 0.0

check if the varibled 0.0

check ifthe array con... 0.0

loop through elements 0.0

this method is to dis... 0.0

** @author nuno 0.0

metodo que calcula ... 0.0
*@paramargs th... 0.0

** @author nuno 0.0

login ok 0.0

the user objectis wh... 0.0 |

Comment: when implement new

options add it here

Type of Comment:

Java3ingleLineComment

File:

CUsers\inuno'\Documents\MetBe

ansProjects\Financas\srcfina

ncasiUser java

Class: financas\User

Method: userArea

Line: 77

Next Line: if (botaolRSfoiClicado) {

Figure 31: Search query executed in DariusSDG

48

4.5. Testing

L= DariusSDG - a

L& e LoadProject || DDGisON | GraphZoom:
searcn || snowstausies || - || - |

Search Terms: | Options implementation

Comment | simi..| Class | Metnod |
when implement new o.. 054, financasWl totallMipago &
F: _ ! s financasiMT IMT

** @author nuno 00 I HE——— =) financasiMT totalPago

nada 00 financasWRC ~ IRC

percebo 00) i financasWRC ~ showOptions
nao 00 == —- financasVRC totalPago

da? 0.0 financasURS IR

que 00 financasURS calculaDC
sera 00 financasWRS calculaDE

ou 0.0 financasURS calculaRB

da 00 financasiRS calculolRS

nao 00 financasWRS gefTara

senao 0o financasURS showOptions
omentarios 00 financasiRS totalPagar
muitos 0.0 financasWUC 1UC

** @authornuna 00 financasWUC showOptions
metodo que calcula oir.. 0.0 financasiUC totalPago

*@param args the c.. 0.0 financasWVA IV,

** @author nuna 00 financas\vA quantidadel
lagin ok 00 financas\Re.. RecibosVer.
the user objectiswhoc.. 0.0 financasiRe. numeroReci
Readthe VAT number . 0.0 financas\User User

Ask the VAT numbertot.. 0.0 financas\User dumb1

financas\User dumb2
financas\User dumo3d

‘Comment: here is the user area. financas\User dumbd

it shows the options user can see financas\User dumos

after login financas\User dumb6

Type of Comment: financas\User dumb?
JavaSingleLineComment financas\User entraArealti
File: financas\User gethIF
CiUsersinunoDocuments\NetBe financas\User - getPassword
ansProjects\Financaslsrcifina financas\User sethIF
ncas\User java financas\U

Class: financasiUser

Method: userArea financas\User verificaltliz
Line: 81 financasleFa.. eFatura %
Next Line: null financas\eFa... totalFaturas... |¥

Figure 32: Behaviour of DariusSDG when a comment is selected

Lastly we checked if the comments where correctly associated with the statements. We have five

different situations:

e the comment is outside a method and before one

the comment is outside a method and after all methods

the comment is inside a method and before a statement

the comment is inside a method and in the same line as a statement

the comment is inside a method and after all statements

We have created a method (constructor) called User that contains all the five types of association
mentioned. We can see the source code listed in 4.3. When the user clicks a comment that is outside
a method and before one (see Figure 33), DariusSDG associates the comment to the method. The
statement that is highlighted is the entry, meaning that the comment refers to the whole method. The
same happens when the user clicks a comment that is outside a method and after all methods (see
Figure 34).

When the user clicks a comment that is inside a method and before a statement, as shown in Figure
35 the statement that appears after that comment is highlighted, which means that the comment is
referring that statement.

If the user clicks a comment that is inside a method and in the same line as a statement (see Figure

36), the statement that is in the same line as the comment is highlighted.

49

4.5. Testing

Lastly when the user clicks a comment that is inside a method and after all statements, as listed
in Figure 37, the statement that occurs before that comment is highlighted, which means that the

comment is referring that statement.

