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Abstract

Metabolic Engineering targets the microorganism’s cellular metabolism to design

new strains with an industrial purpose. Applications of these metabolic manipula-

tions in Biotechnological derive from the need of enhanced production of valuable

compounds. The development of in silico metabolic models proposes a quantifiable

approach for the manipulation these microorganisms. In this context, constraint

based modelling is one of the major approaches to predict cellular behaviour. It

allows to prune the feasible space of possibilities describing possible phenotype

outcomes in terms of metabolic fluxes. Under these conditions, cellular meta-

bolism can be represented as an algebraic system constrained by the laws of mass

balance and thermodynamics.

These systems are prone to be represented as networks, taking advantage of differ-

ent graph-based paradigms, including bipartite graphs, hypergraphs and process

graphs. This thesis explores these representations and underlying algorithms for

metabolic network topological analysis. The main aim will be to identify potential

pathways towards the optimized biochemical production of selected compounds.

Related to this task, algorithms will also be designed aiming to complement net-

works of specific organisms, taking as input larger metabolic databases, inserting

new reactions making them able to produce a new compound of interest.

To address these problems, and also related tasks of data pre-processing and eval-

uation of the solutions, a complete computational framework was developed. It

integrates a number of previously proposed algorithms from distinct authors, to-

gether with a number of improvements that were necessary to cope with large-scale

metabolic networks. These are the result of problems identified in the previous

algorithms regarding their scalability.

A case study in synthetic metabolic engineering was selected from the literature to

validate the algorithms and test the capabilities of the implemented framework. It

allowed to compare the performance of the implemented algorithms and validate

the proposed improvements.

Keywords: Metabolic Networks; Flux Analysis; Synthetic Biology; Pathway Op-

timization; Network Topological Analysis; Subgraph Extraction;



Resumo

A Engenharia Metabólica visa a alteração do metabolismo celular dos micro-

organismos com vista ao desenho de novas estirpes com fins industriais. As

aplicações destas modificações genéticas na Biotecnologia derivam da necessidade

de produzir de forma otimizada compostos de alto valor. O desenvolvimento de

modelos computacionais propõe uma abordagem quantitativa para a manipulação

destes organismos. Neste contexto, a modelação baseada em restrições constitui

uma das abordagens mais usadas para a previsão do comportamento celular. Esta

permite reduzir o espaço de soluções viáveis descrevendo o fenótipo celular a partir

dos fluxos metabólicos. Nestas condições, o metabolismo celular pode ser repre-

sentado como um sistema algébrico restringido pelas leis da conservação de massa

e termodinâmica.

Estes sistemas podem ser representados como redes, tirando partido de diferentes

paradigmas baseados em grafos, incluindo os grafos bipartidos, os hipergrafos e

os grafos de processos. Esta tese explora estas representações e os respetivos

algoritmos para a análise topológica de redes metabólicas. O objetivo principal

será o de identificar potenciais vias metabólicas para a optimização da produção de

compostos selecionados. Relacionado com esta tarefa, serão desenhados algoritmos

com o objetivo de complementar redes de organismos espećıficos, tomando como

entradas bases de dados metabólicas de maior dimensão, inserindo novas reações

de forma a torná-los capazes da produção de novos compostos de interesse.

Para abordar estes problemas, bem como tarefas relacionadas ao ńıvel do pré-

processamento e avaliação das soluções, foi desenvolvida uma plataforma com-

putacional completa. Esta integra um conjunto de algoritmos previamente pro-

postos por diversos autores, em conjunto com melhorias significativas que foram

necessárias para que estes pudessem lidar com redes metabólicas de grande escala.

Estas melhorias resultam da identificação de problemas nos algoritmos no que diz

respeito à sua escalabilidade.

Um caso de estudo na Engenharia Metabólica sintética foi selecionado da literatura

para validar os algoritmos e testar as capacidades da plataforma implementada.

Este permitiu comparar o desempenho dos algoritmos implementados e validar as

melhorias propostas.

Palavras-chave: Redes Metabólicas; Análise de Fluxo; Biologia Sintética; Opti-

mização de vias metabólicas; Análise topológica de redes; Extração de sub-grafos.
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Chapter 1

Introduction

In the past decade, Biotechnology observed an increasing gain of popularity. One

of its key advantages is the capability of de novo synthesis of secondary metabo-

lites by genetic modification of microbe strains to produce high yield products

[38, 47]. These microbes are often referred as cell factories, strategically selected

microbial strains that are re-engineered to produce a target compound, offering a

full catalogue of potential sustainable solutions for many modern problems. The

use of cells as a factory for the production of compounds is exploited by many

industries, such as pharmaceuticals, food companies, renewable energy sources,

polymers and chemicals [13, 21].

The field of Metabolic Engineering (ME) studies the optimization of living orga-

nisms metabolic processes, by genetically modifying them to achieve a certain

goal, such as increasing the production of a desired compound or allowing the

production of a compound the wild type would not be able to produce. As such,

it plays an important role in the Biotechnology industry [12].

Technological advances in high throughput screening and Bioinformatics tools al-

lowed an exponential increase of biological information, that is likely to keep in-

creasing for the next years. To accommodate all this information, several large

omics databases are available to store and catalog all biological data from genomes

to reactions. Such information became the core of biological research [29], de-

manding more sophisticated computational tools to analyze genome scale data

sets, while manual processing became no longer viable.

1
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In a traditional ME approach, industrial bioprocesses develop new strains by mul-

tiple rounds of random mutagenesis. This approach usually unrolls negative side

effects, such as unwanted changes that may occur in the cell metabolism. Most of

these side effects are usually hard to track and diagnose.

With access to experimental data, several genome scale models of a variety of

organisms were re-constructed, enabling in silico whole cell simulation of phe-

notypic responses [15, 20]. Systems Biology developed a rational design process

allowing to quantify and predict cellular responses to environmental and genetic

modifications [48]. Under a systemic scope, the phenotypic interactions are ex-

pressed as a whole system instead of individual targets, by combining information

from genomics, transcriptomics, proteomics, metabolomics and fluxomics into a

multi-layer system.

Metabolic Engineering is powered by computational tools and models to design

new strains. These systems quantify cell phenotype expression using metabolic

models, allowing to strategically develop mutant strains capable of the production

of high yield bio-compounds. The process is characterized by a cycle of three

main steps: design, construction and analysis, involving both systems biology and

synthetic biology [37].

The modelling of cells has been traditionally achieved through the use of dynamic

models. However, these require information that is hard to gather, such as kinetic

data, limiting the applicability of these models to small-scale systems. Due to

the complexity in the parametrization of dynamic models, stoichiometric models

are by far simpler to build. Stoichiometric models are based on the fundamental

laws of mass balance, which requires only the stoichiometry of reactions, consi-

dering systems in steady state [9]. These stoichiometric models allowed the study

of the metabolism of different organisms through several methods for phenotype

simulation and structural analysis.

1.1 Motivation

The re-engineering of cells for de novo synthesis of secondary metabolites involves

many different steps, from data collection and curation, to optimal strain selection,

pathway identification and analysis of the best solutions.
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It is common to use computer software to aid ME processes. In the past years,

a vast catalogue of Bioinformatics software was developed to fit many topics in

this field [10], ranging from network reconstruction and representation problems

to data visualization and metabolic network analysis. Despite of this effort, most

topics still present a big challenge to software development, since the reconstruc-

tion, analysis and optimization of large scale metabolic networks still face many

challenges.

Advanced computational tools are currently able to identify optimal pathways

through stoichiometric network analysis by either computing algebraically steady

states of the stoichiometric network or from graph topological analysis. The com-

putation of steady states relies in the analysis of the feasible solutions cone which

represents all possible steady state flux distributions. Extreme Pathways (EP) [4]

and Elementary Flux Modes (EFM) [55] both compute flux vectors through con-

vex analysis [17]. However, these methods scale poorly and are inefficient for large

scale networks. Several attempts have been made to adapt both EP and EFM to

large scale data sets, either by taking advantage of modern multi-core processors

[58] or using stochastic heuristics [44]. However, due to the exponential growth

of combinatorial possibilities, for large scale systems, convex analysis still suffers

from many pitfalls from memory problems to computational time.

An alternative approach is searching pathways with graph topology algorithms,

based on graph search algorithms with extra rules that meet the criteria of a

metabolic context. Graph traversals are fast and many algorithms were adapted to

ME problems. However, graph searching for optimal solutions suffers equally from

complexity issues, although for a single solution they are much faster compared to

convex analysis methods [6].

Metabolic Engineering is powered by in silico analysis and, therefore, there is a

demand for specialized integrated development environments, that still offers a

challenge for software engineers. Most tools are developed as standalone programs

or web services, making difficult the integration and analysis of results and most

time is spent on writing computer scripts to parse the input and output of tools,

which is not productive and it is not practical. Therefore, commercial applications

such as MatLab, designed for numerical computing, are by far the most popular in

the area [27] and there are only a few specialized open-source platforms available.

OptFlux [52] is one of those platforms for in silico ME, integrating many tech-

niques to tackle problems in this field, and designed to be modular. It allows the
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development of plug-ins to integrate within the platform, thus allowing its easy

extension.

1.2 Objectives

Given the context described above, the main aim of this work will be the deve-

lopment of computational tools for the optimization of pathways over a metabolic

network, given specific design objectives under the realm of Metabolic Engineer-

ing applications. More specifically, the work will address the following scientific/

technological goals:

1. To build metabolic networks using graph-based representations, integrating

distinct data sources including metabolic databases (e.g. KEGG or Meta-

Cyc) or metabolic models, allowing flexible user defined filters to be applied

and contemplating information related to the metabolic capabilities of each

organism of interest.

2. To design and implement optimization algorithms that allow searching over

these metabolic networks for the best routes from sets of source metabo-

lites to target metabolites, given the specificities of the underlying graph

representation and being able to optimize these paths according to different

criteria.

3. To design and implement methods to evaluate the generated solutions, for

the problems in 2.

4. To integrate the algorithms implemented into a computational framework,

which is able to set up the entire process of computing synthetic ME path-

ways.

5. To validate the proposed algorithms with a selected case study from litera-

ture.

1.3 Structure of the Thesis

The document is divided in six chapters. In this first chapter, we provided a brief

introduction of the motivation and the main aims of the work.
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The second chapter, Metabolic Engineering, introduces several important aspects

related to computational tools for metabolic modelling and optimization methods,

as well as the introduction of the synthetic pathway extraction problems and the

state of art of the available methods and algorithms for solving of it.

The third chapter, Computing Synthetic Pathways, presents a unified formal defi-

nition of several selected pathway extraction algorithms and the underlying graph

representations. A detailed analysis of each of these algorithms is made to under-

line their weakness and strengths.

The fourth chapter, The Biosynth Framework, describes the framework design and

implementation details, developed in this work to address the synthesis problem.

The fifth chapter, Validation of the Framework, applies the tools to a case study

from the literature, to benchmark the developed framework by comparing the

obtained results with the available solutions.

Finally the last chapter, Conclusions, presents the main conclusions of the work,

also proposing future research topics.



Chapter 2

Metabolic Engineering

Metabolic engineering (ME) proposes a rational strategy to analyze and optimize

cellular metabolic systems, recurring to mathematical models to quantify changes

in the system. A metabolic system is a set of interconnected complex circuits of

reactions and metabolites known as metabolic networks (MN).

Manipulation of such networks is usually a complex task, and quite impossible

by näıve selection of biological entities. Indeed, it is nearly impossible to find

the best combination of genes to express towards a desired phenotype outcome

without resorting to computational tools. The analysis of MNs mainly relies on in

silico modelling and computer algorithms to analyse and quantitatively simulate

such networks.

2.1 Metabolic Modelling

Every cell conducts metabolism through a series of interconnected pathways, where

a metabolic pathway (MP) can be defined as a coherent set of reactions that

together conduct a primary metabolic function. A pathway typically converts

a primary substrate (or several) to a target product through a combination of

reactions. Another important aspect of a MP is that it should be feasible and

observable, otherwise there would be little interest in defining it, as it would be

inapplicable in real situations [57].

A metabolic model consists of a network of chemical reactions that allows to

predict the behaviour (or limitations) of cellular micro-organisms. These models

6
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can be targeted to a specific pathway, such as the central carbon metabolism, or

integrate multiple subsystems to assemble genome scale models (GSM). The GSM

allows interaction between subsystems, which increases the capability of phenotype

prediction in different scenarios. These models are validated with experimental

data to check whether the models correctly predict the desired outcomes. The

reconstruction of GSMs is usually a cyclic process involving multiple rounds of

validation and model tuning.

The basic elements required to describe a metabolic system are:

• A set of compartments (where reactions take place);

• Metabolites in the system. Since a metabolite can be present in different

compartments and they are non-interchangeable, a single metabolite (e.g.,

water) can have multiple species (e.g., water a, water b, water c) spread in

distinct compartments;

• Chemical reactions that are able to transform metabolites inside a compart-

ment or transfer metabolites between different compartments;

• Other features that are not relevant for this work: including genes and gene-

reaction rules.

The analysis of GSMs is typically done with computer tools and algorithms. The

Systems Biology Markup Language (SBML) is a free, open, XML based format

for encoding metabolic models [28], that is one of most popular computer readable

formats.

2.2 Metabolic Databases

Most in silico tools rely on the information available in biological databases. This

is no exception for ME, as the reconstruction of GSMs involves the use of a lot

of information from different public databases. There are several bioinformatics

resources available in the web for metabolic pathways. The Kyoto Encyclopedia

of Genes and Genomes (KEGG) [31, 32] is one of the main resources, integra-

ting all genomic, chemical and protein information. For metabolic networks, the
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set of entities of interest is the chemical universe mainly composed of metabo-

lites (compounds) and chemical reactions. KEGG features four database (i.e.,

Compounds, Glycans, Reactions and Enzymes) to assemble biochemical informa-

tion (Fig. 2.1(a)). The compound database hosts chemical compounds, while the

Glycan database contains only carbohydrates structures, making the metabolite

databases. The reaction database assembles chemical reactions, where each rea-

ction contains a set of products and reactants from either of the metabolite types

(i.e., compound or glycan). Finally, the enzyme database links reactions to genes,

which serves as a gateway to the external resources.

KEGG offers a simple but accurate representation of cellular metabolic path-

ways. However, other databases such as the BioCyc [34] database consortium,

contain several metabolic pathway databases with a much more complex entity

relationship. While, in KEGG, only four entities assemble the universe of chemi-

cal reactions, the BioCyc schema represents the chemical universe of the metabo-

lite components separating into basic compounds, RNA and proteins. Then, the

association of reactions to enzymes is more complex (Fig. 2.1(b)).

Metabolite Reaction

Enzyme

Organism

Compound Glycan

is ais a

catalyzes enzyme

left, right

appears

(a)

ReactionMetabolite

Protein Compound RNA

Enzymatic
Reaction

Enzyme

Organism

catalyzesenzyme

is a

reactionenzymatic reaction

is a
is ais a

appears

left, right

(b)

Figure 2.1: Partial schema of the chemical universe of KEGG and BioCyc.

The BioCyc database consortium contains several databases, each specific for a

certain organism. The databases are separated in three tiers. The first tier con-

sists of databases that have gone though multiple persons-years of heavy manual

curation, while in the second tier records are also under curation but with less
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effort. The last tier contains automatically generated databases from the BioCyc

Pathway Tools [35, 36], with no curation effort. In the BioCyc consortium, the

MetaCyc database (first tier) [7] is the only generic knowledge base containing

information on multiple organisms.

The KEGG and BioCyc are the two major knowledge bases for metabolic infor-

mation, nevertheless each of them presents a noticeable growth rate of information

each year. There are several more metabolic databases such as Model SEED [2]

and BiGG [54], but these are relatively small compared to the previous mentioned

databases [33]. To complement these pathway databases, there are some more

specific databases. For instance, BRENDA focuses on enzymatic reactions having

more than 79 000 individual reactions from 10 500 organisms. The ExplorEnz [45]

and ENZYME [3] are specific for enzyme and enzyme-catalyzed reactions descrip-

tion classified by the Enzyme Commission number (EC) a numerical classification

scheme to classify enzymes by function.

The heterogeneity of the data information sources offers a rich set of metabolic

information. However, without a standard representation, this provides a huge

amount of redundant data. Most of these databases have cross references to each

other for part of their records, but still there are many cases of inconsistency

between these.

2.3 Constraint Based Analysis

Constraint Based Analysis (CBA) is one of most popular approaches adopted for

in silico analysis of MNs. This approach differs from other traditional alternatives

since it has not been limited by the availability of kinetic information, thus allowing

the analysis of genome scale models capturing whole cell information. In CBA,

the system is subject to several constraints, such as the laws of mass balance and

thermodynamics. The system is constrained to the stoichiometric information,

the reactions reversibility and the maximum flux allowed in each reaction [16]. It

is, thus, possible to determine the feasible space, which allows to understand the

capabilities of the system under these circumstances.

Flux Balance Analysis (FBA) uses an optimization approach to, over this feasi-

ble space, calculate the optimal flux distribution of a steady state network [42],

where the net product of internal metabolites is equal to zero. The FBA method
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optimally assign fluxes to reactions in a MN based on an objective function using

a linear programming (LP) formulation. A limitation of FBA is that it only re-

turns one optimal solution, as for a given MN, in some scenarios, there may exist

multiple optimal flux distributions.

There are several other CBA methods, including variants of FBA, that will not be

mentioned as these are not relevant to this work. Those are applied, for instance,

when simulating the effects of gene knockouts or flux variations on a GSM [60].

2.4 The Synthetic Metabolic Problem

A synthetic (or retrosynthetic) ME problem can be summarized as the following:

given a well defined GSM, the goal is to find a set of reactions that attached to

the model would augment its capability to produce new compounds of interest,

which are non native to the organism.

This can be viewed as a reverse optimization process. While, in ME, for the

optimization of a MN using stoichiometric models, the objective function and all

participating reactions are known and well defined, in a synthetic problem for de

novo synthesis of a target compound, the problem is to find a set of reactions

that are compatible with the host taken from a larger knowledge base of chemical

reactions.

The synthetic problem starts with the selection of a target compound and a host

organism, represented by a metabolic network, which is set as the chassis. Pathway

extraction algorithms identify candidate reactions from a known domain that, if

introduced to the chassis, allow to augment the capability of the organism to

produce the target compound. A less traditional problem would be to optimize

the selection of the chassis itself. In this scenario, the chassis is unknown, therefore

the pathway extraction algorithms have to find the best pathway out of the entire

domain.

