
Universidade do Minho

Escola de Engenharia

Pedro Filipe Araújo Costa

Efficient Computation of the Matrix Square
Root in Heterogeneous Platforms

Setembro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Pedro Filipe Araújo Costa

Efficient Computation of the Matrix Square
Root in Heterogeneous Platforms

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor Alberto Proença
Professor Rui Ralha

Setembro de 2013

Agradecimentos

Apesar do foco de uma dissertação ser o seu conteúdo, o facto deste documento ex-
istir deve-se provavelmente mais àqueles que me rodeiam. Deixo aqui, portanto, os devi-
dos agradecimentos, em palavras que dificilmente representam a magnitude das suas con-
tribuições.

Ao meu orientador, o prof. Alberto Proença, pelo rigor e disciplina que me exigiu,
pelos desafios e pelas oportunidades. Ao meu co-orientador, o prof. Rui Ralha, pelas opor-
tunidades proporcionadas por esta dissertação e pela disponibilidade sempre que precisei. A
ambos e ao prof. João Luís Sobral, por fazerem de Computação Paralela e Distribuída a
UCE mais exigente e a mais recompensadora. Aproveito ainda para endereçar um obrigado
aos profs. Luís Paulo Santos, José Bernardo Barros, António Luís Sousa, Mário Martins e
Orlando Belo, pois se hoje escrevo isto em muito se deve ao impacto que tiveram na minha
formação.

I would like to thank the Numerical Algorithms Group for the resources made available
for this work. I would also like to emphasize a personal thank you to Edvin Deadman, for
being available even during his holidays.

Aos colegas do LabCG, a minha segunda casa durante este ano, pelo ambiente propor-
cionado, sem o qual esta dissertação nunca teria progredido, e pela disponibilidade quando
as ideias faltaram.

Ao professor, e acima de tudo meu amigo, Rui Mendes, pelas conversas e pelas oportu-
nidades a representar a academia em torneios de programação. Aos “pequenitos” do DPUM,
obrigado por quererem aprender comigo e pelas horas passadas a conversar e a explorar o
mundo da programação.

Aos meus amigos, André, Fábio, Kura e Sampaio, pelos momentos que me permitiram
esquecer o trabalho, e um pedido de desculpas pelas várias vezes em que tive de recusar
planos para poder manter-me a trabalhar.

Aos meus “irmãos de orientador”, André Pereira e Miguel Palhas, pela cumplicidade,
pelo companheirismo e pelo apoio que me deram durante estes últimos dois anos. Espero
ter conseguido retribuir.

Aos meus pais e à minha irmã, pelas intermináveis divagações que aturaram, mesmo
sem perceberem metade. Um particular obrigado à minha mãe, por todos os sacrifícios que
fez para me permitir chegar até aqui. Acrescento ainda um humilde obrigado à minha tia
Conceição, por toda a ajuda que deu à minha família ao longo destes anos, nem imaginando

iii

a magnitude dos seus gestos. Vocês são a razão pela qual escrevo isto.
Last, but certainly not the least, o meu mais profundo obrigado à Catarina, a minha

companheira ao longo destes anos de academia, pelo apoio nas horas de maior frustração,
pelo carinho quando a motivação me faltou, pela infinita paciência sempre que precisei de
desabafar, por todas as horas de que abdicou em prol do meu trabalho. Obrigado por todas
as razões para continuar a lutar.

Work developed with the support of the Numerical Algorithms Group and funded
by the Portuguese agency FCT, Fundação para a Ciência e Tecnologia, under the
program UT Austin | Portugal.

iv

Abstract

Matrix algorithms often deal with large amounts of data at a time, which impairs ef-
ficient cache memory usage. Recent collaborative work between the Numerical Algorithms
Group and the University of Minho led to a blocked approach to the matrix square root al-
gorithm with significant efficiency improvements, particularly in a multicore shared memory
environment.

Distributed memory architectures were left unexplored. In these systems data is dis-
tributed across multiple memory spaces, including those associated with specialized accel-
erator devices, such as GPUs. Systems with these devices are known as heterogeneous
platforms.

This dissertation focuses on studying the blocked matrix square root algorithm, first
in a multicore environment, and then in heterogeneous platforms. Two types of hardware
accelerators are explored: Intel Xeon Phi coprocessors and NVIDIA CUDA-enabled GPUs.

The initial implementation confirmed the advantages of the blocked method and showed
excellent scalability in a multicore environment. The same implementation was also used in
the Intel Xeon Phi, but the obtained performance results lagged behind the expected be-
haviour and the CPU-only alternative. Several optimizations techniques were applied to the
common implementation, which managed to reduce the gap between the two environments.

The implementation for CUDA-enabled devices followed a different programming model
and was not able to benefit from any of the previous solutions. It also required the imple-
mentation of BLAS and LAPACK routines, since no existing package fits the requirements of
this application. The measured performance also showed that the CPU-only implementation
is still the fastest.

v

Resumo

Computação Eficiente da Raíz Quadrada de uma Matriz

em Plataformas Heterogéneas

Algoritmos de matrizes lidam regularmente com grandes quantidades de dados ao
mesmo tempo, o que dificulta uma utilização eficiente da cache. Um trabalho recente de
colaboração entre o Numerical Algorithms Group e a Universidade do Minho levou a uma
abordagem por blocos para o algoritmo da raíz quadrada de uma matriz com melhorias de
eficiência significativas, particularmente num ambiente multicore de memória partilhada.

Arquiteturas de memória distribuída permaneceram inexploradas. Nestes sistemas
os dados são distribuídos por diversos espaços de memória, incluindo aqueles associados a
dispositivos aceleradores especializados, como GPUs. Sistemas com estes dispositivos são
conhecidos como plataformas heterogéneas.

Esta dissertação foca-se em estudar o algoritmo da raíz quadrada de uma matriz por
blocos, primeiro num ambiente multicore e depois usando plataformas heterogéneas. Dois
tipos de aceleradores são explorados: co-processadores Intel Xeon Phi e GPUs NVIDIA
habilitados para CUDA.

A implementação inicial confirmou as vantagens do método por blocos e mostrou uma
escalabilidade excelente num ambiente multicore. A mesma implementação foi ainda usada
para o Intel Xeon Phi, mas os resultados de performance obtidos ficaram aquém do compor-
tamento esperado e da alternativa usando apenas CPUs. Várias otimizações foram aplicadas
a esta implementação comum, conseguindo reduzir a diferença entre os dois ambientes.

A implementação para dispositivos CUDA seguiu um modelo de programação diferente
e não pôde beneficiar the nenhuma das soluções anteriores. Também exigiu a implementação
de rotinas BLAS e LAPACK, já que nenhum dos pacotes existentes se adequa aos requisitos
desta implementação. A performance medida também mostrou que a alternativa usando
apenas CPUs ainda é a mais rápida.

vii

Contents

Page

1 Introduction 1
1.1 Motivation and Goals . 2
1.2 Document Organization . 3

2 Technological Background 5
2.1 Heterogeneous Platforms . 6
2.2 Distributed Memory . 7
2.3 Development Tools . 8

2.3.1 PThreads, OpenMP, TBB and Cilk 9
2.3.2 OpenMPC and OpenACC . 9

3 Case Study: The Matrix Square Root 11
3.1 Strategies . 12
3.2 Methods . 12
3.3 Evaluation Methodology . 14

4 Multicore 15
4.1 Column/Row . 16
4.2 Super-diagonal . 17
4.3 Implementation . 21
4.4 Validation . 21

4.4.1 Control Matrices . 23
4.5 Results . 23
4.6 Analysis . 24

5 Intel MIC 27
5.1 Architecture . 27
5.2 Programming model . 28
5.3 Native execution . 30

5.3.1 Results . 31
5.4 Optimization Techniques . 32

5.4.1 Massive Parallelism . 33

ix

Contents

5.4.2 Loop Unrolling . 33
5.4.3 Armadillo . 34
5.4.4 Unit Stride Blocks . 38
5.4.5 Overwrite . 39

5.5 Results . 40
5.6 Further Optimizations . 42

6 CUDA 45
6.1 Programming Model . 45
6.2 Architecture . 46

6.2.1 NVIDIA Kepler Architecture . 48
6.3 Implementation . 48
6.4 Single-block BLAS and LAPACK . 51
6.5 Results . 52
6.6 Further Optimizations . 53

6.6.1 Page-Locked Host Memory . 54
6.6.2 Streams . 55

7 Conclusions 57
7.1 Future Work . 59

x

List of Figures

Page

2.1 Example of a computing node architecture 6

3.1 Element/block dependencies and strategies for computing the matrix square
root . 13

4.1 Execution times for point-row . 25
4.2 Execution times for point-diagonal . 25
4.3 Execution times for block-diagonal . 25
4.4 Speedups achieved with blocking for diagonal strategy 25
4.5 Execution time sensitivity for both point-diagonal and block-diagonal 25
4.6 Accumulated speedup (blocking and parallelism) achieved with diagonal strategy 26
4.7 Accumulated speedup (blocking and parallelism) achieved with diagonal strat-

egy (power of 2 sizes) . 26

5.1 Intel MIC Architecture core diagram. 27
5.2 Knights Corner Microarchitecture . 28
5.3 Execution times for point-diagonal in the Intel Xeon Phi 32
5.4 Execution times for block-diagonal in the Intel Xeon Phi 32
5.5 Accumulated speedup from block-diagonal in the Intel Xeon Phi versus point-

diagonal in the CPU . 32
5.6 Execution times for USB in the Intel Xeon Phi coprocessor 41
5.7 Execution times for OW in the Intel Xeon Phi coprocessor 41
5.8 Execution times for USB and OW in the Intel Xeon Phi coprocessor 41
5.9 Best execution times for the optimizations 42
5.10 Speedups for the optimizations in MIC versus in CPU 42
5.11 Example of balanced thread affinity policy in (Intel OpenMP) 43

6.1 Overview of the GeForce GTX 680 Kepler Architecture 46
6.2 CUDA core diagram . 46
6.3 Streaming Multiprocessor diagram for the GF100 architecture 47
6.4 Overview of the Kepler GK110 architecture 49
6.6 Execution times for the CUDA implementation in a Tesla K20m 54

xi

List of Algorithms

Page

1 Matrix Square Root (column, point) . 17
2 Matrix Square Root (column, block) . 18
3 Matrix Square Root (diagonal, point) . 19
4 Matrix Square Root (diagonal, block) . 20

5 Matrix Square Root Unrolled (diagonal, point) 34
6 Matrix Square Root – main diagonal (point) 34
7 Matrix Square Root – first super-diagonal (point) 35
8 Matrix Square Root – other super-diagonals (point) 35
9 Matrix Square Root Unrolled (diagonal, block) 35
10 Matrix Square Root – main diagonal (block) 36
11 Matrix Square Root – first super-diagonal (block) 36
12 Matrix Square Root – other super-diagonals (block) 37

13 Bartels-Stewart . 52

xiii

Glossary

AMD Advanced Micro Devices

AVX Advanced Vector eXtensions

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

CUDA formerly Compute Unified Device Architecture, a parallel computing platform for
NVIDIA GPU

DMA Direct Memory Access

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processor

EMU Extended Math Unit

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GDDR Graphics Double Data Rate

GPC Graphics Processing Cluster

GPU Graphics Processing Unit

GPGPU General Purpose GPU

HetPlat Heterogeneous Platform

HPC High Performance Computing

icpc Intel C++ Compiler

ILP Instruction-Level Parallelism

ISA Instruction Set Architecture

xv

LIST OF ALGORITHMS

LAPACK Linear Algebra PACKage

MAGMA Matrix Algebra on GPU and multicore Architectures

MKL Math Kernel Library

MIC Many Integrated Core

MPI Message Passing Interface

MPP Massive Parallel Processing

NAG Numerical Algorithm Group

NUMA Non-Uniform Memory Access

PCI Peripheral Component Interconnect

PCIe PCI Express

pthreads POSIX Threads

RLP Request-Level Parallelism

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SIMT Single Instruction, Multiple Threads

SM Streaming Multiprocessor

SMP Symmetric Multiprocessing

SMX Kepler Streaming Multiprocessor. A redesign of the original SM.

SSE Streaming Single Instruction Multiple Data (SIMD) Extensions

TBB Threading Building Blocks

TLP Thread-Level Parallelism

UMA Uniform Memory Access

USB Unit Stride Blocks

VPU Vector Processing Unit

xvi

1 Introduction

For more than half a century, computational systems have evolved at an increasing
rate, fueled by a similar demand in computing power. The invention of the digital transistor,
in 1947, smaller and faster than its predecessor, made computers smaller and more power
efficient. Integrated circuits further reduced the space and power requirements of computers,
which in turn led to the emergence of the microprocessor. The evolution of the microprocessor
in the following decades followed had two main contributors: the number of transistors and
their clock frequency.

A processor’s clock frequency is strongly correlated to the rate at which it can issue
instructions, which means that a higher frequency is roughly translated into more instructions
being processed each second. This meant that the same old applications got faster just with
the evolution of the underlying hardware, without any programming effort. On the other
hand, increasing the number of transistors in a chip allowed to create complex systems that
optimized software execution, mainly with the exploration of Instruction-Level Parallelism
(ILP) and the use of memory caches to hide the increasing memory latency times.

In 1965, Gordon Moore, in an attempt to predict the evolution of integrated circuits
during the following decade, projected that the number of transistors would double every
year [1]. In 1975, adding more recent data, he slowed the future rate of increase in complexity
to what is still today known as Moore’s Law: the number of transistors in a chip doubles
every two years [2, 3].

In 2003, the evolution of the microprocessor reached a milestone. Until then, the
increase in clock frequency in microprocessors had followed closely the number of transistors,
but the power density in processors was approaching the physical limitations of silicon-based
microelectronics with air cooling techniques. Continuing to increase the frequency would
require new and prohibitively expensive cooling solutions. With Moore’s Law still in effect,
and the lack of more ILP to explore efficiently, the key Central Processing Unit (CPU) chip
designers turned in a new direction, replacing old single heavy core CPUs with multiple
simpler cores working in parallel and sharing common resources.

The advent of multicore architectures also shifted the software development trends,
since sequential code is no longer able to efficiently use these multiple computing resources,
available in modern systems. It also boosted the popularity of special purpose devices, like
Graphics Processing Units (GPUs) and Digital Signal Processors (DSPs). Besides having
particular features that might be suited for certain problems, using these devices to perform

1

1 Introduction

part of the computation allows the CPU to be focused on other tasks, or to be focused
in only a part of the domain, thus increasing efficiency. This can be further extended
by interconnecting several computational nodes, each with one or more CPUs and some
specialized devices, able to cooperate over a fast network interface. Such systems are called
Heterogeneous Platforms (HetPlats).

The Numerical Algorithm Group (NAG) [4] delivers a highly reliable commercial nu-
merical library containing several specialized multicore functions for matrix operations.
While the NAG library includes implementations of several algorithms for CUDA-enabled
GPUs and the Intel Xeon Phi coprocessor in heterogeneous platforms, it has yet no matrix
square root function optimized for these devices [5, 6].

Matrix Algebra on GPU and multicore Architectures (MAGMA) is a project that aims
to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid
architectures, starting with current CPU+GPU systems. At the moment, MAGMA already
includes implementations for many of the most important algorithms in Matrix Algebra but
not for the computation of the square root [7]. This feature is also not implemented in any
of the major GPU accelerated libraries listed by NVIDIA [8, 9, 10, 11, 12].

