
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master Course in Computing Engineering

Nuno Pereira

Concept Location based on System Dependency Graphs

Master dissertation

Supervised by: Pedro Rangel Henriques

Maria João Varanda

Braga, October 31, 2014

A B S T R AC T

Software maintenance can be seen as the act of correct errors in the software and/or the addiction

of new features. This is one of the most difficult and frequent jobs of a software engineer and one of

the most important and expensive parts of software development.

Maintaining a software is very complex mainly because before making the change to the program,

software engineers need to find the location, or locations, where the changes will be made; in other

words, first they need to understand the program. Real applications are always huge and sometimes

these programs are old or were written by other person and it is difficult to find the location where

the change will be applied. There are various techniques to find these locations minimizing the time

spent, but this phase of software development continues to be one of the most expensive and longer.

The objective of this Master Work is to combine Program Comprehension techniques like comment

analysis and SDG visualization, creating a tool easy to use, that can simplify and decrease the time

spent understanding a program.

a

R E S U M O

Manutenção de software pode ser vista como o ato de corrigir erros no software e/ou de adicionar

novas funcionalidades. Esta é uma das tarefas mais frequentes e difı́ceis de um engenheiro de software

e uma das mais importantes e dispendiosas partes do desenvolvimento de software.

Manter um software é muito complicado principalmente porque antes de efectuar a alteração do

programa, o engenheiro de software precisa de encontrar o local, ou locais, onde a alteração será

efectuada, ou seja, primeiro ele precisa de perceber o programa. Por vezes estes programas são

antigos ou foram escritos por outra pessoa e é difı́cil encontrar o local onde a alteração será feita.

Existem muitas técnicas para encontrar estes locais minimizando o tempo despendido, mas esta fase

do desenvolvimento de software continua a ser uma das mais caras e demoradas.

O objetivo do presente Trabalho de Mestrado é combinar técnicas de Compreensão de Programas

tais como análise de comentários e visualização do SDG, criando uma ferramenta fácil de usar, que

consiga simplificar e diminuir o tempo despendido a perceber um programa.

b

C O N T E N T S

Contents . iii

1 I N T RO D U C T I O N . 3

1.1 Objectives . 3

1.2 Research Hypothesis . 5

1.3 Document structure . 5

2 P RO G R A M C O M P R E H E N S I O N : B A S I C C O N C E P T S 7

2.1 Programming Languages . 7

2.1.1 Context Free Grammar . 7

2.1.2 Attribute Grammars . 9

2.1.3 ANTLR . 10

2.2 Understanding a Program . 11

2.3 Concept Location . 13

2.3.1 Information Retrieval . 14

2.3.2 Darius . 14

2.4 Graphs . 17

2.4.1 DOT . 19

2.4.2 JGraphX . 20

2.4.3 JUNG . 23

2.5 System Dependency Graph . 23

2.5.1 What is it? . 24

2.5.2 Tools that build a System Dependency Graph 25

3 DA R I U S S D G : D E S I G N . 28

3.1 Requirements . 28

3.2 Architecture . 30

4 DA R I U S S D G : D E V E L O P M E N T . 32

4.1 Comment Analyser for Concept Location . 32

4.2 Building the System Dependency Graph . 35

4.3 Designing the System Dependency Graph . 39

4.4 Integration . 40

4.5 Testing . 42

4.5.1 Loading, Analysing and Build SDG 43

4.5.2 Comments . 47

4.5.3 Other Tests . 52

iii

Contents

5 C O N C L U S I O N . 55

iv

L I S T O F F I G U R E S

Figure 1 Evolution of maintenance costs . 3

Figure 2 Representation of one production in an attribute grammar 10

Figure 3 ANTLRWorks interface . 11

Figure 4 How Software Reconnaissance works 13

Figure 5 Darius Architecture . 15

Figure 6 Darius Graphical User Interface: Comment Statistics tab 16

Figure 7 Darius Graphical User Interface: Words Analyser tab 16

Figure 8 Darius Graphical User Interface: Concept Location tab 17

Figure 9 Directed Graph example . 18

Figure 10 Graph generated by a DOT tool . 19

Figure 11 A System Dependence Graph . 20

Figure 12 Styles that can be drawn with JGraphX 21

Figure 13 Sample graphs made with JGraphx 22

Figure 14 A node inside a node . 23

Figure 15 Jung graph example . 24

Figure 16 A System Dependency Graph . 25

Figure 17 JavaPDG interface . 26

Figure 18 Architecture of DariusSDG . 31

Figure 19 Darius structure shown by NetBeans 33

Figure 20 How DariusSDG associates comments with methods 34

Figure 21 How DariusSDG associates comments with statements 34

Figure 22 How DariusSDG associates comments with methods 37

Figure 23 How DariusSDG handle DDG objects 39

Figure 24 DariusSDG graphical user interface 41

Figure 25 Excerpt of the Statistics showed by DariusSDG 44

Figure 26 NetBeans window that shows the structure of a test program 44

Figure 27 NetBeans window that shows the methods present in the IRS class . . 45

Figure 28 Detail of DariusSDG that shows the methods present in the IRS class . 45

Figure 29 Graph drawn by DariusSDG that shows a Do While loops 45

Figure 30 Excerpt of a graph drawn by DariusSDG that shows data dependencies edges 46

Figure 31 Search query executed in DariusSDG 48

Figure 32 Behaviour of DariusSDG when a comment is selected 49

v

List of Figures

Figure 33 How DariusSDG associates a comment that is outside a method and before

one . 50

Figure 34 How DariusSDG associates a comment that is outside a method and after all

methods . 50

Figure 35 How DariusSDG associates a comment that is inside a method and before a

statement . 51

Figure 36 How DariusSDG associates a comment that is inside a method and in the

same line as a statement . 51

Figure 37 How DariusSDG associates a comment that is inside a method and after all

statements . 51

Figure 38 DariusSDG Statistics window realtive to DatumBox 52

Figure 39 DariusSDG with DatumBox loaded example 53

Figure 40 DariusSDG resources consumption when loading DatumBox 54

vi

L I S T O F E Q UAT I O N S

1 Context Free Grammar representation . 8

2 Production representation . 8

3 Context Free Grammar example . 8

4 Context Free Grammar example with BNF . 9

5 Context Free Grammar example with eBNF . 9

6 Attribute Grammar representation . 9

7 Directed Graph representation . 18

8 Directed Edge representation . 18

vii

L I S T O F TA B L E S

Table 1 Some graph options available in JGraphX 22

Table 2 Main functions of the System Dependence Graph API 27

viii

L I S T O F L I S T I N G S

2.1 DOT example . 19

2.2 Sample code to make two graphs using JGraphX . 21

2.3 Excerpt of a Java program . 25

4.1 Example method with a Do While loop . 46

4.2 Example code that shows a reassignment . 46

4.3 Example of a method whit all five types of comments 50

ix

1

I N T RO D U C T I O N

This document introduces a master work, in the area of Program Comprehension. The development

of a thesis and its presentation in the format of a dissertation is a component of the second year of the

Master Degree in Informatics Engineering that is held at University of Minho in Braga, Portugal.

1.1 O B J E C T I V E S

”Software Maintenance is defined as the modification of a software product after delivery to correct

faults, to improve performance or other attributes or to adapt the product to a changed environment”

Chikofsky and Cross (1990).

Software maintenance is one of the most expensive phases of software development. In Figure 1

(extracted from Engelbertink and Vogt (2010)) we can see that 80% to 95% of the overall costs are

spent in maintenance, and half the time spent in software maintenance is to understand the program

code and the instructions that have to be changed Erlikh (2000); Fjeldstad and Hamlen (1983).

Figure 1: Evolution of maintenance costs

These conclusions are easily understandable because before making the change to the program,

software engineers need to find the location, or locations, where the changes will be made. These

programs tend to be complex and huge, in terms of lines of code and number of files, are usually

written by different software engineers with different visions of the problem and different forms of

thinking. Moreover the variables and methods names in the source code may not be explicit and usu-

3

1.1. Objectives

ally these kind of programs (legacy programs) do not have good or updated documentation Forward

et al. (2002); de Souza et al. (2005).

There are various techniques to find these locations minimizing the time spent searching but the

most used techniques consists in navigating through the statements dependencies or search for key-

words that can indicate where the concept is implemented.

In the first technique, the software engineer navigate through the dependencies among elements,

usually the navigation start at the main function and a specific path is taken until he finds the desired

concept implementation. If the search is not successful, the software engineer must backtrack to the

previous point (e.g., class, method or conditional structure) and choose a different path.

The other technique consists in searching for certain keywords in the source code files (related to

the change that will be made) that can indicate the location, or locations, where the software engineer

needs to intervene.

When the software engineer search in the source code, he is not only searching in the program

instructions but also in the comments.

The best documentation for a program includes comments, and software engineers makes a lot

(and relevant) comments in the source code wherein about 19% of the source code are comments.

Comments can explain source code in a natural language connecting the program domain with the

problem domain Kernighan and Plauger (1978); Forward et al. (2002); de Souza et al. (2005).

Although being the most used, these techniques are used in a very ineffective way. The process of

navigating through dependencies till find the location that need intervention is slow and depends of

the quality of the code (explicit names) to find the right path.

The process of searching (finding concepts in the source code) can also be improved with other

techniques like stemming, which consists in reducing the word to its grammatical root, so when the

software engineer search for the keyword sales the program can return other similar words like sold

or sell. Also the search could be more ”smart” and find words at any order; so when the software

engineer search the terms user options results like options the user have could be returned.

There are very few applications that implement these two techniques (find concepts in the source

code comments and navigating through the statements dependencies) in order to speed up the process

of program comprehension.

Also, the tools are built focusing one Program Comprehension technique and, until now, there is no

application that join these two mentioned techniques. These two techniques complement each other,

giving semantic and structural information about the program, joining them in one application can

give a much clear vision of the program to the software engineer.

