
Universidade do MinhoEscola de Engenharia

Diogo Manuel Rodrigues Santos Silva
ETL Systems Modelling with !
Coloured Petri Nets

Janeiro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia
Departamento de Informática

Diogo Manuel Rodrigues Santos Silva
ETL Systems Modelling with !
Coloured Petri Nets

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor Doutor Orlando Manuel de Oliveira Belo!
Professor Doutor João Miguel Fernandes

Janeiro de 2013

Modelling ETL Systems with Coloured Petri Nets

Diogo Manuel Rodrigues Santos Silva

Dissertação apresentada à Universidade do Minho para obtenção do grau de Mestre em Engenharia

Informática, elaborada sob orientação do Professor Doutor Orlando Manuel de Oliveira Belo e do

Professor Doutor João Miguel Fernandes.

2013

i

ii

Agradecimentos

A todas as pessoas que, de alguma maneira, me influenciaram positivamente durante o período de

criação desta dissertação, tanto a nível pessoal como académico. Aos meus orientadores e

professores, Orlando Belo e João Miguel Fernandes. A António Santos Silva, Helena Rodrigues, Daniel

Silva, Mónica Casado e a todos os amigos e colegas que me acompanharam no percurso académico

que agora termina.

iii

List of Acronyms

CDC – Change Data Capture

CPN – Coloured Petri Net(s)

DBMS – Data Base Management System

DML – Data Manipulation Language

DSA – Data Staging Area

DW – Data Warehouse

DWS – Data Warehousing Systems

ETL – Extract - Transform - Load

GUI – Graphical User Interface

LSN – Log Sequence Number

PN – Petri Nets(s)

SCD – Slowly Changing Dimension(s)

SCD-H – Slowly Changing Dimension(s) with maintenance of Historic records

SK – Surrogate Key

iv

Resumo

Modelação de sistemas de ETL com Redes de Petri Coloridas

Os sistemas de ETL (Extract-Transform-Load) são formados por processos responsáveis pela

extração de dados de diversas fontes, pela sua limpeza e transformação de acordo com os pré-

requisitos de um data warehouse, e finalmente pelo seu carregamento em estruturas

multidimensionais. Os processos de ETL são as tarefas mais complexas no desenvolvimento de um

sistema de data warehousing, sendo essencial modelar tais tarefas para que, durante a fase de

implementação, sejam considerados os requisitos certos do sistema. As Redes de Petri Coloridas

são uma linguagem de modelação gráfica usada no desenho, especificação, simulação e validação

de sistemas concorrentes.

Nesta dissertação é apresentado o estudo relativo à aplicação das Redes de Petri Coloridas

(RPC) no desenho conceptual e validação de sistemas de ETL (Extract-Transform-Load). Para o

iniciar foi feita uma pesquisa das abordagens já existentes, no que diz respeito à modelação

conceptual deste tipo de sistemas, para determinar se o seu desenho conceptual é normalmente

efetuado durante a implementação de Sistemas de Data Warehouse e também para determinar

quais as linguagens de modelação adotadas neste tipo de tarefa. Esta pesquisa confirmou que,

para além de não ser usual modelar conceptualmente sistemas de ETL antes da sua

implementação, as RPC nunca foram usadas para tal.

Para usar as RPC na modelação de sistemas de ETL foi feito um estudo mais aprofundado

dos conceitos desta linguagem; ao mesmo tempo foram selecionados para uma primeira

abordagem dois processos de ETL que, embora simples, são determinantes neste tipo de sistemas:

Surrogate Key Pipeline (SKP) e Surrogate Key Generation. Antes destes processos serem

v

modelados foi efetuado um estudo teórico relativo ao comportamento e estrutura de cada um, de

acordo com a metodologia proposta por Ralph Kimball (Kimball and Caserta, 2004). Os primeiros

modelos implementados são bastante acessíveis pois, para além de os processos correspondentes

serem relativamente simples, não necessitam de utilizar conceitos hierárquicos. Depois de testada

a capacidade das RPC no desenho e validação de tarefas mais simples, foi selecionado um

processo padrão nos sistemas de ETL – Slowly Changing Dimensions (SCD) – para dar

continuidade a este estudo, pois é uma tarefa mais complexa composta por operações mais

pequenas (ou subprocessos) e é por isso adequada para a introdução de conceitos hierárquicos.

 O último processo de ETL a ser considerado neste estudo é o Change Data Capture (CDC).

Existem variadas maneiras de implementar este processo; os métodos mais avançados são

automáticos e dependem do Sistema de Gestão de Base de Dados (SGBD) usado nas fontes

operacionais. Para implementar o modelo correspondente foi selecionado um SGBD e o seu

método de CDC analisado para que este fosse modelado de acordo com o seu comportamento.

Depois dos três módulos estarem completos, cada um deles representando uma processo padrão

de ETL, é possível modelar sistemas de ETL que sejam formados por estas operações. Para

terminar este trabalho de dissertação foi implementado um modelo, com RPC, para um sistema de

ETL baseado num data mart dado como exemplo, com o objetivo de demonstrar a aplicação

prática dos módulos implementados no desenho conceptual de ETL.

vi

Abstract

Modelling ETL Systems with Coloured Petri Nets

ETL (Extract-Transform-Load) systems are formed by processes responsible for the extraction of

data from several sources, cleaning and transforming it in accordance with some prerequisites of a

data warehouse, and finally loading it in its multidimensional structures. ETL processes are the

most complex tasks involved with a Data Warehousing System, being crucial to model them

previously so that, during the implementation stage, the correct set of requirements is considered.

Coloured Petri Nets (CPN) are a graphical modelling language used in the design, specification,

simulation and validation of large systems, characterized as being strongly concurrent.

In this dissertation the carried out study concerning the application of CPN in the conceptual

design and validation of ETL systems is presented. Initially, a brief research on the existing

approaches for the conceptual modelling of ETL systems was made, in order to determine if the

conceptual design is usually adopted during the implementation of DWS (Data Warehousing

Systems) and also to find out which modelling languages are mostly used in this kind of task. As it

was confirmed by this initial research, the conceptual modelling of ETL is not common and the CPN

is not one of the languages that have already been used to design and validate this type of

systems.

In order to use the CPN in ETL system design an in-depth study of this language’s concepts

was made; at the same time two of the most simple, yet very important, processes were selected

as a first approach and study cases: the Surrogate Key Pipelining (SKP) and the Surrogate Key

Generation. Prior to the design of each process, a theoretical study concerning its behaviour and

structure was carried out, according to the methodology proposed by Ralph Kimball (Kimball and

vii

Caserta, 2004). The first two designed models are the smallest presented here, as they model

relatively simple processes and, as such, do not need hierarchy concepts to be applied. After

testing the CPN modelling language in the design and validation of these simple tasks, the

modelling process moved on to more complex ETL standard tasks. The Slowly Changing Dimension

(SCD) was chosen to continue this study as it is composed of smaller operations (or sub-processes)

and presented itself as a great study case for the introduction of hierarchical concepts.

The last ETL task to be considered in this study is the Change Data Capture (CDC). There

are many different ways to implement this process; the more advanced ones are automatic and

depend on the DBMS used by the operational sources. To implement the corresponding CPN model

a DBMS (Data Base Management System) was selected, and its CDC process analysed, so that it

could be modelled accordingly. With these three complete CPN modules (or packages), each of

them representing an ETL task, it is possible to model ETL systems that are composed by these

operations. For this dissertation work to be completed a CPN model for an entire ETL system,

based on an example data mart, was designed with the objective of demonstrating the application

of the already defined modules in the conceptual design of ETL.

viii

Contents

1.! Introduction ... 1!

1.1.! Modelling ETL Processes ... 1!
1.2.! Motivation and Goals .. 2!
1.3.! Dissertation Structure ... 3!

2.! Coloured Petri Nets .. 5!

2.1.! Petri Nets .. 5!
2.2.! Coloured Petri Nets .. 11!
2.3.! The CPN Modelling Language .. 14!

2.3.1.! Places, colour sets and declarations .. 16!
2.3.2.! Transitions, arcs and arc expressions .. 18!
2.3.3.! Control structures: if-then-else and case ... 19!
2.3.4.! Fusion Sets ... 21!
2.3.5.! Hierarchy .. 22!

2.4.! Simulation of CPN models with CPN Tools .. 26!

3.! CPN in the Simulation of ETL Standard Tasks .. 33!

3.1.! ETL Processes, Some Standard Tasks .. 33!
3.2.! The Surrogate Key Pipeline ... 34!
3.3.! Slowly Changing Dimensions ... 39!

3.3.1.! The Prime Module (SCD-H) .. 42!
3.3.2.! The Data Verification Module .. 44!

ix

3.3.3.! The Insert Module ... 47!
3.3.4.! The Surrogate Key Generation Module .. 50!
3.3.5.! The Update Module ... 52!
3.3.6.! The Delete Module .. 55!
3.3.7.! Simulating the SCD-H .. 56!

4.! ETL CPN Modules .. 68!

4.1.! The Base for ETL CPN Modules ... 68!
4.2.! Change Data Capture ... 68!

4.2.1.! The Transaction Log .. 70!
4.2.2.! The Change Data Capture CPN Model ... 72!
4.2.3.! The Read Module .. 73!
4.2.4.! The Decode Module ... 76!
4.2.5.! The Audit Module .. 80!
4.2.6.! Simulating the CDC Process ... 82!

4.3.! The Selected ETL System .. 89!
4.3.1.! The ETL System CPN model ... 91!
4.3.2.! Simulating the ETL System CPN model .. 94!

5.! Conclusions and Future Work .. 97!

5.1.! Conclusions ... 97!
5.2.! Future Work .. 98!

Bibliographic References ... 101!

Web References ... 105!

x

xi

List of Figures
Figure 1 – Example of a PN model ... 7!
Figure 2 – Marking !" .. 7!
Figure 3 – Marking !# .. 8!
Figure 4 – Marking !$.. 8!
Figure 5 – Marking !% .. 8!
Figure 6 – Sequential execution .. 9!
Figure 7 – Concurrency .. 9!
Figure 8 – Synchronization .. 9!
Figure 9 – Mutual exclusion .. 10!
Figure 10 – Conflict .. 10!
Figure 11 – Example CPN of the TCP protocol .. 15!
Figure 12 – The TCP Protocol CPN model implemented with a Fusion Set 22!
Figure 13 – The TCP protocol module (prime module) .. 23!
Figure 14 – Operational Source module ... 24!
Figure 15 – The Network module .. 24!
Figure 16 – The ETL Process module ... 25!
Figure 17 – The CPN Tools GUI ... 26!
Figure 18 – The initial marking !0 (Opr. Source, Network, ETL Process and Prime modules) 28!
Figure 19 – The marking !1 (Operational Source and Network modules) 29!
Figure 20 – The marking !2 (Network and ETL Process modules) ... 29!
Figure 21 – The marking !3 (Network and ETL Process modules) ... 30!
Figure 22 – The marking !4 (Operational Source and Network modules) 30!
Figure 23 – The marking !5 (Operational Source and Network modules) 31!
Figure 24 – The marking !6 (Network and ETL Process modules) ... 32!

xii

Figure 25 – The marking !7 (Operational Source and ETL Process modules) 32!
Figure 26 – The Surrogate Key Pipeline model ... 35!
Figure 27 – The initial marking !" .. 37!
Figure 28 – The marking !# ... 38!
Figure 29 – The final marking !#$.. 39!
Figure 30 – The SCD-H prime module .. 42!
Figure 31 – The Data Verification module .. 44!
Figure 32 – The Insert module .. 48!
Figure 33 – The Surrogate Key Gen module - Assign SK .. 50!
Figure 34 – The Update module .. 52!
Figure 35 – The Delete module ... 55!
Figure 36 – The SCDH module - Initial marking !" .. 57!
Figure 37 – The Data Verification module - Marking M1 .. 58!
Figure 38 – The Data Verification module - Marking !& .. 59!
Figure 39 – The SCDH module - Marking !' .. 60!
Figure 40 – The Insert module - Marking !#" .. 60!
Figure 41 – The Surrogate Key Gen module - Marking !#" ... 61!
Figure 42 – The Surrogate Key Gen module - Marking !## ... 61!
Figure 43 – The Insert module - Marking !## .. 62!
Figure 44 – The Insert module - Marking !#$... 62!
Figure 45 – The Update module - Marking !#(.. 63!
Figure 46 – The Update module - Marking !#) .. 64!
Figure 47 – The Delete module - Marking !#* ... 65!
Figure 48 – The Delete module - Marking !#' ... 66!
Figure 49 – The Update module - Marking !$) .. 66!
Figure 50 – The CDC process prime module ... 72!
Figure 51 – The Read module ... 74!
Figure 52 – The Decode Module .. 77!
Figure 53 – The Decode implemented with Hierarchy ... 79!
Figure 54 – The Audit module ... 80!
Figure 55 – The Read module - Initial marking !" ... 82!
Figure 56 – The Read module - Marking !# ... 84!
Figure 57 – The Read module - Marking !$... 85!

xiii

Figure 58 – The Read module Marking !% ... 86!
Figure 59 – The Decode module - Marking !% ... 87!
Figure 60 – The Decode module - Marking !+ ... 87!
Figure 61 – The Audit module - Marking !+ ... 87!
Figure 62 – The Audit module - Marking !& ... 88!
Figure 63 – The Audit module - Final marking .. 89!
Figure 64 - Sales Data Mart Fact Schema ... 90!
Figure 65 – The ETL system CPN model ... 92!
Figure 66 - Surrogate Key Gen Sub-modules of the SCD-H 1, SCD-H 2 and SCD-H 3 modules 93!
Figure 67 – The SKP Module ... 94!
Figure 68 – The ETL System CPN model - Initial marking !" .. 95!
Figure 69 – The ETL System CPN model - Final marking !#$+ .. 96!

xiv

List of Tables
Table 1 – A Transaction Log View .. 70!

xv

Introduction

1

Chapter 1

1. Introduction

1.1. Modelling ETL Processes

The volume of information generated by organizations has been growing exponentially in the last

decade, due to the advances in the information technologies, which made it easier to store, query

and manage large volumes of data. Today business activities are supported by the information

stored in organizational data repositories and used to simplify and assist decision-makers, namely

through the use of Data Warehousing Systems (DWS) facilities.

 ETL (Extract-Transform-Load) systems are one of the most important components of a DWS

(Kimball and Caserta, 2004), as they are responsible to feed the data warehouses, ensuing high

levels of data quality and, consequently, adding value to decision making processes. They are

formed by specific processes of extraction, cleaning and integration of data, usually taking place in

a Data Staging Area (DSA), that is responsible for adjusting, correcting and structuring data

coming from disparate information sources so that decision makers can exploit them The result is a

highly specialized single repository, containing high quality data that are detailed, historic, subject

oriented and non volatile (Inmon, 1996; 2004).

 Usually, an ETL process comprises three main stages, extraction, transformation and

loading. The first consists on the extraction of relevant information from its operational sources; in

most cases the collected data has poor quality and errors that makes it inadequate to be directly

used for populating a Data Warehouse (DW) (e.g. duplicate data, impossible or wrong values,

Introduction

2

inconsistent values due to typing errors). In the following stage – transformation – a series of rules

are applied in order to increase the quality of the extracted data. This is done by correcting several

errors through rectification and homogenization processes, and through the conversion of the

data’s format to the one used in the data warehouse, like measure units conversion, derived

attributes calculation, surrogate key generation, matching of data from different sources, among

other things. Finally, the populating process can be done in two distinct ways; the refresh method

rewrites all the information stored in the DW and the update method updates it with new data.

 The ETL is the most complex and technically challenging process among all of the data

warehouse process phases (Golfarelli and Rizzi, 2009), as it easily consumes about 70% of the

resources needed for its implementation and maintenance (Kimball and Caserta, 2004), as well as

a big slice of the project time and budget. Technically, this is a difficult process to implement due

to the high learning curve presented by a lot of the ETL tools available on the market, which don’t

offer the possibility to model the system conceptually, forcing the design and development to be

made in an ad-hoc fashion by many organizations (Vassiliadis et al., 2002). Furthermore, a poor

implementation of an ETL process, which may result in low quality information, can entirely

undertake a DWS (English, 1999), bringing unbearable additional costs. For these reasons, it

becomes necessary to adopt some means for conceptual modelling, design and validation

methodologies for the development and implementation of ETL systems, as well as proper tools to

model these systems. Despite being already the centre of many research efforts (Vassiliadis et al.,

2002) (Simitsis, 2003) (Abelló et al., 2006) (Golfarelli, 2008), ETL conceptual modelling still

remains almost as an island in the entire ETL life-cycle development, remaining a significant hole

between the conceptual modelling and the next ETL stages, namely the ones related to logical

modelling and, of course, physical implementation.

1.2. Motivation and Goals

The main objective of this dissertation work is to study and discuss the application of Coloured

Petri Nets to the specification and validation of ETL systems. By proposing this new approach we

hope to reduce implementation and maintenance costs, as well as the development time and risk

of failure of a final DWS, which are frequently associated with a poor implementation and

validation of an ETL process. As a first approach to this problem, Petri Nets (PN) (Petri, 1966)

come into attention, being a mathematical modelling language applied to a wide variety of

systems. PN are very adequate to describe and study information processing systems that are

Introduction

3

characterized as being concurrent, asynchronous, distributed, non-deterministic and stochastic

(Murata, 1989). Being these some of the characteristics that are present in ETL systems, using PN

to model them seems to be advantageous, once it is possible to graphically represent them and

subsequently simulate the concurrent activities of the system. Coloured Petri Nets (CPNs)

constitute a discrete event modelling language that combines the capabilities of the PN to those of

a high-level programming language (Jensen and Kristensen, 2009). Additionally, they introduce

hierarchic and data concepts, making them ideal for the modelling of ETL systems.

In other way, this work provides a formal and well-sustained model to specify and model the

behaviour of ETL systems using the CPN modelling language. Thus, in this dissertation the carried

out studies about modelling and validation of three of the most important and commonly used ETL

processes are presented: the Surrogate Key Pipeline, the Slowly Changing Dimensions with Historic

and the Change Data Capture cases. To conclude, each of the modelled processes is to be used as

an independent package to build and model an ETL scenario that is composed of one or more

instances of each of the available modules.

1.3. Dissertation Structure

 In addition to this chapter, this dissertation integrates three more chapters, organized

according to the various topics that were addressed in this dissertation work. In chapter 2, an

introduction to the CPN modelling language is presented, starting with the characteristics, formal

definition and examples of the original concept of PN, followed by the presentation of one of its

high-level extensions, the CPNs - what they are, what are their characteristics -, followed by some

examples of their industrial application and the advantages of using them. In this chapter, a brief

introduction to the CPN modelling language is also presented by the means of an example of a

CPN that models the transmission of packets through the TCP protocol between an operational

source and an ETL process. The chapter is concluded demonstrating the simulation of this model in

the CPN Tools environment. The CPN models created for each of the selected ETL processes are

presented in chapters 3 and 4. In the beginning of each section a description of the corresponding

ETL process is given prior to the presentation of the implemented CPN model and its

characterization. Each section is concluded by the simulation carry out of the execution of the

model produced. Finally, in chapter 5, the conclusions drawn from this study are presented, as well

as some future research lines.

Introduction

4

Coloured Petri Nets

5

Chapter 2

2. Coloured Petri Nets

2.1. Petri Nets

PN are a mathematical and graphical modelling language applied in the description of a wide

variety of systems. They are used to represent logical interactions between system components

and, therefore, are very fit to model concurrent, sequential or synchronized processes, among

others, in distributed systems. PN can be used as a graphical tool, allowing for a system to be

designed, and its dynamic operations analysed in a visual manner. It is also possible to define the

behaviour of the system through a set of algebraic equations and mathematical models.

 The origin of the PN dates back to 1962, when Carl Adam Petri defended his PhD thesis

"Communication with Automata", submitted to the Science Faculty of Darmstadt Technical

University in Germany, in July 1961 (Petri, 1966). Petri’s work had very little application in the

information technologies during the early 60’s. Then, computers consisted of giant mainframes

that could take an entire building’s room, while computer networks consisted of telephony services

used for the communication of the mainframe’s terminals. However, Petri, together with his staff

and numerous other partners, continued his work and research on PN, until in 1970 they were

featured in MIT’s Project MAC Conference on Concurrent Systems and Parallel Computation

(Project MAC, 1970). This paved the way for further research on PN by different entities, resulting

Coloured Petri Nets

6

in an accentuated growth in the number of organized workshops and released publications, such

as conference proceedings on PN, reports and thesis. Since then, the PN have been applied in

projects from different areas, such as Communication Protocols, Performance Evaluation, Software

Design and Process Modelling, among others.

