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Abstract

NoSQL databases opt not to offer important abstractions traditionally

found in relational databases in order to achieve high levels of scalability and

availability: transactional guarantees and strong data consistency. These

limitations bring considerable complexity to the development of client appli-

cations and are therefore an obstacle to the broader adoption of the technol-

ogy.

In this work we propose a middleware layer over NoSQL databases that

offers transactional guarantees with Snapshot Isolation. The proposed solu-

tion is achieved in a non-intrusive manner, providing to the clients the same

interface as a NoSQL database, simply adding the transactional context. The

transactional context is the focus of our contribution and is modularly based

on a Non Persistent Version Store that holds several versions of elements

and interacts with an external transaction certifier.

In this work, we present an implementation of our system over Apache

Cassandra and by using two representative benchmarks, YCSB and TPC-C,

we measure the cost of adding transactional support with ACID guarantees.
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Resumo

As bases de dados NoSQL optam por não oferecer importantes abstrações

tradicionalmente encontradas nas bases de dados relacionais, de modo a

atingir elevada escalabilidade e disponibilidade: garantias transacionais e

critérios de coerência de dados fortes. Estas limitações resultam em maior

complexidade no desenvolvimento de aplicações e são por isso um obstáculo

à ampla adoção do paradigma.

Neste trabalho, propomos uma camada de middleware sobre bases de

dados NoSQL que oferece garantias transacionais com Snapshot Isolation.

A abordagem proposta é não-intrusiva, apresentando aos clientes a mesma

interface NoSQL, acrescendo o contexto transacional. Este contexto transa-

cional é o cerne da nossa contribuição e assenta modularmente num repositório

de versões não-persistente e num certificador externo de transações concor-

rentes.

Neste trabalho, apresentamos uma implementação do nosso sistema sobre

Apache Cassandra e, recorrendo a dois benchmarks representativos, YCBS e

TPC-C, medimos o custo do suporte do paradigma transacional com garan-

tias transacionais ACID.
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Chapter 1

Introduction

The advent of cloud computing is establishing new ways for users to

store, access, share and process data [3]. All kinds of data created for per-

sonal or recreational use, be it text documents, presentations, photographs,

videos are being stored online, ”in the cloud” for immediate and continual

availability. The storage, structuring and indexing of these huge amounts of

data for subsequent efficient access and processing have been a major busi-

ness opportunity but also a great challenge for cloud service providers. At

the same time, the high availability standards and competitive offerings for

cloud storage services and processing capabilities allure an increasing number

of businesses to migrate their systems into the cloud, reducing maintenance

and ownership costs. This adds up not only to the volumes of data to be

managed by cloud providers but also to the diversity of solutions to be pro-

vided.

Cloud providers tend to use a whole set of logical storage technologies

ranging from block devices and files to all types of database management sys-

tems. The latter are used internally as well as offered as services to the end

users. While the choice of the right database paradigm (relational databases,

1
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table or column based, non-relational databases, graph databases, etc.) is ini-

tially driven by the type of applications and workloads, cloud-based database

systems bear non-functional characteristics crucial to leverage the cloud in-

frastructure that become key to this selection. Here we refer to the systems

high availability and scalability.

Until recently, information systems have relied almost exclusively in re-

lational database systems (RDBMS [20]). These are well matured database

systems which provide a much consolidated access and programming inter-

face based on SQL along with a remarkable programming abstraction that

provides transactional semantics usually with ACID1[14] guarantees. The use

and provision of relational databases systems would thus seem the natural

choice for cloud systems. However, so far, traditional RDBMS proved unable

to sustain the required high availability and scalability of the cloud comput-

ing paradigm. This is mainly due to their rigid, monolithic and centralized

architectures.

To cope with this demand, a new class of database systems emerged.

These are non-relational, but typically just based on key-value pairs, and

do not provide any form of expressive query language but very simple put

and get interfaces. These systems are often referred to as NoSQL databases.

Regardless of its specific data model or API, a NoSQL database is expected

to be highly available and scalable. Key to these two characteristics are their

inherent distributed design, weak consistent data replication and transac-

tionless operation.

However, the downside of using NoSQL databases is that much of the

complexity now needs to be handled at the application level [17]. Specifically,

most of the highly efficient processing provided by SQL query engines inside

1ACID stands for Atomicity, Consistency, Isolation and Durability.
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RDBMS needs now to be done by the application, and the lack of a transac-

tional programming model requires that hard problems such as concurrency

control and failure recovery are now explicitly handled by the programmer.

On one hand this makes application programming much more demanding

and error prone and, on the other, severely impairs the migration of legacy

applications to the cloud.

In order to mitigate the difficulties of programming on top of NoSQL

databases and therefore narrowing the gap between the RDBMS and NoSQL

programming model, in this thesis we present the design and implementa-

tion of an elegant, non intrusive middleware system able to endow a typical

NoSQL database with a transactional interface offering ACID guarantees.

The proposed transactional middleware, pH1, preserves the interface of the

underlying NoSQL database allowing operations to be bracketed in a trans-

actional context offering Snapshot Isolation [5] as its isolation criterion. The

resulting transactional NoSQL database will be evaluated under representa-

tive workloads in order to show the overhead of the transactional layer as

well as the impact of the transaction management on the system throughput.

Our approach is specific to the Snapshot Isolation criterion. It relies on

the optimistic execution of concurrent transactions that are certified at com-

mit time. If by committing two concurrent transactions the isolation crite-

rion would be violated then one of them is simply aborted. Each transaction

runs on private virtual snapshot of the database without any interferences

of concurrent transactions. To achieve this pH1 implements a multiversion

distributed cache of the database closely synchronized with the persistent

NoSQL database. This is called the Non Persistent Version Store and is the

cornerstone of our approach.

In the remainder of this dissertation we provide in Chapter 2 background
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concepts and review related work, in Chapter 3 we present the concepts,

architecture and implementation details of the pH1 middleware and then, in

Chapter 4 its evaluation. Chapter 5 concludes this work.



Chapter 2

Background

In this chapter, we discuss two kinds of systems that are key to the

design and development of pH1: NoSQL databases systems and transactional

systems. Afterwards, we succinctly survey related work.

2.1 NoSQL databases

From a user’s perspective, NoSQL databases differ from traditional rela-

tional databases systems (RDBMS) by not encoding expressive data relation-

ships but, instead, being based on a simple key-value data model and, much

as a consequence, not providing any kind of query language but minimal

programming interfaces with put and get primitives.

Moreover, contrary to the usual centralized architecture of RDBMS,

NoSQL databases tend to be much more flexible following a fully distributed

architecture. Typically, NoSQL databases run in a distributed environment

composed by hundreds or thousands of machines. Distributed processing in

a scale like this introduces thus several challenges such as: data placement,

data replication or agreement, that do not exist or are simpler in a central-

5
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ized approach. NoSQL databases can have architectures that fall into one of

the following main categories: fully decentralized, hierarchical or hybrid. In

a fully decentralized architecture database nodes are typically organized in

a logical ring. In a hierarchical architecture, there is a small set of modules

that is responsible for maintaining data partitions and coordinate processing

and storage modules.