For all these reasons, becomes clear that it is challenging, interesting and useful to create a tool

with a friendly interface that allows to perform concept location over a System Dependency Graph

(SDG). The main idea is to visualize a dependency graph (control flow and data dependencies) and

locate the nodes that can be related to a given term. More than locate a set of hot instructions (based

on the associated comments) it will allow to detect the other instructions (the whole method).

4

1.2. Research Hypothesis

The final objective of the tool proposed in this thesis, named DariusSDG, is to decrease the time

spent to locate concepts in source code in order to reduce the cost of maintenance tasks.

Finally, the language that will be our case of study is Java 1. Java is one of the most used program-

ming languages in the world TIOBE (2014); LangPop (2013), it supports object-oriented design, has

an extensive API, it has web support and many third-party packages. By designing a tool that can

analyse Java code we can reach a much broader audience.

1.2 R E S E A R C H H Y P OT H E S I S

As mentioned before, software maintenance is one of the most important, expensive and poorly op-

timized phase of software development Stamelos et al. (2002); Brooks (1978); Gosling et al. (2005).

The time spent understanding the program can be minimized using techniques of Program Compre-

hension.

Hereupon, the objective of this thesis, is to create a tool (DariusSDG) easy to use that can show

various kinds of information about a program (structural and semantic) reducing the time spent in

program comprehension.

If the time spent to understand a program decreases the software engineer can correct the error, or

the implementation of a new feature quicker, reducing costs.

In this context, the research hypothesis underlying the present master work is that it is possible to

improve a tool (Darius, previously developed by our Research Group) designed for Concept Location,

based on Comment Analysis, with a navigation mechanism supported by the System Dependency

Graph.

1.3 D O C U M E N T S T RU C T U R E

This chapter was an introduction to the document, describing the purposes and objectives of this

master work. In chapter 2, it is introduced the area of Program Comprehension, some concepts,

definitions and techniques which are fundamental to this master work. In the first section of the

chapter it is introduced the concept of Programming Language and how it is defined. In the following

section we will deepen some the Program Comprehension concepts. The third section of chapter 2

describes in more detail the Concept Location technique as well some tools that perform this kind of

search. The next section describe the concepts of graph theory. The chapter ends with an overview of

the System Dependency Graph technique. It also describes and analyses the existing tools that create

this kind of graph.

The architecture and design of DariusSDG are described in chapter 3.

Chapter 4 is divided in five sections. The first section will explain how the comment analyser

for concept location was implemented and used. How the System Dependency Graph was built is

1 More information in http://docs.oracle.com/javase/8/

5

1.3. Document structure

explained in the second section and how it was represented is described in the following section.

Section four is where the integration between the tools is explained. The last section presents some

tests that where made with the tool.

This document ends in chapter 5 where the conclusions about this master work are made and some

improvements are pointed out for future work.

6

2

P RO G R A M C O M P R E H E N S I O N : BA S I C C O N C E P T S

Program Comprehension is a component of Software Engineering discipline whose principal pur-

pose is to study how software engineers understand programs Storey (2005).

Software Maintenance is one of the most expensive phases of software development (as mentioned

in Chapter 1), being that half the time spent doing this task is understanding the program. Aware of this

fact, many techniques of Program Comprehension were created to streamline this phase of software

development. This chapter will refer some of these techniques as well as tools that implemented the

referred techniques. Other important concepts related to Program Comprehension are also explained

in this chapter.

2.1 P RO G R A M M I N G L A N G UAG E S

Natural languages were created to facilitate the communication between humans and where created

before the rules, despite following a pattern they have a lot of exceptions. Formal languages, like

programming languages, works the other way around, first, very well defined rules were created and

them, based on those rules we create sentences/instructions which give origin to texts/programs.

A formal language is a set of elements (symbols, letters or tokens) and rules that explain how the

symbols can be related. These elements and rules are described in a formal grammar. If a sentence is

recognized by the grammar, that sentence belongs to the language.

2.1.1 Context Free Grammar

A context free grammar (CFG) is a formal grammar which is used to represent a formal language,

it describes the elements (symbols, letters or tokens) the language can use and how to related them

(build sentences) Crespo (cop. 1998); Halfeld-Ferrari.

7

2.1. Programming Languages

Formally a context free grammar can be represented by a tuple:

CFG = (T, N, s, P) (1)

Where

• T is a set of terminal symbols

• N is a set of nonterminal symbols

• s is the initial nonterminal symbol, the axiom

• P is a of set derivation rules, the productions

A terminal symbol can be a symbol, a letter or a token and a nonterminal symbol is an identifier.

A production is represented as:

P : a0 → a1...an (2)

Where

• P is the identifier of the production

• a 0 is a nonterminal symbol

• a 1...a n are terminal or nonterminal symbols

The left hand side (LHS) of the production (a0) derives in the right hand side (RHS) (a1...an) of the

production. If the RHS of the production contains a nonterminal symbol we must check the production

that derives the nonterminal symbol till we have only terminal symbols.

A context free grammar that represent a list of zeros and ones separated by a comma can be:

zeros and ones = (T, N, s, P)
T = 0, 1, ‘, ’

N = List, Item
s = List
P1 : List→ Item
P2 : List→ Item, List
P3 : Item→ 0
P4 : Item→ 1

(3)

In the production P2 the nonterminal symbol List derives in the nonterminal symbol Item, followed

by the terminal symbol ’,’, followed by the nonterminal symbol List.

When we have more than one production with the same right hand side, we must choose one of

them to continue the derivation. For example, when we have the nonterminal symbol List whe can

derive it into Item or into Item , List.

8

2.1. Programming Languages

The rules are grouped by the LHS of the production, so we can omit P2 and P4 left hand side of

the production, these notation is known as Backus–Naur Form (BNF) Garshol (2008).

P1 : List→ Item
P2 : |Item, List
P3 : Item→ 0
P4 : |1

(4)

In P2 rule we use a recursive call to make the list as big as we want. The extended Backus–Naur

Form (eBNF) let us use three symbols of the regular expressions that can reduce the number of pro-

ductions.

The symbols are:

• ? which means optional occurrence

• * which means zero or more occurrences

• + which means one or more occurrences

Using the extended Backus–Naur Form we can join P1 and P2 produtions.

P1 : List→ Item(, Item)*

P2 : Item→ 0
P3 : |1

(5)

2.1.2 Attribute Grammars

An attribute grammar is a way to define attributes for the productions of a grammar Slonneger and

Kurtz (1978). Formally a attribute grammar can be represented by a tuple:

AG = (G, A, CR, CC, TR) (6)

Where

• G is a context free grammar

• A is a set of attributes (associated to the terminal and nonterminal symbols of G)

• CR is the set of contextual rules to obtain the value of the attributes in the productions of G

• CC is the set of contextual conditions in the productions of G

• TR is the set of translation rules in the productions of G

9

2.1. Programming Languages

The attributes are divided into two groups: synthesized attributes and inherited attributes.

The inherited attributes transport information down the derivation tree. The child node inherit these

attributes from the parent nodes. The axiom and terminal symbols do not have inherited attributes.

The synthesized attributes transport information up the derivation tree. They are the result of eval-

uation rules. Terminal symbols have synthesized attributes (intrinsic) like the position, the line or the

text.

In Figure 2 we can see that the nonterminal symbol A derives in B and C. A inherits two attributes

and synthesises other two. B inherits one attribute from A and returns it another one. C inherits one

attribute from A and synthesize two attributes.

Figure 2: Representation of one production in an attribute grammar

The computational rules are mathematical expressions that are used to compute the values of the

attributes. These values can be computed using the synthesised attributes, the inherited attributes or

constants.

The contextual conditions are mathematical expressions to check the validity of the sentences. For

example, if a nonterminal symbol has an attribute day of the month contextual condition shall restrict

the values to numbers from 1 to 31.

The attribute grammar can be seen as object oriented if we think that a production is an object and

the incoming attributes are the resources. The outgoing attributes must be computed only using the

available resources.

2.1.3 ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful and free tool for parsing formal

languages Parr (2014). It has an recognizer generator (parser and lexer) that can be used for reading,

processing or translating formal languages Aho et al. (1986); Waite and Goos (1984).

It has an development environment called ANTLRWorks (see Figure 3) where we can design the

grammar, debug it and test it with inputs. ANTLRWorks also have a navigation system, autocomple-

tion and a syntax diagram visualizer.

10

2.2. Understanding a Program

Figure 3: ANTLRWorks interface

ANTLR can be used for every formal language. To use it we must describe which language we

want to read/process/translate by using a context free grammar and using the extended Backus–Naur

Form (eBNF).

As mentioned, the output of ANTLR is a lexer and a parser that recognize the language specified.

ANTLR can generate code in several programming languages.

Attribute grammars can also be used in ANTLR. ANTLR has a specific notation for inherit and

synthesized attributes. The actions (translation rules, contextual rules and contextual conditions) to

make in each production must be written directly in the production and in the programming language

that will be generated.

When the recognizer is being generated, the actions are embedded in the source code at the appro-

priate points.

ANTLR is a widely used tool and has a lot of grammars that users can download.

2.2 U N D E R S TA N D I N G A P RO G R A M

Understanding a program depends on the knowledge the software engineers has about the program

that is being analysed, his experience and knowledge about the real world problem that the program

solves.

These two concepts, real world problem and how it is solved in a programming language, are

known in Program Comprehension as: Problem Domain and Program Domain.

11

2.2. Understanding a Program

Despite being related many times, Problem Domain concepts do not have a direct correspondence

to their implementation.

We can see Problem Domain as the concepts related to the problem, the relation between them and

how the problem can be solved. For instance, if a teacher needs to manage a school class there are

various concepts related to that problem like students, grades, faults, summaries and so on.

This problem has various tasks, or more small problems associated like:

• how to add a summary?

• how to register the information about the students?

• how to register the grades? Should be part of the student record or be saved apart?

• where is the information stored?

Program Domain is concerned with the programming language and with the implementation tech-

niques used to solve the problem in a computer. Taking the example above, we can say that in Program

Domain the concern is what data structures will be used to store the information (an array?), how the

information about the grades will be implemented (as attribute of the school class or the student?)

among others.

