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Abstract

Formal verification of software has been an active topic in the area of com-
puter science. Several techniques to verify software are now available, and
many tools have been created over the years for different languages and using
different techniques. However, for SPARK, a programming language broadly
used in critical systems, only deductive verification tools based on contracts
are available. The main downside of this approach is the lack of a full au-
tomation.

In this dissertation we propose an automated verification tool for SPARK
code, thus contributing to fill the gap identified above. Our tool bases on
an alternative technique, called bounded model checking, that sacrifices com-
pleteness in exchange for automation. Through grounding our work in the
highly popular and successful CBMC tool for verification of C code, we in-
vestigate how to perform bounded model checking of SPARK programs, and,
in particular, we present our implementation of a bounded model checker for
SPARK programs called SPARK-BMC.

Experiments performed with our tool show that automatic verification of
SPARK programs is feasible and useful, even though is not complete. As
far as we know, there is no tool based on such an automated technique for
SPARK. The tool is freely available and based on open-source technologies.
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Resumo

A verificação formal de software tem sido um tópico bastante ativo na área
das ciências da computação. Várias técnicas podem ser aplicadas para veri-
ficar software e ao longo dos anos surgiram várias ferramentas para diferentes
linguagens usando diferentes técnicas. Para a linguagem de programação
SPARK, que é especialmente usada em sistemas críticos, existem ferramen-
tas dedutivas baseadas em contratos. Porém, esta técnica de verificação tem
uma desvantagem: fraca automação.

Nesta dissertação, propomos uma ferramenta de verificação automática
para código SPARK, assim contribuindo para suprir a limitação antes referida.
Esta ferramenta baseia-se numa técnica alternativa denominada por ‘bounded
model checking’ que embora não sendo completa permite automação. Base-
ando o nosso trabalho na popular e bem sucedida ferramenta CBMC para
a verificação de código C, estudamos como levar a cabo o ‘bounded model
checking’ de programas SPARK e, em particular apresentamos a respectiva
implementação que designamos por SPARK-BMC.

As experiências que levamos a cabo com a nossa ferramenta mostram que
a verificação automática de programas SPARK, ainda que não seja completa,
é praticável e útil. Pelo que nos é dado a conhecer, não há nenhuma ferra-
menta baseada numa tal técnica automatizada para programas SPARK. A
ferramenta é de acesso livre e baseia-se em tecnologias ‘open-source’.
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Chapter 1

Introduction

This thesis fits into the area of formal verification of programs, more pre-
cisely the use of bounded model checking for the verification of programs
written in SPARK [Bar03]. SPARK is a programming language designed for
the development of high-assurance software. The development platform of
SPARK programs provides a set of verification tools that allow developers
to give evidence for correctness of the source code being written, and detect
problems early in the software life-cycle. The existing tools for verification
of SPARK programs are mainly commercialized by Altan1 and AdaCore2,
and comprise both automatic and interactive proof for the generated veri-
fication conditions. The tools can check the absence of runtime errors, as
well as functional correctness based on contracts. Lately, independent tools
have been proposed, such as HOL-SPARK [Ber11] which provides interactive
proof construction using the Isabelle [NWP02] proof assistant. All these tools
are based on deductive verification, which implies that someone has to write
the contracts and loop invariants that will be used to generate verification
conditions. Since this is in general far from straightforward, and moreover
the use of interactive proof tools has a steep learning curve, scalability is
compromised.

An alternative approach designated by software model checking reaches
automation in exchange for completeness or correction. In the first case, ab-

1http://www.altran.co.uk
2http://www.adacore.com
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straction techniques are used, taking the risk of introducing false positives.
In the second case, the model checking of software just takes into account
the executions with length up to a given limit, saying nothing about longer
executions. Such limit is defined by the user, and verification conditions may
be generated to verify if longer executions can possibly occur in the execution
of the program. This approach, named Bounded Model Checking (BMC), is
completely automatic and precise, which in many cases allows bugs to be
detected in a very efficient way. We propose an implementation of such a
technique for the verification of SPARK programs. It is not our intention to
replace the existing tools; instead, we pretend to complement those with a
new tool that (unlike the existing tools) can be used in a completely auto-
matic way and still be useful.

We use the rest of this chapter to provide a more detailed description
of the topics mentioned above. We start by presenting the general ideas
about verification of programs, focusing later on the topic of this thesis:
bounded model checking of software. A brief history and overview of the
SPARK language is also given. This chapter ends with a summary of the
main contributions and organization of this document.

1.1 Program Verification

Program verification consists in verifying the correctness of programs accord-
ing to a specification. Let us start by reviewing some fundamental concepts
related to program verification. When it is said that a program is correct, it
is meant that the program is correct accordingly to a specification. This spec-
ification defines properties of the program under analysis, and is normally
written as annotations (not mandatory). Such a specification expresses safety
and/or liveness properties, as well as functional properties. While safety
properties denote that nothing bad will happen (e.g., an assertion violation
or null pointer dereference), liveness properties denote that something good
will eventually happen (e.g. a program will terminate) [BBF+01]. Functional
properties specify the input/output behavior of the program.

To check if a program is correct according to a specification, Verification

2



Conditions (VCs) are generated using the program instructions and the spec-
ification, and those must be proved by a logic solver. A verification technique
based on the generation of VCs is said to be sound if, whenever the generated
VCs are valid, the program is correct, that is, the operational behavior of the
program respects the specification. Symmetrically, a verification technique
is said to be complete if whenever a program is correct, the generated VCs
are valid. Figure 1.1 shows exactly the distinction between the concepts of
soundness and completeness. V Cs(P ) represents the VCs generated for the
program with respect to a given (annotated) specification P . |= VCs(P ) de-
notes the validity of the VCs generated from the program and specification
P . CORRECT (P ) means that the program P is correct according to its
specification.

|= VCs(P )
soundness=======⇒ CORRECT (P )⇐=======
completeness

Figure 1.1: Soundness vs completeness

Tools for verifying software are mainly divided in two families: tools based
on a deductive approach and tools based on model checking. While deductive
verification based on the use of a program logic and the design-by-contract
principle gives full guarantees and allows for expressing properties using a
rich behavior specification language [HLL+12], it is not automatic: it is the
user’s responsibility to provide contracts and other information required for
verification to proceed, such as loop invariants. Such information requires a
lot of effort from the user since it is often difficult to write.

The second family of techniques is based on model checking [CES09],
more precisely model checking of software. This approach typically allows
only for simpler properties, such as safety properties expressed as assertions
in the code, but is fully automated. The fundamental idea is to create a
model from the source program, and then, given a property, check if it holds
in that model. However, such an approach has a main downside: state space
explosion. This problem is common to all applications of model checking,

3



but the presence of data makes it worse in the case of software. This has
led to the development of specific techniques for model checking of software,
which we discuss later in this chapter.

1.2 Model Checking
and Bounded Model Checking

The general idea of model checking is to check the validity of a system model
accordingly to a specification [CGP99, CES09]. The model represents in gen-
eral the behavior of a finite state concurrent system, and the specification,
defined trough properties, represents expected behaviors of the system. The
model and the specification are defined based on mathematical tools from
automata theory and logic, and the verification process consists in algorith-
mically verifying if the model satisfies all the properties. If some property
fails, a counter-example is extracted from the model.

Model checking in its best known form was initially introduced in 1981 by
Clarke and Emerson [CE81]. Theirs and Sifakis’ pioneering work in model
checking was recognized in 2007 by a Turing Award. The formulation of the
model checking technique is as follows: given a finite state transition system
M , an initial state s, and a property expressed through a temporal logic
formula f the technique consists in verifying if M, s � f holds.

The first implementations of model checkers used explicit representation
of the state transition graph, and the exploration of states was done by
traversing the graph using efficient techniques. The problem of such an ap-
proach is that the number of states grows exponentially with the number of
variables, leading to the famous state space explosion problem [CGP99]. In
the early nineteens a technique called symbolic model checking was proposed
[Mcm92, BCM+92]. The idea is to represent the set of states symbolically,
instead of representing them explicitly. Due to the success of Binary Decision
Diagrams (BDDs) to symbolically represent the set of states, sometimes the
expression ‘symbolic model checking’ is used to refer to the particular imple-
mentation of symbolic model checking based on BDDs. To have an overall

4



idea of symbolic model checking and BDDs see [CGP99, Mcm92].
Later in the nineteens a new technique called Bounded Model Checking

was proposed [BCC+99]. It consists in considering only a subset of the model,
more precisely the set of states requiring less than K steps to be reached
(only paths with length up to K are considered). If no counter-example
is found for the given bound K, nothing can be said about longer paths.
However, it is possible to increment the bound until a counter-example is
found or the problem becomes intractable. One big advantage of BMC is
the possibility to efficiently reduce the problem to a satisfiability problem,
which can be later solved by a Satisfiability (SAT) [GKSS08] or Satisfiability
Modulo Theories (SMT) [dMB11] solver. Modern SAT solvers can handle
propositional formulas with (more than) hundreds of thousands of variables,
which makes them very suitable for this kind of problems. On the other
hand, SMT solvers capture richer theories that may be useful for solving
specific problems, as will be explained later.

1.3 Software Model Checking

Since its introduction model checking has been mainly used to check hard-
ware descriptions; more recently research has been made to apply it to soft-
ware systems. In the field of software the main idea is to extract a model
directly from the source code, formulate on that model safety and/or liveness
properties about the program execution, and then apply a model checking
algorithm [BHMW09, JM09, IYG+08]. One way of modeling a program is
to have in each state of the model an evaluation of the program counter,
the values of all variables, and the configuration of the heap and stack. The
program flow is described by transitions from one state to another.

Since software model checking is just a particular application of model
checking, the techniques to represent and verify the model are those described
in the previous section. However, the state space explosion is an even bigger
concern here, since the state space grows exponentially with respect to many
parameters, as for example the number of variables. It can be even infinite
in the presence of function calls and/or concurrency [SKW08].

5



1.3.1 Software Model Checking
using Abstraction Techniques

Abstraction can be used to reduce the impact of the state-space problem,
by trading precision for efficiency [CES09]. Certain properties depend only
on some parts of the program. The technique consists in constructing a
model containing only the relevant parts of the program to the property of
interest. Thus, the abstract model captures some, but not necessarily all
the information about an execution, keeping always the control flow. There
are various abstraction techniques, with predicate abstraction [BHMW09]
the most popular. The idea is to keep a set of boolean predicates over the
data, whose truth values change with the concrete program steps. The result
program is called a boolean program, since all variables are of type boolean.
Due to the abstraction, there may be reachable states in the abstract model
that are not reached in the concrete model, so when checking for safety
properties, each time a counter-example is found in the abstract model, it
has to be checked if this is actually a counter-example in the original model.
If it is not, this leads to the predicate refinement techniques, which consist
in refining the predicate each time a spurious counter-example is found.

We remark that if the property happens to be valid in the abstract model,
so is it in the concrete model (the use of abstraction techniques is sound).

1.3.2 Bounded Model Checking of Software

The other alternative to overcome the state space explosion problem is the use
of bounded model checking of software. This technique only checks executions
with length up to a fixed (user-provided) bound, sacrificing soundness. In
software, the main idea of BMC is to encode bounded behaviors of the program
that enjoys some given property as a logical formula whose models, if any,
describe executions leading to a violation of the property. The properties to
be established are assertions on the program state, included in the program
through the use of assert statements. For every execution of the program,
whenever a statement assert φ is met, the assertion φ must be satisfied by
the current state, otherwise we say that the state violates the assertion φ.

6



Such assertions may be seen at the operational level as follows:

assert φ ≡ if ¬φ then ABORT;

This highlights the fact that properties expressed through assertions are in-
deed safety properties, in the sense that a correct program does not enter
an abort state. The verification technique assumes that a satisfiability-based
tool is used to find models corresponding to property violations.

At the heart of a BMC tool stands an algorithm that extracts a logi-
cal formula directly from the source code (including properties expressed as
assertions), without user intervention. The algorithm begins with some pre-
liminary simplification steps that may include the removal of side effects, or
normalization into a subset of the target programming language. The next
step is where information is lost, in the sense that only bounded behaviors
are preserved. Given an entry-point provided by the user, the program is
expanded by unwinding loops a fixed number of times, and inlining routine
calls (in the presence of recursion, a bound is also applied on the length of this
expansion). A program consisting of multiple routines is thus transformed
into a monolithic program, which is both recursion-free and iteration-free.

To enforce soundness of BMC, an unwinding assertion can be placed
at the end of each expanded segment of code. If the unwinding assertion
(negating the condition of the loop) is not violated by any execution, then
checking the transformed (bounded) code is sound. Unwinding assertions can
be omitted, in which case one must always bear in mind the unsoundness of
the approach.

In order to extract a logical formula from this monolithic program, it
has to be transformed into a form in which the values of the variables do
not change once they have been used (so that they can be seen as logical
variables). This is done by converting the program into a Single Assignment
(SA) form in which multiple indexed versions of each variable are used – a
new version is introduced for each assignment to the original variable, so that
in every execution path, once a variable has been read or assigned it will not
be assigned again.

7



The next step is to normalize this program into conditional normal form
(CNF): a sequence of single-branch conditional statements of the form if b

then S, where S is an atomic statement, i.e. either an assignment, or assert
instruction. The idea is to flatten the branching structure of the program, so
that every atomic statement is guarded by the path condition leading to it.

At this point, two sets C and P can be extracted from the program:
C includes a formula b → x = e for every statement if b then x := e;
P includes a formula b → φ for every statement if b then assert φ. C
captures logically the operational contents of the program, and P contains
the properties to be established.

If no assert statement fails in any execution of the program, one has that∧P is a logical consequence of C. This can be determined by checking the
satisfiability of the set of formulas C ∪ {¬∧P}. Any model found for it
corresponds to an execution path that leads to an assertion violation. Of
course, satisfiability checking is restricted to models that capture the proper-
ties of the data structures manipulated by the program, and that are specified
by some background theory T (usually a combination of several theories).
Therefore ‘satisfiability’ should in fact be understood as T -satisfiability. It
can be checked by a Satisfiability (SAT) or a Satisfiability Modulo Theory
(SMT) solver: for our purposes the main difference is in the way numeric
values and arrays are modelled.

1.4 SPARK

The SPARK programming language is basically a subset of Ada, whose first
release dates from 1983 (Ada 83). Ada was created for the United States
of America Department of Defense, when the department realized that their
software was written in many different languages. The cost of supporting
updates and maintainability for this software was very high. So, a set of re-
quirements for a universal language meeting their requirements was created,
taking into account opinions from various software experts in the govern-
ment, industry and academia. When analyzing the existing languages, they
realized that none of the existing programming languages could satisfy their
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requirements. The solution found was to create a competition for companies
to create a language meeting these requirements. The main requirements for
the language included: readability, efficiency, provability and expressiveness.
The contest winner came from a French team led by Jean Ichbiah, and a
few years late Ada 83 was released3. Along the years a few more versions
were released, but always keeping the initial requirements. The current main
characteristics of Ada are4:

• Strongly typed - With strong typing (also called safe typing) many
errors can be detected at compile time.

• Modular - The modularity in Ada is achieved through packages. The
packages are divided into specification and body. The package specifi-
cation defines an interface for external usage. The package body gives
the implementation details of the package.

• Object oriented - Ada also supports Objected Oriented Program-
ming.

• Concurrent - It is a built-in feature in Ada through Ada tasks. The
tasks run concurrently and Ada provides mechanisms for them to com-
municate with each other.

Although the use of Ada can avoid many errors that are common in other
languages, there are systems which require more than that. For some systems
the effect of an error can lead to loss of lives or catastrophic disasters. The
Ada language was chosen as a foundation for some research that has been
carried out since 1970, from which SPARK was born in 1988 [Bar03].

As was said before, SPARK is a subset of Ada with some features added
through annotations which are actually comments in Ada. Thus, a SPARK
program can be compiled by an Ada compiler, avoiding the need for a special
compiler. SPARK removes all the features that are dangerous or difficult
to verify in the development of safety critical systems, such as recursion,

3http://www.adaic.org/learn/materials/intro/part1/#history
4http://www.adacore.com/knowledge/technical-papers/safe-secure/
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dynamic memory allocations, access types (pointers), dynamic dispatching,
and generics. Furthermore, with the annotations added in SPARK, it is
possible to check the absence of errors, as well as to formally verify the
program according to a specification.

The annotations can be divided in two parts: core annotations and proof
annotations. The core annotations are divided into flow analysis and visibility
control. Flow analysis annotations specify how the data information flows in
a subprogram, or in other words, it specifies how each variable is used and,
if assigned, it specifies its dependencies. The visibility control annotations
specify what is visible from within a subprogram or package, e.g., global
variables usage or packages importation. The proof annotations are used to
specify pre-conditions and post-conditions as well as loop invariants and other
assertions. These annotations are then used by the SPARK tool Examiner
to check the validity of the core annotations, and to generate verification
conditions for the proof annotations. In what follows we explore a simple
SPARK example which consists only in a subprogram that swaps the values
of two variables given as (in out) parameters.
� �
package SP i s

procedure swap (A: in out I n t e g e r ; B: in out I n t e g e r ) ;
−−# d e r i v e s A from B &
−−# B from A;
−−# post A=B~ and B=A~ ;

end SP ;� �
Figure 1.2: SPARK program specification

Figure 1.2 presents a SPARK package specification SP. It defines the pro-
cedure swap which has two input and output parameters. In the annotations
it is specified that the output value of A derives from B and the output value
of B derives from A. In the post-condition (also included as an annotation)
it is stated that the output value of A is equal to the input value of B, and
the other way around.

Figure 1.3 shows the body of the package SP. The function defines an aux-
iliary variable Aux which is used as a temporary variable. In the subprogram
implementation the swap action is performed in the expected way.
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� �
package body SP i s

procedure swap (A: in out I n t e g e r ; B: in out I n t e g e r )
i s

Aux : I n t e g e r ;
begin

Aux := A;
A := B;
B := Aux ;

end swap ;
end SP ;� �

Figure 1.3: SPARK program body

1.5 Contributions and Document Outline

The most important contribution of this thesis is the SPARK-BMC tool,
which is capable of performing bounded model checking of SPARK programs.
Although it is not our idea to compete with the existing available SPARK
tools, we show that automatic verification of SPARK code is feasible and
useful.

Chapter 2 describes some aspects of the SPARK language that are rele-
vant in the development of a bounded model checker. We start by describing
the motivation for a language like SPARK, and later we describe the or-
ganization of SPARK programs, the type system, relevant statements and
annotations. Moreover, we present the SPARK toolset and show some ex-
amples where SPARK technology has been applied.

Chapter 3 presents the state of the art in BMC of software. The first part
of that chapter gives detailed descriptions about the necessary transforma-
tions to perform BMC of software. The second part of the chapter presents
some of the existing tools capable of performing BMC of software. Most of
these tools were developed for C programs, however some of them are able
to take as input an intermediate language representation.

Due to the success of CBMC, we give special attention to this tool. The
existing documentation and papers about the tool, and more precisely about
the transformations on the input program, do not show in detail how the
generation of SA code is done. In order to understand how this generation
works, we have made and documented an empirical study to CBMC. The
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results of this study are presented in Chapter 4 and we believe this chapter
is a useful contribution for readers wishing to understand how to produce SA
code as a first step in the verification of software.

