
!"#"$%&'()'*+,*

-.//)%#012&'()'3)/#%0(&
3)/#%0(&')4'567)680%.0'96:&%4;#.<0

=%0$0>8&'):)<#"0(&'/&$'0'&%.)6#012&'()
!"#$%&&#"'()#*+#"'(,%-%.'(/"0&+0.'(/#*+0.1#()*'"+%
2#3"04*%&
!"#$%&&#"'()#*+#"'(5'"0'(6#7#(5%&8*0+'(2#3"04*%&
3'(/*.1'(90:#-'*(!0.+#

?"@/'A6#B6.&'A%0CD&'E)%%).%0

;0<*-'+0#.(#$(-'"4%(&:'-%(!%"='&0=%()0&>-'?&
9%+@#"A&

B.0=%"&03'3%(3#(50.1#
!"#$%&'()'!*+)*,&-.&

!"#"$%&'()'*+,*

-.//)%#012&'()'3)/#%0(&
3)/#%0(&')4'567)680%.0'96:&%4;#.<0

=%0$0>8&'):)<#"0(&'/&$'0'&%.)6#012&'()
!"#$%&&#"'()#*+#"'(,%-%.'(/"0&+0.'(/#*+0.1#()*'"+%
2#3"04*%&
!"#$%&&#"'()#*+#"'(5'"0'(6#7#(5%&8*0+'(2#3"04*%&
3'(/*.1'(90:#-'*(!0.+#

?"@/'A6#B6.&'A%0CD&'E)%%).%0

;0<*-'+0#.(#$(-'"4%(&:'-%(!%"='&0=%()0&>-'?&
9%+@#"A&

B.0=%"&03'3%(3#(50.1#
!"#$%&'()'!*+)*,&-.&

We build too many walls and not enough bridges.

ISAAC NEWTON

Acknowledgments
It is now time to express my most profound gratitude to everyone who helped
me arrive on this important step of my life.

I want to start by thank my dear supervisors, professors Maria João
Nicolau and Helena Rodrigues, for their guidance and wise words along the
course of this work. Without them it would not be possible to reach this
stage. Other professors had also an important role on my academic life,
their advise and support from the simpler questions to the harder ones were
priceless. Among others, a special thank to professors Rui José, António
Costa, Bruno Dias and António Nestor Ribeiro.

I also want to address some special words to all the people that constitute
the Ubicomp Group of the Algoritmi Research Center at the University of
Minho, for the brainstorms and the pleasant leisure times we have had during
this year.

The last but not the least, to my Mother and Father that have always
been by my side every second. They endured my lacks of humor, supported
me even without saying anything gave me the strength needed to overcome
the rocks on the road. For them my most sincere: ”Thank You!” A special
thank has to be addressed to my bother, who never had problems to say the
most relentless words, opening my eyes and unveiling me new possibilities,
even when I thought I was correct. His strength and resilience will be forever
a model that I will try to pursue throughout my existence.

To my friends, not referring to no one in special, for the patience, com-
panionship and love given without any hesitation.

As Sir Colin R. Davis once said:
“The road to success and the road to failure are almost exactly the same”.
What we have not said in his statement is that the right side of the road most
of the times is pointed, even not noticing, by those who take care of us and
tirelessly bear us. The truly friendship and companionship of our beloved
ones is undoubtedly the best compass that we can own throughout our lives.

iv

Resumo

As redes de ecrãs públicos de área alargada estão-se a tornar um paradigma
emergente e representam uma transformação radical em relação à maneira
como encaramos a disseminação da informação em locais públicos.

Estas redes com o sua natureza ubíqua levantam alguns desafios para
quem tem que as desenhar, instalar e usar. É bastante importante perceber
quais são as principais compromissos a assumir quanto ao desenho das re-
des de ecrãs, principalmente em relação aos seus componentes e respectivos
protocolos, para desta forma podermos oferecer uma rede aberta, global e
sobretudo escalável.

A partir destas ideias o trabalho de caracterizar os componentes de rede
é um dos pontos essenciais para alcançar um desenvolvimento fundamentado
deste sistema. Também é fundamental ter uma avaliação dos desenvolvi-
mentos respeitantes à desempenho do sistema e à forma como o aumento do
numero de intervenientes no mesmo afecta o seu comportamento.

Assim este trabalho, complementando essa caracterização e classificação
inicial, pretende desenvolver uma ferramenta que permita às demais equipas
multidisciplinares criar cenários e modelos de simulação para confirmar se
as suas decisões quanto aos padrões a implementar são os que melhor se
adequam aos requisitos destas redes.

v

Abstract

Large-scale pervasive public displays networks are becoming an emerging
paradigm and represent a radical transformation in the way we think about
information dissemination in public spaces. These networks with its pervasive
nature rise a number of challenges for those who have to design, test, deploy
and use this kind of networks. It is imperative to understand what are the
key tradeoffs in the design of pervasive displays networks, mainly on their
components and respective protocols, in order to provide a fully open, global
and most importantly scalable displays network.

Starting from these ideas the work of characterize the network compo-
nents is a key step to accomplish a well grounded development of the system.
Also the assessment of those developments regarding the performance of the
system and how the increasingly number of elements changes its behavior is
imperative.

Thus this work, in addition of that initial characterization and classifica-
tion, tries to develop a tool to enable multidisciplinary teams create scenarios
and simulation models to confirm if their design patterns are the ones that
better suite the requirements of a pervasive displays network.

vi

Contents

Acknowledgments iv

Resumo v

Abstract vi

List of Figures viii

Acronyms xi

1 Introduction 1

1.1 Research Problem . 2
1.2 Motivation and Objectives . 3

2 Related Work 5

2.1 Public Displays Systems . 5
2.1.1 InstantPlaces . 6
2.1.2 e-Campus . 7
2.1.3 UBI-Hotspot . 9
2.1.4 InfoShare . 10
2.1.5 Other systems . 12

2.2 Other related studies . 12

3 Pervasive Displays Networks - A Framing Essay 16

3.1 Pd-Net project . 17
3.2 Identify stakeholders and actions 18

vii

3.3 High level abstract Pd-Net Architecture and components . . . 19
3.4 Identify and classify the processes of each network component 23
3.5 Non Critical processes . 24
3.6 Critical and repetitive processes 26
3.7 Possible bottlenecks situations 27

4 Simulating Pervasive Displays Networks 30
4.1 Simulation scenario . 30
4.2 Network topology . 31
4.3 ”Application”/Usage scenario 34
4.4 Scenario specific interactions 35
4.5 Non specific scenario interactions 40
4.6 Simulation Characteristics and Parameters 41
4.7 Scenario specific simulation parameters 43

5 Simulation Deployment/Implementation 45
5.1 Network Simulation Frameworks 45
5.2 OMNet++ Implementation 49
5.3 Component Modules behavior and Message definition 52
5.4 Parameters Input values . 57

6 Results and Analysis 62
6.1 Measures and Results . 62
6.2 Analysis . 64

7 Conclusions 70
7.1 Future Work . 71

A Appendix 73

Bibliography 75

viii

List of Figures

2.1 InstantPlaces architecture. 7
2.2 Conceptual e-Campus architecture. 8
2.3 Conceptual UBI-Hotspot software architecture. 10
2.4 InfoShare architecture. 11
2.5 High level architecture. 13
2.6 Display personalisation. 14

3.1 Draft of the potential Pd-Net architecture. 22

4.1 Pervasive Display Network conceptual topology. 32
4.2 Pd-Net high level component modules. 33
4.3 Privacy Aware - Context Aware interactions. 36
4.4 Global Event interactions. 37
4.5 Implicit Context Aware interactions. 38
4.6 Direct Display interactions. 39
4.7 Display Node interactions. 40

5.1 Internal module structure of OMNeT++. 46
5.2 Tkenv User interface. 47
5.3 Full implemented architecture. 50
5.4 Display node module . 50
5.5 Mobile users module . 50
5.6 Full implemented architecture. 52
5.7 Fictitious Check in interaction arrival times. 55

6.1 Physical Sensor message times. 64

ix

6.2 Check In message times. 65
6.3 Server loads. 66
6.4 Mobile applications application times. 66
6.5 Display nodes application message and global message times. 67
6.6 Server Loads. 67
6.7 Mobile Cluster aggregated times. 68
6.8 Display Node cluster aggregated times. 69

x

Acronyms

API Application Programming Interface

IDE Integrated Development Environment

IP Internet Protocol

LAN Local Area Network

MAN Metropolitan Area Network

NED Network Description

QoS Quality of Service

WAN Wide Area Network

xi

Chapter 1

Introduction

Since the beginning of the computational era, resources are shifting from the
centralized single processing unit to the most fully distributed architectures.
Most importantly is the changing environment where the computation takes
place whether at an office desk or even in our clothes. In fact, nowadays,
it is almost impossible to quantify the number of computers that influence
directly or indirectly our daily lives. These changes were partly encouraged
by the Weiser’s vision of the future of computing, as he said:

”Our computers should be like our childhood - an invisible foundation that
is quickly forgotten but always with us, and effortlessly used throughout our
lives.”

This means that computers should be seen as a tool that does not con-
sume our attention. As Weiser said about eyeglasses, with them ”you look
at the world, not the eyeglasses”. He and his team embodied the term Ubiq-
uitous Computing anticipating the disruption in the use of computers, that
should be spread everywhere without the need of attention [31].
Almost at the same time the term Pervasive Computing was introduced by
IBM and was used to describe the research area that has focused its atten-
tion more on technologies, trying to create a seamless interaction between
different devices without the need of complex configurations [22]. Firstly the

1

terms were used separately, one giving attention to the Human Computer In-
teraction problems while the other more on core technologies, but currently
both terms have been merged and are used interchangeably.

1.1 Research Problem

Deriving from the previous ideas and by the increasing number of public
displays, like the ones presented at the airports or at outdoor advertisement
spaces, many projects have emerged. For example, the European project
Pd-Net1 appears to explore the scientific challenges and new technologies
required to enable the emergence of large-scale networks of pervasive displays.

Nowadays, public displays are seen as mere passive elements that always
show the same information, not taking care of those who are passing by, they
suffer from a lack of content dynamics leading it to an increasingly ”display
blindness” in terms of perceived and remembered content [19]. So these
projects idea is to explore those public displays to offer people new forms
of interaction, providing the foundations for a new communication medium
which offers entirely new opportunities for business and creativity, offering
the opportunity to display owners to have a platform that have different kind
of applications to better serve the interests of those who benefits from those
displays.

The architectural elements that compose the network have to be inher-
ently distributed and divided into multiple functional components. However,
some of those components may be, in some execution patterns, more re-
quested or have a more complex and time consuming operation, increasing
systems response time. Also those components have to scale to embrace the
growth of the network and to be more fault tolerant.

Taking into account the above ideas, we will concentrate our efforts on
developing simulations to study and evaluate the scalability properties of
different application execution patterns.

We intend to study how those application patterns will behave on this

1http://pd-net.org/

2

cooperative ubiquitous environment, mainly in the presence of an augment-
ing number of users and execution nodes. This corresponds to analyze the
suitability of the above patterns considering the pervasive displays networks
assumptions and characteristics.

Will the same web standards also apply, knowing that content and re-
sources could be in multiple and potentially far locations? Do they scale
up as the well study standard web scenarios? What will be the average re-
sponse times when the number of application interactions rises or even when
the sensed information floods the system? What will be the impacts on the
network with the execution of multiple simultaneous applications with dif-
ferent rich and demanding content types or content hosts? How will different
application interaction patterns or synchronization demands will affect net-
work performance and responsiveness? Are some of the questions that almost
immediately appear concerning these networks.

1.2 Motivation and Objectives

The shifting paradigm of digital public displays has undoubtedly a full spec-
trum of unexplored concepts. The novelty and emergence of these systems
represent a challenging research area that requests ideas from multiple disci-
plines of the mobile and ubiquitous computing fields.

Public spaces or semi-public spaces, represent a challenging environment
to deploy and test these new systems, and so we have to make the effort to
bring new content to displays, turning them into active elements offering op-
portunities for people to use them, providing a new communication medium,
instead of being passive forgotten actors, like most of the Digital Signage
displays.

Information displays, first in paper and years later, with increasingly price
reduction, as digital screens, were mainly meant to provide information to
those who were passing by. Digital displays represented a big step in what
could be presented and those who wanted to announce something could now
show much more eye catching contents. Unfortunately, content was quite
static and could not be remotely changed. To do that a maintenance team

3

had to reset, locally, each new content. With continuously network ubiquity
and the possibility of interconnecting all electronic devices a new reality rises.
Connecting those displays to some remote server turns on the possibility to
remotely produce and schedule contents in a much more dynamic way.

