
Universidade do MinhoEscola de Engenharia

Maria Madalena Pacheco Gonçalves
!
Guidelines for Analysis and Modelling of
Reactive Software Systems

Janeiro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia
Departamento de Informática

Maria Madalena Pacheco Gonçalves
!
Guidelines for Analysis and Modelling of
Reactive Software Systems

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor João M. Fernandes

Janeiro de 2013

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS
PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO
ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, / /

Assinatura:

Acknowledgements

Firstly I would like to thank Professor João Miguel Fernandes, for all the
help and encouragement he gave me throughout the research and writing of
this dissertation. Thank you for being a dedicated mentor and for always
being available to clear my doubts.

Secondly, I thank my parents, brother and sisters, for their endless love
and support in every moment of my life.

I also wish to express my thanks to Professor José Creissac Campos, and
to all that, somehow, contributed to my success in this so important step of
my academic career.

This work is funded by the ERDF through the Programme COMPETE
and by the Portuguese Government through FCT - Foundation for Science
and Technology, project ref. PTDC/EIA-EIA/116069/2009 and by FCT,
under the grant with reference UMINHO/BI/55/2012.

v

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by
National Funds through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within project FCOMP-01-
0124-FEDER-015095 and by FCT, under grant UMINHO/BI/55/2012.
!
!!!

!! !!

!

Abstract

Reactive software systems are distinguished by their ability to interact with
the environment in which they operate. Their behaviour is affected by a
finite set of events that change the system global state. Such systems can
be divided into three components: Controller, Users and Physical Entities;
this division allows to model the particular behaviour of each component
separately.

Coloured Petri Nets (CPNs) are a modeling language suitable for be-
havioural modelling, thus it can be used in the context of these systems.
Among several advantages (and some shortcomings), they allow CPN mod-
els to be simulated and the formally verified.

This dissertation presents a set of guidelines for analysis and modeling
of reactive software systems. The guidelines suggest how different compo-
nents of a system can be identified and characterised. The guidelines also
recommend various alternatives for modelling the system components with
the CPN modelling language.

The guidelines are illustrated with a practical example, which is modelled
by means of CPN Tools, a tool for designing CPN models.

The application of the guidelines allows CPN models specifically targeted
for reactive software systems to benefit from executability, modularity, pa-
rameterization, and configurability.

vii

Resumo

Os sistemas de software reativos são caracterizados pela sua capacidade de
interagir com o meio em que se inserem. O comportamento dum sistema
deste tipo é influenciado por eventos que, quando ocorrem, alteram o estado
global desse sistema. Tais sistemas podem ser divididos em três componentes:
Controlador, Entidades F́ısicas e Utilizadores; o que permite modelar sepa-
radamente o comportamento que caracteriza cada um desses componentes.

As Redes de Petri Coloridas (RdP Coloridas) são uma linguagem de mo-
delação adequada a sistemas com uma significativa componente comporta-
mental, pelo que podem ser usadas no contexto dos sistemas de software
reativos. Entre diversas vantagens (e algumas limitações) elas permitem que
os modelos sejam simulados e formalmente verificados.

Este trabalho apresenta um conjunto de diretrizes de análise e modelação
de sistemas de software reativos. No processo de análise, sugere-se como
podem ser identificados e caracterizados os diferentes componentes de um
sistema. No processo de modelação, recomendam-se várias formas de modelar
cada componente com RdP Coloridas.

As diretrizes são ilustradas com um exemplo prático, o qual é modelado
com o aux́ılio da ferramenta de desenho de RdP Coloridas, CPN Tools.

A aplicação das diretrizes no contexto referido permite obter modelos que
beneficiam de executabilidade, modularidade, parameterização e configura-
bilidade.

ix

To my beloved family.

Contents

Acknowledgements v

Abstract vii

Resumo ix

1 Introduction 1
1.1 General Introduction . 1
1.2 Problem Statement . 4
1.3 Motivation . 5
1.4 Contributions . 9
1.5 Overview . 10

2 Modelling Behaviour 13
2.1 Introduction . 13
2.2 Some Behavioural Models . 16

2.2.1 Statecharts / State Machines 16
2.2.2 UML . 16
2.2.3 Petri Nets . 17

2.3 Coloured Petri Nets . 18
2.3.1 Structure and Concepts 19
2.3.2 Tool Support . 21

3 The Smart Library Practical Example 25
3.1 Informal Problem Description 25
3.2 Informal Description of Specification Decisions 26

3.2.1 Books . 26
3.2.2 Presence Sensors . 26

xiii

xiv CONTENTS

3.2.3 Lights . 26
3.2.4 Gates . 27
3.2.5 Displays . 27
3.2.6 Pressure Sensors . 27
3.2.7 Local Positioning Devices 27
3.2.8 Users . 27
3.2.9 Controller . 27

4 Guidelines 29
4.1 Modelling Approach . 29
4.2 Analysis Guidelines . 33

4.2.1 Identify the Physical Entities 33
4.2.2 Identify the Users . 35
4.2.3 Identify functionality and structure 37
4.2.4 Identify the private phenomena of the Physical Entities 40
4.2.5 Identify phenomena shared between Physical Entities . 43

4.3 Modelling Guidelines . 44
4.3.1 Create pages . 44
4.3.2 Draw the Physical Entities 44
4.3.3 Draw scenarios . 54

5 Conclusions and Future Work 63
5.1 Conclusions . 63
5.2 Future Work . 66

A Models for the Smart Library 75
A.1 Top-Most module . 78
A.2 Lights module . 79
A.3 Gates with Displays module 80
A.4 Presence Sensor module . 82
A.5 Pressure Sensor module . 84
A.6 LPS module . 86
A.7 Users module . 88
A.8 Controller scenario - Presence Sensor Readings module 90
A.9 Controller scenario - Pressure Sensor Readings module 92
A.10 Controller scenario - Destination Requests module 93
A.11 Controller scenario - Trajectory Requests module 94
A.12 Init module . 95

List of Figures

4.1 General architecture of reactive software systems 30
4.2 Modelling the Lights with one main place and only one transition 47
4.3 Modelling the Lights with one main place and one transition

for each event . 48
4.4 Modelling the Lights . 49
4.5 Modelling the Lights with one place for each state and one

transition for each sub-event 50
4.6 The Gate-Display module in the Smart Library example . . . 53
4.7 Variation Points . 57
4.8 One scenario of the Controller 58
4.9 The User module in the Smart Library example 61

A.1 The Top-Most module . 78
A.2 The Lights module . 79
A.3 The Gates with Display module 80
A.4 The Presence Sensors module 82
A.5 The Pressure Sensors module 84
A.6 The LPS module . 86
A.7 The Users module . 88
A.8 The Controller module - scenario 1 90
A.9 The Controller module - scenario 2 92
A.10 The Controller module - scenario 3 93
A.11 The Controller module - scenario 4 94
A.12 The Init module . 96

xv

Chapter 1

Introduction

Prologue

This chapter presents the subject of this dissertation.
The issues related to analysis and modelling of reactive
software systems are described, and the problem under-
lying this research is explained. Afterwards, the moti-
vation, overall aims and contributions are detailed. Fi-
nally, the structure of this document is presented, with
brief summaries of each chapter.

1.1 General Introduction

Nowadays, reactive software is becoming very popular and gaining much im-
portance for both users and developers. With the exponential growth of
ubiquitous and interactive technologies, the critical issues, such as respon-
siveness and safety, are no longer the only ones that matter in the production
of this software; usability is earning more and more interest in industry, with
each day that goes by.

A reactive software system is characterized by maintain an ongoing in-
teraction with its surrounding environment, responding to stimuli from that
environment, and changing it with those responses. The events that stimu-
late responses in a reactive software system can occur at any moment, even
when the system is busy responding to earlier events. In the viewpoint of the

1

2 CHAPTER 1. INTRODUCTION

system development, it must be decided which stimuli have to be answered,
and what are their priorities; some events might be more relevant than oth-
ers, and sometimes it may be necessary to interrupt an event processing that
is already running, or to process multiple events in parallel. Therefore, the
development of reactive software systems requires a detailed study, not only
of the software itself, but also of its environment, which is composed by the
people who interact with the system and by the physical objects that enable
such interactions. Model-driven development (MDD) seems to be a feasible
and good methodology for tackling that study.

In the context of software engineering, the concept of model is defined
as an abstraction of a system, rather than just being a representation of the
system [46]. Such definition entails two problems: the first resides within the
decision of what must be included and what must be left out of a model; and
the second concerns the decision of which approach (or approaches) must be
used for modelling a particular system.