Chapter 5 is the core of this thesis. It is in this chapter that we present
the main work of this thesis: a bounded model checker for SPARK programs.
The first part of the chapter introduces the main technology being used in
the implementation of our tool. One of the contributions described in this
chapter is the development of a parser for SPARK programs. The current
version of the parser supports the full SPARK language, and it is an open
source project under the BSD 3 license, available from https://bitbucket.
org/vhaslab/spark-parser. After that, we describe the internals of our
tool. Taking the standard BMC transformations as guidance, we show how
we have approached each step of the BMC workflow. We try to point out
specific challenges of the SPARK language which required more work from
our part. A tutorial about how to use the tool is also presented in that
chapter, together with a set of examples.

The last chapter of this thesis is dedicated to presenting the conclusions
and future work.

The work developed in this thesis has as context one of the tasks of the
AVIACC5 project, and has contributed directly to the project. Moreover,
also in the context of the project, and using parts of this thesis, a commu-
nication [LMFP13] and a full paper [MFLP13] were presented at the 5th
INForum (‘Simpósio Nacional de Informática’) which was held at Universi-
dade de Évora.

5http://wiki.di.uminho.pt/twiki/bin/view/Research/Aviacc/WebHome
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Chapter 2

SPARK

2.1 Language

Ada programming language can help avoid errors that are common in other
languages but, as said before, in the development of highly critical systems
this is often insufficient. SPARK [Bar03] appeared in 1988 to target precisely
these systems. Although SPARK is based on a heavily restricted subset of
Ada together with a set of annotations, it should be considered in its own
right as a full language for the development of annotated high-assurance
software. The great advantage of using a subset of a widely used language is
that this makes possible to share compilers, instead of developing a new one.
A consequence of this is that annotations in SPARK code must be written
as Ada comments, ignored by compilers but not by the SPARK verification
tools.

Figure 2.1 contains a procedure specification with the corresponding an-
notations (lines starting with --#). In both Ada and SPARK parameters can
have one of three modes, indicating the direction of the information flow: in,
out or in out. The example procedure has one parameter (V) with mode in,
and one parameter (M) with mode out: it receives an array of integer values
and returns the index of the maximum element. The specification includes a
dataflow annotation (stating that the value of M derives from V) as well as a
post-condition.
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� �
package Marray i s

Array_Size : constant :=10;
subtype Index i s I n t e g e r range 1 . . Array_Size ;
type VArray i s array ( Index ) of I n t e g e r ;

procedure MaxArray (V: in VArray ; M: out Index ) ;
−−# d e r i v e s M from V;
−−# post ( f o r a l l I in Index => (V( I ) <= V(M) ) ) ;

end Marray ;� �� �
package body Marray i s

procedure MaxArray (V: in VArray ; M: out Index )
i s

I : I n t e g e r ;
Max : Index ;

begin
Max := Index ’ F i r s t ;
I := Index ’ F i r s t +1;
loop

exit when I > Index ’ Last ;
−−# a s s e r t ( f o r a l l J in Index range Index ’ F i r s t . . ( I −1)
−−# => (V( J ) <= V(Max ) ) ) ;
−−# a s s e r t ( I >= Index ’ F i r s t ) and ( I <= Index ’ Last + 1 ) ;
i f V( I ) > V(Max) then

Max := I ;
end i f ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;� �

Figure 2.1: SPARK program: specification (top) and body (bottom)

A SPARK program is composed by one or more units. There exist two
different kinds of program units: packages and subprograms. Subprograms
define computations and are divided into functions and procedures. Functions
are routines with only mode in parameters, that may not have side effects,
and always return a value. Each function must have exactly one return
statement, which must be the last statement (it cannot occur anywhere else in
the function body). Function calls occur inside expressions, while procedure
calls may only occur as standalone statements (procedure bodies may not
contain return statements).

The other kind of subprogram unit, called package, is used as a way of
grouping related entities (e.g. data types, data objects, subprograms or even
nested packages).

All program units are generally divided in two parts: specification (the

14



program unit’s interface) and body (the implementation details). Figure 2.1
contains both the package Marray’s specification (top) and body (bottom).

Many features of Ada are not present in SPARK because they are con-
sidered ‘dangerous’ in the development of safety-critical systems, or at least
difficult to verify. These include recursion, dynamic memory allocation, ac-
cess types (pointers), dynamic dispatching, and generics. See [Alt11] for a
full description of the SPARK restrictions. Some of these exclusions facili-
tate our work in the development of a BMC for SPARK. For instance, unlike
CBMC, a BMC for SPARK does not have to limit the number of times a
subprogram is inlined, since recursion is not allowed. The same applies to
pointer validity checks, since pointers are absent from SPARK.

SPARK is not just a language, but also a set of tools that not only check
if a program respects all the restrictions imposed on valid SPARK programs,
but are also probably the most widely used tools for program verification.
The Examiner is the tool responsible for performing syntactic and static
semantic analyses for checking the validity of SPARK programs, as well as
generating verification conditions. In Section 2.2 we give a more complete
description of the SPARK tools.

We now briefly describe the features to take into account in the develop-
ment of a BMC for SPARK and to give an overview of the language.

Types

SPARK types are organized into categories [Bar03]. Figure 2.2 shows only
the discrete types hierarchy (a subset of the types hierarchy), divided into
integer types and enumerations. The integer types are divided into signed
integers and modular integers. Operations over signed integer types may
result in overflow (which raise runtime exceptions), whereas operations over
modular types have wraparound semantics. A modular type is defined by
giving a power of two integer N; its values range from zero to N-1 (see type
T in Figure 2.3). The range of the predefined integer type is defined in a
default SPARK package, but it can also be given in a configuration file. It
is also possible to define new integer types, with range given by two static
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expressions (lower and upper bound). As an example, Figure 2.3 shows the
declaration of the type Nat. Note the use of the expression Integer’Last
which makes use of an attribute of the integer type. S’Last denotes in
general the last element of S. Several attributes exists but in this section we
only describe a subset of them. To have a full idea of every existing attribute
refer to [Alt11].

Figure 2.2: Discrete types

An enumeration is defined using a list of identifiers (enumeration literals).
In SPARK, as opposed to Ada, enumeration literals cannot be overloaded.
In general, elements of an enumeration are ordered as they were declared.
Moreover, the equal, unequal and other relational operators may be used
with enumerations. There are also some attributes which are very useful
with enumerations. For instance, Pos (Val) returns the position of an enu-
meration element (the enumeration element corresponding to a position).
Pred and Succ return the predecessor and successor of an element respec-
tively. Type Day in Figure 2.3 is an example of a declared enumeration type;
types Boolean and Character are predefined enumeration types. However,
the Boolean type is a special case. Relational operations as well as the at-
tributes Pred, Succ, Pos, Val do not apply to Boolean types. Equality and
inequality as well as the attributes First, Last do apply to Booleans. As
a consequence of these design choices, operations with boolean expressions
never result in run-time exceptions.

In addition to discrete types there exist also composite types, divided into
records and arrays. A record is a structure consisting of named components.
As is the case in other languages, an array consists of an indexed list of
elements of the same type. The index must be a discrete type (enumeration,
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� �
type Nat i s range 0 . . Integer ’ Last ;
type T i s mod 4 ;
type Day i s (Mon, Tue ,Wed, Thur , Fri , Sat , Sun ) ;
subtype Counter i s Nat range 1 . . 10 ;
subtype Weekday i s Day range Day ’ F i r s t . . Fr i ;� �� �
type Tuple i s array ( I n t e g e r range <>) of Day ;
type WorkHours i s array (Weekday) of Nat ;
type Matrix i s array ( Counter , I n t e g e r range <>) of I n t e g e r ;� �

Figure 2.3: Examples of SPARK discrete and array types

integer or modular) and may possibly be constrained. In Figure 2.3, Tuple is
an example of an unconstrained array declaration (note the use of <>) while
WorkHours is an example of a constrained one. Objects of an array type must
always have a static bound, therefore the types Tuple and Matrix cannot be
used directly to create new objects, since they have unconstrained indexes.

A subtype of a certain type is defined by giving a lower bound and an
upper bound over the base type. One can define subtypes of both enumera-
tion types and integer types, but not of modular types or of the predefined
Boolean type. In Figure 2.3, Counter and Weekday are examples of subtypes
of the types Nat and Day respectively.

Statements

The SPARK language has the usual statements that are present in most
programming languages. Assignments and if statements have the typical
semantics as in other programming languages. The null statement is available
through the keyword null. Case statements allow the use of simple values,
alternatives and range expressions. Figure 2.4 shows an example of a case
statement. The first option, Mon .. Thurs, represents a range: Work gets
performed if Today evaluates to a value in this range. The second option tries
to match Today with the value Frid. If it succeeds, both Work and Party,
get performed. The last option represents an alternative, that is, if Today
evaluates to Sat or Sun, the null statement is performed.

The most primitive form of iteration is implemented by an infinite loop
control structure and an explicit abrupt exit command which should always
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� �
case Today i s

when Mon . . Thurs => Work ;
when Fri => Work ; Party ;
when Sat | Sun => null ;

end case ;� �
Figure 2.4: Case statement in the SPARK language ([Bar03])

occur under an if statement without else branch, or alternatively within a
when clause. In SPARK an exit statement always refers to the innermost
loop. In Ada and SPARK is possible to name loop statements and to use these
names in the exit statements (allows to exit nested loops in Ada), however, in
SPARK, if the name is specified in the exit statement, such name must refer
to the innermost loop. The loop in Figure 2.1 is an example of a loop with no
iteration scheme. The language additionally provides two different iteration
schemes: while loops and for loops. In SPARK, as opposed to Ada, it is not
allowed to have a for loop without representing the type being iterated. For
example the loop for I in 1..10 is valid in Ada but not in SPARK. Instead,
the type has to be specified, as for example for I in S range 1..10, for
some integer type S containing the range 1..10.

Annotations

As was mentioned in the introduction, annotations in SPARK are grouped in
two categories. While the core annotations are related to flow and visibility
control, the proof annotations are concerned with formal proof.

The most important core annotations are the global and derives anno-
tations. Both of them are used in procedures. global indicates that a global
variable is used in the subprogram, and also specifies if the variable is read or
written in the subprogram. Figure 2.5 shows an example taken from [Bar03]
where a core annotation is used. It specifies that a global variable Total is
read and written by the procedure Add. The derives annotation specifies
the information flow between the input and output parameters, as well as
global variables. In Figure 2.5 this is used to indicate that the final value of
Total depends on the initial value of Total and X. Other core annotations
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exist, related to visibility and control with respect to other packages and
variables. We will not discuss these annotations, which are outside the scope
of this thesis. Refer to [Bar03] for information about them.

� �
procedure Add(X: in I n t e g e r ) ;
−−# g l o b a l in out Total ;
−−# d e r i v e s Total from Total , X;� �

Figure 2.5: Using core annotations ([Bar03])

The proof annotations are used to write functional specifications. They
include pre-conditions and post-conditions, assertions such as loop invariants,
and declarations of proof functions. These annotations are used to generate
verification conditions to prove the safety and functional correctness of the
program. Proof functions are not SPARK functions. Instead they are only
declared in the proof context.

2.2 Toolset

Since there is no compiler for SPARK, there must exist a tool to check the va-
lidity of SPARK code, i.e. to verify if all restrictions imposed over a SPARK
program are respected, and if the annotations, inserted as Ada comments,
are valid. That tool is called Examiner and performs the checks mentioned
before. Moreover, it uses the annotations to generate Verification Condi-
tions (VCs) and to perform data and information flow analysis. This is the
main tool of the SPARK language, and is the first one that must be used on
any SPARK unit.

The VCs generated by the Examiner tool must be discharged, in the sense
that they must be proved correct. For that, SPARK has both an automatic
and an interactive proof tool. The automatic proof tool, called Simplifier,
tries to automatically discharge VCs using predicate inference and rewriting.
However, there are many VCs that Simplifier cannot discharge. For the
latter, the interactive proof tool called Proof Checker may be used. The user
works interactively with the tool in order to make progress proving some VC.
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Such interaction requires already some level of expertise, which makes this
task potentially very expensive.

Another important tool is the Proof Obligation Summarizer (POGS),
which creates a file with the summary containing the state of each VC. Fig-
ure 2.6 shows the interaction between the tools referred. As it is possible to
see, Examiner takes as input the packages (specifications and bodies) and
produces a file vcg which contains the VCs to be discharged. Those VCs are
then passed to Simplifier, which tries to discharge them, and produces a file
siv. This file is then used by the interactive proof tool (Proof Checker) for
discharging other VCs, and to produce a file plg. Note also the Review Team,
which consists of human reviewers that can also discharge VCs manually and
write their status in the prv file. At the end, POGS takes the intermediate
files and builds a summary with the state of each VC.

The tools mentioned before are those that have been used with SPARK for
many years. However, lately other tools have been developed. ZombieScope is
a tool capable of detecting dead paths, that is, paths that are never reached.
It also works from files generated by the Examiner, and produces a file that
is later read by POGS. Therefore, the summary of the ZombieScope result
will also be available in the file generated by POGS.

There is also an available IDE for the development of SPARK applica-
tions. It is called GNAT, and is provided by AdaCore. It has support for
the language as well as the tools described above.

2.3 Examples

Let us first look with more attention at the example in Figure 2.1 focusing
on some aspects not covered in the previous sections. The specification of
Marray starts by declaring a numeric literal Array_Size, which has the value
10. Note that the value of a numeric literal must be a static expression,
that is, it must be evaluated in the same way independently of the context
in which it is written (it cannot contain variables). The type Index and
subtype VArray are just declared as explained in the previous section. Let
us now look at the function annotations. The derives annotation is used
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Figure 2.6: SPARK tools (inspired in [Bar03])

to indicate that the value of the output parameter M is calculated based on
the value of V. The post-condition states that all elements are smaller than
or equal to the element in the position returned in M, or in other words, it
states that the index of the maximum value is returned.

For the VCs related to the post-condition be discharged, one has to write a
loop invariant for the loop in the function body. The loop invariant says that
all elements of the array whose index is smaller than the current index (I)
must be smaller than or equal to the current maximum element. Moreover,
for Simplifier to be able to prove the absence of under/overflow exceptions,
another loop invariant is written stating that the value of I is always in
the range between Index’First and Index’Last + 1. The Examiner will
generate VCs to prove the correctness of the loop invariants, as well as of the
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post-condition and safety properties such as overflow. These VCs may later
be discharged by Simplifier of by the Proof Checker. The correctness of the
derives annotation is verified by the Examiner tool.

� �
package F a c t o r i a l i s

−−# f u n c t i o n f f a c t (X: I n t e g e r ) re turn I n t e g e r ;

function f a c t (X: I n t e g e r ) return I n t e g e r ;
−−# pre X >= 0 ;
−−# return R => R = f f a c t (X) ;

end F a c t o r i a l ;� �� �
package body F a c t o r i a l i s

function f a c t (X: I n t e g e r ) return I n t e g e r
i s

F, I : I n t e g e r ;
begin

F := 1 ;
I := 1 ;
loop

−−# a s s e r t I <= X + 1 and F = f f a c t ( I −1);
exit when ( I = X + 1 ) ;
F := F ∗ I ;
I := I + 1 ;

end loop ;
return F ;

end f a c t ;
end F a c t o r i a l ;� �

Figure 2.7: Factorial in SPARK

As a second example, let us now analyze a program which calculates the
factorial of a number given as input. Such an example is shown in Figure 2.7,
and includes the package specification (top) and package body (bottom). In
the specification we can see the pre-condition and post-condition as well as
the declaration of a proof function [Bar03] ffact. Such a function is not
a SPARK (or Ada) function, instead it is a function only used in the proof
context. Theorems about ffact may have to be declared in order to allow
VCs to be discharged. In this example there is also a pre-condition, which
states that the input parameter has to be greater than or equal to zero (it does
not make sense to calculate the factorial of a negative number). Moreover, for
functions, instead of using a post-condition annotation, a return annotation
must be used. In this case, it says that the return value must be equal to
the result of applying the proof function to the input parameter.
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Let us now focus on the body of the program, more precisely the an-
notation (everything else is just straightforward code, very similar to other
languages). As in the previous example, in order to prove the return an-
notation (similar to the post-condition in the previous example) one has to
write a loop invariant. Here, the invariant states that at every iteration I is
always smaller than or equal to the input parameter plus one, and that F is
the factorial of I-1. Note that, in order to discharge VCs related to overflow,
the pre-condition has to be refined with the maximum number that can be
calculated without causing overflow. This value depends on the range of the
integer values (which must be specified as said before).

2.4 Industrial Use

The characteristics described above have helped make the SPARK language
broadly used in critical software. Tokeneer is a nice example to explore,
since it is publicly available1. With the intention of demonstrating that it
was possible to develop software reaching Common Criteria EAL52, the Na-
tional Security Agency asked Altran3 to develop a part of Tokeneer. The
project largely exceeded the EAL5, and the code was made available in 2009.
Other uses of SPARK are described in [Cha00]. They include the Lockheed
C130J (Hercules) helicopter, where SPARK was used in about 80% of the
code for the Mission Computer. Two famous projects in which SPARK is be-
ing presently used are the CubeSat Lunar Lander/Orbiter Project4 and the
Alaska Ice Buoy Project5. Unfortunately, due to confidentially issues, de-
tailed information about how exactly SPARK is being used in these projects
(and many others) is not available.

1http://www.adacore.com/sparkpro/tokeneer
2http://www.commoncriteriaportal.org/cc/
3http://www.altran.co.uk/
4http://www.cubesatlab.org/Lunari_Lander/Software_Components.shtml
5http://www.cubesatlab.org/Alaskan_Ice/Buoy_Software.shtml

23

http://www.adacore.com/sparkpro/tokeneer
http://www.commoncriteriaportal.org/cc/
http://www.altran.co.uk/
http://www.cubesatlab.org/Lunari_Lander/Software_Components.shtml
http://www.cubesatlab.org/Alaskan_Ice/Buoy_Software.shtml


24



Chapter 3

Bounded Model Checking of
Software: State of the Art

3.1 The BMC technique

The key idea of bounded model checking of software is to encode bounded
behaviors of a program that enjoy some given property as a logical formula
whose models, if any, describe executions leading to violations of the prop-
erty [JM09]. The properties to be established are assertions on the program
state, included in the program through the use of assert statements. For
every execution of the program, whenever a statement assert φ is met, the
assertion φ must be satisfied by the current state, otherwise it is said that the
execution violates the assertion φ. This verification technique assumes that
a satisfiability-checking tool is used to find models corresponding to property
violations.

Observe that the interest of encoding bounded behaviors comes from
the fact that the number of states grows exponentially with the number
of variables and possibly with the length of the program, and it is in many
cases infinite. Even if BMC cannot prove the (unbounded) correctness of a
program, it is useful as long as it finds bugs that would otherwise be missed.

This section is dedicated to explaining the BMC workflow, which con-
sists of automatically inserting safety properties in the source code program;
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transforming the program in a way that it becomes easy to extract from it
a logical formula that models bounded behaviors of the program; and finally
checking for assertion violations by using a satisfiability solver.