When compared to the relational model, NoSQL databases adopt a fairly

simple data model, where most solutions store data according to a key-value

data model like Amazon’s Dynamo [13]. There are however more complex

data models, like the ones based on Google’s BigTable’s [9], where the notion

of ”keyspace” is created, holding several ”column families”. Each one of

these column families is then populated with rows that have no constraint

over the type or number of columns they may have, allowing several rows to

have different columns. Still, despite the differences that may exist across

different implementations, most NoSQL databases share concepts like the

way requests are routed and processed, data storage and distributed systems

techniques like replication, partitioning or failure detection.

Actually, in order to promote high availability and scalability, NoSQL

databases need to run in a more laid-back consistency criteria when compared

with their relational counterparts. Some implementations like Cassandra [16]

use a relaxed consistency criteria called ”eventual consistency”. Running at

this consistency level, requests are forwarded asynchronously, which may

create periods where stale data can be read.

For a comprehensive survey on the current NoSQL database offer the

interested reader is referred to [8]. For the purpose of this work we se-

lected Cassandra, one of the most popular, open source, and mature NoSQL

databases.
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2.1.1 Cassandra

Cassandra is a NoSQL distributed key-value developed within the Face-

book Inbox [16] project to enable it to cope with large amounts of write

operations while trying to achieve low latency read operations. Its design

was made in order to achieve a replicated structure of cheap commodity

nodes placed geographically apart.

Cassandra follows a fully decentralized architecture where nodes form a

logical ring. Cassandra has a flat model in what concerns to the roles taken

by each node: each of them has the same responsibilities and thus the system

has no single point of failure.

Cassandra is based on Bigtable’s data model. Data is modelled in a

multi-dimensional sorted map and allows objects to be grouped in structures

called ”column families”. One column family enables the existence of sev-

eral columns, which are then populated by row keys. Each column family

resembles one table in the relational model. Cassandra does not impose any

limitations concerning the total amount of columns each column family may

have. One addition to Bigtable’s data model, is the introduction of Super-

ColumnFamilies, where each attribute (a SuperColumn) may have a list or

regular columns. Worth noticing is that Cassandra does not provide any

support for versioned data.

Requests are handled by a partitioner running on each node that is in

charge of choosing which nodes will actually store a specific row. Requests

are handled as follows:

Forwarding requests

When a request arrives, that specific node becomes the coordinator for

that specific operation. The coordinator acts as a proxy between the client
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and the cluster. As data is spread along all nodes, the coordinator has

to decide which nodes should get the request, and how many node replies

it should wait until answering the client (each node issues one response).

This comes as a restriction imposed by the consistency level implemented.

Requests may be sent synchronous or asynchronously according to its type

and consistency level in place.

Read requests

Read requests are handled by the coordinator node for that specific op-

eration. The consistency level sets the amount of nodes that will get a direct

and synchronous request. The remainder nodes will afterwards receive an

asynchronous request to re-establish consistency if needed (read-repair).

Write requests

Write requests are handled by all replicas that own the data. If the node

is online, it will receive a direct and synchronous request. That is made

despite the consistency level configured; hence its effect will be translated to

the amount of replicas replying to the requests.

The partitioner runs accordingly to two different placement strategies:

Random and Ordered. The Random strategy uses consistent hashing [15]

over the keys, so that data is evenly distributed along the cluster. Each

Cassandra node in the cluster will hold a range of hash values. When a write

operation arrives, the partitioner will calculate the hash (MD5) of the key

to be written and will afterwards directs the request for the node with the

respective range assigned. The Ordered strategy also assigns each node a

range of keys. However, when a write operation arrives, the partitioner uses

the actual hexadecimal value of the key to be written, rather then calculating
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its hash value; ordering them lexicographically. This placement strategy does

not perform as best as the random strategy in what concerns to redistribute

data across the cluster, when the need to reconfigure comes. Despite that,

in theory, it allows the system to have better performance while executing

range scans across rows, which can be a good feature for some workloads.

The replication strategy used by Cassandra depends on whether the clus-

ter is dispersed by several or one data center. With just one data center, the

replication strategy used (”Simple strategy”) considers a replication factor

k. Thus, when a data item is inserted, it is placed on the node chosen by the

partitioner and on the following k nodes. If the cluster is scattered across

multiple data centers, the replication strategy (”Network strategy”) will use a

similar strategy, chaining replicas of a key between the available data centers.

Cassandra operates under a tunable consistency model, which allows the

consistency level to be chosen, in a per request basis. Some of the possible

levels are: one, quorum or all. The selected consistency level will impact

on the amount of nodes contacted in order to fulfil the consistency level for

a specific request. As the name suggests, if the consistency level of one is

chosen, only the replica that holds the item is contacted. For the quorum

level, the number of nodes to be contacted depends on the replication factor

in place (quorum: replication factor/2 +1 nodes), while for the all level, all

the nodes are contacted.

The consistency model implemented by Cassandra creates the possibil-

ity for the existence of faults. The underlying fault model approaches two

possible faults:

• Fault A : This fault occurs when Cassandra detects an error while

performing a write operation. The write operation may have actually

been performed in some nodes, but failed to reach all the nodes dictated
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by the consistency level in place. Therefore, a read request may return

an empty result when it should have returned a non empty result.

For the key involved in this fault, there will be a time gap where this

mismatch may occur, in which Cassandra is recovering the inconsistent

replicas.

• Fault B : This fault occurs when a key is removed from Cassandra.

Due to the consistency scenario it may take some time to the operation

to be propagated to the entire cluster. A read request to a key like this

may return a value that no longer exists.

As a result of this consistency level, it relaxes isolation and atomicity in

order to allow for high availability and performance executing write opera-

tions. Cassandra does not provide transactional contexts and therefore any

form of ACID guarantees.

In the following section, we discuss the main properties of transactional

systems from where we highlight the isolation property. Moreover, we discuss

how transactions are ordered and certified.

2.2 Transactional systems

Transactional systems introduce the concept of transaction. A transac-

tion is a sequence of operations whose execution traditionally satisfies the

following ACID [14] properties:

• Atomicity: Either all or none of the operations within a transaction

are successfully performed.

• Consistency: Transactions preserve system constraints, as a whole

any transaction takes the system from a valid state to another valid
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state.

• Isolation: Concurrent transactions execution preserve the semantics

of the defined consistency criterion or isolation level.

• Durability: The effects of a successful transaction are durable even in

the presence of faults.

A transaction that performs successfully is said to ”commit”, otherwise

it ”aborts”.

2.2.1 Isolation levels

A transactional system enables the coexistence of concurrent transac-

tions which may lead to several incidents related to data being accessed and

modified concurrently. These events called anomalies are described in [5] and

they are used to characterize four isolation levels, formally described in the

ANSI SQL standard. Namely these isolation levels are (in ascending order

from the least to the most strict level): read uncommitted, read committed,

repeatable read and serializable.

With the existence of concurrent transactions, transactional systems rely

on concurrency control mechanisms to avoid those anomalies. These mecha-

nisms can be based on mutual exclusion primitives, establishing ”read locks”

over data that will be read and, ”write locks” over data that will be written.

Thus, if a transaction acquired, for instance, a write lock over a data item;

for the period of time that the lock is held, no other concurrent transaction

will be able to acquire a write lock over the same piece of data. The different

isolation levels define possible different behaviours regarding the acquisition

of read or write locks over a data item by concurrent transactions, in order

to avoid the different anomalies.
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The most strict isolation level – Serializable – does not allow for any type

of anomalies to occur, as described in [5]. Please note that with a concurrency

control mechanism based on mutual exclusion, locks are not enough to ensure

the absence of anomalies, as in the Serializable isolation level. To provide

this isolation level, a protocol called Two-Phase-Lock [6] is usually used to

control the acquisition and lock release.