The identification of optimal stoichiometrically balanced pathways is often prob-

lematic and offers many challenges. The number of combinatorial possibilities

exponentially increases with the size of the search domain. Another important

factor is the definition of what is an optimal MP. Depending on the criteria and
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complexity, one could argue that an optimal MP would be the solution that re-

turns the highest production yield with the minimum amount of reactions, but

equally valid criteria may be defined.

There are several methods for pathway extraction from MN, that can be subdi-

vided into two main categories: steady state analysis or graph topological analysis.

Extreme pathways (EP) and elementary flux modes (EFM) compute non decom-

posable minimal pathways from metabolic networks. A non decomposable minimal

pathway is a minimal set of reactions that satisfies the steady state condition and

that is non reducible, i.e., the removal of any reaction from this set invalidates the

steady state condition.

EPs and EFMs can be used to analyze network robustness [64]. Since the amount

of EFM and EP usually increases exponentially with the size of the network,

it is impossible to compute them in most of the GSMs due to computational

intractability. Because these methods are unable to analyse large GSMs, the

computation of database size networks such as the KEGG or BioCyc is definitely

out of their reach.

An alternative approach is to rely on topological analysis of metabolic networks,

which offers a faster approach to identify potential MPs. There are several im-

plementations based on a variety of graph structures and algorithms (Table 2.1).

Some of those are more generic, to be able to search any network such as protein-

protein interaction networks, others are designed specifically for metabolic net-

works.

Table 2.1: Available software tools for pathway extraction based on graphs

Software Data Structure Algorithm(s)

Pathway Hunter Tool Graphs k-shortest path
[51]
Metabolic Path Finding Graphs k-shortest path
[11]
Find Path [6] Hypergraphs pathway enumeration
Network Analysis Bipartite Graph k-shortest path
Tool Set [19] kWalks
Reaction Pathway Process Graph Maximal Structure Generation
Identification [41] Solution Structure Generation
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In the next section, several metabolic network models and analysis methods are

described.

2.4.1 Graph Based Approach

A graph is a common mathematical model to define relationships between entities.

In the metabolic network context, there are two participating entities in the net-

work: metabolites and reactions. Since graphs have only a single type of vertex,

there are several alternative types of graph models.

r0: ATP + L-Glutamate
2.7.2.11−−−−→ ADP + L-Glutamyl 5-phosphate

r1: Acetyl-CoA + L-Glutamate
2.3.1.1−−−→ CoA + N-Acetyl-L-glutamate

r2: ATP + N-Acetyl-L-glutamate
2.7.2.8−−−→ ADP + N-Acetyl-L-glutamate 5-

phosphate

ATP ADP

L-Glutamyl 5-phosphateL-Glutamate 

N-Acetyl-L-glutamate N-Acetyl-L-glutamate 
5-phosphate

Acetyl-CoA 

CoA

(a)

2.3.1.1

2.7.2.8

2.7.2.11

(b)

2.3.1.1

2.7.2.8

2.7.2.11

ATP ADP

L-Glutamyl 5-phosphateL-Glutamate 

N-Acetyl-L-glutamate
N-Acetyl-L-glutamate 
5-phosphate

Acetyl-CoA 

CoA

(c)

Figure 2.2: Three possible graph representations of reactions r0, r1 and r2; a)
compound graph; b) reaction graph; c) compound-reaction graph;
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The compound graphs (Fig. 2.2(a)) allow the analysis of several topological pro-

perties, such as connectivity, length, or cluster density, among others [43]. In a

compound graph, a link between compounds a and b means there is a reaction that

requires a in order to get b, but since a reaction may require more than one sub-

strate, a single reaction can spawn many edges between substrates and products.

The dual of this model are reaction graphs (Fig. 2.2(b)), where an edge between

two vertices (that are reactions), captures the property of the dependency. As an

example, in Figure 2.2(b), the reaction 2.7.2.8 is dependent on the products of the

reaction 2.3.1.1, and therefore, they are related. The combination of both com-

pounds and reactions into a single graph model generates a bipartite graph (Fig.

2.2(c)), having two disjoint sets of vertices of compounds and reactions, where an

edge between a compound and a reaction represents substrates, and the opposite

represents products.

Graph topological analysis uses well known graph based traversal algorithms, most

of them derived from a Breadth-first or Depth-first search approach. The main

advantage of graph methods is the computation time of a single solution, which

in most cases is achieved in polynomial time, and the availability of many well

defined algorithms for graph analysis.

A common strategy to identify a possible optimal route between a substrate s

and a product t is to use shortest path algorithms. However, since there is a

possibility to have multiple variants between two vertices, it is common to use

algorithms that enumerate k multiple alternative paths, such as the k-shortest

path algorithm [19, 51].

Traditional graph algorithms suffer from two major pitfalls. It is possible for some

pathways not to be linear, i.e., they do not correspond to a linear path between

s and t. A path in a graph model is always a sequence of edges between s and

t. This usually does not express exactly a pathway, but a portion of what could

be the pathway, as most pathways fork into multiple routes because of multiple

dependencies. Therefore, computing exact pathways from paths in graphs is a

complex task, which requires merging multiple solutions.

Another problem is due to the fact that MNs are usually small world networks,

where most nodes can be reached by a small number of hops from any other node

[61]. This is due mainly to cofactor compounds (e.g., water, ATP or ADP), which
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usually serve as central hubs connecting to most of reactions. This will, eventually,

mislead the path finding algorithms to generate non relevant paths [11, 53].

Several alternatives are proposed to fix this issue. By weighting the graph edges by

their degree, in shortest path algorithms, this allows to penalize hub compounds.

However, this is still inaccurate as the degree is very dependent on the sample of

the network. Also, several non-cofactor compounds have a relative high degree

(e.g., pyruvate). Other authors propose more sophisticated strategies by using

the annotated data, such as the KEGG reaction pair annotation [39], where each

compound to compound pair has an special annotation that describes whether

they are the main link or a cofactor link. This allows a more advanced filtering of

the cofactors [18, 65]. Nonetheless, false positives and negatives still occur due to

flaws in the data and by improper or incomplete characterization.

2.4.2 Set Systems

The ambiguity of graph models and the incapability of those to define multi depen-

dency relationships demanded a different model to represent metabolic networks.

Both hypergraphs and process graphs have been put forward for that purpose.

They are very closely related as they are both set systems, so unlike graphs, where

each edge connects single entities, in set systems, an edge establishes a connection

between two sets.

A directed hypergraph is a graph where each edge may contain multiple source

vertices (head) to multiple destination vertices (tail) (Fig. 2.3(a)). This edge is

denoted as hyperedge for undirected edges and hyperarc for directed edges. This

type of graph was introduced to model database schemas, being first described as

functional dependency graphs because of the importance of their closure properties

[1]. Later, it gained application in other fields, being one of them chemical reaction

modelling [59].

A process graph is very similar to an hypergraph and a bipartite graph. This

model was designed to represent chemical synthesis problems, as common graphs

were unable to define properly these systems [23]. They are similar to bipartite

graphs because the number of edges is equal to a compounds-reaction graph (Fig.

2.3(b)). However, the relationship between these edges is ambiguous as a single

edge between a compound and a reaction has little meaning. The process graph
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2.7.2.11

ATP ADP

L-Glutamyl 5-phosphateL-Glutamate 

2.7.2.8

N-Acetyl-L-glutamate N-Acetyl-L-glutamate 
5-phosphate

Acetyl-CoA 

2.3.1.1

CoA

(a)

L-Glutamyl
5-phosphate

L-Glutamate Acetyl-CoA ATP

2.7.2.8

N-Acetyl-L-
glutamate

CoA

ADP

N-Acetyl-L-glutamate 
5-phosphate

2.7.2.112.3.1.1

(b)

Figure 2.3: Two set systems. a) directed hypergraph; b) process graph;

uses operational units to define relationships between compounds, in a way that

is similar to an hyperarc since each operational unit connects two disjoint sets of

vertices. For the sake of simplicity, operational units will be called hyperarcs as

they share the same properties.

In set systems, there is no exact notion of what exactly defines a path (or hy-

perpath) between two vertices. This definition varies depending on the problem

context. For the metabolic context, a hyperpath S−T between two sets of vertices

S and T can be defined as: from an initial set of vertices denoted as substrates

(S) to another set of vertices denoted as products (T ), a hyperpath is a set of

hyperarcs that can be satisfied by the initial set S, and satisfy the set T . In a

dependency problem, a hyperarc needs to be satisfied by a set of vertices, and sat-

isfies another set of vertices. The head of the hyperarc are the vertices that need

to be satisfied, while the tail contains the dependencies that a hyperarc satisfies,

when included in a system.

Mathematically, the objective is to compute, from a set of reactions denoted as

the reaction universe, a subset that satisfies a certain set of constraints:

• The metabolites that are unsatisfied must belong to the set of substrates

vertices S;

• All the products in T must be present in the subset;

• Every reaction in the subset must be connected to at least one product in

T .
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This problem can be viewed as a subgraph extraction problem, in which given

a large set system which contains all possible reactions, the goal is to find com-

binations that satisfy S − T . The big advantage, when compared to traditional

graph methods, is that it is now possible to obtain combinations of reactions that

actually assemble the exact shape of the pathways. Because the paths are multi-

dimensional, such that they do not always assemble a linear sequence of several

edges, it is not possible to determine what is an optimal hyperpath between S and

T . Thus, the algorithms relies on enumerating all possible hyperpaths from S to

T .

There are several algorithms related to these models. The first category includes

algorithms to prune the network [24]. Since this is a combinatorial problem, one

question to address is to determine which building blocks (i.e., all the reactions that

are available to assemble the pathways) are necessary. In a set of reactions, there

may be several elements that can be discarded since they do not participate in any

pathway due to compatibilities (e.g., a reaction that is unsatisfiable). Removing

these reactions would reduce the size of the elements of the set, which in turn

would reduce the complexity of the problem.

The other category are the algorithms to generate the hyperpaths that satisfy S−T
from a given set of reactions. The FindPath algorithm [6] allows to enumerate all

minimal solutions from an hypergraph, while the Solution Structure Generation

algorithm [25] computes all possible combinations of pathways from a process

graph.

In the next chapter, a formal definition is introduced to describe and analyze the

synthesis problem and the algorithms mentioned above. The set systems offer a

potential solution to the synthetic ME problem. Therefore, the main focus of this

work is to apply these algorithms to extract pathways from database networks

(i.e, KEGG and BioCyc). However, they have their own drawbacks, which are

analyzed in deeper detail in the following chapter.



Chapter 3

Computing Synthetic Pathways

In the previous chapter, several state of the art graph representations and algo-

rithms to compute pathways from metabolic networks were introduced. Extreme

Pathways (EP) and Elementary Flux Modes (EFMs) are both precise methods

to generate pathways, but they are limited by the size of the networks, since up

to date it is still impossible to apply these methods over Genome-Scale Models

(GSMs). Therefore, the application of these methods to database size networks,

which are many times larger than GSMs, is definitely inappropriate.

The graph topological analysis methods are more convenient to extract pathways

from database size networks, as there are many cases of success applications of

graph path searching algorithms to infer pathways. A major problem of these

methods is the accuracy of the results. A solution is to apply set systems to

model chemical networks, since these show more similarity to the structure of the

network.

In this chapter, the synthetic Metabolic Engineering (ME) problem, the sets sys-

tems and related algorithms are introduced in a formal notation to precisely ana-

lyze several aspects related to their behavior, including aspects such as the com-

plexity and precision of the algorithms, as well as other limitations.

17
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3.1 Formal Definition and Data Modeling

3.1.1 Basic Definitions

To describe the algorithms and their properties, a notation is specified to represent

the entities, special sets and functions that participate in a synthesis problem.

Most of the notation follows the definitions and theorems defined by the process

synthesis algorithms [23–25]:

Zero ∅ Empty set

Calligraphy typing M,R,D,Z,S,H,P Special Sets

Capital letters M,R, S Sets

Lowercase letters m, r, e, o Single entities

If not stated otherwise, all sets defined in this chapter are assumed as unordered

sets, such that two sets containing {1, 2} and {2, 1}, are considered as equal.

Ordered sets will be explicitly presented, being defined by 〈〉 brackets. As an

example, a tuple defined by 〈a, b〉 is an ordered pair of two elements, such that

〈a, b〉 is not equal to 〈b, a〉. Similarly, a triple is written as 〈a, b, c〉.

The basic set operations are presented in this section with minimal detail, as

these have the same definition as in most set problems. These operations are the

following:

• Element relation: a is said to be an element of a set M , written a ∈ M , if

M contains a (for the opposite relation the symbol /∈ refers to ”is not an

element of”);

• Inclusion relation: a set A is said to be a subset of B, written A ⊆ B, if B

contains A (for the opposite relation the symbol * refers to ”is not a subset

of”);

• Proper Subset: a set A is said to be a proper subset of B, written A ( B, if

B contains A, but A does not contain B (i.e., B contains A but the sets are

not equal);

• Union operation: the union of two sets A and B is defined by {x : x ∈
A or x ∈ B}, written as A ∪B;
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• Intersection operation: the intersection of two sets A and B is defined by

{x : x ∈ A and x ∈ B}, written as A ∩B;

• Set Difference operation: the set difference of sets A and B is defined by

{x : x ∈ A and x /∈ B}, written as A\B;

• Size of a set: the size of a set A is defined by the function |A|, that counts

the number of elements in A;

• Power Set: the power set of a set A is defined by the function ℘(A) = {X :

X ⊆ A}, which is the set of all subsets of A;

• Cartesian product: the Cartesian product of two sets A and B, is denoted

by A×B, being defined as: {〈a, b〉 : a ∈ A and b ∈ B}

For ordered sets, the πi(X) functions return the i-th element of an ordered set.

As an example, π1(〈a, b〉) = a while π3(〈a, b, c〉) = c.

Several useful definitions are given next, being used in further sections.

Definition 1. (Findable)

An element a is said to be findable in A, written as a ∈̇ A, if and only if, the

following occurs:

1. A is a set, and a ∈ A verifies;

2. A is an ordered set of n elements, and at least one of a ∈̇ πi(A), where

1 ≤ i ≤ n, is true.

Definition 2. (Included)

A set A is said to be included in B, written as A ⊆̇ B, if and only if, for each

element a ∈ A, then a ∈̇ B must be true.

The definitions 1 and 2 allows to later simplify complex operations of element and

set inclusion, that otherwise would require a lot of recursive πi operations to find

elements in tuples that may be nested inside of set of tuples. Other symbols are

introduced later in their corresponding sections.
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In the next sections, two levels of entities and models will be presented: the biolo-

gical level, which includes entities that are the main building blocks of the meta-

bolic system, followed by their mathematical models, which are created from their

biological counterparts, being the ones used by the algorithms that are analyzed

in this chapter.

3.1.2 Biological Entities

Here, biological entities are defined as those representing biochemical components

within metabolic networks, namely reactions and metabolites. Each of the entities

contains a minimal set of characteristics used to capture the properties required

to compute the metabolic synthetic problem.

A metabolite is a single entity that, in general, is defined by the symbol m (al-

though later the symbols s and t will also be use to define metabolites to easily

distinguish supply and target metabolites). The universal set of metabolites M
is a finite set that contains all distinct metabolites of a system. The following

example is a valid universal set:

Me.g. = {m0,m1,m2,m3,mPyruvate,m2-Acetolactate,mV T ,mO2 ,mCO2 ,mH2O}

There are many attributes that could be assigned to a metabolite entity, like the

chemical formula, but for the purpose of the pathway extraction algorithms, at

this stage, these can be discarded.

A reaction entity r defines a relationship between metabolites, as follows:

Definition 3. (Reaction)

A reaction r is an ordered pair of two sets of metabolite-stoichiometry pairs α and

β. Since a metabolite-stoichiometry pair is a tuple 〈m,n〉 ∈ M× R+, a reaction

r can be defined as:

r = 〈α, β〉 : α, β ⊆ {〈m,n〉 : m ∈M, n ∈ R+}
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The symbol r without superscript notation usually represents a reversible reaction,

where r can either assume 〈α, β〉 or 〈β, α〉, which is equivalent to the←→r notation.

If the arrow on top has a single direction this indicates that r is irreversible.

The direction of the arrow corresponds to the orientation of the reaction (e.g., if

r = 〈α, β〉 then −→r = 〈α, β〉 and ←−r = 〈β, α〉). Similarly toM, the universal set of

reactions is written by the symbol R, which is a finite set that contains all reaction

entities in a system. The following reaction:

m2-Acetolactate +mCO2

r0
� 2 mPyruvate

would be represented by:

r0 = 〈{〈m2-Acetolactate, 1〉, 〈mCO2 , 1〉}, {〈mPyruvate, 2〉}〉

and would be an element of the following hypothetical universal set of reactions:

Re.g. = {r0,
←−r1 , r2, r3}

A reaction ri is identified by the subscript i, and any universal set may only contain

one version of ri (i.e., R′e.g. = {r0,
←−r0 , r1} would not be a valid universal set).

The functions Ψ− and Ψ+ map reactions to metabolites. These metabolites are

denoted as reactants (or substrates) and products of the reactions.

Definition 4. (Reactants)

The mapping of a single reaction to the set of its reactants is defined by the

function Ψ′−, while the mapping of the reactants of a reaction set is defined by

the function Ψ−. There are given by the following expressions:

Ψ′− : R → ℘(M)

Ψ′−(r) =
⋃

p ∈ π1(r)

π1(p)

Ψ− : ℘(R)→ ℘(M)

Ψ−(R) =
⋃
r ∈ R

Ψ′−(r)
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Definition 5. (Products)

On the other hand, the mapping of a single reaction to the set of its products is

defined by Ψ′+, while the correspondent mapping of the products of a reaction set

is defined by the function Ψ+, as follows:

Ψ′+ : R → ℘(M)

Ψ′+(r) =
⋃

p ∈ π2(r)

π1(p)

Ψ+ : ℘(R)→ ℘(M)

Ψ+(R) =
⋃
r ∈ R

Ψ′+(r)

The function Ψ− returns the set of all metabolites that participate as a reactant

(or substrates) in the set of reactions R, while the function Ψ+ returns the set

of all metabolites that are products of R. The function Ψ with no superscript

returns the entire set of metabolites that participate in a set of reactions, which

is equivalent to Ψ(R) = Ψ−(R) ∪Ψ+(R).

The reverse functions are defined as consumers and producers of a metabolite set

M , mapping metabolites to reactions.