//class constructor

public User (String NIF, String password) {
//saves the parameters to the fields of the object
this.NIF = NIF;
this.password = password; //the password will be encrypted
//when implement password encrypt add it here

}

//end of the class

Listing 4.3: Example of a method whit all five types of comments

Comment | Simil... | “
** @author nuno 0.0 K)

end ofthe class 0.0 o ~—

when implement pa... 0.0 ;" -

the password will b... 0.0 this . MIF = MNIF ; | |this _password = password ;
saves the paramete.. 0.0

onstructor
when implementne... 0.0
hereis the userare.. 0.0
nada 0.0

Figure 33: How DariusSDG associates a comment that is outside a method and before one

Comment | Simil... | *
** @author nung 0.0 & /

end of the class o S

when implementpa... 0.0 ;’“ -

the passwordwill b... 0.0 this . MIF = MIF ; | |this . password = password ;
saves the paramete... 0.0

class constructor 0.0

when implementne... 0.0

Figure 34: How DariusSDG associates a comment that is outside a method and after all methods

50

4.5. Testing

Comment | Simil... | entry
** @author nuno 0.0 R
0.0 -

end of the class

when implement pa... 0.0 \}
the passwordwill b.. 0.0 |this . password = password ;

saves the paramete. ..
class constructor 0.0
when implementne... 0.0

Figure 35: How DariusSDG associates a comment that is inside a method and before a statement

Comment | simil... | entry
** @author nuno 0.0 R

end ofthe class 0.0

" T

when implement pa...
the passwordwillb... 0.0 this . MIF = MIF ;

saves the paramete... 0.0
class constructor 0.0
when implementne... 0.0
here is the userare... 0.0

Figure 36: How DariusSDG associates a comment that is inside a method and in the same line as a statement

Comment | Simil... | entry
** @author nuno 0.0 R
0.0 -

end ofthe class T —

when implementpa... 0.0
the password will b... this . NIF = NIF

saves the paramete.. 0.0
class constructor 0.0
when implementne.. 0.0
hereis the userare.. 00

Figure 37: How DariusSDG associates a comment that is inside a method and after all statements

51

4.5. Testing

4.5.3 Other Tests

The other buttons and features, like the zoom in and out, the DDG switch (which allows turn on
and off the dependence edges), the ability to move nodes getting a different view of the graph, were
also intensively verified and are working as expected.

In Figure 30 we can see a node that was moved to get a better view of the dependence edges, the
graph is also zoomed in and the DDG edges are on. In listing 29, for example, we can see that the
DDG edges are turned off.

We perform similar tests with other programs (bigger in terms of lines of code, number of com-
ments, files and classes) to check whether everything was working ok and the results were all the time
positive. For example, we tested DatumBox, an open-source framework to develop Machine Learning
and Statistical applications Vryniotis (2014). As we can see in Figure 38 (statistic window from Dar-
iusSDG) DatumBox is a big software with 153 classes. Despite the fact that some parts of DatumBox

are being used in commercial applications, the documentation is very poor. This is a perfect example
where DariusSDG can be helpful.

S Statistics “

Mumber of files: 163 4
Mumber of comments: 2416)

If
Mumber: 1037

For
Mumber: 532

While
Mumber: 59

Class
Mumber: 153

Interface
Mumber: 14

Method
Mumber: 1345

Figure 38: DariusSDG Statistics window realtive to DatumBox

As mentioned we perform similar test with the software, for example, in Figure 39 we can see the
list of comments and the respective similarity with the searched terms. Also we can see the integration

between the tools. When we click in a comment the corresponding part of the graph is shown, the

52

4.5. Testing

associated comment is highlighted and the respective method (in the right side of the window) is

selected.
= DariusSDG -0
[e Load Project DDGisON | GraphZoom:
Searcn Terms: | overflow Search show statisties || - ||_+ |
Comment | sim._. | Class | Method |
TR) e e)
possible numericov... 046 ==

