
Universidade do Minho

Escola de Engenharia

João Mário Quintas Cunha

Fault Injection for the Evaluation of Critical
Systems

Junho de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

João Mário Quintas Cunha

Fault Injection for the Evaluation of Critical
Systems

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor João Alexandre Saraiva

Junho de 2013

Acknowledgements

Along this academic path there were several people who helped and supported me so I

could achieve my goals. Therefore, I would like to dedicate this section to thank the following

people.

First of all, to João Saraiva, my supervisor from University of Minho, for his continued sup-

port, encouragement and dedication. To Ricardo Barbosa, my supervisor from Critical Software

S.A., for his technical support on fault injection, his help in integrating me in the company and

his availability to answer all my questions. I am also thankful to both for their critical appreci-

ation over my work and for helping me grow as a person and a professional.

To Critical Software for the opportunity to broaden my knowledge and be a part of a great

work environment.

To my Co-Workers at Critical Software for all the sharing of knowledge, companionship,

good environment and support.

To my Parents, Mário and Elisabete, for their help and support through both the good and

bad times. Their love and dedication will never be forgotten.

To my Friends, who make my life outside of work so enjoyable, always having great times

when we are together.

To my girlfriend, Carla, for all the patience, support and for always being by my side and

helping me achieve my personal and my professional goals.

João Cunha

iii

Resumo

Atualmente, os sistemas críticos estão cada vez mais presentes no nosso dia-a-dia, fazendo

aumentar a necessidade de os assegurar cada vez mais e reduzindo o risco de acidente ou

falha. A industria espacial e automóvel são exemplos de indústrias que usam esses sistemas

e que necessitam de os ver assegurados. Consequentemente, têm de ser tomadas medidas

para garantir a segurança de um sistema ao nível de software e hardware.

A injeção de falhas é uma das respostas a esse problema, fazendo uso das suas diferentes

técnicas para poder avaliar e validar sistemas críticos. A injeção de falhas pode ser consider-

ada uma técnica de teste ao software, onde as falhas podem ser injetadas ao nível do software

ou hardware e cujos resultados podem ser monitorizados de forma a avaliar como é que o

sistema reagiu a tais falhas. Scan-Chain Implemented Fault Injection é a técnica de injeção

de falhas que proporciona uma maior acessibilidade, observabilidade e controlabilidade. Com

esta técnica, os níveis de hardware e de integração de sistemas podem ser validados.

O csXception® é um ambiente de injeção de falhas automatizado desenvolvido pela Criti-

cal Software S.A para avaliar e validar sistemas críticos. A sua arquitetura é dinâmica e baseada

em plug-ins de injeção de falhas. Devido à crescente presença dos microcontroladores ARM®

Cortex-M3 na industria automóvel, surgiu a necessidade de criar um novo plug-in de injeção

de falhas para o csXception®.

Assim, o objectivo principal desta dissertação de mestrado é o desenvolvimento de um

novo plug-in de injeção de falhas para o csXception®, que permita injetar falhas em microcon-

troladores ARM® Cortex-M3, contextualizar o novo plug-in com a norma ISO-26262 e utilizar

um caso de estudo para mostrar alguns dos resultados obtidos.

v

Abstract

Nowadays, critical systems are much more present in our daily life, increasing the need

to ensure that these systems are becoming safer and thus reducing the risk of accident or

failure. The space and automotive industry are examples of industries who use these systems

and need to see them insured. Therefore, actions need to be taken to guarantee the safety of

a system, both at software and hardware levels.

Fault injection is one of the answers to that specific problem, making use of its different

techniques in order to respond to the critical system validation and evaluation. Fault injec-

tion can be considered as a testing technique, where faults are injected in the hardware or

software levels and whose results are monitored in order to evaluate how the system handles

such faults. Scan-Chain Implemented Fault Injection is a fault injection technique that provides

more reachability, observability and controllability. With this technique, the hardware-level and

system-integration validation can be guaranteed.

csXception® is an automated fault injection environment that validates and evaluates crit-

ical systems. Developed by Critical Software, S.A., the csXception®'s architecture is dynamic

and based on fault injection plug-ins. With the increasing presence of Cortex-M3 microcon-

trollers on the automotive industry, a new plug-in for csXception® needs to be developed.

Thus, the main goal of this master dissertation is the development of a new fault injection

plug-in for csXception® that allows the user to inject faults into ARM® Cortex-M3 microcon-

trollers, to contextualize the new plug-in with the ISO-26262 safety standards and to use a case

study to show some of the obtained results.

vii

Contents

List of Figures . xv

List of Tables . xvii

List of Acronyms . xix

1 Introduction 1

1.1 Overview . 1

1.2 Critical Software S.A. 2

1.3 csXception® . 3

1.4 Document Structure . 3

2 Safety-Critical Systems and Fault Injection 5

2.1 Safety-Critical Systems . 6

2.1.1 Space Industry . 6

2.1.2 Automotive Industry . 8

2.2 Fault Injection . 11

2.2.1 Fault Injection History . 12

2.2.2 Fault Injection environment 13

2.2.3 Fault Injection and ISO-26262 14

2.3 Fault injection techniques . 16

2.3.1 Hardware Implemented Fault Injection 16

2.3.2 Software Implemented Fault Injection 17

2.3.3 Scan-Chain Implemented Fault Injection 18

ix

2.3.4 Robustness Fault Injection 19

2.4 Fault Injection Tools . 19

2.4.1 csXception® . 19

2.4.2 GOOFI . 23

2.4.3 RIFLE . 24

3 Automated Fault Injection Plug-in 27

3.1 Objectives and Motivation . 27

3.2 Development Environment . 29

3.3 Fault Model . 30

3.4 Requirements Catalogue . 32

4 Automotive Plug-in Development 37

4.1 Architecture . 37

4.2 User Interaction . 40

4.2.1 Generate new Campaign . 41

4.2.2 Generate new Workload . 42

4.2.3 Configure CortexM3scifi plug-in 42

4.2.4 Generate new Experiment . 44

4.2.5 Run Fault Injection . 49

4.3 Class Diagram . 52

4.4 Database Design . 54

5 Case-study: Anti-lock Brake System (ABS) 59

5.1 Case-study Description . 59

5.2 Architecture and Design . 60

5.3 Fault Injection Results . 63

5.3.1 Gold-Run . 63

5.3.2 Fault Injection 1 . 64

5.3.3 Fault Injection 2 . 65

x

5.3.4 Fault Injection 3 . 66

5.3.5 Result analyzis and comparison 67

6 Conclusion 69

6.1 Satisfaction on Goal Accomplishments 69

6.2 Main Difficulties and Challenges . 71

6.3 Future Work . 71

References 73

xi

List of Figures

1.1 Critical Software logo . 2

1.2 csXception® logo . 3

2.1 IEC-61508 decomposition . 9

2.2 ASIL risk estimation . 11

2.3 System failure behaviour . 12

2.4 Basic components of a fault injection environment 13

2.5 Decomposition of the product development phases 14

2.6 csXception® architecture . 20

2.7 EME (Screenshot) . 20

2.8 EFD source code trigger definition (Screenshot) 21

2.9 EFD assembly code trigger definition (Screenshot) 21

2.10 Xtract (Screenshot) . 22

2.11 The GOOFI architecture . 23

2.12 The RIFLE architecture . 24

3.1 Plug-in development environment . 29

3.2 Failure Mode . 31

4.1 CortexM3scifi Architecture . 38

4.2 LM3S9B90 Evaluation board . 39

4.3 ICDI board . 40

xiii

4.4 CortexM3scifi Use-case diagram . 40

4.5 CortexM3scifi activity diagram . 41

4.6 Generate new Campaign . 41

4.7 Generate new Workload . 42

4.8 Configure CortexM3scifi - Debuggers Panel 43

4.9 Configure CortexM3scifi - Communication Panel 43

4.10 Generate Experiment - Basic information 44

4.11 Generate Experiment - Workload, Timeout and Gold-Run 45

4.12 Generate Experiment - Injection Runs 45

4.13 Generate Experiment - Fault Location 46

4.14 Generate Experiment - Fault Type . 46

4.15 Generate Experiment - Fault Trigger . 47

4.16 Generate Experiment - Access Before Trigger 48

4.17 Generate Experiment - Access After Trigger 48

4.18 Run Fault Injection . 49

4.19 Injection Run - Activity Diagram . 50

4.20 Fault Injection Process - Activity Diagram 51

4.21 CortexM3scifi class Diagram . 52

4.22 Database Schema DTD . 54

4.23 XML code for CortexM3scifiWorkload table 55

4.24 XML code for CortexM3scifiFault table 56

4.25 XML code for CortexM3scifiFaultAccess table 57

4.26 XML code for CortexM3scifiResults table 57

4.27 Database Model . 58

5.1 Anti-lock Braking System . 60

5.2 Matlab-Simulink ABS model . 61

5.3 Gold-run - Velocity & Wheelspeed . 63

5.4 Fault Injection 1 - Velocity & Wheelspeed 64

xiv

5.5 Fault Injection 2 - Velocity & Wheelspeed 65

5.6 Fault Injection 3 - Velocity & Wheelspeed 66

5.7 Results comparison - Vehicle speed 67

5.8 Results comparison - Wheel speed . 67

5.9 Results comparison - Distance . 68

xv

List of Tables

2.1 Fault Injection mapping on ISO-26262 test activities 15

3.1 Basic Fault Model . 31

3.2 REQ01 - Architecture compatibility with EME 32

3.3 REQ02 - Architecture compatibility with EFD 32

3.4 REQ03 - Architecture compatibility with Xtract 32

3.5 REQ04 - Plug-in Configuration . 33

3.6 REQ05 - Storage Information . 33

3.7 REQ06 - Fault model definition . 33

3.8 REQ07 - Use of other software tools 34

3.9 REQ08 - Use of third party Java libraries 34

3.10 REQ09 - ABS case study . 34

3.11 REQ10 - Multiple fault triggers . 35

3.12 REQ11 - Generate new campaign . 35

3.13 REQ12 - Generate new experiment . 35

3.14 REQ13 - Generate new workload . 36

3.15 REQ14 - Run fault injection . 36

5.1 Fault Injection 1 - Details . 64

5.2 Fault Injection 2 - Details . 65

5.3 Fault Injection 3 - Details . 66

xvii

List of Acronyms

ABS Anti-lock Braking System

API Application Programming Interface

ASIL Automotive Safety Integrity Levels

CSW Critical Software

E/E Electrical and/or Electronic

ECU Electronic Control Unit

EFD Easy Fault Definition

EME Experiment Management Environment

FAM Fault Access Module

FDM Fault Definition Module

FI Fault Injection

FIM Fault Injection Module

GDB Gnu DebuGger

GOOFI Generic Object-Oriented Fault Injection

GUI Graphical User Interface

xix

HWIFI Hardware Implemented Fault Injection

ICDI In-Circuit Debug Interface

ISO International Organization for Standardization

OpenOCD Open On-Chip Debugger

RISC Reduced Instruction Set Computing

SCIFI Scan-Chain Implemented Fault Injection

SCSs Safety-Critical Systems

SQL Structured Query Language

SWIFI Software Implemented Fault Injection

USB Universal Serial Bus

XML eXtensible Markup Language

xx

Chapter 1

Introduction

Summary

This chapter briefly exposes the context of this thesis: it gives an overview of the project,

presents the company where the project was developed, and eventually shows the

structure of the document.