Definition 6. (Producers)

The set of producers of a metabolite set is defined by the function ϕ−.

ϕ− : ℘(M)× ℘(R)→ ℘(R)

ϕ−(M,R) =
⋃

m ∈M

{r : r ∈ R | m ∈̇ π2(r)}
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Definition 7. (Consumers)

The set of consumers of a metabolite set is defined by the function ϕ+:

ϕ+ : ℘(M)× ℘(R)→ ℘(R)

ϕ+(M,R) =
⋃

m ∈M

{r : r ∈ R | m ∈̇ π1(r)}

Because metabolites do not contain information about reactions, the ϕ functions

require a set of reactions as a parameter. The ϕ is usually applied on the universal

set of reactions, to identify all reactions related to a set of metabolites. In some

cases, to simplify the notation, ϕ(M,R) will be considered equivalent to ϕ(M),

assuming the omission of the reaction set parameter to correspond to the universal

set of reactions.

Similar to the Ψ function, the ϕ without superscript is a function that returns all

reactions in R, such that the metabolites in M participate either as a substrate

or a product. This is equivalent to ϕ(〈M,R〉) = ϕ−(〈M,R〉)∪ϕ+(〈M,R〉). These

functions will play an important role in the algorithms to be describe later.

The metabolic domain D is a tuple, which contains all entities for a metabolic

synthetic problem and will make the dataset supporting all algorithms. The do-

main associates an universal set of metabolites with a universal set of reactions,

that together define all the chemical universe for the synthetic problem.

Definition 8. (Metabolic Domain)

A metabolic domain D is a tuple containing two universal sets, each corresponding

to the universal set of each of the two entities that play a role in the metabolic

synthetic problem: metabolites and reactions, defined as follows:

D = 〈M,R〉, where Ψ(R) ⊆M

Definition 9. (Synthetic Problem)
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Let D = 〈M,R〉, be an arbitrary domain, then the triplet Z = 〈D, S, T 〉, where

S, T ⊆M and S ∩ T = ∅, is the definition of a synthetic metabolic problem.

A synthetic problem describes the constraints of the metabolic pathway extraction

algorithms. These correspond to the set T , containing the target metabolites that

must be reached in the solutions, while the set S contains the initial substrates

where the solutions may origin from. For a problem Z to make sense, there must

exist at least a single initial compound and product, i.e., |S| ≥ 1 and |T | ≥ 1.

3.1.3 Set Systems

To address a synthetic problem, biological entities are mapped to a mathematical

representation. A metabolic system can be represented using a variety of mathe-

matical models, where some are less ambiguous than others at the expense of

complexity. As we saw in the last chapter, the best representation for these sys-

tems are hypergraphs (Def. 10).

Definition 10. (Hypergraph and Hyperarc [6])

A directed hypergraph is a pair H = 〈V,E〉, where V = {v0, v1, . . . , vn} is the set

of vertices and E = {e0, e1, . . . , em} is the set of hyperarcs. A hyperarc (which is

a directed hyperedge) ei is an ordered pair ei = 〈Xi, Yi〉 of disjoint subsets of V ,

i.e., Xi ⊆ V, Yi ⊆ V,Xi ∩ Yi = ∅, i = 0, . . . ,m.

In a directed hypergraph, the vertices represent metabolites, while each hyperarc

corresponds to a reaction. The mapping of metabolites to vertices is direct , while

in mapping reactions to hyperarcs, the stoichiometry is discarded. Although this

could be included by adding an extra set to the edges that holds the stoichiometry

value of each metabolite in each reaction, since topological analysis algorithms do

not account for the stoichiometry value of the reactions, these can be discarded.

Definition 11. (Vertex Degree)

Given an arbitrary hypergraph H = 〈V,E〉, the in-degree of a vertex v is the

number of incoming edges at v. The out-degree is the number of outgoing edges

of v. The degree is the total number of edges connected to v, i.e., the sum of the

in and out degrees.
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Metabolites with zero in-degree or out-degree are denoted as dead-end nodes,

being disconnected from the remaining nodes of the network. A vertex vi with

zero in-degree is a substrate-only metabolite, as there are no producers vi, while

a vertex with zero out-degree is a product-only metabolite.

Similar to the hypergraph, an alternative representation are the process graphs

(p-graphs). The p-graphs were designed to solve the ambiguity of the directed

graphs and signal-flow graphs to model chemical synthesis problems [23]. The

p-graphs, although very similar to hypergraphs, have a distinct nomenclature for

its components: instead of vertices, in p-graphs these are named materials (or

species), and the operational units in p-graphs correspond to hyperarcs in a di-

rected hypergraph. A p-graph is defined as follows:

Definition 12. (Process graph and Operational Unit [23])

A process graph is a pair P = 〈M,O〉, where M = {m0,m1, . . . ,mi} is the set of

materials (or species) and O = {o0, o1, . . . , oj} is the set of operational units. An

operational unit o is a tuple such that o ⊆ ℘(M)× ℘(M). Moreover, the vertices

of the process graph are the elements of:

V = M ∪O

and the arcs of the process graph are the elements of:

A = A1 ∪ A2

where A1 contains the arcs that point towards the operating units:

A1 = {〈x, y〉 | y = 〈α, β〉 ∈ o and x ∈ α}

and A2 keeps the arcs that point outwards of the operating units:

A2 = {〈y, x〉 | y = 〈α, β〉 ∈ o and x ∈ β}

The process graph is much similar to a common graph, containing vertices and

arcs (or edges) that connect two vertices. Furthermore, by the definition of the

p-graph (Def. 12), it is easy to identify that every p-graph must be bipartite as

the arcs are either 〈o,m〉 or 〈m, o〉. Therefore, the set of vertices M and O are

disjoint. Actually the p-graph is an adaptation of a common graph, where arcs

are no longer identified by a connection of two vertices, but rather by a set of arcs

defined by an operational unit (which is very similar to a hyperarc).
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In a metabolic context, a hypergraph is similar to a process graph, but they diverge

in the edge count as an edge in a process graph is a link between a material node

and an operational unit. So, an operational unit has many edges, while in a

hypergraph an edge corresponds directly to a reaction.

3.1.4 Conversion of biological domains to set systems

In most scenarios, the biological domain must be translated to a mathematical

model prior to the execution of an algorithm. Given an arbitrary metabolic domain

D = 〈M,R〉 , a function is required to map each element of D into the elements

of a mathematical model (e.g., hypergraphs and process graphs).

For the presented models, the mapping is very simple simple, as both share a sim-

ilar structure with the metabolic domain. The mapping of metabolites to vertices

and materials is trivial since there is a one to one (bijective) transformation.

The mapping of reactions to hyperarcs and operational units is defined as following:

fR7→E or O(r) =


{〈X, Y 〉, 〈Y,X〉} if ←→r

{〈X, Y 〉} if −→r

{〈Y,X〉} if ←−r

,where X = Ψ−({r}) and Y = Ψ+({r})

Reversible reactions are mapped into two edges in both directions. As an example,

let D = ({m0,m1,m2,m3}, {−→r0 ,
←−r1 ,
←→r2 }) be a metabolic domain, this would be

equivalent to the following directed hypergraph H and process graph P :

H = ({v0, v1, v2, v3}, {−→e0 ,
−→e1 ,
←−e2 ,
−→e2})

P = ({m0,m1,m2,m3}, {−→o0 ,
−→o1 ,
←−o2 ,
−→o2})

For any irreversible reaction, a left to right operational unit and hyperarc is crea-

ted, where the right to left reactions have their pairs swapped.

Since the directed hypergraphs and process graphs will be generated from a meta-

bolic domain, by writing Z = 〈H, S, T 〉 it will be equivalent to Z = 〈D, S, T 〉 ,
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being H the hypergraph created from D as stated above. The same applies for

process graphs.

3.2 The Subgraph Extraction Problem

3.2.1 Solution Structures

In the previous section, all components of the synthetic ME problem were defined.

In this section, the definition of a solution is introduced.

Topological algorithms compute structures, being the solutions characterized by a

set of reactions (that can be represented by hyperarcs and operational units) that

verify a set of conditions. These conditions are what defines a valid solution for a

given synthetic problem.

Given an arbitrary synthetic problem Z = 〈D, S, T 〉 , defined over a metabolic

domain D = 〈M,R〉, a subset F from R, is a solution to the synthetic problem if

it satisfies Θ(F,Z), defined as follows.

Definition 13. (Solution Structure)

Let Z = 〈D, S, T 〉 be an arbitrary synthetic problem, with D = 〈M,R〉 the

correspondent metabolic domain. The proposition Θ(F,Z), where F ⊆ R, is

true, if and only if:

1. for every t ∈ T , there is at least one reaction r ∈ R, that produces t;

2. for every m ∈ Ψ−(R), that is not in S, a reaction r ∈ R exists, that produces

m;

3. for every r ∈ R, at least one consumer of a product of r exists, unless r

produces a metabolite that is an element of T .

Every solution structure is related to a synthetic problem, and therefore, is asso-

ciated with a metabolic domain. To simplify, a set of reactions F and a synthetic

problem Z, that verifies the proposition Θ(F,Z) (or ΘZ(R)), can be represented
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by σ(Z), meaning that σ is a solution structure of a synthetic problem Z. There-

fore, σ is a set of reactions and Θ(σ,Z) is verifiable. Because every solution is

related to a particular synthetic problem Z, for simplification in later sections, the

Z is omitted.
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Figure 3.1: Example directed hypergraph: V = {t0, s0, s1, s2,m0,m1,m2,m3,
m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15}; E = {r0, r1, r2, r3, r4, r5,

r6, r7, r8, r9, r10, r11, r12, r13, r14}

Let Zexample = 〈Hexample, {s0, s1, s2}, {t0}〉 be a synthesis problem, and Hexample =

〈V,E〉 a directed hypergraph (Fig. 3.1). The condition 1 of Θ requires that if F

is a solution of Zexample, then T ⊆ Ψ+(F ) (Ψ+ reads as ”products of”). In this

particular example, the condition would be t0 ∈ Ψ+(F ). The second condition

requires that every metabolite, that is a reactant in F , must be satisfied except

for the ones in S (there is no need to satisfy the substrates of the problem).

Together, these are enough to build fully satisfied solutions. The last condition is

used to eliminate meaningless solutions.

Let F0 = {r3, r4, r5, r6, r7} be a subset of π2(Hexample), then Θ(F0,Zexample) is not

a valid solution structure, although F0 is fully satisfied. Indeed, the hyperarc r7

contains no element in T and no products of r7 have a consumer in F0, not obeying

the third condition. This implies that this hyperarc can be discarded, although

R0 satisfies conditions 1 and 2 of Θ.

A solution structure space S is the set of all solution structures of a synthetic

problem, being defined more formally as follows.

Definition 14. (Solution Space)

Let Z = 〈D, S, T 〉 be an arbitrary synthetic problem. Then, the solution space of

Z, is defined by the set S, as follows:
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S(Z) = {R : R ∈ ℘(R) | Θ(R,Z)}

The solution space is a finite set of all subsets of the universal set of reactions in

the metabolic domain, such that the property of solution structure is verified in

each of these sets. This set is dependent of the synthetic problem, therefore it is

relative to the domain and the specific constraints of the synthesis problem.

A solution structure is normally closed under union, i.e., for given two distinct σa

and σb, then σa ∪ σb is also a solution structure, since T is included in both and

every M\S metabolites in both sets are satisfied.

Theorem 1. (Solution Structure Closure under Union [23])

The union of two solution structures remains a solution structure, that is, if

σ1 ∈ S(Z) and σ2 ∈ S(Z)

then

σ1 ∪ σ2 ∈ S(Z)

The above theorem is not true if the reversible reactions are splitted into two

irreversible reactions (i.e., ←→r 7→ (←−r ,−→r )). In these scenarios, exclusivity should

be guaranteed between the two directions, i.e., only one of the directions can be

used in a solution. For the purpose of analysis of the algorithms, this property

will be ignored and both of the versions are assumed as distinct.

This property allows to characterize the following types of solution structures:

Definition 15. (Minimal Structure)

Let σ be a valid solution structure, then σ is minimal if and only if there is no

valid solution structure σx, such that σx ( σ
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Definition 16. (Combined Structure)

Let σ be a valid solution structure, then σ is a combination of solution structures

if and only if there are two valid solution structures σx and σy, that σx ∪ σy is

equal to σ and σx ( σy ∧ σy ( σx

The minimal solution structures are the most relevant, as these are able to generate

other solution structures through combinations and extensions.

The next section is dedicated to the maximal structure, that is written by the

symbol µ, which is also a set of reactions that is a solution structure with a special

relevance for the computation of other solutions.

3.2.2 The Maximal Solution Structure

An important aspect of subgraph computation is to determine several properties

of the domain. It is relevant to identify if the problem is feasible, that is, if there

is at least one valid solution structure. Because the σ is closed under union, the

union of all σ ∈ SZ is a super structure that covers all valid solution structures.

This super structure is defined as the maximal structure µ.

Definition 17. (Maximal Structure [24])

Let Z = 〈D, S, T 〉 be an arbitrary synthesis problem. The maximal structure of

Z is defined by:

µ(Z) =
⋃

σ∈S(Z)

σ

Given an arbitrary synthesis problem Z = 〈D, S, T 〉, if a maximal structure ex-

ists, then the problem is feasible (Def. 17). The maximal structure also allows

to prune the entities of a domain. Let D = 〈M,R〉 be an arbitrary domain, a

network mapped from this domain can have: a) unreachable metabolites (i.e.,

metabolites that are associated with no reactions); b) two or more disjoint par-

titions of the network; c) reactions that are unsatisfiable. All of these elements

can be discarded from the metabolic domain, as they only increase complexity for

solution generating algorithms.
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There are several algorithms to compute the maximal structure. However, the

exact set is hardly achieved. The algorithms later introduced can only obtain

an approximation to the maximal structure. An approximation of a set can be

defined as follows:

Definition 18. (Lower approximation [49])

Let A be an exact well defined set and X be an arbitrary set.

If an element x, such that x ∈ X and x ∈ A, this is written as x ^X A (”x surely

belongs to X in A”). This is defined as a strong membership. If for every x ∈ X,

x ^X A, then X is a lower approximation of A, defined as:

Apr
X

(A) = {x : x ^X A}

Definition 19. (Upper approximation [49])

Let A be an exact well defined set and Y be an arbitrary set.

If an element y, such that y ∈ Y , but is not clear whether y ∈ A or y /∈ A , this

is written as x _Y A (”y possibly belongs to Y in A”). This is defined as a weak

membership. If for every y ∈ Y , y _Y A, then Y is a lower approximation of A,

defined as:

AprY (A) = {y : y _Y A}

Let D = 〈M,R〉 be an arbitrary metabolic domain, and Z = 〈D, S, T 〉 a related

synthetic problem. If, given an arbitrary set of reactions F ⊆ R, where F ⊆ µ(Z),

then F is an lower approximation of the maximal structure since the elements of

R surely belongs to µ(Z). If, given an arbitrary set of reactions F ′ ⊆ R, where

µ(Z) ⊆ F ′, then F ′ is an upper approximation of the maximal structure since

elements of R′ possibly belong to µ(Z).

For simplification, the lower approximation of the maximal structure is written as

µ, such that µ = Apr
R

(µ), while upper approximation is written as µ = AprR(µ).
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3.2.3 Algorithms to Compute the Maximal Structure

The exact computation of the maximal structure µ of a synthesis problem Z =

〈D, S, T 〉 is quite hard to achieve. Therefore, the algorithms shown in this section

compute approximations of µ.

The maximal structure generation (MSG) algorithm was designed for the purpose

of computing the exact maximal structure [24], being given as Algorithm 11. The

MSG computes µ in two steps: the reduction phase followed by the composition

one.

The reduction step performs the following tasks:

• Elimination of every metabolite that operates as a single island (i.e., every

metabolite that is not associated with any reaction).

• Elimination of every reaction that contains metabolites without producers

that do not belong to the substrate set S. The elimination of any reaction

might generate new reactions that are unsatisfiable, therefore, this task is

iterative, being achieved by the loop of the reduction section (Algorithm 1).

At the end of the reduction step, it is expected that the domain D contains only

reachable elements. Not all these elements belong to µ. For instance, if the network

is composed by two disjoint sets of reactions R1 and R2, and T is a set with a

single element, nothing implies that both R1 and R2 are satisfiable by S. However,

since R1 and R2 are disjoint, T can only be present either on R1 or R2.

The composition step picks the domain computed by the reduction step and, by

starting from the set T , it moves up to S by successively adding reactions until

reaching S. If T is not present in the domain, then no reaction is added, so µ = ∅
(i.e., the problem is infeasible).

The MSG algorithm fails only on one scenario, where there is a fully closed loop

(futile cycle). As an example, consider the following reactions:

m0 +m1
r0→ m2 +m3

1Although the MSG algorithm has been designed to compute the exact maximal structure,
we will show later that this is not the case.
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Algorithm 1 Maximal Structure Generation

1: procedure MSG( M,O,R, P ) . M , set of materials, O
set of operating units, R set of raw materials (equivalent to substrates S), P set of
products (equivalent to target compounds T )

2: O ← O\ϕ−(R)
3: M ← Ψ(O)
4: r ← Ψ−(O)\(Ψ+(O) ∪R)
5: while r 6= ∅ do . Reduction loop
6: let x be an element of r
7: M ←M\x
8: o← ϕ+(x)
9: O ← O\o

10: r ← (r ∪ (Ψ+(o)\Ψ+(O)))\x
11: end while
12: if P ∩M 6= ∅ then
13: STOP . There is no maximal structure
14: end if
15: p← P
16: m← ∅
17: o← ∅)
18: while p 6= ∅ do . Composition loop
19: let x be an element of p
20: m← m ∪ x
21: ox ← ϕ−(x)
22: o← o ∪ ox
23: p← (p ∪Ψ−(ox))\(R ∪m)
24: end while
25: m← Ψ(o)
26: return m
27: end procedure

m2 +m3
r1→ m4 +m5

m4 +m5
r2→ m0 +m1

Reactions r0, r1, r2 perform a loop, which is an elementary mode as it operates

without any substrates, having net flux of zero. Now assuming the reaction m2 +

m4
rA→ m6 is added to the set, the algorithm would consider rA to be reachable,

as every substrate of rA has a producer and their producers are satisfiable. From

this example, it is clear that every element included that is dependent of the loop

r0, r1, r2 will eventually lead to infeasible solutions, as they are false positives.