Currently, research on Pervasive Displays is mainly focusing on Human
Computer Interaction. Teams are aiming their studies in the best way to
capture people attention and in the possible interactions between people and
displays. With the advances in the research it is also time to start to take
care about the design of the network components. The potentially large-scale
characteristics of these kind of networks rise inevitably several problems con-
cerning scalability and performance. These systems, including Pd-Net, and
their inherent innovative nature are characterized by a continuously changing
number of users, display owners, content producers, display nodes, applica-
tion items, application hosts, content types, interaction modalities, sensors
and connections. In this way, it is needed to make a full study specifying what
should do the core components and how would they will be interconnected
in a pervasive network.

The outcome of this work is the study of the main tradeoffs in the design
of Pervasive Displays Networks in respect to its main core components, pro-
tocols and respective interactions. To accomplish these results, simulation
should be used as a tool for assessing the operation of the system under vari-
ous conditions, addressing the effects of the scale in the system performance.
With that it is also intended to understand the main protocol properties. To
do that is fundamental to model the core architecture and the core software
components and build, based on simulation techniques, a testbed for testing
and determining the scalability requirements for different representative sce-
narios of use of the network. Components are not yet defined in a restricted
way. Currently, there only exists a division in functional blocks that could
be rearranged in multiple physical components. The assessment of the per-
formance of those multiple combinations will be a major key aspect in this
work, trying to point out what should be the optimal distribution or in some
form have a set of metrics that give the maximum threshold that does not
compromise the stakeholders satisfaction.

4

Chapter 2

Related Work

Lots of research are daily made worldwide aiming the development of displays
systems, turning them more interactive, user-friendly and less obstructive on
our lives. The outcome of those works are almost every time purely academic
and does not overflows the walls of the universities. What we want is to join
the pieces, take the best of the research and create a functional approach to
this new communication medium.

In this section, it will be presented some pervasive displays systems and
some of the new trends on the Digital Signage both with commercial and
non-commercial uses. The main objective is to clarify the main differences in
those systems, and current implementations, uncovering new opportunities,
requirements and challenges for Pervasive Displays Networks.

2.1 Public Displays Systems

As everything, public displays have evolved from the simplest to the most
complex interconnected display networks. Presently, we can divide public
digital displays in two major groups, those who simple show some kind of
information, most commonly called as Digital Signage Displays, with or with-
out some interaction, and those who present some on demand rich content,
like the ones suggested in Pd-Net project.

5

2.1.1 InstantPlaces

This project is held at University of Minho, Portugal, and tries to create a
social network for place-based screen media as an instance of the concepts
of Pervasive Display Networks. It takes the concept of ”place” to bring to-
gether the various stakeholders involved in the operation of public displays.
A place arises as an abstraction to reflect one or more physical settings cre-
ating a meaningful context for situated social interaction. And so, a place
creates a scope of execution, aggregating resources, people and interactions
into a single coordination context. People are then invited to influence pub-
lic displays interacting and expressing themselves through a series of sensors
enabling that communication. One of the most well studied forms of inter-
action in this project uses Bluetooth device names to provide input that will
be consumed and shown at the place display [14].

A mobile application is also provided to the users where they can manage
their identity, creating personas to be used and exposed in each place, visit
a place and interact with the place applications. Those applications can
be created by third-party creators and then published for display owners
to subscribe who can then manage and create a place history with them.
The InstantPlaces architecture is divided into four main areas, as it can be
seen in Figure 2.1. Each physical place can have a set of displays and sensors
that together will provide multiple forms of interaction with the virtual place.
That virtual place has associated a set of applications that can be subscribed
next to the third-party services and applications component. The called
InstantPlaces infrastructure interconnects all components and provides the
Application Programming Interface (API) that can be used by applications
and users. Users can also access the InstantPlace infrastructure via browser
or mobile application. More information can be found at the project web-
site1.

1http://instantplaces.org

6

Figure 2.1: InstantPlaces architecture.

2.1.2 e-Campus

Is a network of public displays deployed at the campus of Lancaster Univer-
sity in the United Kingdom, and it was designed to promote an infrastructure
testbed for researchers and artists as also to provide a tool to improve cam-
pus experience for those who use it. Many displays were deployed as probes
around the campus and with more visibility in the sixth Workshop on Mo-
bile Computing Systems and Applications conference, in the Brewery Arts
Center exhibition and in an underground campus bus station. While the
first two deployments were placed only for a few days, the last is intended to
be maintained for, maybe, several years. In all of those deployments, they
tried to study and develop an API to satisfy their needs about the scheduling
and synchronization problems on displays, for the last one the software was
rewritten in order to reflect the lessons of the first two [25].

The architecture used by them was mainly designed to embrace the prob-
lems of scheduling and synchronization between applications. After their
learning process in the first two deployments, they refined their architec-
ture and defined four main entities: displays, applications, schedulers and
handlers that are coupled together as shown in Figure 2.2 [24].

In this way applications render multiple forms of content to be presented

7

Figure 2.2: Conceptual e-Campus architecture.

on displays when invoked by the schedulers. Handlers are used to detect
conflicts of resources and resolve them. Imagine a display formed by a set
of screens, all of them have to be synchronized in order to show the con-
tent in a coherent way. All the communication is constructed based on an
asynchronous publish-subscribe event channel.

From the deployments, they produced a set of 13 lessons, arranged into
five categories: technology and deployment, monitoring and management,
content creation and management, orchestrating ubiquitous computing ex-
periences and working in public spaces.

It is also interesting to refer that from this project, it has emerged a new
display type called FireFly [3] that consists in strings of controlled LED-based
lighting elements, together they can form three dimensional displays using
each LED as pixels. This is useful because it makes clear that these systems
can have multiple forms of outputting their information leaving us thinking
outside the box and giving an extra challenge to develop an architecture that
gives support to all types of forms to outputting information and contents.

8

2.1.3 UBI-Hotspot

This project is probably the most interesting of all because it has actually a
real large-scale long term city deployment in Oulu, Finland, since 2009, and
it was motivated by the lack of these aspects in the current research systems.
With their deployment, they left the campus environment and went to the
real world where many details much more difficult to control, for example,
monitoring services, have to be really working to provide a quick alert system
when something goes wrong. In this way, they have gathered several lessons
to take in consideration in the creation of these systems[11].

This project has a total of 13 large touch screen displays, six of them
in indoors public facilities and seven outdoors. They have achieved many
results studying the social and economic impacts of these systems in a real
urban environment [21].

They also studied the impacts of providing social-networking services in
their applications [13] and made several field studies that let them take some
conclusions about the challenges of integration of this kind of services and
present a mechanism to seamlessly integrate Facebook’s account within pub-
lic displays.

Its architecture, in a very high level approach, relies on a software archi-
tecture that defines its components (seen in Figure 2.3) which interacts via an
existing implementation of an event-based communication overlay (FUEGO
architecture [27]). This overlay takes care of the publish-subscribe commu-
nication and other aspects, like the fault tolerance in callbacks [20].

On the UBI-Hotspot, resources are managed by the Resource Manager
that receives input events from the context wrappers, and informs the layout
manager about the changes, so it can take care about the screen partitioning
to each application. People can interact with the hotspot with their mobile
devices. To bootstrap the system, users have to read a RFID tag so the UBI-
mobile launchs the services associated to the hotspot. Applications can be
subscribed next to the application server and be associated to each hotspot.

Actually, UBI-Hotspot, is the most complete study of these new perva-
sive networks of displays. They have made studies in multiple areas from

9

Figure 2.3: Conceptual UBI-Hotspot software architecture.

the middleware, the network components and infrastructures, to the display
applications even from the interaction in several ways. However, they have
much less research on the consequences of the growth of the number of those
various components and about synchronization of applications and spread of
contents leaving space to several research on these areas. More information
about the project can be found at theirs Web Site2.

2.1.4 InfoShare

InfoShare is a multimedia signage system developed and deployed in Keio
University, Japan, and it tries to create a distributed and scalable digital
signage system. They want to create a Digital Signage system that can be
managed remotely contrasting with the old-style systems, that have to be up-
dated locally next to each sign. This system is the one who had the biggest
concerns about scalability issues. Infoshare architecture resides mainly in a
client-server model to communicate with all of his components. Its archi-

2http://www.ubioulu.fi

10

tecture relies on four core components: the InfoShare DataBase Server, the
InfoShare Content Repository, the InfoShare Web Server and the InfoShare
Web Service. This architecture and with whom each component communi-
cates can be seen in Figure 2.4. In this way, InfoShare DataBase stores all the
information about users, access control privileges, scheduling and the screen
layout. The images and videos are stored in the Content Repository. It also

Figure 2.4: InfoShare architecture.

has on screen a Signage Player, who renders the contents. These contents
are accessible by the InfoShare Web Service, that communicates with the
rest of the system in order to provide the pretended resources. Multimedia
resources can also be pulled from external third-party services.
The system can also be managed by is Web Interface, in which users can
reschedule contents, manage accounts and monitor the system [26].

Besides this apparently complete architecture, this system does not pro-
vide rich contents as the other systems and it has its focus on the distribution

11

of multimedia content, like news, videos or images. It does not have the con-
cept of application to each display. However, their complete studies about
the system overall performance [9] can help us a lot in constructing a more
efficient and responsive system.

2.1.5 Other systems

Many other systems with commercial and non-commercial uses exist nowa-
days. There are many on campus studies with similar approaches to the
previous systems, like iDisplays [18], ReflectiveSigns [16], or Plasma Poster
Network [4] and others with completely different objectives like GAUDI [15]
that is a pervasive navigation system or MobiDiC Shopfinder [17], that uses
public displays as an advertising medium and as a route indicator to the
shops.

Besides the clear interest of these projects, they are very focused in solve
a specific scenario problem and they do not give much attention to the un-
derlying network and the scale problems. However, they are very important
to settle down some ideas and prevent us to make some mistakes. All of these
systems are important to analyze how should the Pd-Net project should em-
brace the problem of provide a common flexible architecture to sustain the
multiple approaches that may derive from the different research communi-
ties. With them we can see what components are mainly used and how they
interact, helping us to create a more capable and flexible network.

2.2 Other related studies

To better conduct and inspire our work many other academic studies were
revisited. Different scientific areas were covered, from the previously seen
works about pervasive displays systems to more specific researches like the
ones regarding Human Computer Interaction. We have also dig on the world
of network simulators that will be presented further on Chapter 5.

12

On the work of Sarah Clinch et. al. [6] we were presented with the prob-
lematic of design and deploy application stores for public pervasive displays
networks.

Along this work the main focus is, obviously, around application stores
for public displays, where they make the task of identifying some of their
design considerations and how they really differ from the standard mobile
application stores. They have also made a categorization about the expec-
tations of different types of the system stakeholders and a division between
applications regarding the benefits for those stakeholders.

From the point of view of the application developers that study made
some considerations about the distribution and control of their applications,
the business models and at the end they identify two main interfaces (APIs)
to submit an request applications next to the application stores.

Figure 2.5: High level architecture.

But what really makes a this work so interesting is their vision about the
hight level architecture, Figure 2.5, and the processes between their high level
components. The architecture itself do not compromise all of the components
to create a fully functional pervasive displays network, instead they concerned
on those to conduce their study of creating an interface for the application
developers.

13

Figure 2.6: Display personalisation.

They have also created their architecture to enable display personalization
(Figure 2.6) and defined the interactions for that.

Specifically those interactions, for display personalization, may have a
major importance to help us define the best way to model the simulation
scenarios.

Another very important contribute to settle down some of our ideas is the
paper that rises the question of "How close is close enough?" for applications
that regard display appropriation by mobile users [5].

This work tries to measure the impacts of the application location on
the user experience. They try to answer to several questions like: a)"Where
should an application execute for good user experience?" ; b)"Can it execute
on a distant cloud with high network latency? Or, is it necessary to execute
closer to the display and user?" ; c)"Can we quantify the impact of latency
on user experience?"

To achieve the proposed goals they have prepared a set of cloudlets spread
globally to assess if their location has really an impact on user experience.
Then they measure the time between a user request, on his mobile phone,
and the display update. Also their gathered a group of participants pre-
senting them with a simple game. After the gameplay they have answered

14

a questionnaire to collect data about their perception of the responsiveness,
the usability, their sense of control and their frustration before the game on
different locations.

The results were very clear, the distance of the application really affect
user experience. On the paper they present the complete set of results and
measurements that may be posteriorly taken into consideration.

In the end the main conclusion is that the initial question, "How close is
close enough?", do not have a simple answer. It depends on multiple factors:
a)"the interaction-intensity of the application"; b)"end-to-end network la-
tency (whilst loosely correlated with physical distance, measurements pre-
sented here show that the nature of the correlation is complex)"; c)"the
host’s hardware and software"; d)"user—some are more tolerant of delays
than others. Even the same user may respond differently over time (e.g.
becoming less tolerant when in a hurry)".