In a previous work, Deadman et al. [13] expanded the method devised by Björck and
Hammarling [14] to compute the square root of a matrix, implementing an equivalent blocked
method in a multicore environment. While blocked approaches are able to make a more
efficient use of the memory hierarchy, they are also very well suited for devices designed for
vector processing, such as Graphics Processing Units (GPUs) and devices based on Intel
Many Integrated Core (MIC) architecture.

1.1 Motivation and Goals

Being the square root of a matrix a common operation to compute in problems from
several fields (e.g., Markov models of finance, the solution to differential equations, compu-
tation of the polar decomposition and the matrix sign function) [15], creating an optimized
implementation would make possible for more complex problems to be studied [16].

Previous work on this algorithm mainly addressed its implementation in a CPU shared
memory environment; heterogeneous distributed memory environments are still unexplored.
Also, other linear algebra projects oriented at GPUs lack implementations for this algorithm.
The resources made available in the recent hardware accelerators hold great potential to
improve performance.

This dissertation aims to extend the implementation of the matrix square root algo-
rithm to heterogeneous platforms in order to achieve a higher degree of efficiency. It is
particularly interesting to study the performance of this algorithm using massively parallel
hardware accelerators.

Throughout this dissertation, three implementations of the core process behind the

2

1.2 Document Organization

matrix square root algorithm are proposed and studied. The first, targeted for a multicore
environment provides a first approach to the algorithm, the typical naive implementation.
It also allows to port the implementations described in previous work to a more familiar
open source environment. The second implementation is meant to use the new Intel Xeon
Phi coprocessor, testing the device that recently led the Tianhe-2 supercomputer to the first
position in the TOP500 ranking1. The third implementation is targeted for CUDA-enabled
GPUs.

Each implementation is quantitatively evaluated. The multicore implementation pro-
vides a scalability test to help in the analysis the algorithm behaviour, while the other
two provide an overview of the computation impact of the algorithm when executed in an
hardware accelerator with disjoint memory addressing.

1.2 Document Organization

Chapters 2 and 3 provide the background information required to conveniently contex-
tualize the reader. In particular, Chapter 2 provides an overview on the evolution of High
Performance Computing (HPC), the hardware characteristics of heterogeneous platforms
and the challenges faced by programmers in this area. It also covers some tools to aid with
such issues.

The following chapters focus on the three mentioned implementations. Chapter 4
describes the multicore implementations and further contextualizes the reader with the case
study. It also presents the scalability test results and the consequent analysis. Chapter 5
focuses on the implementation targeted for the Intel MIC architecture, the results obtained
and optimizations for a better tuning. In a similar fashion, Chapter 6 does the same for the
CUDA implementation.

Chapter 7 presents the conclusions of this dissertation and suggestions for future work,
including further optimization opportunities and identified unexplored approaches.

1http://www.top500.org/lists/2013/06/

3

http://www.top500.org/lists/2013/06/

2 Technological Background

Parallelism is far from being a modern concept, much less in the field of HPC. Back
in the 1970s, the raw performance of vector computers marked the beginning of modern
Supercomputers [17]. These systems, able to process multiple items of data at the same
time, prevailed in supercomputer design until the beginning of the 1990s, by which time the
Massive Parallel Processing (MPP) architectures became the most popular. MPP systems
had two or more identical processors connected to separate memory and controlled by sepa-
rate (but identical) operating systems. Middle and low-end systems consisted in Symmetric
Multiprocessing (SMP) architectures, containing two or more identical processors connected
to a single shared main memory and controlled by a single operating system. In the fol-
lowing years cluster systems became the dominating design. In cluster computing multiple
separate computers, each having a SMP architecture, are able to cooperate appearing as a
single system to the user. This trend has continued up to the present [18, 19].

Hennessy and Patterson [20] define two classes of parallelism:

Data-Level Parallelism consists in many data items being computed at the same time;

Task-Level Parallelism refers to different tasks of work able to operate independently and
largely in parallel.

The hardware can exploit these two kinds of parallelism at four different levels. Processors
take advantage of ILP without any intervention from the programmer through mechanisms
like superscalarity, out-of-order execution, pipelining and speculative execution. Vector pro-
cessing on the other hand, uses a single instruction to operate over a collection of data in
parallel, similar to what happened with vector computers but at a smaller scale. Thread-
Level Parallelism (TLP) enables both data and task level parallelism by allowing more than
one thread of instructions to be executed at the same time. Threads can also be used to hide
memory latencies, by allowing another thread to use the physical resources while the mem-
ory request is not fulfilled. Lastly, Request-Level Parallelism (RLP), used in warehouse-scale
computing, exploits parallelism among largely decoupled tasks specified by the programmer
or the operating system.

For decades programmers did not have to worry with exploring parallelism in their
applications but the multicore advent is forcing a deep change in software development.
Legacy software, intrinsically sequential, is no longer able to profit from the evolution of
computational hardware as new generations of microprocessors work at roughly the same

5

2 Technological Background

clock frequency (sometimes even less), instead providing extra resources these applications
are not prepared to take advantage of. This implies a re-design of old applications, otherwise
they will plateau at or near current levels of performance, facing the risk of stagnation and
loss of competitiveness, both for themselves and any projects that might depend on these
legacy applications [21].

2.1 Heterogeneous Platforms

As the evolution of microprocessors moves towards higher levels of parallelism, several
other options exist, from using multiple machines in a cluster, allowing each to perform part
of the computation independently, to specific-purpose devices such as DSPs and GPUs.

Figure 2.1: Example of a computing
node architecture.

A given system is said to be heterogeneous when
it contains multiple devices of different kinds. Usu-
ally, each of these devices is capable of computing
several operations in parallel. The most efficient com-
puting systems of the world in the TOP500 list1 are
composed of several interconnected computing nodes,
each with multiple multicore CPUs and one or more
specialized hardware accelerators. GPUs and Intel
Xeon Phi coprocessors are currently the most popu-
lar.

Popularity of these new specialized devices in
HPC, some created and developed in completely sep-
arate environments, has been increasing in the last
years, triggered by the trend to use the number of
cores in computing hardware. GPUs evolution, for
example, where execution throughput is more impor-
tant than execution latency, led to massively parallel
architectures, able to process hundreds of pixels at the same time. Devices based on the
Intel MIC architecture, on the other hand, are placed between GPUs and CPUs, having the
characteristics for massive parallelism while still being able to handle more complex opera-
tions (such as running an operating system). Both kinds of devices are explained in more
depth in Chapters 5 and 6 where they are explored in the context of this document’s case
study.

DSPs are another class of accelerators recently made popular for HPC due to new
architectures able to perform floating-point computations. Their architecture is very similar
to that of a conventional processor, both programming and memory-wise [22]. Alternatively,
Field Programmable Gate Arrays (FPGAs) mix a set of configurable logic blocks, digital

1http://www.top500.org

6

http://www.top500.org

2.2 Distributed Memory

signal processor blocks and traditional CPU cores (optional), all using a configurable inter-
connect. The key characteristic of these devices is the ability to configure them for a specific
type of computation making them extremely versatile [23]. These devices are described here
for completeness, not being the scope of this document to explore the case study using them.

Most computing accelerators suffer from the same limitations as conventional proces-
sor architectures regarding memory latency (explained in Section 2.2), despite the many
strategies each one implements to hide or overcome the problem. Also, since the connection
between the CPU and an accelerator is typically performed over a PCI Express (PCIe) in-
terface, using the same memory banks would be a major bottleneck. For this reason, most
devices have their own built-in memory hierarchy, which is managed in a space distinct of
the CPUs.

2.2 Distributed Memory

CPUs and memories evolution followed very distinct paths. While the former focused
on speed, the latter focused on capacity. Throughout the decades, this created and ag-
gravated a performance gap between the processor and the memory, with memory accesses
taking much longer than instruction execution (around 100 times more). In CPUs, this lim-
itation was overcome with the creation of a memory hierarchy, with the large main memory
in the bottom, and multiple levels of cache memory, each smaller, faster and closer to the
computing cores.

In a typical SMP system, all the processors share the same interface to connect to the
main memory. These architectures are classified as Uniform Memory Access (UMA), given
that all processors are seen as equal by the system and therefore all memory requests have
the same latency. Such designs scale poorly with the number of processors, as one processor
has to wait until all previous requests from other processors are fulfilled in order to access
the main memory. Added to the gap between processor and memory speeds, this further
aggravates the memory bottleneck.

Non-Uniform Memory Access (NUMA) architectures arise in response to the interface
bottleneck. By moving the memory controller to the CPU chip itself allows for each processor
to have its own memory banks, thus parallelizing memory accesses. Yet, this causes memory
accesses to take longer when the memory requested lies in another processor’s memory, as
the request has to go through the connection between the two processors. This increases
the importance of controlling thread affinity, similar to what happens with memory cache.
Some processors even implement NUMA inside the chip. The Magny-Cours architecture
from AMD, for example, consists of two Istambul dies in the same package, each being a
NUMA node with two memory channels [24].

In a single multiprocessor computational node, where multiple memories exist each
directly connected to one CPU, a single unified address space exists for all the main memory.

7

2 Technological Background

This is called a shared memory system, where all the data lies in a single unified address
space and every processor has access to all the memory implicitly. In other words, even if
a given processor is not directly connected to the memory containing the required data, it
can still address that data directly.

Implementing a shared-memory NUMA architectures introduces the complexity of
maintaining the cache of multiple processors coherent. This is required in order for the
multiple processors to be able to use the same data. When one processor changes a shared
data item, the coherency mechanism notifies the remaining processors that the copy in their
private cache is outdated and the item must be reloaded from main memory. Maintaining
coherency guarantees the correction of the program, but it hampers the scalability of NUMA
architectures.

A distributed memory system arises in HetPlats, where each computational node has
its own main memory address space. A single computational node may also implement a
distributed memory architecture if it contains any hardware accelerator with its own built-
in memory (with its own address space). These systems communicate through message
passing, having to explicitly transfer all the required data between the multiple address
spaces. Between distinct computational nodes, communication is usually done over a network
connection using an Message Passing Interface (MPI) library. In the case of accelerators, the
solutions to implement communication depend on the tools used for development targeted
for such devices. Communication becomes a possible bottleneck with distributed memory.
As such, extra effort is required to the distribute the workload efficiently among the available
resources in order to achieve the best computation to communication ratio.

2.3 Development Tools

Most developers use conventional sequential programming models, as this is the most
natural way to plan the resolution of a given problem, one step at a time. For single-core
systems, this worked perfectly, with the only parallelism in applications being extracted by
the compiler and the processor at the instruction level. The transition to the multicore era
brought together a new programming paradigm, which must be understood in order to fully
take advantage of the most modern computing resources available.

Making the transition to parallel programming is not trivial. The ability to concur-
rently run several execution threads exposes the programmer to new problems: data races,
workload balancing, deadlocks, etc. Debugging parallel applications is also harder and it
requires smarter approaches, better than simply tracing the code (anything with more than
four threads will be very hard to keep track of). The problem becomes even more complex
when trying to increase efficiency with HetPlats. Often, a developer must be aware of the
underlying architectural details in order to deploy an efficient implementation.

Several tools have been presented to aid developers in taking advantage of the resources

8

2.3 Development Tools

available in multicore shared memory environments and HetPlats, namely to distribute data
and workloads among all available computing resources and to manage efficient data transfers
across private memory spaces. Despite none being explored in the scope of this dissertation,
many frameworks have also been developed to abstract the programmer from architectural
details and the complexities of adapting code to run in a new platform (like a hardware
accelerator).

2.3.1 PThreads, OpenMP, TBB and Cilk

POSIX Threads (pthreads) names the standard C language threads programming in-
terface for UNIX systems. This standard was introduced with the goal of making parallel
programming in shared-memory systems portable when hardware vendors implemented their
own proprietary versions of threads [25]. This API provides the tools for managing threads,
mutual exclusion, condition variables, read/write locks and per-thread context.

OpenMP [26, 27] was formulated under a need similar to the purpose of pthreads: to
abstract the different ways operating systems imposed for programming with threads. At
the time (1997), UNIX used pthreads, Sun used Solaris threads, Windows used its own API
and Linux used Linux threads [28].

OpenMP is a standard API, in C/C++ and Fortran, for parallel programming in a
multi-platform shared memory application running on all architectures. The API itself is less
verbose than pthreads and is very simple and easy to use (often through compiler directives).
It abstracts an inexperience programmer from all the complexity of managing threads, but
without lacking the required tools for advanced users to perform fine tuning. It is also
portable and scalable. OpenMP only addresses homogeneous systems with conventional
CPUs and automatically schedules efficient workloads among all available resources.

Intel Threading Building Blocks (TBB) is a C++ template library created by Intel
with a similar purpose to OpenMP. While it is a lot more verbose, and lacks support for
other languages, TBB provides algorithms, highly concurrent containers, locks and atomic
operations, a task scheduler and a scalable memory allocator [29]. It is harder to program
than OpenMP, but Intel claims it achieves equivalent or better performance.

2.3.2 OpenMPC and OpenACC

OpenMPC [30] is an extension of the OpenMP specification to provide translation from
regular OpenMP compiler directives to CUDA code. Parallel zone directives delimit the
blocks of code candidate for CUDA kernels. Only loop and section directives are considered
true parallel sections, which are translated to perform workload distribution among the
available threads. Synchronization directives cause the kernels to be split, as this is the only
way to force global synchronization among all threads. Directives specifying data properties
are interpreted to find the best GPU memory space for the required data.

9

2 Technological Background

OpenACC [31] is a standard API, in the same languages as OpenMP, meant to bring
the advantages of OpenMP to programming with hardware accelerators. While originally
designed only for GPUs, support has been extended for the Intel Xeon Phi coprocessor. It
abstracts the programmer from the memory management, kernel creation and the accelerator
management. It also allows to execute both on the device and the host at the same time.

Comparing, OpenMPC only provides support only for CUDA-enabled devices, while
OpenACC supports NVIDIA and AMD GPUs alike and Intel MIC devices.

10

3 Case Study: The Matrix Square
Root

A = X2 (3.1)

The square root of a matrix A is any matrix X that satisfies Equation (3.1). When it
exists it is not unique, but when A does not have any real negative eigenvalue it has a unique
square root whose eigenvalues all lie in the open right half plane (i.e. have non-negative real
parts) [15]. This is the so-called principal square root A1/2 and since it is the one usually
needed in applications, it is the one the algorithm and associated implementations in this
document are focused in computing.

The Schur method of Björck and Hammarling [14] is the most numerically stable
method for computing the square root of a matrix. It starts by reducing the matrix A

to upper triangular form T . By computing U , the square root of T , also upper triangular,
the same recurrence relation allows to compute X, thus solving Equation (3.1). The ma-
trix U is computed by solving Equations (3.2) and (3.3). This method is implemented in
MATLAB as the sqrtm and sqrtm_real functions [32].

U2
ii = Tii , (3.2)

UiiUij + UijUjj = Tij −
j−1∑

k=i+1

UikUkj , (3.3)

Deadman et al. [13] devised equivalent blocked methods for this algorithm. Blocking
is a typical optimization technique for problems with a very large data set, which improves
cache efficiency both in CPUs and hardware accelerators [33, 34, 35]. It preserves and
reuses the data in the fastest (but smallest) levels of the memory hierarchy by limiting the
computation to a subset of the domain at a time. This improves the application ability
to take advantage of locality, both temporal and spatial, thus effectively reducing memory
bandwidth pressure.