This scenario is much more complex when dealing with reversible reactions. A

reversible reaction is duplicated in the network, such that given a reaction A
rY
� B,

this would generate two edges corresponding to A
−→eY→ B and B

←−eY ′→ A. The edges −→eY
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and←−eY ′ self satisfy for any A and B. Therefore, all reversible reactions connected to

T are included, no matter if they are satisfiable or not. This shows that MSG(Z)

computes µ(Z), that is an upper approximation, as only cases of false positives

were pinpointed.

The FindAll (FA) algorithm [6] (Alg. 2) is a subroutine of the FindPath algorithm

(a subgraph extraction algorithm that is described in a later section). The purpose

of FA is to provide a function that identifies if the problem is feasible and sort the

reactions in the domain in s specific order. It is shown as Algorithm 2.

Algorithm 2 Find All

1: procedure FindAll(H, S) . H hypergraph, S source metabolites
2: for each r ∈ H do
3: m[r]← Ψ−(r)
4: end for
5: V ← S
6: D ← S
7: F ← ∅
8: while V 6= ∅ do
9: let x be an element of V

10: V ← V \x
11: D ← S ∪ x
12: for each r ∈ H ∧ x ∈ m[r] do
13: m[r]← m[r]\x
14: if m[r] = ∅ then
15: F ← {F, r}
16: for each j ∈ Ψ+(r) ∧ x /∈ D do
17: V ← V ∪ j
18: end for
19: end if
20: end for
21: end while
22: return F
23: end procedure

Let R be an ordered set of reactions and S a set of substrates, the set R is

traversable if, for every element ri ∈ R, then ri must be satisfiable by its previous

elements plus the substrate set, i.e., by 〈S, {r0, . . . , ri−1}, 〉.

The m[r] (Alg. 2, line 3), maintains all dependencies of the hyperarcs (which

correspond to reactions). The sets of metabolites D and V are initialized as S,

then the algorithm successively removes elements in V from m[r]. If a given m[r]

has no dependencies, then the tail elements of the hyperarc r are added to V , such

that these contribute to new substrates that might satisfy other reactions.
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The main problem of this algorithm is the existence of circular dependencies.

Given an arbitrary domain D, a metabolite m is a circular dependency if the

following condition is verified: every producer of mx requires as substrates my and

every producer of my requires as substrates mx.

Assuming that both {mx,my} are not included in S, then to acquire mx a producer

of mx is required to be included. However, every producer of mx requires the

substrate my, thus mx can only be included if my is achieved, since my is never

reached because it requires mx. Then, reactions containing {mx,my} are excluded.

A cyclic dependency does not necessarily generate infeasible solutions. A common

example includes the following reactions patterns:

A+mATP

r0
� mADP +B

C +mATP

r1
� mADP +D

E +mATP

r2
� mADP + F

These reactions are feasible if at least a pair of reactions from {r0, r1, r2} is added.

Therefore, this algorithm may generate false negatives, which means that the Find-

All algorithm computes a lower approximation of µ. This later has consequences

in solution generating algorithms, since a lower approximation of µ implies loss of

solution structures.

3.2.4 Domain Partition

It is common that metabolic databases assemble massive networks of reactions

and metabolites. Depending on the constraints of the problem, the computation

of pathways from these networks usually takes an unpractical amount of time.

A partition strategy is proposed to break the networks into multiple sets. The goal

is to apply a meaningful approach to reduce the domain, such that the solutions

of the subsets share a common property.

Given an arbitrary domain D, the space of the reactions is split into several layers,

defined as a radius, such that Di = 〈Mi,Ri〉, i ∈ N+
0 , where i is the i-th radius

of the domain. The decision to assign each reaction and metabolite to a specific
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radius is based on a starting set of metabolites C. These metabolites are defined

as center metabolites, that belong to D0 = 〈M0, ∅〉, where M0 = C.

The elements of 〈M1,R1〉 are adjacent entities of D0, where R1 are producers of

metabolites in M0 and M1 are reactants of reactions in R1. These form the first

layer D1 of the domain centered in C.

The i-th radius can be defined by:

Di(C,R) =

〈C, ∅〉 if i = 0

〈Ψ−(Ri) ∪Mi−1,Ri〉 if i > 0

whereMi−1 = π1(Di−1(C,R)),Ri = ϕ−(Mi−1,R)

This implies that Di ⊆ Di+1, n ≥ 1. The elements in Di∩Di+1 = (Mi∩Mi+1,Ri∩
Ri+1), will be the elements specific ofDi+1 (i.e., the newly added elements in radius

i+ 1).

Let Z = 〈D, S, T 〉 be an arbitrary synthetic problem. By assigning C in the

previous definition to T (the set of target metabolites for the problem, the i-th

radius of Z is represented by Z i, such that Z i ⊆ Z. Because the i-th radius

elements are adjacent elements to the previous radius (i − 1), this implies that

Z i = 〈Di, S, T 〉 contains all solution structures of size i.

3.3 Computing Solution Structures

Now that the properties of the subgraphs are defined, in this section the algo-

rithms to compute pathways (subgraphs) are analyzed. The goal is to identify

the capabilities of each algorithm and the scope of the solution structures that

each of these are able to compute. These algorithms operate over set systems, by

performing a topological analysis over the networks to extract solution structures.

For most of the algorithms, no complexity analysis is performed. This is due to

the fact that most algorithms are not trivial to analyze, and the average scenario

is highly dependent on the topology of the network.
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3.3.1 Minimize Algorithm

The Minimize algorithm [6] is a subroutine of the FindPath algorithm (explained in

a later section) that extracts a single minimal solution from a directed hypergraph.

Given an arbitrary hypergraphH, a set of substrates S and a set of target products

T , a hyperarc e of H is critical if by removing e from H, then there is no maximal

structure and, therefore, the problem is infeasible.

Definition 20. (Critical Edge)

Let Z = 〈H, S, T 〉 be an arbitrary synthetic problem, and S ⊆ S(Z) a set of

solution structures, a hyperarc e ∈ H is critical in S if and only if e ∈
⋂
σ∈S

σ.

A minimal solution is equivalent to a set of hyperarcs, where every hyperarc is

critical. The Minimize algorithm (Alg. 3) tests each hyperarc for the criticality

property, and for every hyperarc that fails the test it is removed from H. This

algorithm is given as Algorithm 3.

In the definition of the algorithm (Def. 3) it receives an extra parameter Rf , a

set of reactions that cannot be removed from H (Alg. 3, line 8). This parameter

is only used in the FindPath algorithm to obtain alternative solutions, which are

not necessary to compute σmin.

The Minimize algorithm obtains a minimal solution, but not a specific minimal

solution. A hypergraph H may contain multiple minimal solutions. The σmin re-

turned from the Minimize algorithm is dependent on the ordering of the hyperarcs

in H. Let H be a hypergraph defined by the set of edges in Figure 3.2, where

S(Z) = {σ0, σ1, σ2, σ3, σ4} are all minimal structures for a hypothetical synthesis

problem (the set of substrates S and product T are irrelevant for this example as

the minimal structures are given), then H = µ =
⋃4
i=0 σi.

The hyperarcs are sorted by index. If the algorithm (Alg. 3, line 7) picks each

hyperarc by this order, then the output would be σ4. If the algorithm picks the

edges by the reverse order (or the edges are sorted in the reverse order), then the

output would be σ0.
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Algorithm 3 Minimize

1: procedure Minimize(H, Rf , S, T ) . H hypergraph, Rf reactions to not test, S
source set, T target set

2: F ← FindAll(H, S) . 2-4 Test if µ 6= ∅
3: H′ ← H
4: if T ∩Ψ+(F ) = ∅ then
5: H′ ← ∅ . µ = ∅ return ∅
6: else . µ 6= ∅ proceed to minimization
7: for each r ∈ H do . For each reaction not in Rf test if µ 6= ∅ for H\r
8: if r /∈ Rf then
9: F ← FindAll(H\r, S)

10: if T ∩Ψ+(F ) 6= ∅ then
11: H′ ← H′\r . Remove reaction from hypergraph
12: end if
13: end if
14: end for
15: end if
16: return H′ . Return either ∅ or a minimal solution structure of H
17: end procedure

EH = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}
σ0 = {r0, r2, r5, r6}
σ1 = {r0, r3, r4, r8}
σ2 = {r1, r7, r12, r13}
σ3 = {r1, r9, r10, r11}
σ4 = {r1, r14, r15}

Figure 3.2: Hypothetical synthetic problem Z = 〈H, S, T 〉, with Smin(Z) =
{σ0, σ1, σ2, σ3, σ4}

3.3.2 FindPath Algorithm

The FindPath (FP) algorithm [6] combines the FA and Minimize algorithms to

enumerate all minimal pathways.

Let H be an arbitrary hypergraph H = 〈V,E〉, and Z = 〈H, S, T 〉 a synthe-

sis problem, where T is a singleton set with the metabolite t0. If µ 6= ∅, then

Minimize(H, ∅, S, {t0}) = σ0 6= ∅, (σ0 is the first solution structure obtained by

the Minimize algorithm). Let F be an ordered list of hyperarcs in σ0, where ei ∈ F
is the last element, the one closest to the product (i.e, F [i] produces t0, where i is

the index of the last element of F ), then the alternative solutions are either the

following:

1. the solution structures that do not contain ei;
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2. the solution structures that contain ei, but do not contain ei−1.

As previously demonstrated, the FA computes a lower approximation of µ, such

that there are false negatives. This implies that some hyperarcs that are excluded

might belong to solutions, that are excluded from the results.

Algorithm 4 Find Path

1: procedure FindPath(H, Rf , S, T ) . H hypergraph, S source metabolites, T
target metabolites, Rf for branching solutions (initially as ∅)

2: F ← FindAll(H, S)
3: H′ ← ∅
4: H′ ← H′ ∪ F ∪Rf
5: Hσ ←Minimize(H′, Rf , S, T ) . Hσ the first minimal solution
6: En← ∅
7: if Hσ 6= ∅ then
8: En← Hσ
9: F ← FindAll(Hσ, S)

10: for k ∈ {|F |..1} do . for each element in F (i.e., hyperarcs of Hσ) branch
alternative solutions

11: r = Fk
12: if r /∈ Rf then
13: En← {En, FindPath(H\r,Rf , S, T )}
14: Rf ← Rf ∪ r
15: end if
16: end for
17: end if
18: return En
19: end procedure

The algorithm (given as Algorithm 4) starts by computing a single solution. Then,

to branch to other solutions, the FA computes subproblems with the domain

(hypergraph) smaller for each subproblem, using either alternative 1 (Alg. 4, line

13) or alternative 2 (the remaining of the loop). Each cycle of the loop generates

more branches of type 1.

3.3.3 Solution Structure Generation Algorithm

The Solution Structure Generation (SSG) [25] algorithm enumerates all possible

combinations of reactions. To test every combination of reactions, this would

require a huge amount of wasteful computation, as there are much more infeasible

combinations, than the actual solution structures. The total amount of possible
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combinations can be expressed by 2n, where n is the number of reactions. This is

equivalent to the power set of the reactions set (i.e., ℘(R)), since S ⊆ ℘(R).

Let P1 = 〈M1,O1〉 be a process graph (Fig. 3.3), whereM1 = {s0, s1,m0,m1, t0},
and O1 = {r0, r1, r2}. Here,

℘(O1) = {{∅}, {r0}, {r1}, {r2}, {r0, r1}, {r0, r2}, {r1, r2}, {r0, r1, r2}}

Let Z1 = 〈P1, S1, T1〉 be a synthesis problem, such that S1 = {s0, s1} and T1 =

{t0}; S(Z1) ⊆ ℘(O1) by the definition of the solution space (Def. 14); where ℘(O1)

contains the solutions of the problem Z1, being S(Z1) = {σ0, σ1, σ2}, , where to

σ0 = {r0, r1}, σ1 = {r0, r2}, σ2 = {r0, r1, r2}.

t 0

s1

s0

m0 m1

r 0

r1 r 2

Figure 3.3: Example P-graph.

A requirement of a solution structure is that every set of reactions that satisfies Θ

must contain at least one producer of each element in T1, so at least one element

of ϕ+(T1) = {r1, r2} must be included for every element of S(Z1). This ϕ+(T1) is

defined as a maximal decision mapping of T1, written as ∆(T1) = ϕ+(T1,O1) (or

ϕ+(T1) as defined earlier by omitting the reaction parameter, the universal set of

reactions is assumed).

Definition 21. (Decision Mapping)

A solution structure can be represented by a map δ[m], denoted as decision map-

ping of a metabolite m, that maps the corresponding metabolite to its set of

producers (reactions). The maximal decision mapping ∆(m) is the set of all pos-

sible reactions (which corresponds to the producers of m), that can be mapped to

the metabolite m.
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The problem can be decomposed into subproblems. Consider the subproblem,

where the producers of T1 = ∆(T1) are excluded from P1. Let ℘i be an element

of ℘(∆(T1))\∅, where ℘0, ℘1, ℘2 are equal to {r1}, {r2}, {r1, r2}, respectively. The

solution structures of Z1 is the union of each subproblems (℘i ∪ S(Z℘i
)) and

Z℘i
= 〈P1\∆(T1), S1,Ψ

+(℘i)〉.

As an example, if i = 0, then ℘0 = {r1}, where Zr1 = 〈P1\{r1, r2}, S1, {m0}〉, then

S(Zr1) = {{r0}} and r1 ∪ S(Zr1) = {{r1, r0}} = {σ0}.

Any subproblem is a synthesis problem, therefore each subproblem can further be

decomposed into smaller subproblems. This recursive strategy of problem decom-

position is the strategy applied in the SSG algorithm (Alg. 5). Using this strategy,

it is possible to compute every combination of solution structures, without resort-

ing to exhaustive enumeration.

Algorithm 5 Solution Structure Generation

1: procedure SSG(T,M, δ[M ])
2: if T = ∅ then
3: return δ[M ] . δ[M ] is a solution structure
4: end if
5: let x ∈ P
6: C ← ℘(∆(x))\{∅} . Generate all combinations of ∆(x)
7: for c ∈ C do . For each combination test if is valid
8: if ∀y ∈ m, c ∩ δ(y) = ∅ ∧ (∆(x)\c) ∩ δ(y) = ∅ then
9: δ[m ∪ {x}]← δ[m] ∪ {(x, c)}

10: SSG((p ∪ ϕ−(c))\(R ∪m ∪ {x}),m ∪ {x}, δ[m ∪ {x}])
11: end if
12: end for
13: return
14: end procedure

3.4 Improvements to the Algorithms

In this section, several modifications are proposed for both of the solution extrac-

tion algorithms, for the purpose of computing solutions in large database metabolic

networks, such as the KEGG and BioCyc.
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3.4.1 Minimize: Binary Search Heuristic

The Minimize algorithm (Alg. 3) reduces the network to a minimal set of reactions.

A limitation is the quadratic complexity, since as the size of the hypergraph in-

creases there is a significant increase in computational time.

An alternative heuristic is here proposed to scale it for large data sets, such as the

KEGG Ligand chemical universe.

Let Z = 〈H, S, T 〉 be an arbitrary synthetic problem, with µ 6= ∅, then there is

at least one solution for the synthesis problem Z. This strategy assumes that for

the specific problem Z, the elements of Smin(Z) are much smaller than µ, i.e, the

problem contains a huge amount of small solutions, that together assemble a big

maximal structure. This ratio is expressed by the ω symbol.

Definition 22. (Solution Structure Ratio)

The solution structure ratio ω will be a real number, in the range 0 < ω ≤ 1, such

that, ω = |σ(Z)|
|µ(Z)|

Let σmin be an arbitrary solution structure. If ω = 1, then µ definitely has only

one solution structure, such that σ = µ; otherwise, the number of reactions in µ is

greater than the number of reactions in σmin (i.e., ω < 1). The sequential test of

each reaction is most suited for synthesis problems where ω > 0.5, since there are

more reactions to keep that to remove. However, in real data sets, where synthesis

problems apply to an organism chassis, the substrate set S is usually extensive,

and this implies less substrates must be satisfied, thus it is more probable to have

smaller solution structures.

As an hypothesis, we will assume a scenario where the domain is much larger than

the size of the solutions, meaning that the domain is composed by many small

solutions. Therefore, each of these solutions has ω < 0.5.

In these cases, the number of reactions to remove is higher than those to keep.

A consequence of this property is that the objective is shifted to identify which

reactions to keep instead of those to remove, as most reactions can be discarded.

The proposed heuristic is to use a binary search strategy similar to the bisection

optimization method, such that, instead of testing each reaction one by one, a



Chapter 3 Computing Synthetic Pathways 43

EH = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}×
it:1

{r0, r1, r2, r3, r4, r5, r6, r7}×
it:2

{r0, r1, r2, r3}×
it:3

{r0, r1}×
it:4

{r0}X
it:5

{r1}×
it:6

{r2, r3}X
it:7

{r4, r5, r6, r7}X
it:8

{r8, r9, r10, r11, r12, r13, r14, r15}×
it:9

{r8, r9, r10, r11}X
it:10

{r12, r13, r14, r15}×
it:11

{r12, r13}X
it:12

{r14, r15}×
it:13

{r14}×
it:14

{r15}×
it:15

5

4

3

2

1

depth

Figure 3.4: Binary Search recursion tree. × - critical set. X - discarded set.
The leafs identified as critical corresponds to σ4 = {r1, r14, r15}

binary search is performed to identify critical reactions to keep and discard the

rest of the reactions in the sets.

As an example, in the hypothetical synthesis problem Z in the previous section

(Fig. 3.2), the minimal solution structure has (ω0, ω1, ω2, ω3, ω4) = (0.25, 0.25, 0.25,

0.25, 0.1875). The sequential search version of Minimize required a total of 16 FA

calls (which is the number of edges in EH) to compute the first minimal solution

structure (σ4).

The binary search heuristic attempts to identify which portion of the set is non

critical. The algorithm starts by selecting the entire set of reactions EH, then it

recursively attempts to remove the set by splitting it into two equally sized subsets.

The critical reactions eventually become singleton sets with only one element. If

this element is not discardable, then it is a critical reaction.