 A PN is a directed bipartite graph consisting of two types of nodes – places and transitions –

connected by directed arcs, with an initial state that is designated as initial marking M0. One arc

can connect a place to a transition and a transition to a place, but never two nodes of the same

type; a place connected to a transition is called the input place of that transition and a place

connected by an arc from a transition is called the output place. In a graphical PN model, places

are represented by circles, transitions by rectangles and arcs by directional arrows, which can be

labelled with an integer representing their weight (omitted if the weight is one), i.e., the number of

parallel arcs represented by a single arc. Each place may contain a discrete number of marks,

called tokens, consumed or passed by transitions once they are fired. In order for a transition to

activate, all of its input places need to possess at least one token that will be consumed and

passed to its output place(s). Tokens are graphically represented by black dots inside the

respective places and the distribution of such tokens by the existing places is called the marking of

a PN model. In systems modelling, transitions represent the events or processes that cause the

system’s state to change while the places represent the necessary conditions for the event to take

place; the tokens in a place can be looked at as resources or data items that are available, in the

case of input places, or released, in the case of output places.

 A PN is formally defined as a 5-tuple !" ! !!!!! !!!!!!!where:

• ! ! !!!!!!!!!! !!" is the set of places in the net;

• ! ! !!!!!!!!!! !!" is the set of transitions is the net;

• ! !" is the input function of transition !, indicating its input place(s);

• ! !" is the output function of transition !, indicating its output place(s);

• !" ! !!!!!!!!!!!!!! !!!"! is the marking of the model;

Coloured Petri Nets

7

Figure 1 – Example of a PN model

• ! ! !!!!!!!!!!!!!
• ! ! !!!!!
• ! !! ! !! ! ! !! ! !!!!!
• ! !! ! !! ! ! !! ! !!
• !! ! !!! !! !! !!

In Figure 1 a simple PN is represented, followed by its characterization according to the previously

presented definition. This PN is composed by four places, two transitions and five arcs connecting

these nodes. !! is the input place of the transition !!!and its output place is !!; relatively to

transition !!, it has two input places, !! and !!, and one output place !!. In the model’s initial

marking !! there are two tokens in !! and a single token in !!. As it has been referred, a PN

model is executed by firing its transitions, which remove tokens from their input places and places

them in their output places; the execution of the presented PN model is shown below.

Figure 2 – Marking !"

Coloured Petri Nets

8

Figure 3 – Marking !#

Figure 4 – Marking !$

Figure 5 – Marking !%

In the initial marking – !0 – displayed in Figure 2, there is a single enabled transition – !0 – with

two tokens in its input place. For a transition to be enabled there must be at least one token in all

of its input places, which is not the case for transition !1 since there is one token in its input place

!2, but none in its input place !1. When the transition !0 is fired one of the tokens is removed

from its input place !0, passed to its output place !1, and the next marking – !1 – is reached

(Figure 3). In this marking transition !1 is enabled, since there is now one token in both its input

places, as well as transition !0, since there is a remaining token in !0. In this stage, as both

transitions are enabled, either of them can be fired. The next marking – !2 – is reached after

transition !1 is fired, where both of the tokens in the places !1 and !2 are consumed and the

resulting token is passed to the output place !3 (Figure 4). The remaining token resides in !0

Coloured Petri Nets

9

since transition !0 wasn’t fired in the previous marking and is still enabled. The final marking !4 is

displayed in Figure 5, and has no enabled transitions, since the conditions for such are not met.

There is one token in !1, resulting from the firing of transition !0, which is not enough to enable

transition !1 since one of its input places – !2 – has no tokens, and one token in the place !3.

 As it has been referred previously, PN are adequate to describe concurrent, sequential and

synchronization processes, but they can also be used to effectively model and manage conflict and

mutual exclusion processes, which are very common in real systems. The next presented examples

illustrate the use of PN to model these activities.

Figure 6 – Sequential execution

Figure 7 – Concurrency

Figure 8 – Synchronization

Coloured Petri Nets

10

Figure 9 – Mutual exclusion

Figure 10 – Conflict

The modelling of a process’s sequential execution is represented in Figure 6. In this net transition

!1 can only be fired after transition !0, which is the one with consumable tokens in its input place

(i.e., ,"), hence the precedence constraint ‘!0 ! !1’ is enforced. In Figure 7, we can see a

concurrent process represented by transitions !1 and !2. When transaction !0 is fired, the token

removed from !0 is passed to both of the transition’s output places – !1 and !2 – simulating a

concurrent (or parallel) execution. The model presented nest (Figure 8) represents the

synchronization between two concurrent processes. In this example the input places of the

transition represent the resources freed by each process. In this case, transition !0 activates only

when it has enough resources from its concurrent processes, that it, when there is at least one

token in each of its input places. Two mutual exclusive processes are represented in Figure 9.

These kinds of processes cannot be executed at the same time if they have shared resources that

are consumed by a single process at a time. In this example the tokens in the place !2 (i.e., the

input place of transitions !0 and !2, and the output place of transitions !1 and !3) represent the

shared resources used to fire either transition !0 or transition !2. The final example (Figure 10)

represents two processes in conflict. Transition !0, representing the activation of the first process,

and transition !1, representing the activation of the second process, are both enabled but only one

of them can be fired, leading to the disabling of the other transition.

 The use of PN is very advantageous in systems modelling. The examples presented

Coloured Petri Nets

11

previously clearly illustrate the simplicity of these nets, being their creation and manipulation quite

easy and straightforward. They are also very adequate to describe common system activities, e.g.,

concurrency, synchronization, or conflict. This modelling tool is also very scalable as the created

models can grow and be adapted as the system’s size and complexity increases. For instance, if

the number of resources increases, one can simply increase the number of tokens in certain places

without any other modification in the entire model. The PN, as a graphical tool, provides a way of

visualising the implemented models, which is very useful for the system modeller as the modelling

can be done exclusively in a GUI, but also for the users of the system that can easily analyse and

study its behaviour.

 One disadvantage of the PN is that their lack to support time, making it impossible to model

systems where time plays a major role, which is the case for many real systems. Another

disadvantage of these nets is that there is no distinction is made between the existing tokens, and

the lack of hierarchy concepts. Because of this, the created models tend to grow exponentially as

the modelled system’s size increases, since it is impossible to structure the net into different

modules, making it difficult to graphically analyse and manage.

 To overcome these weaknesses, as well as to enhance their modelling power, several

extensions to the original PN have been developed and new properties added, such is the case of

the Time Petri Nets (Popova, 1991), where each transition is associated with a firing time.

Hierarchy concepts have also been added to these nets, allowing for different abstraction levels to

be created and analysed independently. The assignment of a data type and a value to each token

led to the creation of the commonly called high-level Petri Nets, such as the Coloured Petri Nets.

There are many more extensions to the original PN. In this work the Coloured Petri Nets will be

used for the ETL system modelling.

2.2. Coloured Petri Nets

Coloured Petri Nets (CPN) (Jensen, 1994; 1997; 1998), an extension to the original Petri Nets, is a

graphical language that, much like is predecessor, is very adequate for design, specification,

simulation and validation of a wide variety of systems with concurrency, communication and

synchronization as their main characteristics. It was created in 1979 by the CPN group – Aarhus

University, Denmark – to fill two existing gaps in the original PN that hampered their practical

Coloured Petri Nets

12

application in systems of the size and complexity normally found in industrial projects: the

inexistence of data and hierarchical concepts (Jensen and Kristensen, 2009).

 The foundations of the CPN graphical notation come from the low-level PN, and they are

also governed by the same set of basic rules, with some minor alterations. A CPN is also

represented by a directed bipartite graph with places and transitions (i.e., nodes) connected by

directed arcs, and an initial state called initial marking. The arcs connect places to transitions and

vice-versa. A place is designated input place if it directed, by an arc, to a transition, or output place

if a transition is directed to that place. These objects are graphically represented in the very same

way as in the low-level PN: circles or ellipses for places, rectangles or squares for transitions and

directed arrows for arcs. The places and transitions, however, can now be labelled with a unique

name and the arcs can possess an arc expression instead of its weight. Once again, places may

have a discrete number of tokens, consumed when a transition is fired. A transition may fire if it is

enabled, which only happens when all of its input places possess at least one token.

 In contrast to what happens in the original PN, where tokens, simply drawn as black dots,

were indistinguishable, in CPN each token has a data value, i.e., a colour, of a predefined type,

i.e., a colour set. The primitives used for data types definition, as well as the manipulation of data,

are provided by CPN ML (CPN ML, 2012), a high-level functional programming language based on

Standard ML (Standard ML of New Jersey, 2012); with the introduction of the colour concept every

token is differentiated from each other, allowing for a more precise and more detailed description

of the modelled system. For this reason CPNs are referred to as high-level PNs, but they also

support the valuable concepts of hierarchy and time.

 With the CPN modelling language, it is possible and convenient to build models for large and

complex systems, which are composed by several smaller nets. The idea is to use a number of

modules that are related and communicate to each other through a well-defined interface, in order

to construct a large model. The main advantage in building a hierarchical CPN is that each of the

modules can be designed, tested and validated independently, allowing the system modeller to

work both bottom-up or top-down, and also allowing for a system to be built and visualised with

several levels of abstraction, resulting consequently in smaller and more compact models. The time

taken to execute certain system activities can also be captured through the time concept, also

included in the CPN modelling language, allowing it to be applied in the modelling and validation of

real-time systems.

 A given CPN model is executable and is both state- and action-oriented, i.e., it describes the

events that make the state of the system to change. Using CPN Tools, a tool that supports the

Coloured Petri Nets

13

construction and manipulation of CPNs, it is possible to simulate the behaviour of the modelled

systems. Two kinds of simulations are available: automatic and interactive. In an automatic

simulation there is no user interaction and the model is executed as fast as possible, much like a

program execution, in order to test its overall speed and performance. An interactive simulation

consists on a step-by-step execution of the model where the user determines the next step, by

choosing between the enabled transitions, and observes the effects of each individual step

graphically. This kind of simulation is very useful for a detailed analysis of the model, for

investigating the different existing scenarios in the net and to check the behaviour of the model.

 As far as we know, CPNs haven’t yet been applied in the design and validation of ETL

systems; they have, however, been successfully applied in numerous industrial and academia

projects worldwide from distinctive areas, such as software development, workflow and business

processes, protocols and networks, and even military systems. Concerning the Protocols and

Networks area, the CPN have been used to model the different versions of the TCP protocol and to

study and analyse its behaviour and performance (Figueiredo and Kristensen, 1999). They have

also been used to model a switched LAN network and its response time evaluated through CPN

Tools (Zaitsev, 2004). In an industrial project at Ericsson Telebit, the CPNs were applied in the

development of the edge router discovery protocol (ERDP) for mobile ad-hoc networks (Kristensen

and Jensen, 2004). The CPNs were used for the design and specification of this protocol, allowing

for the investigation of its behaviour, as well as the detection of several design errors in an early

stage of the development.

 Other major companies, although in different areas, have also used the CPN modelling

language and its supporting computer tools in industrial projects development. Nokia used them to

model and analyse the interactions between the user and the interface (UI) of a new family of

mobile phone software (Xu and Kuusela, 2001) and, in a different project, they were used to

model and simulate the features of the company’s mobile phones (e.g., voice calls, text messages,

games) interaction patterns (Lorentsen et al., 2001). Hewlett-Packard has also used the CPN in

industrial projects at the HP Laboratories in Palo Alto, USA. In one of these projects the CPN were

used to model and analyse their on-line transaction processing system, allowing for key decisions

about the system’s structure to be evaluated from the simulation of the constructed model

(Cherkasova et al., 1993). The CPN have also been applied in other kinds of systems, familiar to

everyone in the every-day life, such as in the modelling of traffic control systems (Perkusich et al.,

1999), for the visualization and analysis of such system’s behaviour, and also in the analysis of the

Coloured Petri Nets

14

planning process for airplane arrivals in air traffic control (Oberheid and Soffker, 2008). A complete

list of industrial applications of CPNs can be consulted in (AarhusUniversity, 2012).

The advantages of using CPN in systems modelling are quite evident and some of them have

already been described, such as the existence of an appealing graphical notation, the possibility to

carry out simulations, in order to test and validate wide variety of systems, and a hierarchic

representation that, together with CPN ML, makes it possible to create compact models. Many of

the CPN concepts are also present in other programing languages that system modellers are

certainly familiar with, lowering its learning curve; it is also possible to add time concepts to

models and to verify the systems’ properties through the model’s formal representation. The CPN’s

supporting tools, such as the Design/CPN and more recently CPN Tools, allow for the

implementation, simulation, analysis and validation of the system’s models, paving the way for the

practical application of the CPN in large industrial projects.

2.3. The CPN Modelling Language

To introduce CPN modelling language, as well as the functional language used in CPN based

models, an example that represents the transmission of data from an operational source (OS) to

the corresponding ETL process, using the Transmission Control Protocol (TCP), is used (figure 11).

The implemented model represents the establishment of a connection between two hosts, an OS

and an ETL process, so that some segments of data can be transferred from an OS to a Data

Staging Area (DSA) of a Data Warehouse, and then used by an ETL process. After the transference

of data is completed the connection is terminated. A practical example of such a system is, for

instance, the request of the audited data in an operational source by a Change Data Capture (CDC)

ETL process. This example focuses exclusively on the establishment and termination of the

connection between the two hosts. The data transfer process is represented in this example by the

simple transmission of segments, and the respective acknowledgments, over the network and no

data is loss during its transmission to keep the model simpler. The modelling of a communications

protocol over an unreliable network, using acknowledgments, sequence numbers and

retransmissions to assure that data packets are delivered in order is described in detail in (Jensen

and Kristensen, 2009).

 In TCP, the process for establishing a connection between two hosts in a IP based network

is often called the three-way handshake, TCP-handshake or SYN-SYN-ACK, and is designed so that

Coloured Petri Nets

15

the network and port parameters can be negotiated between the two computers trying to

communicate. The host trying to establish a connection sends a SYN (synchronize) packet to the

second host, upon receiving it, a SYN-ACK (synchronize-acknowledgement) packet is sent back; at

this stage the second host has acknowledged that the SYN packet was received and sends its own

SYN packet. Finally, the first host replies with an ACK packet and, when received by the second

host, the connection is established. For the connection to terminate, each side has to send a FIN

packet and await the reception of an ACK packet from the other side, meaning that four packets

are used, at most, in this process. A three-way handshake is also commonly used to terminate the

connection; the second host, upon receiving the first FIN pack, can send a FIN-ACK packet to

acknowledge the reception of the first packet and issuing the termination of the connection at the

same time. In this model, these types of packets are represented by their flags (e.g., ‘SYN’, ‘ACK’,

‘FIN’). The exact structure of the TCP segment is not modelled in this example so that the

presented model is simple and easier to read, but complex enough for the presentation and

explanation of the general concepts of the CPN modelling language and CPN ML.

Figure 11 – Example CPN of the TCP protocol

The implemented model that describes the establishment and termination of a connection in the

TCP protocol is presented in Figure 11. The left part of the model describes the OS, while the right

part the ETL Process, and the middle part (in red) models the Network. The green part of the

!"#"

$%

$%

$"&'(!()*
+,-.+/01)223+,-.4516+7
8+9:.+/01)223+9:.4516+7
8+516+/05$;3<7

1)223+516+7

$=

5$;3&7
5$;3&7

1)223!7

>*($=(/(<
#?'2(1)223+,-.+7
'@&'(1)223+9:.+7

1)223!7

AB!C=3!7

AB!C%3!D$%7

$=

E"#" E"#"

!"#"F!

,'G3&D!7

E"#"E"#"

,'G3&D!7

$= 3&D!7

H'$'>I'
516

H'$'>I'
H'&B)2&'

JK"2&L>#
C%4C=

H'$'>I'
HMA'&#

H'$'>I'
,'GL'2#

JK"2&L>#
C=4C%

,'2!
,'GL'2#

N$=/%D
$%/%O

P&#"Q@>&?R
J'KL>2"#'

N$=S0=O

1

E5J5

E

E5J5

1)22
%

<

:.J

E"#"

++

,JH:.T

U

E5J5

1)22
=

<

:.J

5

E5J5

J1V
,'G

=W3=D+PJX(+7YY
=W3%D+"2!(+7YY
=W3ZD+1V.(+7

J1V,PT

V[X\]

Coloured Petri Nets

16

model represents the connection management (i.e. establishment and termination of the

connection) for both hosts and the blue part models the transmission of packets over the network.

The net is composed of eight places, eight transitions, directional arcs connecting these nodes and

several inscriptions next to the arcs, places and transitions, written in CPN ML. The names of the

places and transitions are mandatory, and are presented inside the circles or rectangles. They have

no formal meaning, but are of great importance as they improve the model’s readability. The state

of the modelled system is represented by the places, together with the existing tokens that mark

them, while the transitions represent the actions that cause the system’s state to change.

2.3.1. Places, colour sets and declarations

The state of the OS is modelled by the places TCP Seg, representing the TCP segments that will

be transmitted over the Network from the OS to the ETL process, and Conn1 that models the

status of OS’s connection. The state of the ETL process is modelled by the place Data,

representing the DSA with the data received from the OS, and Conn2 that models the status of

this host’s connection. The Network’s state is represented by the places A and B, representing any

kind of data (e.g. data packet, SYN packet, or FIN packet) before and after it is transmitted from

the OS to the ETL process, and C and D, representing data being transmitted from the ETL

process to the OS.

 The colour sets of the places (i.e., their type) can be defined by the means of an inscription

usually written bellow the place and is used to define the set of colours (i.e., data values) that the

tokens in that place can have. In this example, the existing colour sets are written in uppercase

letters below the corresponding places. The places Conn1 and Conn2 have the colour set INT. An

integer is used to represent the connection status of both hosts, where ‘0’ stands for no

connection, ‘1’ for pending connection or awaiting time out to disconnect and ‘2’ for connection

established. The places A, B, C and D have the colour set DATA, the place TCP Seg!has the

colour set TCPSEG, and, finally, the place Data has the colour set STRING. In CPN ML, colour sets

are defined using the keyword colourset; lets see how the referred colour sets can be defined in

CPN ML:

 colset INT = int;

 colset STRING = string;

Coloured Petri Nets

17

The colour set INT is defined to be equal to the integer type and the STRING colour set is defined

to be equal to the string type. This means, that the tokens in Conn1 and Conn2 must have values

of the integer type and the tokens in Data must be strings. These colour sets are called simple as

they are not constructed from other colour sets. Other examples of simple colour sets are Units,

Booleans, Enumerations and Indexes. The TCPSEG and DATA colour sets are implemented as:

 colset TCPSEG = product INT * STRING;

 colset DATA = union Seg:TCPSEG + Ack:INT + Conn:STRING;

These are compound colour sets as they are constructed from other, existing, colour sets. The

colour set TCPSEG is defined to be the product of the INT and STRING colour sets and the tokens

of this type are represented by a pair where the first element represents the sequence number of

the TCP segment an the second element represents the data in that segment. The colour set DATA

is the union of the TCPSEG, INT and STRING colour sets and models the different types of data

packets that can be transmitted over the network: TCP segments (Seg), acknowledgment of the

transmitted segment (Ack) and the segments used to manage the connection (Conn). This colour

set is used so that the places A, B, C and D can handle these different colour sets at the same

time, by using the correct constructor in the arc expression when passing a token to one of these

places. The network module is greatly simplified by using this colour set as the two existing

transitions and four places are sufficient to transmit three different kinds of packets.

 Places also have an optional inscription used to define their initial marking, usually written

above the circle representing the place. The places Conn1 and Conn2 have the value ‘0’ as their

initial marking, meaning that in the model’s initial marking, both of these places have one token

with the colour ‘0’, indicating that they are disconnected in the beginning of the model’s execution.

The initial marking of Data is “”, i.e., an empty string, indicating that no data has been received by

the ETL process in the beginning of the execution. The initial marking of the place TCP!Seg is

‘1`(1,”CPN ”) ++ 1`(2,”and “) ++ 1`(3,”ETL “)’, which represetns the packets that will be

transmitted: three tokens of the colour set TCPSEG, i.e., a product of an integer and a string. The

++ and ` operators allow for the construction of a multi-set of token colours. The number before

the ` operator indicates the number of that colour’s occurrences and the ++ operator returns the

union of two multi-sets. The places’ initial marking can also be defined as a constant value and

used as an inscription in the place, which is useful when a place’s initial marking is formed by a

large multi-set. The initial marking of TCP Seg is be defined as:

Coloured Petri Nets

18

 val TCPsegments = 1`(1,"ETL ")++ 1`(2,"and ")++ 1`(3,"CPN ")

2.3.2. Transitions, arcs and arc expressions

The events that cause the system’s state to change are represented by the eight existing

transitions. The Establish/Terminate transition is found in the OS part of the model and is

responsible for establishing the connection with the ETL process, terminating it after all the TCP

segments are transmitted. The connection establishment and termination requests are received

and processed by the transition Receive Request on the right part of the model. The response is

received and processed in the OS side by the transition Receive Response. The transitions in the

Network part of the model are responsible for transmitting the data over the network from the OS

to the ETL process and vice-versa. Finally, the transition Send Segment is responsible for sending

the TCP segments (one at a time) to the ETL process, where they are received and processed by

the transition Receive Segment; the acknowledgment of the segment sent to the ETL process is

received in the OS side by the transition Receive Ack.