_— javalcomidatum... - optimum
¥] - java\com\datum... randoms..
(WA denaminater | [am WA Javalcomdatum . std

javalcomdatum... variance

** @authorVasilis V.. 0.0 e = g % o
** @autmorvasilis V... 0.0 e N) O B T e R R
** @author Vasilis V... 0.0 O T T T =

common second lev.. 0.0
common top level do... 0.0
com 0.0
* " @author Vasilis V... 0.0
** @author Vasilis V... 0.0

javalcomdatum... weighted
javalcomdatum... xbarStd
javalcom\datum... xbarvaria
javalcomidatum... mean

. javalcomdatum... randoms
L Generates anew.. 0.0 javalcom\datum... xbarstd

@author Vasilis V... 0.0 javalcom\datum... xbaryaria
** @author Vasilis V... 0.0 javalcomdatum... hoftWinte
add the new combin.. 0.0 javalcomdatum... simpleEx..
ignore keyword comb.. 0.0 javalcomidatum... simpleEx
the distance betwee... 0.0 Javalcomdatum... simplei
the method below su... 0.0 javalcom\datum..._ simpleh
stores IDn_..ID2_ID... 0.0
wsr::w:;wz:":m;r‘n‘iur:;p s s L javalcom\datum... gethlax
translate positions to.. 0.0 |7 o

javalcomidatum... getPos2
TR ea E DI javalcomdatum... sethlax

[Feubte Vi = fatatalit gebouite ()] [Cem

overflow javalcomidatum... setPos1

Type of Comment: javalcomidatum... setPos2

:i:asmg\eunecnmmem javalcomidatum... similar_c.
ile:

javalcomdatum... - similar_str
CiUsersinuno\Deskiop\datumbo

xcframework-mastensrcimaini
avalcomidatumbodirameworkist
atistics\imeseries\Smootning
java

Class:
javalcom\datumboxframeworkis
tatistics\limeseriss\Smoothin javalcomidatum dale_cha
[javalcom\datum... dale_cha
Method: weightedMovingAverage . javalcomidatum . flesch_ki
Line: 92 javalcomidatum . flesch_ki
Next Line: denominator+=weight

javalcomdatum... similarity.
javalcomdatum... similarity.
javalcomidatum... automate.
javalcom\datum.. average_.
javalcom\datum... average_
javalcomidatum... clean_text
javalcom\datum... coleman...

Figure 39: DariusSDG with DatumBox loaded example

DariusSDG performance was also tested. The process can be divided in three phases:
e when DariusSDG is loading a program
e when a search query is executed
e when a graph is shown

The first item (loading a program) is where DariusSDG will consume more resources from the
machine. As we can see in Figure 40, when DariusSDG loads DatumBox a big percentage of CPU
is being used (almost 71%) and the disk usage also has a significant usage (almost 25%). That is
normal because is when DariusSDG is reading all the files, parsing them, saving the comments and
constructing the objects that contain information about the System Dependency Graph.

In this case, when a search query is executed, DariusSDG usage of disk is very insignificant and
the use of CPU hit a 25% of maximum usage. The no use of disk is normal because all the elements
are already in the memory (about 333 MB) and there is no need to read them again from the disk.
The use of CPU is related to the stemming process of the searched terms, the comparison with all the
comments and the respective ranking.

Lastly when we click a comment or a method the corresponding part of the System Dependency
Graph is shown. Once again the disk is not used but the CPU values are much smaller, about 2%. This
is explained by fact that the graph has few elements and JGraphX is a very well implemented library.

DariusSDG was also tested in different machines, with different operating systems, and as expected

from a Java program it worked normally.

53

4.5. Testing

= Gestor de Tarefas

Ficheiro Opgdes Ver

| Processes | Desempenho | Histérico de aplicagbes | Amanque | Utilizadores | Detalhes | Servigos|

- 73% 45% 25% 0%
Nome Estado CcPU Meméria Disco Rede

Aplicagdes (3)
b 7 Gestor de Tarefas 03% 139MB 0MB/s 0 Mbps

b |4 Java(TM) Platform SE binary 08% 4442 MB 0,1 MB/s 0 Mbps

I Java(TM) Platform SE binary 709% 3327MB 3,0 MB/s 0 Mbps

Processos em segundo plano (...