Figure 3.4 shows the generated recursion tree using the binary search heuristic, for

the hypothetical synthesis problem Z (Fig. 3.2). From the given example, there

are no critical reactions in EH, such that, σ0 ∩σ1 ∩σ2 ∩σ3 ∩σ4 = ∅, which implies

that any reaction can be removed. However, if r0 is excluded from H then the

remaining set of solution structures is {σ2, σ3, σ4}, where σ2 ∩σ3 ∩σ4 = {r1}. The

hyperarcs r0 and r1 can not be removed simultaneously. This heuristic is similar to

the previous attempts to remove the leftmost reaction. The algorithm descends to

depth 5 and removes r0, then is forced to keep r1. The output solution structure

is σ4 because it has the rightmost reactions, where σ2 and σ3 are excluded in

iterations 8 and 10.
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E′
H ∪ EH = {←−r0..←−r15, r0..r15}×

it:1

E′
H = {←−r0..←−r15}

it:2

EH = {r0..r15}×
it:3

.

.

.

it:4

.

.

.

it:?

Figure 3.5: Binary Search recursion tree for the extended problem with the
reversible reactions. × - critical set. X - discarded set. The leafs identified as

critical corresponds to σ4 = {r1, r14, r15}

In this example, the presented heuristic did not profit much, the sequential would

require 16 iterations (i.e., one for each reaction), while the new heuristic observed

only a gain of 1 iteration.

Now assuming the size of the problem is doubled, when, for each reaction the

inverse direction is included (e.g., the reactions are now reversible). If arbitrary

reactions are added to the network, the number of solutions remains always equal

or greater than the original problem. This is because new reactions do not invali-

date the original set of reactions, unless the problem constraints change.

Let E ′H be a set of reverse reactions of EH, then by adding E ′H to the head of

EH, we have, E ′H ∪EH = {←−r0 ..
←−r15,
−→r0 ..
−→r15}. The original solutions still hold for all

σ0, . . . , σ4 plus new possible combinations of solution structures using the newly

added reverse reactions (belonging to the set Σ′). Independently of the content of

Σ′, the solution structure σ4 still holds for the rightmost solution, this is because

the set H′ is added to the head of the original set. The new domain H′ ∪H would

require 32 iterations in the sequential version, however only a increase of two more

iterations is required to obtain σ4 (Fig. 3.5) by using a binary heuristic. It is also

possible to observe that there is a decrease of ω by half for all σ0, . . . , σ4 as the

size of µ doubled.

This heuristic is most profitable when ω is very small. Analogous to the original

approach (Alg. 3), the ordering of the reactions in the set does impact the output

solution. Assuming that a new ordering is applied, where the reactions are ordered

as follows: H = {r0, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r1, r14, r15}, this would

decrease the amount of iterations to 10 (Table 3.1), a decrease of 1/3 of the required

iterations.

To compute Smin, this is still in charge of the FindPath algorithm, as branching

technique is still required to obtain alternative solution structures.
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Table 3.1: Recursion table for the example described in Figure 3.2. The
reactions are sorted as follows: EH = {r0, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12,

r13, r1, r14, r15}

depth iteration set to test remove
2 1 {r0, r2, r3, r4, r5, r6, r7, r8} X
2 2 {r9, r10, r11, r12, r13, r1, r14, r15} ×
3 3 {r9, r10, r11, r12} X
3 4 {r13, r1, r14, r15} ×
4 5 {r13, r1} ×
5 6 {r13} X
5 7 {r1} ×
4 8 {r14, r15} ×
5 9 {r14} ×
5 10 {r15} ×

The disadvantage of this heuristic is when ω ≈ 1, this will force to branch most

of the leafs with singular sets. Assuming the example above H = µ = σ0, the

recursion tree would actually breach to every node with the singular set of ri ∈ σ0.

This happens because all reactions belongs the only existing minimal solution.

This is the worst case scenario for this heuristic, where the number of FA calls is

equal to 2n− 1, where n is the number of elements in the root node.

3.4.2 Solution Structure Generation: Power Set

A limitation of the SSG algorithm is the requirement to compute a power set. The

number of the elements of the power set is exponential (2n), implying that for a

reasonable small set, i.e., 10 elements would generate 1024 possible combinations

to be tested. In a large metabolic network, several metabolites can easily exceed a

set of 10 or more producers, generating a colossal amount of combinations to test

and consuming a huge amount of memory.

In this section, an alternative strategy is proposed in order to force the SSG routine

to compute only σmin. Consider the example synthesis problem and the p-graph

described in the previous section (Fig. 3.3). A solution structure, if it exists, must

be built by either one of the elements of the ℘(∆(t0)).

The power set of n elements can be subdivided into n subsets, where the n-th

set corresponds to a subset that contains every combination of n elements. These

subsets are defined as ℘n(X) , 0 ≤ n ≤ |X|.
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Assume that a solution exists for a combination c ∈ ℘i(X), then every combination

of higher degree ℘i+1(X), that contains c, can be excluded, as these do not generate

the minimal solution.

In the previous example, it was shown that a solution structure must be either com-

posed by any of the combinations of {r1, r2}, such that ℘1({r1, r2}) = {{r1}, {r2}}
and ℘2({r1, r2}) = {{r1, r2}}. If σ exists built on {r1}, then every ℘i>1({r1, r2})
containing {r1} is not minimal, and this renders ℘2({r1, r2}) = ∅.

Assuming σr1 exists built from r1, this implies that a subgraph P ⊆ P ′\{r1, r2}
exists, that attached to r1 is a solution structure. Then, if a solution structure

σr1∪O exists, built from r1 ∪O, which is any combination containing r1. The r1 of

σr1∪O can be satisfied by P and the remaining O must be either satisfied by P or

P ∪ P ′,P ′ ⊆ P ′\{r1, r2}. By adding P , this implies that σr1 ⊂ σr1∪O, therefore

σr1∪O is not a minimal solution structure.

This approach restricts the SSG algorithm to generate only minimal solutions,

which in return greatly increases the size limit of the p-graph.

3.5 Microorganism Selection

A different but related problem is to find the microorganism that is most fit for

the production of a certain compound (or set of compounds). Although, in this

case, the objective has shifted, the problem remains similar: to compute pathways

that link substrates to the target set of compounds.

The major difference is that, at the end, the result is an organism instead of a

pathway. This requires to establish a link between the reactions in the metabolic

network and the microorganisms that are able to achieve those.

The reactions can be associated with genes from the different microorganisms. One

way to achieve this link is to associate reactions to enzymes, that are identified by

Enzyme Commission numbers (EC), and use the EC to find related genes in the

microorganisms. This allows to find which organisms contain a given reaction in

the in metabolic system. However, this is highly dependent on the annotation of

the genes and the information contained in the databases.
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In our algorithms, the identification of the most suitable organisms can be per-

formed after the computation of the solutions. The solution structures are solved

as a synthesis problem as before. Afterwards, the solutions are characterized for

the microorganism that best fits. A best fitting microorganism is the one that cov-

ers the maximum number of reactions (eventually covering all reactions), meaning

that the generated pathway is most probably included in the microorganism meta-

bolic system.

A problem in mapping reactions to organisms is the quality of the annotation.

With the colossal amount of taxonomy, it is impossible to assign every organism

to each of the reactions or enzymes. Indeed, most biochemical databases contain

only a limited amount of microorganisms, having many reactions unassigned.

To deal with unassigned reactions, they are either excluded or considered that

they can occur in any organism. By excluding these, this may ultimately lead to

no solutions if they are critical reactions. However, by considering any organism,

it is also possible to bias the selection, which eventually requires user analysis of

the results.



Chapter 4

The Biosynth Framework

The selection of pathway optimization algorithms is just one of the steps of the

problem characterized in the previous chapter. There are many other crucial

aspects, such as raw data processing, management and quantification of results.

In a biological context, it is common for raw data to contain redundancies and

inconsistencies. These should be identified prior to the execution of the algorithms,

otherwise inconsistent solutions may occur.

Another problem to address is the diverse type of input structures that are re-

quired by the algorithms. Distinct algorithms operate on distinct data structures

depending on their implementation. Therefore, it is not possible to define a generic

data structure and the raw chemical data must be translated to a specific data

model prior to the computation. Finally, it is necessary to implement a strategy

to quantify the quality of the solutions obtained from the algorithms.

All these issues are addressed by the framework for synthetic pathway optimiza-

tion developed in this work. The architecture of this framework, as well as some

implementation details, are given in this chapter.

4.1 The Framework Architecture

A three stage pipeline is proposed (Fig. 4.1) to address the synthesis problems.

An initial stage for pre-processing the raw data is followed by the algorithmic or

computational stage and, lastly, by a post-processing analysis stage.

48
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Pre
Processing

Processing
Post

Processing

<<access>><<access>>

Figure 4.1: Work flow of the overall architecture

The architecture of these stages follows a loosely coupled design to create a light

and modular system. This will allow the easy introduction of new algorithms and

features for each of these stages. The specifications of each stage are discussed in

the following subsections.

4.1.1 Pre-Processing

The pre-processing stage is the initial step of the pipeline. Here, data is collected

from a diverse set of data interfaces to load and interpret raw data. The lack of

standards for biochemical data requires flexibility in the system to adapt to multi-

ple sources. Besides data collection and interpretation, local storage mechanisms

are also required to store and catalog collected information for future sessions.

<<mediator>>
Manager

<<Interface>>
ETL

<<Interface>>
Representation

Domain

<<Interface>>
Filter

<<Interface>>
Meta

0..*

1

0..*

0..1

0..1

Figure 4.2: Pre-processing layer implementation architecture

These type of operations are commonly denoted as extraction, transformation and

loading (ETL) processes, commonly applied in data warehousing, where distinct

sources of non integrated data are put together into a central repository for analy-

sis. The rest of the application can make decisions based on the loaded data.

The central manager (Fig. 4.2) serves the purpose of a pseudo data warehouse,

that is responsible to link the data to the computational end point. The central
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entity collects raw data from distinct sources, by recurring to a source interface.

This interface performs all ETL operations to process the raw data, and stages

the operational data into the central manager. Finally, the data in the staging

area are packed into a metabolic domain D (as defined in the previous chapter).

Here, several filters can be applied to remove unwanted data. These could be use

to remove redundant or malformed data, but filters can also be applied to keep

only data obeying a certain constraint. This domain is later transformed into a

computational representation for processing (as explained in detail previously).

To qualify data, a metadata generator interface is attached to characterize each

of the entities. This interface generates tags (e.g., ”balanced reaction”, ”generic

metabolite”) that identify multiple properties of the entities. These tags allow a

qualitative analysis of the problem domain.

Finally, a representation interface is attached to execute the required transfor-

mations of the raw data to the desired data structure (i.e., graphs, hypergraphs,

p-graphs, stoichiometric matrices). The representation interface is the function

that maps the data staged in the central manager to a specific data model. This

provides a link between the biological information and the mathematical models.

The product of this stage is a data model, which serves as an input structure for

the next stage.

4.1.2 Processing

The processing layer is responsible for all the algorithmic computation. In this

layer, a specified algorithm takes the respective inputs (e.g., problem domain)

and computes the solution structures. The purpose of this layer is to integrate

the solution generating algorithms (explained in the previous chapter) into the

framework (Fig. 4.3). Because of the diverse amount of data structures and

the heterogeneity of the algorithms, a common end interface must be assigned to

interpret their results to a structure, over which the platform can later perform

operations.

In this layer, it is necessary to support the following features:
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<<Mediator>>
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Figure 4.3: Processing layer implementation architecture

1. A common interface that translates the output of the algorithms to a com-

mon solution set structure (see definition in the previous chapter). This is

mandatory, otherwise the solutions cannot be interpreted and post-processed.

2. A control system to limit the execution of the algorithms to a given time

frame. Because most algorithms might take unpractical amounts of time to

conclude, a timeout system is desired to address this problem.

In addition, the algorithm configurations are specified here. The configurations

vary from algorithm to algorithm. However, there are a set of base constraints

that must be defined for all of the algorithms, such as the substrate and product

sets that define the synthesis problem.

4.1.3 Post-Processing

Finally, after the computation of the solutions, an evaluation strategy is required,

that allows to identify the best solutions in a certain user defined sense. Depending

on the goal of the user, the notion of solution quality might suffer some variations,

because a single solution may contain many features (e.g., size, number of metabo-

lites, fluxes), and it is up to the end user to define which attribute is most relevant.

This demands flexibility in the analysis of the solution, so that an user must be

able to define how to evaluate the solutions.

An evaluator is an entity that computes one or more features of a solution. This

design allows several evaluators to be combined to generate a report (Fig. 4.4).

For the sake of simplicity, the evaluators are independent of each other. Similarly

with the previous stages, the central manager is responsible to establish the link

between all the entities that play a significant role in this layer.
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Figure 4.4: Post-processing layer implementation architecture

4.2 Implementation Details

With the definitions set and the architecture defined, a framework was imple-

mented to support the solving of the synthesis problems. The Java programming

language was chosen to implement the framework, making use of a number of

object oriented design patterns. The usage of Java also allows an easy interaction

with the components of OptFlux [52], a metabolic engineering platform, that later

is required to perform model simulation.

In the previous chapter, several methods were introduced to solve the synthesis

problems. While some methods use similar strategies and data models, there

are multiple approaches to solve the synthesis problems (e.g., convex analysis vs

graphs or set systems). This demands the framework to be flexible, operating on

an abstract level.

Fortunately, these abstractions are highly explored by software engineering design

methods. As an example, the inversion of control is a technique that allows to

decouple the implementation from the framework, that was applied in this work.

The framework is subdivided into five main Java libraries (Fig. 4.5). This allows

to increase modularity and reusability between each library. On the top, the

Biosynth-Components library defines the basic data structures of the framework,

an essential dependency of the entire framework. Below, three libraries define the

subsystems of each stage of the pipeline described in the previous section. Finally,

the core library connects all components and subsystems.

Some details of the implementation of each of these libraries are discussed in the

next sections. To describe the framework implementation, the Unified Modeling
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Figure 4.5: BioSynth framework library diagram

Language (UML) is used to describe visually the relationship of the components

of the framework. The UML diagrams have only the purpose to describe the

relationship, while the functions and the roles of each component is described in

their corresponding section.

There are two distinct components in the framework. The first group includes the

ones that are tightly coupled to assemble the framework’s core. Changing any of

components can have an high impact on the overall framework execution. The

other group includes components that are attached to the framework. These are

loosely coupled components and their change or removal has little impact in the

function of the framework itself.

To distinguish these components, the solid borders represent classes that make the

core of the framework, where the dashed borders stand for implementations that

are injected into the framework.

4.2.1 Biosynth-Components

The components library implements all the basic data structures of the framework.

These are subdivided into biological data structures and mathematical models.

The biological structures are components that belong to the framework, hereby

these can be defined as framework entities. A framework entity implies that their
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definition is relevant to the integrity of the framework. Also, the framework itself

is dependent on the implementation of these entities. While the mathematical

representations are not in this group, these have the purpose to be used by solution

generating algorithms.

All the biological entities are inherited from the AbstractGenericEntity, which

defines: a) a unique key identifier; b) a descriptive name; c) the source of origin

(e.g., a database as KEGG, MetaCyc or BiGG; a file name); d) a description of

the entity. The unique key identifier is the only feature relevant for the rest of the

framework, as each entity is identified by this property. However, the others can

still be used for filtering purposes.

Since the specific implementation of the mathematical structures (i.e., p-graphs,

hypergraphs) is transparent to the framework, they are independent of each other

and independent of the biological entities. However, an interface is required to map

the transformation of the framework entities into these models. This is done by

the IMetabolicRepresentation interface, which requires to define the mapping

function of the framework entities to the equivalent mathematical structure (e.g.,

GenericReaction to HyperArc).

To keep the original representations independent of the framework demands, meta-

bolic versions of the mathematical models are defined inheriting the original rep-

resentation (Fig. 4.6). This makes the original implementation unaware of the

framework demands and offers a non invasive implementation. All the com-

ponents that are not dependent of the framework follow the same philosophy,

where the insertion of every component into the framework avoids any modi-

fication of the original components. In this scenario, the original implementa-

tions of ProcessGraph and HyperGraph are inherited by the framework versions

(MetabolicProcessGraph and MetabolicHyperGraph), and only these implement

the mapping interfaces that link the mathematical models to the framework meta-

bolic models.

4.2.2 Generic Data Models

In this section, the generic data structures are described. Their definition is es-

sential for the data interchange between the subsystems of the framework. For a

start, the framework contains only three entities that define the chemical universe,
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Figure 4.6: Data structures of the library biosynth-components

which are enough to define metabolic networks. These are the metabolites and

reactions, defined in the previous chapter, and the enzymes for the microorganisms

characterization problem.

There is a minimum set of features that these entities must include. The base

features are inherited from the class AbstractGenericEntity. Each entity (i.e.,

metabolite, reaction, enzyme) has a distinct structure, that describes their own

features.

The determination of specific features is not straight forward, specially when these

vary a lot between different metabolic databases. However, the basic requirements

of each individual entity type is defined in chapter 3. The complementary are

obtained from the attributes of the entity models in the KEGG Ligand database.

The attributes are separated into two categories, that are either quantitative (e.g.,

reversibility of a reaction, substrates, products) or qualitative (e.g., formula of

a metabolite, name). The quantitative data are relevant for the outcome of the

processing algorithms, as the qualitative are only needed for the end user analysis.

The GenericMetabolite is a basic entity representing a metabolite. The at-

tributes of the metabolites are the following:

• Formula: Describes the composition of the metabolite. This is usually a

chemical formula, except for some exceptions such as the KEGG glycans.

• Type: The type of the entity (e.g., Compound, RNA, Protein, Glycan).
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Like described in the previous chapter, the metabolite contains no quantitative

attributes, which makes each of them optional with the exception for the unique

identifier.

The GenericReaction is the entity that represents reactions, being the main

player in the pathway extraction algorithms. Its attributes are the following:

• Equation: The equation that describes the reaction.

• Reactants : List of metabolite/stoichiometry pairs belonging to the reactants

set.

• Products : List of metabolite/stoichiometry pairs belonging to the products

set.

• Reversibility : Orientation of the equation.

• Enzymes : List of related enzymes that catalyze this reaction.

The reactants and products are followed by a stoichiometric constant (≥ 0), and

the reversibility is an integer, being zero for reversible reactions; positive for ir-

reversible reactions with orientation left to right (the orientation applies to the

equation) and negative for reactions occurring from right to left. This allows to

characterize the definition of a reaction from the previous chapter (Def. 3), where

reactants and products corresponds to the stoichiometry pairs α, β, respectively,

and the reversibility identifies whether a reaction r is ←−r ,−→r , or ←→r .

The final entity is the GenericEnzime representing enzymes, which relates rea-

ctions to genes that are associated to an organism:

• Reactions : List of reactions associated with the enzyme.