The time spent understanding a program also depends on the program that is being analysed: how

it was created, how it is being maintained, in which programming language is written and the changes

that should be implemented also have a strong influence in the effort and time required for program

comprehension.

When a software engineer analyses a program he constructs a Mental Model of the program, which

is updated when new informations are collected Storey et al. (1999). The software engineer needs to

know the flow of the program, which methods are called, by who, what these methods do, the data

dependencies and the effect a change may cause. As said before, programs tend to be huge (many

lines of code, many methods and many files) and it causes to be unworkable the task of knowing all

these details about the program by hand.

Every software engineer has its own way to understand a program, to capture information from the

source code Storey et al. (1999). To help him on this task there are several tools that can be used to

explore the source code. The choice depends on the needs of the user: static or dynamic source code

analysis, use of visualizations or textual information to show the results and so on. Moreover, almost

tools are programming language dependent and some of them adopt invasive approaches that modify

the source code with code inspection instructions da Cruz et al. (2009).

Some Program Comprehension techniques are used to extract the structural information from source

code like the System Dependence Graph. This technique enables software engineers to easily see

how the program executes, which methods are called, who call certain method, the order they are

called and other similar information. However, this artefact does not show all the information about

12

2.3. Concept Location

the program Maletic and Marcus (2001). It does not show informations about the relation between

Program Domain and Problem Domain, how the real world concepts are emulated in the source code.

The main focus of this master work are the System Dependency Graph and Concept Location based

on comments techniques, which will be discuss in the next sections as well as some tools that imple-

ment these techniques in order to have a complete tool that shows structural and semantic information

about a program.

2.3 C O N C E P T L O C AT I O N

Concept Location is a component of Program comprehension that has the objective to find in the

code where the concepts are implemented Rajlich and Wilde (2012).

We can find these concepts analysing/inspecting the code or the System Dependency Graph but that

can take a lot of time.

Software reconnaissance Wilde and Casey (1996), for example, is a technique that runs a set of

cases where the action that implements the concept occurs, and other set of cases where the action that

implements the concept does not occur. The traces tacked are analysed and compared. The differences

can indicated where the concept is implemented. In Figure 4 (extracted from Wilde (2012)) we can

see a graphical representation of this technique.

Figure 4: How Software Reconnaissance works

Other option is searching for certain keywords in the source code that can indicate where the con-

cept is being implemented. This is possible because the text present in the source code can give

us various kinds of semantic information about a program Carvalho et al.. If a method is called ”re-

turn average grade” it is almost certain what the method returns. The problem is when these methods

or variables do not have an explicit name or are relevant to understand the context and the concepts

involved like result or auxiliary.

That is why comments are so important. Comments can explain source code in a natural language

connecting the Program Domain with the Problem Domain, like an interface between them Woodfield

et al. (1981a). By reading the comments we can understand what the software engineer was thinking

when was writing the code and what problem he was trying to solve Tenny (1988).

13

2.3. Concept Location

2.3.1 Information Retrieval

As we can see in Manning et al. (2009), the main goal of Information Retrieval is finding and

retrieving documents that satisfies a certain search or query.

An Information Retrieval System analyses several documents processing its text with the assistance

of some tools like:

• Sentence tokenizer, that separates the text into sentences.

• Word tokenizer, that separates the sentences into words.

• Stemming, that reduce the word to its grammatical root.

• Elimination, that eliminates words that do not have significance or value.

After complete all the tasks the user only needs to insert in the system the query (set of keywords)

to execute. The system perform the same process mentioned before in the query, to assure consistence,

and retrieves a set of documents that satisfy the search ranked them by relevance.

Rank the results, according to some criteria (query), is the main problem of Information Retrieval.

There are various algorithms designed to rank documents, however in the most famous are Vector

Space Model Zhao et al. (2006) and Latent Semantic Analysis Deerwester et al. (1990).

2.3.2 Darius

Comments in the code, as mentioned before, are one of the most important source of information

about the program. It is one of the best ways to understand what the software engineer was thinking

and how the Problem Domain and Program Domain were related.

Studies (Woodfield et al. (1981b) and Teny (1985)) conclude that programs that have more com-

ments are more easily understandable by software engineers and tend to be more stable Aman and

Okazaki (2008).

To the best of our knowledge, at present Darius is the only tool available that performs concept

location based on source code comments.

Darius is a tool built by José Luı́s Figueiredo de Freitas, in his master work de Freitas (2011) at

University of Minho, that use several techniques of Information Retrieval to analyse the various types

(inline, multiline and JavaDoc) of comments presented in the source code.

14

2.3. Concept Location

In Figure 5 we can see the architecture of Darius. Darius is composed by four main modules:

• A comment extractor

• A statistic calculator

• A word analyser

• A concept locator

Figure 5: Darius Architecture

These three modules are presented in a graphical interface that is composed by three tabs.

The first tab (see Figure 6) uses the static calculator module and show to the user informations

about the commenting practice on the program previous loaded as other informations like the number

of files, the number of conditional statements and loops.

In the second tab, that is shown in Figure 7, the user can write some words to be analysed by Darius

and related them to the comments in the code (it uses the word analyser module).

The concept locator module is used in the last tab (see Figure 8) and offers the possibility to choose

between two different types of Information Retrieval techniques: Vector Space Model Zhao et al.

(2006) and Latent Semantic Analysis Deerwester et al. (1990). These two techniques are used to rank

documents i.e. decide which results are more important according to the criteria expressed in the

query.

15

2.3. Concept Location

Figure 6: Darius Graphical User Interface: Comment Statistics tab

Figure 7: Darius Graphical User Interface: Words Analyser tab

16

2.4. Graphs

After Darius process the program the user can write queries in the text field of that tab. Next he

can choose which technique he wants to use and see the retrieved documents (in this case comments)

order by relevance. If he wants to see a more detailed information about a comment he must select

that comment and press the button with an arrow. This detailed information will appear in the text

field present in the bottom right corner of the window.

Figure 8: Darius Graphical User Interface: Concept Location tab

All the three tabs use the comment extractor module.

Besides the quality of the tool, one of the main advantages is that we have access to the source code.

This allows to adapt easily the code to the needs and improve some aspects.

2.4 G R A P H S

A graph is representation of a set of objects (called nodes or vertices) where some pairs of objects

are connected by lines (called edges or arcs). Usually a graph is represented in a diagrammatic form

as a set of dots (for the vertices) joined by lines (for the edges).

17

2.4. Graphs

The edges can have a direction making the graph a directed graph. A directed graph (like the

System Dependency Graph) is an ordered pair represented by:

D = (V, A) (7)

Where:

• V is a set of vertices

• A is a set of ordered edges

An directed edge is a pair of vertices represented by:

e = (v1, v2) (8)

This representation indicates that the edge goes from v1 to v2.

In Figure 9 we can see a definition of a directed graph and its representation (example extracted

from Schlag (2004)).

Figure 9: Directed Graph example

18

2.4. Graphs

2.4.1 DOT

DOT is a graph description language very simple and powerful Gansner et al. (2006). It can describe

graphs that are easily read by humans and programs.

For example, the code listed in 2.1 is written in DOT and it outputs the graph in Figure 10.

digraph graphname {

a -> b -> c;

b -> d;

}

Listing 2.1: DOT example

Figure 10: Graph generated by a DOT tool

DOT is also largely adopted, there are a lot of tools, written in many different programming lan-

guages, that can read and write DOT format.

The tools that implement the DOT language have mechanisms to choose automatically the best

positions to the nodes (if not specified), which is an advantage, if we do not care about that but it is a

big issue if the positions of the nodes are important (like in a System Dependency Graph).

For example Figure 16 and Figure 11 represent the same program (the program shown in Figure

2.3) but, the position of the nodes are different. The System Dependence Graph in Figure 16 is more

easily understandable than the System Dependence Graph in Figure 11.

We can specify every detail of the graph: the position, the shape, the colour, the labels of the nodes

and edges among others. But that turns the language more complicated and it is laborious specify

every node position.

19

2.4. Graphs

Figure 11: A System Dependence Graph

2.4.2 JGraphX

JGraphX Benson and Alder (2014) is a Java Swing Diagramming library that provides functionality

for visualisation and interaction with graphs. It offers many methods to construct graphs, change

its appearance and behaviour. JGraphX has an enormous and well documented API. In Figure 12

(extracted from Bibliowicz (2011)) we can see some styles that JGraphX provides.

As mentioned the tool provides many methods and options to interact with the graph. Some of them

are listed in Table 1.

Despite being a powerful tool, JGraphX is also very simple. In 2.2 we can see the code that gives

origin to the graphs showed in Figure 13.

20

2.4. Graphs

Figure 12: Styles that can be drawn with JGraphX

mxGraph graph = new mxGraph();

Object parent = graph.getDefaultParent();

graph.getModel().beginUpdate();

Object obj1 = graph.insertVertex(parent, null, "obj 1", 20, 20, 110,30);

Object obj1_1 = graph.insertVertex(parent, null, "obj 1.1", 20, 20, 110,30);

Object obj2 = graph.insertVertex(parent, null, "obj 2", 20, 20, 110,30);

Object obj2_1 = graph.insertVertex(parent, null, "obj 2.1", 20, 20, 110,30);

Object obj2_2 = graph.insertVertex(parent, null, "obj 2.2", 20, 20, 110,30);

graph.insertEdge(parent, null, "", obj1, obj1_1);

graph.insertEdge(parent, null, "", obj2, obj2_1);

graph.insertEdge(parent, null, "", obj2, obj2_2);

graph.getModel().endUpdate();

mxGraphComponent graphComponent = new mxGraphComponent(graph);

Listing 2.2: Sample code to make two graphs using JGraphX

In the last example the parent used was the default parent but we can use an existing cell as the

parent being the result showed in Figure 14. Also the size of the nodes were specified but we can set

the auto-size property of the cells to fit its content.

