
Universidade do Minho
Escola de Engenharia

Tiago Emanuel Oliveira Gomes

3D Virtual Environments' Generation

Outubro de 2013

Universidade do Minho
Escola de Engenharia

Tiago Emanuel Oliveira Gomes

3D Virtual Environments' Generation

Outubro de 2013

Dissertação de Mestrado
Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor Doutor José Creissac Campos
Doutor José Luís Cardoso da Silva

ii

DECLARAÇÃO

Nome
Tiago Emanuel Oliveira Gomes

Endereço Electrónico
tg.gms89@gmail.com

Número do Cartão de Cidadão
13615192

Título da Dissertação
3D Virtual Environments’ Generation

Orientador
Professor Doutor José Creissac Campos

Co-orientador
Doutor José Luís Cardoso da Silva

Ano de Conclusão
2013

Designação do Mestrado
Mestrado em Engenharia Informática

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTE TRABALHO APE-
NAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ES-
CRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, / /
Assinatura:

iii

iv

Acknowledgements
I would like to dedicate this work to my family who were always present during
my academic path and specially to my girlfriend Isabel Correia who was always
ready to help and to give support.

I would like to give special thanks to my supervisors for all the advice, support,
patience and availability throughout the dissertation. Particularly to José Creissac
Campos for the expert guidance and to José Luís Silva for helping me to understand
the APEX framework. Many thanks to Tiago Abade for his friendship and total
availability during my passage through the University and specially during the
course of this dissertation. Big thanks to Isabel Correia for recording the voices
for the Asthma Game, and for the love, patience and encouragement during the
dissertation. It would not be possible without her. Thanks to all of my friends for
causing the good disposition required to carry out this work.

I would like to thank the Fundação para a Ciência e Tecnologia for their finan-
cial support.

Finally, I would like to thank my family for being my motivation. Thanks to
my brothers for the comprehension and help. Thanks to my parents for the advice,
for guiding me through my education, and also for the support needed to all of
these years of study. And thanks one more time to Isabel Correia for being always
present and for being my guiding star.

To all these people, I want to give my deepest gratitude. This work would not
be completed, if it were not for them.

v

vi

This work is funded by ERDF - European Regional Development Fund through
the COMPETE Programme (operational programme for competitiveness) and by
National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Por-
tuguese Foundation for Science and Technology) within project FCOMP-01-0124-
FEDER-015095.

vii

viii

Abstract

3D Virtual Environments’ Generation

The development and testing of ubiquitous environments (places enhanced with
sensors, public displays and personal devices) usually presents high costs, both due
to the need to acquire specific hardware (sensors, displays, etc.), and the need to
use, or even to build, a space wherein the physical system will be implemented.
Consider, for example, the impact of testing a new ambient intelligence system to
provide information in a hospital or in an airport. It is hardly feasible trying to
prototype the system in the target environment due to the costs (e.g. of redesign)
and problems associated with such approach. The use of three-dimensional virtual
environments then arises as a solution to this problem. Using them, it becomes
possible to simulate the use of technology without needing to purchase hardware,
and without interfering with the physical environments in which the final system
will be installed.

Three-dimensional application servers such as SecondLife (secondlife.com) or
OpenSimulator (opensimulator.org) provide an easy way to develop virtual worlds.
A platform for the prototyping of ubiquitous environments is being developed at
the Department of Informatics of the University of Minho, which is based on
OpenSimulator: the APEX (rApid Prototyping for user EXperience) framework.
At the moment, each new world has to be modelled manually, using an OpenSim-
ulator compatible viewer, which makes this part of the process time-consuming
and inefficient.

This project’s objective is to study three-dimensional virtual environment mod-
elling approaches, and to develop a module that integrates one of these approaches
in the APEX framework to streamline the virtual worlds generation process.

ix

x

Resumo

Geração de Ambientes Virtuais 3D

O desenvolvimento e teste de ambientes ubíquos (locais enriquecidos com sen-
sores, ecrãs públicos e dispositivos pessoais) está normalmente associado a cus-
tos elevados, quer seja pela necessidade de adquirir hardware específico (sensores,
ecrãs, etc.), ou mesmo pela necessidade de usar, ou até construir um espaço onde
o sistema ubíquo será implementado. Considere, por exemplo, o impacto de testar
um sistema inteligente de informação num hospital ou num aeroporto. É imprat-
icável tentar prototipar o sistema no local destinado, devido aos custos (p.e. de
redesenho) e dificuldades associadas. O uso de ambientes virtuais tridimensionais
aparece como uma solução para este problema. Utilizando este tipo de mecanis-
mos, torna-se possível simular a instalação da tecnologia sem que seja necessário
adquirir o hardware e sem interferir com o espaço físico onde o sistema final será
instalado.

Os servidores aplicacionais 3D como o SecondLife (secondlife.com) ou o Open-
Simulator (opensimulator.org) proporcionam uma forma relativamente fácil de
desenvolver mundos virtuais. Está a ser desenvolvida no Departamento de Infor-
mática da Universidade do Minho uma plataforma de prototipagem de ambientes
ubíquos, chamada APEX (rApid Prototyping for user EXperience) que se baseia
no servidor aplicacional OpenSimulator. De momento, cada novo ambiente virtual
tem de ser modelado manualmente, usando um viewer compatível com o Open-
Simulator, o que torna o processo demorado e pouco eficiente.

O objectivo deste projecto é estudar soluções para a modelação de ambientes
virtuais tridimensionais, e desenvolver um módulo que integre uma dessas soluções
na plataforma APEX, por forma a agilizar a criação de ambientes virtuais.

xi

xii

Contents

Acknowledgements v

Abstract ix

Resumo xi

Contents xiii

List of Figures xvii

List of Tables xviii

List of Abbreviations xix

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Structure of document . 4

2 Ubicomp Prototyping 5
2.1 Introduction . 5
2.2 APEX . 6
2.3 OpenSimulator . 7

2.3.1 Region Modules and OpenSimulator API 8
2.3.2 Environment generation problems 10
2.3.3 Conclusions . 12

xiii

3 Developing Virtual Environments 14
3.1 Introduction . 14
3.2 OpenSimulator Archives (OARs) 14
3.3 Virtual environment modelling languages 17

3.3.1 Scene graphs based languages 18
3.3.2 Procedural modelling . 20

3.4 3D modelling tools . 22
3.4.1 Blender . 23
3.4.2 MeshLab . 24
3.4.3 Sweet Home 3D . 26

3.5 Discussion . 28
3.6 Conclusions . 30

4 Virtual environment development tool 32
4.1 Introduction . 32
4.2 Using 3D Modelling tools . 34

4.2.1 Modelling the Building in SH3D 35
4.2.2 SH3D and Blender . 36
4.2.3 SH3D and MeshLab . 38

4.3 Using OpenSim API . 39
4.3.1 The Region Module . 41
4.3.2 The User Interface . 44
4.3.3 Modelling the Building . 46

4.4 Conclusions . 47

5 Integrating the tool with APEX framework 50
5.1 Introduction . 50
5.2 Architecture . 51

5.2.1 Remote Access . 51
5.2.2 Multi-user . 54

5.3 Summary . 56

6 Developing serious games with APEX framework 58
6.1 Introduction . 58

xiv

6.2 Asthma . 59
6.3 The Virtual Environment . 60
6.4 The game . 61
6.5 Evaluation . 64

6.5.1 The user study . 65
6.5.2 Results . 66

6.6 Game redesign . 68
6.7 Conclusions . 70

7 Conclusions and future work 72
7.1 Overall analysis . 72
7.2 Results . 75
7.3 Future Work . 77

Appendices 79
A.1 Questionnaire . 79

Bibliography 84

xv

List of Figures

2.1 Logical architecture of the APEX framework (from [Sil12]) 6
2.2 Environment generation through a viewer (basic box) 11
2.3 Creating a wall with a window with 4 primitives 12

3.1 OpenSim Archives internal format 15
3.2 Scene graph example of a house . 18
3.3 Procedural building phases . 21
3.4 Manipulating 3D meshes with Blender 24
3.5 MeshLab in action [CCR08] . 25
3.6 Sweet Home 3D interface . 27

4.1 Building model blueprint . 33
4.2 Using 3D modelling tools approach 34
4.3 SH3D Building development . 35
4.4 Using Blender to transform the building model 36
4.5 Result for the solution SH3D+Blender 37
4.6 Using MeshLab to transform the building model 38
4.7 Result for the solution SH3D+MeshLab 39
4.8 Using OpenSim API approach . 40
4.9 Triangle representation for angle calculus 43
4.10 OpenSim API approach interface 45
4.11 OpenSim API approach resulting model 47
4.12 Solution experience time results . 48

5.1 Remote access architecture . 52
5.2 Environment generator connection panel 55

xvi

5.3 Multi-user architecture . 56
5.4 Complete solution sequence diagram 57

6.1 Mites in our homes . 60
6.2 House of the asthma game . 61
6.3 Pets in the bedroom . 62
6.4 Question about dirty clothes . 63
6.5 Survey results . 66
6.6 Utility section results . 67
6.7 Useful area bounded by barriers . 69

xvii

List of Tables

3.1 3D tools relevant features . 31

xviii

List of Abbreviations

2D two-dimensional

3D three-dimensional

API Application Programming Interface

APEX rApid Prototyping for user EXperience

COLLADA COLLAborative Design Activity

CPN Coloured Petri Nets

DAE Digital asset exchange

DB Data Base

DCC Digital content creation

DLL Dynamic Link Library

GNU GPL GNU General Public License

GUI Graphical User Interface

IP Internet Protocol

LSL Linden Scripting Language

L-System Lindenmayer System

OAR OpenSimulator region ARchive

OBJ Wavefront OBJ

OpenGL Open Graphics Library

SH3D Sweet Home 3D

xix

UML Unified Modelling Language

VE Virtual Environment

VR Virtual Reality

VRML Virtual Reality Modelling Language

WWW World Wide Web

X3D eXtensible 3D Graphics

XML eXtensible Markup Language

xx

xxi

Chapter 1

Introduction

1.1 Context
The rApid Prototyping for user EXperience (APEX) framework [SORF+10] was
developed for prototyping ubiquitous computing environments. The framework
uses a three-dimensional (3D) application server to provide a virtual environment
were the envisaged ubicomp environment can be experienced, the OpenSimulator1.
Typically OpenSimulator virtual environments are designed using the viewer tools
also used to navigate the worlds. However, the experience of using the framework
shows that the step of designing the virtual environment using this approach is a
slow and laborious one.

When simulating real spaces enhanced with ubiquitous systems through vir-
tual reality applications, such as SecondLife2 or OpenSimulator, the creation and
design of the environment itself is one of the most time consuming and demanding
processes that developers have to face. This is because the contents in it have to
meet high levels of quality (e.g. in terms of detail) in order to lead the user into a
pleasant and realistic experience where real world objects can be easily recognised
both by its appearance and behaviour. If, for example, the user cannot recog-
nise a place in a virtual world where a ubiquitous system is being tested, results
of the prototyping process will never be as reliable as they should be. Also, the

1http://opensimulator.org/ (August 2013)
2https://www.secondlife.com/ (June 2013)

1

http://opensimulator.org/
https://www.secondlife.com/

most frequently used techniques for describing the virtual world are very low level
(e.g. Open Graphics Library (OpenGL)) which means that the developer may
have to gather large amounts of information in order to provide reasonable input.
Thus, the process becomes slow and the virtual world requires great effort to be
developed.

1.2 Objectives
The main objective of this project is to build a component for the APEX frame-
work that makes it able to use a modern and agile technique to develop virtual
reality environments. An alternative to achieve this objective is to load 3D models
into the virtual environment, another alternative is to use the application server
Application Programming Interface (API) to build the virtual objects. So, mod-
elling techniques and existent markup languages that can be used for developing
virtual worlds must be studied. Also, some existent tools that already use those
techniques are going to be analysed. The chosen technique must be powerful and
accurate enough to meet the needs of developing 3D virtual environments which
can be used for implementing and testing ubiquitous computing environments.
However, it must also be abstract enough to avoid the problems that are inherent
to low-level languages, like having too many lines of code or having to program
how the virtual scene is organised, and to streamline the process of designing the
environment. Another important aspect is that APEX users need to build the
environment incrementally, which means that it must be possible to add, remove
or change objects in the virtual environment during its development.

An OpenSimulator server provides two main ways of loading virtual objects or
3D models into the environment: one of them is loading an OpenSimulator region
ARchive (OAR) (see Section 3.2 for a detailed description of OARs) into the server,
and the other one is loading a COLLAborative Design Activity (COLLADA) model
into the server. COLLADA3 is an XML based schema that can be used for exchang-
ing 3D models between interactive 3D applications (see Section 3.3). Moreover,
there is also the possibility of developing virtual objects through the OpenSim-

3https://collada.org/ (July, 2013)

2

https://collada.org/

ulator API. This possibility can, in principle, be used to develop very efficient
solutions, but it requires good knowledge about the application server API, which
must be thoroughly studied.