The detailed description of the BMC steps are based on the study we
have made of several publications and tools, [CKY03, IYG+08, XA05a, BH08,
CFMS12]. The example in Figure 3.1 is used as a running example to demon-
strate the transformations required to obtain such a model. The figure shows
a fragment of C code, that calculates the index of the maximum value of an
array. We assume that all variables are correctly declared and max_array
contains the size of the array (greater than zero).� �
. . .
max = 0 ;
for ( i = 1 ; i < max_array ; i ++){

i f ( a [ i ] > a [ max ] ) max = i ;
}
. . .� �
Figure 3.1: Algorithm to calculate the index of the maximum element in an
array

Inserting specific properties

Despite the idea of BMC of software being fully automatic, the user may
provide a specification, using for that special annotations. These annotations
are normally written as comments (not mandatory), so that they are ignored
by a compiler. They provide the possibility for the user to write specific
properties about the program that may not be automatically inserted. This
may be very useful for debugging purposes or to check functional properties.

Two standard annotations are used in BMC of software: assert and
assume. While the first imposes a restriction on the program, the second
imposes a restriction on the model being built. An assert p states that p
must be valid in a certain location of the program. When an assert p is
annotated in the program, one wants the property p to be checked at that
point of the program. If p does not hold, that violation is reported and a
counter-example is given. On the other hand, an assume p states that one
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can rely on the fact that p is true in a certain point of the program. Note
that the property p is not checked but instead it is assumed as valid at that
point of the program. If on a run of the program the property p is false, any
property to be checked in the continuation of the program will be vacuously
true, since in the logical model it will be implied by contradictory formulas.
The assume annotation is particularly useful when applying a bound to the
model. For instance it gives us the possibility to ignore all assertions outside
the bounded model. Details about the encoding of these annotations will be
given later.

A possible functional property over the program shown in Figure 3.1
would be for example to check if the maximum element is always in a user-
predefined range. For that the user would have to write an assert exactly
after the end of the for loop as follows:

. . .
max = 0 ;
for ( i = 1 ; i < max_array ; i ++){

i f ( a [ i ] > a [ max ] ) max = i ;
}
a s s e r t ( min_range <= a [ max ] && a [ max ] <= max_range ) ;
. . .

As said before, such annotations use to be written as comments so they can
be ignored by compilers. However, in this section, for appearance purposes,
we assume that the compiler knows these instructions and ignores them.

Similarly, the user can also ignore certain executions, using for that an
assume annotation. In the example above, if max_array was an input param-
eter of a function, the user could for example state that its value is always
greater than zero, writing the following after the function header:

. . .
assume ( max_array > 0 ) ;
max = 0 ;
for ( i = 1 ; i < max_array ; i ++){

i f ( a [ i ] > a [ max ] ) max = i ;
}
. . .
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Simplification

At the heart of a BMC tool stands an algorithm that extracts a logical
formula directly from the source code (including properties expressed as as-
sertions), without user intervention. The algorithm begins with some pre-
liminary steps of transformation and simplification of the original program.
These may include the removal of side effects (each statement is replaced by
side-effect free statements with the same semantics), or normalization into
a subset of the target programming language (say, a single loop form may
be used if more than one is available). Reducing the number of different
statements in an early stage, reduces the number of statements that have to
be transformed at a later stage (which would probably require harder work).
The previous example could be transformed as shown in Figure 3.2. Note
that the for loop was written using a while loop and the side effect expres-
sion i++; was transformed into i = i + 1;. A more general approach to
simplifying loops would be to use goto statements and labels, however, such
an approach would make the code more difficult to read in the next steps,
therefore in this section we will stick to while loops as the most general way
of writing loops.� �
. . .
max = 0 ;
i = 1 ;
while ( i < max_array ){

i f ( a [ i ] > a [ max ] ) max = i ;
i = i + 1 ;

}
. . .� �

Figure 3.2: Simplification step

Automatic Instrumentation

Before a model is extracted from the source code, and in order to have a
completely automatic verification tool, the code has to be annotated with
safety properties that the user wants to check. This process, called instru-
mentation, can be fully automatic for most of the safety properties, as for
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example overflow check, array out of bounds, null pointer access, division by
zero, etc. This step can also occur before the simplification process, however,
one would not take advantage of the simplification process.

Figure 3.3 shows our running example after the automatic instrumenta-
tion process. Assertions to check for overflow and array out of bounds access
have been inserted. For the out of bounds assertions, it is enough to specify
that the index expression is greater than or equal to zero and less than the
size of the array. To check for overflow, a predicate !overflow is used. It re-
ceives the type resulting from an arithmetic operation, the operator and the
operands. For more complicated expressions, one assertion would be inserted
for each operator, to check if any internal expression would cause overflow.
The use of a predicate to check for overflow is justified by the fact that for
each type the minimum and maximum values are different, and depending on
the background SAT or SMT solver the generated property may be written
different.� �
. . .
max = 0 ;
i = 1 ;
while ( i < max_array ){

a s s e r t ( i >= 0) && ( i < max_array ) ;
a s s e r t (max >= 0) && (max < max_array ) ;
i f ( a [ i ] > a [ max ] ) max = i ;
a s s e r t ! over f l ow ( int , +, i , 1 ) ;
i = i + 1 ;

}
. . .� �

Figure 3.3: Overflow and array out of bounds instrumentation

The bounded model

The next step is crucial – it is in this step that information is lost, in the sense
that only bounded behaviors up to a limit are preserved. The remaining steps
preserve all behaviors of the program. Given an entry-point provided by the
user and a bound K, the program is expanded by unwinding loops a fixed
number of times (loop bodies are replicated K times), and inlining routine
calls (routine calls are replaced by routine bodies). Note that in the presence
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of (mutual) recursion, a bound K is also imposed on the length of the inlining
expansion. A program consisting of multiple routines is thus transformed
into a monolithic program, which is both recursion-free and iteration-free.
The idea is that executions of the simplified program correspond to finite
prefixes of executions of the original program.

Once a loop or a recursive function call is unwound, one of two approaches
may be followed, depending on whether the user wants to enforce soundness
or just check a bounded model. To enforce soundness of bounded model
checking, an unwinding assertion can be placed at the end of each ex-
panded segment of code. This unwinding assertion is just an assert anno-
tation stating that the loop was unwound a sufficient number of times to
cover all the possible executions of the program. This way, if the unwinding
assertion is not violated by any execution path, checking the transformed
(bounded) code is sound, because the loop will never iterate more than K
times.

When the interest of the user is to verify a bounded model (for instance,
for bug finding) the approach to follow is to ignore assertions in executions
beyond the bound. For that, an unwinding assumption may be inserted,
instead of an unwinding assertion, to exclude properties which would require
more iterations to be proved. In this case, one must always bear in mind the
unsoundness of the approach.

The task of inserting an assertion to assure the loop was unwound a
sufficient number of times, or an assumption to ignore properties requiring
more than K iterations, is almost the same. First of all, to unwind a loop,
the following rewriting rule must be applied K times:

while(b) {I} −→ if(b) {I; while(b) {I}}

and, after this, one of the following rewriting rules must be applied (depend-
ing on the desired behavior, following the previous discussion):

while(b) {I} −→ assert(!b); while(b) {I} −→ assume(!b);

The resulting code consists of replicated nested conditionals, where the inner
conditional contains just an annotation (assert or assume) with the negation
of the guard of the conditional.
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...if(b) {assert(!b);}... ...if(b) {assume(!b);}...

The assert(!b) or assume(!b) instruction is only reached if and only if b
is evaluated to true, therefore, whenever the condition !b is evaluated, its
result will be faalse, which allows us to write the second rewriting rule as
follows:

while(b) {I} → assert(false); while(b) {I} → assume(false);

The idea is that whenever the assertion or the assumption is reached by an
execution, the loop condition must be false. That is, the loop must have
terminated before the assertion or the assumption was reached, otherwise
such an execution requires more than K iterations. In the latter case, this
execution is taken as a counter example (when an unwinding assertion is
inserted) or else, the subsequent properties are trivially discharged (when an
unwinding assumption is inserted).

Figure 3.4 shows the idea of unwinding a loop twice. On the left hand
side, there is a loop with the condition b, and a loop body, that we identify by
loop_body. Such loop body may have several instructions, including other
loops that must also be recursively unwound. In the middle of the figure the
loop was unwound twice and an assertion was used. On the right hand side
of the figure, the loop was unwound twice, and an assume was used. As can
be seen, the only difference at the syntax level is in the assert or assume
keyword.� �

while (b){
loop_body ;

}� �
� �

i f (b){
loop_body ;
i f (b){

loop_body ;
i f (b){

a s s e r t ( f a l s e ) ;
}

}
}� �

� �
i f (b){

loop_body ;
i f (b){

loop_body ;
i f (b){

assume ( f a l s e ) ;
}

}
}� �

Figure 3.4: Loop unwinding 2x (unwinding assertion vs unwinding assump-
tion)

Note that, either an unwinding assertion or an unwinding assumption
should be inserted, otherwise, the approach of bounded model checking be-
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comes both unsound and incomplete. Suppose that neither of them is inserted
and there is an execution requiring more than K iterations. This execution
would be considered for analysis, but the loop would iterate only K times and
then exit abruptly, violating the loop exit condition. Now if this execution
violates some property after the loop (inserted by the user or by an instru-
mentation tool), it will be considered as a counter example, but such counter
example may not even exist in the original program. Figure 3.5 shows one
example of the problem. Consider the loop in the left hand side of the figure,
which gets expanded twice on the right hand side. The initial program uses
the loop to decrement the variable i three times and then it adds three to
the variable, therefore, no overflow ever occurs. However, on the right hand
side of the figure, i gets decremented only two times. Thus, when the vari-
able gets assigned with its value plus three, it will originate an overflow. If
an unwinding assertion had been placed, the execution would be considered
as counter example; and if an unwinding assumption had been placed, the
property would be trivially discharged and no counter examples would be
found.

� �
i = MaxInt ;
while ( i > MaxInt − 3){

i = i − 1 ;
}
a s s e r t ! over f l ow ( int , +, i , 3 ) ;
i = i + 3 ;� �

� �
i = MaxInt ;
i f ( i > MaxInt − 3){

i = i − 1 ;
i f ( i > MaxInt − 3){

i = i − 1 ;
}

}
a s s e r t ! over f l ow ( int , +, i , 3 ) ;
i = i + 3 ;� �

Figure 3.5: Making BMC of software not complete

Figure 3.6 shows the result of unwinding the loop in the program of Fig-
ure 3.3 twice, using the approach suggested above. Again the only difference
from the left to the right is in the use of an unwinding assertion or an un-
winding assumption.
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� �
. . .
max = 0 ;
i = 1 ;
i f ( i < max_array ){

a s s e r t ( i >= 0) &&
( i < max_array ) ;

a s s e r t (max >= 0) &&
(max < max_array ) ;

i f ( a [ i ] > a [ max ] ) max = i ;
a s s e r t ! over f l ow ( int , +, i , 1 ) ;
i = i + 1 ;
i f ( i < max_array ){

a s s e r t ( i >= 0) &&
( i < max_array ) ;

a s s e r t (max >= 0) &&
(max < max_array ) ;

i f ( a [ i ] > a [ max ] ) max = i ;
a s s e r t ! over f l ow ( int , +, i , 1 ) ;
i = i + 1 ;
i f ( i < max_array ){

a s s e r t f a l s e ;
}

}
}
. . .� �

� �
. . .
max = 0 ;
i = 1 ;
i f ( i < max_array ){

a s s e r t ( i >= 0) &&
( i < max_array ) ;

a s s e r t (max >= 0) &&
(max < max_array ) ;

i f ( a [ i ] > a [ max ] ) max = i ;
a s s e r t ! over f l ow ( int , +, i , 1 ) ;
i = i + 1 ;
i f ( i < max_array ){

a s s e r t ( i >= 0) &&
( i < max_array ) ;

a s s e r t (max >= 0) &&
(max < max_array ) ;

i f ( a [ i ] > a [ max ] ) max = i ;
a s s e r t ! over f l ow ( int , +, i , 1 ) ;
i = i + 1 ;
i f ( i < max_array ){

assume f a l s e ;
}

}
}
. . .� �

Figure 3.6: Loop unwinding 2x, (left: unwinding assertion; right: unwinding
assumption)

Single-assignment form

In order to extract a logical formula from an iteration-free and recursion-free
program one has to first transform the program into a form in which the
values of the variables do not change once they have been used (so that they
can be seen as logical variables). This is done by converting the program into
a Single Assignment (SA) form in which multiple indexed versions of each
variable are used – a new version is introduced for each assignment to the
original variable. A program is in the SA form if in every execution path,
once a variable has been read or assigned it will not be assigned again.

SA has been around for many years, and it has been used mainly in
the field of compilers design [Muc97] and more recently in verification tech-
niques [BL05, dCFP12]. In its best-known form, called Static Single Assign-
ment (SSA) [CFR+89], each variable may only appear once on the left hand
side of an assignment. In the other form of SA, known as Dynamic Single
Assignment (DSA), each variable may be assigned more than once, as long
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as this happens in different paths. That is, for each possible execution of
the program each variable only gets assigned once, but statically the variable
may appear more than once on the left hand side of an assignment. We
will tell more about transformation of a program to SA form in Chapter 4,
where we describe in detail how C programs are annotated to SA form by
the CBMC tool.

Having a program in SA form has some advantages in different applica-
tions. For instance many compiler optimization techniques are more efficient
for programs in SA form. In the case of BMC this SA form of a program
is closer to a logical model of the program. Since in SA form the value of
a program variable is not changed, we can look at these variables as logical
variables and assignments commands can be interpreted as logical equalities.� �
. . .
max1 = 0 ;
i 1 = 1 ;
i f ( i 1 < max_array1 ){

a s s e r t ( i 1 >= 0) && ( i 1 < max_array ) ;
a s s e r t (max1 >= 0) && (max1 < max_array1 ) ;
i f ( a1 [ i 1 ] > a1 [ max1 ] ) max2 = i 1 ;
max3 = ( a1 [ i 1 ] > a1 [ max1 ] ) ? max2 : max2 ;
a s s e r t ! over f l ow ( int , +, i1 , 1 ) ;
i 2 = i 1 + 1 ;
i f ( i 2 < max_array1 ){

a s s e r t ( i 2 >= 0) && ( i 2 < max_array1 ) ;
a s s e r t (max3 >= 0) && (max3 < max_array1 ) ;
i f ( a1 [ i 2 ] > a1 [ max3 ] ) max4 = i 2 ;
max5 = ( a1 [ i 2 ] > a1 [ max3 ] ) ? max4 : max3 ;
a s s e r t ! over f l ow ( int , +, i2 , 1 ) ;
i 3 = i 2 + 1 ;
i f ( i 3 < max_array1 ){

a s s e r t f a l s e ;
}

}
i 4 = ( i 2 < max_array1 ) ? i 3 : i 2 ;
max6 = ( i 2 < max_array1 ) ? max5 : max3 ;

}
i 5 = ( i 1 < max_array1 ) ? i 4 : i 1 ;
max7 = ( i 1 < max_array1 ) ? i 4 : i 1 ;
. . .� �

Figure 3.7: Transformation into SA

Figure 3.7 shows our running example transformed into the SA form.
Note in particular the use of the conditional expression, to assign the vari-
ables after a multi-branch statement (if statement in this case) to their ap-
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propriate versions, thus synchronizing the variables used in both branches.
The boolean expression used is the same used in the if statement. If the
statement had an else clause the second value would be the last assigned in
that clause, as in the following:
i f b then

x1 = . . .
else

x2 = . . .
x3 = b ? x1 : x2 ;

Note also that the use of conditional expressions could be avoided by replac-
ing each assignment with a conditional expression by an if-then-else in the
obvious way.

Conditional Normal Form normalization

The next step in the BMC flow is to normalize the program into Conditional
Normal Form (CNF). A program in CNF is a program consisting only in a
sequence of single-branch conditional statements of the form if b then S,
where S is an atomic statement, i.e. either an assignment, assert, or assume
statement. Figure 3.8 shows the normalization of our running example. Note
that nested if statements will be transformed in if structures in which the
condition of the if is the conjunction of the conditions of the nested ifs. The
idea is that the branching structure of the program has now been flattened, so
that every atomic statement is guarded by the conjunction of the conditions
in the execution path leading to it.

Figure 3.8 shows our running example after the normalization into CNF.
Note for example the assignment max2 = i1 from the program shown in
Figure 3.7, which is inside two nested if statements. After the normalization
(Figure 3.8) this assignment is inside an if statement which contains the
conjunction of both conditions.

Checking for property violations

At this point, two sets of logical formulas C and P can be extracted from the
program. The set of formulas C describes logically the operational contents
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� �
. . .
i f ( True ) max1 = 0 ;
i f ( True ) i 1 = 1 ;
i f ( i 1 < max_array1 ) a s s e r t ( i 1 >= 0) && ( i 1 < max_array ) ;
i f ( i 1 < max_array1 ) a s s e r t (max1 >= 0) && (max1 < max_array1 ) ;
i f ( i 1 < max_array1 && a1 [ i 1 ] > a1 [ max1 ] ) max2 = i 1 ;
i f ( i 1 < max_array1 ) max3 = ( a1 [ i 1 ] > a1 [ max1 ] ) ? max2 : max2 ;
i f ( i 1 < max_array1 ) a s s e r t ! over f l ow ( int , +, i1 , 1 ) ;
i f ( i 1 < max_array1 ) i 2 = i 1 + 1 ;
i f ( i 1 < max_array1 && i 2 < max_array1 ) a s s e r t ( i 2 >= 0) && ( i 2 < max_array1 ) ;
i f ( i 1 < max_array1 && i 2 < max_array1 ) a s s e r t (max3 >= 0)

&& (max3 < max_array1 ) ;
i f ( i 1 < max_array1 && i 2 < max_array1 && a1 [ i 2 ] > a1 [ max3 ] ) max4 = i 2 ;
i f ( i 1 < max_array1 && i 2 < max_array1 ) max5 = ( a1 [ i 2 ] > a1 [ max3 ] ) ? max4 : max3 ;
i f ( i 1 < max_array1 && i 2 < max_array1 ) a s s e r t ! over f l ow ( int , +, i2 , 1 ) ;
i f ( i 1 < max_array1 && i 2 < max_array1 ) i 3 = i 2 + 1 ;
i f ( i 1 < max_array1 && i 2 < max_array1 && i 3 < max_array1 ) a s s e r t f a l s e ;
i f ( i 1 < max_array1 ) i 4 = ( i 2 < max_array1 ) ? i 3 : i 2 ;
i f ( i 1 < max_array1 ) max6 = ( i 2 < max_array1 ) ? max5 : max3 ;
i f ( True ) i 5 = ( i 1 < max_array1 ) ? i 4 : i 1 ;
i f ( True ) max7 = ( i 1 < max_array1 ) ? i 4 : i 1 ;
. . .� �

Figure 3.8: Normalization into conditional normal form

of the program, and P contains the properties to be established. While C in-
cludes a formula b→ x = e for every statement if b then x := e contained
in the CNF, the set P is extracted from the guarded assert and assume state-
ments of the CNF. Recall that assert p states that the property p must be
checked at that point of the program and assume p states that p is assumed
as being true at that point of the program. While the asserted properties are
the ones to be checked, the assumed properties are not to be checked, but
can be useful to guarantee properties asserted subsequently in the program.
The logical encoding of each (if b then assume θ) statement of the CNF
program is the formula b→ θ. In logical terms, each (if b then assert φ)
statement of the CNF program is represented by the formula (∧A)∧ b→ φ,
where A is the set of all the b→ θ formulas assumed before.