21

2.4. Graphs

Function Description

setAllowLoops Specifies if loops are allowed.
setAutoSizeCells Specifies if cell sizes should be automatically updated after a label change.
setCellsEditable Specifies if the graph should allow in-place editing for cell labels.
setCellsMovable Specifies if the graph should allow moving of cells.
setCellsResizable Specifies if the graph should allow resizing of cells.
setCellsSelectable Sets cellsSelectable that specifies if the given cell is selectable.
setLocked Sets if any cell may be moved, sized, bended, disconnected, edited or selected.
setCellsDeletable Sets cellsDeletablet hat specifies if the given cell is deletable.
setMultigraph Specifies if the graph should allow multiple connections between the same pair

of vertices.
setConnectableEdges Specifies if edges should be connectable.
setTooltips Specifies if tooltips should be enabled.

Table 1: Some graph options available in JGraphX

Figure 13: Sample graphs made with JGraphx

With JGraphX we can also apply automatic layout algorithms to the graph like:

• hierarchical

• swim-lane

• circle

• compact tree

• composite

• parallel edge

• partition

• radial tree

• stack

22

2.5. System Dependency Graph

Figure 14: A node inside a node

2.4.3 JUNG

JUNG, Java Universal Network/Graph Framework O’Madadhain et al. (2013), is an open source

library that allow the user to create and visualize graphs.

The framework has various layout algorithms like:

• balloon

• circle

• Fruchterman Rheingold

• Kamada Kawai

• radial tree

• spring

• tree

JUNG also allows the user draw anything in the graph like graphics from Java (circles, rectangles,

triangles) or images. In Figure 15 (extracted O’Madadhain et al. (2013)) we can see a graph drawn

with JUNG that has a tree layout and Java graphics (circles) in the nodes.

JUNG also can read the graph content from a GraphML Committee (2007) file. GraphML is a file

format for graphs that describes its structural properties.

2.5 S Y S T E M D E P E N D E N C Y G R A P H

Static Code Analysis is one of the most used methods to extract data and return information from

a program Du et al. (2012); Baca et al. (2008). By doing that we can understand the workflow of the

program, which methods are called (and by who) and which variables are used.

23

2.5. System Dependency Graph

Figure 15: Jung graph example

Real world programs tend to be huge and it is impossible know all these details. Every time a

change need to be made in the program the software engineer needs to navigate in the methods and

discover the location where the change will take place. This is an enormous waste of time.

2.5.1 What is it?

The System Dependency Graph Livadas and Johnson (2000) is a visual artefact, created by program

comprehension researchers, that shows all the static dependencies of a program in the form of a graph.

The System Dependency Graph (SDG) is composed by two components: the Control Flow Graph

(CFG) and the Data Dependency Graph Du et al. (2012). The Control Flow Graph shows all the

dependencies and calls between methods and classes. It shows all the statements of the program and

how they are related. If a statement B is called by statement A, statement B is connected to statement

A and it is positioned one level below statement A. Just looking to the Control Flow Graph, a software

engineer can see the flow of the program and discover in which class, method and statement, he will do

the change (when a maintenance is needed). The Data Dependency Graph show where the variables in

the code are changed (variables dependencies). As in Control Flow Graph, when a variable is changed

in one statement it is connected to that statement showing that there is a dependency between them.

As mentioned above, when joined, these two graphs form the System Dependency Graph. A graph

where the software engineers can see all the static dependencies and workflow of the program in a

very easy and intuitive way.

24

2.5. System Dependency Graph

In Figure 16 we can see the System Dependency Graph of the source code in 2.3 (example extracted

from TONG et al. (2010)).

public static void main(String[] args) {

int sum, i;

sum = 0;

i = 1;

while (i<11) {

sum = add(sum, i);

i = add(i, 1);

}

System.out.println("sum = " + sum);

System.out.println("i = " + i);

}

Listing 2.3: Excerpt of a Java program

Figure 16: A System Dependency Graph

2.5.2 Tools that build a System Dependency Graph

Creating by hand a System Dependency Graph for a given program is not an easy task. And despite

the fact that Java is one of the most famous programming language, there is a very small amount of

tools to analyse Java code and build its dependencies (packages, classes, variables, methods), and an

even more small number to build the System Dependency Graph.

25

2.5. System Dependency Graph

JavaPDG

JavaPDG Shu et al. (2013) is a ”static analyser for Java bytecode, which is capable of producing

various graphical representations such as the system dependence graph, procedure dependence graph,

control flow graph and call graph”. It has two modules:

• SDG Generator: As the name implies, this module generate the System Dependence Graph of

a program and store the data into a database.

• Graph Viewer: This module can show the data stored in a visual mode.

Although it is a good tool, the possibility of building a graphical representation, like in Figure

17 (example extracted from Shu et al. (2013)) of the data does not serve the purposes of this thesis

because it is necessary making changes to the graph with the information from the comments found

in the comment analyser.

Figure 17: JavaPDG interface

26

2.5. System Dependency Graph

The first module uses a database (Apache Derby) to store the results, which implies some configu-

rations. Or the tool created (DariusSDG) can automatize all the steps (or the great part of them) or the

software engineer will spent some time configuring the tool, and that can fend the software engineer

to use the tool. Another disadvantage is that JavaPDG needs a lot of memory to work.

JavaPDG uses the Java bytecode to construct the System Dependency Graph.

Java System Dependence Graph API

The Java System Dependence Graph API TONG et al. (2010) is a tool that can construct the System

Dependency Graph of a program and return the information collected to the user in a JSON (JavaScript

Object Notation) format.

As the name indicates, the objective of this tool is construct the System Dependence Graph and

provide methods to access it.

In the Table 2 are listed some of the main functions associated with the SystemDependenceGraph

object TONG et al. (2010).

Function Description

ControlDependenceBFS Breath first search following the control dependence edge.
ControlDependenceDFS Depth first search following the control dependence edge.
DataDependenceDFS Depth first search following the data dependence edge.
NodeCount Return the number of nodes in a SDG.
PDGCount Return the number of PDGs in a SDG.
PDGRetrieve Return a PDG by a call node.

Table 2: Main functions of the System Dependence Graph API

Despite being equivalent in terms of functionality (JavaPDG first module and Java System Depen-

dence Graph API), Java System Dependence Graph API have some advantages:

• does not need a database, therefore is easier to configure

• is open source, which means it can be customized to the needs

• has a very complete documentation about the methods available

Like JavaPDG, Java System Dependence Graph API uses the Java bytecode to construct the System

Dependency Graph.

27

3

DA R I U S S D G : D E S I G N

As mentioned in the Research Hypothesises (1.2) the objective of this tool is to join two Program

Comprehension techniques: Concept Location over source code comments; and System Dependency

Graphs. Thus software engineers can visualize both semantic and structural information about a

program and how they are related.

We named the tool as DariusSDG because it is an integration between an existing tool that performs

concept location over source code comments, named Darius, and other two tools that build the System

Dependency Graph of a Java program. In that way we believe that the name is easy to understand and

memorize, as it is the tool purpose: help in understanding the meaning of programs. A detailed

explanation about the choice of these tools and how they are integrated will be described in this

chapter.

3.1 R E Q U I R E M E N T S

As mentioned in the objectives, the language recognized by DariusSDG will be Java. Java is one

of the most used programming language in the world and it is platform independent which means it

can run in every equipment TIOBE (2014); LangPop (2013). With this we can reach a much broader

audience, helping more software engineers in their software maintenance work.

If the objective of the tool is to recognize Java, which is platform independent, it makes sense to

build a tool that is also platform independent. Hereupon DariusSDG will also be written in Java.

In order to build DariusSDG, three main components are required:

• A tool that can perform Concept Location over source code comments

• A tool that can build the System Dependency Graph

• A tool that can draw graphs

As mentioned in Chapter 2, the only tool we have knowledge that can perform Concept Location

over source code comments is Darius. Thankfully we also have access to Darius source code, enabling

us to do the necessary adaptions directly in the tool instead of building a complementary tool to meet

our needs.

28

3.1. Requirements

To the best of our knowledge, at present there is not any system that can build the System Depen-

dency Graph of a Java program based on the source code. The programs described in Chapter 2 can

build the System Dependency Graph of a Java program but based on its bytecode.

When the Java source code is compiled to Java bytecode (a intermediate representation that is

interpreted by Java Virtual Machines) the code is changed to that representation, it is optimized and

the comments are removed.

There are some tools, called decompilers, that can revert some changes made by the compiler

but, the comments can not be recovered. This occurs because the comments are removed while the

instructions are transformed and/or optimized; so it is possible to revert some changes. For example

unused code (also known as dead code) is removed and cannot be recovered. Also the increment of a

variable by one cannot be 100% recovered because there are many ways to increment a variable:

• i++;

• i = i+1;

• i += 1;

• ++i;

On account of that the decompiler is unable to decide the original version of the code.

Another obstacle to using these tools is that we need to relate the System Dependency Graph with

results out coming from the search done with the comment analyser. If the source code is modified

(comments are removed and instructions are optimized) it is extremely difficult to make that associa-

tion (comments with the SDG).

If a comment and its respective instruction is found, we want to highlight that instruction in the

System Dependency Graph. But we cannot make that because the two instructions (the one found in

the source code and the one in the SDG) do not have the same line number (to compare them) and

could have different syntax (because of the optimizations).

Also, when the software engineer is doing maintenance he wants to get the results from a PC tool at

the source code level (where he will do the change). If the tool does not show the exact location where

he needs to intervene he will spent even more time analysing the results of the tool slowing down the

process.

Hereupon it is necessary to develop a tool that can build the System Dependency Graph based in

the source code. The tool build will be called SDG Builder.

Scalability also can be a problem. The input program (received by DariusSDG) can be extremely

huge and consequently the System Dependency Graph will be extremely huge. Building so many

nodes and connections between them can reduce significantly the performance of the tool and difficult

the analysis. So, we decided to break the System Dependency Graph into smaller pieces: methods.

The software engineer has the same structural information about the program but split by methods,

becoming easier to understand and more scalable.