Thus, there are three initial possibilities for solving the virtual environment
generation problem in the APEX framework:

• Choose the most appropriate modelling tool and generate an OpenSimulator
region ARchive (OAR). The input received from the modelling software
must be structured in an adequate tool in order to generate the OAR. This
solution can be very powerful, however the generation of the OAR can be
quite complex due to the transformations that generating the archive might
imply. Also, useful features inherent to the chosen language can be lost when
converting it to generate the OAR file due to incompatibilities. This solution
may improve the compatibility and sharing of the the generated 3D models
between OpenSimulator versions, since they are based on an OpenSimulator
native file format, however the generated models may not be as accurate as
they have to, due to the conversions made.

• Generate a COLLADA model from the input received from the chosen mod-
elling tool. This solution can ease the sharing of the virtual objects created
because COLLADA is already a standard. However, COLLADA files have
a quite complex syntax, and its components are not always compatible with
other languages.

• Create a friendly interface to interact directly with the OpenSimulator Ap-
plication Programming Interface (API). The OpenSimulator API is consid-
erably large. It has several capacities that are not useful for a typical APEX
user and would only introduce noise and make the tool more complex. The
research must be focused in the relevant features. An interface like this,
can be hard to implement, because it will imply developing a communica-
tion layer, since the API is local to the application server and the APEX
framework is most often used in a remote context.

3

1.3 Structure of document
In this chapter, the problem and the objectives of this project were presented and
briefly discussed. In the next chapters, the APEX framework and some virtual
environment modelling techniques will be described as well as the conclusions and
future work of this research. The dissertation document is structured as follows:

• Chapter 2 - Ubicomp Prototyping: describes the current state of the art, in-
cluding the APEX framework and its virtual environment component which
is composed of an OpenSimulator application server and a compatible viewer.

• Chapter 3 - Developing Virtual Environments: describes some alternatives
to generate virtual environments in the APEX framework. OpenSimulator
region ARchives (OARs), some important virtual environment modelling
languages, as well as relevant 3D modelling tools, are described in this chap-
ter.

• Chapter 4 - Virtual environment development tools: analyses the use of the
tools and technologies presented in the previous chapter in order to provide
solutions for the APEX framework virtual environment generation problem.
At the end of the chapter the most suitable solution is chosen.

• Chapter 5 - Integrating the tool with APEX framework: in this chapter
the integration of the previously chosen solution for the virtual environment
generation problem with the APEX framework is described.

• Chapter 6 - Developing serious games with the APEX framework: describes
the development and test of a serious game in the APEX framework. The
costs of developing the virtual environment will be analysed too.

• Chapter 7 - Conclusions and future work: analyses the solutions found re-
garding the objectives defined for this research. Additionally, it presents
some conclusions and proposals for future work.

4

Chapter 2

Ubicomp Prototyping

2.1 Introduction
Building ubiquitous environments has proven to be a tricky task, which involves
problems, such as environment testing, redesigning or hardware costs. While build-
ing a ubiquitous environment, every decision must be well supported by previous
studies, otherwise the project costs will grow very quickly. Moreover, decisions
that have already been taken can be difficult to change, given that the costs in-
volved in the redesign process can be very high. Also, the testing process of each
new configuration can consume too much time.

Ideally we should be able to try every configuration before building the real
system. In a virtual environment, real spaces can be pictured with acceptable
precision. Furthermore changing decisions while developing the ubiquitous system
involves much less effort than in the real world. 3D application servers play an
important role in this issue. These tools provide a simple way to install and explore
virtual environments with very low investment and with an acceptable quality.
Thus design errors can be easily detected in the early stages of the project, and
changed before deployment. In the next section, the APEX framework and its
components will be presented. It uses a 3D application server to manage virtual
worlds and its objective is to prototype ubicomp environments.

5

2.2 APEX
It was already said that ubiquitous environments’ development often presents high
costs and that prototyping such environments can introduce an effective way to
avoid unnecessary efforts. This way, we can test those environments before their
development and consequently, we can also prevent major errors or unnecessary
costs. The APEX platform arises as a framework that supports the prototyping
of ubiquitous environments [Sil12]. The framework goals are to help the rapid
creation of virtual environments that mimic an environment and the ubiquitous
computing technology within it. APEX’s architecture consists of four main com-
ponents (Figure 2.1):

• The virtual environment component that contains a 3D application server
and a viewer in it. This component is responsible for the virtual environ-
ment. It allows the user to navigate trough the virtual world and sends
information about user’s actions and position. The application server cho-
sen was OpenSimulator. It provides ways to create and manage the virtual
environment. See Section 2.3 for more information about OpenSimulator.

Figure 2.1: Logical architecture of the APEX framework (from [Sil12])

6

• The behavioural component is responsible for managing the behaviour of the
prototype. It sends responses to the user actions based on a Coloured Petri
Nets (CPN) model, where the prototype behaviour is described. This com-
ponent uses CPN Tools1 to support the management of behavioural models.
The model keeps the modelled objects’ state, so that the behavioural aspects
of the objects can be kept independently from the virtual environment.

• The physical component is the one that manages connections with external
devices. These devices can be smart phones, sensors or control pads for
example. External devices can interact with APEX framework through this
component, they can be used, for example, to move the avatar or to notify
the user of the avatar state.

• The communication/execution component is a C# module that is responsible
for loading the ubiquitous environment into the virtual world and for man-
aging the exchange of information between the three other components cited
before. Information about user actions is sent from the virtual environment
to the behavioural models or physical devices through the communication
component. Also, relevant information about behavioural models or physical
devices state is sent to the virtual environment through this component.

2.3 OpenSimulator
OpenSimulator is a well known 3D application server. It can be used to create
virtual environments to simulate scenarios of the real world. It is an open source
project and is available for download on its website for the most frequently used
platforms. It has the capability of being executed locally, so developers can easily
customise it.

OpenSimulator can be accessed from a large set of client applications (viewers)
that allow, as well, virtual environment manipulation through a Graphical User
Interface (GUI). Viewers are the native tools for virtual environments creation
on OpenSimulator. Viewers support the rendering task so that users can interact
with the 3D application.

1http://cpntools.org/ (June 2013)

7

http://cpntools.org/

An OpenSimulator virtual world is structured in regions. Each region can be
accessed and managed independently. Not only 3D structures, but also sounds,
can be loaded into a region. Moreover, an entire region can be loaded from a
single file called an OAR. This constitutes an easy way of sharing regions. For
more information about OARs see Section 3.2.

OpenSimulator provides an API to interact with external applications. This is
how the APEX components interact with it.

2.3.1 Region Modules and OpenSimulator API

The other APEX framework components interact with the OpenSimulator server
instance running in the virtual environment component through region modules.
Modules are basically .NET Dynamic Link Librarys (DLLs) that are loaded when
the OpenSimulator server is started. The OpenSimulator ”bin” directory is scanned
for DLLs on every initialisation in an attempt to find region modules stored there
and load them to the current 3D application server instance.

Typically, region modules drive their execution by registering for events in the
OpenSimulator instance (e.g. user logins, user movement, chat messages or even
clock ticks). After catching an event the module executes whatever is needed to
complete its task.

Currently, there are two different types of region modules: non-shared modules
and shared modules. Shared modules are the most general and control the execu-
tion of all regions in an OpenSimulator instance. Non-shared modules are more
specific and only control the execution for one of the regions in an OpenSimulator
instance.

Region modules have a base interface that needs to be implemented for them
to execute with no errors. A region module must implement INonSharedRegion-
Module or ISharedRegionModule for non-shared and shared modules respectively.
Both of them extend IRegionModuleBase which is the base interface for any region
module. The methods in this interface are listed and described below:

• Name - This method must return the name of the module.

string Name { get; }

8

• ReplaceableInterface - This method provides stub functionality to region
modules. This means that if no other region module implementing this
interface is found then this method defines the default behaviour.

Type ReplaceableInterface { get; }

• Initialise - This method is called right after the module finishes loading into
the OpenSimulator instance. All configurations required for the region mod-
ule to run correctly, may be set inside this method.

void Initialise(IConfigSource source);

• AddRegion - This method is called when a region is added to the module.
If the module is a shared one this method would be called for every region
in the instance, but if the module is non-shared it will be called only once.
The reference for a region scene must be set in this method so that it can be
used later on the execution of the module.

void AddRegion(Scene scene);

• RegionLoaded - This method is called when all the registered modules for
a determined region finished loading. The difference between ”AddRegion”
method is that here we have all the functionality provided by the modules
that were already loaded.

void RegionLoaded(Scene scene);

• RemoveRegion - This method is called for any removed region. This can
happen either by removing a specific region manually or in a module, or
by shutting the server down where all the current regions are automatically
removed.

void RemoveRegion(Scene scene);

• Close - The close method is called whenever the OpenSimulator server in-
stance is shut down.

9

void Close();

Moreover shared region modules have to implement one more method called
”PostInItialise” that is invoked when all the regions for a server instance have
finished loading. So it is called on each new region. It provides the opportunity
to configure the module settings every time a new region is added to the current
instance of the OpenSimulator server.

There are several other methods in the OpenSimulator API. It is possible
to achieve almost everything that can be done with server commands or with
an OpenSimulator compatible viewer. Here we are particularly concerned with
the methods and classes used to generate 3D objects in the virtual environment.
The main class for 3D object creation is called ”SceneObjectGroup”. This class
represents a group of linked objects. It provides several methods for the object
manipulation tasks such as scaling, rotating and positioning. Another important
method is implemented in the ”Scene” class and it is called ”AddNewSceneObject”.
This method is used to make some instance of ”SceneObjectGroup” visible in the
respective scene of a region. Also we can choose whether to persist or not, in
the OpenSimulator Data Base (DB), the object we are adding to the scene. If an
object is persisted, then it will be always visible in the region until it is deleted
even if the server is shut down or breaks. If the object is not persisted, then it will
disappear every time the server goes down.

2.3.2 Environment generation problems

As it was said, 3D application servers like OpenSimulator can help to reduce the
costs associated with the prototyping of ubiquitous environments. However, the
virtual world development process associated with these tools is not as evolved as
it could be. It is very slow and inefficient when compared to other virtual envi-
ronment areas like the games’ industry, which is constantly evolving and making
use of the most powerful techniques. Rule based or graph oriented modelling are
examples of such techniques. There are several tools using these techniques to
build 3D models. Some of them are going to be covered in the next chapter.

The current tool used to develop virtual environments in the APEX framework
is an OpenSimulator compatible viewer. The process of creating objects through

10

the viewer is quite abstract allowing the user to create almost any imaginable
scenario. However this makes the tool little efficient when trying to develop specific
environments.

The environment generation process using an OpenSimulator compatible viewer
is made by creating simple primitives (prims). A prim is the smallest part of a
structure in the virtual environment, and so, the most abstract too. It can be a
box, cylinder, prism, sphere, torus, tube, ring, cone or a pyramid. Each prim can
be mapped with a texture.

Figure 2.2: Environment generation through a viewer (basic box)

Creating a simple box with a cubic unit of OpenSimulator measures (Figure
2.2) is done by accessing the build option through the avatar menu and then
choosing box as the prim type. The box dimensions can then be edited as well
as a texture can be mapped. Changing the prim dimensions (X, Y or Z) is done
by accessing the edit option of the prim menu to set the corresponding value in a
text box or to drag and drop the corresponding dimension arrow. Mapping a new
texture to a prim is also achieved through the edit option, clicking the texture
button and choosing a texture. The objects are very manageable through this

11

creation process. However, to create a wall with a window, for example, it will not
take less than 4 primitives for the most simplistic solution to be achieved (Figure
2.3). This makes the process very slow and inefficient when creating buildings.

Figure 2.3: Creating a wall with a window with 4 primitives

The most recent viewers already have support for uploading COLLADA mod-
els. There are also 3D libraries on-line with several models (e.g. google 3D ware-
house2). This enables the reuse of previously built models. Nevertheless, the
building process, and in particular, the building of structures that can be popu-
lated with other objects, can be improved and benefit from the advantages of new
modelling techniques and modern languages.

2.3.3 Conclusions

In this chapter the APEX framework and its virtual environment component, the
OpenSimulator 3D application server were described. The OpenSimulator appli-
cation server has an API that can be used to interact with the virtual environment

2http://sketchup.google.com/3dwarehouse/ (September 2013)

12

http://sketchup.google.com/3dwarehouse/

programatically. This API can be used to develop solutions for the virtual envi-
ronment generation problem since it provides methods to create objects in the
virtual world.

Although APEX is a valuable framework for prototyping ubiquitous environ-
ments, the support for developing virtual environments is a feature of the frame-
work that can be further improved, due to the issues related to the tool that is
currently used to describe the environments, and to the fact that this tool is not
tuned for the APEX needs. The most limited process is the development of the
building’s structure. The insertion of isolated objects can be satisfactorily achieved
using models from on-line libraries. Relevant topics for virtual environment’s de-
velopment are described in the next chapter.

13

Chapter 3

Developing Virtual Environments

3.1 Introduction
In the previous chapter, the APEX framework and its components were described.
The framework uses OpenSimulator to manage the virtual environments. It was
said that the current tool for the virtual environment generation process does not
satisfy the APEX framework needs. In this chapter some possible approaches to
solve this problem are addressed.