1.1 Overview

Nowadays, the software industry needs to increase the levels of reliance of computer sys-

tems. Aerospace, railway control, medical life-support, industrial plant control, nuclear power

plants, automotive industry and the defense sector are just some of the areas imposing new

challenges to software industries in terms of high availability, reliability and safety requirements.

Additionally, mission-critical systems may be increasingly found in our daily life in areas such as

the telecommunication industry, banking, insurance or any other industry that runs 24 hours

a day and 365 days a year and where computer malfunctions can lead to tremendous capital

losses.

In the last couple of years it became clear that the dependability requirements (Availability,

Reliability, Integrity, Security) of computer systems cannot be guaranteed with only careful de-

signs, quality assurances or fault avoidance techniques (Cotroneo, 2013). It is still unrealistic

to assume that faults can be completely avoided. Along these lines, the true challenge con-

1

Chapter 1. Introduction

centrates on whether computer systems can provide the expected service in the presence of

faults. Software systems developed in the areas discussed before need, indeed, to be tolerant

to faults. This active area of research is known as Fault tolerance (Koren & Krishna, 2010).

To check whether a software system is either fault tolerant or not, the most straightforward

approach is to inject faults in the said system. These faults can be injected at both hardware

or software level. In an attempt to respond to market needs, Critical Software created csX-

ception®, a product that automatically injects faults into multiple processor architectures' and

software programming languages.

During my curricular internship at Critical Software S.A, it was my responsibility to

develop a new fault injection plug-in for ARM® Cortex-M3 microcontroller running on csXcep-

tion®. Even though the plug-in can run on any ARM® Cortex-M3 system its target area is the

automotive industry, injecting faults on an Anti-lock Braking System (ABS) demonstrator and

contextualizing the plug-in with the ISO-26262 automotive safety standard.

1.2 Critical Software S.A.

Critical Software (CSW) is a multinational Information Technology and Software company

founded by Gonçalo Quadros (Chairman), João Carreira and Diamantino Costa. In 2011, CSW

had a turnover of almost 20Me(twenty million euros). Today they have a Capability Maturity

Model Integration (CMMI) with a Level 5 quality certification.

Figure 1.1: Critical Software logo

CSW was established in the year of 1998 in Coimbra (Portugal) starting as a spin-off of the

University of Coimbra's business incubator and technology transfer center, the Instituto Pedro

2

1.3. csXception®

Nunes (IPN). Since then, CSW creates and deploys software solutions that guarantee support

for key operational functions by delivering software tools that protect personnel, monitor the

safety of equipment and ensures that critical processes are conducted securely and efficiently.

Currently, the CSW has offices in Coimbra, Lisbon and Oporto (Portugal), Chicago (USA),

Southampton (UK), São Paulo (Brazil), Maputo (Mozambique), Luanda (Angola) and Singapore

(Singapore).

1.3 csXception®

The csXception® is an automated Fault Injection (FI) environment that uses advanced

debugging and performance monitoring features existent on most modern processors to inject

faults using software and monitoring their impact on the target system. Being developed since

the mid-90s, it gave CSW the opportunity to work with the biggest aerospace agencies around

the world, such as the National Aeronautics and Space Administration (NASA), the European

Space Agency (ESA), the China Aerospace Science and Technology Corporation (CASC) and the

Japan Aerospace Exploration Agency (JAXA) in order to validate their real time critical systems.

csXception® offers solutions for different target systems with a consistent user interface.

Moreover, it can always be improved by reducing the complexity of FI processes for different

fault models and target systems.

Figure 1.2: csXception® logo

1.4 Document Structure

• Chapter 2: Describes the state of the art on fault injection and safety-critical systems,

exploring the different techniques and tools used for this purpose;

3

Chapter 1. Introduction

• Chapter 3: Contains the description, motivation and details about the fault injection

automotive plug-in;

• Chapter 4: Contains the development process implemented on the Cortex-M3 plug-in;

• Chapter 5: Presents the results obtained from the ABS case study;

• Chapter 6: Finalizes the document with some conclusions, the satisfaction on ac-

complishing the objectives and future work.

4

Chapter 2

Safety-Critical Systems and Fault

Injection

Summary

This chapter provides information for understanding the theoretical theme of fault

injection, describing what is the motivation for its realization and which are its basic

principles, and enumerating the various techniques and tools developed in this domain.

Being developed by humans, all software products are, consequently, prone to errors.

As a result, programmers and hardware developers cannot predict everything and nothing is

neither absolutely certain nor controllable. As such, when working with critical systems we

must be aware of these variables because huge financial investments/impacts or human lives

can depend on those systems.

Fault injection evaluates and validates critical systems, helping in the development process

and giving additional information to the programmer by telling, for example, Where the bug

is, How it happened and What could happen after that. Applying fault injection techniques

to test critical systems will lead to a reduced failure probability.

In critical areas, such as Space Industry or Automotive Industry, the financial investment is

enormous and, consequently, their dependability on FI tools is increasing in order to guarantee

a higher resilience for the systems.

5

Chapter 2. Safety-Critical Systems and Fault Injection

2.1 Safety-Critical Systems

A system is considered as safety-critical when the consequences of its failure can lead to

the loss of a life or to significant property or environmental damage (Cotroneo, 2013).

Safety-Critical Systems (SCSs) are developed in several different domains and industries,

for example, in transportation, space, telecommunications, military infrastructures (e.g. nu-

clear and power plants) or medical control devices.

For each domain, SCSs are developed following a set of guidelines, specified on certifi-

cation standards whose typical aim is to give recommendations about all the development

process activities. For some safety-critical systems, these certifications are mandatory.

The software in such systems is much more complex. The need to perform more and more

tasks and to guarantee interaction between them and the hardware equipment is becoming

a real challenge. Even though the software is only one of the many parts of the SCSs, its

quality assurance is the most difficult one. Although the SCSs Software is usually developed

according with the most consolidate practices on software engineering, no methodology, tech-

nique or strategy is currently able to assure the absolute absence of software failures. At this

point, evaluation and validation of SCSs is crucial, guaranteeing that the SCSs Software and

Hardware are developed according to safety standards.

2.1.1 Space Industry

The Space Industry refers mainly to the manufacturing of components that go into the

Earth's orbit or beyond, such as satellites, launch vehicles and ground and mission control

systems. The hardware manufacturing and software development of these components are

carefully designed, documented and tested.

However, failures continue to happen. The most common in space is the single event

upset (SEU), which is a change of state caused by ions and electro-magnetic radiation striking a

sensitive node in a micro-electronic device, like in a microprocessor, a semiconductor memory,

or power transistors. In Section 2.3 a possible solution to test and simulate these kind of

6

2.1. Safety-Critical Systems

errors/failures will be presented.

Horror stories where millions of dollars were lost already happened in space industry. We

will present two of these stories next.

• In 1999, NASA lost communication with the Mars Climate Orbiter, sent to planet Mars

in 1998. NASA lost 125 million dollars because a Lockheed Martin engineering team

used English units of measurement while NASA's team used the more conventional

metric system for a key spacecraft operation. According to the NASA report: "...The

units' mismatch prevented navigation information from transferring between the Mars

Climate Orbiter spacecraft team at Lockheed Martin in Denver and the flight team at

NASA's Jet Propulsion Laboratory in Pasadena, California".

• In 2005, the DART Spacecraft incorrectly estimated the distance to the MUBLCOM

satellite, leading to a crash and the total loss of DART after it used all its fuel. Ac-

cording to the NASA report: "... a critical navigation failure occurred when the DART

and the MUBLCOM spacecrafts were about 200 meters apart, which precluded the full

activation of the AVGS (Advanced Video Guidance Sensor) and allowed DART to ap-

proach MUBLCOM without accurate ranging information. A later failure of the collision

avoidance system, which was relying upon inaccurate position and velocity information,

allowed DART to ultimately collide with MUBLCOM at a relative speed of approximately

1.5 meters per second. Both spacecrafts survived the collision without apparent dam-

age. Throughout the autonomous proximity operations, DART used its limited propellant

faster than anticipated, which caused a premature end to the mission".

This kind of event, which was precluded by software failures, is a perfect example of sce-

narios that can be strongly mitigated by the usage of fault injection techniques. Using FI and

an adequate FI model, the potential failure could probably be detected and mitigated during

development.

7

Chapter 2. Safety-Critical Systems and Fault Injection

2.1.2 Automotive Industry

Vehicles are part of our daily lives, whether we use them privately or in public transportation.

Despite the growing environmental concern, vehicles are continuously increasing in numbers

per capita in most countries. On average, the percentage of the cost of electronics embedded

nowadays in automobiles can account already for about 40% of the overall cost. This value

can be even higher in luxury models. Cars contain on average 30 to 50 Electronic Control

Unit (ECU) and today's average cars contain about 10 million lines of code. It is expected that

this number will grow up to 300 million in a decade (Economist, 2010).

As more Electrical and/or Electronic (E/E) components are used within safety critical func-

tions, safety has become a key issue for future automobile development. The most recent

progresses in the areas of driver assistance, vehicle dynamics control, and active and passive

safety systems increasingly touch the domain of safety engineering, as the failure of any of

these systems can lead to the injury or death of people. Future developments on these areas

will strengthen the need of safe system development processes, providing the possibility to

generate evidences that all the system components are working as they should with maximum

safety.