Figure 3.9 shows an example where assert and assume annotations are
used. This program would originate the following set of formulas C and P :

C = {x1 = y1, z1 = 10, b→ x2 = x1 + y1,¬b→ z2 = x1,
x3 = b?x2 : x1, z3 = b?z2 : z1}

P = {φ1, θ1 → φ2, θ1 ∧ b→ φ3, θ1 ∧ ¬b→ φ4, θ1 → φ5}
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� �
a s s e r t φ1 ;
x1 = y1 ;
assume θ1 ;
a s s e r t φ2 ;
z1 = 10 ;
i f b then {

x2 = x1 + y1 ;
a s s e r t φ3 ;

} else {
z2 = x1 ;
a s s e r t φ4 ;

}
x3 = b ? x2 : x1 ;
z3 = b ? z2 : z1 ;
a s s e r t φ5 ;� �

Figure 3.9: Simple example with assert and assume annotations

From here it is simple to see that an assume p where p evaluates to False
will cause all subsequent assert statements to be trivially discharged, since
False→ b = True.

For our running example (shown in Figure 3.8) the task of extracting the
set of formulas C and P is trivial, since there is not any assume annotation.
Every statement containing an assert goes to P the others go to C.

If no assertion from P fails in any execution of the program one has that∧P is a logical consequence of C. This can be determined by checking the
satisfiability of the set of formulas C ∪ {¬∧P}. Any model found for it
corresponds to an execution that leads to an assertion violation. Of course,
satisfiability checking is restricted to models that capture the properties of
the data structures manipulated by the program, and that are specified by
some background theory T (usually a combination of several logical theories).
Therefore ‘satisfiability’ should in fact be understood as T -satisfiability.

Satisfiability checks can be made either by a SAT solver [GKSS08] or an
SMT solver [dMB11]: the main difference is the way in which numeric val-
ues and arrays are modelled. When using a SAT solver, numeric values are
necessarily modelled as vectors of bits of fixed size, and each array element
as a different variable. When using an SMT solver, numeric values can be
modelled either as bit-vectors or as values in the semantic theory of the ap-
propriate type (e.g. unbounded integers or reals), and arrays are modelled
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as arrays (i.e. by a theory of arrays). This makes the SMT encoding inde-
pendent of the size of arrays occurring in the program, which is not the case
when using a SAT encoding. The use of bit-vectors captures precisely the
low-level fixed-width machine semantics of program data types, and is very
appropriate for capturing the ‘silent overflow’ behavior of programs. This
will be particularly significant in the treatment of SPARK data types, as we
will see in Chapter 5.

3.2 Existing Tools Based on BMC

There are several tools performing BMC of software. We use this section
to give an overview of them. CBMC was the first to appear and is, very
likely, the most successful one. Other tools were presented over the years
using different approaches, whether at the transformation phase or at the
encoding of logical formulas phase. Note that CBMC is the great motivation
for this work, and therefore we devote most of the section to it. The other
tools are presented for comparison purposes and to observe what they provide
that CBMC does not.

3.2.1 CBMC

The CBMC tool was created in 2003 at CMU with the aim of checking
the consistency between an ANSI-C program and a circuit given in Ver-
ilog [CKY03]. This verification was done using bounded model checking,
unwinding the ANSI-C program and the circuit implementation and then
translating it to a boolean formula. In 2004 CBMC appears as a tool for
checking ANSI-C programs [CKL04] with support for the initial aim (consis-
tency between ANSI-C and Verilog). Nowadays, CBMC is able to perform
bounded model checking both of C and C++ programs.

The tool allows several properties to be checked in a completely automatic
form. It can emulate different architectural environments for the program
being analyzed. Little-endian and big-endian memory organization are both
supported, and header files for linux, windows and mac os x are also available.
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The width of the int type may also be specified manually.
CBMC is divided into three separated tools: goto-cc, goto-instrument,

and cbmc; Note that if cbmc is invoked with an ANSI-C program, those
tools will run in the background, transparently to the user. Next we give a
brief description of each tool.

Pre-compilation: goto-cc

The goto-cc tool acts as a pre-compiler that takes a (.c) file (maybe contain-
ing user annotations) as input and generates a goto binary program. It is
responsible for expanding all the #define directives, replacing side effects ex-
pressions by equivalent assignments (see [CKY03]), and transform for/while
loops, breaks and continues statements into goto statements. Figure 3.10
(right) shows the transformations after goto-cc is performed on the program
shown in Figure 3.10 (left). Basically this tool corresponds to the simplifica-
tion step as described in Section 3.1.� �

#define A 3 ;

int main ( ){
int i , j = A;
for ( i =0; i <3; i ++){

j = j + i ;
}
return 0 ;

}� �

� �
main ( c : : main ) :

int i ;
int j ;
j = 3 ;
i = 0 ;

1 : IF ! ( i < 3) THEN GOTO 2
j = j + i ;
i = i + 1 ;

GOTO 1
2 : return 0 ;� �

Figure 3.10: Applying goto-cc to an ANSI-C program

Instrumentation: goto-instrument

The goto-instrument tool corresponds to the instrumentation step as de-
scribed in Section 3.1. It takes the file generated previously and automati-
cally adds general assertions to prove certain safety properties. The proper-
ties available are: array out of bounds access, division by zero, null point-
ers dereference, signed and unsigned overflow/underflow check, uninitialized
variables, unreachable labels and ‘not a number’ (NaN) occurrences. When
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using CBMC (or goto-instrument), the user must specify which properties
must be verified. For example, if the user chooses to check for overflow,
an assertion is inserted before each arithmetic operation to check if it origi-
nates overflow. Figure 3.11 shows the result of using goto-instrument on the
previous example program to check for overflow.� �
main ( c : : main ) :

int i ;
int j ;
j = 3 ;
i = 0 ;

1 : IF ! ( i < 3) THEN GOTO 2
a s s e r t ! over f l ow ( "+" , int , j , i ) // a r i t h m e t i c over f l ow on +
j = j + i ;
a s s e r t ! over f l ow ( "+" , int , i , 1) // a r i t h m e t i c over f l ow on +
i = i + 1 ;

GOTO 1
2 : return 0 ;� �
Figure 3.11: Result of running goto-instrument with overflow check

Transformations and verification: cbmc

The tool cbmc is responsible for all other BMC transformations after the
instrumentation. Using the file generated by goto-instrument all loops (which
are in the form of goto) are unwound, replicating the loop body K times. This
value, K, may be given by the user when invoking the tool, or, if it is not,
cbmc tries to unwind the loop a necessary number of times, in order to obtain
a sound approach. If cbmc is not able to infer K the loop is unwound infinitely
while there are resources available. Each copy of the loop body is guarded
by an if statement using the same condition as the loop. This happens for
the case in which the loop requires less iterations than the times the loop
has been unwound. After the last replicated body, an unwinding assertion
or an assumption is placed, as explained in the previous section. Function
calls are also inlined and in the case of a recursive function call, a bound is
also applied as in the loop statements. Applying these transformations to
the previous example would produce the program shown in Figure 3.12.

The result of the previous operations consists only of if statements, an-
notations, and assignments. The next step is to transform the program into
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� �
j = 3
i = 0
a s s e r t ( i < 3 => ! over f l ow ( "+" , signed int , j , i ) )
IF ( i < 3) j = j + i
a s s e r t ( i < 3 => ! over f l ow ( "+" , signed int , i , 1 ) )
IF ( i < 3) i = i + 1
a s s e r t ( i < 3 => ! over f l ow ( "+" , signed int , j , i ) )
IF ( i < 3) j = j + i
a s s e r t ( i < 3 => ! over f l ow ( "+" , signed int , i , 1 ) )
IF ( i < 3) i = i + 1
a s s e r t ( i < 3 => ! over f l ow ( "+" , signed int , j , i ) )
IF ( i < 3) j = j + i
a s s e r t ( i < 3 => ! over f l ow ( "+" , signed int , i , 1 ) )
IF ( i < 3) i = i + 1
a s s e r t ( ! ( i < 3) )� �

Figure 3.12: Loop unwind with unwinding assertion in CBMC

an equivalent SA program, which will be explained in detail in Chapter 4.
After the SA form is computed, two bit-vector equations are created and sent
to a solver as explained in Section 3.1.

Since its introduction CBMC relies on a SAT solver, more precisely on
MiniSat [ES03], for looking for situations where assertions stated in the pro-
gram do not hold. Nevertheless, an encoding in the DIMACS format (recog-
nized by most SAT solvers) can also be generated by the tool and checked for
satisfiability using other solvers. The tool also has support for SMT solvers,
however this line of work is still experimental. By default, Z3 [dMB08]
is used when the SMT flag is used. Support for Boolector [BB09], Math-
SAT [BCF+08] and CVC3 [BT07] is also available, and a logical encoding in
the SMT-LIB1 version 1 or 2 can also be obtained.

CBMC is being applied in several fields. Official web page2 has a list with
its application, which includes: error explanation and localization, concur-
rency, cyper-physical systems, test-vector generation, etc.

1http://www.smt-lib.org/
2http://www.cprover.org/cbmc/applications.shtml
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3.2.2 F-SOFT

F-SOFT was developed at NEC Laboratories3 and was first presented in 2004
[IYG+04]. It is important to refer that the tool is only used internally at the
NEC Laboratories and therefore is not available for public usage. All the
information presented here is taken from published work. The biggest differ-
ence of this tool when compared to CBMC is the possibility of performing
also unbounded model checking of software. However, due to the theme of
this thesis we will focus exclusively on the BMC part of the tool. Information
about the whole picture can be found in [IYG+08].

The tool starts by doing some transformations on the initial program
using a C Intermediate Language (CIL) tool [NMRW02], which converts side-
effect expressions into side-effect-free expressions, renames variables to be
globally unique, and transforms complex C constructs into simpler ones, for
example while loops, break and continue statements are all transformed into
goto statements. F-SOFT does not unwind loops. Instead, it builds a Labeled
Transition Graph (LTG) and when performing BMC it only considers paths
whose length is not bigger than an user-provided bound K. Since the resulting
boolean model consists of a symbolic transition system, F-SOFT does not
require the program to be transformed into a SA form. At each state a
configuration of the system at a certain location is kept. The program flow is
described through transitions. After this first transformation, program slicing
and range analysis are performed. Program slicing consists in removing all
the elements that do not affect the property being verified. Range analysis
consists in limiting the number of bits used to represent each variable in the
boolean model. These transformations are common to model checking and
BMC.

For the verification, the back-end tool VeriSol (based on DIVER [GGA05])
is used. If VeriSol returns a counter-example, an executable program is built
and returned to the user, so it can be used with a debugger. According to
the authors, a tool based on F-SOFT called VARVEL [IBG+11] is being used

3http://www.nec-labs.com/
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at NEC 4, and it also supports C++.

3.2.3 Saturn

The first paper about Saturn was presented in early 2005 [XA05b] and it
was part of a PhD thesis [Xie06] (Standford University). The main goal of
SATURN is scalability, in particular it has been applied to the Linux kernel
(more than 6MLOC) and other open source projects. It is important to refer
that the tool is presented as a bug finder and not as a verification framework
[XA07]. As opposed to the other tools where it is possible to conclude that
a program is correct relatively to a property up to a bound, this does not
happen in Saturn. Also the counter-examples returned by the tool are not
necessarily valid, that is, the tool is neither complete nor sound. This is due
to the design choices to reach scalability, as is explained next.

As in F-SOFT, the first step is to convert the C source program into a CIL
representation, and from this representation extract the Abstract Syntax Tree
(AST), which is then used to build function summaries. Function summaries
are the main characteristic of this tool. Saturn verifies one function at a
time, replacing function calls by function summaries. This summary can
be seen somewhat as an abstraction of the model. Therefore, whenever a
counter-example is found, it may well not exist in the real program. This is
the reason why the tool is not complete. On the other hand, with this idea
of summaries, it is possible to parallelize the verification of several functions
at the same time. Computer clusters with 40 to 100 cores have been used for
the verification, and the efficiency achieved was around 80-90% [ABDD07]
when compared to single core machines. Loops are unwound a small number
of times (twice in the Linux kernel lock checker case study, [ABDD07]).

Saturn does not provide an automatic instrumentation tool. Nevertheless,
annotations as those presented in the previous section may be used to write
properties to be verified.

4http://www.nec.com/
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3.2.4 CALYSTO

CALYSTO was first presented in 2007 [BH07] and has been part of a PhD
thesis [Bab08] (University Of British Columbia). According to the authors,
the tool is based on ESC/JAVA [FLL+02], CBMC and especially on Saturn.
Following [BH08], the tool scales better than CBMC and it is more precise
than Saturn (relatively to the spurious counter-examples and number of bugs
found), keeping the automation of both tools.

The tool works on the LLVM IR* representation [LA04], which transforms
the input code into SA form and has the advantage of supporting many
programming languages, requiring for that only a different front-end. The
implementation is very similar to Saturn. The strong point about CALYSTO
is that when a counter-example is found, if it depends on a specific function
summary, this function summary is replaced by the inlined function. So, the
functions are incrementally inlined during the analysis. The tool also has
its own prover, SPEAR, which makes this process possible. Moreover, the
prover is optimized to verify the Verification Conditions (VCs) generated by
CALYSTO.

CALYSTO is able to verify any user-defined assertions, and it is able
to automatically generate VCs for null pointer dereferences. Although the
initial idea was to create an instrumentation tool as that presented in CBMC,
according to the information available from the tool web page5 the tool is
not being updated for a long time.

3.2.5 ESBMC

ESBMC was first proposed in 2009 during the International Conference on
Automated Software Engineering. It is a joint project between University
of Southampton, University of Stellenbosch and Federal University of Ama-
zonas. This tool performs BMC of software and it is completely devoted to
taking advantage of SMT theories.

The tool is developed on top of CBMC. Therefore, it takes all the machin-
ery to parse and simplify a program, as well as, to instrument and transform

5http://www.domagoj-babic.com/index.php/ResearchProjects/Calysto
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it until the logical formulas that models the program are reached. However,
at this point these sets of formulas are encoded using the new approach of
ESBMC. This encoding makes use of optimizations like for example constant
propagation and forward substitution techniques [Muc97]. The tool allows
the user to choose between unbounded integers or bit-vectors for the repre-
sentation of integer values. Enumerations are encoded as if they were integer
values. For floating points, only fixed-point arithmetic is supported. The
tool is also able to encode pointers and dynamic memory allocation. The
SMT solvers supported by ESBMC at the time of writing this dissertation
are: Boolector [BB09], CVC3 [BT07], and Z3 [dMB08]. Moreover, encodings
using SMT-LIB version 1 or 2 may also be generated.

3.2.6 LLBMC

LLBMC was developed at Karlsruhe Institute of Technology (KIT), and was
first presented in 2012 at the 4th International Conference on Verified Soft-
ware [MFS12]. The tool was aimed at verifying C/C++ programs, however,
instead of manipulating C/C++ source code, it uses LLVM to compile the
program into LLVM intermediate representation, and then it applies the
BMC transformations to this representation. Using such an approach has
many advantages: the LLVM intermediate representation has a much clearer
syntax and semantics than C/C++ code; the intermediate representation
program is much closer to the program that is actually executed (because
of optimizations, for example); it is possible to use this BMC with other
languages provided that LLVM supports them.

The tool is able to instrument the code for integer overflow, division
by zero and invalid shifting. Moreover, the tool is also able to deal with
pointers and dynamic memory allocation, more precisely the tool is able to
insert and check annotations related to illegal memory access (array index
out of bounds or illegal pointer access) and invalid uses of free. As back-
end solver, LLBMC uses Boolector [BB09] as default, but it also supports
Z3 [dMB08] and STP [GD07].

The problem with this tool is the lifting of the error from the intermediate
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representation back to C/C++ code. The authors claim that work has been
done in this direction, but at the time of writing this dissertation there were
no announcements of any progress.
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Chapter 4

SA Generation in CBMC

As was seen before, one of the steps in the implementation of BMC of software
consists of tranlating the program into an equivalent program in SA form.
On the other hand, CBMC was one the first tools to be proposed performing
BMC of software, and it is nowadays well known for its success. In this
chapter, we explore how CBMC transforms a program into SA form.

We make two important remarks: although it is more or less clear what
the SA form of a simple block of code is, this is less so far for full C programs
consisting of different files and multiple functions, with every kind of variable.
In addition, the internal SA representation used by a verification tool like
CBMC is not the same as a standard SA form used in compilation workflow.
So it is essential to understand exactly the different aspects introduced by
CBMC in the SA transformation code, if we are to develop our own BMC
tool for a different programming language.

Since the tool does not have any default way of showing the internal code
in the SA form, we have reverse engenieered the process by:

1. writing simple C programs using different functionalities and variables
contexts;

2. using a functionality of CBMC, to generate a file in the SMT-LIB
version 2 format;

3. using the initial program and the generated SMT-LIB file to build the

47



program in the SA form.

Next we show some of the examples used to follow this approach. Each
example aims to answer a specific aspect of the language, as for example
different variable contexts, function inlining, etc. We do not give details
about how the SA program is built, but instead focus on the analysis of the
SA program to understand the way CBMC renames variables. To this end
we show the initial program as well the program written in the SA form,
explaining the tactic used to rename each variable. For each example, we
ran CBMC as follow:
cbmc −−s igned−over f low −check −−smt2 −−o u t f i l e testX_smt2

−−no−propagat ion testX . c

Note that we have used CBMC version 4.1. The flag --signed-overflow-check
is used to instruct CBMC to introduce assertions to check for overflow, oth-
erwise, with the slicing functionality of CBMC, the resulting formula would
be empty because there would be no assertions to prove (the slicing func-
tionality removes every statement that does not influence the assertions to
prove). Flags --smt2 --outfile testX_smt2 are used to generate a file
called testX_smt2, containing the model in the SMT-LIB version 2 format;
the flag --no-propagation is used to avoid the propagation of variables;
testX.c is the input file name.