3.2 OpenSimulator Archives (OARs)
OpenSimulator archives were created to ease the transport of whole regions from
one server instance to another. The information in the OAR is not only about
the shapes in the region, but also about the textures that cover them, the items
contained in them, like sounds, and also about terrain (see [Jus09] for more details).
All that information must be present in a single file because a whole region can be
stored inside the OAR.

The .oar extension is used to identify the OARs, however these files are actually
no more than common zipped tar archives (.tar.gz). By unpacking one of these
files, one can see its internal structure. The folders and files contained in its root
path are shown in Figure 3.1.

The content that can be found inside an OAR package includes the following

14

Figure 3.1: OpenSim Archives internal format

files and directories:

• The ”archive.xml” is known as the archive control file. This file contains in-
formation about version compatibility, a boolean value that specifies whether
the OAR contains assets or not (see below), and a manifest of the regions
included. It is written in eXtensible Markup Language (XML) format.

• The ”assets” directory contains all the assets in the archive. In the OpenSim
context, assets are media files (e.g. textures, sounds, video and text) that are
formatted and ready to be used in the virtual environment. There is no need
to split them into regions because assets can be shared. Each asset name
consists on an ”uuid”, which is used to identify the asset, and consequently
must be unique, followed by the ”asset type”, which is used to identify the
asset type, and finished with the asset extension which allows the asset to

15

be associated with specific editors.

• The ”landdata” directory contains all the parcels in the region. A parcel is an
user created subdivision of a region. Information for each parcel is stored in
separate XML files. The file name consists on as ”uuid” that unambiguously
identifies the parcel.

• Each file in the ”objects” directory represents an object in the region. The
file format used is OpenSim’s XML2. Each file name is by default composed
of an object name, followed by its position in 3D cartesian coordinates, and
ending in its unique identification (uuid). Although, unlike asset file names,
any component of its name can be changed without affecting the object itself.
So these files can have any name because the information about the object
is only taken from the XML.

• The ”settings” directory contains the settings information for the region in
the XML format. These are the settings that can be accessed on the ”region
settings” menu of any OpenSimulator viewer. For example, the ability to fly
is a setting that can be found in these files. The file name will be the same
as the region name.

• Finally the ”terrain” directory contains the terrain file for the region, stored
in raw format. Its extension must be ”.r32” and the file name is also the
same as the region name.

The OARs format was designed in order to overcome three main problems
[Jus08]. First, to make it easy for people to read and write different OpenSim files
within an archive. Since OARs are common compressed files, anyone can open
them and manage their content. Moreover, the files within the archive are laid out
to make it easy to perceive the different types of data. Second, to make it easy
to compose two region archives into a single region archive. This means that the
contents in one region can merge into another one just by copying the respective
files from a directory to the other. Note however, that files in the terrain directory
are an exception because one terrain relief would override the other. Hence this
feature is more useful for archives that are collections of objects rather than whole

16

regions. Finally, to make it possible to compose archives from scratch. There is
no obligation to create an OAR by saving the contents of an existing region. The
user can create his own files outside of the system and compose the archive.

OAR archives are the most suitable solution to share virtual objects within
OpenSimulator since they were created for it and are completely adapted to it.
They store every single detail of a whole region so that no information is lost
when sharing amongst different application server instances. However these files
can be a problem in the context of the APEX environment generation due to the
fact that every time they are loaded, the previous environment is overwritten,
causing some information in other APEX components to be erased or unlinked.
This issue would require the recreation of these information for the framework to
work properly. Thus, consuming more time in the redesign process. One of the
objectives of the APEX framework is to streamline the prototyping of ubiquitous
environments.

Despite being possible to manually create OAR files, they are a technical file
format and not the simplest way to build virtual environments.

3.3 Virtual environment modelling languages
An alternative to the archives discussed above (OAR) is the creation of virtual
models from 3D modelling languages. Using modelling languages to create 3D
models can provide a high level of customisation and accuracy. Although, the
compatibility is imposed by the OpenSimulator ability to import the generated
models, which currently is limited to COLLADA files. This problem can be solved
by converting an input language format into the COLLADA format. Actually there
are several tools that are able to make this conversion (e.g. Blender, MeshLab).
Another advantage of the modelling languages is that the models can be simply
added to the virtual environment without affecting any existent objects and there
is no need to overwrite the whole region.

The most relevant modelling languages are going to be described below.

17

3.3.1 Scene graphs based languages

Scene graphs are a well known structure that is very useful when arranging the
logical and spatial representation of a graphical scene. They can be used to repre-
sent 3D virtual worlds in computer graphics applications. A general definition of
a scene graph is that it is a collection of nodes linked by edges and organised in a
tree structure, so each node can have several children nodes but only one parent
node. This is a hierarchical structure, which means that any operation applied to
a parent is also applied to its children. This property is called state inheritance.
The nodes in the scene graph store the information to manage the scene, while
the edges link them in a way related to the spatial and semantic arrangement of
the objects. A common feature of scene graphs is to group related objects into a
compound object which can then be transformed as a single object.

Figure 3.2: Scene graph example of a house

There are three different types of nodes in a scene graph:

18

• The root node is the first and it is the only one that does not have a parent
node. All the other nodes are connected either directly or indirectly to the
root node. This means that every leaf applies its operations, since they all
derive from it.

• The internal or group nodes are the nodes that stand between the root and
the leaf nodes. They are commonly used to preform a group of 3D operations
like translations, rotations, scaling or shearing. Internal nodes describe the
virtual world’s state (position, orientation and size).

• The leaf nodes have no children nodes, so they cannot be parent nodes. They
contain geometric data with the succession of operations of their ancestors
(in a direct line from the root node) applied to them.

An example of a scene graph is shown in Figure 3.2. In this example the entire
house is rotated in the root node, then every room is placed in their respective
position by a translation operation and finally chairs and beds are rendered in each
of the rooms.

Scene graphs are high level graphics languages that avoid procedural aspects
of low-level ones like OpenGL [Woo03]. Scene graphs use a low-level graphics tool
to render the scene, however they are completely independent from each other.
The scene graph describes and updates the scene and indicates the content to be
rendered by the underlying API.

Some languages that implement scene graph structures are described below.

Virtual Reality Modelling Language (VRML)

The Virtual Reality Modelling Language (VRML) is a standard for representing
3D models. It was created by the Web3D Consortium1 to represent 3D interactive
vector graphics on the World Wide Web (WWW). Despite using the scene graph’s
structure, it does not have a reference to a root node in its syntax. The root node
is ambiguous and can be any of the other nodes.

VRML has default support for simple graphics primitives like cubes or spheres.
1http://www.web3d.org (April, 2013)

19

http://www.web3d.org

X3D

X3D is an XML based standard that is used for representing 3D computer graphics.
It is the successor of VRML and features some extensions to its predecessor like the
access to programming languages. It was also created by the Web3D Consortium.
Due to the fact that it is based on XML, it benefits from some advantages like the
freedom to define your own syntax. This feature makes the language very versatile
and allows it to be easily adapted to any situation.

COLLADA

The COLLADA schema development was initiated by Sony Computer Entertain-
ment2 and the project’s objective was to create a Digital asset exchange (DAE)
format [AB06]. Nowadays many other Digital content creation (DCC) [EV01] tool
companies are working together joining their expertise to improve the format. It
was built using other open standards (e.g. XML, UTF8, XPath etc.) and it is also
an open standard.

COLLADA defines an XML database what enables anyone to freely exchange
COLLADA models without loosing any information. Its schema can be easily
extended by end users for their own purposes. It was not designed to fit some
specific needs but to be a media content holder for any target platform. It also
supports all the basic features that a 3D interactive application needs, including
shader effects and physics simulation.

The COLLADA format has a relevant advantage from the formats described
before. It is the only format supported by OpenSimulator for now. So no conver-
sions are needed in order to upload COLLADA files into OpenSimulator.

3.3.2 Procedural modelling

The generation of large 3D environments is a very time consuming task when
developing virtual environment applications. In a large scene, there are sometimes
very similar constitutes that have very similar building processes too. Usually,
however, there are small changes between such constitutes. Consider for example

2http://www.scei.co.jp/index_e.html (April, 2013)

20

http://www.scei.co.jp/index_e.html

the development of a virtual environment representing a care home. There would
be a great number of rooms in it, and every room would be slightly different from
the other, but with same kind of objects and the same kind of sizes. An approach
where every object is developed individually would be unfeasible, given the effort
and time it would implicate, when we just want very similar rooms with some small
differences. A possible approach for this problem is to provide a set of parameters
to a function or algorithm that can generate those slight differences. This process
is called Procedural modelling.

Figure 3.3: Procedural building phases

Using procedural methods for generating 3D environments has proven to be
a good solution for problems like the one described before. Procedural modelling
techniques require reduced human effort, by automatically generating 3D models
[SC11]. However, the process needs guidelines (parameters) from the users to
transform the objects as desired. The process is usually characterised by having a
set of generation rules that transform groups of the most simple objects into most
complex ones adding small changes to them, step by step. However, the results
produced may have low graphical details quality which means that additional
tuning might be required.

Fractals [Pen84], Lindenmayer Systems (L-Systems) [Tal96] or Generative mod-
elling are some examples where procedural modelling techniques are used. For
example, L-Systems are usually used in virtual reality applications for modelling
plant ecosystems. Geospatial L-systems [CBSF07] are an extension to the stan-
dard L-Systems that incorporates geospatial awareness so they can be used in a
geographic context like the development of virtual urban environments. An appli-
cation that perceives the spacial relations between objects in an urban environment

21

can determine for example that a building wall cannot have windows because there
is another wall too close.

3.4 3D modelling tools
3D modelling languages are the basis for the creation of virtual environments,
although it is unthinkable describing a whole building by manually writing a 3D
model using these languages. Nowadays, there are several tools for developing
virtual environments which are based on these languages, however they do not im-
ply writing the models manually, or even to have knowledge about the underlying
language. Instead, they provide Graphical User Interfaces (GUIs) that receive the
user operations and translate them into the underlying language.

3D modelling tools help people develop virtual models of 3D scenarios and
support their edition and manipulation. A 3D model is composed by a polygon
mesh or a set of points that give it its physical aspect. A user can add new points
to the mesh, delete or position the existing ones, giving the model the desired
shape. Additionally, textures can be mapped to the mesh points so that the
model changes its appearance. 3D modelling tools usually have a list of features
that support these operations and many other useful ones. Generated 3D models
can be exported into files. There are several alternatives to express these models,
as discussed in the previous section. Modelling tools may support some of these
formats, either by importing or exporting, giving models compatibility with other
3D applications such as OpenSimulator.

There is a wide diversity of 3D modelling tools in the market. We can find
both professional or more simple solutions for home use. Also, some are licensed
under commercial licenses and others under open source licenses.

Here we aim to find a solution, composed by one or more tools, that can be
integrated with the APEX framework in order to ease Virtual Environment (VE)
creation. This solution should be a robust, scalable and easy to use tool for the
development of buildings for prototyping ubiquitous environments. Thus, some
criteria are going to be taken into consideration in order to serve the project
needs. So, the solution must:

22

• be an agile tool for buildings development. The use of the APEX framework
is based on the development of virtual buildings to test ubiquitous systems;

• have an intuitive and efficient interface granting ease of use. The use of the
APEX framework shows that the current tool (OpenSimulator compatible
viewer) is not the ideal solution in the buildings context. An easy to use tool
will grant quicker results;

• be accurate enough to create scenarios with acceptable detail. The accuracy
of the scenario is also a very important aspect in the APEX framework.
Scenarios with low accuracy may lead the user to not recognising the place;

• support interoperability with OpenSimulator. This is a mandatory aspect,
since OpenSimulator is the tool used to manage the virtual environment in
the APEX framework;

• be composed by open source software so that we can easily get its source
code and develop an integration layer with APEX framework.

This research is strongly based in these criteria. So, many other features of 3D
modelling software, that are important in a wide range of cases, will not have a big
emphasis in this analysis because they are not crucial for the project development
and performance, and consequently we are not as concerned about them.

Some chosen tools are going to be described and analysed below, taking into
acount the criteria cited above.

3.4.1 Blender

Blender3 is an open source 3D computer graphics software project. It is licensed
under the GNU General Public License (GNU GPL) so the public is free to use
its source code. Blender is a multiple platform tool, it is available for download on
its website for Windows, Mac OSX and Linux amongst other versions. Its initial
stable release was made in 1995 and currently it is on its 2.68 stable version.

3http://www.blender.org (August, 2013)

23

http://www.blender.org

Blender is a powerful tool that has many useful features for video games, visual
effects and many other 3D interactive applications creation. Here we are partic-
ularly interested in 3D model creation and its strong compatibility with different
3D object file formats. It is fully compatible with the COLLADA format among
several others. Some of the most relevant features for this project are:

• Texture management;

• Mesh manipulation;

• Support for importing and exporting several formats like COLLADA, Wavefront
OBJ (OBJ), eXtensible 3D Graphics (X3D) or VRML amongst many others.