2.2.2 Snapshot isolation

A different level of isolation, currently the default on most RDBMS,

is the so called Snapshot Isolation. Snapshot Isolation was first presented

in [5] as a new isolation level. It uses both multiversion concurrency control

and timestamps in order to avoid using locks [19], allowing a transaction to

work over a consistent snapshot of data. This is presented as one of the main

advantages of this isolation level, as a transaction is never blocked performing

a read operation (which it is the case for concurrency control based on mutual

exclusion), potentially increasing the level of concurrency.

Snapshot Isolation works by creating two timestamps for each transac-

tion. Upon the start of a transaction, a start timestamp (Ts) is assigned

and, this particular transaction will observe all versions up to Ts. When the

set operations within a transaction ends, the transaction will try to commit,

being assigned at that time a commit timestamp (Tc), if the transaction is

allowed to commit. Thus, the start and commit timestamps limit the lifespan

of a transaction. From the moment a transaction is committed, all following

transactions will be able to read its modifications.
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Anomalies

As seen in [5] and in [19], Snapshot Isolation avoids all anomalies de-

scribed in the ANSI SQL standard. However, an anomaly called write skew

may still occur. A write skew occurs when at least one safety feature for a

system is disregarded, due to write-write synchronization problems.

Figure 2.1: Snapshot isolation anomaly: write skew

Figure 2.1 shows a classic example of a bank system where a write skew

anomaly occurs. Both transactions, T1 and T2 are performing a withdraw

operation from two different accounts that belong to the same individual.

Lets assume as a constraint for this system that the amount to be withdrawn

can be higher than the available balance, if the sum of both account balances

remain positive. Since when both transactions start, the system’s constraint

is met, both are allowed to carry on leaving the data in an inconsistent state,

breaking a rule set for the system.

The consistency breach results from a write-write synchronization prob-

lem caused by the fact that both transactions operate over the same snap-

shot. Clearly this possible anomaly is what causes this isolation level not to

be serializable as the strictest isolation level.
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2.2.3 Transaction ordering and certification

Snapshot isolation requires the use of two separate modules: a timestamp

generator to produce both the Ts and Tc timestamps, as well as, a certifica-

tion authority to verify the existence of write-write conflicts and thus decide

on whether a transaction should successfully commit or abort.

Timestamp generator

With timestamp based concurrency, order is chosen before the actual

transaction begins, by assigning a timestamp upon the creation of a transac-

tion. The use of timestamp based concurrency implies that: (1) a timestamp

has to be globally unique within the system and (2) at one particular instant,

only one stamp can be generated. Most timestamps are based on the cur-

rent system time, which makes them increasingly monotonic. This provides

a notion of total order as a stamp issued for transaction Tj is bigger than the

one for Ti, providing that Ti → Tj.

In addition to the conditions stated before, there are other things to be

considered when generating timestamps. Timestamps may be generated in a

centralized fashion, in which there is a timestamp generator that assigns the

stamps to all transactions; or, this task is carried out by multiple timestamp

generators in the system. For the first case, no major problems arise as

the timestamp generator in charge has full notion of the retrieved stamps

and none of them will collide; while the second case will need a distributed

agreement protocol to ensure the rules stated above remain.

Certification authority

The certification authority is bounded to work accordingly to a specific

isolation level, ensuring that concurrency violations do not occur. With
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snapshot isolation, the certifier will use the timestamps that characterize a

transaction, the start timestamp (Ts) and commit timestamp (Tc) to verify

the existence of concurrency violations (i.e. write-write conflicts).

Lets consider two transactions, the first characterized by [TsA, T cA] and,

the second characterized by [TsB, T cB]. These transactions are said to be

concurrent if TsA ≥ TsB or TsB ≥ TsA and TsA ≤ TcB or Tsb ≤ TcA. In

other words, when a transaction wants to commit, the certification authority

will verify if there is a concurrent transaction that is operating over the same

data items as the transaction waiting for certification. On one hand if there is,

and due to the possibility of a write-write conflict, the certification authority

will not allow the transaction to successfully commit, causing it to be aborted.

On the other hand, if no concurrent transaction conflicts, the certification

authority will ask the timestamp generator to issue a new timestamp Tc, for

this transaction and the transaction can successfully commit.

2.3 Related work

There is nowadays a great deal of effort in trying to bring the transac-

tional behaviour to several NoSQL implementations. Several projects offer

already transactional guarantees and strong consistency, being supported by

NoSQL solutions. In this section we will go over some of the projects, like

CloudTPS [24], MegaStore [4], ElasTras [12], Percolator [18] and OMID [22].

The CloudTPS system offers transactional ACID guarantees over any

NoSQL implementation. To do so, it introduces several local transaction

managers (LTM). Each of them holds a copy of a partition of the data held

in the NoSQL database; allowing several LTM instances to exist, and scale-

out them as demand grows. Each instance will be responsible to ensure the
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consistency in its own partition. With its multi instance architecture, the

CloudTPS system uses a two phase commit protocol to enable transactions

that might hold data from different partitions. In pH1, we reused some ar-

chitectural features of CloudTPS, such as the fact that is not tied a specific

NoSQL database and the possibility to have several instances working to-

gether. However, pH1 distances from the CloudTPS system as each instance

is not responsible for a specific data partition, but rather to the group of

transactions that were initialized within that specific transaction manager.

Also, pH1 does not use mutual exclusion, but instead, timestamp based con-

currency.

The MegaStore and ElasTras follow a quite similar approach as the

CloudTPS system. The main differences between these projects and the

pH1 middleware are some architectural features and the isolation level used.

The Percolator system shares the same isolation level as our contribu-

tion (Snapshot Isolation) however, it does it by using a distributed approach

over BigTable using mutual exclusion primitives. The use of mutual exclu-

sion primitives eases conflict detection while performing write operations,

however, the fact that read only transactions also need to acquire locks has

a great impact in performance. PH1 steps away from Percolator by using

timestamp based concurrency control and therefore avoid the use of locking

primitives, which specially impacts on read-only transactions.

In contrast to Percolator, the OMID project implements Snapshot Isola-

tion but does it over HBase [2]. Like pH1, OMID relies on timestamp based

concurrency to offer Snapshot isolation over HBase, but the management of

multi version elements is done natively by HBase.

This contribution stands from OMID and other systems tied to specific

NoSQL implementations, as it builds a transparent system that can be easily
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adapted to work with NoSQL implementations that do not have support for

multi version tuples.

Although pH1 shares with the remainder projects, the objective of pro-

viding transactional guarantees, it distances from them by trying to create a

universal solution that may be used with any NoSQL database. PH1 relates

with the aforementioned projects by reusing some key architectural features,

such as: (i) multi-instance execution, (ii) timestamp based concurrency and

(iii) the Snapshot isolation level. However, pH1 positively distances from

projects like Percolator and OMID that are tied to specific NoSQL imple-

mentations, contributing to a truly universal solution, as it is able to provide

Snapshot isolation even when working with NoSQL databases that do not

have support for versioned tuples (MVCC: Multi-Version Concurrency Con-

trol).
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Chapter 3

pH1

In this chapter we present the pH1 transactional middleware. We de-

scribe its architecture and then our prototype implementation in detail.