4.1 Global Variables

The purpose of this first example is to explore how CBMC renames global
variables. In the program shown in Figure 4.1 (left) there are only four
global variables and a function with some arithmetic expressions manipu-
lating these variables. The program has nothing complicated, but in the
SA form obtained (shown on the right hand side of the figure) it is already
possible to observe how CBMC deals with global variables. For each global
variable occurrence, an index is appended to the name counting the number
of times it has been assigned so far. Note also the particular default behavior

48



of CBMC, assigning the value 0 to each non initialized variable, as described
in [KC06].� �

int x , y ,w, z ;

void t e s t 1 ( void ) {
x = x + w;
y = x + 10 ;
z = 10 ;
z = z + 10 ;

}� �

� �
x#1 = 0 ;
y#1 = 0 ;
w#1 = 0 ;
z#1 = 0 ;
x#2 = w#1 + x#1;
y#2 = x#2 + 10 ;
z#2 = 10
z#3 = z#2 + 10 ;� �

Figure 4.1: Renaming global variables

4.2 Local Variables

Once we understand how global variables are handled, we mix global and
local variables, as well as function parameters, in a single program. Figure 4.2
shows a program with a global variable z, two function parameters x and w,
and one local variable y.� �

int z ;

void t e s t 2 ( int x , int w){
int y ;
x = x + w + y ;
y = x + 10 ;
z = 10 ;
z = z + 10 ;

}� �

� �
z#1 = 0
t e s t 2 : : x ! 0@1#1 =

nondet_symex : : nondet0
t e s t 2 : : w! 0@1#1 =

nondet_symex : : nondet1
t e s t 2 : : x ! 0@1#2 =

t e s t 2 : : x ! 0@1#1 +
t e s t 2 : : w! 0@1#1 +
t e s t 2 : : 1 : : y ! 0@1#1

t e s t 2 : : 1 : : y ! 0@1#2 =
t e s t 2 : : x ! 0@1#2 + 10

z#2 = 10
z#3 = z#2 + 10� �

Figure 4.2: Renaming function parameters, local and global variables

As it is possible to observe on the right hand side of the figure, global
variables are handled exactly the same way as in the previous example. With
respect to function arguments, first of all observe that they are initialized with
nondet_symex::nondet. This can be seen as a non-deterministic function,
which returns a random value. Both local variables and parameters are
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renamed resorting to the container function name (test2) and some counters.
Each counter is preceded by a symbol. The counter next to @ counts the
number of times the function has been called so far, if we think in terms of
the original program, or it can also be seen as the number of times it has been
inlined, if we think in terms of the transformation (to reach such conclusion,
other examples have been used). The counter after # counts the number of
times the variable has been assigned so far in the same function call. The
value next to ! was, and remains a mystery during our experiments with the
tool. It has been 0 with all the examples we could think of.

Note also the value 1 surrounded by the symbol :: in the local variables.
For now let us assume it as an identifier for local variables. Later its real
meaning will be shown. Note also that non initialized local variables are not
initialized with 0 as opposed to global variables.

Focusing on the assignment test2::1::y!0@1#2 = test2::x!0@1#2+ 10,
which corresponds to the assignment y = x + 10, we can see by the counter
after @ that both variables belong to the first function call, i.e. the first time
the function test2 was inlined. Moreover, the value after # indicates the
version of the variable inside the same function call, that is, the number of
times it has been assigned so far. Therefore, it is known that version 2 of the
variable x is being used, which is assigned immediately before. Moreover, if
we look blindly to the assignment we could imagine that variable y is being
assigned for the second time, which is actually false! This is the first time
the variable is assigned, however, maybe related to implementation issues,
this counter on local variables starts at 2. This brings no problem at all, as
soon as it introduces a new version of the variable.

4.3 Function Calls

With the example in Figure 4.3 we analyze how CBMC renames variables
when there are more than one function and there exist function calls and
return statements inside functions. In the example there are four global vari-
ables, x, y, w and z and two functions, test2 and test4 with the respective
local variables y and x, v. Moreover, function test2 has two parameters x
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and w.

� �
int x , y ,w, z ;

int t e s t 2 ( int x , int w) {
int y ;
x = x + w + y ;
y = x + 10 ;
z = 10 ;
z = z + 10 ;
return y ;

}

void t e s t 4 ( void ) {
int x = 15 ;
x = t e s t 2 (x , 1 0 ) ;
int v = x + z ;

}� �

� �
x#1 = 0
y#1 = 0
w#1 = 0
z#1 = 0
t e s t 4 : : 1 : : x ! 0@1#2 = 15
t e s t 2 : : x ! 0@1#1 =

t e s t 4 : : 1 : : x ! 0@1#2
t e s t 2 : : w! 0@1#1 = 10
t e s t 2 : : x ! 0@1#2 =

t e s t 2 : : x ! 0@1#1 +
t e s t 2 : : w! 0@1#1 +
t e s t 2 : : 1 : : y ! 0@1#1

t e s t 2 : : 1 : : y ! 0@1#2 =
t e s t 2 : : x ! 0@1#2 + 10

z#2 = 10
z#3 = z#2 + 10
t e s t 4 : : 1 : : x ! 0@1#3 =

t e s t 2 : : 1 : : y ! 0@1#2
t e s t 4 : : 1 : : v ! 0@1#2 =

t e s t 4 : : 1 : : x ! 0@1#3 +
z#3� �

Figure 4.3: Function calls with parameters

The entry point for our example will be test4, which has a function call to
the function test2. For this example a special switch (--function test4)
indicating the entry point (test4 in this case) was used when invoking
CBMC. CBMC inlines the code corresponding to the function call test2(x,10)
in the assignment x = test2(x,10), which places this code immediately be-
fore the assignment and propagates the return value with an assignment
between variables (we have analyzed that sometimes CBMC uses a temporal
variable to propagate the return value). The parameter passing is handled
by using assignments directly to the variables. With respect to the renaming
of variables, this example shows us what has been explained before, but now
involving more than one function. Global variables are initialized at zero and
only one counter is added to the name. For local variables two important
counters are used: one counting the number of calls, the other counting the
number of assignments. For instance the instruction x = test2(x,10) in
test4 becomes test4::1::x!0@1#3 = test2::1::y!0@1#2, where variable
x is assigned with the return value of function test2.

51



4.4 Scopes

So long we have seen the behavior of global variables and local variables
(including function parameters). Global variables are visible in the whole
program, while local variables are only visible inside the function where they
are declared. The generalization is that a C program is composed by scopes.
Inner scopes inherit variables from outer scopes. Inside an inner scope it is
possible to declare variables with the same name as variables occurring in
the outer scope, which will hide the outer scope variables.� �

int z , k=100;

void f ( int x , int w) {
int y ;
x = x + w + y ;
{

int y = 10 ;
int x = 20 ;
int z = 50 ;
x = x + y + z + k ;
{

int y = 12345 ;
x = x + y ;

}
{

int z = 9876 ;
}

}
y = x + 10 ;

}� �

� �
k#1 = 100
z#1 = 0
f : : x ! 0@1#1 =

nondet_symex : : nondet0
f : : w! 0@1#1 =

nondet_symex : : nondet1
f : : x ! 0@1#2 =

f : : x ! 0@1#1 +
f : : w! 0@1#1 +

f : : 1 : : y ! 0@1#1
f : : 1 : : 1 : : y ! 0@1#2 = 10
f : : 1 : : 1 : : x ! 0@1#2 = 20
f : : 1 : : 1 : : z ! 0@1#2 = 50
f : : 1 : : 1 : : x ! 0@1#3 =

f : : 1 : : 1 : : x ! 0@1#2 +
f : : 1 : : 1 : : y ! 0@1#2 +
f : : 1 : : 1 : : z ! 0@1#2 + k#1

f : : 1 : : 1 : : 1 : : y ! 0@1#2 = 12345
f : : 1 : : 1 : : x ! 0@1#4 =

f : : 1 : : 1 : : x ! 0@1#3 +
f : : 1 : : 1 : : 1 : : y ! 0@1#2

f : : 1 : : 1 : : 2 : : z ! 0@1#2 = 9876 ;
f : : 1 : : y ! 0@1#2 = f : : x ! 0@1#2 + 10� �

Figure 4.4: Renaming variables in different scopes

The idea of the example of Figure 4.4 is to show how CBMC deals with
scopes. In this example there are two global variables z and k, a function
called f which has two parameters x and w and a local variable y, and there
are also different scopes inside the function, which declare new variables.

With this example it is possible to see that what was until now seemed to
be the distinction between function parameters and local variables (::1) is
actually a mechanism identifying the scope. Actually, the number after :: is
also a counter. It counts the number of declared scopes at the same level. At
the function level there is one scope in which every declared variable has the
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prefix f::1::1. The first part indicates that the variable is somewhere inside
the function. The second part indicates that it was declared inside a scope
declared at the function level. Moreover, inside this scope, two new scopes are
declared. The variables in the first scope have the prefix f::1::1::1, while
the variables declared inside the second scope have the prefix f::1::1::2.

To sum up, with this example it is possible to understand the way in
which CBMC deals with scopes: it adds a substring at each level, which in
turn, contains a counter for the case in which multiple scopes are declared.

4.5 Static Variables

In the C language, besides the global variables and local variables, which
include variables declared in inner scopes, there exist also static variables
that have a different visibility scope. The scope of a static variable is the file
in which it is declared. In the example of Figure 4.5 we explore how CBMC
handles static variables. In this example there are several files: testeStatic.c,
aux.h, aux.c, aux1.h, and aux1.c. The header files are not shown here, since
they just declare the function defined in the ‘.c’ file. All files declare a static
variable sV.

On the right side we can see that static variables, in the SA form, are
treated almost the same way as global variables. The difference is that a
numbering is used to differentiate them in the different files. The order in
which they are enumerated is unknown but also not relevant provided that
they are different. In this example, the first occurrence, sV#1, belongs to
aux.c, the second, sV#link0#1 belongs to aux1.c, and the last, sV#link1#1
belongs to testeStatic.c.

4.6 Arrays

Let us now explore how arrays are handled by CBMC. The example in Fig-
ure 4.6 shows a single function, f, which starts by declaring an array a, and
an uninitialized variable i. Some operations are performed involving the ar-
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� �
// f i l e aux . c
stat ic int sV = 123 ;
int f ( int a ){

int i = 987 ;
i = sV + 876 ;
return i + a + sV ;

}� �� �
// f i l e aux1 . c
stat ic int sV = 234 ;

int g ( int b){
int i = 987 ;
i = sV + 876 ;
return i + b + sV ;

}� �� �
// f i l e t e s t e S t a t i c . c
#include " aux . h "
#include " aux1 . h "

stat ic int sV = 0 ;
int i ;

int main ( ){
i = 10 ;
sV = i ;
sV = sV + 200 ;
int j = i + sV ;
j = j + f ( i ) + g ( j ) ;

}� �

� �
sV#1 = 123
sV#l i n k 0#1 = 234
i#1 = 0
sV#l i n k 1#1 = 0
i#2 = 10
sV#l i n k 1#2 = i#2
sV#l i n k 1#3 = sV#l i n k 1#2 + 200
main : : 1 : : j ! 0@2#1 = i#2 + sV#l i n k 1#3
f : : a ! 0@1#1 = i#2
f : : 1 : : i ! 0@2#1 = 987
f : : 1 : : i ! 0@2#2 = sV#1 + 876
main : : $tmp : : return_value_f$1 ! 0@2#1 =

f : : 1 : : i ! 0@2#2 + f : : a ! 0@1#1 + sV#1
g : : b ! 0@1#1 = main : : 1 : : j ! 0@2#1
g : : 1 : : i ! 0@2#1 = 987
g : : 1 : : i ! 0@2#2 = sV#l i n k 0#1 + 876
main : : $tmp : : return_value_g$2 ! 0@2#1 =

g : : 1 : : i ! 0@2#2 + g : : b ! 0@1#1 +
sV#l i n k 0#1

main : : 1 : : j ! 0@2#2 =
main : : 1 : : j ! 0@2#1 +
main : : $tmp : : return_value_f$1 ! 0@2#1 +
main : : $tmp : : return_value_g$2 ! 0@2#1� �

Figure 4.5: Renaming static variables

ray, and then the sum of the first element with the second is returned. Note
that the loop was unwound three times (K = 3), which is enough to obtain
a sound model.

Let us observe the obtained SA form: the first assignment derives from the
for loop initialization. The second assignment that derives from the assign-
ment a[i] = i brings something new that must be taken into consideration.
Since the goal is to obtain a logical encoding, arrays are modeled as applica-
tive data structures with operators select (that returns the value stored in a
given position of the array) and store (that stores a value in a given position
of the array). That is, an assignment to an element of an array is transformed
into an assignment to a simple variable of a value constructed from the previ-
ous value of that variable, using a dedicated function. That function, called
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� �
int f ( ) {

int a [ 3 ] ;
int i ;
for ( i =0; i <3; i ++){

a [ i ] = i ;
}
int b = a [ 0 ] + a [ 1 ] ;
return b ;

}� �

� �
f : : 1 : : i ! 0@1#2 = 0
f : : 1 : : a ! 0@1#2 =

s t o r e ( f : : 1 : : a ! 0@1#1,
f : : 1 : : i ! 0@1#2,
f : : 1 : : i ! 0@1#2)

f : : 1 : : i ! 0@1#3 =
f : : 1 : : i ! 0@1#2 + 1

f : : 1 : : a ! 0@1#3 =
s t o r e ( f : : 1 : : a ! 0@1#2,

f : : 1 : : i ! 0@1#3,
f : : 1 : : i ! 0@1#3

f : : 1 : : i ! 0@1#4 =
f : : 1 : : i ! 0@1#3 + 1

f : : 1 : : a ! 0@1#4 =
s t o r e ( f : : 1 : : a ! 0@1#3,

f : : 1 : : i ! 0@1#4,
f : : 1 : : i ! 0@1#4)

f : : 1 : : i ! 0@1#5 =
f : : 1 : : i ! 0@1#4 + 1

a s s e r t ! ( f : : 1 : : i ! 0@1#5 < 3)
f : : 1 : : b ! 0@1#2 =

s e l e c t ( f : : 1 : : a ! 0@1#4, 0) +
s e l e c t ( f : : 1 : : a ! 0@1#4, 1)� �

Figure 4.6: Renaming arrays

store, receives an array, an index, and a value, and returns a new array with
the value stored at that index updated with the new value. So, in the exam-
ple the assignment a[i] = i is transformed into a new assignment with a
store operation (f::1::a!0@1#4 = store(...,...,...)) and the array ac-
cess a[0] is transformed into a select operation select(f::1::a!0@1#4, 0).

Finally, observe the use of an assert statement to obtain a soundness
result (check if executions requiring more than K iterations exist). We remark
that, since arrays are modeled as applicative structures, the transformation
into SA form does not introduce any novelties with respect to the previous
sections.

4.7 Structures and Unions

The program in Figure 4.7 (left) shows the declaration of a struct type def-
inition X with three fields, and a main function. The function declares a
variable of type X, assigns some values to the fields of the struct, and returns
the sum of the fields. The SA result may look a bit confusing, but it shows
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how CBMC handles structs. Since we are asking for the encoding to be gen-
erated in the smt2 format, CBMC uses the tuples theory to encode structs.
A tuple consists in an ordered set of elements (A1 , ... , An) where Ai is
of some type supported by the SMT solver. Two operations are defined over
tuples:

• update: receives a tuple t, a position p and a value v and returns a
new tuple t’ where every element except the one in position p has the
same value as in t. The value of the element in position p is equal to
v;

• project: receives a tuple t and a position p and returns the value in
position p of the tuple.

� �
typedef struct x{

int a ;
char b ;
long int c ;

} X;

int main ( ){
X s ;
s . a = 1 ;
s . b = 2 ;
s . c = 3 ;
int c = s . a + s . b

+ s . c ;
return c ;

}� �

� �
main : : 1 : : s ! 0@2#1 =

update (3 , 0 , main : : 1 : : s ! 0@2#0 ,1)
main : : 1 : : s ! 0@2#2 =

update (3 , 1 , main : : 1 : : s ! 0@2#1 ,2)
main : : 1 : : s ! 0@2#3 =

update (3 , 2 , main : : 1 : : s ! 0@2#2 ,3)
main : : 1 : : c ! 0@2#1 =

p r o j e c t (3 , 0 , main : : 1 : : s ! 0@2#3) +
p r o j e c t (3 , 1 , main : : 1 : : s ! 0@2#3) +
p r o j e c t (3 , 2 , main : : 1 : : s ! 0@2#3)� �

Figure 4.7: Renaming structs and struct’s fields

Similarly to what happened with arrays, assignments to a field of a struct
are now seen as applicative. An assignment is done through an update and
the access to a field in an expression is done through project. The names
of the fields are not used at all. So in the example, the assignment s.b = 2 is
transformed into main::1::s!0@2#2 = update(3,1,main::1::s!0@2#1,2).
Note the use of update and its parameters, where the first indicates the size
of the tuple, the second indicates the index to be updated, the third indicates
the tuple to be updated and the last indicates the new value.
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Although unions are usually presented together with structures, in CBMC,
at the SA level, they are treated in much the same way as for example an
integer variable. The only difference is that the bitvector size may change
along the time since the fields may have different sizes. The effect of this is
simply the SA variables being declared with different sizes.

4.8 Pointers

The main goal of this section is to understand how CBMC deals with point-
ers and memory allocation. The main function of the program shown in
Figure 4.8 uses an integer variable a and an integer pointer variable d. Af-
ter some operations with these two variables, function f is called with the
content from memory position d and the location of a.� �
#include<s t d l i b . h>

int f ( int a , int ∗b){
∗b = a ∗ 2 ;
int c = ∗b + 100 ;
return c ;

}

int main ( ){
int a = 10 ;
int ∗d =

malloc ( s izeof ( int ) ) ;
∗d = 20 ;
a = f (∗d,&a ) ;
a = a ∗ 2 ;
return a ;

}� �

� �
main : : 1 : : a ! 0@2#1 = 10
main : : $tmp : : return_value_malloc$1 ! 0@2#1 =

nondet_symex : : 0
main : : 1 : : d ! 0@2#1 =

main : : $tmp : : return_value_malloc$1 ! 0@2#1
main : : 1 : : d$object !0#1 = 20
f : : a ! 0@1#1 = main : : 1 : : d$object !0#1
main : : 1 : : a ! 0@2#2 = f : : a ! 0@1#1 ∗ 2
f : : 1 : : c ! 0@2#1 = main : : 1 : : a ! 0@2#2 + 100
main : : 1 : : a ! 0@2#3 = f : : 1 : : c ! 0@2#1� �

Figure 4.8: Renaming pointers

As we can see on the right part of the figure, a pointer is represented
exactly in the same way as a variable. The only difference is when we are
accessing the value in the address pointed by the pointer. We can see in
the assignment *d = 20 that a marker object is used, which corresponds to
another SA variable. Note also the fact that the element @ is not used when
assigning a value to the pointer target. So the value after the # is always
incremented independently from the function call. When there is a function
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call with a parameter that is a pointer to a local variable, as in f (...,&a)
of this example, the variable in the target function a is renamed to the
variable in the source function. In our example, the input parameter *b gets
renamed by the variable a, as shown by the assignment c = *b + 100 which
is transformed into f::1::c!0@2#1 = main::1::a!0@2#2 + 100.

4.9 Lessons Learned

With these experiences, we were able to realize how CBMC renames variables
in order to transform a program into SA form. In the renaming of global
variables an index is added to the name at each new assignment, counting
the number of times the variable has been assigned so far. For local variables
the function name in which it is declared is appended to the name, as well as
two indexes: one counting the number of assignments made to that variable
so far in a single function call, the other counting the number of function
calls in the whole program. We were also able to see that function calls
are inlined, and values must be propagated into and out of the function
(sometimes requiring auxiliary variables). For arrays, and structures, we
have seen that they are encoded as applicative, as explained in Sections 4.6
and 4.7 and consequently it becomes straightforward to convert to SA form
instructions that manipulate such structures.