Given that only multicore environments were explored, the scope of this dissertation
focuses on implementing the block method using the available resources in modern hetero-

11

3 Case Study

geneous platforms.

3.1 Strategies

Equations (3.2) and (3.3) describe an algorithm where each element depends on those
at its left in the same row and those below in the same column (Parlett’s recurrence [36]).
Consequently, the algorithm can be implemented either a column/row or a superdiagonal at
a time.

While the first strategy (column/row) is preferred for any serial implementation due to
a more efficient use of cache memory (better locality), it presents almost1 no opportunities
for parallelism since no more than one element is ready to be computed at any given time.

On the other hand, computing a super-diagonal at a time allows for several elements
to be computed in parallel since all the dependencies were already computed in previous
super-diagonals.

3.2 Methods

In the previous work of Deadman et al. [13], the authors devised a blocked algorithm
to compute the square root of a matrix. Similar to the original, the blocked algorithm lets
Uij and Tij in Equations (3.2) and (3.3) refer to square blocks of dimension m� n (n being
the dimension of the full matrix).

The blocks Uii (in the main diagonal) are computed using the non-blocked implemen-
tation described previously. The remaining blocks are computed by solving the Sylvester
equation (3.3). The dependencies can be solved with matrix multiplications and sums.
Where available, these operations can be performed using the LAPACK TRSYL and Level 3
BLAS GEMM calls, respectively.

Two blocked methods were devised: a standard blocking method, where the matrix is
divided once in a set of well defined blocks; and a recursive blocking method, where blocks
are recursively divided into smaller blocks, until a threshold is reached. This allows for larger
calls to GEMM, and the Sylvester equation can be solved using a recursive algorithm [37].

While the recursive method achieved better results in the serial implementations, when
using explicit parallelism the multiple synchronization points at each level of the recursion
decreased the performance, favouring the standard blocking method. Given the devices
targeted by this document’s work, where explicit parallelism is required to take full advantage
of the architecture, the recursive method is ignored.

Using the same terminology, the non-blocked and standard blocked methods will be
referred to hereafter as the point and block method, respectively.

1It is possible for this strategy to solve its dependencies in parallel. The following chapters will show this with more detail.

12

3.2 Methods

(a) Dependencies.

(b) Column strategy.

(c) Row strategy.

(d) Diagonal strategy.

Figure 3.1: Element/block dependencies and strategies for computing the matrix square root:
green is solved, red has unsolved dependencies, yellow is ready to be computed next.

13

3 Case Study

3.3 Evaluation Methodology

All the tests in this dissertation followed the same methodology: the best 3 measure-
ments were considered, where the difference between the best and the worst could not exceed
5%, with a minimum of 10 runs and a maximum of 20. Time measurements were confined
to the implementation of the algorithm, disregarding initialization and cleanup steps (such
as I/O operations, allocating and freeing memory or interpreting program options). Double
precision was used at all times, to emulate the needs of applications with minimal tolerance
to precision loss.

Matrices of three different dimensions were used in performance tests (2000, 4000 and
8000). The smallest is meant to fit in the last-level cache of modern CPUs, but being large
enough to be relevant when using blocks. The remaining dimensions force the program to use
Dynamic Random-Access Memory (DRAM) in all the systems used for performance tests.

The best block dimension in the block method implementations was determined ex-
perimentally for each case.

14

4 Multicore

Most HPC programming nowadays can be resumed to one of two languages: Fortran
and C/C++. While the latter is preferred by the majority of programmers, the former is
the preference of many mathematicians and physicists to implement their algorithms and
simulations.

The reason behind the success of Fortran lies in its evolution. Fortran (FORmula
TRANslator) was the first language to abstract the underlying machine, which provided a
way for scientists to program their numerical procedures, something that previously required
knowledge of binary instructions, or the assembly language [38].

Since its first release, Fortran has been updated several times, each new “version” a
language in its own right, while still striving to maintain compatibility with earlier versions.
This fact allows for legacy code to keep its compatibility with new projects and provides
programmers familiarized with Fortran with better tools, but at the same time it hampers
the learning process, as a programmer who learns Fortran 90 will most likely have some
trouble interpreting Fortran IV.

Such does not happen with C and C++, as both languages have been vastly enhanced
since their first releases but the syntax itself remained very similar. Yet, these do not seem
to be so attractive for scientists. Other alternatives are currently being used by the scientific
and academic world, such as MATLAB and the free-software equivalent GNU Octave, which
provide an even friendlier language and environment targeted for math and still focusing on
performance.

Some features in Fortran are particularly useful for linear algebra algorithms, such as
the array slicing notation. These features have long been incorporated in MATLAB and GNU
Octave. As for C++, while the language does not support these features, this behaviour
can be emulated using the Armadillo library. Intel Cilk Plus also provides an array notation
eespecially targeted for identifying data parallelism.

The Armadillo library is a C++ linear algebra library with an API deliberately similar
to MATLAB. Its complex template system (meta-programming) is targeted for speed and
ease of use. In particular, it uses complex meta-programming mechanisms available in C++
to minimize memory usage. It also works as an abstract interface, allowing to use a high
performance replacement for BLAS and LAPACK such as Intel MKL, AMD ACML or
OpenBLAS. The interface is mostly agnostic during compilation and only during linkage
does it require the replacement package to be available.

15

4 Multicore

The original implementation developed in [13] was coded in Fortran 90 and it is under
the licensing restrictions of the NAG Fortran library. In order to port the implementation to
an open source environment, C++ is preferred due to familiarity with the language. Also,
it has similar potential for HPC, it is more flexible and using the Armadillo library provides
the same features for easier and faster development.

4.1 Column/Row

The implementation of the matrix square root algorithm was based on a MATLAB
implementation of the algorithm for real upper triangular matrices from [13] and, as such,
holds the same assumptions:

1. The input matrix is already in triangular form, being a perfect upper triangular real
matrix;

2. The principal square root of the input matrix exists.

In other words, this implementation does not support complex arithmetic, neither does it
support quasi-triangular matrices. It also does not compute the eigenvalues of the input
matrix in order to check if the principal square root exists. These assumptions allow to
focus the efforts towards implementing the core of the process using the available resources
in heterogeneous systems, instead of implementing and validating multiple full featured
solutions.

This reference implementation uses the column strategy, i.e., computes the square root
matrix one column at a time. Algorithm 1 shows the algorithm for this strategy: columns
are swept from left to right and (in each column) rows are traversed from the main diagonal
up. The main diagonal element has no dependencies, so it is immediately computed. All
the other elements depend on those on its left and below. Solving the dependencies for a
given element Uij outside the main diagonal consists in multiplying the sub-row in i, from
the main diagonal to the column j − 1, with the sub-column in j, from the row i+ 1 down
to the main diagonal.

A block implementation of this algorithm consists in expanding the indices i and j to
ranges. Given the assumptions for these implementations, the blocks can be thought of as a
regular grid of squares where only the blocks in the last row and column may have smaller
dimensions (if the block size is not a multiple of the matrix dimension). In fact, due to the
upper triangular form of the matrix, only the blocks in the last column may be smaller (the
last row is mostly zeros) and all the blocks in the main diagonal are squared.

Algorithm 2 shows the blocked algorithm using the column strategy. It seems quite
more complex than the point method but it is mostly due to the expansion of indices to
ranges. As such most of the algorithm can be directly associated with the previous method,
with some small exceptions:

16

4.2 Super-diagonal

Algorithm 1: Matrix Square Root (column, point)
input : A real upper triangular matrix T
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 fill U with zeros
3 for j ← 0 to n− 1 do
4 Ujj ←

√
Tjj

5 for i← j − 1 to 0 do
6 s← 0
7 if j − 1 > i+ 1 then
8 k ←range(i+ 1, j − 1)
9 s← Uik × Ukj

10 end if
11 Uij ← Tij−s

Uii+Ujj

12 end for
13 end for

• Two variables x and y are added to store the blocks coordinates, and are used to reach
the dependency blocks;

• Dependencies can no longer be solved with a vector-vector multiplication (instead, the
sums and multiplications are done explicitly);

• The scalar arithmetic is replaced with linear algebra functions; in particular, computing
the resulting block after solving the dependencies implies solving a Sylvester equation.

A row strategy is very similar to the column alternative. It consists mainly in swapping
the two outer loops, so that the algorithm sweeps the matrix rows, from the bottom upward,
and traverses each row from the main diagonal to the element in the last column. These
two strategies are equivalent and fit the two methods for storing multidimensional arrays
in linear memory: the column strategy takes advantage of a column-major order used in
Fortran, MATLAB and GNU Octave; the row strategy has better locality in a row-major
order, typically used in C, C++ and Python.

While the row-major order is typically used in C++, the Armadillo library uses column-
major order by default to improve its compatibility with the standard Fortran interfaces used
in BLAS and LAPACK packages. Some libraries, such as CUBLAS, do not even provide a
way to configure this behaviour [10]. For convenience, all the implementations described in
this document assume column-major order.

4.2 Super-diagonal

Given the dependencies of each element, using the column/row strategy does not allow
to for more than one element to be computed at a time. On the other hand, since the

17

4 Multicore

Algorithm 2: Matrix Square Root (column, block)
input : A real upper triangular matrix T
input : The dimension of a full block b
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 fill U with zeros
3 x← 0
4 j0 ← 0
5 while j0 < n do
6 j1 ←min(j0 + b, n)−1
7 j ←range(j0, j1)
8 Ujj ←sqrtm(Tjj)
9 G = Ujj

10 y ← x
11 i0 ← j0
12 while i0 > 0 do
13 y ← y − 1
14 i1 ← i0
15 i0 ← i0 − b
16 i←range(i0, i1)
17 F ← Uii

18 C ← Tii
19 for z ← y + 1 to x− 1 do
20 k0 ← z · b
21 k1 ← (z + 1) · b− 1
22 k ←range(k0, k1)
23 C ← C − Uik × Ukj

24 end for
25 Uij ←sylvester(F ,G,C)
26 end while

27 x← x+ 1
28 j0 ← j0 + b

29 end while

18

4.2 Super-diagonal

Algorithm 3: Matrix Square Root (diagonal, point)
input : A real upper triangular matrix T
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 fill U with zeros
3 for d← 0 to n− 1 do
4 for e← 0 to n− d− 1 do
5 if d = 0 then
6 Uee ←

√
Tee

7 else
8 i← e
9 j ← e+ d

10 s← 0
11 if j − 1 > i+ 1 then
12 k ←range(i+ 1,j − 1)
13 s← Uik × Ukj

14 end if
15 Uij ← Tij−s

Uii+Ujj

16 end if
17 end for
18 end for

dependencies of each element lie in those below and at its left, all the elements in the same
diagonal can be computed in parallel.

Extending the column/row algorithm to a strategy that sweeps diagonals, starting with
the main diagonal and going up towards the top-right corner of the matrix, is not trivial
but becomes simple when indexing each of the diagonals and their elements. Algorithm 3
shows the algorithm for computing the square root of a matrix using the point method
and the (super-)diagonal strategy. The diagonals are numbered from 0 (main diagonal)
to n − 1 (the last diagonal, containing only the top-right corner element). Inside each
diagonal, the elements are indexed in top-down order, starting at zero. Notice that this
simple index system fits the needs of the algorithm perfectly, allowing to compute easily
how many elements each diagonal has. The core of the algorithm, specifically the operations
performed in each element, remains the same as with the column/row strategy.

The extension to the block method is shown in Algorithm 4. In this algorithm, besides
expanding i and j into ranges, d and e index a whole diagonal of blocks and a whole block,
respectively. The expansion of indices to ranges is similar to what happens in the column/row
strategy, with the exception that there is no need for the block coordinates x and y. These
are replaced with the diagonal and element indices, which in turn slightly simplifies the
procedure of solving the dependencies.

19

4 Multicore

Algorithm 4: Matrix Square Root (diagonal, block)
input : A real upper triangular matrix T
input : The dimension of a full block b
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 #blocks← dn/be
3 fill U with zeros
4 for d← 0 to #blocks− 1 do
5 for e← 0 to #blocks− d− 1 do
6 i0 ← e · b
7 i1 ←min((e+ 1) · b, n)−1
8 i←range(i0, i1)
9 if d = 0 then

10 Uii ←sqrtm(Tii)
11 else
12 j0 ← (e+ d) · b
13 j1 ←min((e+ d+ 1) · b, n)−1
14 j ←range(j0, j1)
15 F ← Uii

16 G← Ujj

17 C ← Tij
18 for z ← 1 to d− 1 do
19 k0 ← (e+ z) · b
20 k1 ← (e+ z + 1) · b− 1
21 k ←range(k0, k1)
22 C ← C − Uik × Ukj

23 end for
24 Uij ←sylvester(F ,G,C)
25 end if
26 end for
27 end for

20

4.3 Implementation

4.3 Implementation

Implementing the algorithms described in this chapter using C++ relied on heavy use
of the Armadillo library. The MATLAB-like syntax made available by this library allowed
for straightforward translation from the point method algorithms to the working code. See
Listing 1 for a working example (stripped of header inclusion and namespace specification).

As for the block methods, the implementation requires a little more explanation. span
is the type used by Armadillo to represent ranges. Giving a range as a coordinate when
accessing elements of the matrix actually retrieves a sub-matrix, which can then be used as
a matrix on its own. The BLAS routine GEMM is interfaced using the standard multiplication
operator (*) between two matrices. Lastly, the Sylvester equation is interfaced by the syl()
function in Armadillo. After compilation, the library requires linkage to a BLAS and a
LAPACK library.

The parallelization of the diagonal strategy implementations was done using OpenMP.
Once again, the index system simplifies the process, allowing to parallelize the algorithm
using only the parallel for directive.

4.4 Validation

Higham [39] describes the extension of the method devised by Björck and Hammarling,
which requires complex arithmetic, to compute the real square root of a real matrix in real
arithmetic. In his work, the author analyses the real Schur method, and concludes that it is
stable, provided αF (X) is sufficiently small, where

αF (X) =
‖X‖2F
‖A‖2F

.

The two blocked methods presented by Deadman et al. [13] for performing the same compu-
tation were both concluded to satisfy the same backward error bounds as the point algorithm.

Validating an implementation is based on measuring the relative error. Yet, the varia-
tion of this value is tied to the stability of the algorithm, which in turn was proved to be tied
to the matrices used as input. The matrices used to validate and profile these implementa-
tions were randomly generated, and first attempts of validation showed great variations in
the relative error as the dimension increased. To make it even more confusing, MATLAB
uses its own implementation of BLAS and LAPACK, which translated in different relative
errors for the same operations between the implementations described in this chapter and
the reference. For these reasons, the relative error control was reduced to checking its order
of magnitude.

21

4 Multicore

1 typedef unsigned long ulong;
2

3 template<typename T>
4 void sqrtm (const Mat<T>& t, Mat<T>& u) {
5 const ulong n = t.n_rows;
6 u = zeros<Mat<T> >(n,n);
7 for (ulong d = 0; d < n; ++d) {
8 const ulong m = n - d;
9 #pragma omp parallel for

10 for (ulong e = 0; e < m; ++e) {
11 if (d == 0)
12 u(e,e) = std::sqrt(t(e,e));
13 else {
14 // find the index
15 const ulong i = e;
16 const ulong j = e + d;
17 // solve dependencies
18 const ulong z[2] = { i + 1, j - 1 };
19 T s = T(0);
20 if (z[1] > z[0]) {
21 const span k(z[0], z[1]);
22 const Mat<T> tmp = r(i,k) * r(k,j);
23 s = tmp(0,0);
24 }
25 r(i,j) = (t(i,j) - s) / (r(i,i) + r(j,j));
26 }
27 }
28 }
29 }

Listing 1: C code for the matrix square root algorithm, using the point method and the diagonal
strategy.