[Adobe Acrobat Update Service (... 0% 0,1 MB 0MB/s 0 Mbps
0,1 MB 0 MB/s 0 Mbps

AntiVir shadow copy service

Antivirus Host Frameworl

Antivirus Host Frameworl INFO: Click on the "Load Project” button to proceed. [Load Project] [DDG is ON J Graph Zoom:

L]

Auwirs system tray applicatl gaoreh Terms: ‘ [e J[T J —

& [0 Cisco Systems VPN Client

Comment Simila..

[27] Communications Service

[Device Association Framg

[dits_apo_service

@ Menos detalhes

Figure 40: DariusSDG resources consumption when loading DatumBox

54

CONCLUSION

As mentioned along this document, software maintenance is one of the most expensive parts of
software development, and the time spent by software engineers to understand the program (an com-
pulsory but unproductive phase) is the main reason for that.

Program Comprehension researchers studied and developed many techniques and tools to decrease
the time spent to understand a program, but software maintenance is still a very demanding task. The
number of tools found, for the Java programming language, which can assist software engineers in
program comprehension, is small and focused in one technique of program comprehension.

DariusSDG combine two techniques of Program Comprehension that can show semantic and struc-
tural information about a program. DariusSDG also was built to be easy to use and understand, avoid-
ing even more wasted time.

Along this document we described the development of DariusSDG that went through many phases.
In a initial phase we studied tools that could be used to construct DariusSDG including JGraphX and
Darius. While JGraphX was used as it is, Darius needed changes that led to a deeper study of the
tool including how it works and where the changes needed to be made, in other words maintenance.
Also we needed to understand the definition of Java language (its grammar) in order to build the SDG
Builder which is a tool that constructs the System Dependency Graph based on Java source code since
there was no tool that can do that.

At present moment DariusSDG perform concept location based on source code comments but an-
other source to find concepts are the constant strings in the source code (I/O statements and variable
initialization). DariusSDG can be improved to capture these new source of concepts.

DariusSDG can also be modified to show a ”big picture” of the System Dependency Graph. At
present moment, for scalability reasons, DariusSDG shows the System Dependency Graph divided by
methods but does not show how these methods are related and their dependencies. That information
can be useful for the software engineer that is analysing the program and adding it to DariusSDG will
be a good improvement.

Various tests where performed and described in this document but none of them where made with
persons. In the future we will perform experiments, with real programs and software engineers, to

verify if the DariusSDG can reduce the time spent in software maintenance.

55

At the present moment DariusSDG is complete and ready to be used, and can be download from its

website at www . di .uminho.pt/~gepl/DariusSDG

56

www.di.uminho.pt/~gepl/DariusSDG

BIBLIOGRAPHY

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.

Hirohisa Aman and Hirokazu Okazaki. Impact of Comment Statement on Code Stability in Open
Source Development. In JCKBSE, pages 415-419, 2008.

Dejan Baca, Bengt Carlsson, and Lars Lundberg. Evaluating the cost reduction of static code analysis
for software security. In PLAS, pages 79-88, 2008.

David Benson and Gaudenz Alder. JGraphX, 2014. URL https://github.com/jgraph/
jgraphx.

Arieh Bibliowicz. Jgraph styles, 2011. URL http://www.vainolo.com/2011/05/13/
jgraph-styles/.

Ruven E. Brooks. Using a Behavioral Theory of Program Comprehension in Software Engineering.
In ICSE, pages 196-201, 1978.

Nuno Ramos Carvalho, José Jodo Almeida, Maria Jodo Varanda Pereira, and Pedro Rangel Henriques.
Conclave: Ontology-driven measurement of semantic relatedness between source code elements
and problem domain concepts. Lecture Notes in Computer Science (including subseries Lecture

Notes n Artificial Intelligence and Lecture Notes in Bioinformatics).

Elliot J. Chikofsky and James H. Cross. Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software, 7(1):13-17, 1990.

Graph Drawing Steering Committee. The graphml file format, 2007. URL http://graphml.
graphdrawing.org/.