Situations where vehicles have to be recalled due to system or software issues have to be

avoided at all costs. I will present two examples to demonstrate these types of problems:

• In 2010, Toyota Motor Sales (USA) announced the recall of approximately 2.3 million

vehicles to correct sticking accelerator pedals on its 2009-10 RAV4, 2009-10 Corolla,

2009-10 Matrix, 2005-10 Avalon, 2007-10 Camry, 2010 Highlander, 2007-10 Tundra

and 2008-10 Sequoia models. This issue is being partly attributed to a software glitch

in the ECU control over the accelerator;

• In 2011, Honda issued a recall for 2.5 million CRV and Accord sedan due to a trans-

mission software glitch.

8

2.1. Safety-Critical Systems

2.1.2.1 ISO-26262 standard

Since safety is a crucial aspect for road vehicles, the International Organization for Stan-

dardization (ISO) prepared a new standard. ISO-26262, also entitled "Road Vehicles – Func-

tional Safety", is a functional safety standard that defines functional safety for automotive

equipment applicable throughout the lifecycle of all automotive electronic and electrical safety-

related systems, going from the system's conception to the system's maintenance. This stan-

dard is an adaptation of IEC-61508 (Figure 2.1) to comply with specific needs to the application

of E/E systems within road vehicles.

Figure 2.1: IEC-61508 decomposition

ISO-26262 defines stringent requirements in order to increase the dependability and qual-

ity of automotive safety critical systems. This is where fault-tolerant hardware and software

mechanisms (e.g. robustness, fault isolation, detection, recovery, containment, monitoring,

diagnostics, redundancy, etc.) are usually combined and used in order to guarantee (or at

least improve) the safety of the system. It is hardly possible to test all those mechanisms on

the system context without appropriate tools and without exercising all the operational con-

ditions and situations, including the extreme/limit cases. These cases arise usually when

hardware failures occur. When data is corrupted the software either falls into abnormal situa-

tions, or has defects that get triggered, or result in very uncommon situations (e.g. the Honda

CRV and Accord sedan recall). Fault injection techniques provide a way to cover and stimulate

9

Chapter 2. Safety-Critical Systems and Fault Injection

these extreme/limit or abnormal cases, depending on the realistic nature of the fault models

produced and the capabilities offered by the tools to inject the faults and monitor the injection

results.

With a trend of increasing complexity in software and hardware implementations, the inher-

ent risks also increase, such as systematic failures and random hardware failures. ISO-26262

provides a set of practical requirements and processes to minimize these risks. ISO-26262 is

only concerned with E/E systems, providing a framework within which safety-related systems

based on other technologies can be considered. Some of the most important characteristics

are:

• To provide an automotive safety lifecycle (management, development, production, op-

eration, service and decommissioning) and to support the tailoring of the necessary

activities during these lifecycle phases;

• To use Automotive Safety Integrity Levels (ASIL) to specify the item's necessary safety

requirements in order to achieve an acceptable residual risk;

• To provide requirements for validation and confirmation measures to ensure an accept-

able level of safety.

ISO 26262 is intended to be applied to safety-related systems that include one or more

E/E systems installed in passenger vehicles. Although until now only light passenger vehicles

are mandated to comply with the standard, it is foreseen that in a near future all vehicles,

including heavier ones, will also be mandated to abide with it.

One of the key concepts introduced by ISO-26262 is the ASIL. The hazard analyzis and risk

assessment procedures (executed during the safety life-cycle) are based on the combination

of the probability of exposure to the hazard, the possible controllability by the driver to the

exposure to the particular hazard, and the possible outcomes if a critical event occurs (Figure

2.2). This combination determines the ASIL of a particular system item.

10

2.2. Fault Injection

Figure 2.2: ASIL risk estimation

The ASIL does not address the technologies used in the system as it is, purely focusing

on the harm to the driver and other road users. Every safety requirement is assigned an ASIL

classification of the scale A, B, C or D, with D being the most safety-critical level.

2.2 Fault Injection

Fault injection evaluates the dependability of a system, studying generated errors and

failures. In complex systems it is hard to understand what causes some error/failures or

where they begin. It deals with the calculated insertion of artificial faults into a target system or

a simulation of it, in order to inderstand what could be the system's reaction to the injection of

real faults and providing a feedback for system correction or enhancement, or for operational

procedures' preparation (Hsueh, Tsai, & Iyer, 1997) (Carreira, Costa, & Silva, 1999).

FI has two main objectives:

• System validation: for testing the target system's fault-tolerance and verifying if it

gives the expected service. If it does not occur, a bug must be reported and fixed.

• System evaluation: to estimate the system's performance, providing information on

what kind of faults will occur and how frequently it will happen.

A system may not always behave as expected. The causes and consequences of these

deviations from the expected function of a system are called "factors to dependability" or

"fault-error-failure cycle" (Figure 2.3). (Ziade, Ayoubi, & Velazco, 2004) Each of these factors

are described below.

11

Chapter 2. Safety-Critical Systems and Fault Injection

• Fault is a defect in the system (it can also be called "bug") that may or may not cause

an error. For instance, although a system may contain a fault, the error is only triggered

depending on specific input data.

• Error represents the difference between the expected and actual result in a software

system. Errors are generated by a fault that changes the expected sequence of the

software system.

• Failure happens when the system's behavior is different from the expected. For exam-

ple, when an error occurs, if it is not caught and handled, the usage of fault tolerance

techniques causes an unexpected behavior on the system and can be considered a

failure.

Figure 2.3: System failure behaviour

When a fault causes an incorrect change in the target system an error occurs. Nevertheless,

the fault remains localized in the target system and other errors may occur from that one. When

a fault-tolerance mechanism detects an error it must handle the faults and hold the errors,

otherwise a system failure may occur.

2.2.1 Fault Injection History

The fault injection technique appeared for the first time in 1972 in an article by Harlan

Mills (Mills, 1972), describing a fault seeding approach (Voas & McGraw, 1998). The original

idea was to estimate reliability based on an estimate of the number of remaining faults in

a program. This estimation could be derived from counting the number of seeded faults that

were uncovered during testing, in addition to counting the number of real faults that were found

during testing.

12

2.2. Fault Injection

Initially applied to centralized systems especially dedicated to fault-tolerant computer ar-

chitectures' in the early 70's, fault injection was used almost exclusively by industries for mea-

suring the coverage and latency parameters of high reliable systems.

From the mid-80's, the academia started actively using fault injection to conduct experi-

mental research. The initial work was mainly concentrated on understanding the error propa-

gation and analyzing the efficiency of new fault-detection mechanisms.

In the early 90's, the foundation of fault injection was defined. More information and

research in the way of literature can be found, with descriptions on how to employ fault injec-

tion for hardware systems validation, software testing and hardware design validation (Benso

& Prinetto, 2003). It was only in the late 90's that the first fault injection tools for system

validation and evaluation made their appearances and one of them is the CSW's product:

csXception®.

2.2.2 Fault Injection environment

Figure 2.4: Basic components of a fault injection environment

In Figure 2.4 the basic components of a FI environment is represented. It usually includes

a Target System, Fault Injector, Workload generator, Monitor, Controller, Data collector and a

Data analyzer.

13

Chapter 2. Safety-Critical Systems and Fault Injection

• Target System is where the fault is going to be injected. It is typically running on a

separate computer.

• Fault Injector is what injects faults in the target system. The fault library (also called

fault model) is where FI techniques are specified, telling what is the fault type, location

and trigger in use.

• Workload generator is usually an application/program that runs in the target system

and contains its own libraries.

• Monitor receives the target system's outputs and communicates with the controller

that decides which data is going to be saved in the Data collector.

• Controller is the main component of the FI system, setting all the FI flow.

• Data collector saves the necessary data, generally in a database system.

• Data analyzer is the data processing analyzis, giving the user the necessary results

to find what can be wrong with his system.

2.2.3 Fault Injection and ISO-26262

The main purpose of ISO-26262 is to ensure the safety of road vehicles by providing a

set of guidelines to help product development. This functional safety standard divides the

product's development process in three main parts (Figure 2.5): system level integration (part

4), hardware development (part 5) and software development (part 6).

Figure 2.5: Decomposition of the product development phases

14

2.2. Fault Injection

The ISO-26262 is the first standard to present fault injection as a highly recommended

technique to be used at different critical levels. The purpose differs depending on the level

where it is applicable. Table 2.1 shows the ASIL levels for each test activity of the ISO-26262.

ISO-26262 test activities ASIL classification

System Level (Part 4)

Correctness of implementation of system design specifications
and technical safety requirements

B, C, D

Effectiveness of diagnostic coverage of hardware fault detection
mechanisms

C, D

Correctness of implementation of system design specifications,
technical and functional safety requirements

C, D

Effectiveness of diagnostic failure coverage of safety
mechanisms at item level

C,D

Correctness of implementation of functional safety requirements A, B, C, D

Effectiveness and failure coverage of safety mechanisms at
vehicle level

C, D

Hardware Level (Part 5)

Hardware integration tests to verify completeness and
correctness of the safety mechanisms' implementation

respecting hardware safety requirements

C, D

Software Level (Part 6)

Software unit testing D

Software integration testing C, D

Table 2.1: Fault Injection mapping on ISO-26262 test activities

Based on this document we may conclude that fault injection is recommended for all the

ISO-26262 test activities, namely for those with higher levels of criticality (C and D).

Even though ISO-26262 explicitly mentions the use of fault related approaches, the stan-

dard does not detail the recommended fault injection approach to be used. This leaves room

for various interpretations on how to approach this problem. Moreover, a correct fault model

15

Chapter 2. Safety-Critical Systems and Fault Injection

needs to be devised so that accurate fault injection can be performed.

2.3 Fault injection techniques

A fault injection application can act on different means, depending on what to validate

and/or evaluate. The most common techniques are described next.

2.3.1 Hardware Implemented Fault Injection

Hardware Implemented Fault Injection (HWIFI) uses additional hardware to inject faults on

a target system and examine the effects. Depending on the faults and their locations, HWIFI

falls into two categories, HWIFI with contact or without contact (Hsueh et al., 1997).

2.3.1.1 Fault Injection with contact

Occurs when the injector has direct physical contact with the target system, producing

voltage to the target chip. It is usually called pin-level injection because it interacts directly with

the circuit pins of the processor. The two main techniques of pin-level FI are:

• Active probes, which add electric current to the target processor via probes presented

on processor pins. However, we must be careful when using this technique because

excessive amount of voltage on the board can damage it.