Figure 3.4: Manipulating 3D meshes with Blender

Blender has a large community of users and is widely accepted worldwide.
Since Blender is an open source project we can easily improve it or create a plugin
in order to integrate with the APEX framework, if needed.

3.4.2 MeshLab

MeshLab4 is a system developed for graphical mesh processing. As with Blender,
it is an open source project licensed under GNU GPL. It is easy to get its source

4http://meshlab.sourceforge.net (August, 2013)

24

http://meshlab.sourceforge.net

code and develop a plugin to enhance MeshLab’s list of features. MeshLab is highly
based on the VCG Library5 for all the core tasks on mesh processing. MeshLab is
a cross platform product, it is even available for mobile platforms and is currently
on its 1.3.2 version.

Figure 3.5: MeshLab in action [CCR08]

Amongst other important aspects, MeshLab was developed with three main
objectives [CCR08] in mind:

• Ease of use - This means that no advanced 3D manipulation skills are needed
to use MeshLab;

• 3D scanning oriented - Since there are already several strong players on mesh
edition, MeshLab is particularly concerned about mesh processing tasks like
cleaning, inspecting or converting meshes;

• Efficiency - MeshLab is a very efficient tool that can process large amounts
of primitives on 3D scanning meshes.

5http://vcg.sourceforge.net (August, 2013)

25

http://vcg.sourceforge.net

MeshLab provides an extensive list of useful features on mesh processing [CCC+08].
Some of the most relevant characteristics of this project are listed below:

• Interactive selection and deletion features can be used to prune an imported
mesh and adjust it to contain only what the user needs;

• The import and export features support many of the most used 3D file
formats including COLLADA. Thus, any created or managed meshes can
be transformed so that OpenSimulator can recognise them;

• Mesh clearing and remeshing filters can be used to remove the noise and
redundancy in a model or to fill mesh holes in order to make it less complex
and more lightweight;

• The measuring tool can be used to scale the imported mesh to the desired
size by defining linear measures between pairs of points in the mesh.

This software is an efficient and useful tool for the mesh development. It
can be used in the project to increase the objects’ efficiency (remove redundant
information) and also to give them compatibility with OpenSimulator since it
supports a wide list of 3D object file formats.

3.4.3 Sweet Home 3D

Sweet Home 3D (SH3D)6 was created for fast interior design. It is a fully tuned
tool for building development. The program is aimed at people who want to
quickly design their home’s interior. Nevertheless, it can be used in numerous
other contexts, due to its potential and ease of use.

Sweet Home 3D (SH3D) is also an open source project licensed under GNU GPL.
Its source code can be easily downloaded at the website. The tool is very well sup-
ported and there are also some guides on how to develop plugins for SH3D. It
is based on JAVA7 and is a cross platform tool, it can be even used online on its
website with no limitations. Currently the software is on its 4.1 version.

6http://www.sweethome3d.com (August, 2013)
7http://www.java.com (August, 2013)

26

http://www.sweethome3d.com
http://www.java.com

Noteworthy is its ease of use with a low learning curve due to its approach
for developing virtual scenes. The SH3D user interface is not a common 3D de-
velopment tool interface, it is adapted to building development and this was an
interesting aspect about this software. It is essentially based on drag and drop
gestures and the most important is that a 3D scene is transformed in a two-
dimensional (2D) plan where you can develop your building, thus dramatically
reducing the complexity of the development task. Its interface is composed by
four panels (see Figure 3.6):

Figure 3.6: Sweet Home 3D interface

• Panel 1 is the furniture catalog. There, it is possible to find objects to add to
the scene. A new object can be added to the scene by dragging it from this
panel and dropping it on the home plan panel explained below. Moreover, it

27

is possible to add new objects to the furniture catalog simply by importing
them.

• Panel 2 is the home furniture list. This list contains all the objects that were
already added to scene. The objects can be selected and their characteristics
edited.

• Panel 3 is the home plan. It is a 2D plan where the scene can be created.
This is the main pane, every object on the scene must be added to it, either
by dropping or creating it. It displays the building under construction as
seen from the top.

• Finally, panel 4 is the home 3D view. This is the render pane, where the
resulting 3D scene can be seen. It is updated in real time and the scene can
be seen either from the top or from a virtual visitor’s view at any chosen
point.

Another nice feature of SH3D is that it can set a house blueprint as the home
plan background. After setting the correct dimensions for the blueprint it is easy
to pounce the walls, doors, windows or any kind of components in a building. This
software is a mature player in the building development context, and so, it has a
strong potential for the APEX virtual environment generation problem.

Despite having these useful features for virtual buildings development, Sweet
Home 3D (SH3D) is not able to export generated models into COLLADA files.
The 3D file format generated by SH3D is Wavefront OBJ (OBJ). So, an auxiliary
software is needed in order to convert the output file from SH3D to an OpenSim-
ulator readable format.

3.5 Discussion
Some possible approaches for the APEX framework environment generation were
briefly studied and its main technical features were presented. Three main ap-
proaches were analysed:

• Use the application server API to build the necessary objects in the virtual
environment;

28

• Use a modelling language to describe the virtual objects and generate an
OAR archive to load them to the virtual environment;

• Use a modelling language to describe the virtual objects and convert them
into a COLLADA file that is legible by the application server.

The use of OARs is going to be discarded. Despite the fact that it could be a
very powerful solution and probably the most suitable for the 3D application server,
OARs cannot be used to add objects to an existing region because the whole region
is replaced when they are loaded. APEX users need to build the environment
incrementally, which means that objects can be added, removed or changed in
the virtual environment during its development. This would not be a problem if
the environment component was the only one in APEX framework architecture,
however it has also other components like the behaviour one that would loose
information about all the current objects and would suffer from malfunction every
time that a region was reloaded.

Still on the possible approaches, a consideration about the second one is that
only scene graph based modelling languages will be taken into account from here
on. This is because the procedural modelling approaches do not meet the needs of
a standard user of the APEX framework. They were developed for large scenarios
with low detailed objects, but when prototyping ubiquitous systems we need to
provide very detailed scenarios to the end users in order to ease their immersion
in the virtual world.

Thus, only two approaches are possible now, using 3D modelling tools or using
the OpenSimulator API. Both of them are going to be properly analysed below.

Some 3D modelling tools have really interesting features for this project, how-
ever some other features in these softwares do not fit with APEX framework needs.
For example, MeshLab has some nice tools for mesh optimisation, although it is
unfeasible creating a whole 3D building using its user interface, moreover it would
not add value over the current solution (an OpenSimulator compatible Viewer).
Another example is that Sweet Home 3D has a very helpful interface and a well
adapted approach for building creation, however it is not able to export generated
3D models into an OpenSimulator readable format. Blender provides an easy way
to change the textures and do other manipulation tasks in a mesh and is able to

29

convert almost any 3D file format into another one, nevertheless its interface, as
well as it happens in MeshLab case, leaves much to be desired in terms of buildings
development.

The other alternative for solving the research problem is to use the Open-
Simulator API. The OpenSimulator API provides methods to interact with the
virtual environment. It is possible to make almost any operation that could be
made through a server window or a compatible viewer. Adding a GUI to a region
module developed using the API, can ease the use of the operations implemented
inside this module.

3.6 Conclusions
Some powerful alternatives of 3D development applications were presented in this
chapter, as well as the format of the OpenSimulator region ARchives (OARs),
the standard files for storing and sharing whole OpenSimulator virtual regions.
Moreover, a brief analysis of some virtual environment modelling languages that
can be useful later in this project was made.

The 3D modelling tools described in this chapter have some limitations regard-
ing the APEX framework virtual environment generation requirements. Despite
having those limitations when they are applied in a standalone way, they can
constitute some good solutions for the project’s problem when applied together,
joining their useful features. Filling the gaps of each other they can become a both
efficient and well adapted tool which fills APEX framework needs, thus getting the
best of both worlds. There are several more tools that can be used to develop vir-
tual environments (e.g. Google SketchUp8, Maya9), however some of them are not
open source, or do not have support COLLADA files, or even do not add value to
the tools described. The following table shows an evaluation of the tools described
before taking into account the relevant features for this project. This evaluation
was made considering the projects context and not a context of standard use of
3D modelling.

Looking at the Table 3.1 we can conclude that we need to join more than
8http://www.sketchup.com/ (October 2013)
9http://www.autodesk.com/maya (October 2013)

30

http://www.sketchup.com/
http://www.autodesk.com/maya

Features Environment Dev. Ease of use Accuracy Collada support Open Source

Blender X X X

MeshLab X X X X

Sweet Home 3D X X X

Table 3.1: 3D tools relevant features

one tool to get a complete solution that serves the project’s needs. Thus, three
hypothesis were considered:

• Joining Sweet Home 3D (SH3D) with MeshLab;

• Joining Sweet Home 3D (SH3D) with Blender;

• Joining the three tools.

Since all of the tools are open source softwares, we are able to get their source
code and integrate with each other. These three potential solutions are going to be
analysed in the next chapter. Moreover, the approach that uses the OpenSimulator
API is also analysed.

31

Chapter 4

Virtual environment development
tool

4.1 Introduction
In the end of the previous chapter it was concluded that there are two main possible
approaches for the solution of the virtual environment generation problem in the
APEX framework. One of the possible solutions is to use a group of 3D modelling
tools that serve a set of requirements imposed by the APEX framework needs in
order to make a joint coherent solution. An analysis of the relevant features of
the modelling tools was made, and it was concluded that these tools could not be
applied in a standalone way. Instead, they should be applied together in order to
meet all the requirements.

The other approach is to use the OpenSimulator API. This approach assumes
the creation of an OpenSimulator region module to interact with the virtual envi-
ronment, and a user interface to call the respective methods on the region module.
The user interface must be adapted to building creation so that it can streamline
the virtual environment generation of a standard APEX framework project.

In this chapter, both of the approaches are going to be fully described and
analysed. More than one solution may be presented for each approach. For analysis
purposes, the model of a building will be used, so that the final product can reflect
advantages and disadvantages for each solution. Moreover the time spent to build

32

the model for each solution is one of the most important aspects to the project,
since the main objective is to streamline the virtual environment generation. The
blueprint of the building can be seen in Figure 4.1.

Figure 4.1: Building model blueprint

This is a simple medium scale building, with four rooms and a central hall. It
has two windows in each of the front rooms and one window in each of the back
rooms. Each room has an internal door that gives access from the central hall to
the respective room. Moreover there is an entrance door that gives access to the
building. The model of the building must be created using each solution so that
results can be analysed and compared. At the end of the chapter, a comparison
between the solutions will be made and the one that best fits the requirements will

33

be chosen.

4.2 Using 3D Modelling tools
The first approach that is going to be described is the use of the 3D modelling
softwares to form a complete tool that meets the project requirements and can
be adapted to the APEX framework. For this approach, three different solutions
were found, although only two are going to be taken into account (see Figure 4.2).
The one that joins the three tools was discarded because MeshLab and Blender
play very similar roles in this task, thus using both in the same solution would
introduce some unnecessary redundancy.

Figure 4.2: Using 3D modelling tools approach

All the solutions found have to include SH3D because this is the only tool that
has a satisfactory approach to the development of buildings:

• Solution 1 - SH3D and Blender

• Solution 2 - SH3D and MeshLab

34

Figure 4.3: SH3D Building development

Each of these solutions is presented in the next sections. Both of them, however,
start with a common task that is the definition of the building in SH3D.

4.2.1 Modelling the Building in SH3D

After launching the tool, the external walls started to be designed in the home
plan taking the blueprint (Figure 4.1) measures into account. After that, the
internal walls were designed and, to finish the building structure, all the windows
and doors were added in the respective places. This was done by dragging and
dropping them from the furniture catalog to the home plan panel. When the
structure was complete, some textures were attached to the walls in order to give
them a more realistic appearance. For this, each wall was selected in the home plan
panel and its texture was edited by selecting the option ”change walls”. During
this process it was possible to see the building evolution in the home 3D view
panel in real time. This is a really useful feature since we can foresee the final
aspect of the 3D model while we are designing the building. This enables us to
quickly correct some imperfections that show up while the development is being
made. The final aspect of SH3D when the building development was finished can

35

be seen in Figure 4.3.
In the end of the development process the 3D model was exported into the

Wavefront OBJ (OBJ) format so that it could be used in the next by the 3D
modelling software.

The process of developing and exporting the whole building model took about
7 minutes. This is going to be used as the base time for the solutions that are
going to be described below using Sweet Home 3D (SH3D).

Figure 4.4: Using Blender to transform the building model

4.2.2 SH3D and Blender

The result of developing the building model in SH3D was a 3D model in the OBJ
file format as it was said before. Some more files, such as texture images, were
attached to the OBJ file. The next step in this process was to open the Blender
application and import the resulting files into its environment. Here Blender plays
basically a conversion role for the previously generated building model. After im-
porting the 3D model, the building was rendered in the application main panel. By

36

selecting the export into COLLADA option, Blender created an output file con-
taining the model of the building in the respective format. This task is illustrated
in Figure 4.4.

With this step we obtained an OpenSimulator readable 3D model. So after that
we just uploaded the resulting model to a local server instance using a compatible
viewer. This process took about 6 minutes to complete, so the final time for this
solution was about 13 minutes. Notice however that, if this solution is chosen, this
time can be improved by automating the conversion process.