The set of considerations discussed on this paper are quite interesting for
us because it presents some analysis regarding the user experience expecta-
tions facing interactive displays applications. It also provides some useful
latency measurements on different locations that may be applied on our sim-
ulation models.

This paper, even not directly, makes a warning showing that if we want to
develop a open pervasive displays network we have to give a special attention
to the design of underlying system infrastructure because the high variety of
users, application types and interactions have to coexist on the same global
network.

15

Chapter 3

Pervasive Displays Networks - A
Framing Essay

The problematic around the pervasive display networks is huge, different
computer science disciplines have work together to overcome the inherent
questions raised. The creation of an open network ready to embrace a vast
number of application, sensors and content types needs to have a clear notion
about all the things in stake.

In our work we try to settle down some of the concepts and ideas that
round up the pervasive networks, specifically, all that concerns the PD-Net
project. This chapter hopes to contribute precisely to achieve that level
of eloquence, defining some of the key aspects and characteristics of this
large project. We also want to present some concepts that we thought to
be very important to assess and simulate these systems, like the description
of the main functional components and the categorization of some existing
processes. In the end we pretend that the reader have a clear idea about
what is a pervasive displays network with the notion of some of the inherent
problems that may emerge.

16

3.1 Pd-Net project

The Pd-Net project has in its foundations the goal of achieve some unique
characteristics1 that are not currently found in any digital signage display
network. These characteristics, by their nature, quickly raise many chal-
lenges, each one of them full of questions that have to be studied to prevent
surprises in the future. This ambitious project, if well succeeded, will change
the paradigm of the information spreading throughout public spaces and will
reach populations in a much more effective form. The set of topics that drive
the motivation of this project are:

• Personalized Content - with the usage of multiple sensors, content may
be adapted to the public passing by, creating a real and interesting com-
munication channel that shows information according personal prefer-
ences;

• Support for Multi-Screen Applications and Content - this project tries
to offer a open system that is able to support applications that can
coordinate a set of displays across the network, like interactive multi-
display games, and spreading contents in a coordinated and even on a
synchronous form;

• Context-Aware and Situated/Mobile Content - usually digital signage
systems broadcast their contents without care about the location or
the interests of the receivers. Pd-Net objective is provide differentiated
contents according to the users preferences, sensing the environment
surrounding the displays, pleasing them, not with static and immutable
contents but with some meaning and benefit;

• Global Reach - Pd-Net aims to interconnect multiple existing signage
systems in a large network in order to offer new social economic ex-
periences, expanding the possibilities of distributing applications more
easily;

1http://pd-net.org/about/

17

• Public Access (Ingestion and Consumption) - multiple forms of pro-
viding and gathering contents, trying to merge distinct forms of in-
formation consumption, forming the public displays with more general
contents, mobile devices with private and personal contents or other
display mediums that could be connected to the network;

• Interactive - wants to offer the possibility to directly interact and in-
fluence the displays unlike most of the existing signage systems;

• Rich Media - provide support for various types of media, audio, video
and interactive applications, that should contribute to radically change
the digital signage panorama promoting its public usage and accep-
tance.

The goals are daring but, if we were successful achieving them Pd-Net
will, certainly, create radical changes in information dissemination on public
spaces. Hence, there exists the demand of identify and coordinate, even
loosely, the different stakeholders that should enable a rich environment to
sustain the network.

3.2 Identify stakeholders and actions

In any system, the identification of who are the main stakeholders [28] and
what kind of actions they play [1] is one of the first and more important steps
to better align the design of the system architecture, so it can have a best
fitted and integrated execution between all of them. Pd-Net recognizes three
major stakeholders with a different set of behaviors, requirements and needs.

Viewer Implicitly or explicitly influences the system execution, consuming
and producing contents. They could have the need, in some applications, to
have a previous account registration to have a full access and usage of it;

Display Owner Is responsible for the displays installation and mainte-
nance. He has the responsibility to subscribe, to schedule and to manage

18

applications. Contents (3rd party or user generated) regulation can also be
under his scope;

Application Developer Creates applications to be used on the displays
network. They have to submit and update applications to the application
stores. They have also to take care about the applications charges to his
costumers.

Content providers could also be seen as a system entity, however we as-
sume that the contents provided are under the direct competence of the
application developers or even the display owners. We do not have them
as system stakeholders but as a sub-entity that makes part of the system
but does not have a direct influence on it without the wills of the other
stakeholders.

Although this set of stakeholders and actions may appear very simple,
the underlying architecture has to give response to a myriad of interactions.
The components have to cooperate to provide these functionalities to all the
intervenients.

3.3 High level abstract Pd-Net Architecture and

components

Other starting point of any work is to identify the main functional compo-
nents that are needed to accomplish the proposed goals. In this section,
the main functional blocks compose the Pd-Net network will be described.
These components should not be seen as rigid and immutable architectural
elements, they could, in fact, not exist or be coupled together in multiple
combinations according the needs. Hence those components are seen as key
functional services responsible for enabling an open and pervasive architec-
ture as Pd-Net claims.

19

Display Node A Display Node, sometimes called Pd-Net Node, is the ele-
ment responsible for, at least, generating content to one or more display medi-
ums. To achieve this minimum goal may be imperative to have a represen-
tation of its current content subscriptions, schedulers and content renderers.
However it could be capable of executing more functions as self-monitoring,
sensing or cache content.

The display medium is directly controlled by a display node and it can
have any kind of hardware since capable to reproduce some type of content.
Often is assumed that this hardware has a visual form to display its content,
however it could assume multiple forms, from the more simple to the most
complex sound, smell or visual renderer.

Environment Service This service creates a meaningful representation of
a physical or abstract situated context based in the concepts of, for example,
place, event or activity. With this service we may manage and situate the
resources associated to these environments creating scopes of usage and ex-
ecution, converging people, interactions, resources, sensors and applications
under the same coordination context.

It could also be responsible for some sensing and interaction information
associated to each environment providing services to those who want to create
environment aware applications. This service could also store information
about the practices and habits taken in each environment.

Display Service It controls one or a group of displays, concerning content
and display behavior, allowing the owners to orchestrate and schedule content
and content sources, defining the display actions.

Directory Service This component is responsible for providing the in-
formation about the existing nodes, taking care about some location based
queries to the system.

Node Registry Handles the remote management of a set of Pd-Net nodes
mainly concerning about scheduling, however it will be also responsible for

20

the node bootstraping process, allowing nodes to identify and describing
themselves for the first time next to the system. This service could even
enable some tasks not related with scheduling, as logging or monitoring,
supporting some operations such as turning on or off or activating emergency
messages.

Sensor Registry Is a service to allow local physical sensors to describe
themselves to the network and initialize the sensing into specific environment
services.

Application Store In this component applications are self described and
distributed according requests.Display owners may then assess if applications
fulfill their content needs and can make subscriptions to their displays. This
service is also intended to provide other functionalities like payment and
application usage logging.

Applications Are the responsible for generate content to be rendered on
the displays, those applications need to be able to describe themselves and
be configured to better adapt to each content scheduling scope or situated-
ness constraints. In this first vision, display applications should be executed
remotely and just send the sufficient information to render contents near the
displays.

Third-party Content Sources These sources are external to the Pd-Net
project scope, they are created and managed by external entities. Hence they
are out of our management we could suggest some requirements they could
follow in order of provide satisfactory services to the clients, specially those
who are created just to enrich signage systems.

The components described above are not yet organized in a final architec-
tural form and, in fact, they could be coupled together in just one physical
element, notwithstanding they have to operate in a predetermined way. How-
ever we suggest a minimal component division, to decentralize operation and

21

offer a more flexible and expansible system.

In this way is expected that the Pd-Net architecture should have the com-
ponents and the arrangement as seen in Figure 3.1. As figure shows there
are two ”regions” where we can dispose components, the Network Segment
and the Screen Segment. In the screen segment should be the parts that are
in direct contact with the final users of the system (display nodes with the
associated sensors, the physical sensors and the mobile applications running
on personal mobile equipments). On the other hand, on the network seg-
ment should be all the components that sustain the operation of the displays
respective applications. We also present a subdivision of the network seg-
ment components to better understand the key functionalities and processes
associated to each one of them.

Figure 3.1: Draft of the potential Pd-Net architecture.

The Orchestrate layer is responsible for the arrangement of the applica-
tions under a certain expected experience of usage of a display or a set of

22

displays, it should comprehend the scheduling definition rules and content
selection rules. The Publish layer appears as the layer responsible for the
creation and distribution of contents to be consumed by the users without
having concerns about any scheduling or by who or where the contents will
be shown. Finally, the Situate layer is focused on provide support for all
context situations around displays from the information about the sensors,
the on going interactions or bootstrap processes.

3.4 Identify and classify the processes of each

network component

In the proposed architecture we can, at a first sight, detect and identify
some of the parts where the system can have a more relaxed actuation,
possibly having an asynchronous communication, or a more instantaneous
synchronous communication. In fact, we will clearly assume on this study
that, in a very raw vision, the processes that do not directly influence with
the user interaction and feedback can be classified as non critical, having the
possibility of being delayed or rescheduled to be treated after. Users quality
of interaction is the key goal to achieve with the network performance, so
the processes that only take care about system maintenance, for example the
process of submitting a new application to the store, have more opportuni-
ties to be ”slow”. This happens because those processes may be delayed for
later executions and eventually do not interfere with the users perception
of the system. What we propose is to classify the communication processes
between components as ”Critical” and ”Non Critical” to better understand
where we the teams should focus their efforts, at middleware and the network
level, maybe applying complex scalability techniques to improve the overall
performance.

23

3.5 Non Critical processes

Looking to the Pd-Net abstract architecture we can identify the processes
that are non critic by understanding where the system can have a more flex-
ible response time, not compromising the user experience before the system.
This important assumption may lead to some uncertainties classifying some
processes, however we assume that, if some process do not have a component
that do not directly interact with the final user it should be non critical.

Bootstrap The Pd-Net node bootstrapping process (adding one or more
Pd-Net nodes to the system) and its subsequent operations, can be treated as
non problematic. Firstly, this operation should occur just once for each node,
then it does not have to be made in real-time. This configuration process
can be made when the network load is lower, for example, at night when the
usage of the system is expected to be lower. As this process does not directly
influences the user experience it can have the non critical classification. The
steps that have to be made to achieve the bootstrapping are:

• 1) Node registration - Each new Pd-Net node contacts a Node Registry
to describe itself to the network, establishing ownership and to initialize
the required procedures to drive content control.

• 1a) Environment resource registration - Local environment sensors sends
its describing parameters to the Sensor Registry service allowing the
sensing into the Environment Service.

• 2) Directory Service Bootstrap - Directory service will often contact
one or more Node Registry services to gather information about the
existing nodes, in order to provide location based services.

Application registration The communication process of registering an
application by its developer should not represent a problem concerning the
network performance. We assume that such process has a non urgent nature,
communication can be delayed until the network has a more relaxed state,

24

without high loads, and it should occur just a few times, while propagat-
ing the application description throughout multiple application stores. The
application registration definition is:

• 1) Application Registration - Every developer who wants to deploy an
application should contact directly one Application store and submit is
own application, describing what can it do and what resources it needs.
The spreading process throughout other stores, should be transparent
to the developer, although he may limit the application usage.

Application selection (Non-Interactive) The process of selecting ap-
plications by the display owner, to be integrated next to their Pd-Net nodes
also may not have to be ”instantaneously” communicated to the Display Ser-
vice. This process has little influence in user feedback. We assume that, the
major consequence is the impossibility of the node to provide the application
while the display service has no knowledge of it. However users do not per-
ceive this fact because they cannot have expectations about the contents of
the nodes and do not play an active role in the orchestration phase. In this
way these operations may be delayed to be later treated because they do not
have real time constraints. To select non interactively applications we need:

• 1) Application selection - Display owners define what applications would
be available on their display nodes. As consequence, display service re-
ceives the application description from the application stores and builds
the orchestration accordingly.

• 2) Application Initialization - To achieve the desired application exe-
cution there has to be some initial configuration and scheduling proce-
dures.

• 3) Describing behavior / Schedules to Nodes - Display service commu-
nicates to the display node the orchestration information describing its
behavior with the references to the remote application.

25

3.6 Critical and repetitive processes

The identification of the processes that can suffer with more stress situa-
tions is an important step to make a more accurate study. With that pre-
categorization we can focus the simulation studies mainly to this type of
processes. Having more information about such processes, it may be possi-
ble to propose alternatives to their design, persecuting the improvement of
the system overall performance. These processes have, by nature, to be ex-
tremely responsive because they will, very probably, be involved with users
interaction, so the response times should meet those user interaction require-
ments.