Modelling is often associated with the design and specification of models;
models, diagrams, and specifications are sometimes used interchangeably, but
there are differences between those terms. Modelling is a conceptual task,
concerned with bringing different concepts and ideas together, according to a
certain rationale; designing is about creating the visible or tangible artifacts
(such as diagrams) for representing those ideas; creating specifications relates
to describing certain desired properties [49]. In a nutshell, a diagram is used
for exhibiting the specifications of a model. Despite this, model (modelling)
is referred in this work, as both the conceptual and the tangible artifact
(task).

Regarding the modelling of software, models serve many purposes: refin-
ing the understanding of a problem, improving the communication between
peers, abstracting from complexity, finding potential solutions, among so
many others. In this dissertation, models are a means to develop system
specifications, from which, executable prototypes can be derived.

In [7], a prototype is defined as:

a system which simulates the important interfaces and performs
the main functions of the intended system, while not being neces-
sarily bound by the same hardware speed, size, or cost constraints.

This work is concerned with the development of an approach (viewed as
a set of guidelines) for modelling reactive software systems. The focus of
interest is on controllers, which are systems that control the application and

1.1. GENERAL INTRODUCTION 3

its interactions with the outside world [40]. The Coloured Petri Nets (CPNs)
modelling language is the target of that approach; however, other modelling
languages, such as UML and other variations of Petri Nets (PNs), are also
addressed, in order to compare different modelling techniques, and discuss
advantages and disadvantages of using CPN.

The end result of applying such guidelines is a system specification, in
which the models are tools for studying the accuracy and reliability of the
modelled systems. Resorting to formal analysis and simulation, one can reach
a range of dimensions that prototypes based on very high-level languages or
fourth-generation languages [46], can not address so easily. These prototypes
will be useful to study two dimensions of a reactive system: the system
itself, as a cluster of computer functionalities, and the environment, where
that system is integrated. Within that environment there are the users (also
called human actors), whose behaviour must be included in the model.

This work was developed in the context of an academic project called
APEX - Agile Prototyping for user EXperience, which aims the study of user
experience, by creating executable prototypes, and providing the users a vir-
tual interaction with systems that are not yet (fully) developed. Although
the present work does not focus on the study of user experience itself - the
actual deployment of executable prototypes and enforcement of virtual sim-
ulations are not addressed - it is a means towards that end, by presenting a
set of guidelines for the design of models that can easily be adjusted to serve
as executable prototypes.

Allowing the transformation of information models into executable proto-
types requires four main features to be achieved by those information models:
model execution, modularity, parameterization and configurability. Model
execution is a step closer into making the prototypes executable, whereas
the remaining features enable the prototype management.

This work has the following intended audiences:

• the general software engineering community, and more particularly soft-
ware architects, analysts, requirements engineers, and modellers;

• those concerned with the modelling of reactive software systems and
controllers, or even with other systems that share common features
with the latters, like ubiquitous, interactive, embedded, or real-time
systems;

• anyone who is interested in modelling with the CPN modelling lan-

4 CHAPTER 1. INTRODUCTION

guage;

• those interested in guidelines for both analysis and modelling of soft-
ware.

1.2 Problem Statement

The need for some methodology in the modelling of software has been sup-
ported by numerous authors and is an issue of research [42]; the problem
resides in finding which features are common to the majority of cases. How-
ever, it is not easy to detect such properties within general software; for ex-
ample, the phrase software systems comprises, by itself, a set of information
so very wide and branched, that it seems almost impossible to find out any
set of rules that can be applied to its entirely. In addition to this situation,
every modeller has its own opinions and practices, which makes every model
a representation of its modeller’s favourite viewpoints and perceptions of the
reality [42]. Although having a personal touch does not interfere with the
correctness and adequacy of the models, nor it makes them wrongly built,
when dealing with a whole team of modellers, there are issues that must
be taken into account, like model comparison, analysis, composition, reuse,
among so many others. Consistency between models is crucial to anyone
who needs to keep his/her specifications suitable through time and through
people. This is the reason why most software modelling methodologies apply
only to specific classes of systems, instead of broad and generic groups of
systems. The present work is targeted to one of those sets: reactive software
systems.

To model the behaviour of a reactive system, one must consider the be-
haviour of all entities that may trigger a reaction from that system; an ex-
ample of such entities are the system users.

Because systems are (usually) used by people, it is important to consider
human behaviour when developing those systems. Understanding the users’
needs is essential to adapt our systems to their demands. However, modelling
the behaviour of users is a difficult task, regarding general software modelling;
one can never predict the exact behaviour of people facing computer systems.
In fact, that is more a subject of study for human psychology and sociology
than for software engineering; nevertheless, we, as software engineers, need
that information to describe human-computer interaction features and to im-

1.3. MOTIVATION 5

prove the user experience concerning the software we produce. The available
resources to detect requirements related to human-computer interaction and
user experience are still scarce, inefficient, unreliable, and expensive. Exe-
cutable prototypes are a solution that can help overcoming these obstacles,
by allowing users to interact with a version of a system, early in the devel-
opment phase. Not having to actually deploy the system, and yet being able
to test it and to study the behaviour of its users, is an appealing thought.

The guidelines proposed in this dissertation arrive as an endeavor for cre-
ating specification templates than can be easily configured to suit the needs
of a system and their users. The proposed guidelines aim the design of mod-
els that are accurate enough for the development of reliable prototypes, and
structured enough to keep up with future changes in the system require-
ments. It is the ultimate purpose of this work to create evolutive model
specifications, which are capable of following the natural development of a
system to be implemented.

Although it has not been proved true within this work, it is expected that
allowing the users to interact with a system in early stages of its development,
enables the discovery of more precise requirements, which helps developing
software towards meeting the needs of its users. The idea inherent to this
approach is addressed in [50] as Early-Phase Requirement Engineering. An-
other prospect is to reduce the costs (both financial and temporal) of system
implementation and testing [44]. However, studying the feasibility of these
expectations goes beyond the scope of this dissertation.

1.3 Motivation

The guidelines proposed in this work apply to reactive software systems that
can be described as controllers, and address the modelling with the CPN
modelling language.

The following three questions must be answered to help the reader un-
derstand the relevance of this study:

• Why reactive software systems? explains the importance of studying
these kind of systems;

• Why CPNs? emphasizes the features of this modelling language, and
shows to what extent this study benefits from them; and

6 CHAPTER 1. INTRODUCTION

• Why guidelines? addresses the need for analysis and modelling heuris-
tics in software engineering.

Why reactive software systems?

Reactive software systems exhibit a set of characteristics that make them par-
ticularly challenging, when it comes to modelling and deploying them; non-
determinism, perpetuity, asynchrony, time, and concurrency are the most
relevant ones [20,21]. In other kinds of systems, such characteristics may ap-
pear in isolation, or in smaller, and therefore less complex, sets, which makes
reactive software systems a kind of systems of major importance. Examples
of systems that share some of these features are real-time systems, embedded
systems, process control systems, device control systems, network protocols,
ubiquitous systems, and user interface (UI) applications.

To model a reactive system, one must take under consideration the ex-
ternal events from the environment, and thereby, add them in the model
of that system; the environment itself must be contemplated in the model.
Sometimes, that environment includes users actions; hence, the modelling of
the environment must address human behaviour.

One of the great challenges of modelling the behaviour of a person lies
within the natural human unpredictability. One can never be 100% sure of
what a person will do when facing a software product; much less a group
(possibly gigantic) of users. The unpredictability is nearly unimaginable.

Today there are several tools and techniques for forecasting behaviour and
events that might happen when using a system; predictive analytics, predic-
tive models, and data mining are examples of that [35]. Yet, those techniques
are still inefficient for unveiling requirements related to user-experience; until
now, typical solutions rely with questioning the users about their likes and
dislikes, and trying to find out a balance between the users’ opinions.

The importance of studying reactive software systems is supplemented
with the need to find artifacts for understanding, foreseeing, and describing
human behaviour, within software. Nowadays, this is a need of utmost impor-
tance, because of the exponential growth of the market of systems based on
human-computer interaction. Today, UI applications are a wide-world social
trend; such situation calls for more efficient and reliable ways of developing
such systems, than those we now have at our disposal.

1.3. MOTIVATION 7

Why CPNs?