• Socket insertion, which makes the simulation of various physical faults possible by

inserting a socket between the target hardware and its circuit board. The socket insertion

injects stuck-at, open or more complex logic faults, giving total control to the processor's

pin signals.

2.3.1.2 Fault Injection without contact

The injector has no direct physical contact with the target system, relying on an external

source that produces a natural physical phenomenon (Hsueh et al., 1997), very similar to what

16

2.3. Fault injection techniques

happens to aerospace devices. Heavy-ion radiation, electromagnetic interference, weather

conditions and temperatures are some of the examples of HWIFI without contact.

With heavy-ion radiation, an ion passes through the depletion region of the target device

and generates current.

However, it is hard to tell the exact time or location at which the fault is going to be injected,

since heavy-ion radiation and electromagnetic interference are not precisely triggered. (Cunha,

Barbosa, & Silva, 2013)

2.3.2 Software Implemented Fault Injection

Software Implemented Fault Injection (SWIFI) is a low-cost and easy-to-control technique

to inject faults in a target system, compared to HWIFI techniques described before (Arlat et al.,

2003).

SWIFI is usually achieved by changing memory or registering values on the target system

based on a defined fault model. It can be categorized based on when faults are going to be

injected. There are two possibilities: during compile-time or during runtime.

2.3.2.1 Compile-Time Fault Injection

This method injects faults before the program's loading and execution. It injects faults

directly into the source-code or assembly-code by emulating the hardware effect. This method

implementation is very simple, but it does not allow the injection of faults as the workload

program runs.

2.3.2.2 Runtime Fault Injection

During runtime injection, a mechanism is needed so the fault is injected on the target

system. The most common ones are:

• Time-out - this is the simplest of all the techniques, as the trigger is obtained from

a software or hardware time-out. Since it injects faults based on time, it produces

17

Chapter 2. Safety-Critical Systems and Fault Injection

unpredictable reactions on program behavior.

• Exception/trap - in this case, when a hardware exception or a software trap occurs,

the workload control is passed on to the fault injector. A software trap is when a pre-

determinate instruction in the code is reached, injecting the fault before the selected

instruction. After that process the program resumes. Hardware exceptions can occur

when a particular memory location is reached. Both mechanisms must be linked to the

interrupt handler vector.

• Code Insertion - this mechanism inserts extra instructions, being the moment of

injection the execution of those instructions.

2.3.3 Scan-Chain Implemented Fault Injection

Techniques for injecting faults in physical systems, such as HWIFI or SWIFI, provide limited

controllability and observability. Moreover, these techniques may not be able to emulate the

effects of all fault injections because they suffer from a lack of physical reachability (Folkesson,

Svensson, & Karlsson, 1998).

One way of improving reachability as well as observability and controllability in the evalua-

tion of physical systems is to use Scan-Chain Implemented Fault Injection (SCIFI). Nowadays,

all processors implement the IEEE 1149.1 standard. This standard defines test logic which can

be included in an integrated circuit to provide standardized approaches to test the interconnec-

tions between integrated circuits once they have been assembled onto a printed circuit board.

The test logic consists of a boundary-scan register and other building blocks and is accessed

through a Test Access Port (TAP).

The SCIFI technique injects faults, taking advantage of these boundary-scan chains and

internal scan chains present in almost all mainstream developed processors.

18

2.4. Fault Injection Tools

2.3.4 Robustness Fault Injection

Robustness fault injection is oriented to a particular programming language (C, Java, Ada,

etc.). The main objective of this technique is to analyze a given software Application Program-

ming Interface (API) for robustness weaknesses.

Typically, this API is a set of functions or routines that possesses a predefined set of pa-

rameters of specific data types. If API parameters are not validated when they are being called,

the use of these incorrect parameters may lead to erroneous system behavior or even system

hang or crash.

In order to assess such validation difficulties on API components, the methodology must

be based on the characteristics of the API parameter types and correspondent bounds. For

example, in a function composed by two parameters, each correspondingly integer and long

data types, the values to be injected will be bounded by the maximum and minimum data

values allowable by each data type.

2.4 Fault Injection Tools

Having presented fault injection techniques, we now present the different tools that imple-

ment such techniques. In this Section, the focus is on the analyzis of the said tools' architecture,

which use some of the techniques identified before.

2.4.1 csXception®

csXception® is a 100% JAVA application and may run in most operating systems, being

Linux, Windows and MAC OS just a few among the options. In addition, it also uses the

postgreSQL database system.

This product's architecture resembles to Client/Server type. The server side represents the

host computer and the client side is the target system where the faults are going to be injected

(Carreira, Madeira, & Silva, 1995) (Carreira, Madeira, & Silva, 1998).

On the host computer's side, the architecture is based on modules. The communication

19

Chapter 2. Safety-Critical Systems and Fault Injection

between these modules is made with Infobus, a Java communication class based on message

exchange. The architecture of csXception® is shown in Figure 2.6.

Figure 2.6: csXception® architecture

csXception® is divided in four main modules:

• Experiment Management Environment (EME): front-end application that runs

in the host computer and is responsible for the workload, campaign, experiment and FI

definitions, execution and control. It provides a better user experience when interacting

with the csXception® tool (Figure 2.7).

Figure 2.7: EME (Screenshot)

20

2.4. Fault Injection Tools

• Easy Fault Definition (EFD): allows EME to browse through the analyzed application

source code and inter-actively mark memory ranges to set fault triggers (Figures 2.8 and

2.9).

Figure 2.8: EFD source code trigger definition (Screenshot)

Figure 2.9: EFD assembly code trigger definition (Screenshot)

21

Chapter 2. Safety-Critical Systems and Fault Injection

• Xtract: executes predefined queries onto the csXception® database and presents

straightforward analyzis of FI experimental results (Figure 2.10).

Figure 2.10: Xtract (Screenshot)

• Injection Plug-In: defines the FI model. Changing this module will allow csXception®

to adapt to a different target architecture. Currently, there are several available plug-

ins with different FI techniques, particularly SCIFI, SWIFI and Robustness FI. Some

examples of injection plug-ins developed by CSW are:

– ERC32SCIFI: SCIFI plug-in that runs in ERC32 architecture target systems.

– LYNXPPC750: SWIFI plug-in that runs in PowerPC 750 architecture target sys-

tems.

– C-SW: Robustness FI for C language applications.

22

2.4. Fault Injection Tools

2.4.2 GOOFI

Generic Object-Oriented Fault Injection (GOOFI) is a FI tool developed in JAVA and relies

on a Structured Query Language (SQL) database for storing data. The main goal of GOOFI is

to provide an easy way to adapt the new target systems or new FI techniques to the tool (very

much like csXception®).

With GOOFI, when a new FI technique is added, a new FI algorithm must be implemented

and the graphical user interface must be modified to support the new FI technique. (Aidemark,

Vinter, Folkesson, & Karlsson, 2001)

Figure 2.11: The GOOFI architecture

GOOFI consists of a three-layered architecture (see Figure 2.11):

• Top-layer: Graphical User Interface (GUI), where all menus to create and run FIs are

defined, giving a better user experience.

• Middle-layer: represents the tool Core, defining the FI model and the target system

interface definition.

• Lowest-layer: represents the FI data storage and the communication with the Middle-

layer and Top-Layer components.

The current version of GOOFI supports pre-runtime SWIFI and SCIFI techniques.

23

Chapter 2. Safety-Critical Systems and Fault Injection

2.4.3 RIFLE

RIFLE is a pin-level FI tool developed in C++ under the Windows operating system. This

tool can inject faults into a wide range of target systems and the faults are obviously mainly

injected in the processor pins.

Figure 2.12: The RIFLE architecture

RIFLE's architecture (Figure 2.12) is formed by four modules. Three of them are hardware

modules and the fourth one is for control and management, running only in the host computer:

• Adaptation module: is the hardware part which contains the target processor and

the FI's electronic switches elements.

• Main module: contains the fault trigger hardware and the trace memory. The fault

trigger activates a FI run when it reaches the expected conditions and the trace memory

continuously saves the information in the target bus.

• Interface and Counters Module: establishes the interface between the RIFLE host

and the other components.

24

2.4. Fault Injection Tools

• Control and Management Software: is the Core module. Manages the experi-

ments' and fault's definitions, controls the FI sequence, validates fault definitions and

collects relevant FI results.

This tool can inject faults in different target systems, being only required that the users

change the adaptation module where the target architecture is defined (Madeira, Rela, Moreira,

& J.Silva, 1994). Although different from the other tools presented before, the fault model must

be the same, since its definition is centralized in the control and management software module.

25

Chapter 3

Automated Fault Injection Plug-in

Summary

This chapter shows what are the plug-in development motivation, objectives and

requirements. Additionally, it gives an overview on all the high-level characteristics of the

plug-in development.

3.1 Objectives and Motivation

As mentioned in Section 2.4.1, the csXception® tool can be adapted to different target

architectures and techniques by implementing a fault injection plug-in which contains the fol-

lowing levels of operations/information:

• Fault definition – it is composed by the plug-in's fault model implementation and infor-

mation;

• Fault injection – it is responsible for all the fault injection process, namely the load and

run of the workload. It is also responsible for the installation of the trigger, the fault and

for collecting the debugger's output;

• Fault access – its main concern is the communication with the target system and the

collection of the outcome from the injection run, either from the Universal Serial Bus

(USB) or the Ethernet;

27

Chapter 3. Automated Fault Injection Plug-in

Since Critical Software already developed other fault injection plug-ins there were some

reusable artifacts to create this plug-in, mainly for the GUI forms and for the fault definition

level.

On the fault definition level the target's architecture has to be defined and specified. In

order to do so, the target's system documentation (system datasheet) has to be analyzed so

all the memory location, where values can be read and written, can be accessed. However the

changes were but a few, since the existing fault definition models were considered applicable.

On the fault injection level the process has already been defined on other plug-ins (ex: run

workload > install trigger > wait for trigger > inject fault > etc.), but since this one's debuggers

are different from others used by other plug-ins and also has a different architecture, the com-

munication between the fault injection plug-in and the target system debugger has different

commands and instructions.

On the fault access level, the communication with the target system has to be fully de-

veloped because the old communication process (Serial COM java library) had some timeout

issues.