22

4.5 Results

4.4.1 Control Matrices

Randomly generated matrices may not have a principal square root. To ensure the
existence of such a matrix, after one being generated it is multiplied by itself and the resulting
matrix is the one used to test the implementations. Yet, this process already introduces some
rounding errors through the matrix multiplication operation, which worsens the difficulties
in properly comparing relative errors.

To ease the validation of new implementations, control matrices are generated instead
of random ones. These matrices are composed by integer numbers, consecutive along the
columns. See for example the left hand side of Equation (4.1). The square of such a matrix
is a very well defined integer matrix, and as such it is reasonable to expect that any working
implementation would be able to revert the process with minimal loss of precision. The
consecutive elements of these matrices make them very easy to confirm visually, which aids
in confirming progress during the development process. It allows to confirm correction of
very large matrices by checking specific elements since the expected first element in a given
column can be easily calculated through the sequence of triangular numbers.

1 2 4 7 11

0 3 5 8 12

0 0 6 9 13

0 0 0 10 14

0 0 0 0 15

2

U

=

1 8 38 129 350

0 9 45 149 393

0 0 36 144 399

0 0 0 100 350

0 0 0 0 225

T

(4.1)

4.5 Results

Performance measurements are required to verify and quantify the improvements from
using the block method over the point one and to properly compare the algorithms for the
two presented strategies. This section presents the results obtained for these algorithms with
tests running in a single node of the 701 group in the SeARCH1 cluster. In addition to what
was described in Section 3.3, the methodology for these tests also included power-of-two
equivalent dimensions (2048, 4096 and 8192). A block dimension of 64 was experimentally
found to be the most efficient.

Nodes in this group run Linux CentOS 6.2 with two 8-core Intel Xeon E5-2650 proces-
sors and 64GB of shared DRAM (NUMA). Each of its processors runs at a clock frequency of
2.00 GHz and has hardware support for 16 simultaneous threads with Intel Hyper-Threading.
Further information regarding the hardware in these nodes is shown in Table 4.1.

1http://search.di.uminho.pt

23

http://search.di.uminho.pt

4 Multicore

Tests were built using Intel Composer XE 2011 (compiled with Intel C++ Compiler
(icpc) 12.0.2 and linked with Intel Math Kernel Library (MKL), for optimized BLAS and
LAPACK) and Armadillo C++ Linear Algebra library (version 3.800.2).

Clock frequency 2.00 GHz
Cores 8
SIMD width 256-bit (AVX)
Memory size 64 GB
Peak DP FLOPs 128 GigaFLOP/s
Peak Memory Bandwidth 51.2 GB/s

Table 4.1: Hardware details for SeARCH group 701 nodes (further information available in [40,
41]).

Preliminary tests showed identical results for the column and the row strategy. Con-
sequently, results will are shown only for one of these strategies. As expected, they do not
scale at all, unlike the diagonal strategy that reaches its maximum performance when using
all the hardware supported threads (Figures 4.1 and 4.2).

The block method also scales well (Figure 4.3), with the maximum speedup versus the
point-row implementation being reached when using 32 threads (the 16 cores with Hyper-
Threading). Using power-of-two matrices it is possible to see that not only is the block
method faster than the point alternative, it is also less sensitive to small variations in the
matrix size (Figure 4.5).

Blocking already shows significant speedup on its own, when compared to the point
method using the same number of threads (Figure 4.4). Nonetheless, Figure 4.6 shows
the scalability of the block method compared with single-threaded point-diagonal achieves
impressive speedup values (over 128 using 16 or 32 threads). These values are even higher
for particular matrix sizes (Figure 4.7).

4.6 Analysis

The results presented in this chapter confirm those described in [13]. The explicit
parallelism made available by the diagonal strategy easily overcomes the lack of locality
when compared with the colum/row strategy, and both methods scale very well, reaching
the peak performance when all the available resources are used.

Using blocks is also clearly more efficient than the point method, although there is less
speedup from blocking as the number of threads is increased. Still, the accumulated speedup
shows a clear “bathtub” curve, with the peak performance being reached when using all the
hardware supported threads in the CPU.

The sensitivity of the point method is especially strange. There is a particular case,
with the matrix dimension of n = 2048, where the execution time is the double of n = 2047

24

4.6 Analysis

Figure 4.1: Execution times for point-row. Figure 4.2: Execution times for point-
diagonal.

Figure 4.3: Execution times for block-
diagonal.

Figure 4.4: Speedups achieved with blocking
for diagonal strategy.

Figure 4.5: Execution time sensitivity for both point-diagonal and block-diagonal.

25

4 Multicore

Figure 4.6: Accumulated speedup (blocking
and parallelism) achieved with di-
agonal strategy.

Figure 4.7: Accumulated speedup (blocking
and parallelism) achieved with di-
agonal strategy (power of 2 sizes).

or n = 2049. Such strange behaviour does not happen with the block method, which implies
that something happens at cache level with this particular size. In fact, research shows similar
cases where the authors call this effect “cache resonance”2 [42]. Basically, what happens is
that this particular size causes the access stride to reach only a small group of cache lines.
This rapidly saturates the cache ways available, causing capacity misses.

The scalability of the algorithm shown in these results increase the expectations of
using the massive parallelism made available by the hardware accelerators studied in this
dissertation.

2http://stackoverflow.com/a/10364901/664321

26

http://stackoverflow.com/a/10364901/664321

5 Intel MIC

The MIC architecture [43] is Intel’s response to the increased demand for General
Purpose GPUs (GPGPUs) as massively parallel hardware accelerators. The conceptual
design of these coprocessors is distinct from GPGPUs and it follows Intel’s trend to increase
the number of cores in its products. Initially these devices were targeted for memory bound
problems, unlike GPUs, but Intel has also launched a different version of the chip especially
tuned for compute bound problems.

5.1 Architecture

Figure 5.1: Intel MIC Ar-
chitecture core
diagram..

The Intel Xeon Phi Coprocessor contains up to 61 fully
functional in-order Intel MIC Architecture cores running at
1GHz (up to 1.3GHz), each containing 64KB of L1 cache
(evenly split for data and instructions) and 512KB of L2 cache.

The device can support 8 memory controllers with two
GDDR5 channels each. These support a total of 5.5 GT/s, cor-
responding to a theoretical aggregate bandwidth of 352 GB/s.
So far, the maximum memory size available is 16GB1.

A high performance on-die bidirectional ring connects the
L2 caches, the memory controllers and the PCIe interface logic.
The connected L2 caches allow for requests to be fulfilled from
other cores’ L2 caches faster than it would be from memory,
thus implementing a last-level cache with over 30MB. Cache
coherency is preserved across the entire coprocessor through a
distributed tag directory using a reversible one-to-one hashing
function.

Intel MIC Architecture is based on the x86 Instruction Set Architecture (ISA), extended
with 64-bit addressing and 512-bit wide SIMD vector instructions and registers. Yet, it does
not support other SIMD ISAs (MMX, Intel Streaming SIMD Extensions (SSE) and Intel
Advanced Vector eXtensions (AVX)).

Each coprocessor core supports up to 4 hardware threads and can execute 2 instructions
per clock cycle, one on the U-pipe and one on the V-pipe (not all instructions can be executed
1Intel Xeon Phi Coprocessor 7120X [44]

27

5 Intel MIC

Figure 5.2: Knights Corner Microarchitecture.

in the latter). Each hardware thread has a “ready-to-run” buffer comprising two instruction
bundles, each bundle representing two instructions that can be executed simultaneously.

The Vector Processing Unit (VPU) contains 32 vector registers, each 512-bit wide.
It includes the Extended Math Unit (EMU) and is able to execute up to 16 integer or
single-precision floating-point operations per cycle (half for double-precision). Additionally,
each operation can be a floating-point multiply-add, thus doubling the number of operations
in each cycle. Fully utilizing the VPU is critical to achieve high performance with the
coprocessor.

5.2 Programming model

Intel MIC devices [43] have a Micro Operating System, a Linux*-based operating sys-
tem, as opposed to what happens with most accelerator devices. This enables the coprocessor
to work as a separate remote network node, independent of the host system.

These devices are able to operate in three different modes:

Native The application is run solely on the coprocessor, as if it was a remote network node;

Offload The host system offloads work to the coprocessor, as is usually done when using
hardware accelerators;

Message Passing Using MPI, the coprocessor is treated as another peer in the network.

The native mode is the only one that allows all the cores to be used, since it is not
necessary for the OS to manage the system, something that requires one of the cores to
be exclusive in other modes. Running an application natively in the coprocessor requires

28

5.2 Programming model

building specifically for its architecture, which in icpc is done by providing the -mmic flag to
both in the compiling and linking stages.

Native applications also require libraries specifically built for the Intel MIC archi-
tecture. While the Intel libraries are made available by default in the Intel Composer XE
Suites, third-party libraries like Boost have to be especially built for this architecture. These
libraries are then required in the linking phase of the building process and while running
the application. This implies that they must be copied to the device together with the
application.

Offload mode treats the device as a typical hardware accelerator, similar to what hap-
pens with a GPU, using compiler directives (pragma offload in C/C++) to control the
application behaviour. Code for both the host and the coprocessor are compiled in the host
environment. During the execution of the first offloaded code, the runtime system loads the
executable and the libraries linked with the code into the coprocessor, and these remain on
the device memory until the host program terminates (thus maintaining state across offload
instances).

The offload code regions may not run on the coprocessor, depending on whether any
device is present and it has any resources available. In these cases the offload code regions
are executed on the host.

As happens with other hardware accelerators, offloading work to the device requires
moving data between the host and the coprocessor. Using the offload directive this is ex-
plicitly done as directive clauses. An in clause defines the data that must be transferred
from the host to the device before executing the offload region, while out transfers the data
from the device to the host at the end of the offloaded code. Additionally, inout merges the
functionality of both clauses, avoiding duplication. Using this memory copy model the data
must be scalar or bitwise copyable structs/classes, i.e., arrays or structs/classes containing
pointers are not supported. Exceptionally, variables used within the offload construct but
declared outside its scope are automatically synchronized before and after execution in the
coprocessor.

Alternatively, data can be implicitly transferred to the device using two new Intel Cilk
Plus keywords: _Cilk_shared and _Cilk_offload. The former is used to declare a variable
“shared” between the host and the coprocessor. This data is synchronized at the beginning
and end of offload functions marked with the _Cilk_offload keyword. This implicit memory
copy model surpasses the limitations of the explicit model in the offload directive, allowing
for complex, pointer-based data structures.

Working in message passing mode is possible through three MPI programming models.
The most common model, symmetric, creates MPI processes on both the host and the
coprocessor, which are able to communicate over the PCIe bus. Coprocessor-only places all
the MPI ranks on the coprocessor, similar to what happens with the native execution mode
(the only difference lies in using MPI). Lastly, the host-only model confines all processes

29

5 Intel MIC

to the host, where the coprocessor can be used through offload pragmas. Symmetric and
host-only models allow for hybrid OpenMP/MPI programming, offering more control over
the parallelism.

Shared memory parallel programming in the coprocessor is possible using pthreads,
OpenMP, Intel TBB and Intel Cilk. By default, for intra-node communication MPI also
uses a shared memory network fabric.

Intel MKL has been extended to offer special support for the Intel Xeon Phi coprocessor
since version 11.0. Some of its functions are especially optimized for the wider 512-bit SIMD
instructions, and future releases will provide a wider range of functions.

The coprocessor makes available three distinct usage models for MKL: automatic
offload, compiler assisted offload and native. Automatic offload requires no change in the
source code, with the exception of enabling MKL in the coprocessor (may also be done
in the environment). The runtime may automatically transfer data to the Xeon Phi and
perform computations there. By default, the library decides when to offload and also tries
to determine the optimal work division between the host and the devices (MKL supports
multiple coprocessors), but this can be manually set in the source code or in the environment.

Native and compiler assisted offload usage happen when MKL is used in native ex-
ecution and inside an offloaded code region, respectively. In comparison with automatic
offload, compiler assisted offload has the advantage of allowing for data persistence on the
coprocessor.

5.3 Native execution

The native execution mode provides several advantages over its alternatives. To start,
it makes one extra core available. Given that the coprocessor’s cores architecture is based
on the x86 ISA, it also considerably reduces the development time, as a CPU functional
implementation requires only to be rebuilt targeting the MIC architecture in order for the
device to be able to run it natively. It also skips the communication necessary in an offload-
based implementation, which is a potential bottleneck for many applications. For these
reasons, this mode was selected for the first attempt to use the Intel Xeon Phi coprocessor.

According to Intel [45], to measure the readiness of an application for highly parallel
execution, one should examine how the application scales, uses vectors and uses memory.
Examining the scalability of the algorithm is performed by charting the performance of the
implementation as the number of threads increases, something that was previously done in
Section 4.5 with encouraging results.

Examining the vectorization consists in turning it on and off to check the differences,
yet math routines such as those provided by Intel MKL remain vectorized no matter how the
application is compiled. Since this includes the BLAS and LAPACK routines that provide
the heavy-lifting in the algorithm, vectorization is assumed to be as good as it can get.

30

5.3 Native execution

Memory is left unexamined, as it requires using hardware events. Memory can be a
major issue, especially considering that the increased parallelism of these devices only makes
sense using the explicit parallelism of the diagonal strategy, which presents no unit stride
whatsoever (with the exception of half of the dependencies for each element). Yet, the series
of Intel Xeon Phi coprocessor used for this dissertation was designed to be ideal for memory
bound workloads [46].

As previously stated, no change was required to the code developed in the previous
chapter, the only change being in the build process (the -mmic flag). However, the previous
build system was not prepared for the Intel Xeon Phi coprocessor, since it implied cross-
compilation, and had to be adapted.

5.3.1 Results

Although the Intel Xeon Phi coprocessor is able to run the same code as a regular Intel
Xeon processor, the question remains whether it is able to achieve similar or higher efficiency
without extra effort. This section shows the results obtained with performance tests using
the diagonal strategy in the coprocessor, following the methodology described in Section 3.3
with a block dimension of 32.

Measurements for this section were performed using a single computational node of the
711 group in the SeARCH cluster, containing two Intel Xeon E5-2670 CPUs sharing 64GB
DRAM (NUMA) and an Intel Xeon Phi Coprocessor 5110P (see Table 5.1 for the hardware
details). These nodes run Linux CentOS 6.4 and provide Intel Composer XE 2013. Tests
were built with icpc 13.1.2, MKL, and Armadillo (3.900.7).

Figures 5.3 and 5.4 show the obtained execution times using the diagonal strategy for
both methods as described in Chapter 4. The scalability of the algorithm is near perfect
for both, with the execution time being cut almost by half until the number of threads
matches the number of cores in the device. After that, the speedup slows down, with the
point method reaching its peak performance when using 4 hardware threads per core (full
Hyper-Threading) and the block method plateauing at 2 hardware threads per core. The

CPU MIC
Clock frequency 2.60 GHz 1.053 GHz
Cores 8 60
SIMD width 256-bit (AVX) 512-bit
Memory type — GDDR5
Memory size 64 GB 8 GB
Memory speed — 5.0 GT/s
Peak DP FLOPs 166.4 GigaFLOP/s 1.01 TeraFLOP/s
Peak Memory Bandwidth 51.2 GB/s 320 GB/s

Table 5.1: Hardware details for SeARCH node 711-1 (further information available in [41, 47, 48]).