29

3.2. Architecture

In Section 2.4 some tools that can draw graphs were analysed. JGraphX is the tool that better fits

our needs and so is the tool chosen to build the graph. JGraphX is a Java library that provides many

functionalities for visualisation and interaction with graphs; it can automatically order the nodes in

an hierarchical structure (typical in a SDG); moreover, it has a very complete documentation and it is

simple to use.

The graph that DariusSDG will display must be ”flexible”. The software engineer must be able to

move the nodes and the edges rearranging them the way he wants. With this the software engineer has

more power over the tool and could adapt the results to his needs. For example, if the data dependence

and the control flow edges are overlapping he can move them the way he wants, or move the nodes

(and consequently the edges) to a position where they do not overlap.

DariusSDG must also offer the possibility to turn off the data dependency edges making the graph

clearer and cleaner. The software engineer may not want to see the data dependence between the

nodes and only the flow of the program. Or the data dependence and control flow edges can be in such

a high number that the graph becomes confuse and this option (turn the data dependence edges off)

could help.

DariusSDG must have an input field where the software engineer can enter search terms that will be

compared with the comments extracted from Darius. It must show the results ordered by similarity and

when the software engineer pick a result (comment) it must show the associated method and instruc-

tion in the System Dependency Graph. The statement must be highlighted to be visually distinguished

from all the others and make clear that it is the one associated with the selected comment.

The software engineer must also be capable to navigate in the System Dependency Graph without

searching for terms. This navigation must be done by selecting the different methods present in the

loaded program.

Finally, the tool must also be intuitive, simple and easy to use. The objective is to simplified and

assist the software engineer reducing the time spent in maintenance.

3.2 A R C H I T E C T U R E

In Figure 18 we can see the diagram that depicts the tool architecture, its structure, components and

connections among them. From this diagram it is possible to understand the steps that are taken by the

tool to build the result, which is the construction of the System Dependency Graph and the mapping

of the extracted information from source code comments with the nodes of the graph.

The tool receives the source code of a program as input. That program will be analysed by Darius

(described in Section 2.3.2) and retrieves a list of comments present in the program based on Vector

Space Model (VSM) technique.

The program will be also analysed by the SDG Builder (the tool we developed to build the System

Dependency Graph of a Java program). The SDG Builder was built using ANTLR which needs a Java

Grammar in order to transform the Java source code in a representation of the System Dependency

30

3.2. Architecture

Graph. The development of the SDG Builder will be described in more detail in the next chapter. The

SDG Builder outputs a representation of the SDG divided by methods (to overcome the scalability

problem mentioned in the previous section).

If the software engineer interacts with DariusSDG by entering search terms the tool will display

the list of comments and their respective similarity to the searched terms (the list will be ordered by

similarity). If the software engineer select a comment the corresponding part of the SDG will be

displayed using JGraphX and the associated instruction will be highlighted.

The software engineer can also interact with DariusSDG by selecting the methods that he wants to

see. The information about the System Dependency Graph is passed to JGraphX that draws it.

Figure 18: Architecture of DariusSDG

31

4

DA R I U S S D G : D E V E L O P M E N T

The objective of DariusSDG, the tool proposed in this thesis, is to join two Program Comprehension

techniques (System Dependency Graph and Concept Location over comments in the source code)

reducing the time spent to understand a program. To achieve this goal the development of DariusSDG

was divided in four steps:

• To improve and adapt Darius (a comment analyser tool for concept location)

• To build a tool that can extract the System Dependency Graph of a Java program based on its

source code

• To draw the System Dependency Graph using JGraphX

• To integrate all the tools

All these steps will be described in more detail in the following sections.

Despite being made tests during each development step, the last section will be used to describe the

tests made to the tool.

4.1 C O M M E N T A N A LY S E R F O R C O N C E P T L O C AT I O N

Comments in the code are one of the most important source of information about the program. It

is one of the best ways to understand what the software engineer was thinking and how the Problem

Domain and Program Domain were related Woodfield et al. (1981b); Teny (1985); Aman and Okazaki

(2008).

Darius de Freitas (2011) is the only tool that we have knowledge that can extract Java comments

(inline, singleline, multiline and Javadoc) present in the source code of a Java program and perform

concept location with them.

As mentioned before Darius extract the comments present in the source code, separates the text into

sentences and the sentences into words. The words that have no significance or value are eliminated

and the others reduced to its grammatical root. The system also performs these actions in the query

inserted to assure consistence.

32

4.1. Comment Analyser for Concept Location

Darius use two algorithms to rank documents (Vector Space Model Zhao et al. (2006) and Latent

Semantic Analysis Deerwester et al. (1990)) and let the user choose which one he wants to use. In

order to keep the tool simple, DariusSDG will only have one algorithm. The algorithm chosen is

the Vector Space Model because, according to José Luı́s Freitas thesis de Freitas (2011), was more

effective and faster in the tests performed.

When searching for comments, Darius not only save the text present in the comment but also some

associated information like the file where it was found, the next line after the comment and the type

of comment.

The same comment can occur more than once in the same file, so we need more information about

the comment in order to associate them with the instruction in the System Dependency Graph. In

order to associate the comments with the SDG, Darius source code was changed. As we can see in

Figure 19 Darius is not a small program, it contains 42 classes and 295 different methods. Before

we make changes to Darius program we needed to understand how it works, how was constructed

and the right locations we needed to intervene in order to achieve the objectives. In other words, we

performed a complex task of reusing a software.

Figure 19: Darius structure shown by NetBeans

As the System Dependency Graph will be divided by methods, Darius was adapted to associated

the name of the method to each comment.

33

4.1. Comment Analyser for Concept Location

If the comment is inside a method then it belongs to it but, if a comment is outside methods which

method does it belong? Initially we think in a audacious strategy that consists in finding expressions

in the comment that can indicate if the comment was referring the last or the next method, but that

was not viable. So we decided that comments outside methods are referring to the next method and

if the comment was in the end of the file, without a method following, the comment was referring to

the last method declaration. In Figure 20 we can see an example of how we associate comments with

methods.

Figure 20: How DariusSDG associates comments with methods

To associate the comment with the exact instruction in the SDG, Darius was also changed to store

the line where the comment starts (it can be multiline). That association can not be made with the

line after comment offer by Darius because the line after a comment could be a parentheses, and a

parentheses is not represented in the System Dependency Graph.

The rules to associate a comment to a statement are basically the same used to associate a comment

to a method. If a comment is in the same line as the statement (inline comment) the comment is

referring it. If a comment is before a statement, it is referring to that statement. Lastly, if a comment

is inside a method but after all the statements, the comment is referring to the last instruction in that

method. In Figure 21 we can see an example of how we associate comments with statements.

Figure 21: How DariusSDG associates comments with statements

34

4.2. Building the System Dependency Graph

4.2 B U I L D I N G T H E S Y S T E M D E P E N D E N C Y G R A P H

In Section 2.5 we described and analysed some tools that build the System Dependency Graph of a

Java program but none of them does what we need: build the SDG of a program based on its source

code. Therefore we decided to develop a tool that builds the System Dependency Graph based on the

source code of a Java program. We named the tool SDG Builder.

The tool that was created needs to analyse the source code recognizing when a statement is using a

variable (to make a data dependency connection, that will be showed in the Data Dependency Graph);

it also needs to ”know” that when a set of statements are inside an if-then block they depend on the

condition that is defined on the if-then statement and so on.

Java is a very big and complex language; it allows for multiple ways to achieve the same thing,

like loops, conditional structures or variable declaration. Java give us the possibility of doing many

things like inheritance, encapsulation, polymorphism, threads, graphics and so on. But, despite all

this, Java is a formal language; it has very well defined rules that allow computers understand what

was specified in the source code without ambiguity Power (2002).

As mentioned in Section 2.1, ANTLR is a powerful tool that can generate a processor to parse a

formal language like Java. It also has a specific notation to use attributes and translation rules, since

we are going to transform a Java program in its System Dependency Graph representation.

To accomplish this task, the first step is to build a grammar that can recognize the Java programming

language. Fortunately Terence Parr, the creator of ANLTLR, already created a grammar for it, that

was updated by the community in order to recognize new Java syntax.

Before we started developing the tool we made some tests to verify if the Java grammar could

correctly parse Java source code files. We passed various files to it and check if everything was

correctly parsed and it was. The next step was to study the grammar in order to understand how it was

constructed and where we needed to add transformation rules in order to create a representation of the

System Dependency Graph.

We divided the process of building the System Dependency Graph in two phases: first we build the

Control Flow Graph (CFG) and then the Data Dependency Graph (DDG). Basically, after we have the

CFG we only need to specify the data dependency connections.

To build the CFG we need to save all the statements in the program and the relation between them.

When the program starts to be parsed a list of nodes is created and it increases every time a new

statement is parsed. A Java class was created to save the nodes of the program. That class has six

fields:

• a node identifier

• the content of the node (statement)

• the line where the statement starts

• the method to which it belongs

35

4.2. Building the System Dependency Graph

• the name of the class to which it belongs

• the father node identifier

We need to save the class and method name because a statement (for example return id;) can occur

in multiple methods, and a method (for example get ID) can occur in multiple classes.

Every Control Flow Graph has an entry point which is represented by a node usually called entry.

All the ”independent” nodes are connected to the entry node, the entry node is the father of these

nodes. A node can also have children, for example an if-then statement have a set of instructions that

are executed if the condition evaluates to true. These instructions are children of the if-then node.

A node could have a list of nodes (their children) but it is simpler and faster to have a node identi-

fying its father. Instead of a list that needs to be updated when new children nodes are parsed we only

need to save one identifier (the father). This is the last field of our class.

When a new method starts to be parsed the node entry is created as well as a list of father nodes.

The entry node is added to the list. As the method gains deepness the list becomes bigger, when the

method lose deepness the list becomes smaller. For example, if a instruction while is parsed it is added

to the list of father nodes. All the instruction inside the while block have the while identifier as father.

When the block ends the while node is removed from the father nodes.