Any process that compromises any synchronization has to be a fast and
highly interactive process also any kind of user sensing and feedback has to
be top priority for the network communication, hoping to achieve a good
user satisfaction.

Interactive/context-aware application These types of applications have
a very demanding real-time characteristics, imagine an application that de-
pends on a sensorial information to adapt their behavior when a user is near
or a interactive game between displays, the interaction opportunity is lost if
information does not arrive on that exact instant, leading to a user distrust
that can ultimately abandon the usage of that application. The set of steps
that compound these application processes are:

• 1) Sensing / situating applications - When the sensors at the nodes
detects some relevant change or interaction it contacts the Environment
Service in order to describe what is happening.

• 2) Content generation by application - Applications should be able
to render content accordingly a set of previous interactions with the
viewers.

• 3) Environment Service feedback - After receiving the sensor informa-
tion the Environment Service should provide some description to the
right applications so they can adjust their execution accordingly.

26

Privacy-aware context aware application These applications, execut-
ing in the viewers mobile phone, have strong requirements respecting response
times.Users experience can be severely damaged if a user performed interac-
tion does not return a response at the expected moment, usually immediately,
in real time. To have applications running on any mobile device, probably,
several steps have to be made until the user can start his interactions. As
example, an application needs to gather information about nearby displays
before the user can start the expected interaction. From the beginning of
that process until final user interaction the system has to be prepared to
accomplish those requirements in not more than a few seconds. Failing to
accomplish this goal, users may disregard the system usage, possibly, result-
ing in some economical damages to applications and display owners. The
steps that an application of this kind has to achieve are:

• 1) Look-up near displays - Mobile applications should contact the Di-
rectory service to get the information about the near displays.

• 2) Select application in Display Service - The Display Service receives
from the clients the information about what application should be se-
lected.

• 3) Request behavior - Display service sends to the Pd-Net node the
user request to change the execution pattern on the node.

Although third-party content sources are out of the spectrum of the Pd-
Net network they should be sufficiently responsive to be part of the system.
Users experience may be extremely affected and compromise system usage if
the response times requirements were not satisfied.

3.7 Possible bottlenecks situations

The potentially large-scale nature of these pervasive networks raises lots of
scalability barriers that have to be overtaken. The dynamism of content
and behavior in different usage scenarios of the network had to be taken in
consideration, so it is very important to point out some of the variations

27

that can lead to overall performance decreasing. In this way, the constantly
changing number of the following items have to be taken into consideration.
Bottleneck points are very likely to emerge, not only associated with one
specific dimension but with the combination of other dimensions, leading to
a more complex analysis.
The situations and processes that we have anticipated are:

Applications used in many places Assuming that applications running
on displays are Web applications, the potentially large number of applications
subscriptions could lead to server overloads that have to be managed;

Applications that generate many interactions or that heavily relies
on sensing Applications that generate many interactions may generate to
problems next to the Environment Service, overloading them with requests
asking for sensing information;

Directory service serving mobile nodes Dealing with multiple simul-
taneous requests from mobile nodes may slow down Directory Service re-
sponsiveness;

Synchronization contexts with a set of nodes operating in a tight
interaction relation Applications that demand a rigid synchronization
between nodes may have its execution delayed by their communication;

Display nodes The increasing number of display nodes can lead to prob-
lems concerning the synchronization protocols, naming schemes among oth-
ers;

Pd-Net node users The number of simultaneous users in a node or in
multiple nodes may affect the system responsiveness, overloading the node
with requests;

28

Application interactions The highly interactive applications may have
to exchange, in short periods of time, large amounts of data compromising
the responsiveness of the system;

Content hosts, content producers and content items The constantly
augment in number of these three, can lead to registration and content dis-
covery higher dissemination times;

Simultaneous application executions The processing, scheduling and
synchronization demands on the node can be compromised by the number of
simultaneous execution;

Display owners Can lead to high rates of management messages and to
privacy or security models;

Content types The increasing number of different data types can degrade
the system performance, for example, video streaming can lead to a high
network overload;

Interaction sensors Multiple sensors providing sensing information can
overload the environment servers with to much information delaying the pro-
cess of create context aware scenarios.

The previous points will very probably appear during the lifetime of our
pervasive system so it is very important to have them in mind. Our effort to
describe them, even not very formally, has the objective to alert the develop-
ers that many problems may emerge on this pervasive system due to multiple
factors. Those factors that we have tried to point out should also be, later
on, on our simulations assessed if they really exist and in what circumstances
they appear.

Having them in mind will certainly help us to walk around some problems
in the early stages of design of the middlewares and network that will operate
on the Pd-net system.

29

Chapter 4

Simulating Pervasive Displays
Networks

Pervasive displays networks with their multitude of connections and compo-
nents have inherently a high level of complexity when considering creating a
simulation model.

In this context, we propose the creation of a simulation scenario as a
key step to have a starting point to understand the characteristics of those
networks. In this chapter will be presented and discussed the entire process of
creating a case study with some alternatives and decisions. Trying in the end
to have a clear idea about the requirements that have to be satisfied in order
of achieve the creation of a simulation testbed for pervasive displays networks.
Describing building blocks of a simulation scenario with all of its inherent
characteristics, from the network topology to the present interactions, and
the expected resulting data.

4.1 Simulation scenario

To have a fully functional simulation scenario various steps have to be ac-
complished, namely, the creation of a network topology with all the physical
or abstract components that make part of the system, their connections, the
communication workflow and the adjustments to the parameters that are

30

suitable to our demands.
The communication workflow will be justified with the creation of an ap-

plication scenario that considers the relevant interactions within the system.
As we have seen, the categorization of processes in "critical" and "non crit-
ical" will guide us with the creation of the application scenario, by clearly
showing the execution patterns to be analyzed.

4.2 Network topology

The base layer to collect data throughout simulation is the creation of the
network component nodes and their respective interconnections, implement-
ing their topology.

The ideal scenario is to obtain a modular simulation model to allow us to
program our components with different functionalities and reproduce them
as many times as we want. What we envisioned to design our topology was
clear division of the core system components from the display nodes and the
system users, as seen in Figure 4.1.

We have made a separation between sets of display nodes and mobile users
of the system, clustering them, to achieve a better definition of "regions" of
displays. We imagine those "regions" as different villages, cities or countries,
hoping with this decision to better target the further simulation parameter
values into those execution scopes. Also, as the ratio between display node
users and mobile users may be significantly different in certain situations,
this division seems to be a good way to focus our attention on those details.

On the other hand, the underlying infrastructure, on the Network Seg-
ment, pretends to be a open network that cooperates and where the compo-
nents work together to provide us the expected resources, Figure 4.2. There-
fore we can have functional components that could be implemented and in-
stantiated in many ways.

Having this high level functional component modules we could hide all
the inner complex decisions and define them later. This happens because
we do not know yet how are the middlewares implemented and how will be
the physical distribution of those components. The efforts of replacing the

31

Figure 4.1: Pervasive Display Network conceptual topology.

modules with the adequate middleware decisions, to solve specific problems
of those parts of the system, will be kept in stand by, waiting for the re-
sults of our first simulations and advances made by other project working
teams. However with the creation of adequate modules and with the correct
simulation parameters we can perfectly represent the characteristics of per-
vasive networks with their heavy demands of computational resources near
the populations of users around the displays.

We can connect, multiple displays and mobile users clusters to one single
pervasive architecture not thinking, by now, on its operational strategies to
serve them with content, we just have the way of how is the communication
flow between functional components. This modular approach should also
provide an added value, in the future, for implement and test the best scala-
bility technique for each particular component by just replacing its instance.
Its important to emphasize that those components that make part of the
Network Segment will only have one instance of each one, isolating, with this

32

approach, more easily the bottlenecking points of the system.

This representation of our pervasive network have a good resemblance
with the design of the traditional mobile networks [10] that is one of the
best and well stablished example of a pervasive network. That is because
we make the parallel between the cells division and our display and mobile
users clusters having the same underlying infrastructure, maybe with differ-
ent hardware capabilities, that work and cooperate together to serve us with
their resources. Of course there are significant different objectives within
these two networks and for now its complexity are not even close to each
other, however a brief look on some used strategies may be useful to the
study of our system.

Figure 4.2: Pd-Net high level component modules.

33

4.3 ”Application”/Usage scenario

The second major step to create a simulation scenario is the creation of a
flow of execution that will correspond to some application modus operandi,
in order to provide some realism to the simulation. Those execution patterns
should correspond to some real or potentially real application. With this
we expect to better understand the needs and the characteristics of these
pervasive applications. The Walk to School programme [8] appears as a good
example of a realistic application scenario. It is probably the envisioned
scenario that have more explicit and implicit user interactions as well a more
demanding execution in terms of resources of the underlying system so it
emerges as a good starting point to deploy those interactions on a simulation
framework.

Walk to School programme - Influencing Behaviour

Jack is six years old and participates in his local ”walk to school programme”
- an initiative aimed at increasing fitness among school children and address-
ing childhood obesity. To encourage participation among children a simple
game has been deployed on the area’s public display network. As Jack walks
to school he passes a number of public displays. At each display he sees a
cartoon character that gives him an update on his own progress and that of
his friends. By visiting the displays Jack also collects ”golden leaves” on his
mobile phone - when he has enough of these leaves his school redeems them
form a sticker book.

With this small introductory scenario we may now detail the possible interac-
tions between the system and users creating a flow of execution expected to
be performed by the users in certain daily periods. However, to do that, we
have to take in care some assumptions and requirements. We do not pretend
to simulate all the stages of the deployment and usage of the system and the
application, although sometimes major problems of the systems came from
the most unexpected interactions.

We have also to clearly separate the interactions that are dependent of

34

a specific usage scenario from those who are always present to sustain the
systems integrity and functionality, so we could easily create different or more
scenarios of usage, creating a more real system operation, without having to
create from the scratch every single interaction. Once more, we claim that
multiple assumptions have to be taken in care because the deployment of all
interactions and execution patterns into a simulation framework appears to
be almost unfeasible.

4.4 Scenario specific interactions

There are interactions that only have meaning in some specific scenario us-
ages, for example, every mobile application will potentially have an interac-
tion flow absolutely different from another one because of the demands of
which one of them. In our Walk to school programme scenario we have an
mobile application were kids can bootstrap to the system and collect their
”golden leaves”, this specific set of actions create a usage pattern that is
necessarily different from another one.

Figure 4.3 depicts the interactions generated by the action of collect a
golden leave. As the diagram shows, when a kid wants to collect a leave has to
explicitly contact the system, starting his mobile Walk to School application,
It automatically contacts the Directory Service to gather the list of displays
near him, performing a LookUp (Figure 4.3 step 1), then he has to choose
the display that he want to interact with. Now this ”check in” process is
made next to the Environment Service (Figure 4.3 step 2). After that he can
perform the interactions that lets him to collect the leave (Figure 4.3 step
3). Those interactions could have a wide range of possibilities, assuming that
the application have more options than directly collect the leave, however we
can define a different number of interactions that each person would realize
until complete the gathering of the leaves. Collecting them may also, lead
to the need of rescheduling or update some state, thus the application may
have to contact the system in order to request some behavioral change of
an individual or a set of displays (Figure 4.3 step 3.1). The system, more
specifically the Display Service will be in charge of contacting the displays

35

Figure 4.3: Privacy Aware - Context Aware interactions.

passing instructions of what the displays have to do in the immediate future
(Figure 4.3 step 3.1.1, 4 and 4.1).

All these interactions are part of a utilization context that we call Privacy
Aware - Context Aware and it has to occur every time a user wants to collect
a leave on a different display.
The previous interaction sequence may generate a global report to all dis-

plays that are using the application. For example, a special leave that can
be collected from now on, or that a new record has been beaten. That can
be seen on Figure 4.4, the Dispay Service receives the global message re-
quest (Figure 4.4 step 1), computes the right receivers and sends a broadcast

36

Figure 4.4: Global Event interactions.

message to the Display Nodes (Figure 4.4 step 1.1). The display nodes that
receives the global message request will then contact the applications to up-
date their inner state (Figure 4.4 step 2).

Pervasive display systems have, the possibility of somehow sense nearby
persons automatically adapt their behavior accordingly. In our simulation,
physical sensors, could sense the presence of the individuals that are walking
on the display neighborhood, contacting the system, sending or updating the
state around them. Figure 4.5 depicts the interactions that compose the Im-
plicit Context Aware scenario of interactions. Thus, when physical sensors
sense some relevant context change or sense some specific user, it contacts
the system to send that information (Figure 4.5 step 1). The Environment
Service has the function of collect that information and make it available.
Applications on the other hand, may now, frequently query the system to
update their internal information and send them to the displays (Figure 4.5
steps 2, 2.1 and 2.1.1).