In CPN models transitions are also allowed to have inscriptions in CPN ML. Apart from the

transition name, three types of inscriptions can be associated with transitions and they are all

optional. Guard expressions are CPN ML Boolean expressions that evaluate to true or false and are

surrounded by square brackets. A guard expression is used to test the input arc expression,

preventing the transition from enabling if the expression evaluates to false - a guard may also be

formed by multiple expressions. It is also possible to use time expressions to delay the firing of a

transition, and code segments, but these two types of inscriptions weren’t used in model’s

transitions. A priority value can also be associated with a transition, even though this isn’t

considered to be an expression. All transitions have the normal priority value by default and a

transition with lower priority is enabled only if none of the normal priority transitions is enabled.

 Like the PN, when a transition is fired a token is removed from the transition’s input places

and placed in its output places. The colour of the tokens passed to the output places are

determined by the arc expression in the corresponding arc. Bidirectional arcs can also be used in

CPN models. A place connected to a transition by this type of arc is both an input and output place

for that transition, when the transition is fired a token is removed from the input place, used by

the transition, and returned to the place. The arc expressions are written in CPN ML and can be

Coloured Petri Nets

19

formed by variables, operators, constants or functions. The variables used in CPN models have to

be bound to a value of a given colour set and can be defined with the keyword var as:

 var s, c1, c2 : INT;

 var data, d: STRING;

 var Data: DATA;

The variables s, c1 and c2 must be bound to an integer value. For example, the variable c1 in the

arc expressions connecting the place Conn1 with the transitions Establish/Terminate, Receive!
Response and Send!Segment must be bound to an integer value that represent the status of the

connection (i.e., ‘0’, ‘1’ or ‘2’). The same happens when using this variable in the guard

expressions of the transitions Establish/Terminate and Send!Segment. The variable c2 is used

to represent the connection status of the host holding the ETL process and the variable s is used

to represent the sequence number of a TCP segment. The variables d and data are bound to

string values and are used to represent the data in the TCP Segment transmitted over the network.

The expression (s,d) (i.e., an integer and a string) in the arc connecting the place TCP!Seg with

Send!Segment is composed by two of the just described variables and is used to represent a

token with a value of the TCPSEG type, i.e., a product representing the TCP segment. The final

defined variable – Data – is used to represent any kind of packet transmitted over the network, so

that only four places with the same colour set (DATA) and two transitions are needed to represent

the network. Notice how some of the arcs connected to these places, and connecting them to the

transitions, use the defined constructors; for instance, the arc expression Seg(s,d), in the arc

connecting Send!Segments to A, is used to tell that the data value that will be bound to the

variable Data in the arc expression connecting A to Transmit!H1-H2 represents a TCP segment

with the values that are bound to (s,d).

2.3.3. Control structures: if-then-else and case

Now lets analyse the arc expressions that use the available control structures: if-then-else and

case. The arc connecting the transition Establish/Terminate to the place A has the following

expression:

Coloured Petri Nets

20

 if c1 = 0

 then Conn("SYN")

 else Conn("FIN")

When the transition is fired a connection packet is generated in this arc expression according to

the connection status, i.e., the value of c1 removed from Conn1 by the transition. If c1 is bound

to ‘0’, then the OS is not connected and a SYN is sent to the ETL process. Otherwise, if a

connection is established, a FIN is sent to the ETL process. In this arc expression, the possible

values bound to c1 are ‘0’ or ‘2’, since the transition is not allowed to activate if the value bound to

c1 is ‘1’ as is implemented by the guard expression [c1 <> 1]. To illustrate the use of the case

control structure let’s look at the expression in the arc connecting the transition Receive!Request

to D:

 case d of

 "SYN"=>Conn("SYN-ACK")

 |"FIN"=>Conn("FIN-ACK")

 |”ACK”=> Ack(0)

This expression is used to determine which kind of response this host, depending on the received

request, sends. If a SYN packet is received then a SYN-ACK is sent, if a FIN is received then a FIN-

ACK is sent. It is also possible for an ACK packet to be received in the Receive! Request

transition; in this case nothing is sent over to the OS but a token must be placed in place D for the

correct execution of the model, so an acknowledgment token is created, simulating the request of

the first TCP segment and an indication that the connection was successfully established. Notice

how the different constructors have to be used in order to identify the kind of packet sent to the

place D with colour set DATA.

 In order to save some of the model’s space, and to make it more appealing, these control

structures could be implemented as functions that would be used as the actual arc expressions. In

fact every expression involving operations between variables, control structures and other

functions can be defined as functions and used in arc expressions, guard expressions and initial

markings. Functions are defined using the keyword fun, followed by the function name and a list of

parameters, separated by commas, inside parenthesis; in the implemented model two functions –

updH1 and updH2 – are used to update the connection status of the OS and the ETL process,

respectively; they are defined as:

Coloured Petri Nets

21

 fun updH1(d) =

 case d of

 "SYN-ACK" => 2

 |"FIN-ACK" => 1

 fun updH2(d,c) =

 case (d,c) of

 ("SYN",0) => 1

 |("ACK",1) => 2

 |("FIN",2) => 2

 |("ACK",2) => 0

The first function is used in the expression of the arc connecting Receive!Response to Conn1

and is responsible for passing the value ‘2’ (i.e., connection established) if a SYN-ACK is received

and the value ‘1’ (i.e., pending connection) if a FIN-ACK is received. The second function updates

the status of the connection in the ETL process according to the received connection packet (in

Receive!Request) and the current status of the connection. This value is bound to the variable

c2, which is also passed to Receive!Request, when this transition is fired and used as the second

parameter of the function.

2.3.4. Fusion Sets

As it has been referred, the process of transmitting TCP segments over the network can only begin

when both hosts have an established connection, that is, the transition Send!Segment is only

enabled once the places Conn1 and Conn2 have a token with the colour ‘2’. This is expressed in

the guard expression of this transition as [c1=2, c2=2], which means that the token

representing the connection status of the second host needs to be exchanged between the

modules representing both hosts. This is done by the bidirectional arc connecting Conn2 with

Send!Segment. Fusion places allow for places in different modules to represent a single place

and can be looked at as way of reducing the number of arcs in a CPN model. So, when fusion

places are used, the existing tokens are shared between all the places that are part of the same

Fusion Set. The connection status of the ETL process can be implemented as a fusion set:

Coloured Petri Nets

22

Figure 12 – The TCP Protocol CPN model implemented with a Fusion Set

Using the fusion set C2, the status of the connection in the ETL process can have an independent

representation in both hosts, which is very useful when a hierarchical representation of this model

is designed as the modules representing the OS and the ETL process can communicate, in order to

exchange the connection status token, without an additional interface.

2.3.5. Hierarchy

The model described so far, although representing three separate modules (Operational Source,

ETL Process, and Network), is not organized as a hierarchical network. The presented system is

simple and resulted in a small and simple CPN model that can easily be analysed as a whole, but

this is not always the case. When designing models of large and complex systems it is very

convenient to implement them as a set of modules that are organized hierarchically. First of all, it

is very inconvenient to draw such a system in a single net, and difficult to produce an appealing

layout, which would significantly reduce the readability of the model. If different parts of the model

are organized as a set of modules the modeller can draw and view the model in different

abstraction levels, focusing on fewer details at a time. It is also possible to reuse the already

designed modules in the same net, saving time in redesigning components that are frequently

!"#"
$%

$"&'(!()*
+,-.+/01)223+,-.4516+7
8+9:.+/01)223+9:.4516+7
8+516+/05$;3<7

1)223+516+7

$=

5$;3&7
5$;3&7

1)223!7

>*($=(/(<
#?'2(1)223+,-.+7
'@&'(1)223+9:.+7

1)223!7

AB!C=3!7

AB!C%3!D$%7

$=

E"#" E"#"

!"#"F!

,'G3&D!7

E"#"E"#"

,'G3&D!7

$= 3&D!7

H'$'>I'
516

H'$'>I'
H'&B)2&'

JK"2&L>#
C%4C=

H'$'>I'
HMA'&#

H'$'>I'
,'GL'2#

JK"2&L>#
C=4C%

,'2!
,'GL'2#

N$=/%D
$%/%O

P&#"Q@>&?R
J'KL>2"#'

N$=S0=O

1

E5J5

E

E5J5

1)22
%

1%

<

:.J

E"#"

++

,JH:.T

U

E5J5

1)22
=

<

:.J

5

E5J5

J1V
,'G

=W3=D+PJX(+7YY
=W3%D+"2!(+7YY
=W3ZD+1V.(+7

J1V,PT

V[X\]

1%

<

:.J

1)22
%C=

1%1%

$%

Coloured Petri Nets

23

used in different parts of the system. To describe how modules can be used in the design of CPN

based models, the previous example (Figure 12) is transformed into a hierarchical CPN by creating

a module for the Operational Source, a module for the ETL Process, and a module for the Network.

The module standing on top of this hierarchy (i.e., the prime module or top-level module)

represents the entire system and is presented in Figure 13.

Figure 13 – The TCP protocol module (prime module)

The top-level module has three substitution transitions (i.e., the double lined rectangle boxes),

each with a blue substitution tag that indicates the name of the sub-module represented by each

transition. These substitution transitions are used to hide the more complex details about each of

the represented sub-modules, allowing for an abstract view of the modelled system. The input

place of a substitution transition is called an input socket, while the output place is called output

socket. Lets now analyse how each of the sub-modules are organized. The module representing

the OS is shown in Figure 14.

!"#
$%&'())

*&)+,

-(+.&%/

-(+.&%/

0

12"2

1

12"2

3

12"2

2

12"2

-(+.&%/ *&)+,

45(%6+7&869
:&;%'(

&)+<&)+<

Coloured Petri Nets

24

Figure 14 – Operational Source module

The module representing the OS integrates four transitions and five places, as already described.

The place A is now called an output port and place C an input port, and together they form the

interface that allows for this model’s communication with the remaining modules. In order to

communicate with the prime module, these port places must be related, through a port-socket

relation, with the socket places A and C in the prime module described before. Although there is

an independent representation of these places in two different modules, they are the same places

and possess the very same tokens, independently of the module they are being visualised in. The

places Conn1 and TCP!Seg!are internal to this module and the remaining place, Conn2H1, is

part of the fusion set C2.

Figure 15 – The Network module

The Network module (Figure 15) is the simplest of the three sub-modules. The input ports are the

places A and D and the output ports are the places B and C. All of these ports need to be related

to the corresponding sockets in the prime module.

!"#$%&

'()"*)+),
-./0)1200$34563&
/7%/)1200$38963&

4/:$%;<&

1200$<&

1200$3!1=3&

"*

$%;<&"*

">

"*

?@<A*$<&

B/"/'C/
B/%@20%/

D%-EF7'%.G
H/IJ'0E-/

K"*LM*N

OPQRS

4/0<
4/:J/0-

K"*+>;
">+>N

B/"/'C/
!1=

1
90

T!H!

!
R?-
T!H!

H1O
4/:

H1O%/:J/0-%

H1O4DU

1200
*

,

96H

1200
>A*

1>

,

96H1>

R?-

90

!"#"

!"#"

!"#"

!"#" $%"&'()#
+,-

$%"&'()#
-,+ !

.&
!/$/

0
12#
!/$/

3
12#
!/$/

/
.&
!/$/
.&

12#

12#

.&

Coloured Petri Nets

25

Figure 16 – The ETL Process module

Finally, the module representing the ETL process (Figure 16) is formed by two transitions and four

places. B is the input port and D is the output port, while Data is an internal place. If the fusion

set C2 was inexistent (Figure 11), the place Conn2 would assume the role of an output port place

when this module was defined – the same would happen in the Operational Source module. There

would also be an extra socket place in the prime module acting as the output socket of the

substitution transition ETL Process and as the input socket of the substitution transition

Operational Source.

!"#$%&#'(%)

(%

*+,&-'#)

(.-+/#/01
2*342567088&2*349:7;2)
<2=>42567088&2=>49:7;2)
<2:7;256:(?&@)

:(?&-)

7088&#)

#.A.

#.A.B#
C+(+DE+
*+,F+8A

C+(+DE+
CG!+-A

H
I!A H:J:

K
>8 H:J:

H.A.

22

*JC>4L

7088
%

7%

@

>4J7%

>8

I!A

Coloured Petri Nets

26

2.4. Simulation of CPN models with CPN Tools

CPN Tools, the substitute of Design/CPN, is a tool that supports the construction and manipulation

of CPN models, and therefore allows for their practical application, again developed by the CPN

Group in Aarhus University (Jensen et al., 2007; Jensen and Kristensen, 2009). With this tool it is

possible to edit, simulate and analyse CPN based models through a graphical user interface (GUI).

This is an open-source tool, with over 10 000 licenses spread across 150 countries, currently

available for Windows XP and Windows Vista. The system modeller works directly in the graphical

representation of the CPN model through CPN Tool’s GUI (Figure 17).

Figure 17 – The CPN Tools GUI

The CPN Tools GUI has two main areas: the index, which is the smaller rectangle area on the left

side, and the workspace, located on the right side of the toolbox. The index contains a selectable

set of tools, in the Toolbox section, that are used for the manipulation of the CPN models. In this

Toolbox are included other tools for the creation, simulation, creating hierarchical models and

edition of their graphical layout, among others. The index also includes an overview of the CPN

models that are open. In this example the overview of the file ‘TCP protocol example HIER.cpn’ is

Coloured Petri Nets

27

presented, which is the name of the hierarchical CPN example described previously. Besides the

model’s name, in the overview are also presented the model’s declarations, modules and hierarchy

structure. The declarations area is used for defining (and viewing) the model’s priorities, the

implemented colour sets, in this case divided into simple and compound colour sets, and also the

defined variables, constant values and functions.

 The workspace of CPN Tools is where the graphical design and implementation of CPN

models is actually done. This area uses a set of binders (i.e., the rectangle boxes) that can be

dragged from the index into the workspace. For instance, each module of the CPN model can be

dragged from the hierarchy structure section, in the bottom of the index, into the workspace,

creating an independent binder for the dragged module. In figure 18, there are four binders

containing each implemented module, and three extra binders that contain the create, simulate

and hierarchy tool palettes. A tool palette is also dragged from the Toolbox section in the index

into the workspace and each binder can have multiple tabs to save space in the working

environment.

 With CPN Tools’ simulation tool it is possible to simulate the execution of the implemented

model, while analysing the data flow and the results of each step of the model’s execution, in the

same working environment. An interactive simulation of the implemented net is now presented

using screenshots taken in different markings of the CPN model. This simulation will consist on the

execution of the connection establishment process, starting with both hosts disconnected and

finishing when the connection is established, enabling the process responsible for transmitting TCP

segments. Figure 18 shows the initial marking of the TCP protocol model (i.e., Marking !0); the

marking of each place, if existent, is represented by a small green circle indicating the number of

tokens in that place, while the actual token colours are shown in the adjacent green box that can

optionally be hidden to present a cleaner view of the model.

Coloured Petri Nets

28

Figure 18 – The initial marking !0 (Opr. Source, Network, ETL Process and Prime modules)

In the initial marking (Figure 18) there are three tokens in the place TCP!Seg, representing the

segments that will be sent to the ETL process once the connection is established, and one token

with the colour “”, an empty string used to indicate that no data has been received yet, in the

place Data. There is also one token in Conn1 and in Conn2, both with the colour ‘0’, representing

the status of the connection, in this case disconnected. The place Conn2H1 shares its token with

the place Conn2 since they are part of the same fusion set C2. The only enabled transition in the

initial marking is Establish/Terminate in the Operational Source module, which is represented by

a green shading surrounding the transition, as there is one token in its input place and the guard

expression evaluates to true (i.e., the value bound to c1 is different than ‘1’). When the transition

is fired, the token with colour ‘0’ is removed from Conn1, and used to generate the appropriate

connection token through the transition’s output arc expression. The next marking (Figure 19) is

reached in this step.

Coloured Petri Nets

29

Figure 19 – The marking !1 (Operational Source and Network modules)

In marking !1 there is a new token in the place A with the colour ‘Conn(“SYN”)’, representing a

packet requesting the establishment of the connection – notice how both representations of the

place A, one in each module, contain the same token, as this place acts as the modules’

communication interface. The markings of the remaining places remain unaltered. The token in

Conn1 was returned to it after transition Establish/Terminate was fired as its input arc is a

bidirectional arc. Transmit! H1-H2 in the Network module is now enabled, and marking !2

(Figure 20) is reached after it is fired.

Figure 20 – The marking !2 (Network and ETL Process modules)

In the following marking – !2 – the token is removed from A an placed in B, enabling the

transition Receive!Request in the ETL Process module, since there is also an available token

(with colour ‘0’) in its other input place Conn2. This transition is responsible for processing the

Coloured Petri Nets

30

request sent by the OS and sending an adequate response. When it is fired, the tokens are

removed from B and Conn2 and used to update the connection status of the ETL process through

the output arc expression updH2(d,c2). In marking !3 (Figure 21) the token in Conn2 now has

the colour ‘1’ and there is an additional token in D with colour ‘Conn(“SYN-ACK”)’, generated by

the Receive!Request transition’s output arc expression, allowing transition Transmit!H2-H1 in

the Network module to activate.

Figure 21 – The marking !3 (Network and ETL Process modules)

Marking !4 (Figure 22) is reached after Transmit H2-H1 is fired. In this marking the token is

passed to place C and received by the OS, enabling transition Receive!Response.

Figure 22 – The marking !4 (Operational Source and Network modules)

Coloured Petri Nets

31

When Receive Response is fired the token representing the status of the connection is removed

from Conn1 and the token representing the ETL process’s response is removed from C and used

as a parameter in the function updH1(d), one of the transition’s output arc expressions, to update

the status of the connection to the value ‘2’. The transition’s second output arc is responsible for

generating the acknowledgment connection packet, through the expression Conn(“ACK”), that is

placed in A and sent to the ETL process. This marking is shown in Figure 23.

Figure 23 – The marking !5 (Operational Source and Network modules)

The next marking – !6 (Figure 24) – is reached after Transmit H1-H2 is fired (in marking !5); in

this marking the ACK token is placed in B, allowing for transition Receive!Request to be enabled

again. The ACK indicates that the SYN-ACK packet was successfully received by the OS and the

connection is established.

Coloured Petri Nets

32

Figure 24 – The marking !6 (Network and ETL Process modules)

In the connection establishment final marking – !7 –, the connection status of the ETL Process is

also updated to the value ‘2’ and transition Send!Segment is now enabled. The guard expression

[c1=2, c2=2] was preventing this process to start until the connection was established for both

hosts; the lower priority of the Establish/Terminate transition is now preventing it to activate

until there exist no other enabled transitions, i.e., until all data segments are sent to the ETL

process.

Figure 25 – The marking !7 (Operational Source and ETL Process modules)

Once all the segments were received, i.e., all the tokens were removed from TCP!Seg!into Data,

the Establish/Terminate transition would activate again and generate a token with colour

‘Conn(“FIN”)’ used to terminate the hosts’ connection, as the status of the connection is now ‘2’.

CPN in the Simulation of ETL Standard Tasks

33

Chapter 3

3. CPN in the Simulation of ETL Standard Tasks

3.1. ETL Processes, Some Standard Tasks

The size and the complexity of an ETL system vary depending on the implemented DWS. There are

many factors that can influence the number of tasks in each ETL system, such as the number of

operational sources, the quality of the extracted data – that will directly affect the complexity of

the Transform stage, and the whole system –, and also the size and requirements of the DW

where the data are to be loaded to. Nevertheless, there are still many operations that are

systematically repeated in different ETL systems and even in the same system. For this reason,

certain groups of operations are considered to be standard ETL tasks and have been defined in a

generic way so that they can be used as a pattern or block; two of these tasks have been selected

to show how the CPN modelling language can be used in the simulation of standard operations.

The Surrogate Key Pipeline (SKP) is a process responsible for replacing natural keys with the

corresponding surrogate keys in fact records before they are loaded into a fact table. There has to

exist a SKP task for each fact table in the DW. The second standard operation, referred to as

Slowly Changing Dimension (SCD), is responsible for loading dimensional records into this type of

dimension, while maintaining the historic information of data. This process can be repeated many

times in a single ETL system, as many as there are slowly changing dimensions in the DW.

CPN in the Simulation of ETL Standard Tasks

34

3.2. The Surrogate Key Pipeline

The SKP process takes place during the loading stage of the records into a fact table. It’s one of

the last processes of this ETL stage, in which the natural keys of each record are converted into

their corresponding surrogate keys (SK). There are different approaches to implement this process,

for example, using mapping tables to generate and manage these attributes. However, for

maximum performance, lookup tables are used – one table for each dimension. These tables are

vital for the pipelining process, as their size is significantly smaller than the corresponding

dimensions. This turns it possible to load and randomly access them in memory, avoiding

unnecessary disk readings that probably deteriorate the performance of the system. The records in

this kind of tables are called lookup records and are formed solely by each dimensional record’s

surrogate key, generated in a previous ETL process, and one or more corresponding natural keys.