The CPN modelling language is a very useful formalism for describing the
behaviour of systems; it provides graphical and textual constructs to deal
with synchronization, concurrency and communication [24], which are re-
current issues in today’s problems. There are two main features that make
this an interesting modelling language: (1) being executable, which enables
model simulation and animation; and, (2) having formal semantics, which,
along with numerous analysis techniques, enables validation and formal ver-
ification.

Other features are also supported by the CPN modelling language, such as
hierarchy and modularity, parameterization, locality, mobility and context-
awareness, among so many others [12, 13, 26, 47]. Dealing with so many
important issues makes this modelling language useful across numerous ap-
plication domains [18], for example: telecommunications and network proto-
cols; distributed software systems; embedded systems; workflow management
systems; hardware and software architectures; and UI applications.

Nevertheless, there are some drawbacks when using the CPN modelling
language: (1) the gap between modelling and implementation - an automatic
transformation of models into actual software is not an easy task within the
CPNs(although it is not impossible [26,48]); (2) the lack of different diagram
forms - CPNs model only data and state machines - which turns out to
be very restrictive when compared to other languages, such as UML, with
appropriate diagrams for different problem aspects (functional, behavioural
and structural) and different groups of people (users, clients, developers,
analysts, or others).

The CPN modelling language can deal with complex systems, and there-
fore it is widely used, both in the academic and industrial fields. It is also
very good as a complementary tool for other modelling languages, including
UML; a combination of both languages increases the range of model applica-
tions, and creates a new set of properties that each individual language, can
not provide on its own. Some of those advantages are explored in [27], where
use cases are made executable, for description and validation of requirements
and specifications; and in [14], where a tool is proposed for translating some
UML diagrams into a CPN, which increases the number of analysis and sim-
ulation techniques available for UML.

Notwithstanding the disadvantages mentioned above, the CPN modelling
language seems to be a good option for the development of prototypes. The

8 CHAPTER 1. INTRODUCTION

choice of using CPNs in this work is due to the existence of good simulation
and analysis tools. The language is rigorous enough to compare and assess
different models, which allows the study of different scenarios, and helps
choosing the one that best suits the requirements of a particular problem. In
the development of executable prototypes, those are interesting and valuable
features.

CPNs are supported by CPN Tools 1, a graphical editor, that allows
model visualization and animation, also providing tools for analysis and sim-
ulation. CPN Tools is vendor independent and cost free, and it is licensed
to thousands of users, both in the industrial and academic fields.

Why guidelines?

First of all, it is important to state the meaning of “guideline”:

A principle put forward to set standards or determine a course of
action. [1]

It must be emphasized that guidelines are no more than suggestions,
therefore, they are never mandatory nor enforced.

In software engineering, more particularly, in software development, the
existence of guidelines for analysis and modelling of a particular piece of
software is not senseless. Guidelines ease these tasks because they highlight
the patterns within them.

According to [38], patterns are already proven conceptual solutions to
recurring problems. This means that they avoid the search for solutions of
problems that appear frequently. Patterns not only highlight a recurrent
problem, but they also present an already proven solution for it.

Nowadays, many patterns were identified, for both analysis [15] and de-
sign [17] of software. It is unreasonable (and a waste of time and resources)
not to use them when they are applicable, but unfortunately, there are not
enough patterns in the world to solve all the software problems that a soft-
ware analyst, modeller, or developer comes across (or at least, those patterns
were not identified yet).

Guidelines, may not be problem solvers, like patterns are, but they are
useful tools to find viable solutions. The quality of the solutions will depend
on whether the guidelines are being properly or erroneously applied. Hence,

1CPN Tools website: http://cpntools.org

http://cpntools.org

1.4. CONTRIBUTIONS 9

it is important to establish precisely the scope of the guidelines, i.e., in what
circumstances they can be applied. The broader the scope of the guidelines,
the harder it is to ensure the usefulness and reliability of the guidelines. One
must find a balance in the guidelines: these can not be so thorough that they
can only be applied to a so very specific (and perhaps useless) context, but
they must be detailed enough to be applied to a set of examples that share
particular features.

Two main advantages arise from the usage of guidelines in software mod-
elling:

• Models formal proof of adequacy: if the guidelines ensure a set of de-
sired formal properties, and if the models are based on such guidelines,
then it is easy to prove the adequacy of those models [33];

• Models standardization: the models of different problems or different
views of the same problem become more similar to each other, which
eases their comparison (it is easier to compare models built under the
same approach and guidelines, rather than comparing models based
on different groundwork) and avoids ambiguities. Different modellers
usually use different approaches and languages, because of their profes-
sional experience and their personal tastes ; even if their final results are
similar, it is hard to compare the models and choose the one that best
suits a particular situation, if those models were built under different
approaches. In the words of M. Fowler [15]: Models are not right or
wrong, they are more or less useful. Model standardization eases the
discovery of the most useful models.

1.4 Contributions

This section presents the contributions of this dissertation to the software
engineering community.

The main contribution of this dissertation is the systematization of the
modelling process for reactive software systems. Guidelines for analysis and
modelling of reactive software systems are proposed as part of a process for
the development of executable prototypes. The ultimate purpose of such
prototypes is the development of a tool for studying user experience.

Much of the content of this dissertation was developed as part of an

10 CHAPTER 1. INTRODUCTION

academic project, called APEX - Agile Prototyping for user EXperience2,
which demonstrative example, a Smart Library, was adopted as an example
of this dissertation, to exhibit and explain the outcomes of this study.

During the writing of this dissertation, a paper was developed and pre-
sented in a conference workshop, to discuss the results available at the mo-
ment, and to acquire feedback on the proposed approach. The contents of
that paper are reflected in this dissertation. A reference to that paper follows
next:

Madalena P. Gonçalves and João M. Fernandes. Guidelines for Mod-
elling Reactive Systems with Coloured Petri Nets. In 8th International
Workshop on Model-based Methodologies for Pervasive and Embedded
Software (MOMPES 2012) at ASE 2012, volume 7706 of Lecture Notes
in Computer Science, pages 126–137. Springer, Essen, Germany, Sept
2012. In Press.

1.5 Overview

This dissertation is organized as follows:

Chapter 2 discusses behavioural modelling. It is given a brief compari-
son of three modelling languages that excel in the behavioural aspect:
Statecharts, behavioural and interaction UML models, and Petri nets.
Emphasis is given to the CPN modelling language, so its structure and
properties are explained in more depth, than the remaining modelling
languages.

Chapter 3 presents the Smart Library, the demonstrative example that is
used in this work to illustrate the practical application of the proposed
guidelines.

Chapter 4 presents the proposed guidelines. These are divided in two pro-
cesses: initially, the analysis of the problem is addressed, describing
the relevant components of a reactive software system, and explaining
how those components can be recognized and dealt with; afterwards, it
is discussed the modelling of reactive software systems with the CPN

2The APEX web site: http://wiki.di.uminho.pt/twiki/bin/view/Research/

APEX/WebHome

http://wiki.di.uminho.pt/twiki/bin/view/Research/APEX/WebHome
http://wiki.di.uminho.pt/twiki/bin/view/Research/APEX/WebHome

1.5. OVERVIEW 11

modelling language, and with CPN Tools. The solutions outlined in
the guidelines are explained by means of practical examples.

Chapter 5 draws the final conclusions of this research, and gives some notes
on how this work can be further developed.

Chapter 2

Modelling Behaviour

Prologue

This chapter compares some behavioural models, namely
Statecharts, UML behavioural models, and Petri nets
(with their numerous variations). An historical per-
spective is provided about the evolution of such models.
Afterwards the CPN (a variation of Petri Nets) is re-
viewed, explaining its structure and properties, and also
addressing simulation and formal analysis of the CPN
models.

2.1 Introduction

Software analysis and modelling is about discovering the functional, be-
havioural, and structural aspects of a system [21], and creating reliable rep-
resentations of those aspects. Functional aspects define what the system is
supposed to do, which actions or events must be performed to fulfill a set
of requirements, and how the information flows in the system. Behaviour is
about dynamics, defining order and time constraints for the occurrence of
the system actions; finally, structure defines the system architecture, which
are the system components, how are these organized, and how they com-
municate with each other. Throughout the years, several studies have been
made in order to discover better ways to tackle all these aspects, and great

13

14 CHAPTER 2. MODELLING BEHAVIOUR

efforts have been conducted to achieve better, simpler, and faster tools and
languages for software modelling.

In the modelling of reactive software systems, the focus turns mainly to
the description of behaviour, and the attempt to achieve a representation
of it (i.e., an abstraction) that simultaneously meets all the system require-
ments, and resembles, as closely as possible, the reality. Thus, it is necessary
to understand what behaviour is, what are the inherent challenges to its rep-
resentation, and what mechanisms exist to overcome or work around such
issues.