3.1 Architecture

The pH1 middleware layer positions itself between the client and the

NoSQL database, introducing transactional guarantees. It extends the client

interface exported by the NoSQL database with commands to start and end

transactions. After starting a transaction, the client will then execute a

sequence of operations according to the NoSQL API but now in a transac-

tional context. Once these operations are finished, the client will invoke an

end transaction method, and pH1 will determine whether the transaction

can successfully commit or should be aborted. pH1 offers Snapshot Isolation

for which it will be providing a multiversion abstraction of the underlying

NoSQL database.

The architecture of pH1 is based on three different modules: (i) the TM:

Transaction Manager, (ii) the NPVS: Non Persistent Version Store and (iii)

19
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the TSO: Timestamp Oracle. The NPVS and the NoSQL database are both

data sources used in pH1.

In Figure 3.1 is shown the architecture of pH1, and how the different

modules interact with each other. Particularly, in this figure it is depicted

a single instance configuration of pH1. In order to scale with the number of

clients, pH1 can be composed of several instances as shown in Figure 3.2.

Figure 3.1: pH1 : single instance architecture

Each instance shares access to the NoSQL database and the same TSO

module. The NPVS nodes communicate by means of a group communication

protocol.

Next, we will describe in further detail the role of each module.

The Transaction Manager module is the central piece for this middle-

ware. It will be responsible for communicating with the other modules as

well as:

• Provide the transactional API to the clients;

• Maintain a view of all current active transactions within the system.

The Non-Persistent Version Store module is responsible for providing

a multiversion abstraction of the underlying NoSQL database to the clients.
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Roughly, this is to be achieved by a distributed tuple cache persisted to the

NoSQL database at the time transactions commit.

The Timestamp Oracle module is in charge of generating start and

commit timestamps and certify transactions whenever requested by the Trans-

action Manager.

Figure 3.2: pH1 : two instances deployment

The articulation between the NPVS and the TSO modules will enable

pH1 to provide Snapshot Isolation. While the first will keep all the versioned

tuples of data, the TSO will act as an oracle, providing new timestamps to

newly created transactions and, it will also keep track of the modifications

done by each transaction, deciding upon their success or failure in the case

of conflicts occurring during concurrent execution.

3.2 Prototype

The pH1 was built in order to be generic and be independent of the

NoSQL database. That is, in principle, it can be used with any NoSQL

database. For the current prototype we used the Cassandra database.

In the following subsections, we will go through an extended presentation
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of the actual implementation of each module that builds the pH1.

3.2.1 TM: Transaction Manager

The transaction manager module was devised to have a central role within

the system. In what concerns the actual implementation, this module has

the task of exporting and keeping the transactional context of each active

transaction in the system, as well as to provide a proxy to the remainder

modules.

Client interface

The transaction manager will provide to the client a simple interface

comprised of two methods:

• start transaction: The client will invoke this method to start a new

transaction. This will enable the execution of Read, Scan, Write and

Delete operations in the context of the transaction.

• try commit: The client will use this method whenever it wants to

terminate a transaction. If successful, the TM will then send the mod-

ifications to the data layers.

Client interaction

When a client wants to read, write or delete something from the database,

it will ask the TM to start a new transaction (Figure 3.3(a)). The TM

will then direct a request to the TSO module, so the latter will generate a

timestamp to initiate a new transaction.

The client may then perform read and write operations in transactional
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context (Figure 3.3(b) and 3.3(c)). These operations will generate the re-

spective interaction with the data source modules.

Whenever the client has finished the set of operations for a transaction, it

will ask the TM to end the transaction by trying to commit the changes made

by the transaction (Figure 3.3(d)). The commit request by the client will

be forwarded to the TSO module, along with the transaction’s write-set. In

this case, after the TSO successfully certifies the transaction, the NPVS and

Cassandra will reflect the modifications within the terminating transaction.

The version present in Cassandra is placed in the NPVS, and the transaction’s

write-set is stored in Cassandra. After Cassandra acknowledge the success of

the write operations, the TM notifies the TSO that the transaction succeeded.

Only after receiving this notification will the TSO be able to generate new

start or commit timestamps.

Transaction

A transaction is characterized by (i) the start timestamp (Ts) that rep-

resents the time of creation for the transaction; (ii) the commit timestamp

(Tc) that represents the time at which the transaction is allowed to commit

its changes and (iii) the transaction’s write-set that will keep single write and

delete operations for this transaction while it is not committed.

Transaction write-set

The transaction write-set holds write operations for a given transaction,

write and delete operations. Figure 3.4 depicts its structure. Specifically,

it sorts the operations by the corresponding table and key. Each key, will

hold a list of columns to be written and deleted by the client in the current

transaction.
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(a) Client requests the start of a new transaction

(b) Transaction txn reads element y

(c) Transaction txn writes element y

(d) Client requests the commit of txn

Figure 3.3: pH1 : functionality overview

Each column is built from its name, value and type. This last attribute

enables to identify if a given column is to be written or deleted.

Transactional operations

In the context of a transaction, the client will be able to perform the basic

CRUD1 operations. The four operations described below follow algorithms

1Create, Remove, Update, Delete
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Figure 3.4: Example of a transaction’s write-set

that comply with the isolation level (SI). There is also a fifth operation –

the commit operation – that cannot be invoked by the client. This specific

operation is only invoked by the transaction manager.

Transactional operations are organized in two groups, the READ group

and the WRITE group. The READ group is composed by the Get and Scan

Operation. The WRITE group is composed by the Write and Delete opera-

tion. While the operations in the first group are immediately executed and

their results returned to the client, the operations on the second group will

only be persisted if the transaction is successfully committed.

Determination of the latest version of an element

As described earlier, Snapshot Isolation requires that a transaction, when

reading an item, reads the most recent version of that element up to the

transaction’s start timestamp (Ts). For a given transaction, the latest version

of an element refers to the most recent version of the element which precedes

the transaction’s start timestamp (Ts).

Also as described earlier, the different versions of some element may

exist on three sources of data: (i) the transaction’s write-set, (ii) the NoSQL

database and (iii) the NPVS. The order in which structures are accessed is

important to determine the latest version of a tuple, according to the isolation
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level.

(a)

(b)

Figure 3.5: Selection of the best version for an element to be read

As a result, given the pH1’s architecture, there is a specific order in

which these structures must be accessed in order to find the latest version of

a specific element. Therefore, the latest version will be found in the:

1. The transaction’s write-set: If it was inserted by the current trans-
action;

2. The NoSQL database: If it was inserted by a transaction that mod-
ified the element, and successfully committed before the beginning of
the current transaction (i.e the Tc of the latest transaction is lower
than the current Ts);

3. The NPVS: If it was inserted by a transaction that modified the ele-
ment in a more distant past.

In order to better understand this process, we will go over an example

depicted in Figure 3.5. This Figure shows three different transactions, each
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one with its start timestamp (Ts) and also, a view of the data sources (Fig-

ure 3.5(b)) (in this example we do not consider the existence of any other

concurrent transactions).

Lets consider that transaction named txn 1 performed a write operation

for the key composed by [Table A,Key x, Column A], that has not yet been

committed. Any read operation performed by this transaction over this key

will return the value present in its write-set, since it is the latest version

available.