31

5 Intel MIC

Figure 5.3: Execution times for point-diagonal
in the Intel Xeon Phi.

Figure 5.4: Execution times for block-diagonal
in the Intel Xeon Phi.

Figure 5.5: Accumulated speedup from block-diagonal in the Intel
Xeon Phi versus point-diagonal in the CPU.

block method performance only leaves this plateau when 8 or more threads per core are
used. Although the accumulated speedup of executing the block-diagonal in the Intel Xeon
Phi is still significant when compared to single-threaded point method in the CPU, it does
not even reach half of the accumulated speedup achieved in the CPU (Figure 5.5). In fact,
when comparing the accumulated speedups in both platforms, the best value obtained in the
Intel Xeon Phi is about three times slower than the best value obtained in the CPU.

5.4 Optimization Techniques

The results presented in Section 5.3.1 are surprising, given the success of those obtained
with the multicore implementation in Chapter 4 and the resources available in the Intel
Xeon Phi coprocessor. The discrepancy is so large that a decision was made at this point to
improve the performance of this implementation before exploring any other execution modes
or programming models.

Documents from Intel state that the best way to prepare for Intel Xeon Phi coprocessors
is to fully exploit the performance that an application can get on Intel Xeon processors first.
Trying to use the coprocessor without maximizing the use of parallelism on the processor

32

5.4 Optimization Techniques

will almost certainly be a disappointment [45]. As such, the optimizations presented in this
section are focused on a deeper analysis of the implemented algorithm and profiling the
application running on a multicore environment, as doing so allows to use the tools made
available in Intel Parallel Studio XE 2013.

5.4.1 Massive Parallelism

Many-core devices like the Intel Xeon Phi coprocessor make hundreds of parallel com-
puting resources available to applications. When the degree of parallelism in such applica-
tions is too low, some of these resources remain idle during execution, hampering efficiency.
This is a corollary from Amdahl’s Law [49], which explains that the maximum theoretical
speedup an application might achieve in a given architecture is limited by the amount of
time a sequential processor would spend in the parallel part of the code in comparison to
the sequential part.

The degree of parallelism explored so far in the matrix square root algorithm is quite
limiting. For any matrix of dimension n, there will be at most n elements to be computed
in parallel, which happens only once. After the main diagonal, every other diagonal has one
less element to compute, until the last diagonal containing only one element. Consequently,
the last diagonals are unable to take advantage of a high quantity of parallel resources.

Yet, this can be compensated when solving dependencies. Analysing Equation (3.3)
shows a sum of multiplications that translates into a dot product between the elements at
the left and below the one being computed (excluding the main diagonal). A dot product is
a highly parallel operation implemented in Level 1 BLAS, and the number of dependencies
increases as the algorithm progresses. For the last diagonal’s only element, this operation
can perform n− 2 multiplications in parallel and sum all the products with a reduction.

For the point method, introducing parallelism when solving the dependencies requires
a nested parallel for OpenMP directive with a reduction clause. As for the block method,
this extension is not trivial as most OpenMP libraries do not allow reductions to be performed
using non-scalar types such as Armadillo matrices. This can be circumvented by separating
the directives: inside the parallel zone, each thread initializes a private matrix with the size
of a full-block; a parallel loop then iterates over the dependencies, each thread subtracting a
block from its copy; after the loop, an OpenMP lock allows each thread to add the computed
block to the final result without creating a race condition.

This technique does not solve the application bottlenecks, but it allows for a better
usage of resources in massively parallel devices (useful for both Intel Xeon Phi and GPUs).

5.4.2 Loop Unrolling

Revisiting Chapter 3 and Algorithms 3 and 4, in particular the description of the
algorithm dependencies, a deeper analysis leads to the conclusion that it is logical to unroll

33

5 Intel MIC

the diagonal loop. In both algorithms, the first and second diagonals act differently from the
rest. The first diagonal has no dependencies and, as such, recursively applies the square root
on the focused element/block (standard sqrt in the point method, which in turn is used by
the block method).

On the other hand, the elements/blocks in the second diagonal depend only of those
in the main diagonal. As such, there are no dependencies to solve, as the main diagonal
elements/blocks are used directly to compute the final result.

The following diagonals perform additional work, having to compute how the ele-
ments/blocks on the left and below affect the input value, where this affected value is the
one used to compute the final result.

Algorithm 5: Matrix Square Root (diagonal, point)
input : A real upper triangular matrix T
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 fill U with zeros
3 sqrtm_d0(T , U)
4 sqrtm_d1(T , U)
5 for d← 2 to n− 1 do
6 sqrtm_dn(d, T , U)
7 end for

Algorithm 5 shows the unrolled algorithm for the point method, using three distinct
functions, one for each case. sqrtm_d0 handles the main diagonal (d = 0), sqrtm_d1 handles
the first super-diagonal (d = 1) and sqrtm_dn handles all the other diagonals, (d is provided
as an argument in the function call). These functions are described in Algorithms 6 to 8,
respectively. Algorithms 10 to 12 show the corresponding algorithms for the block method,
following the same index expansion logic described in Chapter 4.

Algorithm 6: Matrix Square Root – main diagonal (point)
input : A real upper triangular matrix T
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 for e← 0 to n− 1 do
3 Uee ←

√
Tee

4 end for

5.4.3 Armadillo

The information gathered by the Basic Hotspot analysis available in Intel VTune Am-
plifier XE 2013 allows to identify the most time-consuming source code regions in an applica-
tion. Results of this analysis run against the code implemented so far are shown in Table 5.2,

34

5.4 Optimization Techniques

Algorithm 7: Matrix Square Root – first super-diagonal (point)
input : A real upper triangular matrix T
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 for e← 0 to n− 2 do
3 i← e
4 j ← e+ 1

5 Uij ← Tij

Uii+Ujj

6 end for

Algorithm 8: Matrix Square Root – other super-diagonals (point)
input : The diagonal index d
input : A real upper triangular matrix T
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 for e← 0 to n− d− 1 do
3 i← e
4 j ← e+ d
5 r ← sub-row in i from i+ 1 to j − 1
6 c← sub-column in j from i+ 1 to j − 1
7 s← r × c
8 Uij ← Tij−s

Uii+Ujj

9 end for

Algorithm 9: Matrix Square Root (diagonal, block)
input : A real upper triangular matrix T
input : The dimension of a full block b
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 #blocks← dn/be
3 fill U with zeros
4 sqrtm_d0(T , #blocks, b, U)
5 sqrtm_d1(T , #blocks− 1, b, U)
6 for d← 2 to #blocks− 1 do
7 sqrtm_dn(d, T , #blocks− d, b, U)
8 end for

35

5 Intel MIC

Algorithm 10: Matrix Square Root – main diagonal (block)
input : A real upper triangular matrix T
input : The number of blocks in this diagonal #blocks
input : The dimension of a full block b
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 for e← 0 to #blocks− 1 do
3 i0 ← e · b
4 i1 ←min((e+ 1) · b, n)−1
5 i←range(i0, i1)
6 Uii ←sqrtm(Tii)
7 end for

Algorithm 11: Matrix Square Root – first super-diagonal (block)
input : A real upper triangular matrix T
input : The number of blocks in this diagonal #blocks
input : The dimension of a full block b
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 #blocks← dn/be
3 for e← 0 to #blocks− 1 do
4 i0 ← e · b
5 i1 ←min((e+ 1) · b, n)−1
6 i←range(i0, i1)
7 j0 ← (e+ 1) · b
8 j1 ←min((e+ 2) · b, n)−1
9 j ←range(j0, j1)

10 Uij ←sylvester(Uii, Ujj, Tij)
11 end for

36

5.4 Optimization Techniques

Algorithm 12: Matrix Square Root – other super-diagonals (block)
input : A real upper triangular matrix T
input : The number of blocks in this diagonal #blocks
input : The dimension of a full block b
output: A real upper triangular matrix U , where U2 ≈ T

1 n← dimension of T
2 #blocks← dn/be
3 for e← 0 to #blocks− 1 do
4 i0 ← e · b
5 i1 ←min((e+ 1) · b, n)−1
6 i←range(i0, i1)
7 if d = 0 then
8 Uii ←sqrtm(Tii)
9 else

10 j0 ← (e+ d) · b
11 j1 ←min((e+ d+ 1) · b, n)−1
12 j ←range(j0, j1)
13 F ← Uii

14 G← Ujj

15 C ← Tij
16 for z ← 1 to d− 1 do
17 k0 ← (e+ z) · b
18 k1 ← (e+ z + 1) · b− 1
19 k ←range(k0, k1)
20 C ← C − Uik × Ukj

21 end for
22 Uij ←sylvester(Uii, Ujj, C)
23 end if
24 end for

37

5 Intel MIC

with the two most time-consuming code regions happening in MKL. Consequently, these
are ignored as the optimized library is left in charge of these operations. After BLAS and
LAPACK, the most time-consuming function belongs to Armadillo, and is meant for copying
the blocks to be used as independent matrices.

Function Time Spent (s)
dgemm 43.311
dtrsyl 23.398
arrayops::copy_big 15.555
[OpenMP Worker] 6.303
dgees 5.811

Table 5.2: Basic Hotspot analysis results (in development environment).

Armadillo tries to minimize matrix allocations and copies whenever possible. For
example, chaining matrix addition operations uses a complex system of template “glues”
that solve these additions without performing additional memory allocations. It also cares
to use BLAS operations without allocating a matrix to store the result whenever possible.
Nevertheless, it is unable to perform optimizations like these when blocks are isolated because
these have to be treated as standalone matrices from then on. Also, Armadillo lacks an
interface for the LAPACK function TRSYL which does not the result matrix is not allocated.
Consequently, it is necessary to remove Armadillo from the implementation, replacing it
with standard arrays and manual calls to BLAS and LAPACK.

For simplicity, implementation is bound to the Intel MKL BLAS interface. In the
functions arguments (Algorithms 5 to 12), Armadillo matrices are replaced with standard
memory pointers (and the matrix dimension). In the point method, s ← r × c is replaced
with a call to Level 1 BLAS DOT, which does not require the c and r arrays to be isolated
by using increments of 1 and n, respectively.

For the block method, C ← C − Uik × Ukj is replaced with a call to Level 3 BLAS
GEMM, and Uij ← sylvester (Uii, Ujj, C) is replaced with a call to LAPACK TRSYL. Both
these calls overwrite one of the operands, effectively removing any need for allocations and
copy operations.

Note that Armadillo is removed from the computation but it is still used for I/O
operations (loading the matrix from a file and result output).

5.4.4 Unit Stride Blocks

After removing Armadillo, it becomes clear how BLAS and LAPACK calls access sub-
matrices using the leading dimensions of the whole matrix. This simple approach is, however,
error prone and better locality can be achieved if it is not required to jump n elements from
one block column to the next.

38

5.4 Optimization Techniques

The matrices can be reorganized so each independent block is contiguous in memory,
effectively making it an independent matrix. See Equation (5.1) for example. A is a regular
column-major matrix, with the elements in the same column contiguous in memory, and each
column also contiguous in memory. When trying to access the sub-matrix A11, corresponding
to the first two rows and columns, three elements of the first column must be skipped. In
matrices where the dimension is large enough this translates into one memory access per
block column. Converting A to Unit Stride Blocks (USB) format generates B where this
does not happen because each block is now a column-major matrix, with all the blocks in
the same column contiguous in memory, and the same being true for all columns of blocks.

1 2 4 7 11

0 3 5 8 12

0 0 6 9 13

0 0 0 10 14

0 0 0 0 15

 ⇒

1 2 4 7 11

0 3 5 8 12

0 0 6 9 13

0 0 0 10 14

0 0 0 0 15

A B

(5.1)

This conversion operation does add some overhead to the initialization and to the
cleanup (to revert the result to standard format), but it improves cache usage through
spatial locality. This overhead may or may not be worth depending on how good is this
improvement and how it affects the computation.

5.4.5 Overwrite

All the implementations so far assume at least two distinct matrices are used in the
algorithm, one for T and another one for U . Aside from dependencies, this implies that
when a block Uij is being computed, another block Tij must also be present. The memory
footprint becomes even larger with the USB format where the conversion generates a second
re-organized matrix, which is then used as the input matrix for the algorithm. The algorithm
computes a third matrix with the result, also in USB format, which then has to be re-
organized into a fourth matrix with the final result in the standard format.

BLAS and LAPACK routines minimize the memory footprint by overwriting one of the
operands with the result of the operation. In the case of the matrix square root algorithm this
is also possible since only one element/block in the input matrix T is used in the computation
of each element/block in U . Consequently, the memory footprint can be easily reduced by
overwriting T with U .

39

5 Intel MIC

5.5 Results

The techniques described in Section 5.4 can not be considered optimizations until their
impact in the application performance is properly quantified and evaluated. This section
discusses the measurements performed for this purpose, using the same environment and
methodology as already described in Section 5.3.1.

Performance tests focused mainly on the the techniques described in Sections 5.4.4
and 5.4.5 (USB and OW). Preliminary tests revealed that the first technique (massive par-
allelism) did not decrease the execution time of the algorithm, and the benefit from the
second (loop unrolling) was too little to be significant. Although this was not the case with
the third (removed Armadillo) it was used as the base for USB and OW, since it required
a major change to the implementation. When reading the following results, it is important
to consider that a significant fraction of the improvements shown by these techniques comes
from that.

Theoretically, the parallelization of the dependency solving step compensates for the
lack of parallelism in the more advanced stages of the algorithm. However, tests showed this
not to be the case, showing how the memory access pattern hampers further scalability. As
the algorithm progresses, the number of dependencies for each element increase, but half
of this dependencies lie in distinct cache lines. The lack of locality seems to hamper the
algorithm so much that it would nullifies any improvement from increased parallelism.

On the other hand, the lack of performance improvements from loop unrolling did not
come as a surprise, serving the purpose of proving how the Intel Xeon Phi coprocessor is
superior to a GPU when dealing with conditional branches.

The execution time for USB is shown in Figure 5.6 and, comparing with Figure 5.4,
the speedup is clear even for the sequential time (reduced to less than half). The peak
performance remained near the same number of threads (30 for n = 2000, 60 for n = 4000

and 120 for n = 8000), but when more threads than those supported by the hardware are
demanded, the performance now drops more intensely, with the optimized implementation
taking twice as long with 360 threads.

While not so good, OW also improves the efficiency of the implementation, as shown
in Figure 5.7. Contrary to what happens with USB, this optimization practically removes
the penalty of demanding more threads than what the hardware supports, maintaining the
execution time near peak performance even above 8 threads per core. Yet, the minimum
execution time this optimization achieves is not as low.

Although USB exceeds OW in speedup, the highest efficiency is achieved when using
both optimizations at the same time (Figure 5.8). The sequential time and the time obtained
with 360 threads are practically the same as for USB only, and the same happens for the
peaks. However, the value obtained with these peaks is reduced when OW is also applied.

Figure 5.9 shows the best execution times for the naive implementation and each opti-

40

5.5 Results

Figure 5.6: Execution times for USB in the Intel Xeon Phi coprocessor.

Figure 5.7: Execution times for OW in the Intel Xeon Phi coprocessor.

Figure 5.8: Execution times for USB and OW in the Intel Xeon Phi coprocessor.