• Genes : List of gene/organism pair.

The enzyme entity is only used for evaluation purposes in the last stage of the

pipeline. At this stage no attempt was made to integrate enzymes into the net-

works, as it would also require to modify or implement new algorithms that would

use that information, a task out of the scope of this work due to temporal con-

straints.
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4.2.3 Biosynth-Data

The data library implements all the input/output interfaces that interpret raw data

to create the generic entities of the framework. This library plays an important

role in the first stage of the pipeline.

An hierarchy of interfaces was designed to distinguish the features that each data

source supported (Fig. 4.7). In the top of the hierarchy, there is the ISource

interface that implements the basic functions that every data source requires.

biosynth-data

KEGGRemote
Source

<<Interface>>
ISource

<<Interface>>
IListableSource

<<Interface>>
ILocalSource

MySQLSourceCombineSource

BioCycRemoteSource parser

biocycpparsers

keggpparsers

HttpRequest

1

1

1

1

<<import>>

<<import>>

Figure 4.7: Components of the data library

The base interface contains the functions to fetch and transform a specific record

from the raw source into a framework biological entity. The IListableSource

interface is a more sophisticated source that implements functions to query all the

entities. Finally, the ILocalSource interface implements what can be called a

complete source, that allows fetching, querying, inserting and deleting entities.

The KEGGRemoteSource and BioCycRemoteSource are both classes implementing

ISource, allowing to gather data from the KEGG Ligand and BioCyc databases.

Both databases feature a RESTful application programming interface, that allows

easy interaction with client systems, using the HTTP protocol. The KEGG inter-

face also supports several listing operations, and therefore the KEGGRemoteSource

can implement the IListableSource interface. The BioCyc database features a

web query interface that interprets BioVelo [40] a specific querying language that

allows users without programming expertise to obtain precise results. However,

the interface shown slow performance and at this stage the BioCycRemoteSource

does not feature querying.
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Figure 4.8: Sequence diagram of the CombineSource class to extract a single
reaction

The transformation of the raw data is performed by several parsers. Each of the

databases outputs raw information in their own format. This lack of a standard

file format to describe biochemical reactions implies that for a specific source a set

of parsers must be implemented. As an example, the KEGGRemoteSource requires

several text file parsers, while the BioCyc offers more computer readable XML

files.

The MySQLSource implements the ILocalSource. It allows the framework to

connect to a MySQL database to store the retrieved information. This serve as a

cache system to allow reuse of the retrieved data for future sessions.

The CombineSource connects an ILocalSource to an ISource, implementing the

ETL process to transfer data from remote databases to an local medium (Fig.
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4.8). This cheap implementation allows interaction between these two entities,

but no integration is made between sources, and distinct identifiers are treated as

distinct entities. This makes different web sources unable to share information,

since they all have their own identifiers.

4.2.4 Biosynth-Algorithms

The algorithms library contains the implementation of the algorithms and the

platform to connect the algorithms to the rest of the framework. All the algo-

rithms described in the previous chapter are implemented in the framework. Each

of them operates independently using their corresponding data structures (i.e.,

MSG/SSG over p-graphs; FA/Minimize/FP over hypergraphs). They are imple-

mented following the algorithms described in the previous chapter. Since most of

the algorithms apply set functions (i.e., union, intersection, difference), the Java

Collections Framework is used to implement the data structure. This eventually

contributes to a negative performance impact, but for a working prototype this

library allows cheap and correct implementation of the required operations.

To integrate an algorithm to the rest of the framework some mandatory features

must be satisfied. Many of the algorithms display a complex and messy implemen-

tation. It is avoided, whenever, possible to modify the original implementation of

the solution generating algorithms. A non invasive strategy is adopted to augment

the required features, such that the original implementation is left unmodified.

The IMetabolicAlgorithm interface implements the required functionalities that

any algorithm must satisfy to operate correctly in the framework. These are:

a) a solve handler that runs the algorithm, which is inherited by the Runnable

interface; b) an extraction method to push the solutions from the algorithm, that

also translates the algorithm output to a SolutionSet data structure. This is

required to define a uniform structure for a solution, so that subsystems can inter-

act with each other. Similarly to the data representations, the original algorithms

are extended or wrapped into a new class that implements IMetabolicAlgorithm

interface.

To reduce the execution time of the algorithms to a limited amount of time,

there are several requirements to be satisfied. The IInterruptableAlgorithm

extends the IMetabolicAlgorithm (Fig. 4.9), so that interruption handlers can be
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Figure 4.9: Components of the algorithmic library.

enforced. A kill method is required to make the algorithm to stop the execution.

However, in a threaded environment, it is not possible to forcefully terminate

threads. Therefore, the threads must gracefully terminate by themselves or kill the

entire process needs to be killed (this would terminate all the threads including the

program itself). This implies that, at some points of the algorithm, this must verify

either to stop (i.e., if the kill handler was announced) or to continue execution. To

avoid insertion of mechanisms into the algorithm kernel, a non-invasive strategy

is applied based on the object-oriented and aspect-oriented paradigms (AOP).

An AOP programming approach is applied to intercept the core iteration of the

algorithm. The AOP paradigm allows to design oblivious systems that minimize

the degree to which programmers have to change their behavior [22]. The AOP

allows augmenting the program features with a non invasive approach. Some

applications of AOP are used in logging and monitoring [8] or in more advanced

applications, such as alteration of the running environment to a grid system [56],

as these are usually parallel features to the main logic of the programs.

An IterationInterceptor aspect intercepts the main iteration of the algorithm.

By verifying if the kill handler was announced, it can skip the iteration com-

pletely or resume the computation. By skipping the computational iterations

the algorithm eventually terminates. However, there is a demand that the core

computation of each algorithm is wrapped into a separate method. Also, if the

name of this method varies between algorithms, then individual aspects must be

implemented to intercept each of these.

The AlgorithmExecutor uses the executor services from the Java Concurrent Li-

brary to run an IInterruptableAlgorithm. This creates an auxiliary Algorithm-

Runner which implements the Callable interface. The executor service launches
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a Callable object within a specified time frame. Upon depletion of the supplied

time frame, a timeout exception is thrown. This makes the AlgorithmExecutor

perform the kill handler to terminate the IInterruptableAlgorithm followed by

the extraction of the solutions that were generated in the mean time.

4.2.5 Biosynth-Analysis

The analysis library operates in the third layer of the architecture, implementing

several evaluators to characterize the solution structures.

An evaluator is defined by the ISolutionEvaluator that implements: a) the

evaluation handler, which computes a set of features given a solution structure;

b) auxiliary methods to get the information of the features that an evaluator

computes; these auxiliary methods allow the framework to understand which and

how many features an evaluator computes, since distinct evaluators have different

amounts of features and some are also dependent on the parameters given to the

evaluator.

biosynth-analysis

<<Interface>>
ISolutionEvaluator

AbstractEvaluator

EvaluatorSolutionFBA

EvaluatorSolution
ModelYield

Evaluator
SolutionMetaInformation

EvaluatorSolutionSize EvaluatorSolutionOrganism

OptFlux

<<import>>

<<import>>

Figure 4.10: Components of the evaluator library

The AbstractEvaluator defines several elements common to all evaluators, and

more specific to the framework, such as a description and a unique identifier to

distinguish distinct evaluators.

The framework currently implements five evaluators to compute several charac-

teristics of the solutions. The EvaluatorSolutionSize is a simple evaluator that

outputs the number of reactions in the solution. The EvaluatorSolutionMeta-

Information computes the meta features of the entire solution (e.g., for a given

solution, if the reactions are 100% balanced).
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Some other more complex evaluators are described in the next sections.

4.2.5.1 Solution Feasibility Analysis

As described in the previous chapter, a solution structure does not guarantee that

it is feasible, meaning that there may not exist a feasible flux distribution in the

metabolic network that produces the target set of products despite the fact of

having all metabolite nodes satisfied. This happens because subgraph extraction

algorithms do not take account the stoichiometry of the products and substrates,

eventually leading to infeasible solutions. A common example are feedback loops.

To identify these solutions, Flux Balance Analysis (FBA) can be applied by maxi-

mizing the product flux (see chapter 2 for details), allowing to obtain the maximum

flux value considering only the isolated pathway (solution). If a zero flux is ob-

tained, then the solution is infeasible, meaning that no feasible flux distribution

exists to reach the target product.

The EvaluatorSolutionFBA computes the optimal flux vector to maximize a sin-

gle product in the solution structure by solving a linear programing problem. The

objective function is the maximization of the product, which is supplied as param-

eter. This also allows to characterize the quality of the solution, the total yield

of the product compound, the number of required substrates and the number of

byproducts. The formulation and computation of the FBA linear program are

done by the OptFlux library for metabolic simulation, which implements several

interfaces to external linear programing solvers (i.e., GNU Linear Programming

Kit, Coin-OR CLP, IBM ILOG CPLEX).

4.2.5.2 Metabolic Model Integration

The EvaluatorModelIntegration integrates the solution structures into a meta-

bolic model and computes the theoretical yield of a target product. This evaluator

requires several pre-conditions.

The model must be stored in the SBML format, which is an XML format to define

metabolic models. The OptFlux library is used to read these models, which in

turn uses the JSBML, a Java library for working with SBML files [14].
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The metabolic model of interest must contain identifiers that match our domain

entities identifiers. Otherwise, linkage of the solution to the model is not possible.

However, if the identifiers of the model do not match, it is possible to supply a

conversion map, that for each metabolite in the model assigns one in the domain.

The metabolites in the model are distributed in compartments. Since the solution

structure does not have this representation, to be integrated into the model, a

suitable compartment must be first identified. Every required substrate of the so-

lution must be present in a single compartment, because distinct compartments do

not share metabolites. A first step is to find a positive compartment match. After

a positive match is found, the metabolite identifiers in the solution (if necessary)

are striped to the corresponding species names in the model, providing a linkage

to the newly inserted reactions.

Finally, a simulation is performed using the entire model to maximize the product

of interest, by FBA. This procedure is similar to the previous evaluator, but now

using the pathway interpreted in a full model. The result is the theoretical yield

of the product in the supplied metabolic model.

4.2.5.3 Organism Fitting

The EvaluatorSolutionOrganism operates on a higher layer of the hierarchy of

the chemical universe. It intends to identify which organism covers most of the

reactions, given a solution. The EvaluatorSolutionOrganism searches for the n-

th (supplied as parameter) best fitting organism which covers most of the reactions

of a given solution.

An organism that covers more reactions can be viewed as the most suitable for

synthesis of the target compound, since it is most likely that the solution size

might decrease if the reactions are already contained in the organism metabolism.

4.2.6 Biosynth-Core

The core library connects the components of each subsystem and links each of the

subsystems that compose the pipeline for the synthesis problem. The assembled

pipeline consists of the three layers of operations that were introduced in the

architecture (Fig. 4.1).



Chapter 4 The Biosynth Framework 64

For each subsystem, a mediator class is implemented, that combines the compo-

nents of each individual subsystem. The merger of these components allows to

expose new features that require interaction and communication. The mediators

implemented are the DataControlCenter and the AnalysisControlCenter, that

correspond to the pre-processing and post-processing layers, respectively. The

processing layer is discarded for now, as there is no need for additional interop-

erability between components, although the AlgorithmExecutor could be viewed

as a mediator for the processing stage.

The DataControlCenter (DCC) is the central manager of the pre-processing stage.

It connects the data source to the metabolic domain and, subsequently, to the

metabolic representation. It performs all the operations of the pre-processing state,

which are: a) to serve as a middleware for the metabolic entities (i.e., Metabolite;

Reaction; Enzyme); b) to stage the entities obtained from the ISource; c) to define

the MetabolicDomain; d) to perform the transformation of the MetabolicDomain

to the mathematical models. The main purpose of the DCC is to organize and

transform the biological entities.

The DCC also applies a gathering engine that describes a strategy to obtain

data from the ISource interface. Two engines were implemented to fetch data

from the sources: a näive method that obtains the entire dataset and a heuris-

tic search method that gathers all connected elements from an initial target set.

The näive method (DefaultGatherer) requires a IListableSource, since it is

only possible to gather the entire dataset if all the identifiers are known. The

NodeSearchGatherer applies a discovery based strategy, that is based on a breadth-

first search, which attempts to find all elements that can be related to the initial

set of metabolites. This is most profitable since it only fetches elements related

to the synthetic problem and allows to discover the entities of basic sources (i.e.,

ISources’s that only support single fetch operations).

The AnalysisControlCenter connects the evaluators to the solution set. The

link between these is performed by the ScoreBoard component. The ScoreBoard

assembles a matrix where each row corresponds the a solution and each column

to the values/properties returned by the set of evaluators applied.

As an example, if a solution set contains 16 solution structures to be evaluated by

two evaluators EVAL1 and EVAL2, that compute 3 and 5 features respectively,



Chapter 4 The Biosynth Framework 65

the ScoreBoard will assemble a matrix of 16 rows and 8 columns, and each cell

corresponds to the result of each feature.

4.2.7 User Interface

No effort was made to implement a graphical user interface, as the main purpose

was to develop a framework that could be easily integrated and extended in any

system.

To expose each of the features to a more user friendly environment, for each of the

subsystems, a facade is implemented. A facade is a design pattern similar to the

mediator, but it does not implement any new functionally having the only purpose

to help expose and simplify the features of the entities that are wrapped into.

For each of three subsystems: an environment was developed to be used in a

shell environment: the DataEnv, the SolverEnv and the EvalEnv. Each of those

wraps the pre-processing, processing and post-processing layers, respectively. Each

contains a function that loads its own default configuration.

This allows easy usage of the features implemented in each of the three subsystems,

so that an unexperienced user can use most of the features with a minimum effort

to understand the interaction between the components.

The DataEnv supports operations to control the data source and to manage the

metabolic domains and as a parameter it requires that the user to supply a source

interface. All the operations of the DataEnv are towards the construction and the

definition of a metabolic domain, but here the interactions of each component are

all wrapped into a single function (Table 4.1).

The SolverEnv automatically sets up the algorithm based on properties defined

by an helper object AlgorithmConfiguration or by specifying an algorithm using

the enumerator AlgorithmType, that in this case applies the default parameters for

the selected algorithm. The auxiliary object AlgorithmConfiguration contains

all the parameters for the implemented algorithms (statically coded) that allow an

user to easily identify what parameters are available to setup. Additionally, the

SolverEnv requires as parameter a DataEnv to push and transform the default

metabolic domain into the representation that matches the algorithm.
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Table 4.1: A brief list of supported operations of the DataEnv

Operation (Parameters) Description
flushStagingArea Clears the staging area
gatherAll Collects the entire remote dataset
gatherFrom (String...vertices) Collects the remote dataset using the search

heuristic
createDomain (String) Creates a new domain
createSubdomain (Integer) Creates a new domain (subdomain)
showMetaInfo Shows the Meta Statistics of the domain
changeDomain (String) Changes the default domain
filterBy... Applies a filter to the default domain
(parameters vary by filter)
removeDomain (String) Removes a domain
showDomain (String) Shows the elements of the domain

The EvalEnv provides assistance to manage and run the evaluators and prepare

the results. Most of the operations are for managing the evaluators (Table 4.2), ex-

ecuting evaluators and to view the results. These must be exported to an external

CSV file.

Table 4.2: A brief list of supported operations of the EvalEnv

Operation (Parameters) Description
addSolutionSet (SolutionSet) Adds a new solution set
changeSolutionSet (String) Changes the default solution set
removesolutionSet (String) Removes a solution set
addEvaluator... Adds a new evaluator to the solution set
(parameters vary by evaluator)
clearEvaluators Removes all evaluators assigned
evaluate Execute the evaluators over the default solu-

tion set
exportCSV (Path) Export the evaluation results into CSV file

The Java programing language is not designed for scripting purposes, but there

are several runtime interpreters built on the Java Virtual Machine (JVM) mainly

to port interpreted languages such python (Jython) and ruby (Jruby) to the JVM.

These provide a shell that offers scripting opportunities for Java programs. In the

appendix B, an example usage shows how to perform the entire pipeline using the

Jruby interpreter.
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Validation of the Framework

To validate the implemented framework, a real world example was selected. The

de novo synthesis of vanillin is a common case study applied in synthetic meta-

bolic engineering. Synthetic pathways of vanillin production were extracted from

the literature, being referred as reference pathways in the remaining. These are

compared with the solution structures obtained using from the algorithms in the

implemented framework. The details and discussion of the results is subdivided

into three sections: pre-processing, processing and post-processing, which follow

the framework’s pipeline layers.

5.1 The Case Study

Natural vanilla is an important flavoring agent with a wide application range. It

is used in many fields, like the food and pharmaceutical industries. Its main cons-

tituent is vanillin (4-hydroxy-3-methoxybenzaldehyde), a plant secondary metabo-

lite found in the bean pod of the tropical Vanilla orchid. The production of vanillin

exceeds 16000 tons per year, being less than 1% percent extracted from vanilla

seeds, as the majority is obtained from synthetic processes. This is due to the cost

of vanillin obtained from seed pods, which is highly expensive exceeding 1000$ per

kilograms, while synthetic vanillin cost less than 15$ [26, 62].

A common process towards the production of synthetic vanillin is the applica-

tion of metabolic engineering, approaches by designing cell factories for vanillin

synthesis. Several organism hosts where successfully redesigned for the synthesis

67
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of the vanillin compound, including Escherichia coli [50], Pseudomonas [30, 63],

Schizosaccharomyces pombe and Saccharomyces cerevisiae [5, 26].

To obtain synthetic pathways for vanillin synthesis, several pre-requirements must

be assured:

• The existence of genome scale metabolic model of the target host;

• A rich dataset of reactions and compounds;

• In some cases, a conversion table that maps species of the model to the

dataset entities (reactions and metabolites). This is only necessary if the

identifiers of the entities in the model do not match with the dataset.

In our case study, the S. cerevisiae (commonly known as baker’s yeast) was selected

as the organism host. The genome scale metabolic model used for this problem

is the iMM904 [46]. The reference pathways for synthetic production of vanillin

are obtained from the synthesis of vanillin in fission yeast [5, 26], consisting in the

addition of 3 reactions, being denoted as σhansen [26]. The other alternative comes

from the synthesis of vanillin in E. coli, containing also 3 reactions and will be

denoted as σpharkya [50].

The datasets that are selected as metabolic domains for these studies are the

chemical universe of KEGG Ligand and MetaCyc (which is multi-organism and

manually curated) from the BioCyc database consortium.