There exist some aspects of C, handled by CBMC, that are not required
for SPARK. They include pointers and scopes. Even though they are not
required in SPARK, we have analyzed them in order to complete this study.
When using a pointer, multiple variables may be used to refer directly to
the pointer and to the contents of the memory location pointed by it. The
scopes are identified by appending a substring to the variable name at each
level, which in turn contains a counter for the scopes declared previously at
the same level. Finally, static variables are renamed using a substring which
identifies in some way the file in which it is declared.
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Chapter 5

SPARK-BMC

SPARK-BMC is a prototype bounded model checker for SPARK programs,
that follows closely the steps described in Section 3.1. The tool checks valid
SPARK programs for property violations as will be explained below. It
assumes, without checking, that the input program passes the Examiner
validity checks. The tool is being developed in Haskell and uses as backend
the SMT-solver Z3 [dMB08]. SPARK-BMC is an open-source project1.

We start this chapter by explaining some decisions that were made in the
design of this tool. We later present implementation details about the steps
required to create a bounded model of a SPARK program and send it to a
solver. We finish the chapter with instructions on how to use the tool and
present some examples of its use.

5.1 Implementation Choices

In this section, we give a brief description of the technologies being used
to develop the BMC for SPARK programs. We also show the motivations
behind these choices. Since the explanation of such technologies is outside
the context from this thesis, we present them without giving great details.
To have a full idea about the presented concepts the reader should refer to
the references given throughout the chapter.

1available from the repository https://bitbucket.org/vhaslab/spark-src
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5.1.1 Programming Language

The elected programming language for the implementation of SPARK-BMC
was Haskell2. Haskell [OGS08] is a purely functional programming language,
with polymorphic static typing, non-strict semantics and a monadic I/O
system. Haskell provides a very advanced type system (which incorporates
type classes and generalized algebraic data types) and very handy features
such as pattern matching, list comprehensions, a module system and a rich
set of libraries. The main motivations for choosing Haskell as a programming
language in the development of SPARK-BMC are as follows:

• Productivity: since Haskell is a high level language, and due to its type
system, it allows for a fast development process - less bugs, less time
in debugging;

• Functional programming languages make easier the definition and ma-
nipulation of ASTs mainly due to the presence of algebraic data types
and pattern matching - e.g. uniplate3 makes very easy the application
of generic transformations and queries to ASTs;

• Haskell is a very popular functional language at the moment, which
makes it very easy to find information, support4 and libraries5;

• Even if Haskell is not the best language in terms of performance, the
computational time in an application like SPARK-BMC is dominated
by the SAT or SMT solver, so this performance aspect is not very
relevant.

Beyond the facts presented above, the people involved in this project had
experience with Haskell, which made the difference when comparing to other
functional programming languages such OCaml.

2http://www.haskell.org
3http://hackage.haskell.org/package/uniplate
4http://stackoverflow.com/questions/tagged/haskell
5http://hackage.haskell.org/
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5.1.2 Parser

Having chosen the development language, a parser for SPARK had to be
created. This task has been carried out as part of this thesis and also of the
activities of the AVIACC project with the collaboration of the whole team.
The idea was to construct a robust parser that could be used not only for this
project, but also for other tools developed in the context of AVIACC. The
parser is currently an open source tool under the BSD 3 license, available
from https://bitbucket.org/vhaslab/spark-parser.

Between the many available parser technologies for Haskell, we have cho-
sen the monadic combinator parsing library Parsec6. The idea of parser
combinators is to combine basic parsers with higher-order combinators to
construct more complex parsers, allowing the parser to be build iteratively.
The result of such combinators is a top-down recursive descent parser. Us-
ing such an approach has many advantages: the language used to create the
parser is the same as the host language, thus, there is no need to learn a new
language to use different tools to generate, or compile the parser and it is
possible to take advantage of all the benefits of Haskell as for example as the
type system or development environment.

5.1.3 Satisfiability Solver

The first decision when choosing a satisfiability solver was to decide if the
main solver should be a SAT or SMT solver. The idea is that in the future the
tool will allow the user to choose one solver from a set of supported solvers,
both SAT and SMT. However, for this first version of the tool we had to
give priority to one. According to particular tools described in [CFMS12] and
[AMP09] the use of SMT solvers has many advantages, regarding for example
compactness of the formulas (the size of the formulas does not depend on
the bit-vector size neither on the array size), and scalability.

Our choice was to use Z3 [dMB08] as proof tool. Z3 is a high-performance
SMT solver being developed at Microsoft Research. The code is open source
and there are no restrictions for academic use. Moreover, open source bind-

6http://legacy.cs.uu.nl/daan/parsec.html
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ings7 are available for Haskell, which allow for the use of some convenient
features, as well as a direct interaction with the solver.

The bindings for Z3 are available as an instance of monad which simpli-
fies the development process. This is mainly due to the fact that a monad in
Haskell is a computational container that allows to hide the ‘bureaucratic’
technical details of processing the data in steps and provides a simple inter-
face for the programmer.

5.2 SPARK-BMC Internals

SPARK-BMC is a tool which performs Bounded Model Checking (BMC) to
SPARK programs, following the steps described in Chapter 3. The tool takes
as input a program written in SPARK, parses it, and creates an AST with
the program representation. The program is then transformed, simplified,
and normalized (by multiple traversals of the AST), and two sets of logical
formulas are extracted, describing logically the operational contents of the
program, and the properties to be established. Finally, the SMT solver is
used to check if there exists a property violation; if so, a counter-example is
shown.

SPARK-BMC checks for properties annotated in the code. Annotations
are inserted as comments beginning with --%, distinct from SPARK anno-
tations. This allows the user to verify different properties using different
tools: a program annotated for SPARK-BMC is still a valid SPARK pro-
gram that can be checked by the usual SPARK toolset. Our tool works with
the following annotations:
−−% a s s e r t C;
−−% assume C;
−−% notOverf low ( op , type , e1 , e2 ) ;

The two basic annotations assert C and assume C, with C a quantifier-
free formula, are similar to those used in CBMC and described in Section 3.1.
assert C means that C must be satisfied by the current state, so the con-
dition C is true for all executions of the program. assume C restricts the

7http://hackage.haskell.org/package/z3

62

http://hackage.haskell.org/package/z3


properties considered by allowing assume-guarantee reasoning. assume C in-
dicates that condition C will be taken as true at the current state. If the
condition C is false in a run of the program, then all the subsequent property
checks of the program will vacuously pass. The notOverflow annotation is
later translated into a set of asserts containing formulas that depend on the
logical model used for numeric values.

The rest of this section presents the details of the several transformation
steps on the original program, and the interaction with the SMT solver. The
order in which the transformation are applied is the order they are presented.
We use the program shown in Figure 2.1 as a running example. The code
presented is copied from the tool output, when it runs in the debugging mode.

5.2.1 Program Simplification

The first step is to rewrite the input program into an equivalent one that uses
only a restricted set of statements, namely, loop, exit, if-then, if-then-else
and assignment. Table 5.1 shows the transformations applied to the input
program. The first row of the table shows that case statements are trans-
lated into if statements. On the left-hand side, we show different uses of
the when clause and show its transformation on the right-hand side where
an if statement is used. The elsif clause, as in most programming lan-
guages is just syntactic sugar. Therefore, we expand it as shown in the table.
Also, exit statements with the when clause are trivially transformed into if
statements containing only an exit statement without a when clause.

In order to understand the transformations applied to loop statements,
recall what has been said about loop statements in Section 2.1. In particu-
lar note that the most general form of iteration uses an infinite loop with an
abrupt exit statement, and that in SPARK every exit statement must refer
to the innermost enclosing loop. With this in mind and following the sugges-
tion given in [Bar03], every loop with an iteration scheme can be converted
into a loop with no iteration scheme. Table 5.1 shows the different iteration
schemes and their conversion to a loop with no iteration scheme. For-loops
can also contain the keyword reverse for the iteration to occur backwards.
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exit when c ;
i f c then

exit ;
end i f ;

case E i s
when A => S1 ;
when B . . D => S2 ;
when others => S3 ;

end case ;

i f (E = A) then
S1 ;

e l s i f (E in B . . D) then
S2 ;

else
S3 ;

end i f ;

i f C1 then
S1 ;

e l s i f C2 then
S2 ;

[ . . . ]
else

Sn ;
end i f ;

i f C1 then
S1 ;

else i f C2 then
S2 ;

[ . . . ] else
Sn ;

[ . . . ]
end i f ;

end i f ;

while E loop
S ;

end loop ;

loop
exit when not E;
S ;

end loop ;

for I in T range L . . U loop
S ;

end loop ;

i f L <= U then
I := L ;
loop

S ;
exit when I = U;
I := T’ Succ ( I ) ;

end loop ;
end i f ;

for I in T loop
S ;

end loop ;

I := T’ F i r s t ;
loop

S ;
exit when I = T’ Last ;
I := T’ Succ ( I ) ;

end loop ;

Table 5.1: Transformations applied in the simplification step

In this case, the attributes must be changed in a trivial way to capture this
semantics.

In our running example (Figure 2.1) only the exit statement with the
when clause gets transformed. The result of this transformation may be seen
in Figure 5.1. Note that we have removed the SPARK annotations to avoid
confusion.
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� �
package body Marray i s

procedure MaxArray (V: in VArray ; M: out Index )
i s

I : I n t e g e r ;
Max : Index ;

begin
Max := Index ’ F i r s t ;
I := Index ’ F i r s t +1;
loop

i f ( I > Index ’ Last ) then
exit ;

end i f ;
i f V( I ) > V(Max) then

Max := I ;
end i f ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;� �

Figure 5.1: After the simplification process

5.2.2 Program Instrumentation

Similarly to CBMC, the property annotations can be inserted by the user to
express properties that should hold (very helpful for instance for debugging
purposes), or else can be added automatically by an instrumentation tool that
analyzes the program and inserts ‘obvious’ annotations. In SPARK code it
is particularly useful to check statically for runtime exceptions; the SPARK
Examiner certainly does this, but it requires annotating loop invariants in the
code. These properties (in particular overflow, array out of bound access and
division by zero) can be instrumented automatically, and with SPARK-BMC
they can be checked without requiring loop invariants, as will be illustrated
later.

Annotations inserted by instrumentation include a notOverflow annota-
tion for each arithmetic operation that can possibly cause overflow; for array
out of bounds accesses, it inserts an assert to check the validity of each in-
dex; division by zero is handled by inserting, for each arithmetic division, an
assert to check that the denominator is different from zero. The example
shown in Figure 5.1 would be annotated as shown in Figure 5.2 to check for
overflow and array out of bound access.
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� �
package body Marray i s

procedure MaxArray (V: in VArray ; M: out Index )
i s

I : I n t e g e r ;
Max : Index ;

begin
Max := Index ’ F i r s t ;
I := Index ’ F i r s t +1;
loop

i f ( I > Index ’ Last ) then
exit ;

end i f ;
−−% a s s e r t ( I >= VARRAY’ FIRST ( 1 ) ) and ( I <= VARRAY’LAST( 1 ) ) ;
−−% a s s e r t (MAX >= VARRAY’ FIRST ( 1 ) ) and (MAX <= VARRAY’LAST( 1 ) ) ;
i f V( I ) > V(Max) then

Max := I ;
end i f ;
−−% notOverf low (+ ,INTEGER, I , 1 ) ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;� �

Figure 5.2: After the instrumentation process

5.2.3 Subprogram Inlining

The inlining of routine calls consists in taking the entry point provided by
the user and recursively removing subprogram calls. For procedures and
functions used as standalone statements, this is done by simply replacing the
subprogram call by the respective body. For function calls occurring as part
of expressions, the function body is inserted exactly before the statement
which contains the call, and an auxiliary variable is used to propagate the
return value. Auxiliary variables are also used to propagate the values of
parameters inside the callee and back to the caller subprogram, taking into
account their modes (in, out or in out). Since different contexts are being
merged, identifiers are renamed to avoid conflicts, by adding as prefix the
package and subprogram identifiers (this is also useful to keep information
about the identifier’s context). The result of this transformation step is a
monolithic program with no calls.

During this process, type and subtype declarations, as well as variable
declarations are collected as follows. For integer types and subtypes, we keep
their lower and upper bounds; for enumerations types, the corresponding
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literals (in the respective order); for enumerations subtypes the order of their
first and last element as well as the type they extend; for modular types, the
upper bound; for array types and subtypes, the types of their indexes and
elements; finally for records, we keep their fields’ names and type. Figure 5.3
shows the information kept for each type shown in Figure 2.3. For variables
declarations, only the name and type are collected. The information collected
during this process is kept and used by some of the follow transformations
as will be shown.� �
Nat : i n t e g e r − [ 0 , 2147483647 ] ;
T: mod − 4 ;
Day : enumeration − (Mon, Tue ,Wed, Thur , Fri , Sat , Sun ) ;
Counter : i n t e g e r − [ 1 , 1 0 ] ;
Weekday : enumeration − [ 0 , 4 ] − Day ;
Object : r ecord − [ (X: I n t e g e r ) , (Y: I n t e g e r ) ] ;
C i r c l e : r ecord − [ (X: I n t e g e r ) , (Y: I n t e g e r ) , ( Radius : I n t e g e r ) ] ;
Point : r ecord − [ (X: I n t e g e r ) , (Y: I n t e g e r ) ] ;
Tuple : array − [ I n t e g e r ] − [ Day ] ;
WorkHours : array − [ Weekday ] − [ Nat ] ;
Matrix : array − [ Counter , I n t e g e r ] − [ I n t e g e r ] ;� �

Figure 5.3: Information kept about the types

5.2.4 Eliminating Attributes and Enumeration Liter-
als

SPARK attributes are a distinct feature of the language (and of course also
Ada) which is not present in anyway in C. As such, it has to be addressed in
a dedicated way: inspiration cannot be found in CBMC. SPARK attributes
apply to types and subtypes. Since we assume that the program being ver-
ified is always a valid SPARK program, it is known beforehand that the
enumeration literals are being used correctly. Moreover, SPARK forbids the
overloading of enumeration literals. With this in mind, we translate enumer-
ation literals into integer values (the respective position in the enumeration,
starting with 0 for the first) and get rid of attributes, replacing them by
equivalent expressions. After this, enumerations are manipulated as integer
values. The only exception is for literals of Boolean type. Despite SPARK
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Booleans being defined as enumeration types, they have a special semantics
because they can be used in Boolean expressions.

rmAttr(l) = getPos(l)
rmAttr(N1 op N2) = rmAttr(N1) op rmAttr(N2)
rmAttr(S’First) = lower(S)
rmAttr(S’Last) = upper(S)
rmAttr(A’First) = lower (getIndType(1,A))
rmAttr(A’Last) = upper (getIndType(1,A))
rmAttr(A’First(N)) = lower (getIndType(rmAttr(N),A))
rmAttr(A’Last(N)) = upper (getIndType(rmAttr(N),A))
rmAttr(A’Length) = rmAttr(A’Last - A’First + 1)
rmAttr(A’Length(N)) = rmAttr(A’Last(N) - A’First(N) + 1)
rmAttr(S’Min(N1,N2)) = (rmAttr(N1) ≤ rmAttr(N2)) ? rmAttr(N1) : rmAttr(N2)
rmAttr(S’Max(N1,N2)) = (rmAttr(N1) ≥ rmAttr(N2)) ? rmAttr(N1) : rmAttr(N2)
rmAttr(S’Pos(N)) = getPos(rmAttr(N))
rmAttr(S’Val(N)) = rmAttr(N)
rmAttr(S’Pred(N)) = rmAttr(N) - 1
rmAttr(S’Succ(N)) = rmAttr(N) + 1
rmAttr(B’First) = False
rmAttr(B’Last) = True
. . .

Figure 5.4: Attribute removal function

Having the types and variable declarations obtained in the previous step,
it is now possible to convert enumeration elements into integers, and at-
tributes into equivalent expressions using only integer values. Replacing
enumeration elements by integers is straightforward; it suffices to replace
the element by its position in the enumeration. Figure 5.4 shows a recur-
sive function to remove attributes and enumerations from an expression. A
denotes an object of an array type, S denotes an object of integer or enumer-
ation type or subtype (not Boolean), B denotes an object of Boolean type;
N denotes an expression and l an enumeration literal. Function lower (resp.
upper) gives the lower (resp. upper) bound of an integer or enumeration
type/subtype; getIndType receives a positive integer (indicating one dimen-
sion of the array) and an array type and returns its type; getPos returns the
position of a literal in an enumeration. Other cases are analogous to the ones
shown.

68



� �
ARRAY_SIZE := 10 ;
MAX := 1 ;
−−% notover f l ow (+ ,INTEGER, 1 , 1 ) ;
I := (1 + 1 ) ;
loop

i f ( I > ARRAY_SIZE) then
exit ;

end i f ;
−−% a s s e r t ( I >= 1) and ( I <= ARRAY_SIZE) ;
−−% a s s e r t (MAX >= 1) and (MAX <= ARRAY_SIZE) ;
i f (V( I ) > V(MAX) ) then

MAX := I ;
end i f ;
−−% notover f l ow (+ ,INTEGER, I , 1 ) ;
I := ( I + 1 ) ;

end loop ;
M := MAX;� �
Figure 5.5: Transforming enumerations and attributes into integer expres-
sions

5.2.5 Loop Unwinding

Loops can at this stage be seen as blocks of code containing backward-goto
and forward-goto statements. Since the iteration schemes have been removed
during the simplification step, only primitive loops are present at this stage,
and the only way of exiting such a loop is through an explicit exit, equivalent
to a forward-goto statement. On the other hand, reaching the end of a loop
block produces a backward-goto to the beginning of the loop.

In the present step, in order to produce a bounded model, each loop gets
unwound a fixed number of times K. Loop headers are removed, and loop
bodies are replicated K times. However, exit statements complicate this
picture: the statements belonging to the loop body following a reached exit
statement must not be executed. Since this intermediate representation of
the program will not itself be executed, neither it is used directly to build
a logical encoding, we introduce an artificial loop unwind wrapper for the
code belonging to the unwound loop. Within this wrapper, reaching an exit
statement means that none of the subsequent statements inside the wrapper
should get executed. Such wrappers have other uses as will be seen below.
They will be removed in the final normalization step, as will be the exit
statements.
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Depending on the user’s choice, an unwinding assertion can be placed at
the end of the expanded code (inside the loop wrapper) with the aim of en-
suring that the loop has been sufficiently expanded. This process is the same
as the one explained in Section 3.1, more precisely in the discussion about
creating a bounded model. Remember that the idea of assert False is that,
whenever that point is reached in a certain path, such path requires more
than K iterations and so there is an assert violation. If the user chooses to turn
off property validation in paths beyond the limit established by the bound for
loop iterations, the unwinding assumption (assume False) is placed instead.
Remember that whenever the point in which the unwinding assumption was
placed is reached by a certain execution, all subsequent assertions in this
execution will be trivially discharged.� �
ARRAY_SIZE := 10 ;
MAX := 1 ;
−−% notover f l ow (+ ,INTEGER, 1 , 1 ) ;
I := (1 + 1 ) ;
LOOP_WRAPPER

i f ( I > ARRAY_SIZE) then
exit ;

end i f ;
−−% a s s e r t ( I >= 1) and ( I <= ARRAY_SIZE) ;
−−% a s s e r t (MAX >= 1) and (MAX <= ARRAY_SIZE) ;
i f (V( I ) > V(MAX) ) then

MAX := I ;
end i f ;
−−% notover f l ow (+ ,INTEGER, I , 1 ) ;
I := ( I + 1 ) ;
i f ( I > ARRAY_SIZE) then

exit ;
end i f ;
−−% a s s e r t ( I >= 1) and ( I <= ARRAY_SIZE) ;
−−% a s s e r t (MAX >= 1) and (MAX <= ARRAY_SIZE) ;
i f (V( I ) > V(MAX) ) then

MAX := I ;
end i f ;
−−% notover f l ow (+ ,INTEGER, I , 1 ) ;
I := ( I + 1 ) ;
−−% a s s e r t Fa l se ;

END_LOOP_WRAPPER;
M := MAX;� �

Figure 5.6: Loop unwinding 2x

Figure 5.6 shows our running example, with the initial loop unwound
twice. Note in particular the code standing between LOOP_WRAPPER and
END_LOOP_WRAPPER, which is exactly the loop body replicated twice. Note
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also that for this example an unwinding assertion was inserted. If an un-
winding assumption was chosen, the only difference would be the line con-
taining the unwinding assertion (one would have assume instead of assert).
Finally, note that the code standing between the second exit statement and
the unwinding assertion is meaningless, since whenever it gets executed, the
assert False also gets executed.