41

5 Intel MIC

Figure 5.9: Best execution times for the opti-
mizations.

Figure 5.10: Speedups for the optimizations
in the Intel Xeon Phi coproces-
sor versus multicore in group 701
(from Chapter 4).

mization running in the Intel Xeon Phi and the best execution time for USB and OW together
running on the multicore environment. While it is clear the benefit of both optimizations,
there is the problem of these optimizations being common to both the coprocessor and the
multicore environment. However, Figure 5.9 shows that these optimizations significantly
reduce the speedup gap between the CPU and the device.

5.6 Further Optimizations

The results obtained in the previous section prove that achieving higher efficiency
with the coprocessor is not as trivial as porting the code for it. However, there are still
unexplored paths, which will remain so in the context for this dissertation due to its natural
time constraints. The most promising of these paths is the control of thread affinity in the
Intel Xeon Phi.

One of the most problematic issues when using a NUMA system lies in the fact that
a process that starts in one processor may at some time be scheduled out and moved to
another. The problem behind this lies in the memory hierarchy. When a process starts
in a specific processor, it populates the cache and fills the memory directly linked to that
processor with the data it requires. If moved to another processor, its data is no longer
available in cache, which leads to a memory access, but the data it requires no longer lies
in the closest memory. This also happens at the core level, with threads being scheduled to
different cores inside the same processor, losing the advantage of locality in the core’s private
cache. For the specific case of Intel MIC devices, it is important for threads working with
consecutive elements or in the same block to be in the same core for cache efficiency to be
maximized.

Although OpenMP (specification 3.1) does not include any way to control thread affin-
ity, Intel’s OpenMP library contains a mechanism for it through an environment variable
(KMP_AFFINITY) [50, 51]. Figure 5.11 shows the most promising affinity policy available in

42

5.6 Further Optimizations

Figure 5.11: Example of balanced thread affinity policy (Intel OpenMP) in a 4 core coprocessor
for 8 threads with fine granularity.

the coprocessor, where the threads are spread among the cores but grouped sequentially
by ID when the number of demanded threads exceeds the number of cores. This policy is
expected to achieve higher efficiency (due a better usage of the first levels of cache) with any
granularity.

Despite this mechanism requiring minimal changes in the source code (or none at all),
rerunning the performance tests at this point with the correct affinity setup would hamper
the development of a CUDA implementation (described in the next chapter). Consequently,
it is left for future work.

43

6 CUDA

Nowadays, GPUs are the most popular hardware accelerator being used in HPC. These
devices evolved in the field of computer graphics, where each pixel is usually independent
of those around. For these reasons, GPUs were designed from scratch to be able to perform
the same simple operation using huge amounts of data.

For over a decade, computer scientists and domain scientists have been using these
devices to execute code produced for other purposes besides image rendering – the advent
of GPGPUs [52]. Programming these accelerators is not a trivial task since it requires
knowledge of the underlying architecture in order to be able to take full advantage of the
device capabilities. The GPU implementations described throughout this document will be
targeted for NVIDIA devices using the NVIDIA’s CUDA framework, since it is the dom-
inant proprietary framework for GPGPU programming. For this reason, the architectural
characteristics of GPGPUs will be described using CUDA terminology.

6.1 Programming Model

CUDA provides an extension to the C language (CUDA C) allowing the programmer to
define functions – kernels – that are executed multiple times in parallel by as many different
CUDA threads. Kernels must be declared using a new keyword, which tells the compiler
the function will be executed in the GPU but launched from the CPU (host). A kernel
is launched using a new execution configuration syntax, and once executing each thread is
assigned a unique identifier accessible from within the kernel.

Threads are grouped in blocks, which in turn compose the grid executing the kernel.
The maximum number of threads per block is quite limiting (1024 in recent generations [53]),
but a kernel can be executed by multiple equally-shaped thread blocks. These blocks are
distributed to the available Streaming Multiprocessors (SMs) in undefined order, in parallel
or in series, and, consequently, must be independent. On the other hand, threads belonging
to the same block are able to cooperate by sharing data and by synchronizing their execution.

There are three levels of memory available to the programmer: first and fastest, every
thread has its own private local memory; each block then has shared memory visible to all
its threads; and, finally, all the threads have access to the same device global memory, which
is persistent across multiple kernel executions.

45

6 CUDA

6.2 Architecture

Figure 6.1: Overview of the GeForce GTX 680 Kepler Architecture [54].

Figure 6.2: CUDA core dia-
gram.

CUDA-enabled GPUs are composed by several building
blocks called Graphics Processing Clusters (GPCs), each with
multiple multithreaded SMs connected to the global device
memory (GDDR5 DRAM). Each SM contains

• a large set of CUDA cores, the processing units that per-
form the arithmetic operations;

• a much more limited number of Special Function Units
(SFUs) and Load/Store units;

• a Register File, big enough to provide each thread with
a many registers (255 in recent generations [53]);

46

6.2 Architecture

• Level 1 data cache, shared among all cores;

• shared memory;

• schedulers to map threads to the cores for execution;

• instruction cache shared among the schedulers;

In CUDA, a kernel represents a set of instructions to be executed as a parallel task.
These parallel tasks are constituted by a set of CUDA threads, which execute the same
instructions on different data (follow both SIMD and Single Instruction, Multiple Threads
(SIMT) approaches). CUDA threads are organized in a hierarchy: blocks aggregate threads
assigned to the same SM, and the set of all the blocks running the same kernel is a grid.

Figure 6.3: Streaming Multiprocessor
diagram for the GF100 ar-
chitecture.

Inside a SM, the scheduler groups up to 32
threads from the same block into warps, which are
then set to run on the SM at a given time. Since warps
group threads running the same instruction of the ker-
nel at any given time, conditional jumps are very ex-
pensive. When a conditional jump is met, if diver-
gence occurs, it causes the two conditional branches
to be executed consecutively, doubling the warp exe-
cution time.

While scheduling warps for execution, the sched-
uler holds them in a scoreboard waiting for data and
issues warps containing those ready for execution with
very low switching time. For this reason, these devices
benefit from having a lot more threads than those able
to run concurrently, as it helps hiding the memory la-
tency.

When accessing memory in a CUDA kernel,
coalesced memory accesses are required in order to
achieve an efficient memory usage. Coalesced accesses
happen when the threads in a warp access global
memory at the same time asking for contiguous ad-
dresses. Since the load units are able to retrieve data
from memory in blocks, this results in more data be-
ing fetched with less accesses. Coalesced accesses also
help the memory controller to find the best grouping
of threads to merge the requests into fewer memory accesses.

GPUs implementing the G80 architecture, the first CUDA-enabled devices, had a mem-
ory bandwidth of 86.4 GB/s. On the other hand, modern GPUs using PCIe Generation 3

47

6 CUDA

interface can transfer data between global memory and the system main memory at 8 GB/s
in each direction (at the same time) [55]. Since communication with the CPU is so expensive
it must be kept to a minimum in order to maximize performance.

6.2.1 NVIDIA Kepler Architecture

Kepler devices contain up to 15 SMX, an improved version of SM, with more and
smaller cores, working at half the clock frequency. L2 cache size was doubled to 1536 KB.
Each individual SMX contains up to 192 cores and 64K registers, with a maximum number
of registers per thread of 255. In comparison with older architectures like Fermi, the Kepler
architecture adds a new 48 KB read-only data cache and a new 32KB+32KB configuration
for the L1 cache and shared memory.

Some of the new features of this architecture are mainly targeted at programming, such
as the introduction of dynamic programming and Hyper-Q. Dynamic programming allows
the device to generate work for itself, therefore enabling it to adapt to the amount and form
of parallelism throughout the program’s execution. Hyper-Q enables the cores from the same
CPU to launch kernels in the same GPU. Multiple kernels launched in the same GPU will
be scheduled to different SMX.

Load units in the Kepler architecture are capable of getting blocks of 256 bytes from
shared memory [53].

6.3 Implementation

Unlike MIC devices, GPUs differ greatly from CPUs. The distinct programming model
for this kind of devices requires a shift in the way the programmer thinks about the algorithm.
Consequently, little of the code implemented in Chapters 4 and 5 is reusable in a CUDA
implementation of the matrix square root algorithm.

First experiments have shown that the NVIDIA compiler is incompatible with recent
versions of the GNU compiler, which prevents the usage of modern features in the C++
language used by the Armadillo library. Although the usage of this library was reduced
to loading the matrix file and outputting the result in Section 5.4, and the incompatibility
was isolated and found not to be related with these input/output operations, the Armadillo
library is prepared to have all its headers used simultaneously. This very tight coupling
results in having to remove any trace of the library from the CUDA implementation.

Removing Armadillo implied that the code to load the matrix files had to be ported
to a compatible implementation. To ease the task, ARMA_ASCII was selected as the default
format. This is the simplest text format in Armadillo, with the files having a small header
(meant to identify the data type and the dimensions of the matrix) immediately followed by
the matrix content.

48

6.3 Implementation

Figure 6.4: Overview of the Kepler GK110 architecture.

(a) Full chip block diagram.

(b) SMX diagram.

49

6 CUDA

Contrary to the solutions in the previous chapters, a CUDA implementation of this
algorithm can not take advantage of optimized BLAS and LAPACK libraries. The available
packages assume that its kernels will have the entire device available, and most LAPACK
packages do not even implement TRSYL. Experience from Chapter 5 show that this is not the
case since both methods contain independent parallel calls to BLAS and LAPACK functions.
This implies having to reimplement each of these functions so that they can be used by all
the threads in a single CUDA block.

Synchronization is also different for this implementation. In previous chapters, the
parallel zones were confined to the computation of each diagonal, which were iterated over
sequentially. This introduced the synchronization necessary to prevent that any diagonal
were computed without its dependences being ready. In the context of a CUDA kernel, it is
not possible to synchronize the entire device, consequence of blocks having to be independent.
Therefore, the only way to implement this synchronization (for both methods) is to have
each diagonal computed by a different kernel, at the expense of having to wait for the kernel
to return from the device before launching a new one.

Kernels were implemented following an approach similar to OpenMPC by translating
the regions of parallel execution (delimited by OpenMP for directives) in Chapters 4 and 5.
This allowed for the improvements described in Section 5.4 to affect how the kernels were
implemented.

Since only one diagonal of elements can be computed in parallel at any time, the
point method is implemented using one-dimensional grid and blocks. This is the simplest
method since linearising the indices, from both the threads and the blocks, each element in
the diagonal can be computed by one thread. There is a trade-off: using one thread per
element allows to take advantage of the larger parallelism among elements in the beginning,
but suffers from lack of parallelism after some point since it does not concurrently solve
the dependencies. On the other hand, using a whole block per element would hamper
performance in the beginning and improve as the algorithm advances since it would be
able to solve the dependencies in parallel. These implementations are named coarse point-
diagonal (cPD) and fine point-diagonal (fPD) in Section 6.5.

With the block method this trade-off disappears and gives place to the lack of optimized
BLAS and LAPACK libraries. It also introduces the possibility for using two-dimensional
blocks since each block works as a standalone matrix, yet the kernels are kept with one-
dimensional blocks for compatibility with the point method. Blocks in the main diagonal
are solved using a single-block implementation of the point method. For the remaining
diagonals, the entire thread block computes the indices (effectively isolating the required
blocks for the computation) and calls the implemented single-block BLAS and LAPACK
functions.

50

6.4 Single-block BLAS and LAPACK

6.4 Single-block BLAS and LAPACK

For the previous chapters, MKL provided optimized routines for BLAS and LAPACK,
thus extracting high efficiency from well known linear algebra operations. These packages
exist for practically every language and CUDA is not an exception, with many alternatives
listed by NVIDIA. However, the solutions provided in these packages for CUDA aim to use
all the resources available in the device efficiently and, consequently, are not suited to be
used inside another kernel.

Implementing the block method for CUDA requires using BLAS and LAPACK routines
confined to the scope of a single-block. This section describes how these routines were
implemented to fit the problem restrictions in the absence of an optimized alternative.

GEMM

C = αAB + βC (6.1)

The general matrix-matrix multiplication function was reimplemented based on the
rowwise block-striped parallel algorithm [56, pp. 277-281] using a function signature similar
to the one used by MKL. It solves Equation (6.1) by iterating over the columns in C and
having each thread responsible for a row. For each column, every thread applies β to the
respective element in C. It then iterates over the rows in B (or columns in A), computing
the first parcel in the right side of the equation.

GEMV

y = αAx+ y (6.2)

This function implements the general matrix-vector multiplication. It is a simplified
version of GEMM, iterating over the columns in A and having a thread assigned to each row.
Each thread then computes the respective element in y.

TRPAISV

(A+ αI)x = b (6.3)

TRPAISV does not exist implemented in any BLAS library. It is based on the triangular
solve function (TRSV) function, which solves the equation Ax = b, with the small change of
adding α to the elements in the main diagonal of A when these are used.

Equation (6.3) is solved by implementing the row-oriented parallel back substitution
algorithm as described in [56, pp. 293-295]. The algorithm iterates backwards over the

51

6 CUDA

columns of A, with each row assigned to one thread. For each column c, it starts by having
a single thread compute the final value of the c-th element in x (adding α), after which each
thread updates its respective element in x.

To minimize memory allocations and copy operations, b is overwritten with x.

TRSYL

AX +XB = C (6.4)

Lastly, this function solves the Sylvester equation (Equation (6.4)) using the Bartels-
Stewart algorithm [57, pp. 367-368] (Algorithm 13). It iterates over the columns in C, with
the first column calling only TRPAISV. The remaining ones need a call to GEMV before so
TRPAISV is able to compute the final column.

Similar to what happens in TRPAISV, C is overwritten with X to minimize memory
allocations.

Algorithm 13: Bartels-Stewart
input : A: upper triangular matrix m×m
input : B: upper triangular matrix n× n
input : C: square matrix m× n
output: X: square matrix m× n

1 for k ← 0 to n− 1 do
2 i←range(0,m− 1)
3 j ←range(0,k − 1)
4 Xik ← Cik + Cij ×Bjk

5 solve((A−Bkk)Xik = Xik)
6 end for

6.5 Results

This section presents the efficiency measurements performed for the described CUDA
implementation to evaluate how GPUs stand in comparison with the already studied CPU-
only and Intel Xeon Phi alternatives. This evaluation follows the methodology described in
Section 3.3, with a block dimension of 64 (experimentally found to be the best).

Results in this section were obtained in SeARCH node 711-1 (already described in
Section 5.3.1), which, in addition to the Intel Xeon Phi coprocessor, also contains a NVIDIA
Tesla K20m board (details in Table 6.1). GNU Compiler Collection (GCC) 4.4.7 and CUDA
5.0 were used to build the test executables.

Although this implementation was able to profit in some measure from the experi-
ence gathered in the previous chapters, it was not able to match, much less exceed, the

52

6.6 Further Optimizations

GPUs 1× GK110
Multiprocessors 13× SMX
CUDA cores 192 per SMX
Double-precision units 64 per SMX
SFUs 32 per SMX
Load/Store units 32 per SMX
Memory size 5 GB
CUDA capability 3.5
Peak DP FLOPS 1.17 TeraFLOP/s
Peak Memory bandwidth 208 GB/s

Table 6.1: Hardware details for the NVIDIA Tesla K20m board in SeARCH node 711-1 (further
information available in [53, 58]).

performance obtained in a multicore environment, even before the optimization techniques
described in Section 5.4. Figure 6.6 shows the execution times achieved by the three CUDA
implementations (cPD, fPD and BD) in comparison with the fully optimized multicore im-
plementation. The superiority of multicore is clear, being around 15 times faster than the
best result for n = 8000 in the GPU.