During this process, their corresponding surrogate keys replace the natural keys of each record.

Thereby, there will be no natural keys in the final record but a sequence of surrogate keys, as

many as the number of the existing dimensions – assuming, of course, that every single natural

key must be substituted. Usually, each record should be passed though memory in a multithreaded

process (Kimball and Caserta, 2004), that is, the substitution of the key of a record in memory

happens simultaneously as other record substitutions that take place in different memory positions.

This guarantees maximum process performance by avoiding the need to write the fact table to disk

before the mapping for the next dimension begins, for each substitution process of each

dimension.

 As a first approach to the SKP modelling, two assumptions were made: there are four

dimensions in this example, and the dimensional records come from one and the same operational

source, having only one natural key. Being so, each fact table record is processed four times for

the substitution of its natural keys and, therefore, it is necessary to have four lookup tables, one

for each substitution stage.

CPN in the Simulation of ETL Standard Tasks

35

Figure 26 – The Surrogate Key Pipeline model

The CPN model in Figure 26 represents the SKP process previously described. It is composed of

nine places and four transitions. Every existing place in the CPN model is of the colour set RECORD.

This colour set is used to model a relational database record and it is defined as the union of the

different kinds of records that are used in this process, namely:

 colset RECORD = union LkpRec:LKPREC + FctRec:FCTREC;

Only two kinds of records are used in this process: the lookup records and the main records that

are processed and loaded into the fact table (i.e., fact records). Still, this generalization makes the

model more uniform and simple, as well as improves its readability. The places Fact!Records and

Fact!Table are used to hold the tokens that represent the fact records before and after the key

substitution process is applied to them, that is, before the natural keys of the initial records are

replaced by the corresponding surrogate keys. Meanwhile, in each of these replacements, the

places M1!to M3 are used to model memory positions staged by the fact records before they are

actually loaded into the fact table. For this reason, all these five places receive the same type of

token, with colour set FCTREC, representing a fact record that was defined as follows:

 colset FCTREC = record id1:ID * id2:ID * id3:ID * id4:ID * fct:NO;

 colset ID = union sk:NO + nk:ST;

 colset NO = int;

 colset ST = string;

!"#$#%
&'()&*+,-.(//012341-'(

012341-'(

!"#$#5
&'()&*+,-.(//

012341-'(

!"#$#6
&'()&*+,-.(//

7,"341-.(7,"341-.(7,"341-.(

012341-'(

!"#$#8
&'()&*+,-.(//

7,"341-.(

9:;+2<2:24
$=-=<>%

?&*<#%-'(/@-
A,-&*A,-.(/B

9:;+2<2:24
$=-=<>5

?&*<#5-'(/-@
A,-&*A,-.(/B

9:;+2<2:24
$=-=<>6

?&*<#6-'(/-@
A,-&*A,-.(/B

9:;+2<2:24
$=-=<>8

?&*<#8-'(/-@-
A,-&*A,-.(/B

0C12
DC;.4

3EFG3=

H5H6

7II,:"
DC;.4
=<>%

7,"341=<>%

3EFG3=

7II,:"
DC;.4
=<>5

7,"341=<>5

3EFG3=

7II,:"
DC;.4
=<>6

7,"341=<>6

3EFG3=

H8

7II,:"
DC;.4
=<>8

7,"341=<>8

3EFG3=

0C12
341I(#+

0C12341I(#+

3EFG3=

3EFG3= 3EFG3= 3EFG3=

CPN in the Simulation of ETL Standard Tasks

36

This record has five fields, four of them corresponding to its keys, and the fifth field fct

representing a business measure. The id fields with the colour set ID, defined as the union of an

integer (representing the surrogate key) and a string (representing the natural key) are used so

that the same field can assume the value of a natural key or the value of a surrogate key.

Therefore, a single colour set can be used to model every state of the fact record during the

substitution processes, without the need to define an independent colour set to represent a fact

record in each of the memory positions, as well as the initial and final fact tables, where the colour

set of the id fields varies.

 The remaining four places, named respectively Lookup Table Dim(1-4), are used to model

the lookup tables that correspond to the four existing dimensions in the data warehouse and they

are managed during the surrogate key generation process. The colour set of these places is also

RECORD and they receive tokens of the colour set LKPREC. The lookup record is a simple record

with one field that represents the natural key of a record inserted in the corresponding dimension

in a previous process, and another to represent the corresponding surrogate key:

 colset LKPREC = record sk:NO * nk:ST;

Finally, the four Substitute ID Dim(1-4) transitions represent the actual substitution event of the

natural key of a fact record by a surrogate key. Each transition receives two tokens, one

representing a fact record to be processed and the other representing a lookup record used to

match the natural key to be substituted in that step with the corresponding surrogate key. The

existing guards in each of the transitions are used to assure that the id field of the fact record is

matched with a natural key belonging to one of the tokens representing the lookup records in the

respective Lookup Table Dim place. The UpdId(1-4) functions in the output arcs of transitions

are used to update the id fields of the fact records with the surrogate key value of the lookup

record received as one of the transitions input. This function has two parameters: the actual fact

record and the value of the surrogate key to be updated in the respective field; the four UpdId

functions are identical, varying only in the field id that is being updated.

 fun UpdId1(fr:FCTREC, k) =

 1`FctRec(FCTREC.set_id1 fr (sk k));

A simulation of the model execution is now presented and described with the help of some images

taken from three different markings of the simulation carryout.

CPN in the Simulation of ETL Standard Tasks

37

Figure 27 – The initial marking !"

The initial marking (Figure 27) has three tokens in Fact Records, representing the fact records

with natural keys, and three tokens in the dimensions’ lookup tables, representing the lookup

records used in this process. For this simulation, the values of these tokens were defined through

the FactRecords and LkpRecDim(1-4) constants as:

 val FactRecords =

 1`FctRec({id1=nk "d1nk3",id2=nk "d2nk1",id3=nk "d3nk2",id4=nk

 "d4nk1",fct=1})++

 1`FctRec({id1=nk "d1nk1",id2=nk "d2nk2",id3=nk "d3nk3",id4=nk

 "d4nk2",fct=2})++

 1`FctRec({id1=nk "d1nk2",id2=nk "d2nk3",id3=nk "d3nk1",id4=nk

 "d4nk3",fct=3});

 val LkpRecDim1 =

 1`LkpRec({sk=1,nk="d1nk1"})++

 1`LkpRec({sk=2,nk="d1nk2"})++

 1`LkpRec({sk=3,nk="d1nk3"});

 val LkpRecDim2 =

 1`LkpRec({sk=1,nk="d2nk1"})++

 1`LkpRec({sk=2,nk="d2nk2"})++

 1`LkpRec({sk=3,nk="d2nk3"});

 val LkpRecDim3 =

 1`LkpRec({sk=1,nk="d3nk1"})++

 1`LkpRec({sk=2,nk="d3nk2"})++

 1`LkpRec({sk=3,nk="d3nk3"});

CPN in the Simulation of ETL Standard Tasks

38

 val LkpRecDim4 =

 1`LkpRec({sk=1,nk="d4nk1"})++

 1`LkpRec({sk=2,nk="d4nk2"})++

 1`LkpRec({sk=3,nk="d4nk3"});

The pre-processed fact records are formed solely by strings representing the natural keys of the

dimensions and the additional business measure field, while the pair with the surrogate/natural

keys constitutes the lookup records. In this marking, Substitute! ID!Dim1 is the only transition

that is enabled, as it is the only with a token in each of its input places and the guard expression

evaluates to true. One token is removed from Fact!Records through the arc expression FctRec

fr and the corresponding lookup record token is removed from Lookup!Table!Dim1, through

the arc expression LkpRec lr. The guard expression [(#id1 fr) = nk (#nk lr)] acts as a

restriction, so that the value of the lookup record’s nk field matches the value of the first id field

of the fact record. Such a guard expression is used in each of the transitions so that, in each step,

the correct fact record field is matched against the natural keys of the lookup records. When this

transition is executed, the id1 field of the token representing the first fact record is updated with

the corresponding surrogate key, through the function UpdId1(fr,(#sk lr)), and passed to

M1; this record is then ready for another key substitution, corresponding to the natural key of the

second dimension (Figure 28).

Figure 28 – The marking !#

In the marking !# (Figure 3), reached after firing the Substitute ID Dim1 transition, there are

now two enabled transitions – Substitute ID Dim1 and Substitute ID Dim2 – as it is possible to

CPN in the Simulation of ETL Standard Tasks

39

“remove” tokens from their input places and the guard expressions evaluate to true, allowing any

of them to be fired. If Substitute ID Dim1 is fired, a new token representing a fresh pre-

processed fact record is removed from Fact Records, its first natural key is replaced by the

corresponding surrogate key, and then passed to M1. If the Substitute ID Dim2 is fired, the

second natural key of the token, representing the first fact record, is replaced by the corresponding

surrogate key, and the transition Substitute ID Dim 3 is enabled, as the token is passed to M2.

After a few markings, as the tokens are processed, all transitions become enabled, allowing for

several records to be processed in memory at the same time, before they are loaded into the Fact

Table.

Figure 29 – The final marking !#$-

In the final marking (Figure 29) there are three tokens in Fact!Table, representing the final fact

records processed through each of the substitution events and the same three tokens in each of

the lookup tables. All the natural key of the fact records have been replaced by the corresponding

surrogate key values, originating fact records that are ready to be loaded into the corresponding

table in the data warehouse.

3.3. Slowly Changing Dimensions

One of the key characteristics of a DWS is time-variance, i.e., data changes that occur over time

are captured in the DW. This means that the data of the DW is not updatable in the same way as

most transaction systems, where records are simply updated to their most recent values. Instead,

all historical data are stored in the DW with the associated timestamp to preserve the modifications

CPN in the Simulation of ETL Standard Tasks

40

of the attributes of dimensional records over time. As an example, consider a small Data Mart with

four dimensions (Date, Customer, Product and Store), and the grain of the fact table is the amount

of a certain Product sold each Day to a Customer in a Store. Now let us consider that a regular

customer at a certain store from his/her hometown changes his/her address to a different city. If

the historical data is not stored, and the address is simply updated to its most recent value, the

information on this Data Mart will not reflect what truly happened. In fact, it will seem as if the

customer never lived in the previous city, but always went there for shopping. For this reason it is

important to select the dimensions with attributes that may change over time and take special care

when they are physically loaded into the DW.

 The dimensions with data that can slowly change over time are called Slowly Changing

Dimensions (SCD). Usually, they are managed through an ETL process that takes place during the

loading stage of the dimensions, to preserve historical information whenever modifications occur in

the operational sources. There are several conventional approaches to implement a SCD process.

They are referred in the literature as Type 1 through 6. The process described here shall be

referred to as Slowly Changing Dimensions with maintenance of historic records (SCD-H), as some

of its characteristics cannot be found in the existing conventional SCD types, even though it is

influenced by concepts of the Type 4 SCD methodology.

 The SCD-H process uses a dimension historic table – with a N:1 cardinality to the

corresponding Dimension table – to store all the historic changes of its records, while preserving

both the structure of the main dimension and the surrogate keys assigned to the records in the

moment of their insertion. A historic change happens when a record belonging to a SCD is updated

in the source system(s) and also when a new record is inserted or deleted; these events must be

captured through specific audit tables. Each SCD must have a corresponding audit table, where

each tuple is composed, frequently, of the ID of the source system, the timestamp of the

operation, the type of the captured operation (i.e., insert, update, delete) and all the attributes of

the modified record. The first stage of the SCD-H consists on the analysis of this kind of table so

that the corresponding dimension can be processed accordingly with the operation type of each

tuple.

 A new dimensional record has to be created and inserted in the target SCD table for each of

the audit records that represent new insertions on the operational source(s). For this to happen,

the SKP process needs to take place in order to assign the correct SK to the incoming record and

to manage the mapping of this key with the natural key(s) of the record through lookup tables

(Section 3.2.4). A dimensional record is composed of its newly assigned SK, its natural key(s), the

CPN in the Simulation of ETL Standard Tasks

41

timestamp of the insertion (in the operational source(s)), the record status (i.e., an attribute for

indicating if the record is Active or Inactive) and the remaining dimensional attributes. The status

needs to be set as Active for every newly inserted record.

 No SCD records should be deleted from a DW even if the corresponding information is

permanently removed from the operational source(s). Therefore, if delete operations are captured

in the audit table, the status of the corresponding SCD records need to be updated to Inactive so

that they can still be used for querying. The lookup table of the dimension is used to retrieve the

SK that corresponds to the natural key(s) of the Audit record in order to update the correct SCD

record.

The audit records with the Update operation type contain the information that needs to be

updated in the DW while storing the old values of the attributes of the corresponding SCD record.

In this process the lookup table is again used to fetch the correct SCD record. Before its attributes

are updated, this record needs to be inserted in the historic table of the Dimension in order to

preserve its former values, which include the timestamp of the last operation (e.g. the record’s

insertion), the SK of the record and the dimensional attributes. The SCD record can then be

updated with the new values of the dimensional attributes and also the timestamp of the update in

the source system(s), without having to modify the SK assigned to it in the moment of its

insertion.

 As it has been mentioned above, this process occurs during the Loading stage of the ETL,

after the data has been cleansed and transformed accordingly with the target SCD. Even so, it is

still possible that some records are unfit to be loaded in the SCD. Given the complexity of the

Transformation stage of the ETL, it is not uncommon to find records with minor flaws or bugs that

were left unnoticed. For this reason, the audit data used in the SCD process should be verified one

last time before the corresponding dimension is updated with it. During this verification, the

records that fail to succeed in a data quality test are moved into a quarantine table in order to be

corrected by the DW administrator. It is important to register these data verification events so that

the errors in the quarantined records can be easily addressed by the administrator. Being so, a

SDC error log needs to be updated each time a record is quarantined with the timestamp and

description of the error, followed by the quarantined record. In addition to the error log, a more

general log journal is also commonly maintained during this ETL process. This type of log is

updated when a record is inserted in, deleted in or updated from the SCD, as well as when a

record is moved into quarantine. The general behaviour of the process can be consulted in the log

journal table where each record has information on the SCD name (as this process can occur

CPN in the Simulation of ETL Standard Tasks

42

simultaneously for different dimensions), the operation registered in the log journal (inserted

record, updated record, deleted record, quarantined record), the timestamp of the operation and

the key of the record.

3.3.1. The Prime Module (SCD-H)

The CPN model for the SCD-H ETL process is hierarchical and thus, organized as a set of different

modules. The module standing on top of this hierarchy (i.e., the prime module) represents the

entire SCD-H process and allows for a more abstract view, where some details are hidden and

represented solely in low-level modules. As referred previously, this ETL process can be divided in

three main operations – Insert, Update and Delete – so the CPN model has been intuitively

separated into these three main sub-modules. The prime module is presented in Figure 30.

Figure 30 – The SCD-H prime module

The SCD-H module contains four substitution transitions and three places. The three sub-modules

mentioned above are related respectively to the Insert! Record, Update! Record and Delete!

!"#$%&'(%(
)*+$,$-(%$./

'(%(&)*+$,$-(%$./

'*0*%*
1*-.+# '*0*%*

23#(%*
1*-.+# 23#(%*

4/5*+%
1*-.+# 4/5*+%

!"#$%
1*-.+#5

!"#$%1*-.+#56$5%

17891'64:;

:0.<0=
8>(/?$/?
'$@A

17891'

)*+$,$*#
!"#$%
1*-.+#5

BC

17891'64:;

4/5*+%23#(%*'*0*%*

'(%(&)*+$,$-(%$./

CPN in the Simulation of ETL Standard Tasks

43

Record substitution transitions. There is one additional sub-module – Data! Verification! –

related to the Audit!Data!Verification substitution transition. The input socket of Audit!Data!
Verification is the place Audit!Records with colour set RECORDLIST, while the place Verified!
Audit!Records, with the same colour set, is both the output socket of Audit!Data!Verification

and the input socket of the Insert!Record, Update!Record and Delete!Record substitution

transitions. The output socket of these transitions is the Slowly!Changing!Dim place with colour

set RECORD.

 The colour set RECORDLIST, defined as colset RECORDLIST = list RECORD, is used

to model the verified and pre-verified audit records, so that they can be processed as a FIFO list.

This choice was made assuming that the records in the audit tables are ordered by the date of the

captured operation in the operational sources and should be processed accordingly. Being so, the

place Audit Records holds a list of audit records, ordered by the timestamp of the operation,

ready for verification. The place Verified Audit Records holds the list of audit records that are fit

to be processed according to its operation type in one of the succeeding substitution transitions.

The colour set RECORD is used to model a record from a relational database and it is defined to be

the union of the different types of records used in the SCDH process, as follows:

 colset RECORD = union

 AudRec:AUDREC + DimRec:DIMREC + HstRec:HSTREC +

 CnfRec:CNFREC + LkpRec:LKPREC + LogRec:LOGREC +

 ErrLog:ERRLOG;

 Aside from Audit Records and Verified Audit Records, the remaining places in the model

that represent relational tables (e.g., Slowly Changing Dim) or individual records have the

RECORD colour set. This makes the model more uniform, but special care must be taken when

adding a record token to a place. For example, the place Slowly Changing Dim should only have

tokens of the DIMREC colour set, as this place represents the final dimension and can only be

loaded with the dimensional records. The type of record added to a place with the colour set

RECORD must then be enforced through the arc expressions that lead to the place. Nevertheless,

this generalisation improves the readability of the model and also the reusability of fragments (i.e.

groups) of the modules. The colour sets that represent the existing record types are described in

the following sections.

CPN in the Simulation of ETL Standard Tasks

44

3.3.2. The Data Verification Module

The Data Verification module is used to model the data verification process applied to the records

of the audit table. This module contains a single transition and six places (Figure 31).

Figure 31 – The Data Verification module

The place Audit Records is the input port of this module and the output port is the place Verified

Audit Records. These two places have already been characterised and together they constitute

the interface through which this module communicates with the prime module. Both places hold a

token representing a list of audit records, making this list the input (in a pre-verification state) and

the output (after the verification) of this module. An audit record is a record with five fields, each

one used to model a column from the audit table, and it is defined as follows:

 colset AUDREC = record

 src:ST * dtm:ST * opr:OPERATION * nk:ST * atb:ST;

 colset ST = string;

 colset OPERATION = with Insert | Update | Delete;

!"#$%&&'$$
()'*#'+,(-
'.$'#
/,01223243565'(7!+'689
###########:29#;'2232#0'$&;8

!"#$%&&'$$
()'*#'+,(-
'.$'#
/,0435<3%2*:.65'(7!+'689
#####################;=!+#>:+';9
######################?%:2:*(!*'0@'&3209
######################A96B*C#:288

:2.D

:2.

!"#$%&&'$$
()'*#:2.DEEFG%0@'&#:2H
'.$'#:2.D

G%0@'&#:2II:2.

!"#$%&&'$$
()'*#'+,(-
'.$'#JKG%0@'&6:28$%&&'$$ G%0!(#=:(:

L'2!"!&:(!3*

12232
435

@1MN@=

174
435
435#<3%2*:.

@1MN@=

L'2!"!'0
G%0!(
@'&320$

N%(

@1MN@=4OP7

G%0!(
@'&320$

O*
@1MN@=4OP7

?%:2:*(!*'
7:Q.'

@1MN@=

7'$(

JK(2%'RR
JK":.$'

SNN4

O*

N%(

435#<3%2*:.

CPN in the Simulation of ETL Standard Tasks

45

The src, dtm, nk and atb fields are strings that correspond, respectively, to the name of the

source system, the timestamp of the captured operation, the natural key of the record and the

modified attribute. To make the model simpler, a single field (atb) is used to represent all the

attributes that need to be preserved in the DW. The opr field (of the enumeration colour set

OPERATION) is used to represent the three different operation types that can be captured in the

audit table. The place Quarantine Table is used to model a table with the same name, where the

records that fail the verification test rest until the DW administrator corrects the errors that lead to

the failure. This place receives tokens of the colour set AUDREC but the use of a list is not

necessary in this case.