The target architecture of the automotive plug-in is based on Reduced Instruction Set Com-

puting (RISC) computer processors. This architecture provides higher performance because of

its simplicity, which enables a much faster execution of each instruction, and because the set

of instructions is smaller, making it less complex and propitious to errors. The target system

used in this new fault injection plug-in is the ARM® Cortex-M3 microcontroller. The application

of the Cortex-M family on automotive industry, particularly on systems with safety related func-

tions (airbag, anti-lock braking, etc.), is widely used. An example of this trend is the Toshiba

electrical vehicle motor control system, implemented by means of ARM® Cortex-M3 CPU cores

and compliant with the ISO-26262 standard. (Cunha et al., 2013)

The fault injection technique implemented in this plug-in is SCIFI because, as explained

in Section 2.3.3, it improves reachability and controllability, providing more accurate target

system validations, while also obtaining better target system evaluation regarding observability.

The plug-in's name is CortexM3scifi.

28

3.2. Development Environment

3.2 Development Environment

The Cortex-M3 fault injection plug-in is based on a host-target environment and its aim

is to inject faults on a physical target system using a SCIFI technique. Figure 3.1 shows the

development environment of the Cortex-M3 plug-in on the Critical Software S.A office.

The target system (Cortex-M3 microcontroller and debugger) is on the left side of the figure,

inside an acrylic case and connected via USB (micro-USB and mini-USB) to a Dell Vostro

1015 computer running csXception® with CortexM3scifi plug-in and PostgreSQL in Windows

7 operating system.

Figure 3.1: Plug-in development environment

29

Chapter 3. Automated Fault Injection Plug-in

3.3 Fault Model

A Fault Model is a realistic engineering model of erroneous events that may occur in the

construction, execution or operation of a system or system component. From this model,

the system designer or user can predict the consequences of a particular fault and act upon

it by making the system more robust. Typically, fault models are defined considering four

dimensions (Location, Duration, Trigger and Type), each one with its own characteristics.

• Location: is where the fault will be injected:

– Processor Register;

– Memory Address (Other processor register);

– Flash Memory.

• Duration: is for how long the fault will be injected. In this project the duration of faults

is one instruction cycle (e.g. the injection of an internal data bus fault during instruction

fetch affects the bus during one memory access to fetch the next instruction). However,

some faults may stay latent during several cycles (e.g. the fault injected on a general

purpose register stays latent until the affected value is used in some calculation or a

new value overwrites the same register);

• Trigger: is the dimension that defines when the Fault Injection will occur:

– Instruction Access Trigger - This fault trigger occurs when an instruction that was

fetched at a given memory address is at the pipeline execution stage;

– Memory Access Trigger - This fault trigger occurs when a memory address is

accessed;

– Timeout Trigger - This fault trigger occurs when a timeout reaches its end.

• Type: represents what the FI system will do when the time of injection comes, changing

the value on the locations defined earlier (e.g. processor register):

30

3.3. Fault Model

– Bit Flip: is when one or more bits on the defined location are flipped;

– Reset Value: The value present in the fault location is overwritten with the reset

value of that register or memory address;

– Specific Value: The fault location value is overwritten with another value defined

by the user.

A basic fault model is presented in Table 3.1.

Location Duration Trigger Type

General Purpose Register #1 one clock cycle Instruction Execution Bit flip

General Purpose Register #11 one clock cycle Memory Access Bit flip

Program Status Register one clock cycle Instruction Execution Reset value

On-chip Flash one clock cycle Timeout Trigger Specific value

Table 3.1: Basic Fault Model

In the automotive industry, for a fault to have proper meaning a domain knowledge is re-

quired. This means that issues that occur at all levels of the product need to be known and

understood. From this point on, a more accurate fault model can be devised and implemented.

In the end, the failure modes can be mapped into the basic fault model and exercise/adul-

terate the correct parts of the system as well as evaluate the behavior. This will compose a

domain fault model (Figure 3.2).

Figure 3.2: Failure Mode

31

Chapter 3. Automated Fault Injection Plug-in

3.4 Requirements Catalogue

The following list of requirements was defined as the starting point for the development of

the Cortex-M3 plug-in. These requirements describe the functionality expected from the new

plug-in for the csXception® and the main constraints that the Cortex-M3 plug-in should follow.

REQ01 - Architecture compatibility with EME

Type Non-Functional

Status Mandatory

Priority High Difficulty High

The Cortex-M3 plug-in should be fully compatible with the software architecture of
EME v2.3.

Table 3.2: REQ01 - Architecture compatibility with EME

REQ02 - Architecture compatibility with EFD

Type Non-Functional

Status Mandatory

Priority High Difficulty Medium

The Cortex-M3 plug-in should be able to provide the option to use the Easy Fault
Definition (EFD) v1.0 module whenever the defined fault model needs it.

Table 3.3: REQ02 - Architecture compatibility with EFD

REQ03 - Architecture compatibility with Xtract

Type Non-Functional

Status Mandatory

Priority High Difficulty Medium

The data model of the Cortex-M3 plug-in should be compliant with the one defined
for the Xtract v1.0 module. Any extensions developed will be independent from
this module.

Table 3.4: REQ03 - Architecture compatibility with Xtract

32

3.4. Requirements Catalogue

REQ04 - Plug-in Configuration

Type Functional

Status Mandatory

Priority High Difficulty Medium

The Cortex-M3 plug-in should be able to provide the user a configuration panel
with board access information (COM port, bits per second, data bits, parity, stop
bits and flow control) and executable debuggers (Gnu DebuGger (GDB) and Open
On-Chip Debugger (OpenOCD)).

Table 3.5: REQ04 - Plug-in Configuration

REQ05 - Storage Information

Type Non-Functional

Status Mandatory

Priority High Difficulty Medium

For data storage, the Cortex-M3 plug-in should use the database management
functionalities provided by EME v2.3.

Table 3.6: REQ05 - Storage Information

REQ06 - Fault model definition

Type Functional

Status Mandatory

Priority High Difficulty High

The Cortex-M3 plug-in must be compliant with the fault model detailed on section
3.3.

Table 3.7: REQ06 - Fault model definition

33

Chapter 3. Automated Fault Injection Plug-in

REQ07 - Use of other software tools

Type Non-Functional

Status Mandatory

Priority High Difficulty Low

The Cortex-M3 plug-in should avoid using software tools other than the ones used
by csXception v2.3 which are: Postgres database v9.2 and Java Runtime Environ-
ment v7.

Table 3.8: REQ07 - Use of other software tools

REQ08 - Use of third party Java libraries

Type Non-Functional

Status Mandatory

Priority High Difficulty Medium

The Cortex-M3 plug-in must only use third party libraries that are under the GNU
General Public License (GPL).

Table 3.9: REQ08 - Use of third party Java libraries

REQ09 - ABS case study

Type Functional

Status Mandatory

Priority Medium Difficulty High

The Cortex-M3 plug-in must inject faults in a case study based on an ABS simulator
and analyze the results.

Table 3.10: REQ09 - ABS case study

34

3.4. Requirements Catalogue

REQ10 - Multiple fault triggers

Type Functional

Status Proposed

Priority Low Difficulty Medium

The Cortex-M3 plug-in should be capable of implementing multiple triggers per
fault injection run. Example: After 5 seconds (timeout trigger), install an instruc-
tion trigger.

Table 3.11: REQ10 - Multiple fault triggers

REQ11 - Generate new campaign

Type Functional

Status Mandatory

Priority High Difficulty Low

The User should be able to generate campaigns.

Table 3.12: REQ11 - Generate new campaign

REQ12 - Generate new experiment

Type Functional

Status Mandatory

Priority High Difficulty High

The User should be able to generate experiments.

Table 3.13: REQ12 - Generate new experiment

35

Chapter 3. Automated Fault Injection Plug-in

REQ13 - Generate new workload

Type Functional

Status Mandatory

Priority High Difficulty Medium

The User should be able to generate workloads.

Table 3.14: REQ13 - Generate new workload

REQ14 - Run fault injection

Type Functional

Status Mandatory

Priority High Difficulty High

The User should be able to run fault injection process.

Table 3.15: REQ14 - Run fault injection

36

Chapter 4

Automotive Plug-in Development

Summary

This chapter contains the details about the automotive plug-in development regarding the

architecture, the class diagram and the database design. It also describes all user

interactions/activities with the system.

4.1 Architecture

The csXception® is based on a Host/Target architecture (Figure 4.1) containing two differ-

ent devices.

A Windows or Linux operating system is running on the host device, with a PosgreSQL

database system and the csXception® execution environment that is responsible for four main

components: EFD, EME, Xtract and Fault Injection Plug-in (CortexM3scifi Plug-in). The csX-

ception® makes use of two debuggers (OpenOCD and GDB) to communicate with the target

system through USB.

The target system is composed by two devices: ICDI board and LM3S9B90. The ICDI

board is connected to the host device, allowing the user to control and access the Cortex-M3

microcontroller. The LM3S9B90 board contains the Cortex-M3 microcontroller and is also

connected to the host device to collect the output from the fault injection process.

37

Chapter 4. Automotive Plug-in Development

Figure 4.1: CortexM3scifi Architecture

Host Computer

The Host Computer runs a PostgreSQL database server that establishes communication

with csXception®. The csXception® comprises a front-end module which runs in a host com-

puter and is responsible for the experiment's management/control (EME), an instruction trigger

definition module (EFD), a data analyzis module (Xtract) and, finally, a fault injection plug-in

that is responsible for the fault injection process that runs in the system under evaluation/val-

idation, target output collector/monitor and the fault experiment definition.

The fault injection process uses a debugger execution environment with two components

connected to the ICDI board (target debugger) through mini-USB. GDB is a debugger that al-

lows intrusion on a software program while it is being executed (GNU, n.d.). But this is still

insufficient. Since the program is being executed on an external physical system and the fault

injection technique in use is SCIFI, an OpenOCD debugger is required to offer better control-

lability and communications with the target system, as well as a boundary-scan testing using

38

4.1. Architecture

JTAG adapter. (OpenOCD, n.d.)

In order to collect the output from the program's execution on the target system we must

use another component called Com_inC, with micro-USB connection. COM_inC establishes

communication between the Host and the LM3S9B90 (Cortex-M3 microcontroller) by a Se-

rial Communication (COM port) driver. The COM_inC component is a C developed executable

(.exe) whose initial connection was made in JAVA with the "SerialComm.jar" component. How-

ever, this library has known problems while disconnecting from the target system, causing a

long wait time for each fault injection run.