5.2 Pre-Processing

The pre-processing components provide the tools and algorithms to aid in the

construction of the domain and the data models. The initial step is to define the

synthesis problem (recall def. 9 in chapter 3). The synthesis problem is defined

by a triple, which contains the metabolic domain, defining all the metabolites and

reactions, the set of substrates and the set of products. At this stage, the following

tasks are performed:

• Construction of the metabolic dataset from KEGG and BioCyc databases;
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• Mapping the reference pathways with the obtained datasets;

• Qualitative and quantitative analysis of the dataset contents;

• Definition of the synthesis problem.

5.2.1 The iMM904 Genome Scale Model

The synthesis problem requires a set of initial substrates, that must be supplied

by the user. As an alternative, assuming that the problem is organism related,

which is what is intended in this case study, the initial set of substrates can be

obtained from the metabolic model, by defining the set of substrates equal to the

set of metabolites present in the metabolic model. This allows, in a later phase,

to attach solutions into the model, also enabling the whole model simulation of

the obtained results.

The iMM904 GSM contains a total of 1392 species, that correspond to 700 metabo-

lites in 8 compartments. The identifiers of the species diverge from the ones used

in the datasets (i.e., KEGG and BioCyc). To map the identifiers, a table was

constructed recurring to the BiGG database [54]. To obtain the BioCyc mapping,

the corresponding KEGG cross-reference is gathered from the BioCyc databases.

A total of 551 metabolites were mapped to the corresponding KEGG Ligand iden-

tifiers and 507 to BioCyc identifiers. All the unmapped metabolites are discarded

from the substrate set.

5.2.2 Dataset Collection

The KEGG and BioCyc datasets are obtained using the source interfaces imple-

mented in the framework. Although it would be preferable that the domains were

joined together, since no data integration strategy was implemented at this stage,

each of the domains will remain separate (i.e., there is no information exchange

between the two datasets).

The KEGG domain consists of the entire KEGG Ligand database, while the Bio-

Cyc one contains only the MetaCyc entities, since this is the only database in the



Chapter 5 Validation of the Framework 70

BioCyc consortium that contains detailed information of the entities (e.g., cross-

references, multi-organism). The KEGG and BioCyc domains will be denoted as

DKEGG and DBioCyc, respectively.

For comparison purposes, the two implemented strategies to obtain datasets from

web databases were used. The first method is by querying all the records in a

database, while the other is to use a search heuristic (breadth-first search) to

query only elements related to an initial record (see section 4.2.6 for details).

The domains obtained from these strategies are denoted as DAKEGG/BioCyc and

DBKEGG/BioCyc, for each of these methods, respectively. In the later strategy, the

initial record selected to search neighbor elements will be the product compound

of the case study (C00755 for KEGG and VANILLIN for BioCyc).

As expected, the number of entities in the DB domains is far inferior to the ones in

the DA domains (Tab. 5.1). The number of reactions remains quite the same for

both datasets, however there is a huge difference between the number of metabo-

lites. This is due to the fact that a huge amount (over > 20000) metabolites in

DKEGG have no reaction associated (e.g., C00098 - Oligopeptide, C00034 - Man-

ganese, G01194 - Dextran). Obtaining the entire set of metabolites from KEGG

would be inefficient as the majority of the data is unusable.

Table 5.1: Datasets sizes for both DKEGG and DBioCyc metabolic domains
using the two mechanism implemented for data collection.

DAKEGG(DBKEGG) DABioCyc(DBBioCyc)
Metabolites 28069 (7504) 10965 (9634)
Reactions 9397 (9361) 11570 (11464)
Enzymes 6043 (4390) 0 (0)

The major advantage of using the search heuristic is the reduced total time required

to obtain the entire dataset with the useful information (related to the problem

to solve) from a remote data source. To get the entire dataset from KEGG, it

took at total of 860 minutes to obtain all the 43509 records, with an average of

1.09, 1.3 and 1.41 seconds for metabolites, reactions and enzymes, respectively.

The real time to gather all of the entities was around 45 minutes running with 20

threads. This huge gain is due to the I/O stalls related to server response and

transfer time.

Using the search heuristic greatly reduced the amount of total time to 362 minutes,

that corresponds to 20 minutes of real time equally using 20 threads. The average
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time for each record remain quite the same, with the exception for the reactions

which had a noticeable reduction to 0.81 seconds per record (which might been

related to the Internet connection and the sever response time). Nevertheless, the

majority of the gain was due to the reduced amount of compounds.

Obtaining an entire dataset from a web database shown to be time expensive,

and not all of the data may be relevant for the problem to solve. Using a search

heuristic shown worthwhile, saving time and resources.

5.2.3 The Reference Pathways

The reference pathways σhansen and σpharkya are manually mapped to KEGG and

BioCyc identifiers (Tab. 5.2). The σpharkya is successfully mapped in both datasets,

while the σhansen one contains missing reactions in the KEGG dataset. Therefore:

σpharkya, σhansen ⊆ DBioCyc

and

σpharkya * DKEGG, σhansen ⊆ DKEGG

Table 5.2: Mapping of the reactions of the reference pathways with the iden-
tifiers of DKEGG and DBioCyc. The (-) symbol refers to situations where no

mapping was identified.

ID E.C. DKEGG DBioCyc
3DSD 4.2.1.118 R01627 DHSHIKIMATE-DEHYDRO-RXN
ACAR 1.2.3.9 - RXN-8091
hsOMT 2.1.1.- - RXN-8873

1.2.1.46 R00604 FORMALDEHYDE-DEHYDROGENASE-RXN
1.14.13.82 R05274 RXN-10891
1.2.1.67 R05699 1.2.1.67-RXN

The reactions of reference pathway σpharkya and σhansen are given by the following

E.C. numbers {1.2.1.67, 1.14.13.82, 4.2.1.118} and {1.2.3.9, 2.1.1.-, 4.2.1.118},
respectively.
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5.2.4 Data Set Analysis

A qualitative analysis is applied for both datasets. This allows to identify some

properties of the reaction sets. Both KEGG and BioCyc show a high amount of

balanced reactions. However, there is a slight difference between the amount of

missing and generic reactions. A reaction is generic when its formula is not com-

plete (e.g, KEGG - C00071, Aldehyde - CHOR), and consequently these reactions

cannot be balanced. The reactions characterized as missing are those that contain

metabolites without a formula. This is highly common in BioCyc, because the

metabolites can be also proteins and RNA compounds (Fig. 2.1(b)). The rea-

ctions that are characterized as infeasible are the reactions that contain the same

metabolite as reactant and product.

4.20%

77.43%

0.96%
15.81%

1.07% 6.71%

99.04%

75.18%

24.82%

KEGG

67.52%

1.58% 0.08% 2.63%

30.41%

98.42%

BioCyc

Figure 5.1: Properties of the reactions for both KEGG and BioCyc datasets

No E.C. number analysis is given for DBioCyc, since BioCyc reactions are not char-

acterized directly with E.C. numbers. Since balanced reactions are the majority,

the unbalanced ones are discarded from the metabolic domain. This guarantees

that the stoichiometry of all generated solutions is balanced.

5.3 Processing

The implemented algorithms (SSG and FP ) were executed to generate solution

structures for both datasets. The domains applied to generate solutions are those
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obtained from the heuristic search method (DB) and filtered to only keep balanced

reactions. Because of the complexity of the algorithms, it is not possible to obtain

the complete set of solutions for the whole domains. Therefore, the partitioning

strategy is used for this problem, to generate multiple levels of subdomains for

both DKEGG and DBioCyc.

The following tasks are performed at this stage:

• Characterize and partition the domains into subdomains;

• Apply the pathway extraction algorithms to compute the solution sets on

each of the subdomains;

• Compare the proposed Minimize heuristic to the original implementation.

5.3.1 Domain Analysis

The partitioning strategy generates subdomains from an initial set of target sub-

strates. For this problem, the selected elements for the initial set contain only the

target compound. This allows to obtain nearby elements of the target by distance

radius, such that the solutions of size i are all present in the subdomain of radius

i.

Both the domains DKEGG and DBioCyc are run up to twenty subdomains. These

are defined as Di, such that 1 ≤ i ≤ 20, i ∈ N+, where i corresponds to the i-th

radius of the domain.

To test if each domain is feasible, i.e., if there is at least one feasible solution

structure, a single run of the Minimize algorithm is executed. This allows to

extract a single minimal solution. If this solution exists, the subdomain is feasible.

A better approach would be to compute the exact maximal structure (which is the

union of all solutions) of the subdomain, as this could later be used as input for

the solution generating algorithms. However, but since in the previous chapter it

was shown that obtaining the exact maximal structure is not trivial, and in many

cases only approximations are obtained, the computation of maximal solution is

left only for measurement purposes to analyze the performance of the algorithms

on real datasets.
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Figure 5.2: Number of elements of the domain (reactions) and the hypergraph
(hyperedges) model for each radius size.

The major difference between KEGG and BioCyc is the reversibility, which im-

pacts the growth speed of each subdomain and the number of edges in the graph

representations (directed hypergraph and process graph) (Fig. 5.2). In DKEGG,

all reactions are reversible. Therefore, to build a graph model representation, for

each reaction r, it is necessary to add two versions of a hyperarc, such that −→r
to corresponds to the ”normal” direction and to ←−r the opposite direction. This

implies that a graph model has twice the amount of edges (Fig. 5.2) for each rea-

ction included. Contrary to DKEGG, DBioCyc contains irreversible reactions, which

greatly reduces the size of the resulting graph model.

Both maximal structure computation algorithms are run against each subdomain

(Figure 5.2). This allows to compare the behavior of both algorithms. Later, it is

possible also to compare the exact maximal structure, that is assembled from the

solution space of the minimal solutions.

Recall from the third chapter that the MSG and FA algorithms compute an upper

and lower approximation, respectively. There is a huge gap between the two ap-

proximations, meaning that there is a high error rate from either of the algorithms.

On the other hand, in DBiocyc, there is a noticeable difference. Nevertheless, the

results show that the maximal structure obtained from MSG and FA are incon-

clusive.

The maximal structure algorithms were unable to prune the domain properly.

Therefore, the solution generating algorithms are run against the original sub-

domains of Di
KEGG and Di

Biocyc, instead of over the pruned domain (maximal
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number of edges in the domain

structure). Later, the solution structures obtained can be assembled to compare

with these maximal structures of both MSG and FA methods.

5.3.2 Pathway Extraction

For each subdomain generated, three configurations of the algorithms are tested.

This allows to compare the solution set obtained from each algorithm and the

performances of these. Each of the algorithms is limited to one hour of execution

to generate solutions. For those that were not able to obtain solutions after this

time frame, all solutions are discarded, so that no incomplete solution sets are

included in this analysis. To generate solution structures, the following algorithms

and configurations are tested:

• FP : Minimal solution structures, using the binary search heuristic proposed

in this work;

• SSG: Minimal and extended solution structures. This uses the newly im-

plemented strategy to compute partial power sets;

• SSG∆: Every solution structures. The original implementation of the SSG

algorithm;

The results are given in Figure 5.4, where only the FP and SSG results are shown,

since the SSG∆ was only able to compute solutions for the first three subdomains.
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There is a noticeable difference between the performance of the algorithms in

both datasets. The FP algorithm outperformed the improved SSG algorithm in

the KEGG subdomains. A major problem of the SSG was dealing with a fully

reversible domain. Indeed, the reaction reversibility in a network greatly increases

its connectivity. In the subdomains DiKEGG, all reactions are reversible, and this

generates many closed loops that promotes the computation of infeasible com-

binations, while also increasing the number of connections for each metabolite.

Therefore, the size of ∆(m) (defined as the number of reactions available to sat-

isfy an arbitrary metabolite m in the network) increases, also increasing the size

of the power set (i.e., the number of combinations of producers of m).
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Figure 5.4: The solution count and the average time per solutions for the SSG
and FP algorithms in both domains; Bar plot - the number of unique solution
structures (in thousands) (left axis). Line plot - time per each solution structure

in microseconds (right axis). SS - Solution Structure.

In general, the FP algorithm is more reliable than the SSG, being usually able

to generate more efficiently the solutions, while the SSG guarantees the whole

solution space of a domain (i.e., Smin since the new implementation only obtains

minimal solutions). However, in the BioCyc dataset, the FP was unable to com-

pute solutions beyond radius 8. The incapacity of the FA to detect the feedback

loops, forces the Minimize algorithm to include an extra path that connects to the

node in order to proceed.

Consider the example solutions structure σexample (Fig. 5.5), which is one of the

many solutions that were generated by FP, for the eighth radius of the BioCyc
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Figure 5.5: Solution structure σexample generated by the FP algorithm
(ms0 ,ms1 ∈ S and mt0 ∈ T ). Rectangles are substrates and products (or
byproducts). Circles represent intermediate metabolites. Each mi is a hyperarc
of the network (reactions). Solid line - main connection from S to T . Dashed
line - feedback loop dependency. Dotted line - alternative connection from S′

to mc, S
′ ⊆ S.

dataset (a total of 18623), although the names were simplified to clarify the analy-

sis (the original names can be found in the appendix A.1. Let σ′example be an-

other solution structure similar to σexample, but without the hyperarcs {ea, eb}
(the dotted hyperarcs in fig. 5.5). Then σ′example is also a solution structure and

V (σ′example) ( V (σexample) and E(σ′example) ( E(σexample), therefore by def. 15,

σexample is not a minimal solution. This compromises the role of the Minimize

algorithm in generating minimal solutions, since it is not able to guarantee that

every solution structure is minimal.

The FA algorithm in order to accept an edge ei, this requires ei be fully satisfied

by the previous accepted edge, plus the starting substrates. In this particular

example, the edge e6 is dependent of vertexes m4 and mc, while m4 is provided by

the e5 (which is previous to e6), there is no edge providing the mc vertex. This

forces the algorithm to find an alternative route to obtain mc (in this particular
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case, the solution was to add ea and eb, that are not needed in the minimal

solution).

The abnormal amount of solutions are due to the existence of redundant solutions.

The feedback loop (e6, e7) requires a alternative path from S (initial substrates) to

mc. This can be viewed as a subproblem to satisfy σexample. Every combination of

this alternative path is a new solution. Therefore, for every instance of feedback

loops, combinations of alternative solutions are generated, that eventually lead to

the massive amount of solutions.

The alternative paths are redundant, so for any path P that satisfies mc from

S in σexample, P can be discarded, as it is unnecessary. Later, the evaluator that

computes the optimal flux distribution can be used to compute the flux distribution

of these solutions, using a FBA simulation. This allows to identify the unique flux

vectors of the set of solutions.

The SSG∆, which is the original implementation of SSG algorithm, only manages

to compute only small subdomains, up to 3 and 4 for KEGG and BioCyc, respec-

tively. The domain D3
KEGG and D2

BioCyc generated 211 and 141 solution structures

for a small maximal structure of 10 and 13 reactions. Beyond these domain radius,

the amount of solutions surpasses 4 gigabyte of memory (limit allowed for the Java

virtual machine). Combining every solution is definitely not a viable choice as the

upper bound amount of these solutions exponentially grows with the number of

minimal solutions.

5.3.3 The Binary Search Heuristic

The new proposed heuristic for the Minimize algorithm is expected to have a

noticeable impact when applied to large datasets. The original implementation of

Minimize is compared against the newly proposed heuristic. It is expected that the

new implementation outperforms the original version if the domain size increases.

The properties to compare are following: the execution time to find a single min-

imal solution and the ω ratio (see chapter 3, def. 22) of the obtained solution to

the size of the number of edges of the hypergraph.

To compare the performance of both heuristics, the previous DiKEGG, i ≥ 3 sub-

domains are tested to reach a single minimal solution. A single run of Minimize



Chapter 5 Validation of the Framework 79

obtains the first solution of the domain. This is non deterministic, since the output

varies depending on the order of the edges in the set.

In most scenarios, σ0 contains only 3 reactions (Tab. 5.3) and ω is very small

(i.e., < 0.1). Also, since DiKEGG ⊆ Di+1
KEGG and S iKEGG ⊆ S i+1

KEGG, as the radius i

increases, ω gets even smaller.

Table 5.3: The size of the first solution structure (σ0) obtained from Minimize

i |σ0| ω Edges
3 3 0.023 128
4 3 0.009 336
5 8 0.001 812
6 3 0.003 2014
7 3 0.001 3532
8 8 0.001 5200
9 3 < 0.001 6462
10 3 < 0.001 7366

The σ0 in the D3
KEGG consists of the edges {e63, e102, e121}, from a total of 128

edges. This implies that 125 edges are removed to obtain σ0, in the sequential

version of Minimize. A total of 128 FA evaluations are performed to test each of

the edges, while the new heuristic manages to find {e63, e102, e121} in only 31 FA

evaluations.

As the domain size increases, the sequential version takes a longer time to compute

a single minimal solution (Fig. 5.6), while the binary search removes hyperedges

by batch sets. Without this heuristic, the FP is rendered unable to generate

solutions in large datasets.

5.4 Post processing

The post-processing is the last stage of the pipeline. Here, it is intended to pro-

vide aid to the user in identifying interesting solution structures obtained in the

previous stages. This is achieved through the framework’s evaluator system.

The following evaluation tasks are performed:

• Solution feasibility analysis and potential yield;
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Figure 5.6: Computational time per each σi in Di (i is the radius)

• Integration of the solutions with the iMM904 GSM;

• Identification of potential organism chassis for the generated solutions.

Each of these tasks is described in the following subsections.

5.4.1 Solution Feasibility Analysis

In the third chapter, it was shown that in some scenarios the generated solution

structures are infeasible, meaning that there is no possible flux distribution con-

taining a positive flux value for all target compounds, even if all demands are

satisfied. A common scenario are feedback loops that cut off the flux from a

certain part of the solution.

The framework’s EvaluatorSolutionFBA computes the optimal flux vector for a

solution. This allows to identify the number of feasible solutions for each solution

set. By computing the optimal flux distribution, it is also possible to identify

unnecessary reactions in the solution. As an example, the solution σexample (Fig.

5.5) would generate zero flux for both hyperarcs ea and eb, because distributing

flux through these arcs would only reduce the flux value of e4 and increase output

of mc. Since the objective is to maximize mt0 , decreasing e4 would be non optimal.
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The SSG, in general, was able to obtain more solutions than the FP , since the

FA algorithm excludes some reactions due to false negatives. That eventually has

consequences in the loss of solutions that contain these reactions.

All the 18623 solutions obtained in D8
BioCyc by the FP algorithm are feasible.