 As described earlier, it is necessary to maintain two kinds of log tables during the verification

process and to model them two distinct places are used. The place Error Log represents the table

where the data verification events are registered, which occurs when the data test is unsuccessful,

through Error Log Records. This kind of record has a similar structure to the Audit Record but with

two extra string fields; the errdtm field represents the timestamp of the verification process and

the err field represents the error name or description. An Error Log Record is defined as:

 colset ERRLOG = record src:ST * errdtm:ST * dtm:ST * opr:OPERATION *

 nk:ST * atb: ST * err:ST;

The ETL log journal information needs to be registered when a record is quarantined, but also

when a record is inserted, updated or deleted during the SCD-H process; therefore, the fusion

place ETL Log is used to model this kind of log table. The Log Journal fusion set allows its

members to share their Log Record tokens as if they were a single place, even if distributed over

different modules.

 colset LOGREC = record

dtm:ST * dnm:ST * opr:LOGOP * sk:NO * nk:ST;

 colset LOGOP = with

InsertedRecord | InactiveRecord |

UpdatedRecord | QuarantinedRecord;

 colset NO = int;

The colour set LOGREC, with five fields, is used to represent a Log Record; the dtm is relative to

the timestamp of the operation occurrence, the dnm is a string used to identify the SCD that is

CPN in the Simulation of ETL Standard Tasks

46

being processed, and the opr field of the colour set LOGOP is the enumeration set of operations

that can be registered. The sk and nk fields represent the surrogate and natural keys of the

processed record, respectively. In this stage of the process, no surrogate keys have been assigned

to the audit records, so the natural keys are used to identify the records of the Log Journal table

that have been quarantined. Finally, the place Test, with colour set BOOL, is used to simulate a

test on each of the audit records. Even though no real testing is done to the attributes of the

record, the success or failure of such test is simulated through the variable success that for each

marking of the model randomly assumes the values of the tokens in this place (i.e., ‘true’ or

‘false’).

 The single event that can take place in this module (i.e., the actual verification of data) is

modelled by the transition Audit Data Verification that receives three tokens. The first,

representing one audit record, is removed from the head of the list in Audit Records through the

arc expression AudRec ar :: arl, where the variables ar and arl are declared as:

 var ar : AUDREC;

 var arl, arl2: RECORDLIST;

The second token is success, a Boolean variable that determines the success or failure of this

test. This token is returned to Test so it can assume a new colour and simulate the same test on

the next record. The last token represents the list of verified audit records and is removed from

Verified Audit Records through the arc expression arl2. If the data test is successful (i.e., if

success is ‘true’), the verified audit record is inserted in this list through the expression in green

arc; on the other hand, if the test is unsuccessful (i.e., if success is ‘false’) the list is not updated.

In this case, the data flow is represented by the three red output arcs connected to Quarantine

Table, Error Log and ETL Log. The audit record that fails the verification test is put in the

Quarantine Table and it is also used to generate new Log records that are passed to the places

Error Log and ETL Log respectively. The functions UpdErrorLog(getTime(), ar, "error

desc") and UpdLogJournal(getTime(), "Dim Name", QuarantinedRecord, 0, (#nk

ar)) are used as arc expressions to generate tokens of the ERRLOG and LOGREC colour set; the

getTime function in the first parameter is used to generate a string representation of the current

date, formatted in order to represent the timestamp of this operation. These functions are

implemented as follows:

CPN in the Simulation of ETL Standard Tasks

47

 fun UpdErrLog(date, ar:AUDREC,error) =

 1`ErrLog{

 src = (#src ar),

 errdtm = date,

 dtm = (#dtm ar),

 opr = (#opr ar),

 nk = (#nk ar),

 atb = (#atb ar),

 err = error};

 fun UpdLogJournal(date,dn,operation:LOGOP,sk:NO,nk:ST) =

 1`LogRec{

 dtm = date,

 dnm = dn

 opr = operation,

 sk = sk,

 nk = nk};

 fun getTime()=

 Date.fmt "%d/%m/%%Y %H:%M:%S"

 (Date.fromTimeLocal (Time.now()));

After this data verification process, the socket place Verified Audit Records (Figures 30 and 31)

hold the list of records that are actually used to update the SCD through the three consequent

substitution transitions.

3.3.3. The Insert Module

This module represents the operations that are necessary to insert a new record into the SCD.

From the selection of records, to the assignment of a fresh surrogate key, finishing with the

loading process of the resulting dimensional record, all these processes are part of the Insert

module (Figure 32).

CPN in the Simulation of ETL Standard Tasks

48

Figure 32 – The Insert module

The place Verified Audit Records is now the input port of this module while the output port is the

place that represents the final SCD – Slowly Changing Dim. The places Conformed Record and

Dim Record are respectively the input and output sockets of the substitution transition Assign SK

that models the Surrogate Key Generation process. The fusion place ETL Log is used again to

represent the ETL Log Journal. The selection of the records to be inserted is modelled by the

Select Record to Insert transition that is enabled if the operation type of the first element of the

list is ‘Insert’; in this case the audit record is removed from the list and passed to the place

Conformed Record. A conformed record does not have information on the type of operation

captured in the operational source, nor should the id of the source system be stored in the SCD;

for these reasons the audit record is restructured through the function NewCnfRec in the arc

expression, which is also used to mark the status of the resulting record status as active. The

conformed record colour set and the NewCnfRec function are implemented a follows:

 colset CNFREC = record

nk:ST * sta:STATUS * dtm: ST * atb:ST;

!"#$%&'%()*+,-&./012.-34
5555555555555671289+2.64
5555555555555:*;.)/.#<.=%)#4
5555555555555->;?5#)34663

712<.=5#)

712<.=5#)

9.@A*B<.=-+)3

+),

C(#<.=5+)DD+), E.,.=/
<.=%)#
/%5:*;.)/

F->%")5+)35G:*;.)/H

:*;.)/
<.=%)#

C;;1&*
EI E())%&+/.5I.J5K.*

L0$
$%&
$%&5'%()*+,

<LAM<7

712
<.=%)#<LAM<7

A%*B%)2.#
<.=%)#<LAM<7

N.)1B1.#
C(#1/
<.=%)#;

:*
<LAM<7$:E0

E,%@,J
AO+*&1*&
712

M(/

<LAM<7

M(/

:*

$%&5'%()*+,

E())%&+/.5I.J5K.*

CPN in the Simulation of ETL Standard Tasks

49

 colset STATUS = with A | I;

 fun NewCnfRec (ar:AUDREC) =

 1`CnfRec{

 nk=(#nk ar),

 sta=A,

 dtm=(#dtm ar),

 atb=(#atb ar)};

To generate a new conformed record the sta field, representing the status of the record, is

updated to the value ‘A’ (i.e., active), while the src and opr fields belonging to the audit record

are discarded. The values of the remaining fields are maintained. The record can now undertake its

last transformation before it can be loaded into the DW. The assignment of a SK to the conformed

records results in the final dimensional records modelled by tokens of the colour set DIMREC in the

output socket Dim Record. A dimensional record is a conformed record with an extra field – sk –

representing the newly assigned SK:

 colset DIMREC = record sk:NO * nk:ST * sta:STATUS * dtm:ST * atb:ST;

The actual insertion of the record can now be performed and this is represented by the Insert

Record transition, which is also the simplest in this module. A token representing the dimensional

record is removed from the place Dim Record and passed to the output port place Slowly

Changing Dim through the green arcs, while updating the Log Journal at the same time. The

expression in the green arcs is DimRec dr, where the variable dr is declared as:

 var dr : DIMREC;

 At this stage, note that the Log Journal is updated with the SK assigned to the dimensional record

instead of its natural key(s), in contrast with what happened in the Data Verification module.

CPN in the Simulation of ETL Standard Tasks

50

3.3.4. The Surrogate Key Generation Module

Before a new conformed record can be loaded into the target SCD, a fresh SK must be created and

assigned to it. The identification of the dimensional records through surrogate keys is highly

recommended and brings numerous advantages in the development and management of the DW.

The Surrogate Key Generation module (shown in Figure 33) represents this simple, yet very

important ETL process.

Figure 33 – The Surrogate Key Gen module - Assign SK

The implemented net is composed by four places and a single transition. The places Conformed

Record and Dim Record, described in the Insert module, represent the record before and after a

SK is assigned to it, meaning that a record is only considered to be a dimensional record (i.e., with

the correct structure to be inserted in the dimension) after the SK generation process. The place

Counter with colour set NO represents the SK counter and has a single token (i.e., an integer) that

represents the SK to be assigned to the next record. The last place, Lookup Table, receives

tokens that represent the lookup records used to map the newly assigned SK with the

corresponding natural key. The lookup record is a simple record with one field to represent the

natural key of the conformed record and another to represent the corresponding SK. It is

implemented as follows:

 colset LKPREC = record sk:NO * nk:ST;

!""#$%&'(")*+,-

.%/01+2+,

")

3145)601+(")*+,-")78
91%1,:;1
&'

<#=
01+>,?

@A;
0B.@0<

.>%/>,=1?
01+>,?

C%0B.@0<

.>A%;1,8D8

3@

5>>)A6
E:FG1

5>>)A62E:FG1
0B.@0<
5>>)A62E:FG1

C%

@A;

CPN in the Simulation of ETL Standard Tasks

51

The Generate SK transition removes one token representing the conformed record from

Conformed Record and the existing token in the Counter, representing the SK value to be

assigned, through the arc expressions CnfRec cr and sk where cr and sk are declared as:

 var cr : CNFREC;

 var sk : NO;

When the transition is fired, the SK is assigned to the record and passed to the place Dim Record

through the arc expression AssignSK(sk,cr). This function creates a new dimensional record

with the information of the conformed record plus the value of the SK:

 fun AssignSK (sk,cr:CNFREC) =

 1`DimRec{

 sk=sk,

 nk=(#nk cr),

 sta=(#sta cr),

 dtm=(#dtm cr),

 atb=(#atb cr)};

At the same time, a new token is created and placed in the Lookup Table place, through the

expression NewLkpRec(sk,cr) in the remaining output arc. This function uses the value of the

newly assigned SK and the value of the natural key of the conformed record to update the Lookup

Table place with a new lookup record, and is implemented as:

 fun NewLkpRec (sk,cr:CNFREC) =

 1`LkpRec{

 sk=sk,

 nk=(#nk cr)};

For the process to be completed, the SK needs to be incremented and placed in the SK counter so

that it can be used to identify the next record, which is accomplished with the expression sk + 1

in the input arc of the place Counter. If no tokens exist in the place Conformed Record then the

SK value is preserved in this place until the transition is activated.

CPN in the Simulation of ETL Standard Tasks

52

3.3.5. The Update Module

The Update module is the most complex module in the SCD-H process, where the dimensional

records to be updated are preserved in a special historic dimension before its attributes are

modified in the main SCD. The CPN model for this process is shown in Figure 34.

Figure 34 – The Update module

The selection of records from the list of audit records is handled in a similar way to the Insert

module, through the Select Record to Update transition. The difference resides in the guard

expression, indicating that the operation type of the audit record must equal the Update value. The

extracted tokens then stay in the place Records to Update, representing the audit records that

are used for updating the dimensional attributes of the corresponding dimensional records. It is

important to mention that each module activates accordingly with the operation type of the head

element of the list, keeping its processing sequential. The places Verified Audit Records, Slowly

Changing Dim and ETL Log are analogous to the ones in the Insert module but, in this module,

!"#$%&'()

()*

!"#$%&'()++()*

,%-./0$%&1#)2

!"#$%&'()

345$%&'*)

65#37897"):(*18%0;<=%12>?@<=',(=%?>
'''''''''''''65#(0%#$%&7)#>'
'''''''''''''1A/4'#)2>??2

@<=$%&'#)

65#(0%@<=$%&1#)>()2

B%*%&0
$%&7)#
07'65#(0%

C1A75)'()2'D65#(0%E

FG3HI

65#(0%
$%&7)#

C1A:4'()2'D'1A:4'*)2>
1A/4'*)2'D'1A/4'#)2E

FG.JK.

$%&7)#/
07'65#(0%

LMH@

3774"5
;(N*%
3774"5';(N*%
LMH@

L;3
378
378'97"):(*

LMH@

O%)<P<%#
!"#<0
$%&7)#/

J:
LMH@3JB;

B*7-*Q
MR(:8<:8
@<=

JSH

LMH@

@<=
.</07)<&

LMH@

JSH

J:

378'97"):(*

3774"5';(N*%

CPN in the Simulation of ETL Standard Tasks

53

the place Slowly Changing Dim is both an input and output port since a token is also removed

from it for the transition to activate.

 The place Dim Historic represents a relational table that stores the historic of the

dimension to be updated and receives tokens of the type HSTREC, representing the historical

records. The historical record can be seen as a dimensional record stored in another table so their

structure is very similar. The status field is no longer necessary because, from the moment a

record becomes historic, it also becomes automatically inactive. The historical record is

implemented as follows:

 colset HSTREC = record sk:NO * nk:ST * dtm:ST * atb:ST;

The fusion place Lookup Table, member of the same fusion set, managed in the Surrogate Key

Generation process represents the lookup table of the dimension. The use of this kind table is of

great importance in this stage of the SCD-H process, allowing the correct dimensional record to be

quickly found and retrieved from the SCD for further processing. The main operation of this

module, representing the Update of the attributes of the dimensional record, while storing their old

values in the historic table, is modelled by the Update Record transition. To enable this transition,

it receives an audit record, a lookup record and a dimensional record. The audit record is removed

from the Records to Update place, through the arc expression AudRec ar, only if there is a

lookup record with the same natural key value, removed from the place Lookup Table through

the arc expression LkpRec lr, where lr is defined as:

 var lr : LKPREC;

If such record exists in the Lookup Table, it means that the corresponding dimensional record has

already been inserted in the SCD and can be removed from the Slowly Changing Dim place into

the transition through the arc expression DimRec dr. The transition may not be enabled if, for a

given audit record, there isn’t a matching lookup record, meaning that the corresponding

dimensional record does not yet exist in the SCD (e.g., it may have been quarantined and

therefore can’t be updated); in this case the records remain in that place until the corresponding

dimensional record is inserted in the SCD. This behaviour is modelled by the existing guard

expression.

CPN in the Simulation of ETL Standard Tasks

54

When there is a correspondence between these three types of records the transition becomes

enabled and the update process begins. The lookup record is merely used to find the dimensional

record that corresponds to the audit record and is returned to the Lookup Table place; the

received information of the dimensional records is used to generate a new corresponding historical

record and the audit record is used to update the attributes of the dimensional records. The

dimension historic is updated through the input arc of the Dim Historic place with the expression

NewHstRec(dr). This function uses the dimensional record as the parameter and produces a

fresh historical record from it, preserving the old values of the record:

 fun NewHstRec (dr:DIMREC) =

 1`HstRec{

 sk=(#sk dr),

 nk=(#nk dr),

 dtm=(#dtm dr),

 atb=(#atb dr)};

The actual update of this dimensional record in the SCD is represented by the

UpdateDimRec(ar,dr) expression in the input arc of the place Slowly Changing Dim:

 fun UpdateDimRec(dr:DIMREC,ar:AUDREC) =

 1`DimRec{

 sk=(#sk dr),

 nk=(#nk dr),

 sta=(#sta dr),

 dtm=(#dtm ar),

 atb=(#atb ar)};

This function takes the audit record and the dimensional record as parameters and generates a

dimensional record with the timestamp of the audit record (i.e., the timestamp of the update in the

source system) and the new attribute values. The remaining attributes are left unchanged, i.e., the

surrogate key, the natural key and the status of the dimensional record that remains active. To

conclude the process, a new log record is generated and used to register the update operation of

this dimensional record in the Log Journal.

CPN in the Simulation of ETL Standard Tasks

55

3.3.6. The Delete Module

The final piece of the SCD-H model is the Delete module (Figure 35), that is responsible for

marking a dimensional record as inactive instead of deleting it permanently from the SCD, and

hence, from the DW. All the places in this module have already been described in the former

modules. The input/output ports, as well as the audit records selection process, are the same as in

the Update module, differing only in the guard expression of the Select Record to Delete

transition which has now the ‘Delete’ value.

Figure 35 – The Delete module

The Lookup Table and the guard expression in the Delete Record transition are once again used

to find the dimensional record that corresponds to the audit record removed from the place

Records to Delete. The token representing the dimensional record to be deleted is removed from

the place Slowly Changing Dim and passed to the transition so it can be marked as inactive and

returned to the same place. The expression SetStatus(sr,I) in the input arc of Slowly

Changing Dim represents the update of the dimensional record’s status attribute; this function

has two parameters, the first represents the dimensional record to be updated and the second

represents the value of status to be updated:

!"#$%&'()

()*

!"#$%&'()++()*

,%-,-(-"./#)012

345$%&'#)

678$%&'*)

!"#$%&'()

98#6:;<:")=(*/;%->45%/20?345'@(5%?0
'''''''''''''1=(&-4A%$%&:)#0
'''''''''''''/B.7'#)20??2

,%*%&-
$%&:)#
-:'3%*%-%

C/B:8)'()2'D'3%*%-%E

3%*%-%
$%&:)#

C/B=7'()2'D'/B=7'*)20
'/B.7'*)2'D'/B.7'#)2E

$%&:)#.
-:'3%*%-%

FGH3

6::7"8
>(I*%
6::7"8'>(I*%
FGH3

F>6
6:;
6:;'<:")=(*

FGH3

,*:J*K
GL(=;4=;
345

1MH

FGH3

N%)4O4%#
!"#4-
$%&:)#.

1=

FGH361,>

1=

1MH

6:;'<:")=(*

6::7"8'>(I*%

CPN in the Simulation of ETL Standard Tasks

56

 fun SetStatus(dr:DIMREC,s) = 1`DimRec(DIMREC.set_sta dr s);

In this case the value of the status (i.e., the sta field) is updated from ‘A’ to ‘I’, indicating that this

dimensional record, from now on, is marked as inactive. Once again, to finish the deletion process

of a dimensional record, the Log Journal must be updated with this information; for that a new log

record is inserted with the timestamp of the operation, the name of the SCD, the name of the

operation (‘DeleteRecord’ in this case) and the primary key of this record (i.e., the SK), leaving the

field of the natural key empty.

3.3.7. Simulating the SCD-H

In this section the execution of the SCD-H process is described with the help of images taken

during its simulation in CPN Tools. Figure 36 shows the initial marking of the SCD-H model (i.e.,

Marking !"). In the initial marking there is a single token in Audit Records, representing the list

of unverified audit records. The list of records is defined through the AuditRecordsList

constant as:

val AuditRecordsList = 1`[

AudRec({src="SRC",dtm="25/02/2012 13:45:33",opr=Insert,nk="dnk1",atb="ins-dnk1"}),

AudRec({src="SRC",dtm="25/02/2012 13:46:01",opr=Insert,nk="dnk2",atb="ins-dnk2"}),

AudRec({src="SRC",dtm="26/02/2012 11:35:13",opr=Update,nk="dnk2",atb="upd-dnk2"}),

AudRec({src="SRC",dtm="26/02/2012 12:10:44",opr=Delete,nk="dnk2",atb="del-dnk2"}),

AudRec({src="SRC",dtm="26/02/2012 12:45:33",opr=Insert,nk="dnk3",atb="ins-dnk3"}),

AudRec({src="SRC",dtm="27/02/2012 13:46:01",opr=Insert,nk="dnk4",atb="ins-dnk4"}),

AudRec({src="SRC",dtm="27/02/2012 15:18:02",opr=Update,nk="dnk4",atb="upd-dnk4"}),

AudRec({src="SRC",dtm="27/02/2012 15:28:55",opr=Update,nk="dnk4",atb="upd2-dnk4"}),

AudRec({src="SRC",dtm="28/02/2012 21:11:33",opr=Update,nk="dnk3",atb="upd-dnk3"})];

CPN in the Simulation of ETL Standard Tasks

57

Figure 36 – The SCDH module - Initial marking !"

There are a total of nine audit records in this list, four of them with the Insert operation type, one

of them with the Delete operation type and the remaining records are updates of the previously

inserted ones. The value in the src field is the same value for all the audit records, assuming that

they come from the same source. It is also assumed that, once they are captured into the audit

table in the DSA, they are ordered by the timestamp of the captured operation so that they can be

processed in that same order. For modelling and simulation purposes, a single dimensional

attribute is needed in each of the audit records (i.e., atb field) and the value of this field is the

operation type followed by its natural key (e.g., ‘ins-dnk1’, meaning that the record with the ‘dnk1’

natural key was inserted). These values are only used to make it easier to view and analyse the

behaviour and result of the three main operations and could be replaced by any other values.

 The initial marking of the model has an additional token in Verified Audit Records with

colour ‘[]’ (i.e., an empty list). This means that no audit records have been verified yet and, for this

reason, the Audit Data Verification substitution transition is the only one enabled in this sate;

the remaining substitution transitions in the SCD-H module operate on verified audit records.

Figure 37 shows the new marking !# reached after the first audit record has been verified (i.e.,

CPN in the Simulation of ETL Standard Tasks

58

the head of the list in the Audit Records place). In this case, the verification test is successful so

the audit record ‘AudRec({src="SRC", dtm="25/02/2012 13:45:33", opr=Insert, nk="dnk1",

atb="ins-dnk1"})’ is appended to the list in the Verified Audit Records place. Note that the

existing transition remains enabled, as there are now eight audit records yet to be verified.