Definition 1: Behaviour (in software)
Behaviour is the set of actions which a system, or a system component,
performs in a specific order, and sometimes obeying time (and/or other)
restrictions [3]. Behaviour can either be discrete or continuous; in the latter,
system operation takes in consideration previously performed actions, while
in the former, there is no record of past occurrences [9].

One of the greatest difficulties in modelling real-world behaviour relates
to it being continuous. However, modellers can overlook that continuity by
assuming as important just some parts of that behaviour [49]. This discrete-
event perspective assumes that a finite set of events is enough to describe
the general and relevant behaviour of a particular system.

Definition 2: Event
An event is a significant occurrence at a moment in time [31, 40], which
may trigger the change of states. In the case of reactive software systems,
events may incite several entities of a (composite) system to produce a pre-
defined response, and they also may encourage users to perform some desired
actions. Events may be external or internal to an entity. An external event
is an event that occurs among entities; it is caused by an entity, and may
affect several others. The occurrence of such events can be recognized by
all entities within the composite system, and may affect them. An internal
event is an event that occurs within an entity; only that entity is affected by
it, and the remaining entities are not aware of such occurrence.

In addition to the discretization of continuous behaviour, a lot of other
assumptions help handling the inherent complexity of reactive software sys-
tems. Describing a system as a finite set of states is one of them.

2.1. INTRODUCTION 15

Definition 3: State
A state is a system (or entity’s) condition at a moment in time, where that
moment corresponds to the time between events [31].

In this assumption, a system always finds itself in a certain state, which
mirrors a clear and stable system condition. When an event happens (which
is often considered to be an atomic occurrence) it takes that stable condi-
tion into an unclear and unstable one, called a transition. Transitions are
only temporary conditions, and when a transition terminates, the system
re-assumes a stable condition.

Definition 4: Transition
A transition is a system (or entity’s) condition that can be observed in the
time between a change of states [49]. It is caused by the occurrence of a
particular event and it usually sets off an action or sequence of actions.

This work is concerned with the modelling of discrete behaviour; from
what has been discussed so far, it is clear that one can describe the behaviour
of a reactive system as a set of events, states, and transitions. But this is just
a way of doing it. There are numerous languages and models that allow to
represent software behaviour, and these can be split in three categories [5]:

Control flow models These models emphasize the order in which tasks
occur; relevance is given to knowing who has got the control of the sys-
tem, in a particular moment, who had the control just before that, and
who will have right after. These models are not suitable to represent
flow of data.

Data flow models These models emphasize the flowing and manipulation
of data; relevance is give to knowing the source and destination of data,
and to the changes they suffer during that flow.

State Machines These models emphasize the responsiveness of a system to
external stimuli, i.e., they focus on the system reactions to particular
occurrences in the environment.

In the following sections it is provided a brief overview on available be-
havioural models, addressing Harel’s Statecharts [20, 21], UML behavioural
models, and Petri Nets (PN).

16 CHAPTER 2. MODELLING BEHAVIOUR

2.2 Some Behavioural Models

2.2.1 Statecharts / State Machines

The modelling of reactive software systems found its first great development
with Statecharts, which are structured state machines. State machines are
used to describe a system through a finite set of states the system can assume.
In Statecharts, those states are split in groups representing different pieces of
the system, and the joining of those groups makes the whole modelled system.
Statecharts are suitable for describing event-driven discrete behaviour, and
also for the modelling of concurrent systems [19].

The problem with statecharts (and any state machine) is that the number
of states increases quite quickly, and representing large, complex systems
becomes difficult and error prone [46]. This is known as the state explosion
problem.

2.2.2 UML

The UML was born in the early 90’s, from the contribution of Booch, Rum-
baugh, and Jacobson (known as the Three Amigos [16]) due to the need
of creating a modelling standard that was the unification of the numerous
object-oriented modelling techniques that existed at the time. The high
number of different modelling approaches was hampering the choice of which
method to use in each situation; companies often needed to create their own
analysis and design techniques, which made the integration of different tech-
niques too complicated. In 1997 it was adopted by the Object Management
Group (OMG), and since then UML has been evolving to better tackle the
problems inherent to systems modelling.

The UML is nowadays widely used in industry, and provides a set of
different diagrams for the modelling of behaviour, which are shortly described
next:

• Use Cases, for describing the system functions and the interactions
between actors and the system;

• Activity Diagrams, for describing control and data flow;

• State Machines, for representing reactivity;

2.2. SOME BEHAVIOURAL MODELS 17

• Sequence Diagrams, for describing how interactions happen, based
on their time and order of occurrence;

• Collaboration Diagrams, also for describing how interactions hap-
pen, based on the structure of the interactions.

2.2.3 Petri Nets

In 1962, Carl Adam Petri developed the first version of what would become
known as Petri Nets [6], a powerful mechanism for modelling the behaviour
of asynchronous distributed systems. Combining a graphical notation with
well defined formal rules, he was able to model computer systems in the
same way other scientific areas represent their models: relying on physical
and mathematical bases.

Many ideas and modelling techniques were developed around the first
draft of PN, such as process algebras (another formal technique to model
concurrency), and several classes of PN. The most important are described
below, in the order they emerged. It is noteworthy that each of the following
nets is an evolution of the previous ones, that arose to introduce new concepts
and ideas to the theory that had been developed up to that moment.

Place/Transition Nets (PT-nets) The very first approach following Petri’s
Condition/Event Nets (CE-nets), where models are represented as a
graph, with places and transitions as nodes. In the places are stored
tokens which are caused to flow to other places by the occurrence of
transitions. At each moment, the positions of the tokens in the graph
describe the global state of the model. Tokens are indistinguishable,
and the nets represent low-level models.

Coloured Petri Nets (CPN) While PT-nets used black tokens, the CPN
brought colours to them, introducing the concept of token types (the
so-called colour sets). With such an abstraction it was possible to dis-
tinguish the tokens and manage them more easily. The nets could then
represent high-level models. Also, a new functional language called
CPN ML (which was based on the Standard ML) was developed as a
complement to the graphical notation, to allow to formally define and
manipulate the colours.

Hierarchical CPN Also known just as CPN, upgraded the old CPN with
more powerful structuring mechanisms. Not only the models could be

18 CHAPTER 2. MODELLING BEHAVIOUR

separated into different modules, it also became possible to organize
the models in an hierarchical structure, where those modules had well-
defined interfaces that enabled communication and exchange of data
between them. Nets became suitable to represent high-level models.

Object Oriented Petri Nets It is an idea that is still under development;
although many approaches have already been developed [4, 29, 30, 32,
34], none has yet been able to reach a level of stability and reliability,
that would allow them to be accepted as a new modeling language.
Despite the variety of techniques, there is an idea that is shared by
them all: relying on the foundations of the object-oriented paradigm.
Inheritance, polymorphism, and encapsulation are just a few examples
of OO concepts that are lacking in older versions of PN and that are
being pursued by the several investigators in order to make the PN
mechanism better and more suitable for industry-level systems.

After this short overview on the history of modelling techniques, the CPN
is more thoroughly addressed next.

2.3 Coloured Petri Nets

Coloured Petri Nets (CP-nets or CPNs) is a modelling language that allows
its models to be executed, by combining a graphical notation with code
primitives. With executability comes model simulation, which is one of the
main features of this language; it helps testing the models, making it easier
to identify errors, as well as finding forgotten or unpredicted aspects of the
modelled systems. Another important feature of this language is that it was
built on mathematical foundations and has an explicit formal description;
with strict syntax and semantic rules, CPN models can be submitted to
validation and formal verification, which allows one to check the fulfillment
(or not) of user requirements, and to reason about the correctness of the
models, respectively.

The coding primitives are declared in CPN ML (CPN Modelling Lan-
guage).

These nets can be applied in several application domains, making them
suitable for modelling industry level systems [25]; they provide primitives
for dealing with concurrency, synchronization, and communication issues,

2.3. COLOURED PETRI NETS 19

which are often present in complex computer systems. The CPN modelling
language is also able to deal with hierarchy and time.

CPN is also very good as a complementary tool for other modelling lan-
guages, such as UML; using these languages together it is possible to exploit
the properties of each language and gain leverage from the set of new prop-
erties that arise from such combination. Several authors have addressed the
particular combination of UML and PN (or some variation of PN), and stud-
ied its benefits and drawbacks in [10,12–14,27,37,41].