Target System

The Stellaris EKS-LM3S9B90 Evaluation Kit is a low-cost platform for the evaluation of the

LM3S9B90 board containing a Cortex-M3 microcontroller. The kit includes two boards: the

LM3S9B90 Board and the In-Circuit Debug Interface (ICDI) Board.

• EK-LM3S9B90: this board includes the ARM Cortex-M3 microcontroller, a 10/100

Mbit Ethernet port, a full speed USB 2.0 port and connectors for binding to the ICDI

board:

– JTAG/SWD: allows JTAG or SWD connections, mainly used to debug and preform

boundary-scan operations;

– PWR/UART: used to give 5V power and connect to the LM3S9B90 UART signals.

Figure 4.2: LM3S9B90 Evaluation board

39

Chapter 4. Automotive Plug-in Development

• ICDI: this board is a USB full speed JTAG/SWD debugger board that includes a mini-

USB connector so it can be rightly connected to an USB port.

Figure 4.3: ICDI board

4.2 User Interaction

In order to properly understand the functioning of the CortexM3scifi plug-in it is important

to represent the user interaction with the system.

Therefore, in Figure 4.4 the use-case diagram of the Cortex-M3 plug-in is represented with

five activities following a required order of events. Figure 4.5 shows the expected flow of events

in order to correctly use the tool.

Figure 4.4: CortexM3scifi Use-case diagram

40

4.2. User Interaction

Figure 4.5: CortexM3scifi activity diagram

4.2.1 Generate new Campaign

A Campaign is a set of experiments that will run sequentially. The campaign generation is

a form with three fields (Figure 4.6):

• Title, Author and Description.

Figure 4.6: Generate new Campaign

41

Chapter 4. Automotive Plug-in Development

4.2.2 Generate new Workload

Workload is the binary file that will run on the target system when the fault injection process

starts. The workload generation is a form with four fields (Figure 4.6):

• Title and Author;

• Executable File - Binary file that was flashed into the board;

• Source Code Path - Path to the .C files, which are necessary to use the EFD module.

Figure 4.7: Generate new Workload

4.2.3 Configure CortexM3scifi plug-in

The Configuration panel is managed by the EME module, even though every fault injection

plug-in has a sub-section inside the "Targets" section.

The configuration window for the CortexM3scifi plug-in has two panels. First there is the

Debuggers panel, which holds the necessary binary files to establish connection with the ICDI

debugger board (Figure 4.3) and is divided in three fields:

• OpenOCD Location - Path to the binary file of the OpenOCD;

• OpenOCD Configuration File Location - Path to the OpenOCD configuration file;

• Debugger Location - Path to the GDB binary file;

42

4.2. User Interaction

Figure 4.8: Configure CortexM3scifi - Debuggers Panel

Secondly there is the Target System Communication panel, which has all the necessary

configuration properties to establish connection with the Stellaris LM3S9B90 board (Figure

4.2). Its aim is to obtain the output from the Cortex-M3 microcontroller in the fault injection

process. The necessary fields are:

• COM Port - Port ID where the LM3S9B90 board is connected;

• COM Port properties - Bits per second, Data bits, Parity, Stop Bits;

Figure 4.9: Configure CortexM3scifi - Communication Panel

43

Chapter 4. Automotive Plug-in Development

4.2.4 Generate new Experiment

An Experiment is a sequence of fault injection runs separated by a target system reset and

executed in an automated manner. The generation of the experiment is the most extensive

process, being composed by 8 steps.

Step 1 - Basic information

In the first panel (Figure 4.10) the only mandatory field is the experiment title.

Figure 4.10: Generate Experiment - Basic information

Step 2 - Workload, Timeout and Gold-Run

The second panel (Figure 4.11) asks the user to select the workload used during the exper-

iment execution and the timeout values associated with the gold-run execution that include:

• Gold-Run Checkbox - an execution of the workload without injecting any fault. The aim

of the gold-run is to establish reference results;

• Timeout - chooses the workload timeout run based on the gold-run percentage time or

precise time value (seconds, milliseconds or minutes);

• Expected Output Checkbox - the expected output file produced by the Workload.

44

4.2. User Interaction

At the top of the panel there is a table listing all the available workloads that have already

been defined. Note that at least one workload must exist in order to define a new experiment.

Figure 4.11: Generate Experiment - Workload, Timeout and Gold-Run

Step 3 - Injection Runs

In the third panel (Figure 4.12) the user can define the number of injection runs he wishes

to generate.

Figure 4.12: Generate Experiment - Injection Runs

45

Chapter 4. Automotive Plug-in Development

Step 4 - Fault Location

The fourth panel (Figure 4.13) presents the available target locations where faults can be

injected. These locations are separated by categories: Processor Registers, Other Registers

and Flash Memory or SRAM.

Figure 4.13: Generate Experiment - Fault Location

Step 5 - Fault Type

The fifth panel (Figure 4.14) is the definition of the fault type. The user must choose one

or more of the following types: Bit flip - which defines both the number of bits desired to flip

and the related mask; or Reset Value and Specific Value.

Figure 4.14: Generate Experiment - Fault Type

46

4.2. User Interaction

Step 6 - Fault Trigger

The sixth panel (Figure 4.15) is the definition of the fault trigger. In this step the user must

choose one or more of the following triggers:

• Instruction Access Trigger - defines the assembly instruction that will trigger the fault

injection process. At this point, the EFD module can be used to help with the definition

of the trigger, interpreting the source-code conversion to assembly;

• Memory Access Trigger - defines a memory location that will trigger the fault injection

process, whether it be read or written in/from memory;

• Timeout Access Trigger - when the injection reaches a certain defined time, the fault

injection process starts.

Figure 4.15: Generate Experiment - Fault Trigger

47

Chapter 4. Automotive Plug-in Development

Step 7 - Access Before Trigger

In the seventh panel (Figure 4.16) the user specifies which values the plug-in will save in

the immediate time prior to the fault injection.

Figure 4.16: Generate Experiment - Access Before Trigger

Step 8 - Access After Trigger

In the eight panel (Figure 4.17), following the fault injection, the user specifies which values

the plug-in will save and after which steps of the processor.

Figure 4.17: Generate Experiment - Access After Trigger

48

4.2. User Interaction

4.2.5 Run Fault Injection

The fault injection run process is completely hidden from the user. He can only access

information telling him at which state the fault injection process is and an Output Log.

Figure 4.18: Run Fault Injection

The fault injection run is one of the key aspects on this plug-in as it determines the efficiency

and the precision of the tool by defining and organizing all the activities and processes. Figure

4.19 shows the activity diagram representing a fault injection run.

Initially, the plug-in establishes the connection to the target system (microcontroller and

debugger), notifying the user if a connection failure occurs before the fault injection process

begins. The fault injection is composed by two main activities (detailed in Figure 4.20):

• Execute workload: deals with the execution of the binary running on the microcontroller;

• Execute injector: manages the injection of faults on the target system and the debugger

outcomes.

49

Chapter 4. Automotive Plug-in Development

Figure 4.19: Injection Run - Activity Diagram

Finally, it closes all connections to the target system and stores all the fault injection out-

comes from both the microcontroller and the debugger.

The fault injection process can have multiple solutions/resolutions, depending mainly on

the fault injection technique in use and later the developer's interpretation and programming

skills. This fault injection implements the SCIFI technique, which is the action of stopping

the microcontroller at the time of the injection depending on the defined trigger, changing the

necessary values and then resuming the process.

50

4.2. User Interaction

Figure 4.20: Fault Injection Process - Activity Diagram

The fault injection process starts with the trigger installation on the target system. Once

the trigger has been installed it sends a message to the workload manager, whose execution

immediately starts. Then the injector waits for either two conditions:

1. workload reaches the specified trigger;

2. workload timeout reaches 0.

If 2) occurs, the fault injection process ends with no fault injected. On the other hand, if

1) occurs the microcontroller is stopped/halted so the fault can be injected. If the user wishes

to collect some location values before the fault injection, the plug-in does so and then injects

the fault on the microcontroller and collects the values of some locations, following the user's

command. The final step is to resume the microcontroller and wait for the workload to end if

it hadn't ended yet.

51

Chapter 4. Automotive Plug-in Development

4.3 Class Diagram

The CortexM3scifi plug-in is an extension of the csXception® product. In Figure 4.21 the

current class diagram of the Plug-in is represented, along with all the necessary connections

with the EME module.

Figure 4.21: CortexM3scifi class Diagram

52

4.3. Class Diagram

The initial csXception® package is "org/xception" and it contains all the modules that

compose the csXception® products (EME, EFD, Xtract, etc.). Each module has a package

and the following diagram only represents the packages and classes that interact with this

plug-in. Since the CortexM3scifi is an EME module it needs an abstract class that keeps all

the plug-ins in conformity. That class is the PlugIn class (inside org/xception/eme/modules).

Cortexm3scifiplugin is the package where all the classes of the Cortex-M3 Plug-in are lo-

cated. The Core class is the one that establishes the bridge with EME and extends the PlugIn ab-

stract class existent on the EME module. The Core class will handle all the information between

the csXception® and the Plug-in and whenever it receives a request to Copy/Paste/Delete an

Entity in EME, it redirects it to the EntityManager class, where all the Entity related information

is handled and returned so the necessary changes can be made in the Database to complete

these operations. The GuiinfobusHandler is the class responsible for handling the messages

exchanged through the GUI communication bus.

The Controller is instantiated by Core and it is a facade of all the fault injection actions.

The Controller communicates with three different packages:

• Fault Access Module (FAM) – this package contains all the classes responsible

for the access to the Cortex-M3 microcontroller. CortexM3FAM is the "core" class,

the one who establishes connection with the Controller class, managing all the other

classes existent in the same package. The CollectorManager manages the connection

to the target system during the fault injection run and instantiates the Collector class

that communicates with the target system collecting all the output data sent from the

Cortex-M3 microcontroller;

• Fault Definition Module (FDM) – is the package responsible for the fault defini-

tion phase and for generating new campaigns, experiments and injection runs. The

CortexM3FDM is the class that communicates with the Controller;

• Fault InjectionModule (FIM) – is responsible for injecting faults in the target system

but it manages the connection with the ICDI Board and the debugger as well. The

53

Chapter 4. Automotive Plug-in Development

CortexM3FIM is the class instantiated by the Controller. The InjectorManager manages

all the injection process and instantiates the Injector class that calls external debuggers

and communicates with the ICDI board, injecting all the necessary faults;

The GUI package contains all the SWING forms existent on the Cortex-M3 Plug-in and the

Utils package contains all the auxiliary classes used by other packages. The GridDataProducer

class manages the main grid of the plug-in, which is the grid where the campaigns, experiments

and injection runs are defined.