However, there are several reasons for this to happen. First, the multicore implemen-
tation has been the target of several optimizations in this document, while this is an initial
completely functional CUDA implementation. Given the time already invested in the Intel
Xeon Phi coprocessor, it is not feasible to perform optimizations targeting the CUDA envi-
ronment. Next, the absence of optimized BLAS and LAPACK packages suiting the needs of
the implementation. MKL provides it for both multicore environment and coprocessor, while
manual (also naive) implementations had to be devised for CUDA. Lastly, the synchroniza-
tion requirement between diagonals forces the runtime to return to the CPU between two
consecutive diagonals, creating a bottleneck when the amount of elements/blocks no longer
provides enough parallelism to overcome the communication cost.

What comes as a surprise in these results is the fact that the fine point-diagonal
(cPD) implementation achieved a higher efficiency than the block alternative. The increased
parallelism significantly compensates for the less efficient cache usage of the point method.

6.6 Further Optimizations

While further optimizations were not implemented using CUDA, it is still relevant to
study how this implementation could be improved.

NVIDIA’s command-line profiler nvprof allows to profile the application in the same
environment as it was tested, exporting the results for visualization using the Visual Profiler.
In its turn, this tool allows to perform a Guided GPU utilization analysis, which reveals a
lack of overlapping in operations.

53

6 CUDA

Figure 6.6: Execution times for the CUDA implementation in a Tesla K20m (Kepler architecture).

6.6.1 Page-Locked Host Memory

Page-locked memory, also known as pinned memory, has the important property of
never being paged out to the disk. This means that the operating system can safely allow
for an application to access the physical address of the memory required.

Knowing the physical address of a buffer in the host memory allows for a GPU to use
Direct Memory Access (DMA) to copy data to or from the host. DMA allows these transfers
to be performed without intervention from the CPU, which in turn leaves it free to be paging
out these buffers or relocating their physical address. When a memory copy is performed
using pageable memory, the CUDA driver first copies the data to a page-locked “staging”
buffer, and then it performs the copy from that buffer to the GPU using DMA [59].

Yet, it has the consequence of disabling virtual memory for those pages in the host
memory. This would cause the host to run out of available memory much faster, not only
failing in machines with smaller amounts of memory but also affecting the performance of
other applications in the same system. Fortunately, none of these issues would be problematic
in the system used for performance tests due to the very large amount of memory and the
care for not having any other application running on the system at the same time to minimize
interferences with time measurements.

In order to use page-locked memory, the CUDA runtime offers the function cudaHostAlloc,
which is meant to replace the standard C library routine malloc. It also offers the respective
replacement for free as cudaFreeHost.

Although changing an application to use page-locked host memory should only require
replacing the routines for memory allocation, using C++ objects it becomes more compli-
cated. In particular, two different objects are used in the initialization of the implemented

54

6.6 Further Optimizations

program. First, a matrix object loads the content of the specified file, being responsible for
reimplementing I/O operations compatible with Armadillo. Second, a CUDA array object
is in charge of performing the required memory allocations in the device, copy operations
between it and the host and cleaning up the allocated resources on destruction, abstracting
the original CUDA API with a friendlier C++ version.

Changing the CUDA implementation described in this chapter to use page-locked host
memory would require merging these two objects. Upon loading the matrix from file, the
memory on the host would have to be allocated using the routine for page-locked memory.
At this time, it would have to allocate the memory in the device. This object would also have
to be responsible for freeing all the allocated memory, both for the host and the device, on
destruction. Memory transfers between the device and the host would have to be performed
upon request.

6.6.2 Streams

CUDA streams represent queues of GPU operations, such as kernel launches and mem-
ory copies, that get executed in the same order they are added. Streams work with asyn-
chronous operations, which in case of memory transfers requires the host memory to be
page-locked. This allows for the operations to be executed by the device without interfer-
ence from the CPU, thus reducing the time between successive kernel launches. They also
behave like tasks on a CPU, allowing for parallelism by overlapping operations in different
streams, restricted by the resources available in the device. For example, it is possible to
overlap two memory copies between the host and the device, one in each direction, while
also computing a kernel.

Extending the existing implementation to use streams would first require for the page-
locked optimization to be implemented. After this, copying the next diagonal to be computed
to the device could be overlaped with copying the last computed diagonal back to the host.
At the same time, the device would be computing the current diagonal.

This optimization would maximize the overlap of operations in the device, thus in-
creasing its efficiency.

55

7 Conclusions

This dissertation was focused on the main goal of achieving an efficient implementa-
tion of the matrix square root algorithm using hardware accelerators in an heterogeneous
platform. Three cases were studied with this goal in mind. The first, a port of the algorithm
already described in a previous work running in a shared-memory multicore environment,
increased the familiarity with the algorithm and served as the base for the other implemen-
tations. The second, targeted for devices of the Intel MIC architecture, allowed to put the
new Intel coprocessors to the test, as well as its programming model. The third, an imple-
mentation targeted for CUDA enabled NVIDIA GPUs, put the algorithm to the test using
the most popular accelerator device nowadays.

The multicore implementation not only validated the results presented in [13], it also
allowed to conclude that the algorithm has a near perfect scalability with the explicit par-
allelism of the diagonal strategy, despite its lack of locality. Additionally, the block method
was found to eliminate a cache resonance effect triggered specifically by power-of-two matrix
dimensions.

Porting the multicore implementation to the Intel Xeon Phi coprocessor was confirmed
to be trivial, although such was found not be the case with achieving high performance using
these devices. The similar programming models inspire to similar practices, but the truth is
that it requires a distinct way of thinking, a lot more targeted for vectorization than what
is required when programming for CPUs.

The weak operating system in the coprocessor also forces an adaptation of the method-
ology since it does not support any major featured script language. This is overcome by
running the programs through a remote session that breaks all the automatic mechanisms
previously prepared to aid in running in collecting all the required data. Consequently, the
time required for performing performance tests greatly increased, preventing further work
due to time constraints.

Initial results using the Intel Xeon Phi shown that the multicore code, although func-
tional, is less efficient in the coprocessor. Following the recommendations in Intel documen-
tation stating that optimizations should be focused initially on the CPU implementation, the
code was profiled in the development environment using Intel VTune Amplifier XE 2013 and
performance was found to be hurt by the usage of the Armadillo library. Five optimization
techniques were applied with the purpose of achieving higher performance in the Intel Xeon
Phi coprocessor: (a) massive parallelism; (b) loop unrolling; (c) replacement of Armadillo;

57

7 Conclusions

(d) reorganization of the matrices by blocks; (e) and replacement of the output matrix with
the input overwrite.

Massive parallelism was found by solving elements/blocks dependencies in parallel,
which is theoretically able to compensate for the decreasing parallelism as the number of
elements/blocks per diagonal decreases with the progress of the algorithm. However, the
obtained results did not show any improvements from parallelizing the dependency solving
step, proof of how the lack of locality in this strategy prevents the algorithm from achieving
higher efficiency.

Obtained results also showed the absence of significant improvement with loop un-
rolling, proving that conditional branching is not as harmful in the coprocessor as it is in a
GPU.

The Armadillo library was found to be very useful during for the multicore implementa-
tion, significantly reducing the development time. However, despite being planned for HPC
it still lacks mechanisms to avoid extra memory allocations and copies in some situations.
For this reason, its usage had to be limited to I/O operations.

The two last optimizations, both based on an implementation without Armadillo,
shown significant improvements, especially together. The accumulated speedup of these
optimizations reduced the execution time for the larger matrix dimensions to less than half.
Nevertheless, since these optimizations also apply to the multicore environment, the per-
formance achieved in the coprocessor did not reach the values of a CPU implementation,
despite reducing the gap significantly. Further optimizations were not pursued to allow for
a CUDA implementation within the time constraints.

Reimplementing the algorithm for CUDA-enabled devices proved to be the most tricky.
Incompatibilities with the compiler and a tight coupling in the library prevented the already
minimal presence of Armadillo, forcing to a reimplementation of the I/O operations. As for
the development of the algorithm itself, the massive parallelism explicitly made available
by the CUDA programming model significantly eased up the expression of the algorithm
parallelism, despite the paradigm change. However, the absence of BLAS and LAPACK
packages targeted to be used inside a single block of threads implied that these routines had
to be manually implemented.

Results obtained with (naive) CUDA implementations also did not match the perfor-
mance of the multicore environment, but they showed that a point method implementation
using the the massive parallelism (unveiled in Section 5.4.1) is able to surpass the efficiency
obtained by the better cache usage of the block method. The absence of time to proceed
optimizing this implementation left very promising paths unexplored.

Finally, even not having achieved higher performance using any of the hardware accel-
erators studied during this dissertation, the CUDA implementation may be used as a way
for the processor to delegate part of its workload, allowing it to be used for other tasks.
The same is true for the coprocessor implementation, although it would require changing

58

7.1 Future Work

the execution mode to offload, something that is not expected to be complex.

7.1 Future Work

As is typical in research projects, several paths, either available from the start or
unveiled with the progress, were not taken during this dissertation due its natural time
constraints. Those paths, left for future work, are described in this section.

First, all the implementations presented in this document could be integrated in a
single software package (such as BLAS library) supporting the three studied environments.
In order for such a package to be useful though, the restrictions imposed by the assumptions
presented in Section 4.1 would have to be lifted by extending the implementations, both
for complex arithmetic and to allow for quasi-triangular matrices, and by adding the Schur
decomposition to allow for any matrix to be used.

Given the success of the results obtained with the multicore implementation and, in
contrast, the lack of performance found in the implementations for the two hardware acceler-
ators, an MPI implementation of the algorithm might prove itself more efficient. Distributing
the matrix through the available nodes, having each compute part of a diagonal using the
multicore implementation and communicate only that part to the remaining nodes, and re-
ducing the number of nodes involved gradually (as the size of the diagonal decreases) has
the potential to replicate the results obtained with the benefits of increasing the parallelism
through a HetPlat.

Alternatively, using only one computational node for iterating over the diagonals but
having the remaining nodes cooperating in the computation of the dependencies could also
prove to be efficient, but it would more complex. An hybrid solution would also be inter-
esting, by having less nodes computing the diagonal as the algorithm progresses but having
the increasing idle nodes cooperating to solve the dependencies.

As for the implementation using Intel MIC devices, further profiling, now using the
command-line tool for Intel VTune Amplifier, would reveal why the achieved performance
was not able to surpass the multicore implementation. In particular, it would be interesting
to use hardware events to examine how memory is used by the algorithm. If confirmed to be
the bottleneck, a diagonalized rearrangement of the matrix could make the algorithm more
efficient, at the expense of a preparation and cleanup step that, unlike what happens with
the USB format, would almost certainly not be useful for any other linear algebra routines.

Regarding both Chapters 4 and 5, the importance given to thread affinity in [60]
shows that performing experiments with thread affinity properly defined would be interesting
enough to make it a priority. The balanced thread affinity policy with Intel’s OpenMP library
is expected to be the decisive step to take the implementation to equivalent levels in both
Xeon processors and Intel Xeon Phi coprocessors.

Given that there was only opportunity to explore the native execution mode of the Intel

59

7 Conclusions

Xeon Phi coprocessor, it would be interesting to explore offload in the future. Similarly,
if an MPI implementation proves to be efficient the question remains whether using the
coprocessor, either as another node or as an offload device, improves efficiency. The usage
models for Intel MKL are also intriguing unexplored paths. The compiler assisted offload,
in particular, due to the advantage of allowing for data persistence, is expected to improve
performance because the device would be focused entirely on executing routines already
optimized for it. On the other hand, the multiple parallel calls to these routines from the
host when computing an entire diagonal of blocks in parallel could cause most of the work
to be performed in host due to the unavailability of resources in the device, thus reducing
the advantage of using the coprocessor.

Specifically for the CUDA implementation, the optimizations described in Section 6.6
are left for future work due since these would require the reimplementation of some compo-
nents, which was not viable within the time constraints. Additionally, an optimized BLAS
package for single-block to replace the routines implemented in Section 6.4 would improve the
efficiency of the implementations using GPUs. Although these routines were implemented
with performance in mind, there was no opportunity for deep profiling and improvements.

Lastly, for both devices studied during this dissertation, implementations executing
in the CPUs and the accelerator at the same time would hardly achieve higher speedups
because of the synchronization required between the diagonals. Nevertheless, an hybrid
implementation starting in the device and moving to the CPU when the algorithm lacks
the required parallelism could merge the best performance of both worlds. Alternatively, if
offloading only the BLAS and LAPACK routines proved to be efficient using the Intel Xeon
Phi coprocessor, NVIDIA GPUs could use the same model, allowing for already existing
optimized packages to be used [7, 9, 10].

60

Bibliography

[1] G.E. Moore. “Cramming More Components Onto Integrated Circuits”. In: Proceedings
of the IEEE 86.1 (1998), pp. 82–85. issn: 0018-9219. doi: 10.1109/JPROC.1998.
658762. url: http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/
moore.pdf.

[2] G.E. Moore. “Progress in digital integrated electronics”. In: Electron Devices Meeting,
1975 International. Vol. 21. 1975, pp. 11–13. url: http://www.eng.auburn.edu/
~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf.

[3] 1965 - "Moore’s Law" Predicts the Future of Integrated Circuits. url: http://www.
computerhistory.org/semiconductor/timeline/1965- Moore.html (visited on
Aug. 13, 2013).

[4] The Numerical Algorithms Group. NAG Numerical Components. url: http://www.
nag.co.uk (visited on Aug. 31, 2013).

[5] The Numerical Algorithms Group. NAG Numerical Routines for GPUs Manual. Apr.
2012. url: http://www.nag.com/numeric/GPUs/naggpu_doc_0.6.pdf.

[6] The Numerical Algorithms Group. NAG Library Manual, Mark 23. Feb. 2011. isbn:
978-1-85206-209-5. url: http://www.nag.com/numeric/fl/nagdoc_Intel_MIC_
FS23.3/xhtml/FRONTMATTER/manconts.xml (visited on Aug. 31, 2013).

[7] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P.
Luszczek, and S. Tomov. “Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects”. In: Journal of Physics: Conference Series 180.1
(2009).

[8] AccelerEyes. SQRTM - Jacket Wiki. url: http://wiki.accelereyes.com/wiki/
index.php/SQRTM (visited on Aug. 31, 2013).

[9] EM Photonics. CULAPACK Function List. url: http://www.culatools.com/dense/
lapack/ (visited on Aug. 31, 2013).

[10] NVIDIA. cuBLAS Library - User Guide. Version 5.0. 2012-10. url: http://docs.
nvidia.com/cuda/pdf/CUDA_CUBLAS_Users_Guide.pdf.

[11] NVIDIA. cuSPARSE Library - User Guide. Version 5.0. Oct. 2012. url: http://
docs.nvidia.com/cuda/pdf/CUDA_CUSPARSE_Users_Guide.pdf.