2.3.1 Structure and Concepts

A CPN is represented by an oriented graph with two types of nodes: places
(drawn as ellipses) represent states, and transitions (drawn as rectangles)
represent events. In these graphs, adjacent nodes can never be of the same
type; it is not possible for two places or two transitions to be directly linked,
which implies that a change of states can only happen through the occurrence
of an event, and an event can only occur to toggle a pair of states.

Places can hold bags of tokens of a specific type. A CPN model, a token
represents an instance of something (an object or entity, for example), and its
type is called a colour set. The bags of tokens can contain several appear-
ances of the same token, thereby it is said that places can hold multisets of
tokens, rather than just sets [23].

Colour sets (the tokens types) can either be simple or compound, similarly
to what happens with types in general programing languages. The simple
colour sets represent the most basic types (like Integer, String, and Boolean),
and the compound color sets are built as a combination of some simple colour
sets (like Lists, Products, Unions, and Records).

Each token stores a particular data value that matches its colour set
characteristics. Tokens travel through the models by the occurrence of tran-
sitions, carrying data from one place to another, until a desired model status
or requirement is reached. At any given moment, a CPN model has a global
state, which is equal to the set of all tokens and their locations in specific
places, at that moment. Such global state is known as the model marking,
and the very first global state of a model is called the initial marking.

In addition to the nodes and arcs, CPN models contain code primitives
and inscriptions for handling data within the models. The code primitives
can be: definitions (such as the colour sets), variables (tokens with pre-
defined values), conditions guards (that evaluate whether a transition can or

20 CHAPTER 2. MODELLING BEHAVIOUR

cannot occur in any given time), or functions (to manipulate data values).
Each graphical form has its own code inscriptions: places have a name,
a colour set, and an initial marking; transitions have a name, a guard, a
time delay, and a code segment; arcs have an expression that represents the
data value that is being transported in that arc. The arc expression can be
a function or a variable, evaluating either to a multiset or to a single value;
anyway, such expression always matches the colour set of the place to which
the arc in connected.

The execution of a CPN model translates into a series of transition oc-
currences, allowing tokens to flow within the arcs, from place to place. The
match of a token to an arc expression results in a binding element. If there
are at least one binding element in each input arc of a transition, and if the
condition guard of that transition evaluates to true for those particular bind-
ing elements, then the transition can occur, executing its own code segment,
and placing tokens (resulting from the execution) in its outgoing arcs.

In the same step of execution there can be several transitions ready to
be fired (i.e. ready to occur), and they can either be in conflict or in con-
currency with each other. Two or more transitions are in conflict if the
resources (tokens) existing in shared input places, are not sufficient to satisfy
the occurrence of all the transitions in that step. The occurrence of one of
those transitions disables the remaining, because there no longer exist bind-
ing elements for those transitions. Enabled transitions that are not in conflict
(either because they do not share input places, or because there are enough
tokens for all binding elements) are called concurrent; one transition can
occur without disabling the others. When there are several enabled transi-
tions, the choice of which one is fired next is random; this is what makes
CPN models non-deterministic.

CPN models can be constructed in various modules, each representing
specific parts of a system, that can communicate with each other and ex-
change data through well defined interfaces. Hierarchy can be depicted in
CPN by three graphical mechanisms: substitution transitions, that imple-
ment modularity, and port places and fusion places, that implement inter-
faces. Substitution transitions are drawn as double-edged transitions and
they are a reference to an external module (a submodule or subpage).
Such transitions do not work like the normal ones, because they can not
become enabled, therefore they never occur; they represent a general system
operation which is detailed in a different module. Port places and fusion
places are two different ways of creating communication interfaces: they rep-

2.3. COLOURED PETRI NETS 21

resent places that are shared by different modules and through which tokens
can be exchanged. A fusion set represents a conceptual place that is the
merge of several fusion places; these places always have the exact same
state, which reflects itself in the state of the fusion set. Fusion sets can
be shared among many different modules, working in some sense like global
variables in general programming languages; therefore, caution is advised in
the handle of data within these sets. A socket represents a communication
channel (either unidirectional or bidirectional) shared by only two socket
places. Socket places are the input and output places of substitution tran-
sitions, and they are merged with port places through port assignment;
the port places are the representation of socket places in each individual
submodule. A port place can either be an input place, and output place, or
an input/output place. Sockets are private channels and their contents can
only be known by the respective port places; additionally port places cannot
be shared (like fusion places are), therefore sockets represent a more secure
interface mechanism than fusion sets.

The hierarchy in a CPN model can reach several levels of depth, and
there can be instances of the same modules running at the same time in a
CPN model, each with its own marking, and independent from other module
instances.

Apart from the just described purpose, fusion places can also be as a syn-
chronization mechanism; the CPN also supports transition synchronization,
but this feature is not supported by the designing tools currently available.

2.3.2 Tool Support

The modelling with CPN is supported by CPN Tools, a tool for designing
and editing CPN models. It provides a graphical user interface for building
the models, a simulator for model testing, as well as several analysis tools,
for performance and state space analysis.

Besides the simulation and analysis mechanisms, this tool also performs
quick model checking, at construction time, and provides visual error mes-
sages about syntax and type errors, which is very useful, mainly because they
usually are innocent mistakes, that can be so small, that they go undetected,
even to the eyes of more experienced modellers.

This tool has an open architecture and there are several libraries that
allow to extend functionality [24], enabling modellers and investigators to
create auxiliary tools for specific areas and purposes, at their own will.

22 CHAPTER 2. MODELLING BEHAVIOUR

CPN Tools is vendor independent and cost free, and it is licensed to
thousands of users, both in the industrial and academic fields.

Simulation

Model simulation can be used for model testing to find forgotten, unpre-
dicted, or unnoticed errors, but it is also very useful for gaining an overall
knowledge of what a system is, what it is supposed to do, and how it should
work. Thus, the simulation tool is suitable for explaining a modelled system
to people that are not familiarized with it.

Simulation can be either interactive or automatic in CPN Tools : in inter-
active simulation the user can choose, in each step, the binding elements
and the transition to be fired; while in automatic simulation this is done
automatically. In the latter, both the binding elements and the transitions
to fire are chosen randomly by the tool.

For each performed simulation, CPN Tools creates a simulation report,
which is a text file containing all the information about a simulation: steps,
time, fired transitions, chosen binding elements, and other relevant data.

Performance Analysis

Another important feature of CPN is the handling of time: CPN can be
extended with a model time concept (a feature that CPN inherited from
previous PN versions).

It is important to acknowledge the difference between real time and model
time, because they are not the same; model time is related to simulation
and it is virtual time, measured as model steps, by a global clock that is
associated to the model. It does not have any sort of relationship with real-
time.

In a timed CPN, tokens can carry a time stamp indicating the time they
are ready to be used by an occurring transition; In a timed net, a multiset
becomes a timed multiset, a marking becomes a timed marking, and so on,
making all untimed CPN concepts adapted to handle time [24].

Timed nets are a mechanism, supported by CPN Tools, for studying the
performance of a model in terms of operation efficiency, correct timing of
events in real-time systems, and fulfillment of requirements deadlines, also
in real-time systems [25].

2.3. COLOURED PETRI NETS 23

CPN Tools provides one other tool for analyzing the performance of a
model, called monitors; these monitors can observe a simulation and per-
form pre-defined actions if certain pre-defined conditions are verified during
that simulation. Inspecting places, counting how many times a particular to-
ken value is used, and writing in external text files a customized simulation
report are just a few of the things monitors let a modeller do.

Formal Analysis

Every concept explained so far, has a formal definition in CPN; all together
become the formal foundations of CPN, which makes this modelling language
so reliable. Due to this, it is possible to perform formal verification of a CPN
model, and analyse its correctness.

The CPN Tools provides a tool for constructing state spaces and analysing
some model properties. A state space is a reachability graph which nodes
represent all the reachable markings, and the arcs represent the respective
binding elements. The tool can generate a state space report, a text file
with statistical information from the state space and some other detailed
information about behavioural properties of the model.

The most common properties in CPN models are:

• Reachability, that calculates all the possible reachable markings;

• Boundness, that calculates the maximum and minimum number of
tokens and of multi-sets that a place can hold;

• Fairness, that calculates how often a marking occurs in infinite occur-
rence sequences;

• Home, that calculates the markings that can be reached from a given
marking;

• Liveness, that calculates the existence, or not, of dead markings,
where no transitions are enabled (i.e., where the simulation terminates).