Figure 37 – The Data Verification module - Marking M1

As it has been explained during this module presentation, when this test fails the record in

question must be quarantined and new entries need to be added to the respective logs. The

marking !& in Figure 38 presents such a scenario, where the failure of the verification test is

simulated for the the fifth audit record in the initial unverified list ‘AudRec({src="SRC",

dtm="26/02/2012 12:45:33", opr=Insert, nk="dnk3", atb="ins-dnk3"})’. The marking of place

Verified Audit Records remains the same and the token representing the audit record is sent to

the Quarantine Table instead; at the same time both places Error Log and ETL Log are updated

with one token representing the error log record and the log journal record, respectively:

CPN in the Simulation of ETL Standard Tasks

59

 1`ErrLog(

 {src="SRC", errdtm="28/05/2012 17:15:41",

 dtm="26/02/2012 12:45:33", opr=Insert,

 nk="dnk3", atb="ins-dnk3", err="error desc"})

 1`LogRec(

 {dtm="28/05/2012 17:15:41",dnm="Dim Name",

 opr=QuarantinedRecord, sk=0, nk="dnk3"})

Figure 38 – The Data Verification module - Marking !&

After all the audit records are verified the marking !' is reached (Figure 39). In this marking there

are two tokens, just like the initial marking, but with different colours. The token in place Audit

Records is now ‘[]’ while the token in Verified Audit Records is the list of audit records that

succeeded the verification test and, therefore, can be loaded into the SCD. This list now includes

all the audit records except the one that was quarantined in the marking !&. The Insert Record is

now the single enabled substitution transition as the operation type of the first verified audit record

to be processed is ‘Insert’.

CPN in the Simulation of ETL Standard Tasks

60

Figure 39 – The SCDH module - Marking !'

Figure 40 – The Insert module - Marking !#"

The next marking (!#") is reached after firing the Select Record to Insert transition in the Insert

module shown in Figure 40. The head of the verified audit record list is removed from it and

passed to the transition and the function NewCnfRec(ar) is applied to the audit record. The

result is the token ‘1`CnfRec({nk="dnk1", sta=A, dtm="25/02/2012 13:45:33", atb="ins-dnk1"})’,

representing a conformed record that is put in the Conformed Record place. This function is used

to modify the structure of the audit record and prepare it for the consequent operations. The

guard in the transition acts as a restriction so that it activates only if the head of the list is a record

to be inserted, meaning that the new head of the list is also a record to be inserted because the

transition is enabled. In the current marking the substitution transition Assign SK is also enabled,

receiving as input the token representing the conformed record. Figure 41 shows the current

marking (!#") in the Surrogate Key Gen module, where the Generate SK transition is enabled

and the record in Conformed Record is the same in both this module and the Insert module

shown in Figure 40. There is one additional token in place Counter with colour ‘1’, representing

the value of the first SK to be assigned.

CPN in the Simulation of ETL Standard Tasks

61

Figure 41 – The Surrogate Key Gen module -

Marking !#"

Figure 42 – The Surrogate Key Gen module -

Marking !##

The marking !## (Figure 42) is reached after the SK is assigned to the conformed record and the

resulting dimensional record ‘DimRec({sk=1, nk="dnk1", sta=A, dtm="25/02/2012 13:45:33",

atb="ins-dnk1"})’ is put in the place Dim Record through the AssignSK(sk,cr) arc expression.

At the same time, the value of SK stored in place Counter is incremented and the token

‘LkpRec({sk=1, nk=”dnk1”})’, representing the lookup record used to map the natural key of the

conformed record with the newly assigned SK, is put in place Lookup Table. The same marking

(!##) is also shown in Figure 43 for the Insert module where the substitution transition is no

longer enabled, i.e., the SK has already been assigned, and the resulting token rests in Dim

Record. The Insert Record transition, representing the last step of the Insert process, is now

enabled. When this transition is triggered the token representing the dimensional record is simply

passed to the output port Slowly Changing Dim, while the log journal record

‘LogRec({dtm="28/05/2012 17:30:53", dnm="Dim.Name", opr=InsertedRecord, sk=1, nk=""})’ is

created and passed to the fusion place ETL Log. This marking (!#$) and the results of the Insert

Record transition are shown in Figure 44.

CPN in the Simulation of ETL Standard Tasks

62

Figure 43 – The Insert module - Marking !##

Figure 44 – The Insert module - Marking !#$

After the next token with colour ‘AudRec({src="SRC", dtm="25/02/2012 13:46:01", opr=Insert,

nk="dnk2", atb="ins-dnk2"})’ is inserted, the Select Record to Update transition in the Update

module activates and consequently, the Update Record substitution transition in the SCD-H

module is also enabled, similarly to what happened with the Insert module. Figure 45 shows the

Update module in the marking !#(, reached after the occurrence of the Select Record to Update

transition. In this marking the audit record ‘AudRec({src="SRC", dtm="26/02/2012 11:35:13",

opr=Update, nk="dnk2", atb="upd-dnk2"})’ is removed from the verified audit record list and

passed to Records to Update without any transformation because the record itself is not going to

be inserted in the dimension; instead, its dimensional attributes will be used to update the token

representing the corresponding dimensional record in the place Slowly Changing Dim.

CPN in the Simulation of ETL Standard Tasks

63

Figure 45 – The Update module - Marking !#(

The Update Record is the only enabled transition in this marking, which means that there is a

correspondence between the tokens representing the audit record, used in the update, and the

dimensional record that is retrieved from place Slowly Changing Dim by the means of a lookup

record, created when this dimensional record was inserted. The first part of the guard expression

of the enabled transition evaluates to true as there is a token in Lookup Table with the same

(‘dnk2’) natural key value as the audit record in the place Records to Update. The surrogate key

value of the token removed from place Lookup Table is used, in the second part of the guard

expression, to find the dimensional record with the same value (‘2’) in the sk field. When both

parts of the expression are true, then there is a token, representing a dimensional record, that

corresponds to the incoming token, representing the audit record, and the update process can

continue.

 In the following marking (Figure 46) both the attribute (atb) and the timestamp (dtm)

fields of the dimensional record with the SK value ‘2’ have renewed values. For the transition to be

fired, this token is removed from place Slowly Changing Dim and used as a parameter in the

UpdateDimRec function in the respective output arc together with the token representing the

audit record. The dimensional attribute and timestamp fields of the dimensional record are updated

to the same values of these fields in the audit record resulting in a new token representing the

CPN in the Simulation of ETL Standard Tasks

64

updated dimensional record ‘1`DimRec({sk=2, nk="dnk2", sta=I, dtm="26/02/2012 11:35:13",

atb="upd-dnk2"})’. Notice how the atb field now indicates that it was updated and the value of

the dtm field is the same as the timestamp of the update operation captured in the source system.

This process is not complete until the former values of the dimensional record are preserved in the

place Dim Historic, which is accomplished by using the token representing the dimensional record

removed from place Slowly Changing Dim as a parameter of the NewHstRec function in the

remaining output arc. This function creates and passes the new token ‘1`HstRec({sk=2,

nk="dnk2", dtm="25/02/2012 13:46:01", atb="ins-dnk2"})’ to place Dim Historic with the historic

values of the dimensional record. This operation is once again registered in place Log Jounal and

the new token ‘1`LogRec({dtm="28/05/2012 17:35:21", dnm="Dim Name", opr=UpdatedRecord,

sk=2, nk=""})’ is created and put in place ETL Log for this purpose.

Figure 46 – The Update module - Marking !#)

The selection of a record to be deleted from the verified audit record list is processed in the very

same way as in the Update module described previously. The selection of the first record to be

deleted happens in marking !#), when transition Select Record to Delete fires (Figure 47). In

marking !#*, there is one token in place Records to Delete representing the information in the

SCD that needs to be deleted or, in this case, simply marked as inactive. Again, place Lookup

Table and the guard expression are used to make a correspondence between the correct token in

CPN in the Simulation of ETL Standard Tasks

65

place Slowly Changing Dim and the token in place Records to Delete, analogously to what

happens in the Update module.

Figure 47 – The Delete module - Marking !#*

When the transition fires, the tokens representing the audit record and the corresponding

dimensional record are removed from their source places. The audit record is discarded and not

used further in this process, because it is only relevant to find the respective dimensional record.

After that, all that is left to do is to mark it as inactive and return it to place Slowly Changing

Dim. This is accomplished through the SetStatus function in the red output arc expression,

which creates the token ‘1`DimRec({sk=2, nk="dnk2", sta=I, dtm="26/02/2012 11:35:13",

atb="upd-dnk2"})’, where the value of the sta field is now `I´ (i.e., Inactive). Once again, the

process isn’t complete before the new token ‘1`LogRec({dtm="28/05/2012 17:38:13", dnm="Dim

Name", opr=InactiveRecord, sk=2, nk=""})’, which represents a log journal record, is created and

put in place ETL Log (Figure 48).

CPN in the Simulation of ETL Standard Tasks

66

Figure 48 – The Delete module - Marking !#'

Figure 49 – The Update module - Marking !$)

In the final marking (!$)), shown in Figure 49, the colour of the token in place Verified Audit

Records is ‘[]’, meaning that all the records have been processed in the respective modules. There

are three tokens in place Lookup Table, representing the lookup records that were created when

CPN in the Simulation of ETL Standard Tasks

67

the corresponding records were inserted. Because the record with the natural key ‘dnk3’ didn’t

pass the verification test and was quarantined, it wasn’t processed in this simulation and,

therefore, no lookup record was created to match that natural key with a surrogate key. The token

in place Records to Update represents a verified audit record that should be used to update the

record that was quarantined. As there is no correspondence between this record and the lookup

dimensional records (i.e., the guard expression evaluates to false), the token representing the

audit record rests in that place until the quarantined record is fit to be inserted in the SCD. Place

Slowly Changing Dim has one additional token representing a dimensional record that was

inserted and updated two times between the markings !#' and !$) as it can be observed by the

two additional tokens in place Dim Historic.

ETL CPN Modules

68

Chapter 4

4. ETL CPN Modules

4.1. The Base for ETL CPN Modules

The CPN models presented in the previous chapter represent ETL operations that are used as

standard tasks in many ETL systems, more specifically when loading data into the DW. In this

chapter, one of the most interesting and important ETL operations is presented and modelled: the

Change Data Capture (CDC). The CDC is responsible for identifying and registering all the data

modifications that happens in the operational source(s) of a DW and store them in audit tables.

These data, kept in the DSA, may then be submitted to a number of transformations before they

are loaded into the DW by the SKP or SCD-H processes, depending on their type and quality. The

objective of creating these modules is to use them in the design and validation of ETL systems,

simply by adding and relating the already defined packages. To illustrate this, an ETL CPN model

formed by the SKP, SCD-H and CDC processes is also presented in this chapter.

4.2. Change Data Capture

One of the main functions of a DW is the preservation of the state of the data across time (i.e.,

time-variance of data). This means that every modification to the data of the source systems –

ETL CPN Modules

69

being it the insertion of new rows, the deletion of rows, or the modification of the values the rows–

must be preserved in the DW by the means of SCD tables. These special dimensions contain the

most recent state of the data of the source systems and its former states, stored in a special

historic table (Section 3.2). For these SCD to be loaded, there is the need to identify and capture

the changes that occur in the tables of the source systems, so that they can be delivered to the

target system (i.e., the DW) - such task can be accomplished through Change Data Capture (CDC)

design patterns.

 There are a number of different ways to set up a CDC mechanism. The simpler ones consist

on having one or more dedicated columns in the source tables, in order to track the row

modifications, such as timestamp, version number and status indicator columns whose values need

to be updated when a modification takes place. This CDC mechanism, although simple, must be

considered in the design stage of the database of the source system, so that the tables that need

to be audited possess the correct structure right from scratch. Another problem with this method,

depending on the size of the database and the number of transactions, is the accentuated growth

of the tables that need to be audited, since every record that is updated/deleted needs to be kept

in the same table for auditing purposes.

A more reliable method to implement the CDC mechanism is the use of triggers on the

tables that need to be audited (also known as log trigger). The log trigger acts as an automatic

mechanism to record information about changes that occur in a specific transactional table into a

corresponding audit table; the latter acts as an ordered queue that can later be directly used in the

population of the target SCD. This method overcomes the downsides of the previously presented

method, by using audit tables the impact on the source tables that need to be audited is minimum

and their structure remains unaltered; however, it is still considered to be an intrusive CDC method

since the log trigger may not be implemented in the transactional source tables that need to be

audited and, in many occasions, the DW Administrator may not have the permission to do so

during the implementation of this ETL process.

 A different manner to capture the changes made in the databases of the operational sources

is to read the system transaction log file to find the modifications that occurred in the source tables

that need to be audited. This CDC mechanism is the less intrusive one, with minimal impact on the

source systems, since the schema of the database does not need to be modified and no triggers

need to be implemented in the tables. Instead, all the information about data modification is

scanned and interpreted from the transaction log into audit tables that can be similar to the ones

used in the log trigger CDC mechanism. Because of the non-intrusive manner in which the source

ETL CPN Modules

70

modifications are captured, this is the CDC method adopted for this ETL process. The reading and

interpretation of the transaction log presents itself as the most challenging part of the process

since each DBMS adopts a specific structure and content for its transaction log file, without

providing the much needed documentation. The SQL Server 2008 was the chosen DBMS for the

analysis of the structure of the transaction log file and the interpretation of its content so that,

from this initial study, the corresponding CPN model can be designed.

4.2.1. The Transaction Log

In SQL Server 2008 the fn_dblog function allows us to view the transaction log as a relational

table. This function has two optional parameters; the starting and ending log sequence number

(LSN), which can be viewed as the unique identifier of each log record. Replacing the ‘NULL’ values

with an actual LSN limits the number of presented log records. The first step of this modelling

process is to analyse the structure and content of the transaction log, as well as the implication of

each of the records that belong to transactions created by Data Manipulation Language (DML)

queries, as these are the ones responsible for the updates, insertions, and deletions. The

transaction log has 119 columns, the majority of them possess solely ‘NULL’ values and their

importance is left unknown, as there is no available documentation. For this reason a view of the

transaction log (Table 1) was created with the necessary and most relevant attributes, for an

easier analysis, and a subset of the view is displayed in the following table.

LSN T. ID Operation T. Name End Time AllocUnitName RowLog Contents

1 1 LOP_BEGIN_XACT INSERT NULL NULL NULL

2 1 LOP_INSERT_ROWS NULL NULL dbo.TestTable 0x10006C0...

3 1 LOP_COMMIT_XACT NULL 2012/08/03 22:57:05 NULL NULL

4 2 LOP_BEGIN_XACT UPDATE NULL NULL NULL

5 2 LOP_MODIFY_ROW NULL NULL dbo.TestTable 0x63

6 2 LOP_MODIFY_ROW NULL NULL dbo.TestTable 0x63

7 2 LOP_COMMIT_XACT NULL 2012/08/03 22:58:29 NULL NULL

8 3 LOP_BEGIN_XACT DELETE NULL NULL NULL

9 3 LOP_DELETE_ROWS NULL NULL dbo.TestTable 0x10006C0...

10 3 LOP_DELETE_ROWS NULL NULL dbo.TestTable 0x10006C0...

11 3 LOP_COMMIT_XACT NULL 2012/08/03 22:58:49 NULL NULL

Table 1 – A Transaction Log View

ETL CPN Modules

71

The created view has only 7 attributes, of the initial 119, which is, in our point of view, sufficient

for the CDC process that we intend to model. The LSN is the unique identifier of each transaction

log record, while the T. ID (i.e., the Transaction ID) is the reference to the database transaction

that generated the log record. Note that the same transaction usually creates several entries in the

transaction log. Both these attributes contain hexadecimal values that can be long and more

difficult to differentiate. In this example they were replaced by sequential integer values (with

initial value ‘1’) in order to simplify the analysis and interpretation of each record. The Operation

represents the type of operation that was performed and recorded in the log; each transaction

begins with the LOP_BEGIN_XACT operation, and ends with the LOP_COMMIT_XACT operation.

The T. Name indicates the name of the transaction, which can be identified in its first log record,

i.e., the LOP_BEGIN_XACT record. In the remaining records of the transaction, this field is left as

‘NULL’. Each transaction has an associated timestamp and the End Time is recorded in each

LOP_COMMIT_XACT statement and left as ‘NULL’ in the remaining log records. The name of the

schema and table, where the modifications occurred, are stored in the AllocUnitName for the log

records that represent the actual modifications and are left as ‘NULL’ in the remaining records.

 The types of operations, their timestamps and the name of the tables where the

modifications took place have been identified, so the final step of this process is the identification

of the attributes of the transaction that store information about the actual modifications, that is,

the names of the attributes, their types and the modified values. Unfortunately, this information is

not directly displayed in the transaction log. Instead, it is stored as a hexadecimal value in a series

of attributes named Row Log Contents. There are a series of 5 Row Log Contents attributes in

the transaction log, numbered from 0 to 4, which store the modified information according to the

type of operation. In this example, once again to make it simpler and more readable, only one

attribute is used to represent this series of attributes; the actual extraction of data from these

attributes is out of the scope of this study but is simulated in the implemented model of the CDC

process. Table 1 represents 3 transactions and 11 log records. The type of the first transaction can

be identified in the T. Name attribute (i.e., an Insert) of the first record, the following record is

the one that holds the information about the inserted row, while the timestamp of the operation is

presented in the End Time attribute of the final log record of the first transaction. The second

transaction, an Update, begins in the fourth record of the table; in this transaction there are two

records with the LOP_MODIFY_ROW operation, meaning that two rows were updated with a

single DML query. The third transaction, representing a Delete operation on two rows, can be

interpreted in an analogous way.

ETL CPN Modules

72

4.2.2. The Change Data Capture CPN Model

The CDC process is implemented using a hierarchical CPN composed of three main modules that

hold the most intricate details and behaviour of the CPN model. The prime module, composed of

the three sub-modules, allows for a more abstract and cleaner view of the entire process (Figure

50).

Figure 50 – The CDC process prime module

The first step of the CDC process is to read the transaction log and process the log records

according to its operation type, which is accomplished in the Read module, represented by the

Read Transaction Log substitution transition. The Decode module is responsible for the

extraction of the modified data from the Row Log Content attribute of the record, which is

represented by the Decode Row Log Contents substitution transition. Finally, in the Audit

module represented by the Update Audit Tables substitution transition, the audited data is

inserted in the corresponding audit table.

!"#$%&
'(#)%
*$+,&-

'(#)%

.&/0#&
10234053
607%&7%-
.&/0#&

1&$#
*8$7-$/%)07

405
1&$#

9"8

*:.;9<1

102

1=691.

*405
1&/08#

1=691.

=7#
*)>&

:.;=?.:@=

1&$#

.&/0#&

'(#)%

ETL CPN Modules

73

In addition to these substitution transitions, the prime module is also formed by four places. The

place Opr is the output socket of the Read Transaction Log substitution transition and the

input/output socket of the Decode Row Log Contents substitution transition. The second output

socket of Read Transaction Log is the place End Time, which is also the input/output socket of

Update Audit Tables. The place TLog Record, used to model a transaction log record, is the

third output socket of Read Transaction Log and the input socket of Decode Row Log Contents

and finally, the place Row, that models a log record after the decoding of the Row Log Contents,

acts as the output socket of Decode Row Log Contents and input socket of Update Audit

Tables. The TIDxOPR and TIDxENDTIME colour sets both represent the product of an integer

and a string. Although they are equal, these colour sets have different representations because

they represent tuples with attributes of different data types (e.g., VARCHAR to store the operation

and DATETIME to store the end time):

 colset NO = int;

 colset ST = string;

 colset TIDxENDTIME = product NO * ST;

 colset TIDxOPR = product NO * ST;

The RECORD colour set is used to represent a record from a relational database and it is defined as

the union of the different types of records used in this CDC process:

 colset RECORD = union

TLogRec:TLOGREC + AudRec:AUDREC + DecRec:DECREC;

In order to make the model more uniform, all the places that represent a relational table (e.g., an

Audit Table) or individual records have this colour set. The colour sets, which are part of this union

and represent the existing types of records, are described in the following sections.

4.2.3. The Read Module

The Read module (Figure 51) is responsible for the extraction and initial processing of the records

of the transaction log according to their type of operation. Each transaction is composed of three

or more records with different operations. The log record with the LOP_BEGIN_XACT operation

ETL CPN Modules

74

marks the beginning of the transaction and holds the name of the transaction (Insert, Update or

Delete), the record with the LOP_COMMIT_XACT operation is the final record of every transaction

and also holds information on its end time. The LOP_INSERT_ROWS, LOP_UPDATE_ROWS and

LOP_DELETE_ROWS operations belong to the log records holding the information about the actual

row modification in the operational sources. A single transaction is responsible solely for one kind

of operation (Insertion, Deletion or Update), but the same operation can occur in several different

records.