61

http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1998.658762
http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
http://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
http://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html
http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html
http://www.nag.co.uk
http://www.nag.co.uk
http://www.nag.com/numeric/GPUs/naggpu_doc_0.6.pdf
http://www.nag.com/numeric/fl/nagdoc_Intel_MIC_FS23.3/xhtml/FRONTMATTER/manconts.xml
http://www.nag.com/numeric/fl/nagdoc_Intel_MIC_FS23.3/xhtml/FRONTMATTER/manconts.xml
http://wiki.accelereyes.com/wiki/index.php/SQRTM
http://wiki.accelereyes.com/wiki/index.php/SQRTM
http://www.culatools.com/dense/lapack/
http://www.culatools.com/dense/lapack/
http://docs.nvidia.com/cuda/pdf/CUDA_CUBLAS_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUBLAS_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUSPARSE_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUSPARSE_Users_Guide.pdf

Bibliography

[12] N. Bell and M. Garland. Cusp Library Features. Version 0.3.0. Mar. 2012. url: http:
//code.google.com/p/cusp-library/wiki/Features.

[13] Edvin Deadman, Nicholas J. Higham, and Rui Ralha. “Blocked Schur Algorithms for
Computing the Matrix Square Root”. In: Applied Parallel and Scientific Computing:
11th International Conference, PARA 2012, Helsinki, Finland. Ed. by P. Manninen
and P. Öster. Vol. 7782. Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2013, pp. 171–182. doi: 10.1007/978-3-642-36803-5_12.

[14] Åke Björck and Sven Hammarling. “A Schur method for the square root of a matrix”.
In: Linear Algebra and its Applications 52–53 (1983), pp. 127–140.

[15] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2008. isbn: 978-0-898716-
46-7.

[16] John L. Gustafson. “Reevaluating Amdahl’s law”. In: Commun. ACM 31.5 (May 1988),
pp. 532–533. issn: 0001-0782. doi: 10.1145/42411.42415. url: http://doi.acm.
org/10.1145/42411.42415.

[17] Erich Strohmaier. 20 Years Supercomputer Market Analysis. May 2005. url: http:
//tclark.ittc.ku.edu/eecs739fall2007/papers/strohmaierSC2005.pdf (visited
on Aug. 31, 2013).

[18] National Security Agency, ed. The Next Wave. Vol. 20. 1. 2013. url: http://www.
nsa.gov/research/tnw/tnw201/articles/pdfs/TNW_20_1_Web.pdf.

[19] Development over Time. Aug. 2013. url: http://www.top500.org/statistics/
overtime/.

[20] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011. isbn: 012383872X, 9780123838728.

[21] Rob Farber. “Redefining What is Possible”. In: Scientific Computing (Jan. 2011).
url: http : / / www . scientificcomputing . com / printpdf / articles / 2011 / 01 /
redefining-what-possible (visited on Aug. 31, 2013).

[22] Francisco D. Igual, Murtaza Ali, Arnon Friedmann, Eric Stotzer, Timothy Wentz, and
Robert van de Geijn. Unleashing DSPs for General-Purpose HPC. FLAME Working
Note #61. Technical Report TR-12-02. The University of Texas at Austin, Department
of Computer Sciences, Feb. 2012.

[23] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik, and
Olaf O. Storaasli. “State-of-the-art in heterogeneous computing”. In: Sci. Program. 18.1
(Jan. 2010), pp. 1–33. issn: 1058-9244. url: http://dl.acm.org/citation.cfm?id=
1804799.1804800.

62

http://code.google.com/p/cusp-library/wiki/Features
http://code.google.com/p/cusp-library/wiki/Features
http://dx.doi.org/10.1007/978-3-642-36803-5_12
http://dx.doi.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415
http://tclark.ittc.ku.edu/eecs739fall2007/papers/strohmaierSC2005.pdf
http://tclark.ittc.ku.edu/eecs739fall2007/papers/strohmaierSC2005.pdf
http://www.nsa.gov/research/tnw/tnw201/articles/pdfs/TNW_20_1_Web.pdf
http://www.nsa.gov/research/tnw/tnw201/articles/pdfs/TNW_20_1_Web.pdf
http://www.top500.org/statistics/overtime/
http://www.top500.org/statistics/overtime/
http://www.scientificcomputing.com/printpdf/articles/2011/01/redefining-what-possible
http://www.scientificcomputing.com/printpdf/articles/2011/01/redefining-what-possible
http://dl.acm.org/citation.cfm?id=1804799.1804800
http://dl.acm.org/citation.cfm?id=1804799.1804800

Bibliography

[24] AMD. Introduction to “Magny-Cours”. Aug. 2013. url: http://developer.amd.com/
resources/documentation-articles/articles-whitepapers/introduction-to-

magny-cours/.

[25] Blaise Barney. POSIX Threads Programming. Ed. by Lawrence Livermore National
Laboratory. url: https://computing.llnl.gov/tutorials/pthreads/.

[26] OpenMP Architecture Review Board, ed. About the OpenMP ARB and OpenMP.org.
url: http://openmp.org/wp/about-openmp/.

[27] OpenMP Architecture Review Board. OpenMP Application Program Interface. Ver-
sion 3.1. July 2011. url: http://www.openmp.org/mp-documents/OpenMP3.1.pdf.

[28] Andrew Binstock. Threading Models for High-Performance Computing: Pthreads or
OpenMP? Ed. by Intel Corporation. url: http://software.intel.com/en-us/
articles/threading-models-for-high-performance-computing-pthreads-or-

openmp.

[29] Intel. Intel Threading Building Blocks Documentation. url: http://software.intel.
com/sites/products/documentation/doclib/tbb_sa/help/index.htm.

[30] Seyong Lee and Rudolf Eigenmann. “OpenMPC: Extended OpenMP Programming and
Tuning for GPUs”. In: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 1–11. isbn: 978-1-4244-7559-9.
doi: 10.1109/SC.2010.36. url: http://dx.doi.org/10.1109/SC.2010.36.

[31] Michael Wolfe. The OpenACC Application Programming Interface. Version 2.0. June
2013. url: http://www.openacc.org/sites/default/files/OpenACC%202%200.
pdf.

[32] Nicholas J. Higham. The Matrix Function Toolbox. url: http://www.ma.man.ac.uk/
~higham/mftoolbox.

[33] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. “The cache performance
and optimizations of blocked algorithms”. In: SIGPLAN Not. 26.4 (Apr. 1991), pp. 63–
74. issn: 0362-1340. doi: 10.1145/106973.106981. url: http://doi.acm.org/10.
1145/106973.106981.

[34] Rajib Nath, Stanimire Tomov, and Jack Dongarra. “An Improved Magma Gemm For
Fermi Graphics Processing Units”. In: Int. J. High Perform. Comput. Appl. 24.4 (Nov.
2010), pp. 511–515. issn: 1094-3420. doi: 10.1177/1094342010385729. url: http:
//dx.doi.org/10.1177/1094342010385729.

[35] Wendy Doerner. Cache Blocking Techniques. Ed. by Intel Corporation. Aug. 23, 2012.
url: http://software.intel.com/en-us/articles/cache-blocking-techniques
(visited on Aug. 31, 2013).

63

http://developer.amd.com/resources/documentation-articles/articles-whitepapers/introduction-to-magny-cours/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/introduction-to-magny-cours/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/introduction-to-magny-cours/
https://computing.llnl.gov/tutorials/pthreads/
http://openmp.org/wp/about-openmp/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://software.intel.com/en-us/articles/threading-models-for-high-performance-computing-pthreads-or-openmp
http://software.intel.com/en-us/articles/threading-models-for-high-performance-computing-pthreads-or-openmp
http://software.intel.com/en-us/articles/threading-models-for-high-performance-computing-pthreads-or-openmp
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://dx.doi.org/10.1109/SC.2010.36
http://dx.doi.org/10.1109/SC.2010.36
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.ma.man.ac.uk/~higham/mftoolbox
http://www.ma.man.ac.uk/~higham/mftoolbox
http://dx.doi.org/10.1145/106973.106981
http://doi.acm.org/10.1145/106973.106981
http://doi.acm.org/10.1145/106973.106981
http://dx.doi.org/10.1177/1094342010385729
http://dx.doi.org/10.1177/1094342010385729
http://dx.doi.org/10.1177/1094342010385729
http://software.intel.com/en-us/articles/cache-blocking-techniques

Bibliography

[36] B.N. Parlett. “A recurrence among the elements of functions of triangular matrices”.
In: Linear Algebra and its Applications 14.2 (1976), pp. 117–121. issn: 0024-3795.
doi: http://dx.doi.org/10.1016/0024-3795(76)90018-5. url: http://www.
sciencedirect.com/science/article/pii/0024379576900185.

[37] Isak Jonsson and Bo Kågström. “Recursive blocked algorithms for solving triangular
systems – Part I: one-sided and coupled Sylvester-type matrix equations”. In: ACM
Trans. Math. Softw. 28.4 (Dec. 2002), pp. 392–415.

[38] IBM. FORTRAN – The Pioneering Programming Language. url: http://www-03.
ibm.com/ibm/history/ibm100/us/en/icons/fortran/ (visited on Aug. 31, 2013).

[39] Nicholas J. Higham. “Computing real square roots of a real matrix”. In: Linear Algebra
and its Applications 88-89 (Apr. 1987), pp. 405–430. issn: 0024-3795. doi: 10.1016/
0024-3795(87)90118-2. url: www.maths.manchester.ac.uk/nareports/narep89.
pdf.

[40] Intel Corporation, ed. Intel Xeon Processor E5-2650. url: http://ark.intel.com/
products/64590/ (visited on Aug. 31, 2013).

[41] Intel Corporation, ed. Intel R© Xeon R© Processor E5-1600/ E5-2600/E5-4600 Product
Families. May 2012. url: http://www.intel.com/content/dam/www/public/us/
en/documents/datasheets/xeon-e5-1600-2600-vol-1-datasheet.pdf.

[42] Cleve Moler. MATLAB Incorporates LAPACK. Ed. by MathWorks. 2000. url: http:
//www.mathworks.com/company/newsletters/articles/matlab-incorporates-

lapack.html (visited on Aug. 31, 2013).

[43] Sudha U. Thiagarajan, Charles Congdon, Sumedh Naik, and Loc Q. Nguyen. Intel R©
Xeon PhiTM Coprocessor Developer’s Quick Start Guide. Version 1.5. Dec. 2012. url:
http://software.intel.com/sites/default/files/article/335818/intel-

xeon-phi-coprocessor-quick-start-developers-guide.pdf.

[44] Intel Corporation, ed. Intel R© Xeon PhiTM Coprocessor. June 2013. url: http://www.
intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-

coprocessor-datasheet.pdf.

[45] James Reinders. An Overview of Programming for Intel Xeon processors and Intel Xeon
Phi coprocessors. Ed. by Intel Corporation. 2012. url: http://software.intel.
com/sites/default/files/article/330164/an-overview-of-programming-for-

intel-xeon-processors-and-intel-xeon-phi-coprocessors.pdf.

[46] Intel Corporation, ed. Introducing the Intel R© Xeon PhiTM Coprocessor. Architecture
for Discovery. url: http://www.intel.com/content/dam/www/public/us/en/
documents/presentation/xeon-phi-architecture-for-discovery-presentation.

pdf.

64

http://dx.doi.org/http://dx.doi.org/10.1016/0024-3795(76)90018-5
http://www.sciencedirect.com/science/article/pii/0024379576900185
http://www.sciencedirect.com/science/article/pii/0024379576900185
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/fortran/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/fortran/
http://dx.doi.org/10.1016/0024-3795(87)90118-2
http://dx.doi.org/10.1016/0024-3795(87)90118-2
www.maths.manchester.ac.uk/nareports/narep89.pdf
www.maths.manchester.ac.uk/nareports/narep89.pdf
http://ark.intel.com/products/64590/
http://ark.intel.com/products/64590/
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-1-datasheet.pdf
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://software.intel.com/sites/default/files/article/335818/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
http://software.intel.com/sites/default/files/article/335818/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors.pdf
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors.pdf
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/xeon-phi-architecture-for-discovery-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/xeon-phi-architecture-for-discovery-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/xeon-phi-architecture-for-discovery-presentation.pdf

Bibliography

[47] Intel Corporation, ed. Intel Xeon Processor E5-2670. url: http://ark.intel.com/
products/64595/ (visited on Aug. 31, 2013).

[48] Intel Corporation, ed. Intel Xeon Phi Coprocessor 5110P. url: http://ark.intel.
com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-

core.

[49] Gene M. Amdahl. “Validity of the single processor approach to achieving large scale
computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint computer
conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM, 1967, pp. 483–485.
doi: 10.1145/1465482.1465560. url: http://doi.acm.org/10.1145/1465482.
1465560.

[50] Michaela Barth, Mikko Byckling, Nevena Ilieva, Sami Saarinen, and Michael Schliephake.
Best Practice Guide Intel Xeon Phi v0.1. Ed. by Volker Weinberg. Mar. 2013. url:
http://www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-

Phi.pdf.

[51] José Carlos Mouriño Gallego, Carmen Cotelo Queijo, Andrés Gómez Tato, and Au-
relio Rodríguez López. Evaluation of Intel R© Xeon PhiTM to execute easily scientific
applications. Tech. rep. July 2013. url: https://www.cesga.es/es/biblioteca/
downloadAsset/id/732.

[52] NVIDIA. What is GPU Computing? url: http://www.nvidia.com/object/what-
is-gpu-computing.html (visited on Aug. 31, 2013).

[53] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110.
Tech. rep. 2012.

[54] NVIDIA. NVIDIA GeForce GTX 680. Tech. rep. 2012. url: http://international.
download.nvidia.com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-

FINAL.pdf.

[55] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. 2nd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2012-12. isbn: 0124159923, 9780124159921.

[56] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. Ed. by McGraw-
Hill. International. isbn: 007-123265-6.

[57] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Ed. by The Johns
Hopkins University Press. Third. isbn: 0-8018-5414-8.

[58] NVIDIA, ed. Tesla Kepler GPU Accelerators. url: http : / / www . nvidia . com /

content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf.

65

http://ark.intel.com/products/64595/
http://ark.intel.com/products/64595/
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://dx.doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi.pdf
http://www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi.pdf
https://www.cesga.es/es/biblioteca/downloadAsset/id/732
https://www.cesga.es/es/biblioteca/downloadAsset/id/732
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://international.download.nvidia.com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://international.download.nvidia.com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://international.download.nvidia.com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf

Bibliography

[59] Jason Sanders and Edward Kandrot. CUDA by Example. An Introduction to General-
Purpose GPU Programming. Ed. by NVIDIA Corporation. 2011. isbn: 978-0-13-138768-
3, 0-13-138768-5.

[60] Jim Jeffers and James Reinders. IntelXeon PhiCoprocessor High Performance Pro-
gramming. 2013. isbn: 978-0-12-410414-3.

66

	Introduction
	Motivation and Goals
	Document Organization

	Technological Background
	Heterogeneous Platforms
	Distributed Memory
	Development Tools
	PThreads, OpenMP, TBB and Cilk
	OpenMPC and OpenACC

	Case Study: The Matrix Square Root
	Strategies
	Methods
	Evaluation Methodology

	Multicore
	Column/Row
	Super-diagonal
	Implementation
	Validation
	Control Matrices

	Results
	Analysis

	Intel MIC
	Architecture
	Programming model
	Native execution
	Results

	Optimization Techniques
	Massive Parallelism
	Loop Unrolling
	Armadillo
	Unit Stride Blocks
	Overwrite

	Results
	Further Optimizations

	CUDA
	Programming Model
	Architecture
	NVIDIA Kepler Architecture

	Implementation
	Single-block BLAS and LAPACK
	Results
	Further Optimizations
	Page-Locked Host Memory
	Streams

	Conclusions
	Future Work