These properties are fully calculated by the tool, otherwise the formal
analysis of a CPN model would be impracticable for large, complex sys-
tems. Each property being studied can be translated into CPN ML query
functions, that allow such computation. In addition to the just described
properties, other properties can be analysed, but the modellers have to write
the respective queries.

24 CHAPTER 2. MODELLING BEHAVIOUR

Summary

Statecharts, UML, and Petri nets are three modelling languages that can
be used to model behaviour. Statecharts evolved within the modelling of
reactive systems however, they are not good enough to tackle the complexity
inherent to today’s problems. UML provides several models for addressing
different system aspects, from describing requirements, to describing inter-
actions. Yet, the features of Petri nets (known today as CPN) are, in the
context of this work, more appealing than those from the other languages.
The CPN modelling language has techniques for formal analysis, performance
analysis, and model simulation, which are good tools to have at hand when
developing prototypes.

Chapter 3

The Smart Library Practical
Example

Prologue

The Smart Library example is presented in this chapter.
It serves to illustrate the applicability of the guidelines
proposed in this work.

3.1 Informal Problem Description

The Smart Library is a system that recognizes library users and guides them
to their requested books. The request of a book is not an action of interest in
this problem. Only registered users are taken into account. Presence sensors,
scattered throughout the library, are responsible for real-time recognition of
users and books locations (inside the library or in its surroundings). Users
carry an id card or device (like a PDA), that makes them recognizable by
the sensors. Books have RFID tags for that same purpose. Users also carry
an electronic map of the library, that shows them, in real-time, the paths
to their requested books (if the books are in the bookshelves). As the user
follows the path suggested on the map, the path is updated according to the
user’s new position. When the user approaches the book he/she is looking
for, lights of a specific and unique colour are turned on, highlighting the
book and the bookshelf where it stands. Different light colours are used to

25

26 CHAPTER 3. THE SMART LIBRARY PRACTICAL EXAMPLE

distinguish the requests of users in nearby areas. If the user is entering or
leaving the library (through entry and exit gates), a screen near the gate
displays a list of the users requested and returned books [45].

3.2 Informal Description of Specification De-

cisions

From the description above, the Smart Library can be seen as a set of the
following Physical Entities: Books, Presence Sensors, Lights, Gates, Displays,
and PDAs (or some similar device). Another entity, that is not mentioned
in this description, is needed: Pressure Sensors.

The purpose of each of these entities is explained below.

3.2.1 Books

Books can be picked up from bookshelves by Users. Each book has an RFID
tag and a light. The light is turned on when a User, looking for that book,
is near it; and the same light is turned off when the User goes away from the
book. If the book is not on its shelf, the light is not turned on (even if the
User is looking for it).

3.2.2 Presence Sensors

Temperature sensors are used to detect the presence of Users inside different
areas of the library. Each sensor has a sensing area and a set of devices
that are inside that area, and therefore, get affected by the readings of that
sensor. Each temperature sensor is triggered by: (1) the movement of Users
inside its sensing area; or by (2) the absence of movement in its sensing area
for a short period of time.

3.2.3 Lights

There are lights in the bookshelves and in the books. Lights can have different
colours and can either be turned on or turned off.

3.2. INFORMAL DESCRIPTION OF SPECIFICATION DECISIONS 27

3.2.4 Gates

There are gates for entering and leaving the library. Gates can either be open
or closed.

3.2.5 Displays

Displays can either be showing a default message or a non-empty list of User’s
information (such as name, and requested and returned books). Displays are
connected to gates, so when a User enters or leaves the library, his information
can be added to the display.

3.2.6 Pressure Sensors

Pressure sensors are used to detect the presence of books on bookshelves.
These sensors are located on the bookshelves and can identify a book by its
RFID tag. A pressure sensor becomes active if there is a book on top of it,
and becomes idle, if there are no book is on top of it.

3.2.7 Local Positioning Devices

Each User carries a device that not only serves as identification within the
library, but also shows a map of the library, identifying in real time, the
location of the User, and the locations of the books the Userhas requested.

There are two more entities to consider beyond the Physical Entities:

3.2.8 Users

Only registered Users are considered. Users can move inside the library (or
in its surroundings) following a map that shows, in real-time, their location
and the location where their requested books are stored. Once a User finds
a requested book, he/she can pick it up from the bookshelf. The returning
of books is also considered, however, the request of books is not.

3.2.9 Controller

The Controller makes the bridge between all the communicating Physical
Entities. These send their outputs to the Controller, which processes the

28 CHAPTER 3. THE SMART LIBRARY PRACTICAL EXAMPLE

received data. If the data is meant to another Physical Entity, the Controller
redirects it (either as it was received, or translated into a notation that the
destination entity understands).

Chapter 4

Guidelines

Prologue

This chapter presents the guidelines proposed in this
dissertation for analysis and modelling of reactive soft-
ware systems with CPN modelling language. Some notes
about the guidelines are first discussed, explaining their
goals and purpose, and how they can be used. Afterwards
the guidelines are presented, illustrated with practical ex-
amples from the Smart Library.

4.1 Modelling Approach

According to [13], controllers can be described by an architecture of three
components - Controller, Physical Entities, and Users - as the one shown in
fig. 4.1. The Controller is the part of the system to be developed, the Physical
Entities are real life objects, which are embedded in the system, and the Users
are the people that use the system. These three individual components are
connected to each other through well-defined interfaces (referred in fig. 4.1
as A and B).

This structure implies that controllers are described by means of a system
and its environment ; while the system is composed of the Controller and
the Physical Entities, the environment comprises the Physical Entities and
the Users. The users face the entire system only as the Controller and the

29

30 CHAPTER 4. GUIDELINES

environment

usersphysical
entitiescontroller

system

A B

Figure 4.1: General architecture of reactive software systems (This image
was copied from [13])

Physical Entities, without always acknowledging the separation of these two
components; they usually know only the interface B, which allows them to
interact with the system. A developer sees more than this, acknowledging
the environment also as part of the global system.

This component-based architecture allows to describe the behaviour of
each component separately. On one hand, the Physical Entities represent real
world objects, so their behaviour is already defined, which usually prevents
the modellers of changing it; these entities must be handled as they are, and
not as the modellers wish them to be. On the other hand, modellers do not
know, at the outset, the behaviour of the Controller and the behaviour of the
Users; thus, they can model such behaviours as they expected them to be.

Fernandes et al. also suggest, in [13], the use of scenarios to model the
behaviours of the Controller and of the Users, due to the tendency of these
entities to undergo several changes throughout all the system development
process (which includes analysis, modelling, and implementation).

The guidelines proposed in this chapter address the modelling of two as-
pects of a system: architecture and functionality. In architectural terms,
an Object-Oriented (OO) approach is taken: the system is split in indi-
vidual components, each with its own properties and logic. Such compo-
nents can communicate with each other, by means of well defined interfaces.
In functional terms, there is an attempt to streamline the behavioural de-
scription of each component, proposing solutions for different possible situa-
tions. Throughout the very description of the guidelines, the different ways of
analysing and modelling the functional aspects of each component are stud-
ied. The several perspectives presented in the guidelines are explained with
practical examples, exposing the differences, advantages and disadvantages
among the different options.

The Smart Library example (recall chapter 3) is used to demonstrate
the applicability of the guidelines. It is important to notice that the main

4.1. MODELLING APPROACH 31

purpose of this example is to apply rapid-prototyping in the study of user
behaviour towards the system; the decisions made for the modelling of this
system make sense in the context of this problem, but they may not be the
most suitable in other cases. These guidelines focus on goals that may not
match the goals of other problems, thus they should be seen, not as a final
and unique solution, but as a possible one, which can be adapted according
to the context and purpose of each problem. The guidelines address both
the analysis and the modelling of reactive software systems, with the CPN
modelling language, and there is no specific order to apply them, except that
(some parts of) analysis must come before (some parts of) modelling; besides
that, there are no objections to customizing the guidelines, or even skipping
some of them. The order in which they are presented made sense in the
demonstrative example where they were applied, but nothing indicates their
order cannot be changed, according to the modellers’ preferences.

Four main goals were the basis for the development of the guidelines:

• the creation of interactive prototypes;

• simulation and formal analysis of models;

• model testing; and,

• management of problem complexity.