Also, when a statement starts to be parsed, token by token, the statement content (tokens) is being

stored in a variable till it is fully parsed. When this happens a node (with all the fields mentioned

before) is created and added to a list that contains all the nodes of the program.

In Figure 22 we can see some steps that exemplifies how the parse is done and what is stored in the

list of nodes and in the list of father nodes..

One problem we faced when constructing the Control Flow Graph was the parsing of the do-while-

loop. The CFG is build with levels (the parent and the children), usually the instruction in Java are in

this order. In for-loop the condition appears first (the father) and the children appear in the block that

succeeds the condition. However in the do-while-loop the condition appears in the end of the block.

In this case we save the node that contains the token do and when the condition is parsed (at the end

of the block) we update the do node with the condition.

Despite the fact that the statements inside the do-while-loop execute even when the condition is

not met it seems more logical that the do-while-loop follow the same structure of the while-loop. We

cannot omit the condition and also cannot put it bellow the block because that means it depends of the

block which is wrong. So we write it the node the text ”DO WHILE CONDITION”.

The grammar ignores the white spaces and new lines that appear in the source code. This happens

because the source code can have multiple white spaces or new lines and the objective is not capture

them. But, as the instructions will be showed to the user we need to insert white spaces between the

tokens in order to make a more readable statement.

With this we have a list with all the statements. Each statement has information that can be used to

create the connections between them in order to build the Control Flow Graph.

36

4.2. Building the System Dependency Graph

Figure 22: How DariusSDG associates comments with methods

37

4.2. Building the System Dependency Graph

As mentioned, the System Dependency Graph will be divided in methods and the user will be

allowed to navigate between them. It was created another class that represents a method and has four

fields:

• the name of the method

• the name of the class to which it belongs

• the line where the method starts

• the line where the method ends

When a new method is parsed it is created an instance of that class and added to a list of methods

in the program. When the parse is over, the instance is updated in order to save the line where the

method ends.

We use a different approach to save the data dependencies between the variables. Instead of save

the name of the method and class of that variable we save the method (defined before) to which the

variable belongs. Also, instead of saving the father we save a list of children. The fields of the class

are listed below:

• a variable identifier

• the name of the variable

• the line where the variable is

• the method to which it belongs

• a list with the dependent variables

We also create a list that will store all the DDG objects found in the source code.

When a variable is parsed we check if that variable is already in the list; if it is not, a new instance

of the mentioned class is created and it is added to the list. If the parsed variable is in the list we check

the next token to assure if is an attribution or a use of the variable. If is an attribution it means that the

variable is ”independent”; its value only depends on that attribution. So a new instance of the class is

created and added to the list. If is not an attribution (but an use of the variable), a link will be created

to the last occurrence of that variable in the list, because it depends on the last assignment. In Figure

23 we can see step by step how the list is populated and updated.

At the end of the parsing we have three lists:

• a list with all methods and respective class (class defined before)

• a list with all statements and how they are connected (class defined before)

• a list with all variables and their dependencies (class defined before)

38

4.3. Designing the System Dependency Graph

Figure 23: How DariusSDG handle DDG objects

4.3 D E S I G N I N G T H E S Y S T E M D E P E N D E N C Y G R A P H

As said before, the System Dependency Graph is an important and useful tool due to its graphi-

cal representation. The tool built as described in the last section only offers methods to access the

different nodes and connections between them (edges) in a text representation. On account of that,

it is necessary a tool to build the graphical representation of the SDG. JGraphX Benson and Alder

(2014) is a Java Swing library that provides functionality for visualisation and interaction with graphs.

It offers many methods to construct the graph, change the colour of the nodes or the edges and can

order the graph in a hierarchical form (which is the typical form of a System Dependency Graph). By

combining these two tools it is possible to build a System Dependency Graph of any Java program.

At this stage, we will have as input the three lists generated during the parsing (described in the

section before) that contain all the information about the nodes of the System Dependency Graph,

their control and data dependencies. The System Dependency Graph is divided by methods, so as

input we also need to know which class and which methods will be displayed.

After that, the nodes in list that will be drawn, i.e., the nodes that have the same class and method as

the input, will be inserted in the graph ordered by the identifier, which is also the order of appearance.

In JGraphX first we insert the nodes and then we make the connections. The nodes are ”visited”

39

4.4. Integration

again to make the connections between them using the identifier that corresponds to the position in

the graph.

After the graph contains the nodes and the flow connections (Control Flow Graph) we apply the

hierarchical layout of JGraphX.

The last step is to create the data connections between the nodes. The list that contains the data

dependencies is traversed and for each node in the list we check its dependants. For each dependant a

new connection is created.

In order to distinguish easily the two types of edges, the data dependency connections are drawn in

white and the flow dependencies are drawn in blue. We also set the autosize property of the nodes to

true in order to adjust them according to the contents automatically. This feature has a small bug: the

autosize only works on an update, not in the creation. So, when we create the node and insert it to the

graph the size of the node does not fit the text it have; we need to update the node (with the same text)

in order to resize the node according to the size of the text.

Lastly the options that allows the user to move the node and edges without detaching it are activated.

This allows the user to isolate nodes in order to get a clear view.

4.4 I N T E G R AT I O N

As mentioned before, DariusSDG is a combination between tools (Darius, JGraphX and SDG

Builder). The construction of SDG Builder and the adaptation of the other tools where described

in the last sections. In this phase we need to create a User Interface, easy to use and visual appealing

that connect all the tools. This integration also includes the navigation between the methods and the

representation of the statements/nodes that match the comment selected.

The interface was made using Swing which is a Java GUI toolkit that provides an API to create

graphical interfaces. With Swing we can create frames, panels, buttons, text fields, grids, labels and

all the components that are needed to build a GUI.

We build a simple interface, that can be seen in Figure 24, which is divided in four sections:

• in the right is the list of methods presented in the program

• in the middle of the window is the graph that represents the selected method

• in the top are the buttons and a text field that allow the user to interact with DariusSDG

• in the left is the list of comments presented in the loaded program and some informations about

each comment

As mentioned, in the right of the window there is a list that contains of all methods that are used

by the program (and the name of the class they belong). By clicking on an item in the list the corre-

sponding part of the System Dependency Graph will be drawn in the centre of the window. The user

can navigate in the SDG by clicking the different methods in the list.

40

4.4. Integration

Figure 24: DariusSDG graphical user interface

Despite being a simple interface, facilitating the use, in the top of the window there is also a section

that indicates the steps the user needs to follow. In the top section, there are also six buttons:

• graph zoom in

• graph zoom out

• activate and deactivate the Data Dependency edges

• load project

• show statistics about the program

• execute the query

The first three buttons are used to improve the visualization of the graph. Even with the System

Dependency Graph divided by methods (decreasing the size of the graph significantly) the method

can have many instructions and dependencies making the graph a little confuse. The data dependency

edges can be deactivate, i.e., when the graph is drawn the dependency edges are not. It is also possible

zoom in or zoom out in the graph (using methods provided by JGraphX) becoming easier to read the

statements that are inside the nodes or to have a different view of the graph.

In the top of the window is a Show Statistics button that shows various statistics about the program

like the number of source code lines, the number of comment lines, the total number of inline com-

ments, block comments and javadoc comments, the number of files, the number of if conditions or

41

4.5. Testing

the number of while loops. All these informations are collected and displayed by Darius. These infor-

mations are also showed after the user load the project in order to have an overview of the program

and the commenting practice.

The Load Project button has a mechanism associated that crosses all the files and folders to find

Java source code files. This means that the user only need to select the folder that contains all the files.

Finally there is also a text field to the user enter search terms in the comments. When the user

press the Search button the list of comments present in the source code are showed in the list of the

left ordered by similarity according to the searched terms. When the user click a comment some

information about it is showed. These informations are showed in the bottom left of the window

(bellow the list of comments). In this section we can see the comment itself, the type of comment

(inline, singleline, multiline and Javadoc), the line after the comment, the file, the class, the method

and the line number where it is located. These informations are also produced by Darius, some of

them already existed and some where added as explained in Section 4.1.

When the user clicks a comment the associated method and class are passed to the other two ”sec-

tions” of the DariusSDG. The corresponding row on the list of methods (the one in the right) is se-

lected; the corresponding SDG is drawn in the center and the node referred by the comment is painted

in red.

As explained in the Section 4.1 if a comment is in the same line as the statement (inline comment)

the comment is referring it. If a comment is before a statement, it is referring to that statement. If

a comment is after all the statements, the comment is referring to the last instruction in that method.

Lastly if a comment is outside a method it refers to the whole method, the entry node is painted in red.

From the SDG Builder we have the line where the statement starts and from Darius we have the

line where the comment starts. We compare the line numbers in order to paint the correct node in red.

Finally, as mentioned in the last section, it is possible to drag the nodes changing its original position

getting a different view of the System Dependency Graph.

4.5 T E S T I N G

Software testing is a very important phase of software development. The objective of this phase is

to assure that the final software is free of bugs and meet the defined requirements.

There are various kinds of test methods and techniques that can be performed; we can directly

inspect the source code, interact with the tool simulating user actions or write a program to test the

results from the methods. We can also test part of a method (like a loop or if condition), we can test

the method input and output, the class, the package or the whole program. The number of possible

tests is practically infinite.

42

4.5. Testing

The tests also can be performed in many stages of the development. In this specific case (testing

DariusSDG) we divided the tests in three phases:

• First we check if the tools that we wanted to use where working according to the requirements

(which was described in Chapter 2).

• During the development we perform tests to check if conditions, loops, methods or buttons were

behaving as expected (which was described in the last sections).

• Lastly we perform tests when the tool is integrated and complete, which will be described in

this section.

The tests that will be described in this section consist of interactions that the user will do when using

the tool. We have simulated various input scenarios and checked if the results were the expected.