Figure 4.5: Result for the solution SH3D+Blender

Despite being an easy to implement solution, it revealed some problems in
terms of compatibility of 3D file formats between Blender and OpenSimulator.
The generated COLLADA model had a texture attached to the walls although it
was not visible when uploaded to the OpenSimulator server. The resulting model
had a homogeneous aspect and walls were hardly distinguished. Figure 4.5 shows
the resulting model for this solution.

37

4.2.3 SH3D and MeshLab

This solution is slightly different from the one described before. The output (OBJ)
3D model from SH3D is also used as an initial model, although this time MeshLab
is used instead of Blender for the conversion task.

Figure 4.6: Using MeshLab to transform the building model

The process started opening MeshLab and importing the resulting mesh from
the model of the building development in SH3D. As MeshLab also had support for
OBJ file format meshes, the same file used in the previous solution was used here.
After importing the model it was possible to see it in the MeshLab render panel (see
Figure 4.6). After that, there were several mesh optimisation options available, but
for the purpose we were just concerned about OpenSimulator compatibility. So the
mesh was exported into a COLLADA file by choosing the option ”Export Mesh
as” and selecting the DAE extension. This process resulted in a COLLADA 3D
model of the building that could be easily uploaded to an OpenSimulator server
instance as it was made in the previous solution. Thus, after launching a local
server instance the model was uploaded to it using a compatible viewer and it was
possible to see the final result for this solution in action (see Figure 4.7).

38

Figure 4.7: Result for the solution SH3D+MeshLab

The time elapsed since MeshLab was open until the result could be seen on
OpenSimulator took about 5 minutes too, so the final time is very similar to the
previous solution. Also, this time can be improved if this solution is chosen by
doing the conversion task programatically.

This solution was also an easy to implement one. Although, the final result
showed up some evident differences when compared to the previous one. Here the
resulting COLLADA model seem to be fully compatible with OpenSimulator. The
textures were uploaded correctly and the building had the same aspect as it was
in SH3D. The result of this solution can be seen in Figure 4.7.

4.3 Using OpenSim API
The second approach described for solving the APEX framework environment
generation problem is the use of the OpenSim Application Programming Interface
(API). This approach can generate more customised solutions since it assumes
the development of an OpenSimulator region module that interacts directly with

39

the virtual environment API. However, an user interface for describing the virtual
objects (e.g. buildings) has to be developed in order to streamline the process
and make it more user friendly. It is unfeasible trying to describe a 3D building
model just by calling OpenSimulator API methods in a command line for example.
Figure 4.8 shows the approach architecture.

Figure 4.8: Using OpenSim API approach

The building process for this approach was structured in four basic tasks. Each
one of them related to the creation of a common part of a building:

• Walls - The wall is probably the most common part of a building. For the
approach’s purposes a wall is going to be defined by two 2D endpoints, a
height, a bottom altitude and a thickness value. The two endpoints define
the 2D start and end coordinates for the wall, respectively. The height
value defines the wall’s height from bottom to top, the bottom altitude value

40

defines the altitude where the bottom of the wall is aligned, and the thickness
value defines the thickness of the wall, as the names suggest.

• Holes - Holes are used for describing both windows and doors. Both of these
parts are composed by a wall with a rectangular hole in its middle. So the
parameters that define a hole part are the same that define a wall plus some
more that define the hole dimensions and vertical positioning. The added
parameters are the hole bottom that defines the distance between the wall
bottom and the bottom of the hole (e.g. this parameter should be 0 for a
door), and the hole width and height that define precisely the width and
height of the hole inside the wall.

• Planes - Planes are simple rectangular structures that define grounds or
ceilings in a building. Despite being represented by a rectangle they are also
defined by two points in the 2D view. The first one is the top left corner point
of the rectangle and the second one is the bottom right corner point. There
are two more parameters needed to define a plane. The bottom altitude that
represents the base altitude of a plane and the thickness that represents the
plane thickness. Here the thickness is defined in the altitude (Z) axis.

• Roofs - In the virtual environment, roofs are represented as pyramids. Roofs
are also defined as a rectangular structure, just as planes. Although, there is
one more parameter needed to define a roof when comparing to the planes:
the roof height, that is, the distance from the bottom altitude to the peak
of the pyramid. Also there is another parameter that is not needed when
comparing to planes, the thickness.

All the parts cited before must be sized in the OpenSimulator dimensions. This
means that a measuring unit corresponds to an OpenSimulator unit of measure-
ment too. The two main components for this approach are described in detail
below.

4.3.1 The Region Module

As it was said before, this approach for solving the APEX framework problem
requires the creation of an OpenSimulator region module. Since the building pro-

41

cess is divided into four basic components of an edifice, the development of the
module started with the implementation of each one of this components. A class
was created for each component containing all of its parameters and a method for
rendering the corresponding object in the virtual environment. The region mod-
ule created implements the INonSharedRegionModule interface, so the interface’s
methods had also to be implemented. Here the non-shared interface was chosen
because we want all the environment generation functionality attached to a single
region and not to a group of them.

An important aspect on the interface methods was the ”Initialise” method
implementation. The need to maintain a reference to the objects that were already
deployed to the virtual environment appeared soon. Some features like removing
existent parts have to refer to an already created object, so its reference is needed.
To solve this problem a list of the current objects was created. This list is initialised
in the ”Initialise” method and is updated every time an object is created or deleted.

All of the four parts that compose the building process are defined by two
points and a couple of other parameters. However, OpenSimulator has a different
approach for object representation. In OpenSimulator, every object is represented
by one centre point (object position), three more parameters corresponding to the
sizes in the three axis (X, Y, Z) of the 3D space (object scale) and an angle (object
rotation). The process of converting the object’s parameters into OpenSimulator
compatible parameters is achieved through trigonometric transformations. Which
transformations are used depends on the object that is being created. For example,
to transform a wall it is necessary to:

1. Calculate the distance between the two points that define the wall so that it
can be mapped to the value of the X axis in OpenSimulator. The formula
used to calculate the distance is derived from Pythagoras theorem:

d =
√
∆x2 +∆y2

The values of ∆ are calculated by the difference between the the respective
coordinate from the start point to the end point. For example ∆x is equiv-

42

alent to (x2 − x1), x1 being the X coordinate for the start point and x2 the
X coordinate for the end point.

2. Calculate the middle 3D point (x,y,z) between the two points that define the
wall so that it can be mapped to the object centre point on OpenSimulator.
The formula used to calculate the middle point is as follows.

P =

(
x1 + x2

2
,
y1 + y2

2
, b+

h

2

)

In the previous formula b represent the bottom altitude of the wall and h is
the height of the wall.

3. Calculate the angle formed between the X axis and the line segment between
the two endpoints of the wall so that we can get the rotation of the wall.
The triangle internal angle formula can be used for this (see Figure 4.9).

Figure 4.9: Triangle representation for angle calculus

43

θ = sin−1

(
∆y

d

)

Thus, this formula returns the rotation of the OpenSimulator object that
has to be applied around the Z axis.

4. Finally, when the object position and rotation are already calculated, it is
only needed to finish the object scale calculus. The X value of the scale is
already calculated by the distance, only the Y and Z values are missing that
are directly mapped by the wall thickness and height respectively.

As it was said, the transformation process depends on each component. Similar
tasks have to be made to transform the other components into OpenSimulator
readable ones.

4.3.2 The User Interface

The region module created is a key piece on the current approach, although, it
would be useless without a user interface that can efficiently transform simple user
actions into the required elements on the virtual environment. It was already said
that Sweet Home 3D (SH3D) has a very efficient approach due to its user interface.
It simplifies 3D building development by decreasing the number of dimensions to 2
in its home plan panel. Thus, the interface for this approach was developed taking
into account that fact, so that it can also provide an easy to use and intuitive
interface to the users. Although the user interface that was created does not
provide a 3D view of the objects as done in SH3D, the virtual objects created are
added to the OpenSimulator virtual environment in real time. Hence, it is possible
to see the results just by connecting a compatible viewer to the server instance.

The user interface created can be seen in Figure 4.10. It is composed of four
distinct parts:

1. Zoom - The zoom tool allows the user to zoom in or out over three levels. It
has a button for each level of zoom. The first level resizes the design panel

44

Figure 4.10: OpenSim API approach interface

area to the total area of a whole region, while the second and third levels
resize the panel area to a half and a quarter of the region size respectively.
Thus, the user can design more precisely some parts of the building by zoom-
ing in and can also design quickly some parts that require less precision.

2. Parts - The parts selector allows the user to select the type of part he wants
to add. As it was said before the building process is composed of four parts,
so there are four buttons in the parts selector, one for each part. When the
user selects a part the properties panel adapts the parameters to fit the part
characteristics.

3. Properties - The properties panel shows the current part parameters and
their values while the user is designing. Each part has different characteristics
so the properties panel is refreshed on each part selection. The properties

45

panel also lets the user customise the objects that are being designed. It is
possible to change each parameter’s value before designing an object.

4. Design panel - The design panel is the place where the user develops the
buildings. It provides a 2D representation of the objects. Each part of a
building has a different representation so that the user can distinguish them.
Walls are represented by black lines, holes are represented by blue lines,
plans are represented by grey rectangles and roofs are represented by orange
rectangles. Moreover, the design panel provides the ability to delete already
designed objects by right clicking on the mouse over the part that has to be
removed and choose the option ”delete”.

To improve accuracy when designing in the panel two features were imple-
mented: position preview and position tracker. The position preview feature
is achieved by a small blue circle that follows the cursor and converts its
position into the resulting location in case of left clicking the mouse. The
position tracker is a label located on the bottom of the panel that shows the
current position of the cursor.

4.3.3 Modelling the Building

After developing the region module and the interface for this approach, a test was
made with the building blueprint in Figure 4.1. The region module created was
placed in the binaries folder of the OpenSimulator server package. The experience
started launching the OpenSimulator server. The server instance loaded all the
modules placed on the binaries folder including the module created for the envi-
ronment generation. When it finished loading, the interface showed and it was
ready to start designing the building blueprint. But before starting the design
process, an OpenSimulator compatible viewer was launched and logged into the
local server so that we could see the virtual environment.

The design process was very intuitive. The blueprint dimensions were easily
treated due to the interface positioning features and all the parts were designed
without difficulty. Only two mouse clicks for each part are required if using the
default parameters for the building parts. Moreover, it was possible to check every

46

step of the building development through the OpenSimulator viewer in real time.

Figure 4.11: OpenSim API approach resulting model

The whole process took about 6 minutes to complete and the resulting model
was quite accurate and nice looking (see Figure 4.11).

This was the solution that took more time to develop. Although the results of
the experience in terms of time showed that the time elapsed is significantly better.
Moreover this solution showed a high compatibility level and no issues were found
on the resulting model of the building.

4.4 Conclusions
In this chapter three solutions for solving the environment generation problem in
APEX framework were described and tested. Each one with specific peculiarities.
Some of the solutions presented required more developing time and some other re-
quired more knowledge about 3D model manipulation. All of them met the APEX
framework requirements. There were different execution times when experiencing
each solution on the creation of the building represented on the blueprint in Figure

47

4.1. The time elapsed to create the 3D objects on the virtual environment is a very
important aspect on the APEX framework context, since the main objective of this
project is to streamline the virtual environment generation. The execution times
are shown in Figure 4.12. These times are indicative and further study would be
necessary to have reliable results. In any case, the choice is not only based in the
numbers, but also in the integration aspect provided by the implemented solution.

Figure 4.12: Solution experience time results

Looking at the results we can see that the two solutions generated from the first
approach have very similar times, rounding twelve minutes. Both of them were
quickly implemented since they are based on the use of external tools. However
the solution with Blender showed some compatibility issues in the textures of the
generated model. The solution derived from the OpenSimulator API approach
had a very low time when comparing with the other solutions. This is mainly due
to its approach. The solution tries to take the best from SH3D interface, that

48

is a mature software for the buildings development, and mix it with the APEX
framework needs to reproduce its interface. Also, the fact that the objects being
developed are created in the virtual environment in real time is an aspect that
confers high agility to the solution, because the user is always seeing the result of
his actions.

The SH3D interface adds value to the solutions generated from the approach
with 3D modelling tools. Although, SH3D has also some aspects that are not
so good in the APEX framework context. For example, the doors created on
SH3D are static objects in the model and cannot have programatic movement as
it can be done with OpenSimulator scripting. Conversely, the approach with the
OpenSimulator API can be improved to attach a default script on each created
door to simulate the door opening and closing movement dynamically.

The fact that two of the presented solutions are based on external tools, can
be considered a negative aspect because these solutions are dependent on the
development of the tools that are involved in its making. Moreover, the OpenSim-
ulator API approach can offer high customisation, since the API provides a way
to implement almost all of the actions that can be done using an OpenSimulator
compatible viewer.