Secondly, a transaction txn 2 will perform a read operation for the key

[Table B,Key y, Column B]. Since the transaction does not hold modifica-

tions in its transaction write-set (empty in the Figure 3.5(a)), according to

the order defined, the NoSQL database is then checked. The version found

in the NoSQL database is approved, because the transaction’s start times-

tamp (Ts=126) is higher than the commit timestamp for the stored value

(Tc=123).

Finally, consider that transaction txn 3 wants to read the element com-

posed by the key: [Table A,Key x, Column A]. Supposing that no version

of the element is present in the transaction’s write-set, since no write oper-

ation for this table, key and column was performed, the NoSQL database is

then checked. The NoSQL holds the desired table, key and column; however,

its commit timestamp (Tc=150) is higher than the start timestamp for the

current transaction (Ts=143), and thus is not the latest version. Therefore,

the NPVS is searched and the version chosen is the one that has the highest

timestamp, strictly lower than the start timestamp for this transaction; in

this case, the version with commit timestamp Tc=140.
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Get operation.

The get operation is invoked by the client in order to read a specific

tuple. As described earlier, the implementation of this operation in pH1

has to, accordingly to the NoSQL interface, return the latest version of the

element that matches the search criteria, which is built from the table, key

and column to be searched.

The search criteria creates a search key that is used to find the element

in the different data sources. As Algorithm 1 shows and as described in the

previous process, we first check if the search key exists in the transaction’s

write-set, since if it does, it is the latest version and it is returned to the

client with no further search.

However, the read algorithm was devised to handle the faults that may

occur in the NoSQL database, as explained in section 2.1.1. If the element

to be searched is not present in the transaction’s write-set, the algorithm

assesses whether there has been a fault in the NoSQL database when trying to

perform a write operation regarding a previous transaction (fault A). Briefly,

fault A occurs when the NoSQL database detects an error while a write

operation is being performed. If there was, both the NoSQL database and

the NPVS must be checked.

Next, we have to check if the second possible fault (fault B) occurred. As

described in Section 2.1.1, this fault happens if the tuple to be searched was

deleted from the NoSQL database. This fault is manifested by the absence of

the search key in the NoSQL database (please note that the NoSQL database

should hold the most recent version for all elements). If this is the case, the

version held by the NPVS is returned if it matches the latest version criteria.

Please note that if the algorithm reaches this point, it means that both

possible faults occurred.
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Algorithm 1: TM: Get operation

Data: table, key, column, ts
1 Procedure DetectFault()

33 if fault occurred then
4 FaultDetected = true

1 searchKey ← table + key + column
2 if searchKey ∃ WriteSet(write) then
3 return WriteSet.read(searchKey)

4 if FaultDetected = true then
5 NoSQLcontent ← NoSQL.read(table, key, column)
6 NPV Scontent ← NPV S.read(table, key, column)
7 if NoSQLcontent = empty then
8 if ts < NPV Scontent.ts then
9 return NPV Scontent

10 if ts > NoSQLcontent.tc then
11 if NoSQLcontent.tc > NPV Scontent.tc then
12 return NoSQLcontent
13 else
14 return NPV Scontent

15 else
16 return NPV Scontent

17 else
18 NoSQLcontent ← NoSQL.read(table, key, column)
19 if NoSQLcontent = empty then
20 NPV Scontent ← NPV S.read(table, key, column)
21 if ts < NPV Scontent.ts then
22 return NPV Scontent

23 if ts > NoSQLcontent.tc then
24 return NoSQLcontent
25 else
26 NPV Scontent ← NPV S.read(table, key, column)
27 return NPV Scontent

If fault B did not occur, we still have to ensure that when the compared

with the NPVS, the version held by the NoSQL database is the latest. More-



30 CHAPTER 3. PH1

over, if fault A was not detected, that does not exempt the existence of fault

B. Thus, the NPVS has to be checked to assess if it has the best version for

the tuple.

In the absence of both faults, the NPVS is only searched if the version

held by the NoSQL database does not comply with the latest version criteria.

Scan operation.

The scan operation is very similar to the Get operation, and was also

devised to cope with the faults explained. The main difference lies on the

fact that the search is made for a range of keys/elements, instead of only

searching for a single one.

Write operation.

As intended by the client, the write operation inserts an element in the

storage layer. In pH1, this operation will have to modify the three data

sources. Before the transaction tries to commit its changes, the elements to

be written will be placed in the transaction’s write-set.

The element is a composition of a column plus its corresponding value

that will exist in the context of a given table and key. A single key may hold

several columns and their corresponding values.

Algorithm 2: TM: Write operation

Data: table, key, column, value
1 if table, key 6∈ WriteSet then
2 WriteSet.insert(table, key)

3 searchKey ← WriteSet.read(table, key)
searchKey.insert(column, value)

As Algorithm 2 shows, upon the start of the write operation, the trans-
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action’s write-set is searched to check the existence of the searched table and

key. If both exist, the key is retrieved and a new column with matching

column, name and value is added. If both the table or key do not exist prior

to this operation, they will be initiated and only after the new column is

added.

Delete operation.

When the client tries to delete a tuple from the database, the delete op-

eration is invoked. Similarly to the write operation, the delete operation will

be found in the transaction’s write-set until the commit of the transaction.

Algorithm 3: TM: Delete operation

Data: table, key, column
1 if table, key 6∈ WriteSet then
2 WriteSet.insert(table, key)

3 searchKey ← WriteSet.read(table, key)
4 searchKey.remove(column)

As described in Algorithm 3, when this operation begins, the transac-

tion’s write-set is checked in order to find a matching table and key, creating

both if they are not present. For the given table and key, the desired column

is added to the transaction’s write-set to be deleted.

Commit operation.

After the certifier module decides that a given transaction can commit

its changes, the commit operation is executed for that specific transaction.

This operation will be responsible to modify the data sources according to

the changes present in the transaction’s write-set.
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However, before persisting its changes, the elements existing in the trans-

action’s write-set will be put under a conciliation process. This process en-

sures that one operation is not invalidated by another. As an example, lets

again consider Figure 3.4. Notice that, [Table A,Key x, Column B] has

a write operation, followed by a delete operation that supersedes the write

operation.

The conciliation process will go through all the operations that exist in

a transaction’s write-set, resolving similar situations. This process ensures

that only the needed operations are actually executed in the data sources.

Algorithm 4: TM: Commit operation

Data: WriteSet, CommitT imestamp(Tc)
1 Procedure ConciliationProcess()

1 foreach table ∈ WriteSet do
2 ColumnsToWrite ← WriteSet(ColumnsToWrite)
3 ColumnsToRemove ← WriteSet(ColumnsToRemove)
4 Data ← NoSQL.get(table, ColunmnsToWrite)
5 foreach element ∈ ColumnsToWrite do
6 if element ∈ Data then
7 NPV S.write(element, T c)

8 NoSQL.batch(ColumnsToWrite, ColumnsToRemove, T c)

9 notifyTSO()

When the conciliation process ends, as Algorithm 4 shows, the NoSQL

database is checked to verify if the keys to be written exist. If they do,

the retrieved keys are written into the NPVS (i.e. previous versions of the

elements). The details of this process will be described later in Section 3.2.2.

Following, the tuples to be written and/or deleted are sent to the NoSQL

database in a batch call (all at once). If this procedure succeeds, the TSO

is notified in order to allow it to generate new timestamps, since during the

time that a transaction is being certified, the TSO is unable of generating
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new timestamps.