Figure 51 – The Read module

This module is composed of five places and three transitions. Three of the places – Opr, TLog Rec

and End Time – are the output ports of this module and have been described previously. The

fusion place TLog Prog of the colour set NO is used to manage the progress of this CDC process

by saving the LSN of the last log record to be fully processed, which is necessary to resume the

process should it terminate unexpectedly. The last place, Transact Log of the colour set

RECORDLIST, is used to model the transaction log view presented previously. In spite of

representing a relational table, the colour set RECORDLIST is used exceptionally, instead of

!"#$%&'#()!"#$%&'#()

!"'*+&'#(,
"'%-./&'#() !"'*+&'#(,

"/%+'*./&'#()

01234/5&'#(

01234/5&'#(66'#23

'#23 '#23

01234/5&'#(66'#2301234/5&'#(66'#23

'#23

78'(-5'
9:;;<0=

>!"2?(&'#()@
A1:BC9:;;<0CDE90AF

BCG

78'(-5'
<,&H,&I

>!"2?(&'#()&@&
A1:BC<J=740C4:K=A&
2(/#$/
!"2?(&'#()&@&
A1:BCHBIE07C4:K=A&
2(/#$/
!"2?(&'#()&@&
A1:BCI71707C4:K=AF

BCG

78'(-5'
L7M<J=

>!"2?(&'#()@
A1:BCL7M<JCDE90AF

BCN

0123
B(23

B(23(/$$ J:

:?(

:O'
0<I8:B4

7%+
0*./

:O'
0<I87JI0<;7

0123
4/5

:O'
479:4I

0(-%$-5'
123

01234/52(+$

479:4I1<=0

:O' :O':O'

B(23(/$$

ETL CPN Modules

75

RECORD, so that the log records can be processed sequentially as a FIFO list. This colour set is

implemented as:

 colset RECORDLIST = list RECORD;

The three existing transitions are used to extract individual log records from the place Transact

Log according to the type of operation of the records; the arc expression TLogRec tlr::tlog

is used to extract the head of the list (i.e., a log record) into the corresponding transition, while the

remaining list is returned to Transact Log through the arc expression tlog1:

 var tlog: RECORDLIST;

 var tlr : TLOGREC;

The colour set TLOGREC is used to model the transaction log record, a seven field record defined

as:

 colset TLOGREC = record

lsn:NO * tid:NO * opr:ST * tname:ST *

endtime:ST * aun:ST * rlc:ST;

The lsn and tid fields, with colour set NO, are integers used to represent the LSN and the

Transaction ID respectively. The remaining fields – tname, opr, endtime, aun and rlc – with

colour set ST, are strings that represent the Transaction Name (i.e., Insert, Update or Delete), the

operation of the log record, the End Time of the transaction, the Alloc Unit Name and the Row Log

Contents of the log record, respectively.

 The Extract BEGINS transition is responsible for extracting the first record of each

transaction, i.e., the records with the LOP_BEGIN_XACT operation, through the guard expression

[(#opr tlr) = “LOP_BEGIN_XACT”]. From this point, the ID and the name of the transaction

are passed to the output port Opr, through the arc expression (#tid tlr, #tname tlr), and

the place TLog Prog is updated with the LSN of the processed record through the arc expression

(#lsn tlr). The importance of this first record is to mark the beginning of a new transaction, as

well as to preserve the operation of the transaction in the place Opr, so that the remaining log

records (i.e., the ones that contain the Row Log Contents values) can be processed in accordance

with the Decode module. The transition Extract I, U, D is responsible for the extraction of all the

ETL CPN Modules

76

log records that are neither BEGINS nor COMMITS; the guard expression allows the transition to

be enabled if the operation of the log record is LOP_INSERT_ROWS, LOP_MODIFY_ROWS or

LOP_DELETE_ROWS. The records extracted through this transition are passed to the output port

TLog Rec so that the information contained in the rlc field can be decoded in the next module.

 The final piece of information needed to construct an audit record is the end time of the

transaction; this information is presented in final record of every transaction, which is extracted

from Transact Log through the transition Extract COMMITS. From this transition, the place End

Time is updated with the timestamp of the commit operation of the transaction, as well as the

transaction ID so that this timestamp can be correctly associated with the records that possess

modified information (i.e., the ones extracted in the transition Extract I, U, D). This is

accomplished through the arc expression (#tid tlr, #tname tlr); at the same time, the

progress of the CDC process is once again recorded. Note that the TLog Prog is not updated for

the log records extracted in the transition Extract I, U, D as they aren’t fully processed until they

are used to update the corresponding audit table. In this module, the Extract BEGINS transition

has the lowest priority (P_3) so that a new transaction is only processed after the current

transaction’s records have been fully processed in the remaining modules.

4.2.4. The Decode Module

After the transaction’s LOP_BEGIN_XACT and LOP_COMMIT_XACT log records have been fully

processed, the next step is to process the remaining records extracted in the previous module, i.e.,

the ones with the LOP_INSERT_ROWS, LOP_MODIFY_ROWS or LOP_DELETE_ROWS operation.

These are the records that posses hexadecimal values in the Row Log Contents attributes, rather

that ‘NULL’ values, and this where the information about the inserted, deleted or updated data

resides. SQL Server keeps these hexadecimal values in a specific format, described in detail by

Delaney et al. (2009), to facilitate the recovery of modified data so that the hex values can be

transformed according to the defined format. The actual transformation of the hexadecimal values

into the modified rows is out of the scope of this study, which is focused on the interpretation of

the transaction log for CDC and the update of the audit tables once the modified data has been

decoded. Nevertheless, in the physical design of this ETL process, these transformations would be

represented by a decoding function that is simulated in this module.

ETL CPN Modules

77

Figure 52 – The Decode Module

The Decode module (Figure 52) is used to simulate the transformation of hexadecimal values into

the modified rows and is formed by a single transition and four places. The place TLog Record

acts as an input port and is used to model the log records with modified data extracted in the

previous module, while the place Row is used to model a log record after the Row Log Contents

attribute has been decoded. This new record is referred to as decoded record and contains

additional attributes that represent the modified row in the operational source:

 colset DECREC = record lsn:NO * tid:NO * src:ST * opr:ST * tn:ST *

 nk:ST * atb:ST;

This new type of record maintains the lsn, tid and opr fields from the original log record. The

nk and atb fields are strings used to represent the natural key and a second attribute resulting

from the Row Log Contents decoding. The fields src and tn, both strings, represent the name of

the operational source and the name of the audited table respectively, these values are derived

from the aun field of the original log record. The place Opr, an input/output port, holds tokens

with information on the transactions’ names, plus the transactions’ IDs, extracted from the

LOP_BEGIN_XACT log records in the first module. The guard expression [(#1 opr) = (#tid

tlr)] is used so that the correct transaction name (‘Insert’, ‘Delete’ or ‘Update’) is passed to the

!"#$%&'()*+

#,+

-&'#.&%"/0)*+1023(#,+4156)7)#8)+96$06:44

6:

6:;<%#=("#$
/#6)&6)>
89?@*A)9#6

B02<(#,+4
C02)9.()*+4D

EF3

!"#$
%&'#+.
56 %G/H%-

H,+
5IH !5-JHE%

%#=

H@) %G/H%-

KL

<

KH

H@)

5IH
56

ETL CPN Modules

78

transition and used later in this module. To simulate the decoding of the Row Log Contents the

place NK, with colour set NO and initial marking ‘1’, is used together with the function DecodeRLC

in the arc expression that leads to Row. In each marking the variable nk is incremented and

passed to the transition trough the arc expression nk + 1; the incremented integer is then

converted to a string and used as parameter in the DecodeRLC function. This function takes three

parameters: the log record represented by the tlr variable, the name of the transaction and the

incremented value of nk.

 fun DecodeRLC(tlr:TLOGREC,tranName,nk) =

 1`DecRec{

 lsn= (#lsn tlr),

 tid=(#tid tlr),

 src="srcDB",

 opr=tranName,

 tn=substring((#aun tlr),4,2),

 nk="nk"^nk,

 atb="atb"^nk};

The new decoded record maintains the values in the log record’s lsn and tid fields. The value of

the opr field is substituted by the transaction name passed in the tranName variable so that the

operation is displayed as ‘Insert’, ‘Delete’ or ‘Update’, instead of ‘LOP_INSERTED_ROW’,

‘LOP_MODIFIED_ROW’ or ‘LOP_DELETED_ROW’. The name of the audited table in the operational

source is extracted from the alloc unit name field (aun) of the original log record, which contains

the schema name and the name of the table where the operation occurred. This is done through

the substring function and the resulting string is saved into the tn field of the decoded record.

The name of the source database can be can be obtained either by querying the operational

source for the current database name, or by executing the stored procedure sp_Msforeachdb and

compare the audited table’s name with the column ‘name’ in either sys.tables or sysobjects tables.

This will check all the tables’ names in the existing databases and return the name of the database

that has the requested table name. This procedure can be implemented as:

 exec master.dbo.sp_msforeachdb

 "USE [?] SELECT db_name() FROM sysobjects WHERE name='T1'"

ETL CPN Modules

79

In this model, however, the execution of such a query is not possible and the DecodeRLC function

is also used to simulate this operation by updating the src field. To simulate the decoding of the

modified source record’s natural key value, the nk variable passed as a function parameter is

concatenated with the string “nk” so that a different natural key value (e.g. ‘nk1’, ‘nk2’, ‘nk3’) is

created for each record. The same happens with the atb field.

Figure 53 – The Decode implemented with Hierarchy

The simple Decode module just described is adequate to model and simulate the decoding of the

hexadecimal values in the Row Log Contents attribute. However, as it has been referred, the SQL

Server’s transaction log is composed by four Row Log Contents attributes that may or may not

contain hexadecimal information, depending on the type of operation. For this reason, the

decoding functions used to extract the modified data may also vary depending on the log record’s

type of operation. If this was to be taken into account, an alternative version of the Decode

module (Figure 53) could be used to separate the behaviour of the decoding operations into three

different sub-modules (Insert, Update and Delete). In this case, a substitution transition would

only activate with a combination of the corresponding operation and a log record with a

transaction ID that matches the operation’s transaction ID. As an example, the guard expression

used for Insert module would have to be [(#2 opr)=”Insert”, [(#1 opr) = (#tid

tlr)].

!"#$%"
&'(")*(
&'(")*&'(")*

+,)
&-+

./0123456637

!"#$%"
5,%8*"(
5,%8*"5,%8*"

96$:
;"#$)%

&'

!"#$%"
!"<"*"(
!"<"*"!"<"*"

;$=

+>*+>*
;?@+;!

&'
;?@+;!

&-+9&!A+B;

ETL CPN Modules

80

4.2.5. The Audit Module

The final module, Audit, is responsible for the assignment of the transactions’ timestamps to the

correct decoded records, as well as their insertion in the corresponding audit tables.

Figure 54 – The Audit module

The place Row is an input port and has tokens representing the decoded records, the place End

Time is an input/output port and has tokens with information on each transactions’ ID and the

corresponding timestamp and the fusion place TLog Prog is once again used to record the log

progress. The places Audit Table 1,2 and 3 are used to model the audit tables of three different

relations in the operational sources and receive tokens representing the final audit records. The

colour set AUDREC is used to model this type of records and it is defined as:

 colset AUDREC = record src:ST * dtm:ST * opr:ST * nk:ST * atb:ST;

This record maintains the src, opr, nk and atb fields and has an extra field, dtm, which

represents the timestamp of the operation in the operational source. The single transition Update

Audit Table receives a decoded record through the arc expression DecRec row and the

!"#$%#&'()*+,-./*0/1&213

4*56*57,-.

*0

!"#$%#&'()*+,-./*0/1&813

+9):;7,-.3

!"#$%#&'()*+,-./*0/1&<13

!"#'0*
$%#=0
&'()*

>+987*03?
+90=#7,-.3@

AB8

$%#=0
&'()*
2

6CDE64

6-.

F;
6CDE64

C;#
&=G*

FHE &F4ICJ4&FKC

&L-M
A,-M

A,-M,*::
JE

$%#=0
&'()*
<

6CDE64

$%#=0
&'()*
8

6CDE64

A,-M,*::

FHEF;

ETL CPN Modules

81

corresponding timestamp through the variable et in the arc that connects the place End Time with

the transition. For the transition to activate, the guard expression [(#1 et) = (#tid row)]

must be true, meaning that there is a transaction ID, associated with a timestamp in the place End

Time, which matches the transaction ID of one of the decoded records in Row. The

UpdAudTable function is responsible for creating a fresh audit record with the corresponding

timestamp and inserting it in the correct audit table:

 fun UpdAudTable(r:DECREC,et:TIDxENDTIME,tname) =

 if (#tn r)=tname

 then CreateAudRec(r,et)

 else empty

This function receives the decoded record r, the pair transaction ID – end time, represented by

the variable et and the name of the table, represented by the variable tname. Then, it compares

the value in the tn field of the decoded record with the value in the tname variable passed as a

parameter; if they match then the correct audit table is being updated and a new audit record can

be created through the function CreateAudRec:

 fun CreateAudRec(r:SRCREC,et:TIDxENDTIME) =

 1`AudRec{

 src= (# src),

 dtm= (#2(et)),

 opr= (#opr r),

 nk= (#nk r),

 atb= (#nk r)};

The CreateAudRec function creates a fresh audit record; the only piece of information missing is

the timestamp of the operation, passed as a parameter through the variable et. By using these

two functions and a single transition, it is possible to insert the final audit record in the correct

audit table. The final step of this module’s process is to update the fusion place TLog Prog with

the LSN of the decoded records used to generate the audit records.

ETL CPN Modules

82

4.2.6. Simulating the CDC Process

In this section the execution of the CDC model is simulated in the CPN Tools environment and

described with the help of several images representing different markings. The initial marking is

examined in the Read module, since this is the only one with an enabled transition in this stage

(Figure 55). A small green circle, which indicates the number of tokens in the corresponding place,

represents the marking of a place and the actual tokens are displayed in an adjacent green box

than can be minimized for a cleaner presentation of the model.

Figure 55 – The Read module - Initial marking !"

In this initial marking there is a single token in Transact Log, representing the log records that

will be used for the CDC process but haven’t been read from the transaction log yet. The colours of

these tokens are defined in the TLogRecords constant, implemented as:

ETL CPN Modules

83

val TLogRecords=

1`[

TLogRec({lsn=1, tid=1, opr="LOP_BEGIN_XACT", tname="Insert", endtime="NULL", aun="NULL",

 rlc="NULL"}),

TLogRec({lsn=2, tid=1, opr="LOP_INSERT_ROWS", tname="NULL", endtime="NULL", aun="dbo.T1",

 rlc="0x10006C0"}),

TLogRec({lsn=3, tid=1, opr="LOP_COMMIT_XACT", tname="NULL", endtime="20/06/2012 10:20:11",

 aun="NULL", rlc="NULL"}),

TLogRec({lsn=11, tid=4, opr="LOP_BEGIN_XACT", tname="Delete", endtime="NULL", aun="NULL",

 rlc="NULL"}),

TLogRec({lsn=12, tid=4, opr="LOP_DELETE_ROWS", tname="NULL", endtime="NULL", aun="dbo.T1",

 rlc="0x10006C0"}),

TLogRec({lsn=13, tid=4, opr="LOP_DELETE_ROWS", tname="NULL", endtime="NULL", aun="dbo.T1",

 rlc="0x10006C0"}),

TLogRec({lsn=14, tid=4, opr="LOP_COMMIT_XACT", tname="NULL", endtime="20/06/2012 14:12:01",

 aun="NULL", rlc="NULL"})]

Fourteen log records, relative to four transactions, compose the list that represents the records in

the transaction log that will be used for the CDC process. Note that only transactions 1 and 4 are

displayed above. In the following simulation, the CDC process will be described for the log records

used to record transaction 1 (i.e., tid is ‘1’). This transaction is recorded in the transaction log

with three records. The first one is a LOP_BEGIN_XACT record that indicates the beginning of the

transaction, as well as its name. The second record is a LOP_INSERT_ROW record that contains

the modified information in the operational source’s table and the final record is a

LOP_COMMIT_XACT record indicating that the transaction successfully committed. The second

transaction is also an insert, but this time in table T2 of the operational source. The third recorded

transaction is responsible for updating two records on table T1, and the final recorded transaction

is a delete operation of two other records, also on table T1.

 In the initial marking !" the single enabled transition is Extract BEGINS, which is

responsible for the extraction and processing of all the log records that mark the beginning of a

new transaction (i.e., the records with the LOP_BEGIN_XACT operation). The first record to be

processed, ‘TLogRec({lsn=1, tid=1, opr="LOP_BEGIN_XACT", tname="Insert", endtime="NULL",

aun="NULL", rlc="NULL"})’, marks the beginning of transaction number 1 and is the current head

of the log record list. When the transition is fired, the record is removed from the list and its tid

and tname fields are used to update the place Opr through the arc expression (#tid tlr,

#tname tlr) with the current transaction’s ID and name/operation; at the same time progress of

the CDC process is recorded in TLog Prog with the LSN of the extracted record.

ETL CPN Modules

84

Figure 56 – The Read module - Marking !#

The new marking M1 (Figure 56) is reached after the Extract BEGINS transition is fired, resulting

in the extraction and processing of the first log record. In this marking there is one token in

Transact Log, representing the list of the remaining log records, and two new tokens, one in Opr

and the other in TLog Prog. The new enabled transition is Extract I, U, D, which is responsible for

the extraction of the log records that contain the information of the modified records in the

operational source’s tables. When this transition is fired the log record ‘TLogRec({lsn=2, tid=1,

opr="LOP_INSERT_ROWS", tname="NULL", endtime="NULL", aun="dbo.T1", rlc="0x10006C0"})’

is removed from Transact Log into TLog Rec and the new marking !$ is reached (Figure 57).

ETL CPN Modules

85

Figure 57 – The Read module - Marking !$

In !$ there is only one additional token in TLog Rec, representing the previously extracted log

record, while the marking of the remaining places remains unaltered. Note that the process’

progress is not updated in this marking, as this type of record is not fully processed yet, this will

only happen once the corresponding audit record is created and inserted in the destined audit

table. Extract COMMITS is now enabled, since the third log record, the new head of the list,

represents the commit operation of the first transaction. When this transaction is fired the marking

!% (Figure 58) is reached. The record ‘TLogRec({lsn=3, tid=1, opr="LOP_COMMIT_XACT",

tname="NULL", endtime="20/06/2012 10:20:11", aun="NULL", rlc="NULL"})’, is extracted from

the list in Transact Log and its tid and endtime fields are used to update the output port End

Time with the current transaction’s ID and timestamp. In this marking there is an additional token

in TLog Prog since the extracted log record is fully processed in this stage.

ETL CPN Modules

86

Figure 58 – The Read module Marking !%

In !% there are no enabled transitions in the Read module, because the defined priorities prevent

the Extract BEGINS transition to activate and extract the following log record (i.e., lsn=‘4’ and

tid=‘2’) until the current transaction’s record (i.e., lsn=‘2’ and tid=‘1’) is fully processed in the

remaining modules and inserted in the respective audit table. This same marking is shown in the

Decode module of the CDC process (Figure 59), which is the one with next enabled transition. In

!%, the single existing transition in the Decode module is enabled and there is one token in Opr,

TLog Record and NK. The tokens in Opr and TLog Record result from the extraction and

processing of the first two records in the Read module while the token in NK is used to generate

different natural keys and attributes, hence simulating the decoding of the log record’s rlc field.

ETL CPN Modules

87

Figure 59 – The Decode module - Marking !%

Figure 60 – The Decode module - Marking !+

The Row Log Contents Simulation transition removes one token from TLog Record, the

corresponding token from Opr and the existing token from NK. When the transition is fired (!+) a

new decoded record is created and passed to Row through the function DecodeRLC. At the same

time the place NK is updated with the incremented value of nk. The new decoded record now

resided in this module’s output port (Figure 60) so that it can be passed to the final Audit module.

Figure 61 – The Audit module - Marking !+

Figure 61 shows the same marking – !+ – in the Audit module. There are two tokens in TLog

Progress representing the LSNs of the previously processed log records, one token in Row

ETL CPN Modules

88

representing the decoded record processed in the previous module and one token in End Time

representing the timestamp extracted from the log record with the commit operation of transaction

1. In this module there is once again only one transition, Update Audit Table. When there is a

correspondence between a token in End Time and one token in Row the transition is fired and the

marking !& is reached (Figure 62).

Figure 62 – The Audit module - Marking !&

In the new marking one token is removed from Row and used as a parameter in the

UpdAudTable function, together with this transaction’s timestamp passed to the transition in the

variable et. Through this function a new audit record is created and passed to the corresponding

audit table, depending on the operational source’s table name stored in the decoded record’s tn

variable. In this example the new token representing an audit record is passed to the place Audit

Table 1 as the Insert operation occurred in table T1. The CDC progress for the second log record

(i.e., lsn=‘2’ and tid=‘1’) is updated in this stage with its LSN since it has been fully processed

and inserted.

ETL CPN Modules

89

Figure 63 – The Audit module - Final marking

In the final marking every log record has been processed and the corresponding audit records

created and inserted in the correct audit table. There are no records in Audit Table 3, a single

record in Audit Table 2 and the remaining audit records have been inserted in Audit Table 1.