4.4 Database Design

Each plug-in has the possibility to create tables on the csXception® defined database, on

which they can store information related to themselves. csXception® will always verify the

conformance of the database at the beginning of the plug-in's loading and if the tables do not

exist, the program will automatically create them.

Database Schema

The plug-in database is loaded from an eXtensible Markup Language (XML) file that is in

compliance with a Document Type Definition (DTD) file (Figure 4.22). With this approach, the

database is defined in a simple and understandable XML file, being in coherence with all the

other plug-ins development.

Figure 4.22: Database Schema DTD

54

4.4. Database Design

The Cortex-M3 plug-in database contains four tables to save all the necessary data to inject

faults on the ARM® Cortex-M3 target system.

CortexM3scifiWorkload table

This table stores all the necessary information about each workload entity.

• executablepath – path of the executable file (usually .AXF) to run the workload;

• sourcecodepath – path of the workload source-code to launch the EFD with the workload

source file location.

Figure 4.23: XML code for CortexM3scifiWorkload table

CortexM3scifiFault table

This table is responsible for the storage of all the faults generated for each injection run,

saving all the necessary information according to the defined fault model (location, type, and

trigger).

• Fdmdescription – contains a text regarding all information on the row;

• Location – where the fault will be injected:

– Locationname – location description;

– Locationtype – location can have three different types: Processor Registers, Other

Registers and Flash Memory;

– Location – location code. If it is a Flash Memory it will be the hexadecimal ad-

dress.

55

Chapter 4. Automotive Plug-in Development

• Type – what is the fault injection operation:

– Faultype – type description;

– Fault – the calculated fault value;

• Trigger – what will trigger the fault injection process:

– Triggertype – a trigger can have three different types: Instruction, Memory and

Timeout;

– Triggerstartaddress – Trigger start address (used in Instruction and Memory trig-

ger);

– Triggerendaddress – Trigger and address (used in Instruction and Memory trigger);

– Triggertimeout – Timeout value in milliseconds (used in Timeout trigger);

– Triggercount – number of iterations on startaddress value before injecting the fault

(used in Instruction and Memory trigger).

Figure 4.24: XML code for CortexM3scifiFault table

CortexM3scifiFaultAccess table

This table's responsibility is to store all the registers/addresses that we want to evaluate

before and after the trigger advances for a given experiment.

• Evaluatebeforetrigger – is a string with all the addresses we want to evaluate before the

trigger goes forward. The addresses are separated by ":";

56

4.4. Database Design

• Evaluateaftertrigger – is a string with all the addresses we want to evaluate after the

trigger is activated. The addresses are separated by ":";

• Stepsnumber – the number of steps following the injection of the fault and prior to the

evaluation of the addresses defined on Evaluateaftertrigger.

Figure 4.25: XML code for CortexM3scifiFaultAccess table

CortexM3scifiResults table

This table's responsibility is to store all the necessary evaluating results for a given fault

injection run.

• Starttimestamp – the timestamp value in milliseconds when the fault injection run starts;

• Endtimestamp – the timestamp value in milliseconds when the fault injection run ends;

• Injected – this string is "TRUE" if fault was injected and is "FALSE" if it was not (ex:

when injection trigger is not reached);

• Statebeforetrigger – the list of evaluation values before injecting the fault;

• Stateaftertrigger – the list of evaluation values after injecting the fault;

• workloadoutput – text with all the outcome from the target system during workload run;

Figure 4.26: XML code for CortexM3scifiResults table

57

Chapter 4. Automotive Plug-in Development

Database Model

Figure 4.27 represents the final database model containing the csXception® base tables

(marked with the prefix “csXception::”) and also the Cortex-M3 Plug-in tables (marked with the

prefix “cortexm3scifi::”).

Figure 4.27: Database Model

58

Chapter 5

Case-study: Anti-lock Brake System

(ABS)

Summary

This chapter presents a case study related to the automotive industry with the purpose of

demonstrating the impact on the workload final results.

The chosen case study to prove the ARM® Cortex-M3 plug-in's impact in the automotive

industry was the Anti-lock Braking System.

5.1 Case-study Description

The ABS is an automotive safety system (Figure 5.1) that allows the vehicle's wheels to

maintain tractive contact with the road, preventing the wheel to lock itself up during braking

and helping the vehicle keep its stability and steering. The ABS system includes: wheel-speed

sensor, hydraulic modulator and an ECU. It is an automated system that uses the principles

of threshold braking and cadence braking, doing it with a better control than the one a driver

could manage (Burton, Delaney, Newstead, Logan, & Fildes, 2004).

The ABS appeared for the first time in 1929 and it was first developed for aircraft braking

systems. It was only in the 1960s that it made its first appearances in automotive industry.

59

Chapter 5. Case-study: Anti-lock Brake System (ABS)

Figure 5.1: Anti-lock Braking System

The ABS operates by detecting the onset of the wheel lock-up and then limiting the brake

pressure to prevent the lock-up. When the driver applies the brake, the slip increases until it

reaches the point of maximum friction between the tire and the road. At this point, the vehicle

will stop the braking process and will wait for the tire to reach a smaller friction point so the

process can restart until the vehicle stops completely.

5.2 Architecture and Design

The ABS system has several different components, such as a wheel-speed sensor, a brake

pressure modulator, a hydraulic electric pump, etc. The simulation of such a system requires

a huge knowledge on automotive braking systems and all its components. In an initiative to

avoid this effort, we found a simulator of an ABS system developed by Mathworks for the Mat-

lab Simulink product (MathWorks, n.d.).

This demonstrator simulates the dynamic behavior of a vehicle under hard braking con-

ditions. The wheel rotates with an initial wheel angular and vehicle speed of 70.4 rad/sec,

equivalent to 96.56 Km/h.

This ABS demonstrator calculates the “wheel slip” factor to verify at what instant the brake

will be activated. The desirable slip value is 0.2, which means that the number of wheel revolu-

tions equals 0.8 times the number of revolutions under non-braking conditions with the same

vehicle velocity. This maximizes the adhesion between the tire and the road and minimizes the

60

5.2. Architecture and Design

stopping distance with the available friction. Figure 5.2 represents the Simulink model of the

ABS system.

Figure 5.2: Matlab-Simulink ABS model

Now that we have an ABS simulator the question is: How can we run this demon-

strator on the Cortex-M3 microcontroller?

The Cortex-M3 microcontroller needs an executable/binary (e.g. .bin) file of the generated

source-code already compiled. Since Matlab has the capability to generate C/C++ code from

a Simulink model for the most varied target systems, we just need to generate the code and

then develop a build file to create a .bin executable.

At this point, the problem was to generate a C/C++ code to run on the ARM® Cortex-M3

microcontroller or any other embedded system, mainly because the model is using a variable-

step solver, which means that it will only be possible to generate code for real-time systems like

Windows or Linux. To solve this target system problem, we changed the ABS model to use a

fixed-step solver with small temporal intervals of 0.01 seconds and we obtained the same final

results as in the original model.

After generating the C/C++ source-code for the ARM® Cortex-M3 target system there are

still other things to be done, namely: Code re-factoring and Executable generation.

61

Chapter 5. Case-study: Anti-lock Brake System (ABS)

Code re-factoring

In this phase we perform two main tasks:

• LED braking flash - Is the ability to control the flash frequency of a Light-Emitting

Diode (LED) present on the LM3S9B90 board in order to know when the vehicle is

braking or not. The LED is only on when the vehicle is breaking, otherwise it is set to

off.

• Output values - Works to analyze the data obtained during the fault injection looking

for variations. The demonstrator should return the values on each step (0.01 seconds),

such as:

1. Current time instance;

2. Vehicle's speed;

3. Vehicle's wheel speed;

4. Current braking distance.

Executable generation

The executable generation process was supported by the examples existent on the CD of

the Stellaris EKS-LM3S9B90 evaluation kit. Nonetheless, some custom adaptations are still

necessary in order to build all the demonstrator required dependencies and libraries.

62

5.3. Fault Injection Results

5.3 Fault Injection Results

In this section, the results obtained from the various binary executions on the board, with

and without fault injection on the ABS demonstrator, will be presented. The binary executions

presented next were preformed inside the Cortex-M3 microcontroller and obtained from csX-

ception® with the CortexM3cifi plug-in.

As referenced before, a target system can have the most varied kind of reactions when

exposed to abnormal situations. When we are working with critical systems, either in space or

automotive industry, this kind of situation has to be controlled at both software and hardware

levels.

5.3.1 Gold-Run

Gold-run is a demonstrator execution without injecting any fault. The final values are:

• Time to stop: 13.97 seconds;

• Distance to stop: 219.82 meters;

Figure 5.3: Gold-run - Velocity & Wheelspeed

63

Chapter 5. Case-study: Anti-lock Brake System (ABS)

5.3.2 Fault Injection 1

When the execution begins, the fault injection process starts a counter and after 8 seconds

it changes the value of GPR 8 to 0x00000000 (Table 5.1).

Location Trigger Type

General Purpose Register 8
Timeout Reset Value

5 seconds 0x0000

Table 5.1: Fault Injection 1 - Details

The result is shown on Figure 5.4. The final values are:

• Time to stop: 16.7 seconds;

• Distance to stop: 265.7 meters;

Figure 5.4: Fault Injection 1 - Velocity & Wheelspeed

64

5.3. Fault Injection Results

5.3.3 Fault Injection 2

When the execution begins, the fault injection process starts a counter and after 10 sec-

onds it installs a trigger on the 0x00004D6A instruction (arithmetic instruction). When the

demonstrator reaches the instruction it changes the value of the GPR1 to 0x00000000 (Table

5.2).

Location Trigger Type

General Purpose Register 1
Timeout & Instruction Reset Value

10 seconds & 0x4D6A 0x0000

Table 5.2: Fault Injection 2 - Details

The result is shown in Figure 5.5. The final values are:

• Time to stop: 14.72 seconds;

• Distance to stop: 221.9 meters;

Figure 5.5: Fault Injection 2 - Velocity & Wheelspeed

65

Chapter 5. Case-study: Anti-lock Brake System (ABS)

5.3.4 Fault Injection 3

When the execution begins, the fault injection process starts a counter and after 8 seconds

it changes the value of the memory address 0x20001698 (Table 5.3).