The assumptions made during the modelling of the Smart Library are
based on the just described goals. The most evident assumption within
these guidelines, refers to the communication between physical entities; all
messages exchanged between these entities must pass by the Controller be-
fore being forwarded to another entity. This may not be the most advisable
solution in real situations; the actual objects (the ones that are represented
by the Physical Entities in the models) may be physically connected to each
other. However, it is the intention of these guidelines to create models that
can quickly be modified, thus, it is easier to ignore the real connections and
assume that all the objects are connected to the Controller, which filters re-
ceived messages, interpreting and rerouting them to their target objects. By
making this assumption, the Physical Entities become structurally indepen-
dent from each other, which means that changing the model of a Physical
Entity does not require changing the models of other Physical Entities, even
if any sort of connection exists between them. This allows performing rapid

32 CHAPTER 4. GUIDELINES

changes in the models, which is a desired quality in prototyping. Other ab-
stractions are presented and explained throughout the very description of the
guidelines.

Before moving on to the next subject, it must be pointed out that guide-
lines can make the processes of analysis and modelling less laborious, but
they cannot do all the work. Finding out which properties and functionali-
ties are important in the development of a system may require a lot of effort;
therefore it is advisable to apply the guidelines carefully, without forgetting
the context and goals of the problem.

The following guidelines refer mainly the project modellers, but not with
the intention of disregarding the remaining people involved; on the contrary,
it is assumed all the stakeholders can participate in the decisions related to
the problem and to the models, specially during the process of analysis.

The guidelines are listed below, in order to give to the reader an overview
of those guidelines, so he/she do not get lost in the thorough description that
follows in the next sections.

Analysis Guidelines

1. Identify the Physical Entities

2. Identify the Users

3. Identify functionality and structure

i. Identify the functions of the Controller

ii. Identify the actions of the Users

iii. Identify the communications net

4. Identify the private phenomena of the Physical Entities

5. Identify phenomena shared between Physical Entities

Modelling Guidelines

1. Create pages

2. Draw the Physical Entities

i. Draw States

ii. Draw internal events

iii. Set the data flowing direction

iv. Declare colour sets

4.2. ANALYSIS GUIDELINES 33

v. Declare CPN ML primitives

3. Draw interfaces for shared phenomena

4. Draw scenarios

i. Create initial values

ii. Create the desired behaviour of the Controller

iii. Create the desired behaviours of the Users

4.2 Analysis Guidelines

Any modelling technique must always be preceded by a thorough study of
the problem, in order to acknowledge what it actually is, to understand its
issues, and to clarify which features must be included in or excluded from the
models. Regarding reactive software systems, the analysis that precedes the
modelling must identify every single entity within that system and within
its environment - the Controller, all the Physical Entities, and all the Users
- the roles they play, and how they do it. The following guidelines explain
that process, defining the major concepts within it. Additionally, practical
examples are provided, for a better understanding of the guidelines; the issues
that shall deserve more attention from the modellers are pointed out, and
solutions for those issues are detailed.

The whole process of analysis assumes that the design decisions are agreed
among all the project stakeholders.

4.2.1 Identify the Physical Entities

The first thing to do when analysing a reactive software system is to iden-
tify its Physical Entities; these are divided in two categories: sensors and
actuators.

Definition 5: Sensor
A sensor is a physical object that observes events from the system environ-
ment [49], and that warns the system when any relevant external event has
occurred. Such warnings are presented to the system as stimuli and can be
responded to.

To describe a sensor one must state which type of sensor is needed, what
does the sensor do, and how does it do it. Since not all changes in the envi-

34 CHAPTER 4. GUIDELINES

ronment are relevant to the system under development, it is also important
to state which events must be reported to the system.

Definition 6: Actuator
An actuator is a physical object that can receive and interpret stimuli from
the system environment, and that can also produce responses that affect that
environment. Actuators can be active, if they have a behaviour of their own
that is relevant to the system, or passive, if they do not have a behaviour of
their own that is relevant to the system [9].

One must analyse the behaviour of actuators to ascertain which ones have
active roles within the system and which ones are just passive actuators.

Example
In the Smart Library example, eight Physical Entities were identified: books,
presence sensors, pressure sensors, lights, gates, displays, and personal local
positioning devices (LPS - Local Positioning System).

In reactive software systems, sensors are always active entities, since their
purpose is to acquire information from the environment and report it to
the Controller. If the information a sensor captures is not relevant to the
Controller, then that sensor has no use for that particular system. Thus,
most probably, that sensor should not be included in the model as a Physical
Entity. For the actuators, it does not work that way, as they may have
active or passive roles within the system. None must be disregarded; passive
actuators may be of equal or greater importance than any of the active ones.
The question is: how to differ such roles? One can resort to English (or any
other spoken language) to do so: for each actuator, the modellers should ask
themselves whether they can or cannot describe any action, or interaction, of
the actuator in the active voice; in the question, the subject of the sentence
must be name of the entity being analysed, and the verb must be the action
the modellers desire to reason about.

Example
In one of the possible scenarios of the Smart Library, it may be said “When
the user approaches a book he is looking for, the lights on that book turn
on”. Although this can be said in the passive voice, e.g.: “the lights must be
turned on”, it is not a matter of choosing a syntax because it sounds better;
what is important is that it is possible to describe the behaviour of a light

4.2. ANALYSIS GUIDELINES 35

as an action that is actually performed by the light, and if it is possible to
use the active voice to describe that action, then it can be assumed that that
entity has at least one active role. On the other hand, if the modeller cannot
describe any functionality using the active voice, then that entity is probably
just a passive actuator. For example, in the Smart Library it cannot be said
“The books do (something)” because the problem description does not assign
anything for the books to do by themselves. Yet, it can be said “The books
are handled by the users”; this means that the books are relevant to the
system, because they are part of someone’s action, but just by assuming a
passive behaviour.

Once the Physical Entities are found and their roles unveiled, one can
proceed to another guideline. Some Physical Entities may not be so evident
in the beginning of the analysis, or just become necessary later; even the
most experienced analysts may sometimes blurt out some information. It
is not problematic, although it may delay the analysis and modelling pro-
cesses. Forgetting some Physical Entities is not troublesome, if those which
have been identified are sufficient to model some system functionality. Other
Physical Entities can be added at a later stage. It may happen to be neces-
sary to reconsider the dependencies between entities, and that can add some
delays in the processes of analysis and modelling. But it is preferable to delay
some proceedings, than having to re-do the entire analysis from scratch.'

&

$

%

Identify the Physical Entities
Guideline Summary

Identify sensors and actuators. State which type of sensor is
needed, what does the sensor do, and how does it do it. Dis-
tinguish active and passive actuators.

4.2.2 Identify the Users

The next thing to do is identifying all system users.

Definition 7: User
A user is any person who interacts directly with a system. There can be dif-

36 CHAPTER 4. GUIDELINES

ferent kinds (or categories) of users, and they may exhibit different behaviour
towards the system.

In order to avoid ambiguities at this step of the process, it is impor-
tant to distinguish three particular system stakeholders: users, clients, and
customers. In [39], this distinction is made clear:

Client: The person or organisation for whom the product is being
built, usually responsible for paying for the development of
the product.

Customer: The person or organisation who will buy the product
(note that the same person/organisation might play both the
client, customer and sometimes user roles).

User or End User: Someone who has some kind of direct in-
terface with the product.

This guideline concerns only the people referred as End Users, though,
in many cases, there are people playing more than one role. Modellers must
then become aware of this distinction, so they can recognize the issues that
concern only the Users.

Users are characterized by having free-will, which makes discovering their
actions a particularly challenging task. Users are, in the words of M. Jackson,
a biddable domain [22], and thus, there are users on whose behaviour one can
rely on, and there are others whose expected behaviour can never be ensured.

The process of discovering Users can be compared to discovering the
actors of a system, in the use cases of UML.

Example
In the Smart Library example, only registered Users were considered; how-
ever, imagining other kinds of User, helps understanding the differences in
behaviour. A librarian, for example, would not put books on the wrong
shelves (at least, not on purpose), but the users of the library can do that.
In this case, the librarian is biddable whilst the users are not. Such differ-
ences in behaviour have to be pointed out among different categories of users.

4.2. ANALYSIS GUIDELINES 37

'

&

$

%

Identify the Users
Guideline Summary

Identify all the users. Distinguish between client, customer, and
end user to avoid ambiguities. Point out the reliable and the less
reliable users.

4.2.3 Identify functionality and structure

Both the Controller and the Users exchange data between them. Recalling
fig. 4.1, the communications structure is defined by two interfaces, A and B.
To describe each of these interfaces, one must identify: (1) which Physical
Entities are connected to the Controller; and (2) which Physical Entities are
connected with each category of Users, respectively.