4.3. The Selected ETL System

The objective of the previous sections is to present the CPN models that were implemented

separately for three important ETL processes: the SKP, the CDC and the SCD-H, which also

contains the SKP process. For this, the behaviour of each process was explained and the

corresponding model described. A simulation of each model was also performed and displayed, in

order to present and analyse the behaviour of each modelled process. In this section the

previously implemented models, that represent standard ETL operations, are used as independent

packages or sub-modules in order to create and simulate a larger ETL system based on a practical

example. The objective is to build the model for an ETL scenario through the composition of the

smaller existing modules.

ETL CPN Modules

90

Let us consider the following Data Mart (DM) (Figure 64), which will be used as the practical

example in which the modelling of this ETL scenario is based on.

Figure 64 - Sales Data Mart Fact Schema

In Figure 64 is presented the schema for a simple Sales DM implemented with the Dimensional

Fact Model, a conceptual modelling language used to support the design of Data Marts (Golfarelli

and Rizzi, 2009). The Sales fact table and the dimensions Time, Customer and Product form the

DM. The fact table is responsible for registering the many-to-many relationships between the

existing dimensions. Therefore, each existing fact record (or primary event) aggregates the

information of a product sold to a customer on a given date and the price for which the product

was sold, which is represented by the unitPrice measure in the fact table. The Date dimension

is composed by three dimensional attributes – day, month and year – and two hierarchies

formed by the relationship of these attributes: date!day, and date!month!year. The Customer

dimension is formed by two dimensional attributes, city and country, that form the

customer!city!country hierarchy, and two descriptive attributes, address and name, that are

used to better describe the customer dimensional attribute in the hierarchy. Finally, the Product

dimension is also formed by two dimensional attributes – type and brand – but this time they

form two independent hierarchies: product!type, and product!brand. The descriptive attribute

name is used to give additional product information.

ETL CPN Modules

91

4.3.1. The ETL System CPN model

In order to integrate the relevant data into the Sales data mart it must initially be extracted from

the operational sources. In this example it is assumed that there is a single operational source

feeding the DM with data, which is audited through a transaction log file. The CDC is the first ETL

process to occur, which is responsible for reading the source’s transaction log and extract the

relevant data into the corresponding audit tables in the DSA. Each dimension in the DM must have

a corresponding audit table in the DSA. This model is based in a real-time ETL scenario, meaning

that any modification in the transaction log will trigger the CDC process, which is then responsible

for separating the extracted data accordingly with the existing audit tables. After the data has been

extracted into the DSA it can then be loaded into the DM. In order to accomplish this all the

dimensions need to be populated prior to the fact table. Because the fact records consist of a

sequence of surrogate keys, and the corresponding measures, they must be the last records to be

loaded into the DM. These surrogate keys are generated and mapped with the corresponding

natural keys during the SCD-H process into the respective lookup tables. These same tables are

also used during the SKP process, responsible for loading the fact records into the fact table,

making it dependant on the existing SCD-H processes. Being so, there must exist three

independent SCD-H processes that use the audited data in the Time, Customer and Product audit

tables, being responsible for populating the Time, Customer and Product Dimensions. The last

process to occur, the SKP, uses the audited data that is destined to the Sales fact table and is

responsible for substituting the natural keys in the audited records for the surrogate keys created

in the previous SCD-H processes. No data can be loaded into the Sales fact table until lookup

records are made available for use in the SKP process.

ETL CPN Modules

92

Figure 65 – The ETL system CPN model

Figure 65 shows the implemented CPN model of the ETL system used to populate the Sales DM

presented previously. This CPN model is composed by nine places and five substitution transitions,

each of these transitions hides the details of the sub modules presented in the previous sections

that model the corresponding ETL processes. The place Transaction Log, displayed in red, is used

to model the transaction log of the operational source’s database that will be used to audit its data.

The four blue coloured places are used to model the relational tables in the DSA. Each audit table

is used to store audited data from the corresponding table in the operational source, captured

through the transaction log, that will later be loaded into the respective dimension or fact table.

The green coloured places are used to represent the DM’s dimensions – Time, Product and

Customer – and the Sales fact table. A single CDC module is used to extract information from the

Transaction Log, whenever it is modified in the operational source, decode and load it into the

correct audit table in the DSA. There must be an independent SCD-H process for populating each

dimension. In this case three SCD-H modules are needed. To accomplish this, the original SCD-H

module was cloned and used separately in this CPN model. Each of these clones can then be

!"#$"%
&'()*+)*,
-+./)0+#)

1
!&-23,1

!"#$"%
&'()*+)*,
-+./)0+#)

4
!&-23,4

!"#$"%
&'()*+)*,
-+./)0+#)

5
!&-23,5

&'()*/
-(6(
&(7689/

&-&

!899#*(6/,
:/%
;+7/"+)/

!:;

;9#<8=6

>?&@>-

&806#./9

>?&@>-

A+./

>?&@>-

B8<+6
A(C"/
A1

DE

>?&@>-FG!A

B8<+6
A(C"/
A5

DE

>?&@>-FG!A

B8<+6
A(C"/
A4

DE

>?&@>-FG!A

A9()0(=6+#)
F#*

AF#*>/=#9<0

>?&@>-FG!A

!("/0
H(=6
A(C"/

>?&@>-

B8<+6
A(C"/
HA

>?&@>-

!:;

&-&

!&-23,5 !&-23,4 !&-23,1

ETL CPN Modules

93

modified or adapted to the needs of each ETL scenario. In this case the Surrogate Key Gen sub-

module, found in the Insert sub-module of each SCD-H module (Figure 66) was slightly modified.

Figure 66 - Surrogate Key Gen Sub-modules of the SCD-H 1, SCD-H 2 and SCD-H 3 modules

The places representing the lookup tables managed in the SCD-H modules are now part of

independent fusion sets. The Lookup Table 1 fusion set holds the lookup records corresponding

to the Time dimension, the Lookup Table 2 fusion set holds the lookup records corresponding to

the Product dimension and the Lookup Table 3 fusion set holds the lookup records corresponding

to the Customer dimension. The place Fact Records in the DSA serves as input for the last used

module, the SKP, used to load the fact records into the Sales fact table once all the dimensions

have been populated. The execution of this module is dependent on the execution of the SCD-H

modules because the fusion places representing the Lookup tables in this module are part of the

same fusion sets defined in the SCD-H modules (Figure 67).

!"

!"#$
%&'&()*&
+,

-./0-1

-./0-1

20
-./0-1

3

455"67
8)9:&

455"67;8)9:&;$455"67;8)9:&;$

2&<4"7-&=
>!"?=(@

1AB
-&=5(C

06*06*

/5'D5(B&C
-&=5(C

E'E'
/'D-&=;=(

F!!AG'+,>!"?=(@

/56'*&(

!""#$%&'(")*+,-

.%/01+2+,

")

")34
51%1,671
&'

08.90:

08.90:

;9
08.90:

.<%/<,=1>
01+<,>

?%?%

:#=
01+<,>

9@79@7

4A4
;1BC)D01+
(")*+,-

.<@%71, C<<)@D
E6FG1

C<<)@D2E6FG12HC<<)@D2E6FG12H

!"#$%&'&(

)*

)*+,
-%"%(./%

01

$2!3$4

$2!3$4

53

$2!3$4

5%67*8$%&

9)*:&(; 7<<*=8

>.?@%

7<<*=8'>.?@%'A7<<*=8'>.?@%'A

!<="/%(

4BC

$%&<(D

3=/3=/

!<"#<(C%D

$%&<(D

E"E"

F))BG"019)*:&(;

,H,

ETL CPN Modules

94

Figure 67 – The SKP Module

4.3.2. Simulating the ETL System CPN model

In the initial marking (!") of this model (Figure 68), there is one token in the places Audit Table

T1, T2 and T3 with the colour [] (i.e., an empty list) meaning that no records have been audited

yet. There is also one token in the place Transaction Log representing the list of records in the

operational source’s transaction log. The initial colour of this token is defined through the

TLogRecords value. There are a total of 14 transactions registered through 36 records in this list;

all of the transactions are inserts and in each audited table in the operational source (i.e., T1, T2,

T3 and FT) are inserted three different records. Below are presented the fist and the last

transaction in the initial marking of the place Transaction Log:

 val TLogRecords=

 1`[TLogRec({lsn=1, tid=1, opr="LOP_BEGIN_XACT", tname="Insert", endtime="NULL",

 aun="NULL", rlc="NULL"}),

 TLogRec({lsn=2, tid=1, opr="LOP_INSERT_ROWS", tname="NULL", endtime="NULL",

 aun="dbo.T1", rlc="0x10006C0"}),

 TLogRec({lsn=3, tid=1, opr="LOP_COMMIT_XACT", tname="NULL", endtime="20/06/2012

 10:20:11", aun="NULL", rlc="NULL"}),

 TLogRec({lsn=34, tid=14, opr="LOP_BEGIN_XACT", tname="Insert", endtime="NULL",

 aun="NULL", rlc="NULL"}),

 TLogRec({lsn=35, tid=14, opr="LOP_INSERT_ROWS", tname="NULL", endtime="NULL",

 aun="dbo.FT", rlc="0x10006C0"}),

 TLogRec({lsn=36, tid=14, opr="LOP_COMMIT_XACT", tname="NULL", endtime="23/06/2012

 11:42:11", aun="NULL", rlc="NULL"})]

!"#$#%
&'()&*+,-.(//012341-'(

012341-'(012341-'(

5,"341-.(5,"341-.(

!"#$#6
&'()&*+,-.(//

5,"341-.(

!"#$#7
&'()&*+,-.(//

89:+2;2924
$<-<;=%

>&*;#%-'(/-?
@,4A-&*@,-.(/B

89:+2;2924
$<-<;=6

>&*;#6-'(/-?
@,4A-&*@,-.(/B

89:+2;2924
$<-<;=7

>&*;#7-'(/-?-
@,4A-&*@,-.(/B

0C12
DC:.4

E92
3FGE3<

0C12
341H(#+

$@

0C12341H(#+

3FGE3<

I7

3FGE3<

I6

3FGE3<

5HH,9"
DC:.4
<;=7

5HH,9"-DC:.4-7
3FGE3<

5HH,9"
DC:.4
<;=6

5HH,9"-DC:.4-6
3FGE3<

5HH,9"
DC:.4
<;=%

5HH,9"-DC:.4-%
3FGE3<

5HH,9"-DC:.4-%5HH,9"-DC:.4-65HH,9"-DC:.4-7

$@ E92

ETL CPN Modules

95

Figure 68 – The ETL System CPN model - Initial marking !"

In the final marking of the simulation, !#$+, there are three fully processed dimensional records in

each of the DM’s dimensions – Time, Product and Customer – and also three fact records,

formed by three surrogate keys and one measure, in the Sales Fact Table. The existing token in

the place Transaction Log has now the colour ‘[]’, meaning that all the records have been read

from the log by the CDC process.

ETL CPN Modules

96

Figure 69 – The ETL System CPN model - Final marking !#$+

Conclusions and Future Work

97

Chapter 5

5. Conclusions and Future Work

5.1. Conclusions

During the development of a DWS, it is not common to adopt conceptual modelling methodologies

in the implementation of ETL systems. The main efforts concerning the modelling of a DWS are

mainly applied in the conceptual design of its schema. The existing approaches, regarding the

specification of ETL processes, are either not supported by a single and strong modelling language

or don’t allow for their validation during the conceptual design stage. This causes the success rate

of DWS implementation to drop, while increasing the rather large amount of resources needed to

implement the ETL system. Thus, in this dissertation a formal specification approach based on CPN

for modelling and validating DWS ETL processes is presented.

 To initiate this study, one of the most relevant and used cases in ETL system

implementation was selected, the SKP. This case is itself one of the most adequate processes to

begin with; it is a small but very important task, which allowed for a smoother contact to the, until

then unknown, concepts of the CPN modelling language. The research continued with the SCD-H

process. This far more complex process involved an improved application of the mechanisms of the

CPN modelling language, being the hierarchical concepts the most relevant ones in this case.

Hierarchy allows for a superior organization, presentation and readability of the implemented

model, since it is formed of several different smaller processes itself. Due to the complexity of this

Conclusions and Future Work

98

process and the higher number of types of records used during its execution, when compared to

the SKP, the colour sets used to represent these different records had to be modified, which

implied the restructuring of the previously implemented model. The final process to be

conceptually modelled was the CDC, which was modelled according to some of the already defined

colour sets. Once these three processes, now turned into independent modules, were modelled,

they were used as packages for modelling an ETL system scenario involving several of the

considered processes. This task was made easier as the SKP model had already been updated

accordingly. Still some minor alterations were made in order to relate the existing modules into an

ETL system model for the Sales DM scenario presented.

 The ETL CPN model presented in the last chapter is only an example of the modelling

capabilities of the CPN, as it is based on a very simple and small data mart, but opens great

possibilities in this area. Once the CPN meta-modules are implemented and made available as

packages, an increase of the DW size and complexity will not be directly proportional to an

increase in the modelling complexity of an ETL system. In fact, in this stage, it is possible to easily

build and validate a CPN model for any ETL system, independently of the number of the DM that

form the DW, as long as it is solely composed by the tasks modelled so far; this is simply

accomplished by reusing and relating these defined packages.

5.2. Future Work

The use of the CPN modelling language for the conceptual modelling of ETL systems brings many

advantages during the implementation stage of the ETL in the development of a DWS. The CPN

allow the system to be built as a hierarchical structure where each process is represented by a

module that can be composed of several smaller modules. This is very useful when modelling

these types of systems as they can be greatly simplified by adding different abstraction levels,

which makes it easier for the designer to build large models while improving their readability and

understanding. A correct specification of the ETL system, with the CPN modelling language, in the

conceptual design stage allows for its impact, in the development of DWS, to be previously

evaluated as the whole system can be easily implemented by adding and connecting the necessary

pre-defined packages. The simulations of the execution of the model have also proven to be a

great feature with many advantages. By allowing a careful analysis of the data flow, through

automatic and interactive simulations, it is possible to validate the implemented models. This is

especially important because by applying conceptual design and validation methodologies in the

Conclusions and Future Work

99

development of ETL systems, the main errors can be detected and corrected in an early stage of

the development. By testing and validating the ETL system prior to its implementation, the risk of

failure of the whole DWS can be greatly reduced, as well as the time and monetary resources

needed to correct these same errors in a more advanced stage of the system implementation.

 The study initiated in this dissertation cannot be considered to be complete, since the

number of different processes that usually integrate an ETL system is high. Currently, the models

describe the behaviour of the SKP, SCD-H and CDC processes, as well as their integration in a real

case scenario, which is based in predefined values and some basic assumptions, as is the case of

the list of transaction log records and their structure. This is not enough for every real world ETL

system. Thus, it needs to be adapted so that it can be applied to a wide variety of ETL scenarios.

The idea is that any ETL system can be build simply by the aggregation of the necessary packages.

Conclusions and Future Work

100

Bibliographic References

101

Bibliographic References

Abelló, A., Samos, J., and Saltor, F., YAM2: a multidimensional conceptual model extending

UML. Information System, 31(6), 541-567, 2006.

Cherkasova, L., Kotov, V., and Rokicki, T., On Scalable Net Modelling of OLTP. In Petri Nets

and Performance Models. Proceedings of the 5th International Workshop. IEEE Computer Society

Press, 270-279, 1993.

Delaney, K. and Randal, P. and Tripp, K., Microsoft SQL Server 2008 Internals. Microsoft

Press, 2009.

English, L. P., Improving data warehouse and business information quality: methods for

reducing costs and increasing profits. John Wiley & Sons, Inc., New York, NY, USA, 1999.

Figueiredo, J. C. A. D. and Kristensen, L. M., Using Coloured Petri Nets to Investigate

Behavioural and Performance Issues of TCP protocols. In Department of Computer Science, Aarhus

University. 21-40, 1999.

Golfarelli, M., The DFM: A Conceptual Model for Data Warehouse. Encyclopedia of Data

Warehousing and Mining (Second Edition), John Wang (Ed.), IGI Global, 2008.

Golfarelli, M., Rizzi, S., Data Warehouse Design: Modern Principles and Methodologies, 1 ed.

McGraw-Hill, Inc., New York, NY, USA, 2009.

Bibliographic References

102

Inmon, W., Building the Data Warehouse , John Wiley & Sons, 1996.

Inmon, W., Building the Data Warehouse, 4th ed., Wiley Publishing, Inc, 2005.

Jensen, K., An introduction to the theoretical aspects of coloured petri nets. In A Decade of

Concurrency, Reflections and Perspectives, REX School/Symposium. Springer-Verlag, London, UK,

230–272, 1994.

Jensen, K., A brief introduction to coloured petri nets. In Proceedings of the Third

International Workshop on Tools and Algorithms for Construction and Analysis of Systems. TACAS

’97. Springer-Verlag, London, UK, 203–208, 1997.

Jensen, K., An introduction to the practical use of Coloured Petri Nets. In Lectures on Petri

Nets II: Applications, Advances in Petri Nets, the volumes are based on the Advanced Course on

Petri Nets. Springer-Verlag, London, UK, 237–292, 1998.

Jensen, K., Kristensen, M., Wells, L., Coloured Petri Nets and CPN Tools for Modelling and

Validation of Concurrent Systems. Int. J. Softw. Tools Technol. Transf. 9, 213–254, 2007.

Jensen, K., Krinstensen, L., Coloured Petri Nets: Modeling and Validation of Concurrent

Systems. Springer, New York, NY, USA, 2009.

Kimball, R., Caserta, J., The Data Warehouse ETL Toolkit: Practical Techniques for

Extracting, Cleanin. John Wiley & Sons, 2004.

Kristensen, M., Jensen, K., Specification and Validation of an Edge Router Discovery Protocol

for Mobile Ad hoc Networks. In SoftSpez Final Report, H. Ehrig, W. Damm, J. Desel, M. Große-

Rhode, W. Reif, E. Schnieder, and E. Westkämper, Eds. Lecture Notes in Computer Science, vol.

3147. Springer, 248–269, 2004.

Bibliographic References

103

Lorentsen, L., Touvinene, A.-P., Xu, J., Modelling feature interaction patterns in Nokia

mobile phones using coloured petri nets and Design/CPN. In 3rd Workshop and Tutorial on

Practical Use of Coloured Petri Nets and the CPN Tools (CPN’01) / Kurt Jensen (Ed.). DAIMI PB-

554, Aarhus University, 1–14, 2001.

Murata, T., Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77, 4,

541–580, 1989.

Oberheid, H. and Soffker, D., Cooperative arrival management in air traffic control – A

Coloured Petri Net model of sequence planning. In Proceedings of the 29th international

conference on Applications and Theory of Petri Nets. PETRI NETS '08. Springer-Verlag, Berlin,

Heidelberg, 348-367, 2008.

Perkusich, A., de Arajo, L. M., Coelho, R. D. S., Gorgnio, K. C., Ribeiro, E. D. L. G., and

Lemos, A. J. P., Design and animation of Coloured Petri Nets Models for traffic signals, 1999.

Petri, C.A., Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für

Instrumentelle Mathematik, Bonn, 1962. English translation: Technical Report RADC-TR-65-377,

Griffiths Air Force Base, New York, Vol. 1, 1966.

Popova, D., On Time Petri Nets. Elektronische Informationsverarbeitung und Kybernetik

27(4): 227-244, 1991.

Project MAC (Massachusetts Institute of Technology), Record of the Project MAC Conference

on Concurrent Systems and Parallel Computation: held at the Houston House of the National

Academy of Science Summer Conference Centre, Woods Hole, Massachusetts, June 5-7,

Association for Computing Machinery, 1970.

Simitsis, A., Modeling and managing ETL processes. In VLDB PhD Workshop. Berlin, 2003.

Vassiliadis, P., Simitisis, A., Skiadopoulos, S., Conceptual modelling for ETL processes. In

Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP. DOLAP ’02.

ACM, New York, NY, USA, 14–21, 2002.

Bibliographic References

104

Xu, J. and Kuusela, J., Analysing the Execution Architecture of Mobile Phone Software with

Coloured Petri Nets. In Software Tools for Technology Transfer. Springer-Verlag, 133-143, 2001.

Zaitsev, D., An Evaluation of Network Response Time using a Coloured Petri Net Model of

Switched LAN. In Proceedings of the Fifth Workshop and Tutorial on Practical Use of Coloured Petri

Nets and the CPN Tools, Aarhus, Denmark, October 8-11, 2004, DAIMI PB - 570 / Kurt Jensen

(Ed.). 157-166, 2004.

Web References

105

Web References

 Aarhus University, Industrial use of CPN. [Online]

 Available at < http://cs.au.dk/cpnets/industrial-use/>

 [Accessed on 27 June 2012]

 CPN ML , Overview of CPN ML Syntax, Version 3 . 0. [Online]

 Available at <http://www.daimi.au.dk/designCPN/man/Misc/CpnML.All.pdf >

 [Accessed on 25 June 2012]

 Standard ML of New Jersey [Online]

 Available at <http://www.smlnj.org/>

 [Accessed on 26 June 20