37

Figure 4.5: Implicit Context Aware interactions.

Another interaction possible to be seen in almost any display systems is
the one where the users interact with the system directly with the displays
with some touchable surface. In this case Figure 4.6 presents what may
occur after that direct display interaction by some user (Figure 4.6 step 1).
After interact with the application, users suppose to have some kind feedback
(Figure 4.6 step 1.1.1.1). However that feedback, in order of having correct
contents, may have to be enriched with some contextual information (Figure
4.6 step 1.1 and 1.1.1). Also, after those direct interactions the applications
may have the need to broadcast some message, contacting the Display Service
to manage that request (Figure 4.6 step 1.1.1.2). The following steps to
accomplish that request have already been seen in Figure 4.4

38

Figure 4.6: Direct Display interactions.

39

4.5 Non specific scenario interactions

This set of non specific scenario interactions are performed to maintain sys-
tems integrity independently of the usage scenario. The separation and cat-
egorization of those interactions are required to have a tight system testbed.
With that separation we can also create more scenario specific interactions on
top of these non specific scenario interactions and simulate them at the same
time, not having to perform significant changes on previous implementations.
In the end we expect to have more realistic results about the performance of
our architecture.

Although being, at a first sight, non critical interactions, because appar-
ently they do not influence directly the user experience, they are important
for several reasons. Particularly, some of communications cannot be delayed
or cached, if so, they could lead to some system incongruence, that would
damage users quality of information provided and the mere fact of exist-
ing these set of interactions, just for system own maintenance, between his
components could lead to a systems overload, compromising the adequate re-
sponse to the users, affecting their quality of experience. In our simulations

Figure 4.7: Display Node interactions.

we have only implemented the ones that would help us to create data struc-
tures containing information that would be useful to achieve integrity and

40

coherence about the displays, facilitating the production of the simulation
code.

The Figure 4.7 depicts the two implemented interactions, that are the
Display Node bootstrapping to the system, in the Node Registry, and the
consequent polling from the Directory Service requesting for some relevant
update.

Although, despite not implemented, we can point out some interactions
that have to be inevitably performed to maintain a correct system state.
Those interactions and can be seen as requirements and assumptions to
achieve a functional integrity of the system. Among others, the interactions
that we assume in this computational environment, in a very raw vision, are:

• 3rd party Applications are registered on the Application Stores

• Applications are subscripted by the Display Nodes

• Physical sensors are registered at the Sensor Registries

• Users have already their profiles kept on the system

• The system is able to schedule any Application, explicitly or implicitly

• The system is constantly logging his state and operations

• The system is able to detect and recover from incorrect functional states

With this, simulations will only represent the states of interaction by the
users with the system, assuming that all the system are loaded and prepared
to handle the requests.

4.6 Simulation Characteristics and Parameters

One of the problems with the study of pervasive network architectures is the
uncertainty about the dispersion of the functional and physical elements that

41

are part of the system. It is almost impossible to have a clear idea about
the normal operation of a pervasive system in terms of the presence of the
components on the network, specially such a complex one as the proposed
in this project. However, in our case, we have to address some parts of
the system, simulating their presence on local networks (LAN) or in more
broad networks such as Metropolitan Area Networks (MAN) or Wide Area
Networks (WAN). With this decisions we expect to obtain more realistic
results, embedding average times of the latencies on those networks .

Also, as the system is intended to work above the Internet infrastructure,
there are several measurements and statistics about the global network la-
tencies 1 2 that can help us to adjust the communication times under various
conditions, from local to intercontinental communication.

Thus some parameters have to be mapped to connections between com-
ponents of our system, to give the idea of which one of them may be in a
more or less distant situation. Parameters like connection delays, packet loss
ratios, connect data rates among others. Other parameter that have been
taken into consideration is the number of requests that each component is
capable to handle and how many connections can be queued for later treat-
ment, this has a major importance because it directly influences the response
times or even message drops under extreme operations.

The average processing time of each request on each component is also one
of the parameters that could largely influence the system fluidity and one of
the most difficult to predict. In fact it is almost impossible to have a correct
value on this parameter, depending on each component algorithm implemen-
tation the associated time complexities 3 could vary from a T(n)=O(1) to a,
for example, T(n)=O(n!). Having this, the values used should be what we
expect to be a reasonable processing time, notwithstanding, different values
could be assigned on each execution in order to have more accurate results.

1http://ipnetwork.bgtmo.ip.att.net/pws/global_network_avgs.html
2http://www.verizonbusiness.com/about/network/latency/
3http://en.wikipedia.org/wiki/Time_complexity

42

4.7 Scenario specific simulation parameters

On our simulation we have made a clear separation concerning the parameters
that are assigned to some application scenario to those which are part of
the core infrastructure. With this, we can, on the same simulation, have
different scenarios of usage of the system, getting even more realistic outputs
concerning the usage of the system with a multitude of interaction patterns.

In this stage, our implementation only has the Walk to school programme
interactions and a set of parameters have to be taken in consideration.
Among other more technical details most of the parameters that we envis-
aged are related with the Human natural behaviors. Therefore to mimic the
natural usage of the system we created the following parameters:

• number of Display Nodes visited on the way to school and the respective
time between them

• number of interactions expected to occur on each display to collect
”golden leaves”

• number of direct interactions on the Display Nodes and time interval
between them

It is noteworthy that these interactions should be made, almost entirely, by
people with very young ages, probably between the 5 to 14 years. Thus
the time and frequency used on the parameters should be necessarily dif-
ferent from other application scenarios, that focus on older people. These
differences, even slightly, can have a major impact on the system overall per-
formance and acceptance as well as can give us wrong result data sets.
Complementing the previous parameters we have also accomplished some
regarding the operationality of the system. Deriving from the persons in-
teractions or the sensorial information gathered, the system could have the
need to adapt to provide more accurate results and feedbacks to the users.
The Applications or the Physical Sensors could trigger some behavior in
other parts of the system (as seen previously) and the frequency of those
phenomena are regulated by the following:

43

• frequency of requests to the Environment Service by the Applications

• frequency of requests to the Display Service requesting a change of
behavior or a global message

• average number of displays that should receive a global message

All of simulation parameters that we have seen have to be flexible enough to
create results with some validity and significancy on some real implementa-
tion. Depending on the expectations of usage of the system and interaction
types, the input values should assume some value between a given inter-
val or representative distribution. The differences on the interaction types
and times could create multiple stress situations that we expect to compre-
hend and give correct guidelines to solve them. We could also say that with
these three steps accomplished we have a complete simulation scenario and
we could start to collect and analyze the output results. The various input
values to the parameters should provide us the sufficient amount of data to
detect the components that should be the focus of our efforts, maybe applying
a scalability techniques to a overcome possible bottleneck.

44

Chapter 5

Simulation
Deployment/Implementation

Simulation represents a very powerful tool to those who have to design, test
and deploy networks, specially those who tend to be large with a multitude
of components and interactions. Pervasive displays networks have a pre-
disposition to have grow indefinitely so the previous study provided by the
simulation tools can save lots of money and time anticipating problems that
would arise. Having a strong, flexible and extensible simulation model has a
major importance to obtain correct values to help us in our decisions.

In this chapter we intend to cover all the decisions related with the actual
implementation of a simulation model for pervasive displays networks, since
the choice of the framework to the chosen input values to produce results.

5.1 Network Simulation Frameworks

On the field of the discrete event simulation many frameworks make part of
our range of choices. However, since the beginning OMNeT++ [29] was a
reference. Its creation had the purpose of being a network, multiprocessor
and distributed systems simulator, notwithstanding, it could be aimed to
other simulation types, trying to fulfill the gap between the purely research-
oriented open source and the commercial payed distributions. It has been

45

made public in 1997 and, since then, multiple models have been created and
enhanced to facilitate the creation of the build blocks of the simulations.

The development of this simulation framework from the early days was
driven by some principles: a) "enable large-scale simulation, simulation mod-
els need to be hierarchical, and built from reusable components as much as
possible" ; b)"simulation software should facilitate visualizing and debugging
of simulation models in order to reduce debugging time" ; c) "simulation soft-
ware itself should be modular, customizable and should allow embedding sim-
ulations into larger applications such as network planning software" ; d)"data
interfaces should be open, should be possible to generate and process input and
output files with commonly available software tools" ; e)should provide an In-
tegrated Development Environment that largely facilitates model development
and analyzing results".

Taking these principles and considerations, OMNeT++ works in a mod-
ular form with message passing between modules. There are two types of
modules, simple modules and compound modules (Figure 5.1), that can be
combined in a hierarchical form without any limits. Written in C++, those
modules, may perform almost any desired action when receiving a message
or during the simulation lifetime. Those modules can communicate via mes-

Figure 5.1: Internal module structure of OMNeT++.

sages, that could contain any desired fields and information structured either
representing some existing protocol or some personal specific simulation de-
mands. Messages, typically, are sent between module gates (graphically in
blue on Figure 5.1), linked together with connections. Yet, messages can
be sent directly to the desired modules. Every module can have associated
parameters that contain the information needed to correctly configure its

46

behavior. They could assume values that can go from the simplest boolean
value to some random number defined in some distribution or even strings.

To have a running simulation we have to dispose modules in some form to
create a topology. This can be done using the Network Description (NED)
language. A complete NED definition should encompass the simple and com-
pound module definitions as well as the network definitions. Simple module
have on it a description of the gates and the all associated parameters and
compound modules have to be complemented with the submodules intercon-
nections. The last layer of a simulation has always to be a network, that is a
compound module self-contained from which the simulation will be executed.
As expected in such a modular and reusable simulation framework there is

Figure 5.2: Tkenv User interface.

a clear separation between the generic simulation scenario and the scenario
specific parameterized simulation. To achieve that, OMNeT++ also has the

47

.INI files where all of the parameters can be initialized with different values
according the reality that we pretend to simulate. As a resume all of these
file types and specification languages can the easily mapped into:

• behavior → C++ files

• topology → NED files

• initial values → INI files

Not less important this framework has a built in a powerful tool of analysis
of the simulation outcomes. Usually the processing of the collected data is
one of the most time consuming tasks for those who make simulations. This
framework has a simple form to produce and tune output graphics saving
precious time, time that can be used to improve the model.

Running simulations can also have a visual debug using the Tkenv, it can
be used in three different ways: automatic animation (actual visual message
exchange and node state changes animation), module output windows (tex-
tual debugging and tracing) and object inspectors (to follow object state or
content). To accomplish all of this, OMNeT++ gently offers an Integrated
Development Environment (IDE) that enables us to easily produce the source
code of our simulations.

Besides OMNeT++, another simulation tool that may compete with it, is
the NS (in versions 2 and 3). In fact it is the broader used network simulator
by the academics. It is has been created starting from early developments
on the discrete event-based simulation techniques.

Unlike OMNeT++, NS-2 has the goal of being exclusively a network
simulator, so it does not have a clear separation between the infrastructure
and the simulation models. NS-2 [2] lacks supporting for hierarchical models,
it uses Tcl scripts to define the simulation models and the network topology,
and uses C++ language to implement simulation kernels and components.
The big problem with this unclear separation is that makes the production
of reusable models and components very difficult as the creation of graphical
editors almost impossible.

48

The NS-3 [12] tries to overcome some handicaps existing on the previous
version. It cannot be considered an evolution of NS-2 because the simula-
tion modules are not compatible between versions. It is also written in C++
however it has been improved with a Python interface to develop scripts,
instead of Tcl scrips. Some of the C++ design patterns were implemented
to improve it, callbacks, smart pointers and templates are example of that.
Other aspects were improved like an alignment with real systems and proto-
cols and the support to easily integrate other softwares without the need of
rewrite the simulation models.

Even, considering performance [30] OMNeT++ has a word to say, it can
be less memory consuming than NS versions letting his simulation have a
bigger scale, fundamental on pervasive networks.

Other simulators exists and besides they have not been tested or used
by us, including both NS versions, a major research regarding simulation
frameworks were made.

Simulators like J-SIM [23], SSFNet [7] or GloMoSim [32] are very focused
to study very particular problems and they are tuned to provide the best
results for them. They were also not taking into consideration because there
are almost abandoned since 2005 due to their low acceptance.

By all of these aspects, we have chosen OMNeT++ as our ally to attack
the implementation of our simulation models.

5.2 OMNet++ Implementation

The implementation of our model is highly modular, the component modules
can be instantiated or replaced by others lately developed. In this way each
functional component has its own module that can have its own technical
characteristics, depending on the hardware or software interactions intend to
be studied.

At the top level we have implemented the topology, FullArchitecture (Fig-
ure 5.3). With this kind of topology what we intend to achieve is a better
way to subdivide the displays and mobile users clusters, representing differ-
ent physical regions where the elements of the screen segment are deployed.