Hence, according to the reasons presented, the choice of the solution for the
APEX framework environment generation problem lies on the solution using the
OpenSimulator API. The current solution was not fully adapted to the APEX
framework context yet. It was tested in a local environment and had not already a
way of connecting to a remote OpenSimulator server, for example. It was already
said that the remote connection is the standard use of the framework. So, some
modifications and improvements had to be made in order to overcome these issues.
The process of integrating the tool with the APEX framework is fully documented
in the next chapter.

49

Chapter 5

Integrating the tool with APEX
framework

5.1 Introduction
In the previous chapter some solutions for the APEX framework virtual environ-
ment generation problem were presented and tested. At the end of the chapter, the
three solutions were analysed and the most suitable one was chosen. The choice
lied on the solution that uses the OpenSimulator API. This solution showed its
potential while it was tested with the house blueprint in the previous chapter.
However, all the tests were made in a local context. Every tool instance was
placed in the same machine, from the OpenSimulator server to the environment
generator interface. It was already said that the APEX framework is frequently
used in a remote way. So, in order to integrate the solution with the APEX frame-
work, a network layer has to be inserted between the user interface and the other
components. Moreover, the tests made to the chosen solution did not comply
with a multiple user context. Some virtual environments can be very large and
also composed of several buildings. A single developer approach to build such an
environment should not be imposed. To make it possible to do cooperative work
in the APEX framework, the environment generator must provide mechanisms to
allow multi-user development. Thus multiple clients should be able to connect to
a single region through the environment generator. This is another integration

50

feature for the chosen solution.
In this chapter, the features developed for the environment generator’s inte-

gration with the APEX framework are going to be described and justified.

5.2 Architecture
As it was said before, the process of integrating the environment generation tool
with the APEX framework assumes the development of some new features. These
features are mainly required because the environment generation tool has to fit
the APEX context. Some changes had to be made in the tool in order to achieve
those features. Basically, the changes made are divided into two groups:

• Remote access - This group of changes is related to the feature of accessing
the APEX framework remotely. That is, logging in into the OpenSimula-
tor server and making use of the environment generator through a network
connection, not needing to be at the same machine as the server.

• Multi-user - This group of changes is related to the support for multiple access
and simultaneous use of the environment generator. In other words, the tool
must allow cooperative work. APEX users should be able to connect to the
environment generator simultaneously and develop the virtual environment
together.

These groups are directly associated with the desired features for the tool to
integrate with the APEX framework. Both groups are going to be fully described
in the next sections.

5.2.1 Remote Access

To provide remote access to APEX framework users, some changes were made
to the basic architecture presented in Figure 4.8. The environment generator
interface has now to be separated from the server by a network layer (Figure 5.1).
This means that the methods for the building parts creation cannot be called
directly, but must be called through a network connection. So, a communication

51

dialect was developed. It was already said that the building parts are divided into
four different structures. Thus, seven different kinds of messages were created in
order to access remotely to the module features. Two of them for the connection
establishment and closing, one for the objects deletion and the other four were
created for each of the different building parts.

Figure 5.1: Remote access architecture

• connect - This is the first message issued. It refers to the connection estab-
lishment and no parameters are required. It must be sent to the main thread
of the region module that is listening at port 12000. After establishing the
connection the module assigns a private port for the new client. All the
following messages must be sent through this private port, which is sent in
the response of the connect message.

52

• quit - This is the last message a client can issue. After the server receives this
message, it closes the socket listening at the private port and the connection
is destroyed. No parameters are required for this type of message.

• d - This is the message that refers to the objects’ deletion. It takes a param-
eter that is the key associated with the object that must be deleted. When
this message is issued, the module searches for the received key on the list of
current objects and if it exists, the object associated with it is deleted from
the environment.

• w - This is the message associated with the wall kind of parts. It takes eight
parameters. The first four parameters refer to the X and Y coordinates of
the start and end point respectively. The next three refer to the wall base
altitude, height and thickness in the OpenSimulator measures. The last one
is the key string that must be associated with the wall.

• h - This is the message associated with the hole kind of parts. It takes eleven
parameters. The first four parameters refer to the X and Y coordinates of the
start and end point respectively. The next three refer to the base altitude,
height and thickness of the wall that contains the hole. The following three
parameters are associated with the hole base altitude in the containing wall,
the hole height and width respectively. The last one is the key string that
must be associated with the hole object that is being created.

• p - This is the message associated with the plan kind of parts. It takes seven
parameters. The first four parameters refer to the X and Y coordinates of the
start and end point respectively. The next two are the plan base altitude and
thickness respectively. The last one is the key string that must be associated
with the plan.

• r - Finally, this is the message associated with the roof kind of parts. It
also takes seven parameters. The first four parameters refer to the X and Y
coordinates of the start and end point respectively. The next two are the roof
base altitude and height respectively. The height parameter is the dimension

53

between the base altitude and the peak of the roof. The last one is the key
string that must be associated with the roof object.

The communication dialect provides all the functionalities of the region module
through a client-server socket connection. Moreover, to ease the selection of the
OpenSimulator server instance, the user interface of the solution was also lightly
changed. It has now one more panel placed at the top left corner of the window
as it can be seen in Figure 5.2. The connection panel is composed of a text
field and a button. The text field takes the Internet Protocol (IP) address of the
OpenSimulator server instance. If no address is typed in the text field it defaults for
the localhost address. The button in the connection panel can show two different
labels. It shows ”Connect” when the interface is not connected to any server
instance and shows ”Disconnect” when it is connected to a valid OpenSimulator
server. When the button is clicked, the environment generator tries to connect to
an OpenSimulator instance using the IP address provided by the text field. If the
button is clicked when the environment generator interface is already connected
to a server, it will trigger a quit message disconnecting from respective server.

5.2.2 Multi-user

The APEX framework can benefit greatly from cooperative development. Despite
the environment generator being a tool that streamlines virtual environment de-
velopment, its utility would be limited if it only allowed one user at a time. There
are very large scenarios that can be designed more quickly with cooperative work.

To provide multiple access for the current solution we might be led to think
of using a region module for each user. However, this solution would not be
dynamic, it would always be limited to the number of module copies we place at
the OpenSimulator server folder. Instead, the desired solution can be listening at as
many ports as the number of users connected, launching a thread for each one and
triggering the required actions on a main thread. This solution was implemented
for the environment generator and Figure 5.3 illustrates its architecture.

The region module launches a server socket when it is loaded. This is the
main link and is running infinitely waiting for new user connections. It maintains
a counter of the connections which is used to determine the port to assign to a

54

Figure 5.2: Environment generator connection panel

particular user. After receiving a new connection request, it calculates the port
and launches a new thread aimed to talk with the new client at the assigned port.
After this, the main thread responds to the user request with the assigned port
number so that the client can continue to interact with the region module trough
this new channel.

Thus, every client is answered independently but in the same region module
at the same time. The client object keys and requests are not mixed since they
are maintained in the respective thread memory. Moreover, the number of simul-
taneous active clients is not limited because the sever resources are dynamically
allocated for each user connection and deallocated on each disconnection. The
only inconvenient is that users can only edit their own objects. However this can
be improved in the future by downloading the current objects list while connecting
to the module.

55

Figure 5.3: Multi-user architecture

5.3 Summary
In this chapter, the changes made to the environment generator tool were described
and justified. We saw that those changes were required for the solution to be
integrated with the APEX framework due to the platform’s typical context of use.

In short the environment generator tool is now fully integrated with the APEX
framework. In addition to the features listed, it now can be used through a remote
connection and also by multiple users at the same time. Allowing remote and also
cooperative development which can widely contribute to the streamlining of the
environment generation process that is the main objective of this research.

The solution’s structure changed a little and the architecture is now more
robust, however it is more complex too. The overall sequence of actions for the
creation of a building part between the user and the other components that take

56

Figure 5.4: Complete solution sequence diagram

action on the solution is represented in the Figure 5.4 in the form of an Unified
Modelling Language (UML) sequence diagram.

Now the environment generation solution is fully integrated with the APEX
framework and ready to be used. In the next chapter an example of use of the
APEX framework will be described and the virtual environment will also be tested.

57

Chapter 6

Developing serious games with
APEX framework

6.1 Introduction
In the last chapter we saw that the environment generator solution needed some
improvements in order to be integrated with the APEX framework context. After
implementing those changes, the solution was fully integrated. J. L. Silva in his
thesis [Sil12] proposes the use of the APEX framework to develop serious games.
This idea will be explored in this chapter. A serious game is going to be developed
and tested using the APEX framework where the new environment generation
solution is used and compared with the previous one.

Serious games combine playing with learning. They stem from the realisation
that games can be used to educate and train, as well as to offer play. Mike Zyda
[Zyd05] defines a Serious Game as a mental competition, played with a computer
in accordance with specific rules, that uses entertainment to promote training,
education, health, public policy and strategic communications objectives. The use
of games for such purposes, however, long predates the popularisation of computer
gaming [Abt70].

Health education is one area where the use of serious games is being explored
[BBTB08, TBB+10]. This is especially true for young people, and when using
virtual environments [MFME12, BHW07] to create first person games. In first

58

person games, users typically control an avatar that is placed inside a 3D virtual
world.

Considerable work is being carried out in exploring how to best design these
games (see, for example, [BBTB08, TBB+10, MFME12, BHW07]). This chapter
takes an engineering perspective, and explores the use of the APEX [SORF+10]
platform for the rapid development of first person serious games. The aim is to
make use of the facilities that the platform provides, in terms of creation of virtual
environments and the definition of behaviours in these environments, to support
the expeditious development of games.

The game, to be described, addresses the problems faced by children with
asthma. Asthma is a chronic disease and specific procedures prevent the emergence
of crises. The goal is to convey knowledge about these procedures to relevant chil-
dren at elementary school level. The main objective of the study described in this
chapter is to validate the use of the APEX platform to support the development
of serious games. The success of this experience and the lessons learned from it
are described herein.

6.2 Asthma
Asthma [AS02] is a chronic inflammatory disease of the respiratory tract. The most
common symptoms include wheezing, coughing, chest tightness and shortness of
breath. Asthma is a hereditary disease. In most detected cases, there is already a
family history of respiratory illnesses.

Asthma attacks can happen for a number of reasons. The most common are
drug intake during feeding or medication and inhalation of certain substances,
such as pollen, smoke, animal detritus or dust. Most substances that cause asthma
attacks are directly related to the existence of abundant mites (see Figure 6.1) that
are very often in our homes. Objects like fabric upholstery, curtains or clothes, can
build large communities of mites and cause unwanted reactions in individuals with
some kind of respiratory illness. There are several procedures to avoid asthma
attacks, but these procedures are not always known by asthma sufferers.

Parents and, especially, children need support to identify the causes of asthma
attacks and how to avoid them. Governmental and non-governmental institutions

59

Figure 6.1: Mites in our homes

have developed lists of tasks (cf. [EPA04]) to instruct people about how they
should proceed when faced with the problem of asthma, but these lists are not the
most appropriate way to encourage children to learn how to fight asthma.

6.3 The Virtual Environment
The virtual environment for the asthma game is based in a house (see Figure 6.2)
inspired by the Aware Home at the Georgia Institute of Technology [KPJ+08].
Two houses were built for further analysis. One using an OpenSimulator com-
patible viewer and the other one using the environment generator. The resulting
environments were identical, however the building processes were pretty different.
The one using the compatible viewer was built using the common process of the
OpenSimulator. One primitive is created at a time. So the house structure took
about 8 hours to complete. The other house was built using the environment
generator. House parts like walls, windows or doors holes were quickly created
using the environment generator features. However some other parts took very
much time to create because there were no automatic processes for creating them.

60

Figure 6.2: House of the asthma game

Some examples of those parts are the stairs, window frames or automatic doors.
They could be found at online libraries, however it would be difficult to adapt to
the current scenario. Those parts took almost 70% of the total development time.
This version of the house took about 2 hours to complete. Hence, despite being
faster, it could be even more quick if the environment generator could generate
some more parts automatically.

When the structure was complete, the two houses were furnished as a typical
dwelling, using libraries available online (e.g., the Google 3D Warehouse1). Fur-
nishings included those related to some of the main causes of asthma attacks. In
this way players are able to associate asthma causing agents present in the virtual
environment with real situations that happen in their homes.

6.4 The game
The game aims to convey to players some of the basic steps to take at home
to prevent the causes of asthma attacks. Immersive environments allow users to
experience everyday situations. They provide a textured context for identifying

1http://sketchup.google.com/3dwarehouse/ (July, 2013)

61

http://sketchup.google.com/3dwarehouse/

the correct decisions to be taken when asthma is triggered.

Figure 6.3: Pets in the bedroom

A total of 9 objects, potentially causing asthma attacks, were placed in the
house:

• domestic animals (see Figure 6.3)

• laundry abandoned on the floor (see Figure 6.4)

• fireplaces

• plush animal toys

• mouldy walls (moisture)

• curtains

• blankets

• cleansing products

• carpets

62

Figure 6.4: Question about dirty clothes

A character was identified with each trigger (see Figures 6.3 and 6.4) that is
designed to facilitate learning. These characters provide relevant information and
ask questions to be answered by the player that are relevant asthma trigger. For
example, issues related to cleansing products and laundry are:

• ”Cleansing products with intense odours, such as those often used in the
cleaning of toilets, can cause asthma attacks. Which of the following steps
should be followed to prevent asthma attacks related to these products?”