4.5.1 Loading, Analysing and Build SDG

The first test we made consisted in loading a program (that we have created) and check if the

DariusSDG does not fail or produce exceptions. To load a program we click in the Load Project button

and choose the source code folder. After the program is loaded a window with statistics about it is

shown. In that window we can see the number and type of comments present in the loaded program,

the number of files, classes and methods. In Figure 25 we can see parts of the information collected

about the program we loaded. By inspecting the code and counting by manual the comments we

verified that the results produced where correct. In Figure 26 we can see the structure of the program

loaded and if the number of files and classes are according to the information shown in Figure 25.

At this point we can assume that all the files of the program where correctly load to DariusSDG and

the Darius statistics collector is working correctly.

After we closed the statistics window, it can be seen in the right side of DariusSDG screen a list

which contains all the methods and the associated classes present in the loaded program. Once again,

by inspecting the code we could see that the results produced where correct. In a specific case, we

can see that the methods NetBeans detects for the class IRS (see Figure 27) are the same that where

detected by DariusSDG (see Figure 28). This proves that all the files where correctly passed to the

SDG Builder, where correctly parsed and the informations about the methods were correctly saved.

When we click in the different methods in the list of methods (that is in the right side of the window)

the corresponding graph is showed in the middle window. By inspecting the source code we confirm

that the Control Flow Graph showed by DariusSDG was correct. This means that the parsing and the

construction of the CFG where performed correctly. As mentioned in Section 4.2, the do-while-loop

is not built like the other nodes; it needs to be updated with the condition when the block ends.

In Figure 29 we can see the graph representation of the source code in Figure 4.1 that contains a do-

while-loop. The graph is constructed as expected showing that this specific case is well implemented.

43

4.5. Testing

Figure 25: Excerpt of the Statistics showed by DariusSDG

Figure 26: NetBeans window that shows the structure of a test program

44

4.5. Testing

Figure 27: NetBeans window that shows the methods present in the IRS class

Figure 28: Detail of DariusSDG that shows the methods present in the IRS class

Figure 29: Graph drawn by DariusSDG that shows a Do While loops

45

4.5. Testing

public void showOptions () {

int x = 10;

do {

System.out.println("value of x : " + x);

x++;

System.out.println("\n");

}while (x < 20);

for(int a = 10; a < 20; a = a+1;) {

System.out.println("value of a : " + a);

System.out.println("\n");

}

}

Listing 4.1: Example method with a Do While loop

Lastly, concerning the construction of the System Dependency Graph, we checked if the depen-

dency edges were well constructed. In Figure 30 we can see a fragment of the graph produced corre-

sponding to the code listed in 4.2. In this specific example we can see that when a variable is used

an edge is create linking the node where it was assigned and used one. Also we can see that when a

variable is reassigned the edge created is between its reassignment and its use, which was the expected

behaviour since it depends on the new value.

Figure 30: Excerpt of a graph drawn by DariusSDG that shows data dependencies edges

private double calculoIRS () {

int a = 0;

int b = a + 1;

int c = 0;

a = 1;

c = a + b;

b = b * 2 + c;

Listing 4.2: Example code that shows a reassignment

46

4.5. Testing

4.5.2 Comments

Now we will described the tests made to the features related with comment search. As described

in Chapter 2, Darius features where tested to check if the tool meets the requirements. Also the new

features added where tested during the development (see Section 4.1). At this stage we must test again

the features to assure that the integration is working.

When we write some keywords in the text field (left upper corner of the screen) and click in the

Search button a list with all comments found in the program appears in the left side of the window.

We manually check the source code to see if the results were correct, i.e. if all the comments present

in the source code were listed. Thankfully they were.

We search for the keywords options implementation to test three different situations:

• test if the tool can find the keywords in the comments independent of the order they occur

• test if the tool can find the keywords even if they do not occur in the comments (reducing the

word to its grammatical root)

• Check if the order/relevance of the results shown are correct

As we can see in Figure 31, Darius found two comments that have some similarity to the searched

terms. The first comment in the list is ”when implement new options add it here”; we can see that

the keywords searched do not appear in the same order neither one next to another. Also the keyword

implementation was reduced to its grammatical root and Darius found the word implement. Lastly

the first comment have more similarity to the searched terms than the second comment, which is

”here is the user area. it shows the options user can see after login”. Which is correct since the first

comment contains the two keywords (or its grammatical root) and the second comment only contain

one keyword. By manual inspection we check that the other comments do not contain the searched

terms and that is why they similarity is zero.

When we click in a comment the corresponding information about it (name of the file, class, method,

next line and number of the line where it is located) that appear bellow the list of comments has proven

to be correct. Also, as we can see in Figure 32, the corresponding graph is shown in the middle window

and the correct method is selected in the window at the right side.

47

4.5. Testing

Figure 31: Search query executed in DariusSDG

48

4.5. Testing

Figure 32: Behaviour of DariusSDG when a comment is selected

Lastly we checked if the comments where correctly associated with the statements. We have five

different situations:

• the comment is outside a method and before one

• the comment is outside a method and after all methods

• the comment is inside a method and before a statement

• the comment is inside a method and in the same line as a statement

• the comment is inside a method and after all statements

We have created a method (constructor) called User that contains all the five types of association

mentioned. We can see the source code listed in 4.3. When the user clicks a comment that is outside

a method and before one (see Figure 33), DariusSDG associates the comment to the method. The

statement that is highlighted is the entry, meaning that the comment refers to the whole method. The

same happens when the user clicks a comment that is outside a method and after all methods (see

Figure 34).

When the user clicks a comment that is inside a method and before a statement, as shown in Figure

35 the statement that appears after that comment is highlighted, which means that the comment is

referring that statement.

If the user clicks a comment that is inside a method and in the same line as a statement (see Figure

36), the statement that is in the same line as the comment is highlighted.

49

4.5. Testing

Lastly when the user clicks a comment that is inside a method and after all statements, as listed

in Figure 37, the statement that occurs before that comment is highlighted, which means that the

comment is referring that statement.

//class constructor

public User (String NIF, String password) {

//saves the parameters to the fields of the object

this.NIF = NIF;

this.password = password;//the password will be encrypted

//when implement password encrypt add it here

}

//end of the class

}

Listing 4.3: Example of a method whit all five types of comments

Figure 33: How DariusSDG associates a comment that is outside a method and before one

Figure 34: How DariusSDG associates a comment that is outside a method and after all methods

50

4.5. Testing

Figure 35: How DariusSDG associates a comment that is inside a method and before a statement

Figure 36: How DariusSDG associates a comment that is inside a method and in the same line as a statement

Figure 37: How DariusSDG associates a comment that is inside a method and after all statements

51

4.5. Testing

4.5.3 Other Tests

The other buttons and features, like the zoom in and out, the DDG switch (which allows turn on

and off the dependence edges), the ability to move nodes getting a different view of the graph, were

also intensively verified and are working as expected.

In Figure 30 we can see a node that was moved to get a better view of the dependence edges, the

graph is also zoomed in and the DDG edges are on. In listing 29, for example, we can see that the

DDG edges are turned off.

We perform similar tests with other programs (bigger in terms of lines of code, number of com-

ments, files and classes) to check whether everything was working ok and the results were all the time

positive. For example, we tested DatumBox, an open-source framework to develop Machine Learning

and Statistical applications Vryniotis (2014). As we can see in Figure 38 (statistic window from Dar-

iusSDG) DatumBox is a big software with 153 classes. Despite the fact that some parts of DatumBox

are being used in commercial applications, the documentation is very poor. This is a perfect example

where DariusSDG can be helpful.

Figure 38: DariusSDG Statistics window realtive to DatumBox

As mentioned we perform similar test with the software, for example, in Figure 39 we can see the

list of comments and the respective similarity with the searched terms. Also we can see the integration

between the tools. When we click in a comment the corresponding part of the graph is shown, the

52

4.5. Testing

associated comment is highlighted and the respective method (in the right side of the window) is

selected.

Figure 39: DariusSDG with DatumBox loaded example

DariusSDG performance was also tested. The process can be divided in three phases:

• when DariusSDG is loading a program

• when a search query is executed

• when a graph is shown

The first item (loading a program) is where DariusSDG will consume more resources from the

machine. As we can see in Figure 40, when DariusSDG loads DatumBox a big percentage of CPU

is being used (almost 71%) and the disk usage also has a significant usage (almost 25%). That is

normal because is when DariusSDG is reading all the files, parsing them, saving the comments and

constructing the objects that contain information about the System Dependency Graph.

In this case, when a search query is executed, DariusSDG usage of disk is very insignificant and

the use of CPU hit a 25% of maximum usage. The no use of disk is normal because all the elements

are already in the memory (about 333 MB) and there is no need to read them again from the disk.

The use of CPU is related to the stemming process of the searched terms, the comparison with all the

comments and the respective ranking.

Lastly when we click a comment or a method the corresponding part of the System Dependency

Graph is shown. Once again the disk is not used but the CPU values are much smaller, about 2%. This

is explained by fact that the graph has few elements and JGraphX is a very well implemented library.

DariusSDG was also tested in different machines, with different operating systems, and as expected

from a Java program it worked normally.

53

4.5. Testing

Figure 40: DariusSDG resources consumption when loading DatumBox

54

5

C O N C L U S I O N

As mentioned along this document, software maintenance is one of the most expensive parts of

software development, and the time spent by software engineers to understand the program (an com-

pulsory but unproductive phase) is the main reason for that.

Program Comprehension researchers studied and developed many techniques and tools to decrease

the time spent to understand a program, but software maintenance is still a very demanding task. The

number of tools found, for the Java programming language, which can assist software engineers in

program comprehension, is small and focused in one technique of program comprehension.

DariusSDG combine two techniques of Program Comprehension that can show semantic and struc-

tural information about a program. DariusSDG also was built to be easy to use and understand, avoid-

ing even more wasted time.

Along this document we described the development of DariusSDG that went through many phases.

In a initial phase we studied tools that could be used to construct DariusSDG including JGraphX and

Darius. While JGraphX was used as it is, Darius needed changes that led to a deeper study of the

tool including how it works and where the changes needed to be made, in other words maintenance.

Also we needed to understand the definition of Java language (its grammar) in order to build the SDG

Builder which is a tool that constructs the System Dependency Graph based on Java source code since

there was no tool that can do that.