49

Figure 5.3: Full implemented architecture.

Then we just have to configure the connection delays associated to each
cluster remaining the underlying pervasive architecture the same. This im-
plementation also helps us to easily define the number of entities on each
region giving us more control on the simulation results. Those two cluster

Figure 5.4: Display node module Figure 5.5: Mobile users module

modules can be seen in detail on Figures 5.4 and 5.5. On the left we can see
the sensor and display node submodules that depending on the parameter
values (numSensors and numDispN) will have more or less instances on the
running simulations. The right image shows us the module that only contains
the mobile users, represented by the mobApp[*] submodule. Both of them
have an instance of the Recorder module to collect all the elected values for
each cluster type, forming datasets to be later analyzed.

All of the communication between modules are made through input or
output gates. As the number of instances of each entity is unknown we have

50

created clouds that, concentrating entities connections makes easier the task
of creating and replacing modules by new ones. This happens because the
number of external interface gates of the module is always the same. We
illustrate this issue on the following listing of code.

Listing 5.1: Example NED source code
module PdNet_MobileApps{

parameters :
v o l a t i l e i n t numMobApp;

gate s :
// ex t e rna l
inout dispServ iceG ;
inout d i rServ iceG ;
inout envServiceG ;
inout app l i cat ionsG ;

//module components and p r op e r t i e s
submodules :

mobApp [numMobApp] : Mobi leAppl icat ion ;

c loud : MobileAppsCloud {
gates :

g [numMobApp+4] ;
}

r e co rde r : Rec ;

connect ions al lowunconnected :
// i n t e r n a l connect ions
mobApp [i] . g <−−> cloud . g [i +4] f o r i =0. .numMobApp−1;

// out s ide network gate
cloud . g [0] <−−> dirServ iceG ;
cloud . g [1] <−−> dispServ iceG ;
cloud . g [2] <−−> envServiceG ;
cloud . g [3] <−−> appl i ca t ionsG ;

}

With this example, we see that the module that creates the mobile users
cluster (PdNet_MobileApps) has four gates interfacing the pervasive archi-
tecture, cloud vector positions 0 to 3, while the all instantiated submodules
connect to the cloud on the subsequent positions.

All of the clouds presented on the topology have the same principles,
however the behavior of each one could have significant variations, depending
on the messages that they have to relay.

The pervasive architecture that should live on the network segment is fully
represented on Figure 5.6. There we can see the modules and the connections
between them. In our first simulation attempts, the functional component
modules do not have implemented any load balancing or load distribution
techniques, meaning that we are not yet concerned about scalability solutions

51

Figure 5.6: Full implemented architecture.

for each part of the network. Instead we intend to study how the cooperation
between those components degrade the overall performance of the network.
The main focus is on the analysis of the high level interactions that occur
within the system for each application scenario. Hoping with that to improve
the communication flow of the applications and the underlying supporting
infrastructure. Notwithstanding, the modules are in a well defined and en-
hanced implementation, like a real testbed demands, with the objective of
supporting system evolution as studies progress.

All of the seen modules and submodules and their distribution form the
network topology has was used on our simulations.

5.3 Component Modules behavior andMessage

definition

Our simulation has three types of behaviors associated with the components.
Firstly, as we have seen we have the clouds that have only to relay messages
between modules. Then we have the core network components that in a first

52

sight act as standard web servers. Finally we have the component modules
where the interactions could be triggered.

The mobile applications, the physical sensors and the displays feed the
system with messages that will be digested by the pervasive architecture to
provide some user response. To achieve that, we had to define the messages
to be transmitted and the set of steps to be made on each component.

The relay implementation of the clouds works as a simple router, it re-
ceives a message and accordingly the receiving gate it makes a two step
analysis: first it verifies the message destination and then verifies the mes-
sage type. Depending on each message type it will give the correct treatment
computing any necessary information and redirecting to the right destination.

Listing 5.2: ApplicationCloud Source code
void AppsCloud : : handleMessage (cMessage ∗msg){

i f (msg−>getArr iva lGate ()−>getIndex ()<5){ // inbound messages
i n t gS i ze = gateS i z e (" g ") ;
//randoms the d i r e c t o r y s e r v i c e that r e c e i v e s the reques t
i n t r r = 5 + intrand (gSize −5);
send (msg , "g$o " , r r) ; // index 2 f i r s t d i r S e r v i c e module index

}
e l s e i f (msg−>getArr iva lGate ()−>getIndex ()>=5){ // outbound messages

i f (strcmp (msg−>getName () , " MobileApp")==0){
send (msg , "g$o " , 4) ;

}
i f (strcmp (msg−>getName () , " DisplApp")==0){

AppMsg ∗dA = check_and_cast<AppMsg ∗>(msg) ;
i f (dA−>hasPar (" contex t In fo ")){

i f ((i n t)dA−>par (" contex t In fo ") == 0)
// r e l a y s msg to the environment s e r v i c e
send (msg , "g$o " , 3) ;

i f ((i n t)dA−>par (" contex t In fo ") == 1 | | (i n t)dA−>par (" contex t In fo ") == 2)
// r e l a y s msg to the d i sp l ay node
send (msg , "g$o " , 0) ;

}
}

}
}

As the previous source code example shows, the interconnections between
components are implemented and the system works together to provide the
proper response to each request, independently of its source or destination. It
can be seen on the chosen gate to forward the messages, send(msg, "g$o", 4);,
the number 4 says that the message should be sent to the mobile application
module.

For each component on the network segment the implementation has been
mainly guided by the best way to replicate a web server. With this, we have

53

then implemented all the associated logic of message handling with the no-
tion of processing times, number of simultaneous connections and number of
processing cores as a real web server should work. As we are implementing
an application layer server with loosely coupled connections, with each mes-
sage not having a state to maintain, it seems a good starting approach to
those modules. Of course, the reality is not this simple, however if we intend
to append any logic to improve or mimic any future middleware decisions,
those should always be the foundations for those components.

The following code represents our simple implementation of the queueing
system implemented on the servers. When a message arrives the serves checks
if it has space left on the queue to process the request, if not, the message
is sent back with the rejected parameter. Having the opportunity to be
processed the server computes its position on the queue and reschedules the
message with a delay that should address the response time for that message.
It computes the sending delay by multiplying its position on the queue by the
average processing time for each request on the queue adding it later to the
current simulation time simTime() + (processingTime*(requests/nCores)).
The formula also contemplates the number of cores that, despite not being
so linear, each new core should reduce the size of the queue by providing a
much more faster response for each request.

Listing 5.3: Server Source code
void EnvironmentService : : handleMessage (cMessage ∗msg){

i f (msg−>isSe l fMes sage ()) {
request s −−;
send (msg , " g$o ") ;

}
e l s e {

i f (r eque s t s < maxLoad∗nCores){
r eque s t s++;
// r e c e i v e s checkIn from a mobile app l i c a t i on
i f (strcmp (.)==0) {
. . . .

i f (r eque s t s%nCores==0)
scheduleAt (simTime () +

(par (" process ingTime ") . doubleValue ()∗ (r eque s t s /nCores)) , c I) ;
e l s e scheduleAt (simTime () +

(par (" process ingTime ") . doubleValue ()∗ ((r eque s t s /nCores)+1)) , c I) ;
}

}
e l s e {

msg−>addPar (" r e j e c t e d ") ;
send (msg , "g$o ") ;

} }
}

54

The rejected messages are returned to its sender that assumes that the
processing time it is -1, as shown in Figure 5.7. This value emerges because
in our simulation we do not have any implementation of a recovery strategy.
Those recordings assume a great importance because each failed response

Figure 5.7: Fictitious Check in interaction arrival times.

message potentially damages the user experience, once it will inevitably in-
crease the system response time and with this representation we can clearly
see when the system starts to fail.

Where the application scenario has its real representation is on the edges
of the system, more precisely, on the modules that generates user related
inputs to the system: the sensors, the display nodes and the mobile applica-
tions. Naturally the major efforts were made in these modules. For each one
we have tried to code the behavior that best resembles the reality, having
parameters to configure and easily change those behaviors. The simulated
application scenario has a logic that was transformed accordingly the pro-
gramming methods of the chosen framework. The following lines of code
demonstrates exactly how it works. Initially, we had to create a initialize();
function that will be called just once during the lifetime of the simulation.
This function creates and schedules a message to itself that will be lately

55

handled by the handleMessage(cMessage *msg); function. That handleMes-
sage function will be ready to receive and to treat the incoming messages,
in this case only from itself, during the simulation. With this code block
we have a simple implementation of a physical sensor, that has a parameter
were we can define, with some value, the sensing frequency, sending contex-
tual information.

Listing 5.4: Physical sensor source code example
void Phys i ca lSensor : : i n i t i a l i z e (){

AppMsg∗ sU = new AppMsg(" Sens ing ") ;
sU−>setAppEvent (" some contextua l in fo rmat ion ! ! ") ;
scheduleAt (simTime () + par (" senseFreq ") , sU) ;

}

void Phys i ca lSensor : : handleMessage (cMessage ∗msg){
i f (msg−>isSe l fMes sage ()) {

send (msg , "g$o ") ;

AppMsg∗ sU = new AppMsg(" Sens ing ") ;
scheduleAt (simTime () + par (" senseFreq ") , sU) ;

}
}

The components that generate input messages to the system work as
the previous code example, with the notion of self messaging to schedule
events. Of course, modules that have a more complex or dynamic behavior
will have a greater level of difficulty to accomplish all the steps required
by the application scenario. In contrast to mobile applications and display
node modules, the physical sensors only have a one-way flow of information.
This means that they only feed the system with the context information, not
receiving any feedback. The other two module types, in almost every action
they perform, they expect some response that should be properly treated by
the handle message function.

The messages that are being transmitted throughout the simulation have
a simple definition on the framework. The fields that compound the mes-
sages are very simple, with fields to store the gate numbers of the clouds to
know the exact way back path of each and the required fields to store any
information, for example some application event data.

56

Listing 5.5: Message Definition example
packet AppMsg {

// path
in t mobileGate ;
i n t mobileAppCloudGate ;

i n t displayNumber ;
i n t displayClusterNumber ;

s t r i n g appEvent ;
}

After the message defined, the framework assumes the creation of two
files (.cc and .h) that should contain auxiliary functions as the one respon-
sible to change data on each field, getters and setters, functions to add new
parameters or even functions to get access to message creation times.

5.4 Parameters Input values

Having all the implementation set up with the code prepared to be initialized
with the correct parameters, is time to chose the right ones to have a tuned
simulation. As we have seen, there are two major sets of module components
so consequently two sets of parameters. Those that make part of the net-
work segment: the clouds and the core components; and those in the screen
segment, physical sensors, mobile applications and display nodes.

We have prepared two simulations to show that our simulation testbed
really reflects the usage of a pervasive displays network with different models.
To achieve that, we have made a simulation where we have much more mobile
application users interacting with the system, and less display nodes users
with direct display interactions and other with more displays than mobile
users interacting with the system. As these two forms of interaction have
different interaction patterns we expect to see significant differences on the
system behavior. For both running simulations, we pretend to simulate a
simple system installation were the underlying architecture is "near" the
users, on the same country region. This means that there are no users in
some distant locations therefore with low connection latencies.

Thus we define the number of clusters for the mobile users (numMMA)
and display nodes (numDN) as one, with the average connection latency

57

times recorded to Europe. We have defined a bigger latency to the mobile
applications clusters because of the probable access network, via 3G or Wi-Fi.
These two parameters have a normal distribution truncated to nonnegative
values with the shown average and standard deviation (truncnormal(mean,
stddev, rng=0)). These can be seen on the listing above.

Listing 5.6: First parameters
##number o f c l u s t e r s
Fu l lAr ch i t e c tu r e .numMMA = 1
Fu l lArch i t e c tu r e .numDN = 1

###connect ion to c l u s t e r s de lay
Fu l lAr ch i t e c tu r e . mobileDelay = truncnormal (0 . 017 s , 0 . 0 0 3 s)
Fu l lAr ch i t e c tu r e . d i sp laysDe lay = truncnormal (0 . 014 s , 0 . 0 0 5 s)

After this we had to set the parameters that directly represent the ex-
pected human behavior and the created application scenario. Those param-
eters, unfortunately are not based in any real measurements, however the
chosen values seems quite legit to us. For now the shown parameters are
for the first simulation, where there are more mobile application users than
display node users.

We have defined some parameters to represent that behavior: a)The num-
ber of users that should "live" on each cluster (numMobApp). b)The starting
time for their interactions on the simulation (startingTime), to ensure that
users not start their activity at the same time. c)The time between each new
display (time2Display), as seen on the definition of the application scenario
(Chapter 4) a mobile user (a kid going to school) passes through multiple
displays until cease his activity and this parameter tries to replicate it. Then,
there exists the parameter to define the interaction reaction time of a mobile
user after it receive some system response on his mobile equipment (sendIn-
terval).