Rui Gustavo Crespo. Processadores de linguagens da concepgdo a implementagdo. Ensino da Ciéncia

e da Tecnologia. IST, Lisboa, cop. 1998. Colocagdo: Sala azul/Piso 2.

Daniela da Cruz, Mario Béron, Pedro Rangel Henriques, and Maria Jodo Varanda Pereira. Code
inspection approaches for program visualization. Acta Electrotechnica et Informatica, 9(3):32-42,
Jul-Sep 2009. ISSN: 1335-8243.

José Luis Figueiredo de Freitas. Comment Analysis for Program Comprehension. Master’s thesis,
University of Minho, 2011.

57

https://github.com/jgraph/jgraphx
https://github.com/jgraph/jgraphx
http://www.vainolo.com/2011/05/13/jgraph-styles/
http://www.vainolo.com/2011/05/13/jgraph-styles/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/

Bibliography

Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Kéthia M. de Oliveira. A study of the documen-
tation essential to software maintenance. In Proceedings of the 23rd Annual International Con-
ference on Design of Communication: Documenting &Amp, Designing for Pervasive Information,
SIGDOC 05, pages 68-75, New York, NY, USA, 2005. ACM.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A.
Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391-407, 1990.

Lin Du, Guorong Xiao, and Daming Li. A novel approach to construct object-oriented system depen-
dence graph and algorithm design. JSW, 7(1):133-140, 2012.

Floris P. Engelbertink and Harald H. Vogt. How to save on software maintenance costs. 2010.
L. Erlikh. Leveraging legacy system dollars for e-business. I'T Professional, 2000.

R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance Study: Report to Our Respon-
dents. GUIDE 48, April 1983.

Forward, Andrew, Lethbridge, and Timothy C. The relevance of software documentation, tools and
technologies: A survey. In Proceedings of the 2002 ACM Symposium on Document Engineering,
DocEng 02, pages 26-33, New York, NY, USA, 2002. ACM.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot, 2006.

Lars Marius Garshol. Bnf and ebnf: What are they and how do they work?, 2008. URL http:
//www.garshol.priv.no/download/text/bnf.html.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specification. 2005.
Mirian Halfeld-Ferrari. Context-free grammars (cfg).

Brian W. Kernighan and P. J. Plauger. The elements of programming style (2. ed.). McGraw-Hill,
1978. ISBN 978-0-07-034207-1.

LangPop. Programming Language Popularity, 2013. URL http://langpop.com/.

Panos E. Livadas and Theodore Johnson. An optimal algorithm for the construction of the system
dependence graph. Inf. Sci., 125(1-4):99-131, 2000.

Jonathan I. Maletic and Andrian Marcus. Supporting Program Comprehension Using Semantic and
Structural Information. In ICSE, pages 103—-112, 2001.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. [Introduction to Information
Retrieval. Cambridge University Press, 2009. ISBN 978-0-521-86571-5.

Joshua O’Madadhain, Danyel Fisher, and Scott White. Jung - java universal network/graph framework,
2013. URL http://jung.sourceforge.net/.

58

http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://langpop.com/
http://jung.sourceforge.net/

Bibliography
Terence Parr. Antlr, 2014. URL http://www.antlr.org/.

James Power. Notes on formal language theory and parsing, 2002. URL http://www.cs.nuim.

ie/~jpower/Courses/Previous/parsing/index.html.

Vaclav Rajlich and Norman Wilde. A retrospective view on: The role of concepts in program compre-
hension: (MIP award). In ICPC, pages 12-13, 2012.

Martine Schlag. Directed graphs, 2004. URL http://classes.soe.ucsc.edu/cmpel77/
Fall04/slides/digraphs.pdf.

Gang Shu, Boya Sun, Tim A.D. Henderson, and Andy Podgurski. JavaPDG: A Graphical Tool for
Program Dependence Analysis on Java, 2013. URL http://selserver.case.edu:8080/
Javapdg/.

Kenneth Slonneger and Barry L. Kurtz. Syntax and Semantics of Programming Languages. 1978.

Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris. Code quality

analysis in open source software development. Inf. Syst. J., 12(1):43-60, 2002.

Margaret-Anne D. Storey. Theories, Methods and Tools in Program Comprehension: Past, Present
and Future. In IWPC, pages 181-191, 2005.

Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Miiller. Cognitive design elements to
support the construction of a mental model during software exploration. Journal of Systems and
Software, 44(3):171-185, 1999.

Ted Tenny. Program Readability: Procedures Versus Comments. IEEE Trans. Software Eng., 14(9):
1271-1279, 1988.

T. Teny. Procedures and comments vs. the banker’s algorithm. In SIGCSE Bull, page 44 to 53, 1985.

TIOBE. TIOBE Index for January 2014, 2014. URL http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html.

Chun Yin TONG, Eric Chi Lik LO, and Ming Hay LUK. Java System Dependence Graph API, 2010.
URL http://wwwé.comp.polyu.edu.hk/~cscllo/teaching/SDGAPI/.

Vasilis Vryniotis. Datumbox machine learning framework, 2014. URL http://www.datumbox.

com/.

William Mc Castline Waite and Gerhard Goos. Compiler construction. Texts and monographs in
computer science. Springer, New York, Berlin, Tokyo, 1984. ISBN 0-387-90821-8. URL http:
//opac.inria.fr/record=b11034209.

59

http://www.antlr.org/
http://www.cs.nuim.ie/~jpower/Courses/Previous/parsing/index.html
http://www.cs.nuim.ie/~jpower/Courses/Previous/parsing/index.html
http://classes.soe.ucsc.edu/cmpe177/Fall04/slides/digraphs.pdf
http://classes.soe.ucsc.edu/cmpe177/Fall04/slides/digraphs.pdf
http://selserver.case.edu:8080/javapdg/
http://selserver.case.edu:8080/javapdg/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www4.comp.polyu.edu.hk/~cscllo/teaching/SDGAPI/
http://www.datumbox.com/
http://www.datumbox.com/
http://opac.inria.fr/record=b1103429
http://opac.inria.fr/record=b1103429

Bibliography

Norman Wilde. Software Reconnaissance, 2012. URL http://uwf.edu/nwilde/recon/

recond4/r4wReconnaissance.htm.

Norman Wilde and Christopher Casey. Early field experience with the Software Reconnaissance

technique for program comprehension. In /ICSM, pages 312-318, 1996.

Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. The Effect of Modularization and
Comments on Program Comprehension. In /ICSE, pages 215-223, 1981a.

Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. The Effect of Modularization and
Comments on Program Comprehension. In ICSE, pages 215-223, 1981b.

Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: Towards a static noninteractive
approach to feature location. ACM Trans. Softw. Eng. Methodol., 15(2):195-226, 2006.

60

http://uwf.edu/nwilde/recon/recon4/r4wReconnaissance.htm
http://uwf.edu/nwilde/recon/recon4/r4wReconnaissance.htm

	Contents
	1 Introduction
	1.1 Objectives
	1.2 Research Hypothesis
	1.3 Document structure

	2 Program Comprehension: Basic Concepts
	2.1 Programming Languages
	2.1.1 Context Free Grammar
	2.1.2 Attribute Grammars
	2.1.3 ANTLR

	2.2 Understanding a Program
	2.3 Concept Location
	2.3.1 Information Retrieval
	2.3.2 Darius

	2.4 Graphs
	2.4.1 DOT
	2.4.2 JGraphX
	2.4.3 JUNG

	2.5 System Dependency Graph
	2.5.1 What is it?
	2.5.2 Tools that build a System Dependency Graph

	3 DariusSDG: Design
	3.1 Requirements
	3.2 Architecture

	4 DariusSDG: Development
	4.1 Comment Analyser for Concept Location
	4.2 Building the System Dependency Graph
	4.3 Designing the System Dependency Graph
	4.4 Integration
	4.5 Testing
	4.5.1 Loading, Analysing and Build SDG
	4.5.2 Comments
	4.5.3 Other Tests

	5 Conclusion