5.2.6 Single-Assignment Transformation

A crucial step towards the normalization of the program is its transforma-
tion into an Single Assignment (SA) form. In this transformation, multiple
indexed versions of each variable are used – a new version is introduced for
each assignment to the original variable, so that in every execution path,
once a variable has been read or assigned it will not be assigned again.

While the transformation of straight-line code is quite straightforward (it
suffices to index each variable with the number of times it has been assigned
so far), code with multiple branches poses some challenges. Recall that
different variables will be used to represent the same variable of the original
program in different paths of the SA program, and these have to be merged
when these paths meet. The only statement left with multiple branches at
this stage of the transformation workflow is the if statement. Loop wrappers
may also have multiple branches, depending on the exit statements; they will
be discussed in the next subsection.

Returning to the if statements, the two final versions of each variable
(one from each branch) must be merged; this is achieved by inserting, imme-
diately after the conditional, an assignment to each modified variable, making
use of conditional expressions, à la C. These expressions are not present in
the SPARK programming language, and even though variables could alter-
natively be merged by assigning the same variable in both branches, we have
chosen to include conditional expressions in the AST for the sake of com-
pactness and readability. What is more, these expressions can be preserved
at the logical level since they are present in the SMT logic.

Our conversion algorithm traverses the AST and appends an appropriate
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index to each variable occurrence. To deal with multiple branch statements,
the algorithm makes use of two counters for each variable; one family of
counters (R) keeps the versions that should be used when a variable is read,
the other (W) keeps the last versions of the variables that have been used for
writing. Both R(v) and W(v) are incremented when variable v is assigned.
However, when entering an else branch R(v) must be reset to the value it
had immediately before entering the conditional. At the merge point, the
values of W at the end of both branches are used for inserting an assignment
with the appropriate conditional expression.� �

i f (X = Y) then
X := X + Y;
Y := Y + 1 ;

else
X := X + Y;

end i f ;� �� �
−− R = {(X, 2 ) , (Y, 4 ) } ; W = {(X, 3 ) , (Y, 4 ) }

i f (X#2 = Y#4) then
X#4 := X#2 + Y#4; −− R = {(X, 4 ) , (Y, 4 ) } ; W = {(X, 4 ) , (Y, 4 ) }
Y#5 := Y#4 + 1 ; −− R = {(X, 4 ) , (Y, 5 ) } ; W = {(X, 4 ) , (Y, 5 ) }

else
X#5 := X#2 + Y#4; −− R = {(X, 5 ) , (Y, 4 ) } ; W = {(X, 5 ) , (Y, 5 ) }

end i f ;
X#6 := (X#2 = Y#4) ? X#4 : X#5;
Y#6 := (X#2 = Y#4) ? Y#5 : Y#4;

−− R = {(X, 6 ) , (Y, 6 ) } ; W = {(X, 6 ) , (Y, 6 ) }� �
Figure 5.7: Example of conversion to SA

Consider the example in Figure 5.7. As comments it is possible to observe
the evolution of the counters R and W. The fact that R(X) and W(X) are
different indicates that this is part of some else branch. Observe how the
values of R(X) and R(Y) before entering the conditional are used in both
branches when X and Y are read.

Special attention must be given to assignments involving arrays. For
the purpose of obtaining a logical encoding, arrays are seen as applicative:
each array corresponds to a single variable, updated through a store func-
tion. So an assignment of the form A(X) := Y is first transformed into
A := store(A,X,Y), and conversion to SA form then produces the instruc-
tion A2 := store(A1,X’,Y’), where X’ and Y’ correspond to X and Y, with
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possible renaming of variables due to transformation to SA form.� �
ARRAY_SIZE#1 := 10 ;
MAX#2 := 1 ;
−−% notOverf low (+ ,INTEGER, 1 , 1 ) ;
I#2 := (1 + 1 ) ;
LOOP_WRAPPER

i f ( I#2 > ARRAY_SIZE#1) then
exit ; −− [ ( I , 2 ) , (M, 1 ) , (MAX, 2 ) , (V, 1 ) ]

end i f ;
−−% a s s e r t ( I#2 >= 1) and ( I#2 <= ARRAY_SIZE#1);
−−% a s s e r t (MAX#2 >= 1) and (MAX#2 <= ARRAY_SIZE#1);
i f (V#1( I #2) > V#1(MAX#2)) then

MAX#3 := I #2;
end i f ;
MAX#4 := (V#1( I #2) > V#1(MAX#2)) ? MAX#3 : MAX#2;
−−% notOverf low (+ ,INTEGER, I #2 ,1);
I#3 := ( I#2 + 1 ) ;
i f ( I#3 > ARRAY_SIZE#1) then

exit ; −− [ ( I , 3 ) , (M, 1 ) , (MAX, 4 ) , (V, 1 ) ]
end i f ;
−−% a s s e r t ( I#3 >= 1) and ( I#3 <= ARRAY_SIZE#1);
−−% a s s e r t (MAX#4 >= 1) and (MAX#4 <= ARRAY_SIZE#1);
i f (V#1( I #3) > V#1(MAX#4)) then

MAX#5 := I #3;
end i f ;
MAX#6 := (V#1( I #3) > V#1(MAX#4)) ? MAX#5 : MAX#4;
−−% notOverf low (+ ,INTEGER, I #3 ,1);
I#4 := ( I#3 + 1 ) ;
−−% a s s e r t Fa l se ;

END_LOOP_WRAPPER; −− [ ( I , 5 ) , (MAX, 7 ) ]
M#2 := MAX#7;� �

Figure 5.8: Single assignment program representation

Figure 5.8 presents the state of our running example after conversion to
SA form. The comments after the exit statements and the END_LOOP_WRAPPER
keyword may be ignored for now. We will refer to them when dealing with
the exit statement removal, below. Note in particular that MAX#7 is not
assigned during this step because its value depends on the exit statement
reached. Such assignments are added in the next step, when removing exit
statements.

5.2.7 Conditional Normal Form Normalization

Conditional Normal Form (CNF) normalization transforms the program into
a sequence of statements of the form if b then S, where S must be an
assignment, assert or assume instruction. Before such a form is reached,
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exit statements must be removed. For that we divide this step in two parts.
First, we start by normalizing the program in the form just described, but
allowing S to be an exit statement. Later we remove these statements.

For the first part, if statements with else branch are rewritten into
a sequence of two if statements with mutually exclusive conditions. This
transformation is correct since in SA form the value of the boolean expression
cannot possibly be modified by subsequent instructions. Nested if state-
ments are then pushed up in the AST, by traversing it and collecting the
necessary path conditions for reaching each assignment, exit, assert or
assume instruction, and then creating an if statement with the conjunction
of the collected conditions. Figure 5.9 shows the normalization of the exam-
ple shown in Figure 5.7. Figure 5.10 (top) shows the result of performing
these operations on our running example.� �
i f (X#2 = Y#4) then X#4 := X#2 + Y#4; end i f ;
i f (X#2 = Y#4) then Y#5 := Y#4 + 1 ; end i f ;
i f ( not (X#2 = Y#4)) then X#5 := X#2 + Y#4; end i f ;
i f ( True ) then X#6 := (X#2 = Y#4) ? X#4 : X#5; end i f ;
i f ( True ) then Y#6 := (X#2 = Y#4) ? Y#5 : Y#4; end i f ;� �

Figure 5.9: Example of normalization into conditional normal form

For the exit statements removal, recall that when such a statement is
reached, this means that none of the following instructions in the correspond-
ing loop wrapper should be reached. Moreover, the values of the variables
after the loop wrapper must be in accordance with the first exit statement
reached. If no exit statement is reached then an assert or an assume annota-
tion previously inserted must be reached, as explained before. Note that the
preparation for this step starts when the code is converted into SA form: for
each exit statement, the current version of each variable at that point was
kept, and at the end of each loop wrapper, a new version for each modified
variable was reserved and kept together with the wrapper. This version is
the one that is used immediately after the loop wrapper: its value reflects
the exit statement that has been reached. This information is displayed as
comments in the example shown in Figure 5.8.

At this stage each exit statement is guarded by a condition C; the state-
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ment is reached if and only if C evaluates to true. To ensure that none of the
subsequent statements (including other exit statements and the unwinding
annotation) are reached after an exit statement is, it is enough to ensure that
none of the subsequent guards evaluate to true, by propagating the condition
not C through them. In order for variables to hold the correct values after
the loop wrapper, assignments to the reserved variables are inserted using
the current variables that were kept together with the exit statement. The
guards for these assignments are the same as the exit guard. Loop wrappers
and all the information kept for this step may now be removed.

After performing these updates on the AST, our running example is as
shown in Figure 5.10 (bottom). Note the use of auxiliary variables to keep
the loop conditions. These variables are only used for keeping the program
easy to understand and may be removed at any instance, by propagating
their values.

5.2.8 Creating the Logical Encoding

There are no language-specific aspects in the next step. After all the previous
transformations, the program is now a sequence of statements of the form
if C then S, where S may only be an assignment or an instruction with the
form of an annotation (assert, notOverflow, or assume). As described in
Section 3.1, one now has to extract the two sets of formulas C and P . This
is straightforward, by traversing the list of statements, translating if state-
ments into implications and assignments into equalities. The formulas with
assert and assume statements (including those in the form notOverflow) are
collected in P , and the remaining implications in C. Figure 5.11 shows these
two sets of expressions for our running example.

5.2.9 Solver Interaction

Now that we have C and P the satisfiability of C ∪ {¬∧P} modulo a back-
ground theory has to be checked. The simultaneous presence in the language
of discrete types with modular semantics and of signed integers for which
runtime overflow exceptions are raised led us to elect fixed-size bit-vectors
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� �
True => ARRAY_SIZE#1 := 10 ;
True => MAX#2 := 1 ;
True => −−% notover f l ow (+ ,INTEGER, 1 , 1 ) ;
True => I#2 := (1 + 1 ) ;
LOOP_WRAPPER

( I#2 > ARRAY_SIZE#1) => exit ; −− [ ( I , 2 ) , (M, 1 ) , (MAX, 2 ) , (V, 1 ) ]
True => −−% a s s e r t ( I#2 >= 1) and ( I#2 <= ARRAY_SIZE#1);
True => −−% a s s e r t (MAX#2 >= 1) and (MAX#2 <= ARRAY_SIZE#1);
(V#1( I #2) > V#1(MAX#2)) => MAX#3 := I #2;
True => MAX#4 := (V#1( I #2) > V#1(MAX#2)) ? MAX#3 : MAX#2;
True => −−% notover f l ow (+ ,INTEGER, I #2 ,1);
True => I#3 := ( I#2 + 1 ) ;
( I#3 > ARRAY_SIZE#1) => exit ; −− [ ( I , 3 ) , (M, 1 ) , (MAX, 4 ) , (V, 1 ) ]
True => −−% a s s e r t ( I#3 >= 1) and ( I#3 <= ARRAY_SIZE#1);
True => −−% a s s e r t (MAX#4 >= 1) and (MAX#4 <= ARRAY_SIZE#1);
(V#1( I #3) > V#1(MAX#4)) => MAX#5 := I #3;
True => MAX#6 := (V#1( I #3) > V#1(MAX#4)) ? MAX#5 : MAX#4;
True => −−% notover f l ow (+ ,INTEGER, I #3 ,1);
True => I#4 := ( I#3 + 1 ) ;
True => −−% a s s e r t Fa l se ;

END_LOOP_WRAPPER; −− [ ( I , 5 ) , (MAX, 7 ) ]
True => M#2 := MAX#7;� �� �
True => ARRAY_SIZE#1 := 10 ;
True => MAX#2 := 1 ;
True => −−% notover f l ow (+ ,INTEGER, 1 , 1 ) ;
True => I#2 := (1 + 1 ) ;
True => _NExit#1 := not ( ( I#2 > ARRAY_SIZE#1));
( I#2 > ARRAY_SIZE#1) => MAX#7 := MAX#2;
( I#2 > ARRAY_SIZE#1) => I#5 := I #2;
_NExit#1 => −−% a s s e r t ( I#2 >= 1) and ( I#2 <= ARRAY_SIZE#1);
_NExit#1 => −−% a s s e r t (MAX#2 >= 1) and (MAX#2 <= ARRAY_SIZE#1);
_NExit#1 and (V#1( I #2) > V#1(MAX#2)) => MAX#3 := I #2;
_NExit#1 => MAX#4 := (V#1( I #2) > V#1(MAX#2)) ? MAX#3 : MAX#2;
_NExit#1 => −−% notover f l ow (+ ,INTEGER, I #2 ,1);
_NExit#1 => I#3 := ( I#2 + 1 ) ;
True => _NExit#2 := not ( ( I#3 > ARRAY_SIZE#1)) and _NExit#1;
_NExit#1 and ( I#3 > ARRAY_SIZE#1) => MAX#7 := MAX#4;
_NExit#1 and ( I#3 > ARRAY_SIZE#1) => I#5 := I #3;
_NExit#2 => −−% a s s e r t ( I#3 >= 1) and ( I#3 <= ARRAY_SIZE#1);
_NExit#2 => −−% a s s e r t (MAX#4 >= 1) and (MAX#4 <= ARRAY_SIZE#1);
_NExit#2 and (V#1( I #3) > V#1(MAX#4)) => MAX#5 := I #3;
_NExit#2 => MAX#6 := (V#1( I #3) > V#1(MAX#4)) ? MAX#5 : MAX#4;
_NExit#2 => −−% notover f l ow (+ ,INTEGER, I #3 ,1);
_NExit#2 => I#4 := ( I#3 + 1 ) ;
_NExit#2 => −−% a s s e r t Fa l se ;
True => M#2 := MAX#7;� �

Figure 5.10: Conditional normal form normalization

for our primary encoding of discrete types: the modular semantics is directly
captured by bit-vectors, and for signed integers, since overflow is protected
by instrumented notOverflow annotations, it is indifferent to use bit-vectors
or an unbounded integers encoding. Enumerations (converted to integers)
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� �
True −> (ARRAY_SIZE#1 = 10)
True −> (MAX#2 = 1)
True −> ( I#2 = (1 + 1))
True −> ( _NExit#1 = not ( ( I#2 > ARRAY_SIZE#1)))
( I#2 > ARRAY_SIZE#1) −> (MAX#7 = MAX#2)
( I#2 > ARRAY_SIZE#1) −> ( I#5 = I #2)
_NExit#1 and (V#1( I #2) > V#1(MAX#2)) −> (MAX#3 = I #2)
_NExit#1 −> (MAX#4 = (V#1( I #2) > V#1(MAX#2)) ? MAX#3 : MAX#2)
_NExit#1 −> ( I#3 = ( I#2 + 1))
True −> ( _NExit#2 = not ( ( I#3 > ARRAY_SIZE#1)) and _NExit#1)
_NExit#1 and ( I#3 > ARRAY_SIZE#1) −> (MAX#7 = MAX#4)
_NExit#1 and ( I#3 > ARRAY_SIZE#1) −> ( I#5 = I #3)
_NExit#2 and (V#1( I #3) > V#1(MAX#4)) −> (MAX#5 = I #3)
_NExit#2 −> (MAX#6 = (V#1( I #3) > V#1(MAX#4)) ? MAX#5 : MAX#4)
_NExit#2 −> ( I#4 = ( I#3 + 1))
True −> (M#2 = MAX#7)� �� �
True −> notOverf low (+ ,INTEGER, 1 , 1 )
_NExit#1 −> ( I#2 >= 1) and ( I#2 <= ARRAY_SIZE#1)
_NExit#1 −> (MAX#2 >= 1) and (MAX#2 <= ARRAY_SIZE#1)
_NExit#1 −> notOverf low (+ ,INTEGER, I #2 ,1)
_NExit#2 −> ( I#3 >= 1) and ( I#3 <= ARRAY_SIZE#1)
_NExit#2 −> (MAX#4 >= 1) and (MAX#4 <= ARRAY_SIZE#1)
_NExit#2 −> notOverf low (+ ,INTEGER, I #3 ,1)
_NExit#2 −> False ;� �

Figure 5.11: Two lists of formulas: C (top) and P (bottom)

are also encoded as bit-vectors.
As it was said before, the interaction with Z3 is done with bindings, and

so, the communication with the solver is done iteratively recurring to monadic
operators8. The first task is to create the adequate Z3 sorts for each SPARK
predefined or user-defined type. Z3 bindings provides several functions to
create different sorts as for example booleans, bit-vectors and arrays. For
instance, to create a 32 bit integer, the function to create a bit-vector sort
must be invoked with the desired size (32 in this case). A relation between
these two classes of types, that is, between the SPARK types and Z3 sorts,
is kept for later use when creating constants and expressions. Since Z3 does
not support multiple-index arrays, SPARK arrays with multiple indexes are
represented using nested arrays in Z3. The first line of Figure 5.12 shows
an example of an array declaration in SPARK and, as comment, it shows
the result of applying our strategy. The text shown as comment is written

8http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Monad.
html
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in the SMT-LIB format to illustrate how they would look if such format
was used. Note that we do not generate any kind of formulas in the SMT-
LIB format, however, in this case it may be helpful to understand how we
translate multiple-indexed arrays into nested arrays.� �
type Matrix i s array (A,B) of C −− ( de f ine −s o r t ( Matrix )

−− ( )
−− ( Array A ( Array B C) )
−− )

−−
X : Matrix ; −− ( dec la re −fun X ( ) Matrix )
−−
Y := . . . X[ a , b ] . . . ; −− . . . ( s e l e c t ( s e l e c t X a ) b) . . .
−−
X[ a , b ] := Y; −− ( s t o r e X a ( update ( s e l e c t X a ) b Y) )� �

Figure 5.12: Multiple indexed arrays to nested arrays

After having the sorts created, one may then create one Z3 constant for
each program variable (one for each SA version). Remember that we have
collected the variables declarations in the program, and we have a relation
between SPARK types and Z3 sorts. Therefore, the construction of constants
is done trivially using this information.