Before defining the behavior of the display nodes cluster we also have
to define of how many displays should exist on that cluster (numDispNum)
and the number of associated physical sensor (numSensors). Display nodes,
in our scenario, are capable to generate, not only receive, information. We
embodied those displays as large city touch screens. In this way, users can
directly interact with it, in some starting time (firstInteraction) and with

58

some frequency after the system feedback (interactionInterval). One of the
parameters is also the frequency of the sensed information by the physical
sensors (senseFreq).

The previous parameters do not have a fixed static value during the sim-
ulation, we have defined values in a normal or uniform distribution hopping
to better mimic the reality.

The last two parameters are related with the Application module and
they represent the frequency that an application should request for some
contextual information (envServMsgFreq), to provide more accurate results,
or requests the system to spread a global message trough other displays
(globalMsgFreq). One more time we do not have studies about the correct
input values to these parameters.

Listing 5.7: Behavior Parameters
Mobile u s e r s Clus te r
Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . numMobApp = 2000
Fu l lArch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . s tart ingTime = uniform (0 . 5 s , 30 s)
Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . t ime2Display = truncnormal (200 s , 40 s)
Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . s end In t e rva l = truncnormal (10 s , 2 s)

Display nodes Clus te r
Fu l lAr ch i t e c tu r e . d i sp l ayC lu s t e r [∗] . numDispN = 100
Fu l lArch i t e c tu r e . d i sp l ayC lu s t e r [∗] . numSensors = 50
Fu l lArch i t e c tu r e . d i sp l ayC lu s t e r [∗] . s ensor [∗] . senseFreq = truncnormal (40 s , 5 s)

Fu l lAr ch i t e c tu r e . d i sp l ayC lu s t e r [∗] . displayNode [∗] . f i r s t I n t e r a c t i o n = uniform (5 s ,25 s)
Fu l lAr ch i t e c tu r e . d i sp l ayC lu s t e r [∗] . displayNode [∗] . i n t e r a c t i o n I n t e r v a l=truncnormal (15 s , 3 s)

Fu l lAr ch i t e c tu r e . pdnet . apps . pdnetApps [∗] . envServMsgFreq = uniform (20 ,70)
Fu l lAr ch i t e c tu r e . pdnet . apps . pdnetApps [∗] . globalMsgFreq = uniform (70 ,200)

Finally we had to concern about the network segment components param-
eters. For each system component we could define the number of cores that
represents the number of simultaneous requests that can be processed, the
queueSize that represents the server backlog and the processingTime for each
request. The first two parameters have static values that are unchangeable
during the simulation but the processing time could be variable.

Those components, for now, should have a similar configuration, the only
changing parameter is the processing time that will be assigned with values
that we assume to be reasonable. We do not have any measurements about
the average processing times of these components. The below listing shows
the parameters and values used for the Environment Service as example. It

59

also shows the used values for the processing time of each message for each
component.

Listing 5.8: Components Input values
Environment s e r v i c e
Fu l lAr ch i t e c tu r e . pdnet . envServ . numEnvS = 1
Fu l lArch i t e c tu r e . pdnet . envServ . pdnetEnvServ [∗] . c o r e s = 1
Fu l lArch i t e c tu r e . pdnet . envServ . pdnetEnvServ [∗] . queueSize = 512
Previous parameters are the same to a l l components

##Appl i cat ion p roc e s s i ng time
Fu l lArch i t e c tu r e . pdnet . apps . pdnetApps [∗] . process ingTime = truncnormal (0 . 06 s , 0 .015 s)

##Directory s e r v i c e p ro c e s s i ng time
Fu l lArch i t e c tu r e . pdnet . d i rSe rv . pdnetDirServ [∗] . process ingTime = truncnormal (0 . 04 s , 0 .01 s)

##Display s e r v i c e p ro c e s s i ng time
Fu l lArch i t e c tu r e . pdnet . d i spServ . d i spServ [∗] . process ingTime = truncnormal (0 . 05 s , 0 .01 s)

##Environment s e r v i c e p ro c e s s i ng time
Fu l lArch i t e c tu r e . pdnet . envServ . pdnetEnvServ [∗] . process ingTime = truncnormal (0 . 07 s , 0 .015 s)

To finish the explanation of the simulation parameters, we just have to say
how the simulation is defined to finish. A parameter was created (maxMs-
gToEndSim) on the mobile cluster that basically says that the simulation
ends when the first mobile application reaches that specified value. In this
way, it is possible that, at the end of the simulation, the mobile applications
have not sent the same number of messages.

Listing 5.9: Simulation "end" parameter
Fu l lArch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . maxMsgToEndSim = 1000

The input values, particularly those associated with the application usage
of the system, are maximized to test the system response capacity without
any data loss. What we intend is to discover when some component reaches
the point of having to reject messages. As we do not implement any fault
tolerance algorithms, that could recover the information state in a time that
do not compromise the user interaction, this seems to be a good method to
assess where the system struggles. Another important aspect lies on the fact
that the running simulations do not have a day time representation. Meaning
that the we do not simulate any lull period like those expected to occur by
night. Instead we try to depict system usage on heavy usage times. On the
second simulation these principles remain the same. However, the changes
on the number of elements that generate input to the system should give us,

60

as we have already said, very different results. That is because the methods
and the frequencies of those inputs are significantly different.

The complete set of input values for the second simulation can be seen
on Appendix A.

61

Chapter 6

Results and Analysis

On any simulation what really worths is the final outcome, the data that
derives from all the implemented integrating parts. Those simulation results
should be the main ingredients to help us to create and refine systems, letting
us to save time and money on deployments.

In this chapter, it will be presented the collected data generated through
the input parameters, analyzing the output graphics and presenting some
characteristics that arise from the simulation models. Mainly, this section
shows that our implementation could be a platform to study different design
patterns between components, contributing to inform the design of solutions
for pervasive displays networks.

6.1 Measures and Results

The presented results are the outcome of the running simulation with the
parameters described and explained on previous chapter. We have seen that
the parameters were adjusted to lead the system to a constant stress situa-
tion under two different situations. The first where mobile application users
number is far greater than display node users, in contrast with the second
situation where the number of display node users is higher than the mobile
application users.

Following the previous chapter considerations, about the creation of the

62

foundations to achieve a fully functional simulation environment for our per-
vasive architecture, it is imperative to decide what should be the items to
measure. Possibilities are almost endless, however, as the focus of almost per-
vasive architectures and networks is Human centric, efforts will be, mostly,
concerning the response times of the interactions performed by the users.
Those interactions could have a explicit nature, through personal mobile
phones or interactive displays, as also a implicit nature being triggered by
the sensors around the displays.

We will record the time that takes a request message since its creation
until the arrival to the correct receiver.

Another parameter that is being recorded is the number of lost mes-
sages on the system. Those messages appear as result of some server having
achieved its maximum load. Those loads are also one of the recorded values
during the lifetime of the simulation. With this we hope to understand where
the system struggles to provide us the expected feedback.

What we attend to achieve with the simulation, in this first stage, is
to grasp how the interactions and subsequent interdependencies between the
components that make part of the pervasive system influence its performance.
We intend to show that the design patterns and the unbalances on the number
of different types of users lead to significant changes on the system behavior.

We hope that our analysis may provide important guidelines for those
who will have the responsibility of managing the system, either in terms
of hardware dispersion, system middleware design and even for those who
develop the applications.

To do that, we have to initialize the defined parameters with values that
should depict those changes. The running simulations will then provide the
results to conduct the following decisions and improvements on the system.

63

6.2 Analysis

On the following graphics results are aggregated by segment and by cluster.
On a scenario where we have more display nodes with direct interaction

inputs, and consequently with more physical sensors around them, what we
can clearly confirm is that over time those sensors will overflow the Envi-
ronment Service with new contextual information. This scenario counts, as

Figure 6.1: Physical Sensor message times.

we have defined on the parameters, with 100 mobile application users, 400
display nodes with direct interactions and 200 physical sensors. The sensing
messages, as seen on Figure 6.1, start to take increasingly more time to be
processed until the server can not handle all of them, starting to reject some
of them. One of consequences of that overflow is that, as we can observe
on Figure 6.2, Check In made by the mobile application users next to the
same Environment Service starts to fail. The failure on this interaction com-
promises the fluidity of the mobile application, and ultimately terminate it
because if a user cannot bootstrap the system, he also cannot interact with
it.

With this configuration the server loads are, as expected, high on the the

64

Figure 6.2: Check In message times.

Application server and on the Environment Service server. The other two
main servers, the Display Service and the Directory Service have residual
loads. That is due to the fact that on our configuration those two servers
are only used, respectively, to compute and spread global messages to the
display nodes and to provide answer to the LookUp requests made by the
mobile applications. That can be seen on Figure 6.3.

We can see that Application response times to the direct display interac-
tions and mobile application interactions combined lead the server to almost
a maximum load. However only a few messages are rejected during the sim-
ulation time on the mobile cluster, Figure 6.4 and Figure 6.5 in blue.

Figure 6.5 also shows us the times of the GlobalMessage requests in red.

The other scenario, where the number of display nodes and physical sen-
sors are diminished, can embrace several thousands of mobile users with their
mobile applications requests. This happens by several factors, one of them is
the end of overload by physical sensors on the environments service servers
with update requests. Another one is that despite the significant number
of mobile application users, the requests are sparse enough to not compro-
mise the systems usage. The application server handles the requests without

65

Figure 6.3: Server loads.

Figure 6.4: Mobile applications application times.

high loads. The other components that compose our pervasive system also
handles with the loads that those interactions put on them.

66

Figure 6.5: Display nodes application message and global message times.

The resulting graphics shows that the system can handle very well 2000
mobile applications, 100 display nodes interacting and 50 physical sensors
with, barely, no effort.

Figure 6.6: Server Loads.

Once more in Figure 6.6, showing the server loads, the components that
have more load are the Application server and the Environment Service
server. The other two, Display Service and Directory Service servers, have
insignificant loads on this scenario and configuration.

The arrival times of the LookUp, Check In and MobileApplication mes-
sages are shown on Figure 6.7. As expected, the message times have a clear

67

match between their arrival time and the server loads.

Figure 6.7: Mobile Cluster aggregated times.

The LookUp message is treated almost instantaneously due to the almost
inexistent server load while the other two types of message need more time
to arrive their destinies.

The following graphic, seen on Figure 6.8, shows the times for the display
node cluster interactions. It presents for the Sensing, DisplayApplication
and GlobalMessage the times that takes to arrive to the cluster since their
creation.

The presented graphics and analysis are merely demonstrative to show
that our simulation testbed really represents the pervasive displays networks
interactions. They do not depict any real scenario, in terms of input param-
eters values, but they made a clear representation that different interaction
flows can lead the system to different stress situations. Our tool, may be
and should be instantiated and parameterized according the needs and the
values that is pretended to study. With it we hope to help and stimulate a
correct growth of pervasive display systems.

68

Figure 6.8: Display Node cluster aggregated times.

69

Chapter 7

Conclusions

With the growth of this emergent research area, pervasive displays networks,
it is mandatory to settle down some concepts and start to introduce method-
ology in the community. It is important to congregate efforts with common
objectives. Nowadays, from what we have seen, the research teams do not
give much attention to the existing implementations and start creating from
zero their own visions. None of the existing systems relies on some previous
implemented solutions, and they do not drive an iterative process learning
and improving themselves with the previous work spending too much time
and money in single deployments, not focusing on the expansion and improv-
ing of the previous concepts and implementations.

Besides these facts, it is relevant to point out that those deployments
and test systems usually do not care about the growth of the network, and
this is a key aspect to create a real public pervasive display network. This
work intended to explore the scientific challenges of the underlying network,
providing a tool to study the scalability problems and how should the core
components be spread throughout this global network, defining the Pd-Net
architecture and provide a basic layout for this project. It should also pro-
vide a quick-start study for those who want to focus their attention to other
aspects rather than be worried with the topologies and technologies associ-
ated.

Although this study do not present any suggestion about the design pat-

70

terns that should be implemented throughout the system, it tries to demon-
strate that different usage scenarios and decisions on the implementation
have significant changes on the system performance. Mainly, the outcome of
our work is the creation of a tool to simulate pervasive displays networks with
their very specific requirements. We have also made an attempt to clarify
some of the aspects regarding the components and the difficulties that may
arise from these pervasive networks. Framing and characterizing some of the
processes that inevitably compose the system.

In particular, we want to give a major importance to the creation and
specification of the simulation scenario, without it would never be possible
to assess our implementation and extract any results from it. Thinking on
the scenario inherent interactions also made a contribution to define and cat-
egorize some processes and requirements of the pervasive displays networks.