• ”Dirty clothes left on the floor can be a cause of an asthma attack. Which
of the following steps should be followed to prevent asthma attacks related
to these objects?”

These questions test an understanding of how to proceed to avoid the asthma
trigger in question. For each question players are presented with four possible
answers. Of these, only two at most are correct. The player must identify the
correct answers from a set of alternatives. The selection is made by pressing the
button corresponding to the desired alternative.

As an illustration, the informational text, the question and the possible answers
for the avatar situated next to a pet, are as follows.

Domestic Animals

63

Pets, such as dogs and cats, can trigger asthma attacks. Which of the
following actions should be taken to avoid asthma episodes related to
animals?

1. Keep those animals inside the home.

2. If possible, keep the animals out of the home.

3. Let the animals wonder freely in the home.

4. If keeping the animals outside is not possible, at least keep them
away from where asthma sufferer sleeps.

Answers:

• 1 and 3

• 2 and 4

• 1

• 4

For each correct answer, the player gets a word which at the end of the game
can be used to form a sentence about asthma. This is intended as an incentive for
players to attempt to answer all questions.

Each player controls an avatar in the virtual world, and is allowed to attempt
answering question until the right answer is found. Once all answers have been
answered, the player is notified that the game has ended and told how many wrong
answers have been given.

The logic of the game is implemented through a combination of Linden Script-
ing Language (LSL) scripts in the environment and CPN models in the behavioural
component. The flexibility provided by the platform, at this level, means that dif-
ferent versions of the game can be generated easily. This includes changing the
game logic, the number and type of asthma triggers present, and the questions.

6.5 Evaluation
A user study was carried out to evaluate the ability of virtual environments such
as the one just described to work as serious games to promote learning. The target

64

audience were children aged 9 to 10. Hence, the study was set up to mainly address
questions related to the usability of the environments and the satisfaction of users
within them.

6.5.1 The user study

The target audience for the study were children aged 9 to 10, attending the fourth
year of the first level of studies (in Portugal). All children possess a laptop able
to run the necessary software to interact with the virtual environment. Their
computers were therefore used for the study.

Besides logging the user actions in the environment, a questionnaire was used to
obtain information about the users (age, gender, previous experience with similar
games, and previous knowledge of respiratory diseases). This was used to evaluate
the utility and ease of use of the game, as well as to obtain information about
perception of learning by the users. The developed questionnaire is available in
Annex A.1. Because of the age range of the target audience, a simplified 3 point
Likert scale was used.

Prior to the study all machines were prepared for using the environment. An
OpenSimulator compatible viewer (Cool VL Viewer) was pre-installed and config-
ured in a total of 18 machines. These enabled access to the virtual environment.
At the start of the study, participants were provided with information and instruc-
tions about how to use the platform without problems. This included some time to
use the Cool VL Viewer and the virtual environment. Following that, all subjects
had 30 minutes to play the Asthma game, trying to answer all questions. During
the experiment three evaluators were present which, besides solving a few technical
problems with the machines, mostly observed the users during game play.

After the game period, each player answered the questionnaire mentioned
above. The data collected helped not only to understand whether the APEX
framework can be used to create serious games, but also to evaluate the actual
game that was developed, identifying possible shortcomings and improvements.

65

6.5.2 Results

The analysis involved 18 children as participants (11 males and 7 females). None
of the children had previous experience with 3D application servers (e.g. Second
Life), but 12 stated that they had played computer games before.

Children’s reaction to the game was quite positive. According to the data col-
lected from the questionnaires, out of the 18 children, 16 found the game fun to
play, 12 found it easy to play, and 15 said they had learnt something about respi-
ratory diseases. None answered negatively any of the questions (see Figure 6.5).

Figure 6.5: Survey results

Regarding utility, the collected data shows positive results. Twelve children
stated that they were able to better understand what asthma is after playing the
game. The same number of children felt that, after playing the game, they were
better prepared to help people with respiratory problems. Fourteen stated that
they were prepared to act in their homes to avoid such problems. They all stated
that they considered applying what they had learnt in their homes. The results of
this section of the questionnaire can be found in Figure 6.6.

In terms of learning, only 2 of the children that played the game found the

66

Figure 6.6: Utility section results

questions hard. This indicated that the game is accessible and can be played by
young players.

In terms of satisfaction, there were also positive results. Fourteen players said
they would recommend the game to friends. It should be noted that none of the
others responded negatively to the question (they gave neutral replies).

Despite these results, none of the players was able to finish the game in the
allotted 30 minutes slot. It should be noted that some players kept playing for
a while (at school) after filling in the questionnaire, and also after going home.
From the observations during game play, it was concluded that certain features of
the virtual environment, as well as access to some of the configuration options of
the virtual environments server, contributed to some degree of distraction during
game play. In fact, a considerable number of children, felt more interested in ex-
ploring the environment, and interacting with the other players in the environment
(chatting, pushing other avatars), than in trying to finish the game by answering
the questions.

More specifically, the main factors that were found to distract children from
the actual purpose of the game were the following:

67

1. It could be observed that one of the main distracting factors was the pos-
sibility of going into the sea that surrounded the island were the game was
set, in order to explore the sea bottom.

2. The fact that avatars could fly was another influential distraction during
game play.

3. Another aspect that reduced the focus on game goal was the ability to create
new objects in the virtual world, as well as that of changing already existing
ones.

4. Finally, the chat feature present in OpenSimulator also contributed to some
distraction.

6.6 Game redesign
As mentioned above, during the study it was found that some of the props used
in the virtual environment, as well as some of the aspects inherent to virtual
server environments used, contributed to lack of focus on the game by the players.
This was detrimental to the ability of the players to reach the end of the game.
Thus, in order to better focus users on the game aspect of the environment, thus
better promoting learning about prevention of the symptoms caused by asthma,
a redesign of the game’s environment was carried out. A second version of the
environment was created that addressed the shortcomings found at this level during
the study.

Regarding the environment, it was found that a major distracting factor was
the fact that the entire environment was surrounded by water, which the users
could enter and explore. To avoid this problem, in the second version of the
environment a transparent boundary was created between land and water (see
Figure 6.7). This served to restrict the playing area to the ground zone. However
users would still have the possibility of entering the water area by activating the
flight mode and flying over these obstacles. Since it had also been established that
the flight feature was another major distracting factor, in this second version of
the environment this feature was disabled. With both these changes implemented

68

Figure 6.7: Useful area bounded by barriers

both the entry into water and the distraction caused by the functionality of flight
were avoided.

Another aspect which decreased the focus on the game was the ability to create
new objects in the virtual world, as well as to change or remove the existing ones. In
the initial study, a significant number of players lost a good percentage of the time
with these features to change the environment used. To avoid these distracting
factors, the features of construction, and edition of the environment were blocked
in the second version of the game environment for all users with normal privileges.

The chat instant messaging was also one of OpenSimulator’s features which
contributed to the lack of focus in the first study. The chat functionality, however,
could not be disabled in the second version of the environment as it is used during
the game to start counting correct and incorrect responses for each player.

69

Due to the high adherence of the players after the first use, we felt the need
to record all accesses made subsequently by users. This type of information may
prove useful for future analyses on the use of the platform. To achieve this a record
of accesses was created in the second version of the environment, which keep the
user identification and a temporal label for each access.

With these changes already made, a second edition of the study is currently
being prepared.

6.7 Conclusions
Serious Games aim to combine learning with entertainment. Health education is
one of the areas in which this approach has already proved useful, particularly in
the case of young people, and when virtual environments are used. In the context
of the APEX project an approach was developed to the rapid development of
simulations of ubiquitous computing environments. In this chapter we explored
the use of this approach, together with the environments generation tool, for the
development of a serious game.

To demonstrate the feasibility of the approach we developed a game that ad-
dresses the problems faced by children with asthma. Two houses were built for the
game. One of them using an OpenSimulator compatible viewer and the other one
using the environment generator. Building the structure of the house using the
viewer took about 8 hours, while using the environment generator took about 2
hours. However the latter could have been quicker if, for example, the environment
generator could generate the stairs too. The stairs of the house were the slowest
part of the building development. Here, only the structure development time was
considered because almost every other objects, like furniture, were imported from
on-line 3D libraries. Although a more thorough study needs to be carried out
in order to validate the generator tool developed, this results clearly indicate the
good potential of the tool to streamline the development of environments in the
context of APEX.

The intention of the game is to impart knowledge on how to act when faced
with factors that might cause asthma attacks, to avoid these same attacks. In
order to validate the concept, a user study was conducted. Through this study

70

it was revealed that although the virtual environment has captured the attention
of children, there is a need to restrict what avatars can do in the environment, in
order to better focus the players on the goal of the game.

A second edition of the study is currently being prepared, with a new version of
the game. It is, however, possible to say at the outset that the APEX framework
presents itself as a promising approach for the rapid development of serious games.

71

Chapter 7

Conclusions and future work

This dissertation, developed in the APEX framework context, documented the
research for an agile solution for generating 3D virtual environments with a view
on the prototyping of ubiquitous environments. The research work resulted in
three published papers [GASC13, GAH+13, AGSC13].

In this chapter, an overall analysis of the work done is made. Also, an analysis
of the objectives’ completion is discussed according to the solutions found for the
dissertation problem. And finally, a proposal for future work is made taking into
account the limitations of the solution found and upcoming experiences using the
APEX framework.

7.1 Overall analysis
It was stated in the first chapter that the dissertation’s main objective was to build
a component for the APEX framework supporting the rapid generation of 3D vir-
tual environments. It was also said that an important aspect was the accuracy of
the 3D models generated with the developed tool. Moreover it was declared that
APEX users require that the environment can be developed incrementally. Ac-
cording to these requirements we can affirm that the objective of the research was
achieved. More than that, we are able to say that the targets were overachieved.
In addition to overcome the proposed requirements, the solution presented also
provides remote access and multi-user development.

72

In Chapter 2 the relevant topics for this work were studied. The chapter
started by describing the APEX framework and its environment component which
is composed of a 3D application server, the OpenSimulator, and a compatible
viewer. Still about OpenSimulator, a description of its API was made. Those
were really important topics since they took part on some of the solutions pre-
sented afterwards. The OpenSimulator API for creating region modules was also
documented.

Then, in Chapter 3 OpenSimulator region ARchives (OARs) and relevant vir-
tual environment modelling languages and techniques were described. This knowl-
edge helped to understand how virtual scenarios are structured, how we might in-
teract with them and which technique can be used for each type of scenario. Still
in this section COLLADA files were addressed, the standard files for uploading 3D
objects into the OpenSimulator virtual environment.

Afterwords an analysis of some useful 3D modelling tools that could be in-
tegrated to develop solutions for the environment generation problem was made.
Only open source tools were analysed so that we could easily access their source
code and tune them for the problem purposes. Also, one of these tools, Sweet
Home 3D (SH3D), introduced a new concept for user interfaces targeted to build-
ing development. The transformation of a 2D panel into a 3D scenario makes it
simple and agile to develop virtual environments.

At the end of Chapter 3, a discussion about the 3D modelling tools that could
be used to build a solution for the problem took place. Some of the current
approaches were eliminated due to lack of some of the problem required features.
Some other were elected in the chapter conclusions to make part of the solutions
that were analysed in the next chapter.

Chapter 4 documented the development and testing of the possible solutions for
the virtual environment generation problem in the APEX framework. A building
model was defined at the beginning of the chapter so that every solution developed
could be fairly compared. Then, two main approaches for developing solutions
were described. One was based on the use of 3D modelling tools to compose
solutions that can output OpenSimulator readable models (COLLADA). The
other approach make use of the OpenSimulator API and some knowledge about
user interfaces targeted for building development to compose a solution.

73

Solutions created from the first approach showed ease of use and great accuracy.
Although the solution using the OpenSimulator API was more dynamic, more
independent from external entities and the most important, it was almost twice
as fast in the building model test. Moreover these solution benefits from real
time creation of the virtual environments. Hence, in the end of Chapter 4 we
concluded and choose the OpenSimulator API solution for the virtual environment
generation problem at APEX framework. However, we stated that the current
solution required some changes in order to be fully integrated with APEX.

Chapter 5 started introducing the environment generation solution features
that were required for it to integrate with the APEX framework. We saw that the
default context of use of the framework required some more about the solution. It
should be able to be accessed remotely because APEX users rarely use the frame-
work in a local context. And it should also be able to be used by multiple users
simultaneously so that large scenarios could be developed with cooperative work.
The solution’s architecture changed a little, first a network layer was inserted
between the region module that was placed at the server and the user interface
that was placed at the client side. These layer required the creation of a com-
munication dialect so that the module features could be called remotely. Also, a
connection panel was added to the interface in order to connect it to the desired
server instance.

To provide multi-user capabilities some changes were also made. There is a
main communication channel that receives all the connection intents, and then a
new channel thread is created for each new client so that everyone is answered
independently.

At the end of Chapter 5 we concluded that the environment generator was
fully integrated with the APEX framework and ready to use. So, the next chapter
documented the application of the APEX framework for building a serious game.