3.2.2 NPVS : Non-Persistent Version Store

As detailed in section 2.2.2, the Snapshot Isolation level requires the

maintenance of versioned tuples (MVCC). In order to support a wider range

of NoSQL databases, specially those that do not natively support multi-

version of tuples, we introduced the Non-Persistent Version Store in pH1 to

manage and store tuple versions.

Distributed cache services.

First of all, there are already a great number of cache systems available

that could have been used in this project. Among others, we looked at

EhCache [21], provided by Terracotta. EhCache builds a distributed cache

system over a cluster formed by several servers, denominated Server Array.

Within this array it is possible to build strong consistency guarantees when

inserting data across servers. This system uses an abstraction called cache

manager that would allow a client to read and insert elements; placing them

across three different tiers of data: memory, off-heap and disk. After an

insertion, the system would then move elements across these tiers based on

a element usage metric, keeping frequently used elements in memory and

moving the least used to the off-heap and disk.

In order to assess the usability of this system, we deployed a small test

environment to try to understand if the EhCache offered the performance

needed. This test was performed by measuring the amount of insert opera-

tions per second in a strong consistency setup.

This preliminary test led us to conclude that the approximate four hun-

dred operations per second was too short. This along with the disk per-
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sistence scheme and the need to employ a commercial license in order to

eliminate a limitation on cache size kept us away from using this system.

Therefore, we developed the NPVS.

Architecture.

The architecture of the Non Persistent Version Store spreads along a

group of individual and equal nodes, building a hommogeneous distributed

repository system. Each NPVS node is able to receive and process client

requests.

The individual nodes connect through a channel established by a group

communication toolkit called JGroups [7]. The JGroups toolkit establishes

a channel that enables the reliable and atomic exchange of messages among

group members. This toolkit creates an abstraction called view that joins

all the members in the channel and also manages its membership. Besides

the management of the view, the toolkit allows for messages to be sent in a

unicast or multicast fashion.

As data is inserted, it is not partitioned across the cache nodes. Instead,

data received in one node is replicated to every other nodes, allowing each of

them to be able to answer a read request by a client, relying only in its local

data. The client of a NPVS node will be one transaction manager instance.

To enable the communication between nodes, the NPVS system defines

three types of messages that will be sent through the established channel. A

description of such messages follows:

• Write message: This message will hold the elements to be replicated

across all nodes.
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• Ack message: This message will acknowledge the reception of a write

message to the sender node.

• Eviction message: This message is used whenever a node received

an eviction call from its client and wants to diffuse that information to

the remainder nodes.

Data model.

The data model is very alike to the one used in the transaction’s write-

set, described in section 3.2.1, except for the addition of a field for a second

timestamp.

Figure 3.6: The view of the NPVS data model

As we can see in Figure 3.6, the data model will hold several tuple versions

for a given key. Like in section 3.2.1, each column is sorted by the respective

table and key.

The first timestamp (Tc) will keep the time at which the transaction

committed. The second timestamp (Ts) will store the start timestamp for

the transaction that wrote this element. The need for this second timestamp

comes from the Get operation in order to deal with the existence of fault B,

as explained in Section 3.2.1. Recall that, fault B occurs when a tuple is re-

moved from the NoSQL database by a concurrent transaction with a commit

timestamp (Tc) higher than the current transaction’s start timestamp (Ts).

When a transaction tries to get the key that was concurrently deleted, the



36 CHAPTER 3. PH1

get operation will not find valid version in the NoSQL database and will try

to verify if the NPVS holds a version for that key. Therefore, if a version

for key actually exists in the NPVS, it can only be used if it results from

a transaction that concurrently was able to successfully commit during the

lifetime of the first transaction. Thus, the NPVS needs to store a second

timestamp (Ts) to allow the transaction performing the Get operation to

ensure that, in the presence of fault B, the version in the NPVS relates to

a concurrent transaction, verifying if the version in the NPVS (Ts) is higher

than the transaction’s start timestamp (NPV S.Ts > Txn.Ts).

Write operation.

A write request may arrive at any node that builds the NPVS system.

The node that receives the request will store it locally and will forward it to

the other nodes through the channel established by the group communication

toolkit. Algorithm 5 shows this operations in detail.

Algorithm 5: NPVS: Write operation

Data:
table, key, column, value, CommitTimestamp (Tc), StartTimestamp
(Ts), channel

1 if table, key, column 6∈ npvs then
2 npvs.insert(table, key, column)

3 npvs.get(table, key, column).InsertNewV ersion(value, T c, Ts)
msg ← WriteMessage(table, key, column, value, T c, Ts)

4 channel.send(msg)

If the key to be inserted was not previously present in the NPVS, a new

key is created and the value is inserted along with the respective timestamps

associated with the element. If there are already older versions, the new

version is added to the specific key.
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After the element is stored locally in the node, a write message is multi-

casted through the channel, containing the element to be replicated.

Algorithm 6: NPVS: Handle the reception of a Write message

Data: channel
1 msg ← channel.GetWriteMessage()
2 obj ← msg.GetPayload()
3 if obj 6∈ NPV S then
4 NPV S.insert(obj)

5 NPV S.get(obj).InsertNewV ersion(obj.value, obj.T c, obj.Ts)
6 msg ← AckMessage(obj)
7 channel.send(msg)

The nodes that received this write message will store the containing ele-

ment and, they will acknowledge the reception by returning a message, as in

Algorithm 6.

Get operation.

The replication strategy used allows every node to be able to serve any

read request. The read request, as Algorithm 7 shows, will verify if the

corresponding table, key and column exists.

Algorithm 7: NPVS: Get operation

Data: table, key, column, StartTimestamp (Ts)
1 if table, key, column ∈ NPV S then
2 return NPV S.get(table, key, column, Ts)

If it does, the version to be returned follows the criteria for choosing the

best version, as explained in 3.2.1, returning the version strictly lower than

the read timestamp (Ts).
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Eviction.

As transactions successfully commit or abort, the need to store previous

versions for elements modified by a transaction disappears. This happens

because, accordingly to what has been explained in Section 3.2.1, at any

given time, the most up-to-date version of any element, for all committed

transactions, is stored in the NoSQL database.

Periodically, the transaction manager will verify the start timestamp for

the older active transaction and will send it to the NPVS. Elements with

versions prior to the received timestamp may be removed since their corre-

sponding transactions are already finished. So, when the NPVS receives this

information, the receiving node multicasts this information to the remainder

nodes, and each node runs through every key, removing all versions prior to

the one sent by the transaction manager.

3.2.3 Certification authority

After the set of operations for a given transaction is finished, the client

will try to commit the transaction in the transaction manager, which in turn

will contact the certifier module, which based on the transaction’s write-set

will decide whether the transaction should commit or abort.

The certifier module used in pH1 was developed by Yahoo! [23] in the

context of the OMID project [22]. Similarly to pH1, the OMID project was

developed to allow NoSQL databases to be compliant with the transactional

paradigm. The underlying NoSQL database used is HBase[2] and currently,

this project only supports this NoSQL implementation.

The OMID project uses a Snapshot Isolation compliant certifier, that

does not use mutual exclusion primitives to enable the execution of con-
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current transactions, but as pH1, uses timestamp based concurrency. The

modularity of the OMID project, allowed us to re-use its certifier module,

since it is actually decoupled from the data persistence layer.