Regarding our simulations, the obtained results are just to prove that
our implementation really reflects different configurations of the network,
showing that those, even slightly changes could create dramatic changes on
its behavior and performance.

However, this is a non stop work that should evolve and grow according
to the needs and the innovations behind this research area. Many disruptive
ideas should arise from the creative heads that are in this multidisciplinary
area. So, it is fundamental to follow those ideas supporting them with the
underlying technology, trying to embody some of the most disruptive visions
of public displays, walking through the most challenging requirements.

7.1 Future Work

The future of pervasive displays networks is being constructed step by step,
a lot of work is still to be made and many problems are waiting to be solved.
We hope that these networks became a reality in a near future and we would
be thrilled if our work provide a contribute for a brighter future for them.

71

In the future, to improve our study and our simulation tool, we intend to
see several points enhanced:

• To obtain a well coordinated effort between middleware development
teams

• To have a clearer idea about the interactions between the system core
components

• To implement more accurately the interactions performed by new per-
vasive applications on different scenarios

• To create more modules to test scalability techniques on each segment
of the network

• To embed on the same running simulation different applications with
their interactions

• To improve the input values that are directly related to Human behav-
iors against public displays

• To have accurate values of the processing times for each component

• To improve the accuracy of the queues used on the servers

• To implement different design patterns on the modules

72

Appendix A

Appendix

Listing A.1: Parameters Input values
Environment s e r v i c e
Fu l lAr ch i t e c tu r e . pdnet . envServ . numEnvS = 1
Fu l lArch i t e c tu r e . pdnet . envServ . pdnetEnvServ [∗] . c o r e s = 1
Fu l lArch i t e c tu r e . pdnet . envServ . pdnetEnvServ [∗] . queueSize = 512
Previous parameters are the same to a l l components

##Appl i cat ion p roc e s s i ng time
Fu l lArch i t e c tu r e . pdnet . apps . pdnetApps [∗] . process ingTime = truncnormal (0 . 06 s , 0 .015 s)

##Directory s e r v i c e p ro c e s s i ng time
Fu l lArch i t e c tu r e . pdnet . d i rSe rv . pdnetDirServ [∗] . process ingTime = truncnormal (0 . 04 s , 0 .01 s)

##Display s e r v i c e p ro c e s s i ng time
Fu l lArch i t e c tu r e . pdnet . d i spServ . d i spServ [∗] . process ingTime = truncnormal (0 . 05 s , 0 .01 s)

##Environment s e r v i c e p ro c e s s i ng time
Fu l lArch i t e c tu r e . pdnet . envServ . pdnetEnvServ [∗] . process ingTime = truncnormal (0 . 07 s , 0 .015 s)

##Appl i cat ion Server
Fu l lAr ch i t e c tu r e . pdnet . apps . pdnetApps [∗] . envServMsgFreq = uniform (20 ,70)
Fu l lAr ch i t e c tu r e . pdnet . apps . pdnetApps [∗] . globalMsgFreq = uniform (70 ,200)

Directory Se rv i c e Server
Fu l lAr ch i t e c tu r e . pdnet . d i rSe rv . pdnetDirServ [∗] . f i r s tReq = uniform (1 s , 60 s)
Fu l lAr ch i t e c tu r e . pdnet . d i rSe rv . pdnetDirServ [∗] . s end In t e rva l = truncnormal (60 s , 5 s)

c l u s t e r number
Fu l lAr ch i t e c tu r e .numMMA = 1
Fu l lArch i t e c tu r e .numDN = 1

###connect ion to c l u s t e r s de lay
Fu l lAr ch i t e c tu r e . mobileDelay = truncnormal (0 . 017 s , 0 . 0 0 3 s)
Fu l lAr ch i t e c tu r e . d i sp laysDe lay = truncnormal (0 . 014 s , 0 . 0 0 5 s)

##########################
Mobile Users Clus te r

Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . numMobApp = 100
Fu l lArch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . s end In t e rva l = truncnormal (10 s , 2 s)
#Fu l lArch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . s tart ingTime = 0.2 s
Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . s tart ingTime = uniform (0 . 5 s , 30 s)
Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . t ime2Display = truncnormal (200 s , 40 s)

73

##########################
Display Node Clus te r

Fu l lAr ch i t e c tu r e . pdnet . apps . pdnetApps [∗] . maxExist ingDisplays = 400
#a l l e x i s t i n g d i s p l ay s on a l l c l u s t e r s
Fu l lArch i t e c tu r e . d i sp l ayC lu s t e r [∗] . numDispN ∗ Fu l lArch i t e c tu r e .numDN

Fu l lArch i t e c tu r e . d i sp l ayC lu s t e r [∗] . numDispN = 400
Fu l lArch i t e c tu r e . d i sp l ayC lu s t e r [∗] . numSensors = 200
Fu l lArch i t e c tu r e . d i sp l ayC lu s t e r [∗] . s ensor [∗] . senseFreq = truncnormal (40 s , 5 s)
Fu l lAr ch i t e c tu r e . d i sp l ayC lu s t e r [∗] . displayNode [∗] . f i r s t I n t e r a c t i o n = uniform (5 s ,25 s)
Fu l lAr ch i t e c tu r e . d i sp l ayC lu s t e r [∗] . displayNode [∗] . i n t e r a c t i o n I n t e r v a l = truncnormal (15 s , 3 s)

Fu l lAr ch i t e c tu r e . mobi l eCluster [∗] . mobApp [∗] . maxMsgToEndSim = 100

74

Bibliography

[1] Florian Alt and Stefan Schneegass. A conceptual architecture for per-
vasive advertising in public display networks. In Proceedings of the 3rd
Workshop on Infrastructure and Design Challenges of Coupled Display
Visual Interfaces, PPD’12, 2012.

[2] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd,
Padma Haldar, Mark Handley, Ahmed Helmy, John Heidemann, Polly
Huang, Satish Kumar, Steven McCanne, Reza Rejaie, Puneet Sharma,
Kannan Varadhan, Ya Xu, Haobo Yu, and Daniel Zappala. Improving
simulation for network research. Technical Report 99-702b, University
of Southern California, March 1999. revised September 1999, to appear
in IEEE Computer.

[3] A. Chandler, J. Finney, C. Lewis, and A. Dix. Toward emergent technol-
ogy for blended public displays. In Proceedings of the 11th international
conference on Ubiquitous computing, pages 101–104. ACM, 2009.

[4] E.F. Churchill, L. Nelson, L. Denoue, and A. Girgensohn. The plasma
poster network: Posting multimedia content in public places. In Pro-
ceedings of INTERACT, volume 3, pages 599–606, 2003.

[5] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan. How
close is close enough? understanding the role of cloudlets in supporting
display appropriation by mobile users. In Pervasive Computing and
Communications (PerCom), 2012 IEEE International Conference on,
pages 122 –127, march 2012.

75

[6] Sarah Clinch, Nigel Davies, Thomas Kubitza, and Albrecht Schmidt.
Designing application stores for public display networks. In Proceedings
of the 2012 International Symposium on Pervasive Displays, PerDis ’12,
pages 10:1–10:6, New York, NY, USA, 2012. ACM.

[7] J.H. Cowie, D.M. Nicol, and A.T. Ogielski. Modeling the global internet.
Computing in Science Engineering, 1(1):42 –50, jan/feb 1999.

[8] Nigel Davies, Marc Langheinrich, Rui Jose, and Albrecht Schmidt. Open
display networks: A communications medium for the 21st century. Com-
puter, 45:58–64, 2012.

[9] M. Dayarathna, A. Withana, and K. Sugiura. Infoshare: Design and Im-
plementation of Scalable Multimedia Signage Architecture for Wireless
Ubiquitous Environments. Wireless Personal Communications, pages
1–25.

[10] J. De Vriendt, P. Laine, C. Lerouge, and Xiaofeng Xu. Mobile network
evolution: a revolution on the move. Communications Magazine, IEEE,
40(4):104 –111, apr 2002.

[11] Tommi Heikkinen, Tomas Linden, Timo Ojala, Hannu Kukka, Marko
Jurmu, and Simo Hosio. Lessons Learned from the Deployment and
Maintenance of UBI-Hotspots. In 2010 4th International Conference on
Multimedia and Ubiquitous Engineering, pages 1–6. IEEE, August 2010.

[12] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George F. Riley.
ns-3 project goals. In Proceeding from the 2006 workshop on ns-2: the
IP network simulator, WNS2 ’06, New York, NY, USA, 2006. ACM.

[13] S. Hosio, H. Kukka, M. Jurmu, T. Ojala, and J. Riekki. Enhancing inter-
active public displays with social networking services. In Proceedings of
the 9th International Conference on Mobile and Ubiquitous Multimedia,
page 23. ACM, 2010.

76

[14] R. José, N. Otero, S. Izadi, and R. Harper. Instant places: Using blue-
tooth for situated interaction in public displays. Pervasive Computing,
IEEE, 7(4):52–57, 2008.

[15] C. Kray, G. Kortuem, and A. Krüger. Adaptive navigation support with
public displays. In Proceedings of the 10th international conference on
Intelligent user interfaces, pages 326–328. ACM, 2005.

[16] J. Müller, J. Exeler, M. Buzeck, and A. Krüger. Reflectivesigns: Digital
signs that adapt to audience attention. Pervasive Computing, pages
17–24, 2009.

[17] J Müller and M Jentsch. Exploring factors that influence the combined
use of mobile devices and public displays for pedestrian navigation. . . . of
the 5th Nordic conference on . . . , 2008.

[18] J. Müller, O. Paczkowski, and A. Krüger. Situated public news and
reminder displays. Ambient intelligence, pages 248–265, 2007.

[19] J. Müller, D. Wilmsmann, J. Exeler, M. Buzeck, A. Schmidt, T. Jay, and
A. Krüger. Display blindness: The effect of expectations on attention
towards digital signage. Pervasive Computing, pages 1–8, 2009.

[20] T Ojala and H Kukka. UBI-hotspot 1.0: Large-scale long-term deploy-
ment of interactive public displays in a city center. . . . and Services
(ICIW . . . , 2010.

[21] T. Ojala, V. Valkama, H. Kukka, T. Heikkinen, T. Lindén, M. Jurmu,
F. Kruger, and S. Hosio. UBI-hotspots: sustainable ecosystem infras-
tructure for real world urban computing research and business. In Pro-
ceedings of the International Conference on Management of Emergent
Digital EcoSystems, pages 196–202. ACM, 2010.

[22] M. Satyanarayanan. Pervasive computing: Vision and challenges. Per-
sonal Communications, IEEE, 8(4):10–17, 2001.

77

[23] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung, Ning
Li, Hyuk Lim, Hung-Ying Tyan, and Honghai Zhang. J-sim: A simula-
tion environment for wireless sensor networks. In Proceedings of the 38th
annual Symposium on Simulation, ANSS ’05, pages 175–187, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[24] O. Storz, A. Friday, and N. Davies. Supporting content scheduling on
situated public displays. Computers & Graphics, 30(5):681–691, 2006.

[25] O. Storz, A. Friday, N. Davies, J. Finney, C. Sas, and J.G. Sheridan.
Public ubiquitous computing systems: Lessons from the e-campus dis-
play deployments. Pervasive Computing, IEEE, 5(3):40–47, 2006.

[26] Kazunori Sugiura, Miyuru Dayarathna, and Anusha Withana. Design
and implementation of distributed and scalable multimedia signage sys-
tem. In 2010 Second International Conference on Ubiquitous and Future
Networks (ICUFN), pages 273–278. IEEE, June 2010.

[27] S. Tarkoma, J. Kangasharju, T. Lindholm, and K. Raatikainen. Fuego:
Experiences with mobile data communication and synchronization. In
Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th
International Symposium on, pages 1–5. IEEE, 2006.

[28] Ville Valkama and Timo Ojala. Stakeholder value propositions on open
community testbed of interactive public displays. In Proceedings of the
International Conference on Management of Emergent Digital EcoSys-
tems, MEDES ’11, pages 107–113, New York, NY, USA, 2011. ACM.

[29] András Varga and Rudolf Hornig. An overview of the omnet++ simu-
lation environment. In Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and
systems & workshops, Simutools ’08, pages 60:1–60:10, ICST, Brussels,
Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

78

[30] E. Weingartner, H. vom Lehn, and K. Wehrle. A performance compar-
ison of recent network simulators. In Communications, 2009. ICC ’09.
IEEE International Conference on, pages 1 –5, june 2009.

[31] M. Weiser. The computer for the 21st century. Scientific American,
265(3):94–104, 1991.

[32] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel
simulation of large-scale wireless networks. In Parallel and Distributed
Simulation, 1998. PADS 98. Proceedings. Twelfth Workshop on, pages
154 –161, may 1998.

79