The game created in Chapter 6 is about respiratory diseases, more concretely
about asthma. The chapter started describing the importance of serious games,
and a brief description of asthma was made. Then the asthma game development
was documented from the environment creation to the game logic. After describ-
ing the game a study with children was presented as an evaluation. The study
emphasises the APEX framework capabilities. Although, the game showed that it

74

could be more objective while the study occurred. Thus, the game was remodelled
and prepared for another experience. The game redesign is also documented in
Chapter 6.

The chapter finishes concluding that the APEX framework can be easily used
for developing serious games, although we must be careful with the environment
distractors so that they cannot contribute for the players distraction. The second
iteration of the study is being prepared. It will use the improved version of the
asthma game.

The APEX framework is now richer than before. Its ability to generate virtual
environments improved a lot with this work, and the environment generation tool is
also more focused in the framework objectives. However the environment generator
can be improved, as it was said in Chapter 6, by automating the creation of more
building parts, like stairs, window frames or even round walls.

7.2 Results
The main objective of this project was to develop a component for the APEX
framework to streamline the generation of 3D virtual environments. This com-
ponent aims to optimise the prototyping of ubiquitous environments speeding the
development of the scenario and so giving more time to concentrate with the ubiq-
uitous systems. Thus, making the whole process more efficient.

The component developed should show a high level of accuracy of the generated
objects because it is an important factor for the final users experience of the
environment. The users must easily recognise the scenario retreated so that the
prototyping process can be valid and efficient. Also, the component must allow
incremental building of the environment. APEX users frequently need to change
the environment, either to insert new objects or remove the existing ones. Hence
the environment generator may be able to do this.

Below it is described how each of these features was achieved:

• The component developed for the APEX framework that streamlines the vir-
tual environment generation process is the solution using the OpenSimulator
API chosen on Chapter 4. The developed component shows high potential

75

on its approach to develop the virtual worlds. The transformation of the
objects designed in a 2D panel into 3D objects in the virtual environment is
a very powerful technique that confers agility to the process. Moreover, all
the designed objects can be seen in real time on the virtual world through
an OpenSimulator compatible viewer.

• The accuracy of the objects created using the environment generator is
quite acceptable. The 3D objects created are OpenSimulator native objects
(prims). All the objects created through the environment generator inter-
face are dimensioned in the OpenSimulator measures. Also the properties
panel on the interface allows the adjustment of the objects� sizes down to
the decimetre. The objects created using the environment generator can be
seen in Chapter 4 where a building was modelled using it.

• To provide APEX users with an incremental process of environment creation
some further features were taken into account. One important aspect to
achieve this objective was to build the objects created with the environment
generator in real time, so that users could see the result of their actions on
every step. The delete feature implemented in the environment generator
is also a very important one. This allows users to easily remove unwanted
objects or errors that occurred while designing. Maybe the most important
aspect to achieve this objective was the fact that the chosen solution does not
require erasing any of the objects already created to change the environment.
The user can freely add new objects at any time without affecting the existent
ones.

Beyond the objectives of the research there were also some features that helped
to assert the environment generator efficiency and convenience in the APEX frame-
work context. Those features were documented in Chapter 5 on the integration of
the environment generator with the APEX framework.

The remote access feature confers convenience to the tool. It would be very in-
efficient to move to the OpenSimulator server machine every time the environment
generator had to be used or even to maintain a server instance at every machine
just to have access to the environment generator features.

76

The multi-user access feature confers not only convenience but also efficiency
to the framework. It is a nice aspect not to be limited to an user at a time, but the
most important is that it is possible, with this feature, to cooperate with several
users in the development of a large environment for example. This makes the
framework more agile too.

To sum up, the objectives of this research project were successfully achieved.
Every item was taken into account to build the solution and also some improve-
ments were added besides the main objectives. However, some work has to be
made in order to make the framework more mature, more effective and to prove
the framework capacities too. The future work is described in the section below.

7.3 Future Work
The developed solution achieved the objectives of the dissertation, although it can
be greatly improved. The fact that the chosen solution was developed from scratch
makes it easy to add new features or improve the existing ones.

For example, the environment generator is for now limited to four different
types of building parts. Any wanted new part can be added to the tool. The
tool is not able to build stairs, unless we build them using the existent structures.
However, building stairs could be an automated action joining two floors.

Another important aspect that could be improved is the choice of the objects’
texture. For now the objects are created with a default texture, which can be
changed later, but it would be very convenient if we could choose the texture for
each part we design as it is done with the object dimensions for example.

The existent features could also be improved. For example, when a door is
created, a door object could appear automatically with a LSL script associated to
it so that it rotates when an avatar approaches as a real door does. The windows
could also be improved. Instead of making just a hole in the wall, a glass object
could also appear in the middle of the hole, thus simulating a real window.

The existent building parts defined by rectangles (plans and roofs) could be
improved too. Instead of being defined by rectangles they could be defined by
free lines if the user wanted it. Hence, this improvement would make these parts’
design more flexible.

77

To prove the framework capacities, some work can be done too. As it was said
in the end of the fifth chapter, the asthma game was redesigned and improved in
order to become more focused in the game objectives. A second edition of the study
documented in this chapter is being prepared at the moment. This experience
will help to find more limitations and not so good aspects of the framework and
contribute to its development and growth.

78

Appendices

A.1 Questionnaire
The questionnaire used in the users study to evaluate the Asthma Game is pre-
sented below (translated from the Portuguese original).

Subject characterization

1 Age

2 Gender

No So-so Yes

3 Do you often play computer games?

4 Have you ever played a game like this?

5 Do you know OpenSimulator or SecondLife?

6 Do you already know any respiratory disease?

Utility

7 The game helped you to better understand what is asthma?

8 Do you think you can now help more people with respiratory
diseases?

79

9 Will you apply at home what you have learned?

10 Now you know what to do at home to prevent respiratory
probl?

Ease of use

11 Is it easy to play?

12 Is it simple to walk through the game’s house?

13 Is it possible to play without previous instructions?

14 Is it more easy to reply to those questions or to the game
questions?

Learning

15 Were the questions difficult?

16 Did you learn something about respiratory diseases?

17 If you have to make a test about respiratory diseases, would
it be more easy now?

18 Can you explain how to proceed in order to prevent asthma
attacks?

Satisfaction

19 Are asthma triggers well represented in the game?

20 Was it funny to play the asthma game?

21 Is it tempting, to try to figure out all the questions to com-
plete the game?

22 Have you easily identified the moments when the game
started and when it finished?

23 Would you recommend the game?

80

81

Bibliography

[AB06] Remi Arnaud and Mark Barnes. Collada: Sailing the Gulf of 3d Digital
Content Creation. AK Peters Ltd, 2006.

[Abt70] Clark Abt. Serious games. The Viking Press, 1970.

[AGSC13] Tiago Abade, Tiago Gomes, José Silva, and José Campos. Concepção
e Avaliação de Ambientes Ub�quos na Plataforma APEX. In Inter-
acção, Vila Real - Portugal, 07/11/2013-08/11/2013, 2013.

[AS02] Lara Akinbami and Kenneth Schoendorf. Trends in childhood
asthma: Prevalence, health care utilization, and mortality. Pediatrics,
110(2):315–322, August 2002.

[BBTB08] Tom Baranowski, Richard Buday, Debbe Thompson, and Janice Bara-
nowski. Playing for real: Video games and stories for health-related
behavior change. American Journal of Preventive Medicine, 34(1):74–
82, 2008.

[BHW07] Maged Boulos, Lee Hetherington, and Steve Wheeler. Second Life: an
overview of the potential of 3-D virtual worlds in medical and health
education. Health Information & Libraries Journal, 24(4):233–245,
2007.

[CBSF07] António Coelho, Maximino Bessa, António Sousa, and Fernando Fer-
reira. Expeditious modelling of virtual urban environments with
geospatial l-systems. Computer Graphics Forum, 26(4):769–782, 2007.

82

[CCC+08] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepi-
ane, Fabio Ganovelli, and Guido Ranzuglia. Meshlab: an open-source
mesh processing tool. In Sixth Eurographics Italian Chapter Confer-
ence, pages 129–136, 2008.

[CCR08] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia. Mesh-
lab: an open-source 3d mesh processing system. ERCIM News,
2008(73):45–46, April 2008.

[EPA04] US EPA. Asthma Home Environment Checklist, United States Envi-
ronmental Protection Agency, 2004.

[EV01] Rae Earnshaw and John Vince, editors. Digital Content Creation.
Springer, 2001.

[GAH+13] Tiago Gomes, Tiago Abade, Michael Harrison, José Silva, and José
Campos. Developing Serious Games With The APEX Framework. In
Ubiquitous games and gamification for promoting behavior change and
wellbeing, Trento - Italy, 16/09/2013-16/09/2013, 2013.

[GASC13] Tiago Gomes, Tiago Abade, José Silva, and José Campos. Desenvolvi-
mento de Jogos Educativos na plataforma APEX: O Jogo da Asma.
In Interacção, Vila Real - Portugal, 07/11/2013-08/11/2013, 2013.

[Jus08] Justincc. Opensim tech basics: Oars - opensim re-
gion archives. http://justincc.org/blog/2008/10/10/
opensim-tech-basics-oars-opensim-region-archives, Octo-
ber 2008.

[Jus09] Justincc. A little bit more on oar. http://justincc.org/blog/
2009/05/01/a-little-bit-more-on-oar/, May 2009.

[KPJ+08] Julie Kientz, Shwetak Patel, Brian Jones, Ed Price, Elizabeth Mynatt,
and Gregory Abowd. The georgia tech aware home. In CHI ’08
Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’08, pages 3675–3680, New York, NY, USA, 2008. ACM.

83

http://justincc.org/blog/2008/10/10/opensim-tech-basics-oars-opensim-region-archives
http://justincc.org/blog/2008/10/10/opensim-tech-basics-oars-opensim-region-archives
http://justincc.org/blog/2009/05/01/a-little-bit-more-on-oar/
http://justincc.org/blog/2009/05/01/a-little-bit-more-on-oar/

[MFME12] Houda Mouaheb, Ahmed Fahli, Mohammed Moussetad, and Said El-
jamali. The serious game: What educational benefits? Procedia -
Social and Behavioral Sciences, 46:5502 – 5508, 2012.

[Pen84] Alex Pentland. Fractal-based description of natural scenes. Techni-
cal Report 280, AI Center, SRI International, 333 Ravenswood Ave.,
Menlo Park, CA 94025, Feb 1984.

[SC11] Pedro Silva and António Coelho. Procedural modeling for realistic
virtual worlds development. Journal of Virtual Worlds Research, 4(1),
2011.

[Sil12] José Silva. Rapid Prototyping of Ubiquitous Computing Environments.
PhD thesis, Escola de Engenharia da Universidade do Minho, March
2012.

[SORF+10] José Silva, Óscar Ribeiro, José Fernandes, José Campos, and Michael
Harrison. The apex framework: prototyping of ubiquitous environ-
ments based on petri nets. In Human-Centred Software Engineer-
ing, volume 6409 of Lecture Notes in Computer Science, pages 6–21.
Springer, 2010.

[Tal96] Habib Talhami. L-systems for three-dimensional anatomical mod-
elling: Towards a virtual laboratory in anatomy. In Karl Heinz H�hne
and Ron Kikinis, editors, VBC, volume 1131 of Lecture Notes in Com-
puter Science, pages 393–398. Springer, 1996.

[TBB+10] Debbe Thompson, Tom Baranowski, Richard Buday, Janice Bara-
nowski, Victoria Thompson, Russell Jago, and Melissa Griffith. Seri-
ous video games for health: How behavioral science guided the devel-
opment of a serious video game. Simulation & Gaming, 41(4):587–606,
2010.

[Woo03] David Woolford. Understanding and using scene graphs, June 2003.

[Zyd05] Michael Zyda. From visual simulation to virtual reality to games.
IEEE Computer, 38(9):25–32, September 2005.

84

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Context
	Objectives
	Structure of document

	Ubicomp Prototyping
	Introduction
	APEX
	OpenSimulator
	Region Modules and OpenSimulator API
	Environment generation problems
	Conclusions

	Developing Virtual Environments
	Introduction
	OpenSimulator Archives (OARs)
	Virtual environment modelling languages
	Scene graphs based languages
	Procedural modelling

	3D modelling tools
	Blender
	MeshLab
	Sweet Home 3D

	Discussion
	Conclusions

	Virtual environment development tool
	Introduction
	Using 3D Modelling tools
	Modelling the Building in SH3D
	SH3D and Blender
	SH3D and MeshLab

	Using OpenSim API
	The Region Module
	The User Interface
	Modelling the Building

	Conclusions

	Integrating the tool with APEX framework
	Introduction
	Architecture
	Remote Access
	Multi-user

	Summary

	Developing serious games with APEX framework
	Introduction
	Asthma
	The Virtual Environment
	The game
	Evaluation
	The user study
	Results

	Game redesign
	Conclusions

	Conclusions and future work
	Overall analysis
	Results
	Future Work

	Appendices
	Questionnaire

	Bibliography