The name of the certifier module the certifier module of OMID can be

misleading, The Status Oracle (TSO), but it is actually responsible for two

main functions: (i) generating new timestamps and (ii) certifying transac-

tions. The implementation of this module acts as a server, replying to start

and commit requests.

Client interface.

The Timestamp Oracle modules relies on a basic interface that offers two

methods:

• start transaction : This function is executed whenever the client (in

the case of pH1 the transaction manager module) needs a new start

timestamp (Ts) for a new transaction.

• commit: This function is executed whenever the client wants to try

commit the transaction.

Timestamp oracle.

As described previously, as new transactions are started or committed, we

need to provide them with timestamps. These timestamps will be associated

with the begin and end of transactions.

The generation of timestamps must ensure that each timestamp is unique

and, thus they are totally ordered. Specifically, the need for total order,

as described in Section 2.2.3, is key to the correct behaviour of the system.
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Since, this ensures that timestamp B is greater than timestamp A if A preceds

B (A→ B).

Certifier.

This module relies only on the operations present in the transaction’s

write-set that is to be committed.

After receiving the modifications produced by the transaction, the cer-

tifier will verify if there are no other concurrent transactions that modify

the same elements. The timestamp oracle is capable of such decision, once

it holds information concerning all previously committed transactions, and

can therefore assess if there is a temporal overlap for the elements within a

transaction.

Once the certification process is successful, the transaction can be com-

mitted. The certifier will then produce a new timestamp that will be used by

the transaction manger as the commit timestamp for the transaction. Upon

issuing a commit timestamp, the certifier will wait to be informed that the

modifications succeeded, and only then will it be able to provide new times-

tamps. On the contrary, if the transaction conflicts with another previously

committed and concurrent transactions, the certifier orders the transaction

to abort and discard its modifications.
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Experimental evaluation

Along this chapter, we aim to characterize the performance of pH1 by us-

ing two benchmark systems regarding two different metrics: overall through-

put and latency. Therefore, we set up two scenarios that consisted in (i)

testing the NoSQL database without transactional guarantees and (ii) adding

the pH1 middleware layer to the underlying NoSQL database. Then we es-

tablished a comparison among these settings in order to measure the cost of

adding transactional guarantees.

We have used two different benchmark systems to assess the system. On

the one hand, we used the Yahoo Cloud Service Benchmark (YCSB) [10]

popularly used to test NoSQL databases. On the other hand, we used an

optimized implementation of the TPC-C benchmark [11] that mimics a real-

case scenario and it is widely used to benchmark relational databases.

Along this chapter, Section 4.1 explains the experimental setting and

results regarding the YCSB benchmark. Later, Section 4.2 follows the same

structure for the TPC-C benchmark.
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4.1 YCSB

The Yahoo Cloud Service Benchmark was described in [10] as a new

benchmark that would allow the comparison among data stores designed

for the cloud computing paradigm. In other words, Yahoo! [23] developed

this benchmark because both the paradigm and the access pattern of such

data stores are quite different from the ones used by traditional benchmark

systems, mostly designed for relational databases.

The YCSB benchmark starts by creating a defined number of concurrent

clients that will try to perform a set of operations accordingly to a pre-defined

workload. The type of operations available include Read, Write, Delete and

Update operations.

We have modified the YCSB benchmark system to enable the existence of

multiple update operations in a single operation, that is, a single operation

run inside a transactional context. To do so, we introduced an operation

called ”Multi Update” in which we create an update operation comprised of

ten single update operations.

The YCSB benchmark system allows for a certain level of configurabil-

ity. Among other customizations, the benchmark system allows to choose the

desired distribution of data to be used. The assortment of possible distri-

butions goes from uniform and zipfian, to a completely custom distribution.

The decision for the right data distribution along with the correct workload

configuration allows to simulate a real world scenario.

4.1.1 Experimental setting

We used five identical machines comprised of a Intel i3-2100 3.1GHz 64

bit processor, 4GB of RAM and 7200 rpm SATA 2 drives. The machines were
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interconnected by a switched Gigabit local area network. All the machines

used Ubuntu 12.04 as its operative system.

As Figure 4.1 shows, we deployed a Cassandra cluster comprised of two

nodes. The timestamp oracle and certifier (TSO) was deployed in a different

and single machine. Each one of the two remainder machines ran the YCSB

client instance co-located with a pH1 instance.

Figure 4.1: YCSB: test environment description

Load phase.

This benchmark is divided in two phases. The first one, the load phase

is aimed in pre-loading one million entries into the database. Each entry was

composed of ten fields, each one loaded with random content, at about 1KB

in size per field.

This insertion populated the Cassandra cluster with about 1GB of data.

The Cassandra cluster was configured to replicate the data among the two

nodes (replication factor of 2) and was configured to use a random partition-

ing strategy.
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Benchmark execution phase.

The second phase consists in the execution of the benchmark. We have

configured the benchmark with 25 concurrent clients in each test machine,

for a total of 50 clients. The workload was composed of 45% Reads, 12.5%

Updates, 12.5% Multi Updates and 30% Scans.

We have configured the benchmark to use a uniform distribution of re-

quests. In this configuration, keys are chosen at random, but keys are drawn

from the keyspace with equal probability.

The benchmark ran until the completion of a total of 450000 opera-

tions, in the two different scenarios. For the first one, we ran the benchmark

against Cassandra, without the pH1 middleware layer, thus without transac-

tional guarantees. For the second one, we repeated the test, introducing the

transactional guarantees offered by the pH1 middleware layer. In this second

configuration, each operation corresponds to a transaction. With the absence

of transactions composed by several operations (except for the multi update

operation), we tried to emulate the same behaviour as the ”auto commit”

function in the ODBC [1] driver.

4.1.2 Throughput analysis

The results presented in this section come from the sum of the two in-

stances running the YCSB benchmark, representing the total of 50 concurrent

clients, and are the average of 5 independent runs.

As Figure 4.2 clearly depicts, and as expected, the throughput of the

pH1 middleware layer is lower than Cassandra’s without any transactional

guarantees. After the initial ramp up time of 40 seconds, the throughput

remains stable for the rest of time the test lasted (approximately 6 minutes).
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Figure 4.2: Throughput results for YCSB benchmark

It is also possible to establish a relationship between Cassandra’s and pH1’s

throughput evolution, which indicates that the throughput for pH1 is closely

tied to the underlying NoSQL database.

The introduction of the pH1 middleware layer only incurred in a 13% loss

in throughput, with a performance of 87% of the initial throughput registered

by Cassandra.

4.1.3 Latency analysis

To what concerns latency, Figure 4.3 exhibits three different behaviours.

Read only operations like the read and scan operations show larger latencies

for the pH1, when compared with Cassandra. Surrounding each of these

operations, there is the extra cost of transaction initialization, which justifies

the difference. In what regards the update and multi update operations, as
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they will modify the data sources, the addition of the transactional context

adds the penalty of transaction certification. A single update transaction

in the pH1 will be 3.5 times slower when compared with Cassandra due to

that fact. The multi update transaction has however better performance.

Although executed in a transactional context, the multi update transaction

is 2 times faster when compared with Cassandra; mainly by the fact that each

singular operation in it is executed in batch during the commit phase of the

transaction.