Formulas from C are interpreted and taken as assertions one by one,
while formulas from P are used to build the expression ¬∧P which is then
also taken as an assertion. The interpretation of SPARK expressions and
creation of Z3 formulas is done in a programmatic way, by using several
functions available in the Z3 bindings. Variables are represented by the
corresponding constant, and operators are represented by the corresponding
bit-vector operator.

After all expressions are defined in Z3, we check for satisfiability. The Z3
bindings provide a function for this, which returns a SAT or UNSAT result,
and in the former case also a model that will be interpreted as a counter-
example. In the case it is UNSAT, we also show the failing assertion. This
is done by checking if the formulas from P are valid in the context of the
model returned by the solver.

As an example of interaction with Z3 through bindings, consider Fig-
ure 5.13. On the top left corner, there is a variable declaration (assigned
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� �
. . .

X : I n t e g e r := 10 ;
. . .

−−% a s s e r t X <= 10 ;
. . .

X := 20 ;
. . .� �

� �
−− C
X1 = 10 ;
X2 = 20 ;
−− not P
not (X1 <= 1 0 ) ;� �

� �
s imple : : Z3 String
s imple =

do −− Creat ing Sor t s
i n t 3 2 S o r t <− mkBvSort 32

−− Creat ing Constants
constX1 <− f l i p mkConst i n t 3 2 S o r t =<< mkStringSymbol "X1"
constX2 <− f l i p mkConst i n t 3 2 S o r t =<< mkStringSymbol "X2"
const10 <− mkInt 10 >>= mkInt2bv 32
const20 <− mkInt 20 >>= mkInt2bv 32
−− Creat ing and sending e x p r e s s i o n s from "C"
a s s e r t C n s t r =<< mkEq constX1 const10
a s s e r t C n s t r =<< mkEq constX2 const20

−− Creat ing and sending e x p r e s s i o n " not P"
a s s e r t C n s t r =<< mkNot =<< mkBvsle constX1 const10

−− Checking f o r S a t i s f i a b i l i t y
( r ,m) <− getModel
case m of

−− I f i t i s SAT a counter example i s returned
Just m’ −> showModel m’
−− I f i t UNSAT the model i s c o r r e c t
Nothing −> return $ show r� �

Figure 5.13: Example of interaction with Z3 through Haskell monadic bind-
ings

with the number 10), an assert specification and another assignment with
the number 20. The set of formulas C and P obtained after all the transfor-
mations are shown on the right hand side of the figure. An Haskell program,
that verifies the satisfiability of this set of formulas C ∪ {¬∧P} is shown on
the bottom of the figure. It starts by declaring a sort to represent the 32 bit
integer type. After that it declares the constants to represent the variables
X1 and X2 as well as two constants to represent the value 10 and 20. The
first assignment is written as a Z3 expression and it is taken as an assertion
and the same happens for the second assignment. For the assertion, it first
creates a Z3 expression with the negation of the condition and then sets it
as an assert. Once having the model encoded in Z3, the function getModel
is used to check the satisfiability of the set of the defined assertions. The
function returns a tuple, where the first element indicates if the model is
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satisfiable or not and the second element contains a valuation for the model
(in cases it is satisfiable).

5.3 Using SPARK-BMC

This section is devoted for the use of SPARK-BMC. For instructions about
how to install the tool, see Appendix A. We start by describing the interac-
tions with the tool, showing its main characteristics. The options available
are presented and discussed, and examples of its use are given.

5.3.1 Basic Usage

Knowing what is behind our tool is now time to run the tool and to show
how it can be used. If one executes the tool with no parameters the output
is as shown in Figure 5.14.

� �
$ . / spark−bmc
Usage :

spark−bmc [OPTION . . . ] f i le_name

−v , −? −−v e r s i o n show v e r s i o n number
−h −−help show help
−e entry −−entry=entry entry p o i n t subprogram
−u { a s s e r t , assume} −−unwind={a s s e r t , assume}

unwinding a s s e r t i o n s or unwinding assumptions
−b bound −−bound=bound unwinding bound
−s { bit −vec , n o s o l v e r } −−s o l v e r ={bit −vec , n o s o l v e r } bit −v e c t o r encoding or no s o l v e r� �

Figure 5.14: Running SPARK-BMC with no parameters

The output shown in the figure indicates the arguments that should be
given to the SPARK-BMC when invoking it. Argument entry is used to
specify the program entry point. It must be a subprogram name that must
exist in the file given as argument (file_name). The solver argument,
is used to specify which theory should be used by the solver, if any. The
only possible theory available at the moment of writing this thesis was bit-
vectors. It is expected that in a near future, also unbounded integers will
be available. If nosolver is chosen, then the formula is not even sent to the
solver, however, the transformations to the initial program are written in a
debug file called spark-bmc-debug. The argument bound is used to specify
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the number of times each loop is unwound. At last, unwind sets whether an
unwinding assertion or unwinding assumption is placed after the unwound
loops. Next we show some examples of the use of SPARK-BMC.

5.3.2 Example: Maximum Element in Array

Here we run SPARK-BMC with some examples and present the results ob-
tained. We start with our running example from Section 5.2 as shown in
Figure 2.1. First of all, let us check this example with a bound of 2, and
placing unwinding assumption for the loop unwinding. Figure 5.15 shows the
result of performing such operation.

� �
$ . / spark−bmc −s b i t −vec to r −b 2 −u assume −e MaxArray example1 . adb

UNSAT − that means the model i s c o r r e c t f o r the g iven bound

See spark−bmc−debug . adb f o r debugging purposes� �
Figure 5.15: Running SPARK-BMC with a bound of 2 and using an unwind-
ing assumption

From the output it is possible to observe that the program is correct for
executions requiring at most 2 iterations. The result of running the same
example with the same bound, but using an unwinding assertion instead of
an unwinding assumption is shown in Figure 5.16.

� �
$ . / spark−bmc −s b i t −vec to r −b 2 −u a s s e r t −e MaxArray example1 . adb

See spark−bmc−debug . adb f o r debugging purposes

Unwinding Asse r t i on V i o l a t i o n :
F i l e : example1 . adb
Line : 9� �
Figure 5.16: Running SPARK-BMC with a bound of 2 and using an unwind-
ing assertion

Using an unwinding assertion, SPARK-BMC reports that there is a prop-
erty violation, more precisely an unwinding assertion violation. From the
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output it is possible to identify the loop that requires more iterations. Fol-
lowing the idea of BMC of software, if one cannot find bugs with a bound of
K, nor prove the correctness of the program, then K must be incremented at
least until reaching the limit of resources. Now let us run exactly the same
example but with a bound of 10 as shown in Figure 5.17.� �
$ . / spark−bmc −s b i t −vec to r −b 10 −u a s s e r t −e MaxArray example1 . adb

UNSAT − that means the model i s c o r r e c t� �
Figure 5.17: SPARK-BMC, bound of 10 and using an unwinding assertion

With a bound of 10 it is already possible to prove that our program
respects all properties being checked. Note that if the option assume was
chosen instead (for the unwinding assumption to be used in the loop un-
winding process), the tool would only say that the program is correct for
executions requiring less than 10 iterations. No check of the fact that the
loop was fully unrolled would be performed.� �
package body Marray i s

procedure MaxArray (V: in VArray ; M: out Index )
i s

I : I n t e g e r ;
Max : Index ;

begin
Max := Index ’ F i r s t ;
I := Index ’ F i r s t +1;
loop

exit when I > Index ’ Last + 1 ;
−−# a s s e r t ( f o r a l l J in Index range Index ’ F i r s t . . ( I −1)
−−# => (V( J ) <= V(Max ) ) ) ;
−−# a s s e r t ( I >= Index ’ F i r s t ) and ( I <= Index ’ Last + 1 ) ;
i f V( I ) > V(Max) then

Max := I ;
end i f ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;� �

Figure 5.18: SPARK program with a bug

Let us now modify our example, introducing a discrete bug (in the sense it
could be easily missed), to show how the tool can discover subtle bugs without

82



the need for user annotations. One common error would be to write the exit
condition as shown in Figure 5.18. Actually this is the only modification to
the initial program. It is easy to see that this alternative condition would
cause an array out of bounds exception in the array access contained in the
expression V(I) > V(MAX), but such a bug can be easily missed. Our tool
detects it automatically as shown in Figure 5.19.

� �
$ . / spark−bmc −s b i t −vec to r −b 10 −u a s s e r t −e MaxArray example1 . adb

See spark−bmc−debug . adb f o r debugging purposes

Asse r t i on V i o l a t i o n :

a s s e r t ( I >= INDICES ’ FIRST) and ( I <= INDICES ’LAST)

F i l e : SBMC_EXAMPLES/EXAMPLE1.ADB
Line : 82

For :
I#11 <− 11
ARRAY_SIZE#1 <− 10� �
Figure 5.19: SPARK-BMC finding bugs related to array out of bounds au-
tomatically

The SPARK tools (based on deductive verification) would generate a ver-
ification condition (labelled as assert) stating that the loop invariant is pre-
served by iterations of the loop, and another VC (labelled as rtc check) to
enforce that whenever V(I) > V(MAX) is evaluated the value of I lies within
the range of the array. For the code of Figure 2.1 both VCs are successfully
discharged: no out-of-bounds access takes place. But if the exit condition is
modified as shown in Figure 5.18, then the invariant preservation condition
can no longer be proved (it fails in the last iteration). The rtc check is
still proved, because it is a consequence of the invariant. If the invariant is
corrected to I <= Index’Last + 2, then the invariant preservation VC is
discharged, but not the rtc check – the invariant is now correct, but it does
not prevent the out-of-bounds access. This example illustrates that with de-
ductive verification it can be hard to detect exactly what went wrong – is
the program unsafe, or is the user-provided invariant wrong?
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5.3.3 Example: Factorial

Let us now check the factorial example first shown in Figure 2.7. In this
example we will only check for the absence of operations that can cause
overflow. The instrumentation of the program to check such properties is
shown in Figure 5.20. To avoid confusion, we have removed the SPARK
annotations.� �
package body F a c t o r i a l i s

function f a c t (X: I n t e g e r ) return I n t e g e r
i s

F, I : I n t e g e r ;
begin

F := 1 ;
I := 1 ;
loop

−−% notOverf low (+ , Integer ,X, 1 ) ;
exit when ( I = X + 1 ) ;
−−% notOverf low (∗ , In teger , F , I ) ;
F := F ∗ I ;
−−% notOverf low (+ , Integer , I , 1 ) ;
I := I + 1 ;

end loop ;
return F ;

end f a c t ;
end F a c t o r i a l ;� �
Figure 5.20: Factorial example with instrumentation for overflow analysis

For this example we are going to start by unwinding the loops only once.
We start by checking the example using unwinding assumptions as shown in
Figure 5.21.� �
$ . / spark−bmc −s b i t −vec to r −b 1 −u assume −e f a c t example1 . adb

See spark−bmc−debug . adb f o r debugging purposes

Asse r t i on V i o l a t i o n :
notOverf low ( + ,INTEGER,X, 1 )

F i l e : SBMC_EXAMPLES/EXAMPLE1.ADB
Line : 111

For :
X#1 <− 2147483647� �
Figure 5.21: SPARK-BMC finding bugs related to overflow automatically

As shown above, SPARK-BMC easily finds a counter-example and shows

84



a value for the input argument which violates one property, more precisely the
property notOverflow( + ,INTEGER,X,1). This is a property that checks
if an overflow occurs on the operation I := X + 1. Of course that when
the value of X is equal to the maximum integer value, an overflow occurs.
Actually in a 32 bit machine, it is not possible to calculate the factorial of
a number greater than 12. However, one may still wan to check if others
assertions fails. For that let us introduce an assume annotation in the code,
stating that the input argument is greater than 0 and smaller than 13. Such
an annotation may be seen as a pre-condition, which will limit the executions
to be explored. Of course, functions invoking fact must guarantee that the
given values are in such a range. The code with the assumption is shown in
Figure 5.22.� �
package body F a c t o r i a l i s

function f a c t (X: I n t e g e r ) return I n t e g e r
i s

F, I : I n t e g e r ;
begin

−−% assume X > 0 and X < 13 ;
F := 1 ;
I := 1 ;
loop

−−% notOverf low (+ , Integer ,X, 1 ) ;
exit when ( I = X + 1 ) ;
−−% notOverf low (∗ , In teger , F , I ) ;
F := F ∗ I ;
−−% notOverf low (+ , Integer , I , 1 ) ;
I := I + 1 ;

end loop ;
return F ;

end f a c t ;
end F a c t o r i a l ;� �

Figure 5.22: Factorial example with assume annotation

Running now SPARK-BMC with a bound of 13 and an unwinding asser-
tion it is possible to prove that the program is free of overflows whenever the
input argument is greater than 0 and smaller than 13.
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Chapter 6

Conclusions

6.1 Discussion of Contributions

The main goal of this thesis was the development of a BMC for SPARK
programs, which was successfully attained. Although the development of
SPARK-BMC is still a work in progress (some features of SPARK are not
yet covered), the tool’s workflow is entirely implemented, and we are able to
successfully check programs manipulating arrays and discrete types.

The process of building a parser for a full language is generally complex,
however, in the case of SPARK it was even more complicated due to the lack
of documentation. The existing book about the language dates from 2003
and is sometimes not clear about some functionalities of the language. There
exists also official documentation1 provided by Altran, however, the available
language grammar is complex since it is adapted from Ada language. With
the help of some additional empirical studies we were able to create a com-
plete parser for the language which we see as a contribution of independent
value. The parser is capable of parsing a SPARK program (specification and
body) and creating an AST which is then used for the BMC transformations.
Since the parser is an open source project, we now count on the community
interested in using our parser to improve certain functionalities and to alert
us about bugs that may exist. A parser functionality that would improve

1http://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm
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directly SPARK-BMC is the parsing of configuration files (files in which it
is possible to define the range of the default integers). At the current stage,
we are using a constant value, however, the whole application is prepared to
incorporate such parser improvement.

The program simplification process implemented by the tool is working
as presented. Since the application of most transformation steps of the BMC
method produces a valid and semantically equivalent program, they may
be used in other contexts in order to normalize programs by reducing the
number of different statements. Another functionality that may be reused is
the transformation of enumerations and attributes into integer expressions.
This is working as presented in Figure 5.4, and may be useful for the creation
of other tools avoiding the need to deal with enumerations and attributes.
Also the code related to the generation of SSA code may be reused. In
particular this is already being done by another tool developed in the context
of the AVIACC project, which performs model checking of software using
abstraction techniques.

Our preliminary results are satisfactory, and sufficient to illustrate the
advantages of automatic verification. Even though not particularly optimized
at the present stage, the tool seems to scale reasonably well - the array size in
the example first shown in Figure 2.1 may well be increased up to thousands.

6.2 Future Work

Our current work on the development of the tool focuses on covering aspects
of SPARK that are still not handled, including support for floating and fixed
point types and properties related to them. Moreover, to make the tool fully
automatic for some properties, we intend to create an instrumentation tool
capable of inserting ‘obvious’ annotation related with over/underflow, array
out of bounds accesses and division by zero also, importing SPARK contracts
when possible.

Function inlining is another part of SPARK-BMC that needs improve-
ment. It is expected that at the time of presenting this thesis such func-
tionality is fully operational, however, at the time of writing it, only one
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function at a time may be verified. If function calls exist, they must be
inlined manually.

In the near future we want to check real applications and optimize the
generation of Z3 expressions to reach scalability. We also intend to create
encodings using unbounded integers, which may in certain circumstances be
advantageous. Moreover, we expect to support different solvers in order to
take advantage of the best from each one, possibly resorting to the why3
tool [BFMP11].

CBMC allows different loops to be unwound a different number of times.
We also intend to have such a functionality and maybe go even further. For
example, in CBMC, such a bound has to be given as an input parameter,
specifying the loop’s id and the bound. It requires that the user checks
every loop id and writes it when invoking CBMC together with the bound.
Whenever a loop is added, the loops’ ids will change. To overcome this
limitation, we intend to add a new annotation to be added immediately
before each loop. With such an annotation, the user may specify the desired
bound for each loop, and may also choose between an unwinding assertion
or an unwinding assumption to be added after the unwound loop. If none
is specified a default value will be used. Figure 6.1 presents an example of
this approach. In this case, the loop would be unwound 10 times and an
unwinding assumption would be used.

At a later stage we intend to extend the tool to handle concurrent pro-
grams, more precisely programs written in the RavenSPARK profile. The
first step is to study the work presented in [LR09] and if possible implement
it on SPARK-BMC.

A method we have never explored was to translate SPARK programs
into an intermediate representation, like for example LLVM’s IR∗ and take
advantage of existing BMCs of software like LLBMC. This approach is only
possible if the SPARK code can be converted into LLVM’s IR∗, but if this is
possible only the implementation of this transformation is required. However,
when the solver returns a counter-example, that counter-example must be
propagated to the SPARK level. This is probably the most difficult task of
this approach.
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� �
package body F a c t o r i a l i s

function f a c t (X: I n t e g e r ) return I n t e g e r
i s

F, I : I n t e g e r ;
begin

F := 1 ;
I := 1 ;
−−% unwind (10 , assumption ) ;
loop

−−% notOverf low (+ , Integer ,X, 1 ) ;
exit when ( I = X + 1 ) ;
−−% notOverf low (∗ , In teger , F , I ) ;
F := F ∗ I ;
−−% notOverf low (+ , Integer , I , 1 ) ;
I := I + 1 ;

end loop ;
return F ;

end f a c t ;
end F a c t o r i a l ;� �

Figure 6.1: Example of annotating loops
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Appendix A

Installing SPARK-BMC

In this section we describe how to install and use SPARK-BMC. To be able
to use the tool, one has first to install some required software. First of all,
note that we do not provide any executable files. We do provide the Haskell
source code and a Cabal package. Cabal is a system which provides an
interface to describe the way in which libraries or programs are built. Having
a Cabal package defined, it is possible to automatically compile programs
using for that only one instruction. Since our tool is developed in Haskell a
compiler for Haskell has also to be installed. We recommend the installation
of ‘The Haskell Platform’1 which includes the ghc compiler (Glasgow Haskell
Compiler) and Cabal.

Presently our tool only supports the Z3 solver for satisfiability checking.
To install it, one should go to http://z3.codeplex.com/ and download
the installable for Windows or the source code for other platforms. The
instructions to compile and install Z3 can be found on the web page.

Having the necessary tools installed it is time to download SPARK-BMC
source code from the repository https://bitbucket.org/vhaslab/spark-src.
A link can be found on the overview page to download it directly, or else to
clone it with Mercurial2.

1http://www.haskell.org/platform/
2http://mercurial.selenic.com/
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Having the source code, the following operations must be performed:
cd spark−s r c
caba l c o n f i g u r e
caba l i n s t a l l

If everything goes as expected, a binary file called spark-bmc should be
created in the directory .../spark-src/dist/build.
To start using SPARK-BMC run:
. / spark−bmc −−help

to see the parameters that should be given as input.
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