At present moment DariusSDG perform concept location based on source code comments but an-

other source to find concepts are the constant strings in the source code (I/O statements and variable

initialization). DariusSDG can be improved to capture these new source of concepts.

DariusSDG can also be modified to show a ”big picture” of the System Dependency Graph. At

present moment, for scalability reasons, DariusSDG shows the System Dependency Graph divided by

methods but does not show how these methods are related and their dependencies. That information

can be useful for the software engineer that is analysing the program and adding it to DariusSDG will

be a good improvement.

Various tests where performed and described in this document but none of them where made with

persons. In the future we will perform experiments, with real programs and software engineers, to

verify if the DariusSDG can reduce the time spent in software maintenance.

55

At the present moment DariusSDG is complete and ready to be used, and can be download from its

website at www.di.uminho.pt/˜gepl/DariusSDG

56

www.di.uminho.pt/~gepl/DariusSDG

B I B L I O G R A P H Y

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.

Hirohisa Aman and Hirokazu Okazaki. Impact of Comment Statement on Code Stability in Open

Source Development. In JCKBSE, pages 415–419, 2008.

Dejan Baca, Bengt Carlsson, and Lars Lundberg. Evaluating the cost reduction of static code analysis

for software security. In PLAS, pages 79–88, 2008.

David Benson and Gaudenz Alder. JGraphX, 2014. URL https://github.com/jgraph/

jgraphx.

Arieh Bibliowicz. Jgraph styles, 2011. URL http://www.vainolo.com/2011/05/13/

jgraph-styles/.

Ruven E. Brooks. Using a Behavioral Theory of Program Comprehension in Software Engineering.

In ICSE, pages 196–201, 1978.

Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, and Pedro Rangel Henriques.

Conclave: Ontology-driven measurement of semantic relatedness between source code elements

and problem domain concepts. Lecture Notes in Computer Science (including subseries Lecture

Notes n Artificial Intelligence and Lecture Notes in Bioinformatics).

Elliot J. Chikofsky and James H. Cross. Reverse Engineering and Design Recovery: A Taxonomy.

IEEE Software, 7(1):13–17, 1990.

Graph Drawing Steering Committee. The graphml file format, 2007. URL http://graphml.

graphdrawing.org/.

Rui Gustavo Crespo. Processadores de linguagens da concepção à implementação. Ensino da Ciência

e da Tecnologia. IST, Lisboa, cop. 1998. Colocação: Sala azul/Piso 2.

Daniela da Cruz, Mario Béron, Pedro Rangel Henriques, and Maria João Varanda Pereira. Code

inspection approaches for program visualization. Acta Electrotechnica et Informatica, 9(3):32–42,

Jul-Sep 2009. ISSN: 1335-8243.

José Luı́s Figueiredo de Freitas. Comment Analysis for Program Comprehension. Master’s thesis,

University of Minho, 2011.

57

https://github.com/jgraph/jgraphx
https://github.com/jgraph/jgraphx
http://www.vainolo.com/2011/05/13/jgraph-styles/
http://www.vainolo.com/2011/05/13/jgraph-styles/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/

Bibliography

Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. A study of the documen-

tation essential to software maintenance. In Proceedings of the 23rd Annual International Con-

ference on Design of Communication: Documenting &Amp; Designing for Pervasive Information,

SIGDOC ’05, pages 68–75, New York, NY, USA, 2005. ACM.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A.

Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391–407, 1990.

Lin Du, Guorong Xiao, and Daming Li. A novel approach to construct object-oriented system depen-

dence graph and algorithm design. JSW, 7(1):133–140, 2012.

Floris P. Engelbertink and Harald H. Vogt. How to save on software maintenance costs. 2010.

L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2000.

R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance Study: Report to Our Respon-

dents. GUIDE 48, April 1983.

Forward, Andrew, Lethbridge, and Timothy C. The relevance of software documentation, tools and

technologies: A survey. In Proceedings of the 2002 ACM Symposium on Document Engineering,

DocEng ’02, pages 26–33, New York, NY, USA, 2002. ACM.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot, 2006.

Lars Marius Garshol. Bnf and ebnf: What are they and how do they work?, 2008. URL http:

//www.garshol.priv.no/download/text/bnf.html.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specification. 2005.

Mı́rian Halfeld-Ferrari. Context-free grammars (cfg).

Brian W. Kernighan and P. J. Plauger. The elements of programming style (2. ed.). McGraw-Hill,

1978. ISBN 978-0-07-034207-1.

LangPop. Programming Language Popularity, 2013. URL http://langpop.com/.

Panos E. Livadas and Theodore Johnson. An optimal algorithm for the construction of the system

dependence graph. Inf. Sci., 125(1-4):99–131, 2000.

Jonathan I. Maletic and Andrian Marcus. Supporting Program Comprehension Using Semantic and

Structural Information. In ICSE, pages 103–112, 2001.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2009. ISBN 978-0-521-86571-5.

Joshua O’Madadhain, Danyel Fisher, and Scott White. Jung - java universal network/graph framework,

2013. URL http://jung.sourceforge.net/.

58

http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://langpop.com/
http://jung.sourceforge.net/

Bibliography

Terence Parr. Antlr, 2014. URL http://www.antlr.org/.

James Power. Notes on formal language theory and parsing, 2002. URL http://www.cs.nuim.

ie/˜jpower/Courses/Previous/parsing/index.html.

Vaclav Rajlich and Norman Wilde. A retrospective view on: The role of concepts in program compre-

hension: (MIP award). In ICPC, pages 12–13, 2012.

Martine Schlag. Directed graphs, 2004. URL http://classes.soe.ucsc.edu/cmpe177/

Fall04/slides/digraphs.pdf.

Gang Shu, Boya Sun, Tim A.D. Henderson, and Andy Podgurski. JavaPDG: A Graphical Tool for

Program Dependence Analysis on Java, 2013. URL http://selserver.case.edu:8080/

javapdg/.

Kenneth Slonneger and Barry L. Kurtz. Syntax and Semantics of Programming Languages. 1978.

Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris. Code quality

analysis in open source software development. Inf. Syst. J., 12(1):43–60, 2002.

Margaret-Anne D. Storey. Theories, Methods and Tools in Program Comprehension: Past, Present

and Future. In IWPC, pages 181–191, 2005.

Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design elements to

support the construction of a mental model during software exploration. Journal of Systems and

Software, 44(3):171–185, 1999.

Ted Tenny. Program Readability: Procedures Versus Comments. IEEE Trans. Software Eng., 14(9):

1271–1279, 1988.

T. Teny. Procedures and comments vs. the banker’s algorithm. In SIGCSE Bull, page 44 to 53, 1985.

TIOBE. TIOBE Index for January 2014, 2014. URL http://www.tiobe.com/index.php/

content/paperinfo/tpci/index.html.

Chun Yin TONG, Eric Chi Lik LO, and Ming Hay LUK. Java System Dependence Graph API, 2010.

URL http://www4.comp.polyu.edu.hk/˜cscllo/teaching/SDGAPI/.

Vasilis Vryniotis. Datumbox machine learning framework, 2014. URL http://www.datumbox.

com/.

William Mc Castline Waite and Gerhard Goos. Compiler construction. Texts and monographs in

computer science. Springer, New York, Berlin, Tokyo, 1984. ISBN 0-387-90821-8. URL http:

//opac.inria.fr/record=b1103429.

59

http://www.antlr.org/
http://www.cs.nuim.ie/~jpower/Courses/Previous/parsing/index.html
http://www.cs.nuim.ie/~jpower/Courses/Previous/parsing/index.html
http://classes.soe.ucsc.edu/cmpe177/Fall04/slides/digraphs.pdf
http://classes.soe.ucsc.edu/cmpe177/Fall04/slides/digraphs.pdf
http://selserver.case.edu:8080/javapdg/
http://selserver.case.edu:8080/javapdg/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www4.comp.polyu.edu.hk/~cscllo/teaching/SDGAPI/
http://www.datumbox.com/
http://www.datumbox.com/
http://opac.inria.fr/record=b1103429
http://opac.inria.fr/record=b1103429

Bibliography

Norman Wilde. Software Reconnaissance, 2012. URL http://uwf.edu/nwilde/recon/

recon4/r4wReconnaissance.htm.

Norman Wilde and Christopher Casey. Early field experience with the Software Reconnaissance

technique for program comprehension. In ICSM, pages 312–318, 1996.

Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. The Effect of Modularization and

Comments on Program Comprehension. In ICSE, pages 215–223, 1981a.

Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. The Effect of Modularization and

Comments on Program Comprehension. In ICSE, pages 215–223, 1981b.

Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: Towards a static noninteractive

approach to feature location. ACM Trans. Softw. Eng. Methodol., 15(2):195–226, 2006.

60

http://uwf.edu/nwilde/recon/recon4/r4wReconnaissance.htm
http://uwf.edu/nwilde/recon/recon4/r4wReconnaissance.htm

	Contents
	1 Introduction
	1.1 Objectives
	1.2 Research Hypothesis
	1.3 Document structure

	2 Program Comprehension: Basic Concepts
	2.1 Programming Languages
	2.1.1 Context Free Grammar
	2.1.2 Attribute Grammars
	2.1.3 ANTLR

	2.2 Understanding a Program
	2.3 Concept Location
	2.3.1 Information Retrieval
	2.3.2 Darius

	2.4 Graphs
	2.4.1 DOT
	2.4.2 JGraphX
	2.4.3 JUNG

	2.5 System Dependency Graph
	2.5.1 What is it?
	2.5.2 Tools that build a System Dependency Graph

	3 DariusSDG: Design
	3.1 Requirements
	3.2 Architecture

	4 DariusSDG: Development
	4.1 Comment Analyser for Concept Location
	4.2 Building the System Dependency Graph
	4.3 Designing the System Dependency Graph
	4.4 Integration
	4.5 Testing
	4.5.1 Loading, Analysing and Build SDG
	4.5.2 Comments
	4.5.3 Other Tests

	5 Conclusion