Figure 4.3: Latency results for YCSB benchmark

Figure 4.4 presents the histogram of completion time for the several oper-

ations used. From there we can verify that the peak time for scan operations

distances from the remainder operations. The off sync observed is in this

case justified by the underlying NoSQL database. As described in section

2.1.1, Cassandra may use one of many partitioners. As explained in the load

phase description, the random partitioner was used as it better balances data

across the Cassandra cluster. The fact that this partitioner does not order
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keys by it’s lexicographical value, but instead by its hash value, harms ranged

operations like scans. Scan operations suffer from this problem since the keys

present in a range may not be present in the same node, but scattered along

several of them. Therefore, during a scan operation, multiple nodes have

to be contacted which introduces an extra hop in communication, affecting

latency.

Figure 4.4 also allows us to better understand the distribution of laten-

cies per operation type. From there, we can extract that the average time

for a Update, Multi Update, Read and Scan operation is respectively: 13

to 14 milliseconds, 17 to 18 milliseconds, 7 to 8 milliseconds and 27 to 28

milliseconds.

Figure 4.4: Latency histogram for pH1

A more precise analysis of the latency on each operation type, allowed

us to verify that during the commit phase of a transaction, the average cost

of performing a write operation in the NPVS was about 2 milliseconds per
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transaction. This value represented in average 8.4% of spent time in a Update

transaction.

This along with other results are depicted in Table 4.1, where we can

verify the mean time on several stages for a transaction.

Characteristic Mean Time (ms)
Certification 1.18

Successful commit 8.32
NPVS Write Operation 1.9

Table 4.1: Mean time of several moments in the lifetime of a transaction

The time necessary to wait for a reply on the certification of a transaction

was on average 1.18 milliseconds per transaction. If the transaction could

successfully commit, then it would take another 8.32 milliseconds to flush

the modifications to the data sources as explained for the commit operation

in section 3.2.1.

Associated with these results there is a transaction success rate of 91.43%.

This means that we registered only 8.57% of aborted transactions.

The main conclusion that we can draw from this last test is that indeed

there was an increase in latency for all the tested operations except for the

Multi Update operation where there was a reduction of 50% of spent time in

this operation.
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4.2 TPC-C

In order to verify the versatility of our middleware layer, we used a sig-

nificantly different benchmark system. For this purpose we used PyTPCC1,

an optimized implementation of the OLTP standard benchmark TPC-C.

This benchmark uses 5 different types of transactions to simulate a sce-

nario where a company composed of several warehouses, distributed across

several districts, processes orders placed by clients. The transactions per-

formed by this benchmark are comprised of several read and update oper-

ations unlike the previous benchmark. TPC-C uses data scattered along 9

different tables, where only 8% of operations are read operations. The re-

mainder 92% are update operations, which characterizes TPC-C’s workload

as write heavy.

The throughput of this benchmark is measured in ”tpmCs” or ”transac-

tions per minute of New-Order” transactions.

4.2.1 Experimental setting

The experimental setting for this test was deployed in a distributed sce-

nario composed of 10 independent and equal machines with specification as

described in 4.1.1. As depicted in Figure 4.5, the Cassandra cluster was de-

ployed in 6 of these 10 machines, while one machine held The Status Oracle

(TSO).

The PyTPCC clients ran in the remainder 3 machines in total of 300

clients (100 clients threads per machine and 10 clients per warehouse), each

one co-located with a pH1 instance, in test runs that lasted for 45 minutes.

As in the the previous evaluation, we deployed this benchmark using

1https://github.com/apavlo/py-tpcc/tree/master/pytpcc
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Figure 4.5: Test setup for the TPC-C evaluation

two different scenarios. Firstly, we ran the benchmark over Cassandra with-

out the pH1 middleware. Secondly, we ran the benchmark using the pH1

middleware layer, thus introducing transactional guarantees.

4.2.2 Throughput analysis

Results regarding the scenarios described in the previous section are de-

picted in Table 4.2 and they represent the average results registered for the

machines that hosted the PyTPCC clients, in the the average of 5 indepen-

dent tests.

Configuration setup Throughput (tpmC)
(i) Cassandra 12960

(ii) Cassandra + pH1 7560

Table 4.2: PyTPCC results on average

Since the results for pH1 are bounded to the underlying database, the
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first scenario, (i) Cassandra, represents the maximum throughput that the

pH1 could possibly achieve for this configuration. The results achieved are

consistent with the ones presented for the YCSB benchmark, as they show a

throughput decrease when the pH1 middleware layer is introduced. In detail,

the results achieved by this second experiment (ii) incur in a 41% throughput

loss.

As expected, there is a significant throughput penalty when the pH1 is

introduced for the TPC-C benchmark. In comparison with the YCSB bench-

mark where only 12.5% of all transactions actually had composed operations

(Multi Update), in TPC-C every transaction was built from of composed

transactions, performing scan and write operations accordingly to the speci-

fied workload. Furthermore, the existence in some cases of several range scan

operations in almost all of the transactions performed by TPC-C, justifies

the bigger throughput penalty observed in comparison with YCSB, where

only 30% of all executed transactions where single range scan operations.

This second statement is specially relevant as range scan operations topi-

cally have smaller performance when executed over datasets scattered along

several data partitions, as it happens in Cassandra. Despite of that, as a

result, we can state that the pH1 is very versatile and can cope with both

read-only and write-heavy workloads with much reasonable results.
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Chapter 5

Conclusion

This thesis attempts to cover the lack of transactional guarantees of most

NoSQL implementations today by proposing a non intrusive transactional

middleware layer that can be used on top of a generic NoSQL database.

The approach is based on the client interface of the underlying NoSQL

database extending it with the capability to perform operations in a transac-

tional context. As the main features of this middleware layer, we highlight:

(i) the possibility to execute ACID compliant transactions with Snapshot

Isolation and (ii) the fact that by extending the simple NoSQL interface it

has a minimal impact on the database clients.

The prototype was built based in three different modules. Two of them

are part of the presented contribution and the third, the certifier/timestamp

oracle was reused from the OMID[22] project.

We tested our prototype on top of Apache Cassandra and ran a group of

tests using two different benchmarks in order to evaluate the overall cost of

adding transactional guarantees. In a nutshell, when using the YCSB bench-

mark, a read-intensive workload, throughput decreased by 13%, while with

TPC-C, a fully transactional and write-intensive workload the impact went

53
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up to 41%. While we do not have a similar system to compare these results

against, we believe they provide an accurate measure of the impact of offering

the transactional programming abstract with strict ACID guarantees.

5.1 Future work

One of the main goals for this project was to create a middleware that

would be able to be applied to any NoSQL database, even the ones that do

not offer support for versioned tuples.

Our prototype was implemented over Cassandra as a prototype, how-

ever it is our desire to test the pH1 middleware layer against other NoSQL

databases. As a result, we would like to verify that (i) our contribution is

able to offer the same set of guarantees and (ii) the relative cost of offering

these guarantees stays in the same order as the one achieved for Cassandra.

Finally, in the beginning of this project, there was a goal to include

a query engine as the client for our middleware, creating a transactional

system with SQL interpretation capabilities. Therefore, since this project

strayed from this initial objective, the integration of such component in our

contribution remains as a future goal. This will allow us to: (i) get a quanti-

tative comparison between our contribution and relational systems and (ii)

infer on the relative cost of adopting our contribution.
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