However, they do not have unique optimal flux distributions, as σexample can have

multiple variations that generate the same optimal flux distribution. By filtering

the solutions to only those who have unique flux distributions, the number of

solutions decreases from 18623 to 863 (Fig. 5.7). On the other hand, the SSG

main drawback is the computation of infeasible solution. By combining reactions,

it generates solutions with cycles, that also promote the computation of infeasible

solutions. Thus, unlike FP, the SSG contains a high ratio of infeasible solutions.
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Figure 5.7: The number of unique feasible flux distributions and the infea-
sible ratio of the previous solution sets. Left axis shows the number of flux

distributions. Right axis shows the ratio of unfeasible solution structures.

As a conclusion, this evaluation is strictly necessary for both algorithms, as there

were many solutions generated by the SSG method that were identified as infea-

sible, while for the FP algorithm the redundancy is a major problem.

5.4.2 Model Integration

The EvaluatorSolutionModelYield allows to integrate each individual solution

into a metabolic model and evaluate the optimal theoretical yield of a desired

compound. The solution sets obtained from domains D5
KEGG and D8

BioCyc, filtered
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by unique feasible flux vectors, are integrated into the metabolic model of S.

cerevisiae (iMM904), with the vanillin selected as the target compound.
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Figure 5.8: The unique feasible solutions of the D8
BioCyc subdomain generated

by the SSG algorithm. The solutions are sorted by increasing yield of vanillin.

The results obtained show that there is no correlation between the maximum flux

value obtained from the previous evaluator (simulating the solutions isolated from

a model) and the yield of the solution simulated when inserted into the model

(Fig. 5.8). Also, the size does not matter much as for every range of vanillin yield

there are solutions of a variety of sizes.

The best solution of the D8
BioCyc obtains 5.86 units of vanillin per 10 units of

glucose. This solution is actually equal to the reference pathway σpharkya, while

the σhansen obtains only a yield of 3.61. However, the optimal solution of D5
KEGG

does not match any of the reference pathways. This solution gives a higher yield

of 6.98 and contains only 3 reactions (R05273, R10136, R01627).

5.4.3 Organism Matching

Finally, the EvaluatorSolutionOrganism is the evaluator implemented in the

framework, that allows to identify the k organisms that cover the most part of

each generated pathway. This allows to predict which alternative host is most

fitted to accept a certain solution. The test was run with the evaluator set to rank

the 100 best organisms most fit for each solutions. Only the solution set from the
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subdomain D5
KEGG is evaluated, as the KEGG dataset is the only dataset where

the solutions contains E.C. number mapping.

The total coverage is summed up for each organism and divided by the amount

of solutions. This allows to identify the organism that is present in most of the

pathways with highest coverage ratio.

Table 5.4: Top 10 organisms with highest coverage ratio.

Organism Id Average Cover Ratio Organism Name
NONE 0.6153 No Organism Found
RHA 0.1662 Rhodococcus jostii RHA1
VPE 0.1577 Variovorax paradoxus EPS
REU 0.1557 Ralstonia eutropha JMP134
VEI 0.1552 Verminephrobacter eiseniae EF01-2
VAP 0.1510 Variovorax paradoxus S110
BUR 0.1489 Burkholderia sp. 383
SJP 0.1472 Sphingobium japonicum UT26S
POL 0.1414 Polaromonas sp. JS666
PDX 0.1378 Pseudonocardia dioxanivorans CB1190

The most present organism in all generated pathways is the ”No Organism Found”

(Tab. 5.4), which shows the high number of reactions without any organisms at-

tached. With a average coverage ratio of 61%, this shows that most reactions

are uncharacterized, which makes the information inconclusive about the organ-

ism selection. This happens because root reactions (i.e., reactions that produce

vanillin, e.g., R05273 and R05699) of the solutions for this case study do not have

any organism assigned in the KEGG database, meaning that no solution can be

fully characterized by a single organism.

As alternative would be recurring to enzyme to organism databases, such as the

BRENDA1 or ENZYME2. This could allow to obtain a better taxonomy of or-

ganisms. However, this would require a more sophisticated strategy to integrate

multiple distinct data sources, out of the scope of this work at this stage.

1http://www.brenda-enzymes.info/
2http://enzyme.expasy.org/
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Conclusions

The main goal of this thesis was to implement optimization methods to assemble

synthetic pathways, that are capable to augment existing metabolic models, aim-

ing at the production of new compound of interest, within the realm of Metabolic

Engineering. The assembling of synthetic pathways can be interpreted as a sub-

network extraction problem, where given a reactions network, the objective is to

extract a subset satisfying a set of criteria. For this purpose, topological analysis

algorithms were analysed and implemented, applying searching or combinatorial

techniques.

The combinatorial explosion of the number of solutions is the main bottleneck of

the computation of large networks. The selected case study allowed to conclude

that most problems are caused by infeasibility and redundancy, as these solutions

contribute for inefficacy in the computation of larger domains. Indeed, with the

increase in the size of the domain, the new elements naturally contribute to new

solutions, but also to the increase of the unwanted solutions.

To complement these algorithms, several tools for data processing were devel-

oped, that allow to construct datasets from data available in web-based metabolic

databases, such as the KEGG and BioCyc. These tools are crucial to solve these

problems, as most bioinformatics algorithms are highly dependent on the massive

amount of biological data available in the world wide web. Also, the developed

evaluation tools allow to support the user in the analysis of the obtained solu-

tions, since it is common that a large amount of solutions are generated in large

networks.
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All the implemented algorithms and tools are assembled into a single framework

implemented in the Java programming language. A real case of synthetic biology

was selected to test and validate the framework capabilities.

6.1 Contributions

In this work, we have shown that the previous existing algorithms (i.e., Solution

Structure Generation and FindPath) are not adequate to handle large networks,

such as the chemical universe of KEGG and BioCyc. Indeed, it is inconceivable

to extract solutions over these networks with those algorithms. The modifications

applied to both allowed to increase the size limitation of these algorithms. This

allowed to extract minimal solutions from the networks, although extracting every

minimal solution from large networks is still impossible, due to time constraints.

The strategy applied in the case study shown a viable approach to obtain portions

of solutions in an organized approach (i.e., by increasing size). This is applicable

in general on any network size.

And, finally, this work contributed with the implementation of a complete frame-

work, to support all the processes related the synthetic metabolic problem, as well

as its pre-processing and post-processing. A major advantage of this framework

is its simplicity and flexibility, allowing the easy introduction of new components.

By adding a new component, this immediately is connected to all other compo-

nents previously available, be it either a new data source, a new algorithm or a

new evaluation method. This is most suitable for solving such problems, as there

is no standard database, no perfect algorithm, nor the best evaluation strategy.

6.2 Limitations

It was shown that computing solutions for these problems is very difficult, as

there are many scenarios that trick the algorithms to induce the computation of

infeasible or redundant solutions. These errors were exposed in both datasets, but

it is difficult to show that other similar cases do not exist.

The non-invasive philosophy of the framework allows inclusion of new components

with none or at least minimal changes to the original components. This indeed
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greatly reduces the maintenance cost of these. However, there is a significant

performance cost specially in the computation step. Most of the algorithms were

implemented as a prototype for a working example, meaning their performance

was never a concern.

The methods applied in this work, for synthesis problems, do not take account into

several other properties that might be relevant. In a real situation it is not that

simple to optimize microorganisms to produce non native compounds. Several

other relevant properties such as compound toxicity is also of high importance.

6.3 Future Work

There are many topics of this thesis that can still be further enhanced. From

the algorithms perspective, it was shown that the computation of the maximal

structure was not an easy task. This is essential to prune large networks in order

to understand several properties, such as, the elements that contribute to solutions,

the feasibility of the problem and most important to reduce the size of network

by removing reactions that to not contribute to solutions. Indeed, these reactions

only increase the complexity of the algorithms.

A strategy to identify redundant and infeasible network branches or patterns would

highly increase the capability of the computation of solutions in bigger networks,

as these are the main bottlenecks of the algorithms. Another approach is to

apply distributed computing strategies on the solution generating algorithms. This

would allow to further increase the computational capability in solving larger and

more complex domains.

A key missing element in the pre-processing phase are the data integration tech-

niques, since there is no universal data set for biological chemical reactions. Al-

though the KEGG and BioCyc offer a rich dataset, the integration of information

of these and other databases would definitely allow obtaining a richer set of solu-

tions.
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Results

Table A.1: Compounds corresponding to the verteces in the Figure 5.5

Node BioCyc ID Name
m0 CPD-674 trans-cinnamate
m1 CINNAMOYL-COA (E )-cinnamoyl-CoA
m2 CPD-513 3-hydroxy-3-phenylpropionyl-CoA
m3 CPD-514 3-oxo-3-phenylpropionyl-CoA
m4 BENZOYLCOA benzoyl-CoA
m5 CPD-6443 benzylbenzoate
m6 BENZOATE benzoate
m7 CPD-290 1,2-cis-dihydroxybenzoate
m8 CATECHOL catechol
m9 3-4-DIHYDROXYBENZOATE protocatechuate
m10 VANILLATE vanillate
ma ACETYL-COA acetyl-CoA
mb BENZALDEHYDE benzaldehyde
mc BENZYL-ALCOHOL benzyl alcohol
ms0 PHE L-phenylalanine
ms1 FORMALDEHYDE formaldehyde
mt0 VANILLIN vanillin
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Example Usage

This appendix gathers the set of commands executed in a command line interface

to run a simple example. The following command sequence is performed using

the Jruby console (version 1.7.4). The tests were performed using the Windows

version of Jruby.

To load the framework, a ruby script is run, which simply imports all the required

Java libraries.

>load ’C:\biosynth_init.rb’

The next example shows how to initialize the DataEnv from a MySQL database

as local storage and KEGG as dataset:

>dataEnv = DataEnv.new ’kegg_database’, ’db_user’, ’db_pass’,

SourceDatabase::KEGG

#<Java::EduUminhoBiosynthEnv::DataEnv:0x24d1c210>

This is equivalent to setting the sources manually:

>mysqlSource = MySQLSource.new ’kegg_database’, ’db_user’, ’db_pass’

#<Java::EduUminhoBiosynthCoreDataIoLocal::MySQLSource:0x30aec067>

>keggSource = KEGGRemoteSource.new

#<Java::EduUminhoBiosynthCoreDataIoRemote::KEGGRemoteSource:0x7c84e2e1>
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>comboSource = CombineSource.new keggSource, mysqlSource

#<Java::EduUminhoBiosynthCoreDataIoLocal::CombineSource:0x58df96db>

>dataEnv = DataEnv.new comboSource

#<Java::EduUminhoBiosynthEnv::DataEnv:0x25f12d71>

The next step is to load the data:

>dataEnv.gatherAll

or by using the search heuristic (C00755 corresponds to the vanillin compound)

>dataEnv.gatherFrom ’C00755’

To build a domain simply invoke createDomain followed by a string to name it:

>dataEnv.createNewDomain ’keggDomain’

#<Java::EduUminhoBiosynthEnv::DataEnv:0x24d1c210>

>puts dataEnv.showDomain

keggDomain

----cpd filters---------

----rxn filters---------

----rpr filters---------

----statistics----------

cpd#: 28059

rxn#: 9387

nil

To restrict the domain to a certain criteria, filters can also be added:

>dataEnv.createNewDomain ’keggDomain_filtered_by_balanced_reactions’

#<Java::EduUminhoBiosynthEnv::DataEnv:0x24d1c210>

>dataEnv.filterByTag ’BALANCED’

>puts dataEnv.showDomain

keggDomain_filtered_by_balanced_reactions

----cpd filters---------
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----rxn filters---------

Includes Only Reactions: [R01634, R01635, R01636, R01630, R01631,

R01632, R ...

----rpr filters---------

----statistics----------

cpd#: 28059

rxn#: 7266

nil

All these actions are possible with any dataset. To use BioCyc simply use Source-

Database::BioCyc instead. However, the BioCyc interface requires to select an

internal database from all the available databases of the BioCyc consortium (if no

database selected the MetaCyc is assumed as default):

>dataEnvBioCyc = DataEnv.new ’biocyc_database’, ’db_user’, ’db_pass’,

SourceDatabase::BioCyc, ’YEAST’

#<Java::EduUminhoBiosynthEnv::DataEnv:0x399f5184>

The remaining operations are roughly the same. Now, moving back to the KEGG

example, to run an algorithm, first we must either specify AlgorithmType (which

set ups an algorithm with the default settings) or define the AlgorithmConfigu-

ration. In the next example, it is shown how to configure a simple execution of

the FindPath algorithm.

>findPathConfig = AlgorithmConfiguration.new AlgorithmType::FindPath

#<Java::EduUminhoBiosynthEnv::AlgorithmConfiguration:0x1ad4ba55>

>puts findPathConfig

==========CONFIG==========

RUNNER:

AlgorithmType: FindPath

TimeLimit: 600

TimeUnits: SECONDS

INPUT:

Substrates #0: []

Products #0: []

ALGORITHM FP CONFIG:



Appendix B Example Usage 91

FastMinimize: true

==========================

nil

Then, we load the host genome-scale model as input substrates and select the

target product. Also, for this example, we set the execution time limit to 5 minutes:

>findPathConfig.setInputAsModel ’C:\iMM904.xml’

#<Java::EduUminhoBiosynthEnv::AlgorithmConfiguration:0x1ad4ba55>

>findPathConfig.setTargetProduct ’C00755’

#<Java::EduUminhoBiosynthEnv::AlgorithmConfiguration:0x1ad4ba55>

>findPathConfig.setTimeLimit 5

#<Java::EduUminhoBiosynthEnv::AlgorithmConfiguration:0x1ad4ba55>

>findPathConfig.setTimeUnit TimeUnit::MINUTES

#<Java::EduUminhoBiosynthEnv::AlgorithmConfiguration:0x1ad4ba55>

>puts findPathConfig

==========CONFIG==========

RUNNER:

AlgorithmType: FindPath

TimeLimit: 5

TimeUnits: MINUTES

INPUT:

Substrates #551: [C00119, C00118, C14818, C00116, C03263, ...]

Products #1: [C00755]

ALGORITHM FP CONFIG:

FastMinimize: true

==========================

nil

To run the algorithm just pass the configuration to a SolverEnv. A DataEnv

containing a metabolic domain is also required. The SolverEnv automatically

maps the domain into the correct representation. Afterwards, just execute the

run handle and this will output a SolutionSet object which contains all solution

structures computed in the defined time frame.

>solverEnv = SolverEnv.new findPathConfig, dataEnv
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#<Java::EduUminhoBiosynthEnv::SolverEnv:0x30000e9a>

>solverEnv.run

#<Java::EduUminhoBiosynthCore::SolutionSet:0x541b0d70>

>solutions = _

>puts solutions

#ID: c699edc2-8c68-469a-b0e9-7324a9d741b6

#DESCRIPTION:

#CREATED_AT: 2013-10-31 23:02:27.78

0: {C00230=[R01298], C00001=[R01298], C00755=[R05273], C0000

4=[R05273], C00006=[R01298], C00101=[R10136], C00080=[R05273]

, C06672=[R10136], C00007=[R05273]}

1: {C00230=[R01298], C00001=[R01298, R05699], C00755=[R05699

], C00003=[R05699], C00006=[R01298], C00101=[R10136], C06672=

[R10136]}

2: {C01494=[R03366], C00852=[R04342], C00013=[R02194], ...

The object solutions contains all the solutions that the FindPath algorithm was

able to compute in the 5 minutes time frame. The next step is to evaluate these

solutions, using the evaluation system. The EvalEnv requires a solution set as

parameter. In this example, we use the previous computed set:

>evalEnv = EvalEnv.new solutions

#<Java::EduUminhoBiosynthEnv::EvalEnv:0x3e21819>

To add an evaluator, we use the addEvaluator... functions: in the next example,

we added the Flux Balance Analysis evaluator:

>evalEnv.addEvaluatorFBA ’C00755’

#<Java::EduUminhoBiosynthEnv::EvalEnv:0x3e21819>

It is also possible to add more evaluators (even if they are of the same type).

For this example we will also added the model integration evaluator that requires

explicitly the target compound, the model file and two files (one for compounds

and another for reactions) that maps identifiers between the model and the dataset:
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>evalEnv.addEvaluatorModelIntegration ’C00755’, ’C:\iMM904.xml’,

’C:\compoundMap.txt’, ’C:\reactionMap.txt’

#<Java::EduUminhoBiosynthEnv::EvalEnv:0x3e21819>

Then, the evaluate function can be used to compute the evaluation matrix:

>evalEnv.evaluate

#<Java::EduUminhoBiosynthEnv::EvalEnv:0x3e21819>

>evalEnv.exportToCSV ’C:\results.csv’

nil

The results are stored in a file (CSV format), which can be easily viewed with

any text reader or spreadsheet processor. Additionally, the solution sets can be

stored into file for future sessions. The BioSynthUtilsIO contains several helper

functions for I/O operations: the following example shows how to save and read

solution set files:

>BioSynthUtilsIO.saveSolutionSet solutions, ’C:\solutions.sls’

nil

>BioSynthUtilsIO.loadSolutionSet ’C:\solutions.sls’

#<Java::EduUminhoBiosynthCore::SolutionSet:0x602df8c7>
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A. Villaverde. Microbial factories for recombinant pharmaceuticals. Microbial

Cell Factories, 8:1–8, 2009.

[22] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantifi-

cation and obliviousness. Technical report, 2000.

[23] F. Friedler, K. Tarján, Y. W. Huang, and L. T. Fan. Graph-theoretic approach

to process synthesis: axioms and theorems. Chemical Engineering Science,

47(8):1973–1988, June 1992.

[24] F. Friedler, K. Tarjan, Y. W. Huang, and L. T. Fan. Graph-Theoretic Ap-

proach to Process Synthesis: Polynomial Algorithm for Maximal Structure

Generation. Computer chemical Engineering, 17(9):929–942, 1993.

[25] F. Friedler, J. B. Varga, and L. T. Fan. Decision-Mapping: A tool for con-

sistent and complete decisions in process synthesis. Chemical Engineering

Science, 50(11):1755–1778, 1995.

[26] E. H. Hansen, B. L. Mø ller, G. R. Kock, C. M. Bünner, C. Kristensen, O. R.

Jensen, F. T. Okkels, C. E. Olsen, M. S. Motawia, and J. r. Hansen. De

Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe)

and Baker’s Yeast (Saccharomyces cerevisiae). Applied and Environmental

Microbiology, 75(9):2765–74, May 2009.
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