Location Trigger Type

0x20001698
Timeout Reset Value

8 seconds 0x0000

Table 5.3: Fault Injection 3 - Details

The result is shown in Figure 5.6. The final values are:

• Time to stop: 16.15 seconds;

• Distance to stop: 234.81 meters;

Figure 5.6: Fault Injection 3 - Velocity & Wheelspeed

66

5.3. Fault Injection Results

5.3.5 Result analyzis and comparison

Figures 5.7, 5.8 and 5.9 show some comparisons between vehicle speed, wheel speed

and distance between the gold run and the other three injected faults.

Figure 5.7: Results comparison - Vehicle speed

Figure 5.8: Results comparison - Wheel speed

67

Chapter 5. Case-study: Anti-lock Brake System (ABS)

Figure 5.9: Results comparison - Distance

As shown in the previous figures, all the injected faults cause a reaction on the Cortex-M3

microcontroller, compromising the vehicle and, even more importantly, the physical integrity of

the driver.

Fault injection 1 has the most significant curve, even though it does not give any traceability

of the fault and, therefore, fails to let us know, for example, the current instruction or line in

the source-code.

In fault injection 2, the traceability is better because we already have knowledge on the time

instance and the source-code line. However, the fault was injected on the general processor

register 1, making it abstract, which means that at this moment we have no knowledge of what

value we are corrupting inside the GPR8.

Fault Injection 3 is a corruption on the value used to calculate the brake-pressure. Since the

value is a Double (8 bytes), in order to change it to 0.0 we need to change the following memory

addresses to 0x00000000: 0x20001698 (4 bytes) and 0x2000169C (4 bytes). Even though

this fault injection does not provide the most significant of results, it is the most traceable

and less abstract one since we are basically simulating the corruption of the break-pressure

component on the ABS system.

68

Chapter 6

Conclusion

Summary

This chapter presents a general discussion of the work that was presented in the previous

chapters specifying the goals defined for the developed project. It also shows the

difficulties experienced along this project and the proposed future work.

This project has demonstrated that using fault injection techniques in automotive-related

embedded applications is a potentially game-changing technique. The ABS case study that

was implemented shows that a small fault in the system can lead to huge differences in the

profile of internal system variables. The consequences of this behavior in such a system can

vary from mild to catastrophic.

6.1 Satisfaction on Goal Accomplishments

The main goals of this dissertation/project were to study, define and develop a fault in-

jection plug-in for a csXception® tool that should be capable of injecting faults on ARM®

Cortex-M3 microcontrollers. In order to achieve the proposed purposes the following steps

were followed:

• The study of fault injection was performed in order to understand the different techniques

and tools. Additionally, the detailed study of the ARM® Cortex-M3's architecture was

69

Chapter 6. Conclusion

very important so we could comprehend the main characteristics and limitations of the

board. At this stage, I appealed to CSW's engineers and papers in order to reach a good

working basis.

• The study of other plug-ins developed by CSW for csXception® tools, in particular the

study of the "Dynamic Plug-in" prototype that injects faults on the ARM® Cortex-M3

microcontroller. It has proven to be very useful for this project's development, although

the architecture is not in conformance and needs to be restructured.

• The study of the applicability of the plug-in to automotive industry. This particular study

concluded another study regarding the matter on which of the vehicle components

use Cortex-M3 microcontrollers and standards who recommended fault injection in the

vehicles' development.

• The requirements elicitation activity (Section 3.4) based on other plug-ins developed by

CSW and regarding architecture design, class diagram, database design and behavioral

diagrams definition.

• The writing of a research paper that was submitted and accepted to the 14th European

Workshop on Dependable Computing (EWDC2013) entitled "csXception®: First Steps

to Provide Fault Injection for the Development of Safe Systems in Automotive Industry".

The paper was co-written with Ricardo Barbosa and Nuno Silva and was presented by

me on the 16th May 2013.

• The development of the CortexM3scifi plug-in in conformance with the requirements

specified in Section 3.4.

• The development of a case study based on an ABS system running on the Cortex-M3

microcontroller, where faults are injected with the new plug-in, and later analyzing the

results (Chapter 5).

70

6.2. Main Difficulties and Challenges

6.2 Main Difficulties and Challenges

This dissertation ended with a felling of challenge accomplished, although various difficul-

ties were encountered along the way:

• Dissertation thematic on fault injection. Since FI was not a taught subject during my

academic education it was difficult at the beginning to assimilate some concepts, such

as differentiate the various FI techniques and distinguish and understand the role of the

various components of the FI system.

• Interaction and communication with external physical systems were a great challenge,

helping me grow technically in the area of computers' architecture.

• Public English presentation of my current project to a scientific audience was a rewarding

experience.

• The development of an ABS demonstrator based on a Matlab & Simulink model. Code

generation and Simulink design was a good and new experience, helping me to explore

other areas of software development.

6.3 Future Work

Despite having a functional fault injection plug-in that implements a significant amount of

features, there are still further steps to be considered:

• The improvement on the contemporary capabilities of the CortexM3scifi plug-in, making

it a more user friendly tool for automotive OEMs (Original Equipment Manufacturers);

• The completion of the domain's fault model and integration within the ARM® Cortex-

M3 prototype. Some information exchange with automotive OEMs would provide the

required knowledge (for example, hazard and risk analyzis field data) to achieve this

step, since it would be very important to build more correct and accurate fault models.

71

References

Aidemark, J., Vinter, J., Folkesson, P., & Karlsson, J. (2001). Goofi: Generic object-oriented

fault injection tool. The International Conference on Dependable Systems and Networks

(DSN'01), 199-216.

Arlat, J., Crouzet, Y., Karlsson, J., Folkesson, P., Fuchs, E., & Leber, G. H. (2003, September).

Comparison of physical and software implemented fault injection techniques. IEEE

Transactions on Computers, 52(9), 1115-1133.

Benso, A., & Prinetto, P. (2003). Fault injection techniques and tools for embedded systems

reliability evaluation. Kluwer Academic Publishers.

Burton, D., Delaney, A., Newstead, S., Logan, D., & Fildes, B. (2004, April). Effectiveness of

abs and vehicle stability control systems. Royal Automobile Club of Victoria.

Carreira, J., Costa, D., & Silva, J. G. (1999). Fault injection spot-checks computer system

dependability. IEEE Spectrum, 50-55.

Carreira, J., Madeira, H., & Silva, J. G. (1995). Xception: Software fault injection andmonitoring

in processor functional units.

Carreira, J., Madeira, H., & Silva, J. G. (1998). Xception: A technique for the experimen-

tal evaluation of dependability in modern computers. IEEE Transactions on Software

Engineering, 24, 125-136.

Cotroneo, D. (2013). Innovative technologies for dependable ots-based critical systems.

Springer-Verlag Italia.

Cunha, J. M., Barbosa, R., & Silva, N. (2013). csxception®: First steps to provide fault injection

for the development of safe systems in automotive industry. 14th European Workshop

73

on Dependable Computing (EWDC).

Economist. (2010, May). Tech. view: Cars and software bugs. Retrieved 25/06/2013,

from http://www.economist.com/blogs/babbage/2010/05/techview

_cars_and_software_bugs

Folkesson, P., Svensson, S., & Karlsson, J. (1998). A comparison of simulation based and

scan chain implemented fault injection. FTCS '98 Proceedings of the The Twenty-Eighth

Annual International Symposium on Fault-Tolerant Computing, 30, 284--.

GNU. (n.d.). Gdb: The gnu project debugger website. Retrieved from http://www.gnu

.org/software/gdb/

Hsueh, M. C., Tsai, T. K., & Iyer, R. K. (1997, April). Fault injection techniques and tools. IEEE

Computer, 30(4), 75-82.

Koren, I., & Krishna, C. M. (2010). Fault-tolerant systems. Morgan Kaufmann.

Madeira, H., Rela, M., Moreira, F., & J.Silva. (1994, October). Rifle: A general purpose pin-level

fault injector. Proc. First European Dependable Computing Conference, 199-216.

MathWorks. (n.d.). Modeling an anti-lock braking system. Retrieved from http://

www.mathworks.com/products/simulink/examples.html?file=/

products/demos/shipping/simulink/sldemo_absbrake.html

Mills, H. D. (1972). On the statistical validation of computer programs. IBM Federal Systems

Division, Gaithersburg, MD, Red. 72-6015.

OpenOCD. (n.d.). Openocd: Open on-chip debugger. Retrieved from http://openocd

.sourceforge.net/

Voas, J. M., & McGraw, G. (1998). Software fault injection - inoculating programs against

errors. John Wiley and Sons, Inc.

Ziade, H., Ayoubi, R., & Velazco, R. (2004, July). A survey on fault injection techniques. The

International Arab Journal of Information Technology, 1(2), 171-186.

74

http://www.economist.com/blogs/babbage/2010/05/techview_cars_and_software_bugs
http://www.economist.com/blogs/babbage/2010/05/techview_cars_and_software_bugs
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.mathworks.com/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_absbrake.html
http://www.mathworks.com/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_absbrake.html
http://www.mathworks.com/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_absbrake.html
http://openocd.sourceforge.net/
http://openocd.sourceforge.net/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Critical Software S.A.
	csXception®
	Document Structure

	Safety-Critical Systems and Fault Injection
	Safety-Critical Systems
	Space Industry
	Automotive Industry

	Fault Injection
	Fault Injection History
	Fault Injection environment
	Fault Injection and ISO-26262

	Fault injection techniques
	Hardware Implemented Fault Injection
	Software Implemented Fault Injection
	Scan-Chain Implemented Fault Injection
	Robustness Fault Injection

	Fault Injection Tools
	csXception®
	GOOFI
	RIFLE

	Automated Fault Injection Plug-in
	Objectives and Motivation
	Development Environment
	Fault Model
	Requirements Catalogue

	Automotive Plug-in Development
	Architecture
	User Interaction
	Generate new Campaign
	Generate new Workload
	Configure CortexM3scifi plug-in
	Generate new Experiment
	Run Fault Injection

	Class Diagram
	Database Design

	Case-study: Anti-lock Brake System (ABS)
	Case-study Description
	Architecture and Design
	Fault Injection Results
	Gold-Run
	Fault Injection 1
	Fault Injection 2
	Fault Injection 3
	Result analyzis and comparison

	Conclusion
	Satisfaction on Goal Accomplishments
	Main Difficulties and Challenges
	Future Work

	References