To do so, one cannot avoid thinking about what the Controller and the
Users have to do, how their actions affect the whole system, and how they
contribute to the system operation. Three tasks (sub-guidelines) arise from
this: (i) identifying the functions of the Controller; (ii) identifying the actions
of each User; and (iii) identifying how such functions and actions engage with
the Physical Entities.

Identify the functions of the Controller

The Controller is the brain of the system: it determines the actions the
Physical Entities must perform, and by doing so, it creates a new behaviour
that responds in a desired fashion to the system environment. The events
that are external to the system are observed by the sensors and sent to the
Controller as stimuli; the Controller then chooses an appropriate answer and
enforces a predefined behaviour in the actuators. Such behaviour is called
desired behaviour.

Definition 8: Desired Behaviour
A behaviour that is defined by the modellers and that reflects the actions
they desire to see carried out by the system.

To describe the behaviour of the Controller it is necessary to identify
which decisions, functions, and validations the system is supposed to make

38 CHAPTER 4. GUIDELINES

or execute; this is equivalent to finding and describing UML use cases (at
least some of them, because it may be the case that not all the use cases
are related to the Controller). Finding out such information is finding out
what is expected from the system to be designed; this is one of the most
important steps in analysis, which makes it almost imperative that it results
from a discussion between analysts, clients, and other stakeholders.

Example
In the Smart Library example, the main responsibilities of the Controller are:

• updating users’ information in the displays as they enter and exit the
library;

• identifying books and their positions by interpreting pressure sensor
readings;

• showing users their books, by turning on/off lights on books and book-
shelves;

• letting users enter and leave the library by opening and closing the
gates;

• locating users’ positions by interpreting readings from the presence
sensors.

'

&

$

%

Identify the functions of the Controller
Guideline Summary

Identify which decisions, functions, and validations the system is
supposed to make or execute.

Identify the actions of the Users

To identify the actions Users can perform within the system, it is necessary to
learn how the Users interact with the Physical Entities. The modellers must
acknowledge and understand what the Users are supposed to do with the
system, and how they are supposed to behave (which can also be compared to
identifying use cases in UML). Once again, this must result from a discussion
between the project stakeholders.

4.2. ANALYSIS GUIDELINES 39

Example
In the Smart Library, Users can:

• enter and exit the library through gates;

• handle books;

• request trajectories to books in their Local Positioning System devices.

'

&

$

%

Identify the actions of the Users
Guideline Summary

Identify what the users are supposed to do with the system, and
how they are supposed to behave.

Identify the communications net

The two tasks above (Identifying the functions of the Controller and Identi-
fying the actions of the Users) have almost determined, by themselves, the
global structure of communication. Controller functions and Users’ actions
depend on Physical Entities to occur, and may affect those Physical Entities,
when occurring; therefore, for each Physical Entity, it is necessary to deter-
mine whether there is a connection to the Controller, and whether there is a
connection to the Users.

Not all the interactions between Physical Entities and Users have to play
a contributory role to the system functioning; even though they may, in some
way, be related to that system, they do not add functionality, nor impose
restrictions on system operation. The modellers must find out which of those
interactions are of interest to the future models, and which are not.

Example
In the Smart Library description, both the Controller and the Users interact
with all the Physical Entities; however, not all of these interactions intro-
duce by themselves information that is useful for the models, such as a User
crossing a gate, or seeing the light of a book. In those situations, the system
is not concerned about whether the User actually performed such actions or

40 CHAPTER 4. GUIDELINES

not, but it is concerned with the respective consequences: crossing a gate
means the user just entered or left the library, and seeing the light of a book,
can denote the user have found the book he was looking for.

There may be some hierarchy within Physical Entities, but according to
the architecture shown in fig. 4.1, on which these guidelines stand, that hier-
archy must be abstracted from, by adding the Controller as an intermediary
agent. Adopting (or not) such abstraction, remains as a decision for the mod-
ellers to make; the modeller shall decide whether the problem under study
is large enough to make up for the changes that arise from such assumption.
The level of modularity and configurability of the models remains as the
modellers’ decision. These guidelines aim to achieve a high degree of model
configurability, and because of that, the view from the above architecture is
adopted; but if configurability is not on the goals of the project, or does not
have a great priority, then it may not be necessary to make that assumption.'

&

$

%

Identify the communications net
Guideline Summary

Determine, for each Physical Entity, whether there is a connection
to the Controller, and whether there is a connection to the Users.
Highlight interactions of interest between Physical Entities and
Users.

4.2.4 Identify the private phenomena of the Physical
Entities

The private phenomena of an entity are its states and internal events (recall
Definitions 2 and 3).

Regarding Physical Entities with active roles, one can start describing
their behaviour by determining which are the states (and sub-states, if any
exist) of those entities, and then identifying which possible actions can be per-
formed to toggle among those states (or sub-states). Such actions comprise
the entities’ assumed behaviour (which comes opposed to desired behaviour).

Definition 9: Assumed Behaviour
A behaviour that reflects the actions performed by entities embedded in

4.2. ANALYSIS GUIDELINES 41

the system under consideration. Such entities (like the Physical Entities)
already exist in the real world, and exhibit a behaviour that is known by
the modellers; thereby, it must not be modified, but acknowledged and used
exactly as it may be observed in the real world objects that those entities
represent.

Identifying the internal events strongly depends on the choices of the
modellers and on the purpose of the models. The modellers may want their
specifications to be so thorough that every atomic event must be discrimi-
nated, or they may want specifications that contain only the necessary events
to achieve a functional model. Thereby, the identified internal events can be
described in three different manners:

t∀ : one transition for all events, therefore, one transition for toggling be-
tween all states;

t∃ : one transition for each event, which means that the occurrence of that
event results in a state that is not the current one (as the reader can
confirm later in this chapter, this option must be used carefully, since
it may hide information about the entity);

t∃s : one transition for each sub-event, which equals one transition for each
pair of consecutive states (i.e., for each pair of states, where the second
would be reached from the first, by the occurrence of a single event).

The option t∃s differs from t∃ because it considers sub-events; their
importance comes with the need of displaying all the truthful (and useful)
information about a system. This is not always in the goals of a project, and
therefore, sub-events are disregarded or maybe just unnoticed.

Definition 10: Sub-Event
A sub-event is an event split in two or more parts; although all parts lead to
the same state, they start in different states.

The following example exposes the differences between the three options
above.

Example
The lights of the books and bookshelves inside the library are Turned On/Off
by the Controller; this can happen regardless the current state of the lights,
either On or Off. So, how many events should be defined?

42 CHAPTER 4. GUIDELINES

According to t∀, there would be only one event called, for example, Toggle
Light, to do the work of the two events above.

According to t∃, there would be only the two events mentioned above
(Turn Lights On and Turn Lights Off).

According to t∃s, there would be four possible events, because there are
four pairs of consecutive states: (On-On, On-Off, Off-On, and Off-Off).

In the Smart Library, the project stakeholders agreed to the option t∃.
Option t∀ is poorly detailed and did not add much useful information to the
models; for example, during a model simulation, it did not seem to clearly
explain what was happening in the model. Option t∃s was too detailed,
considering information that was not relevant within the goals of the models.
The pairs On-On and Off-Off can be ignored when their absence does not
affect the correct execution of the model.

The occurrence of an internal event may depend on internal and external
conditions [49]. Examples of internal conditions may include time (i.e., an
event that only occurs after a given amount of time) or the current state of
the entity itself (i.e., an event that only happens when/if the entity finds itself
in a specific state). Examples of external conditions may include commands
sent by the Controller and actions performed by Users.

In sum, to describe the private phenomena of a Physical Entity one must
identify its states, its internal events, and the restrictions on those internal
events. Relevant attributes, like id, name, or others, must also be identified
within this guideline.

Definition 11: Attribute
An attribute is a property of an entity [9]. Such property can assume a set
of values (of a pre-defined range) that characterize the state of the respective
entity.

As suggested in [8], attributes can be found by underlining key words and
concepts, in the textual description of the problem being analysed. Yet, if
no descriptions are available, writing one will undoubtedly help discovering
these and other issues.

4.2. ANALYSIS GUIDELINES 43

'

&

$

%

Identify the private phenomena of the Physical Entities
Guideline Summary

For each Physical Entity, identify the states, internal events, re-
strictions of internal events, and relevant attributes.

4.2.5 Identify phenomena shared between Physical En-
tities

The shared phenomena [12] are the states and events shared within the in-
terfaces A and B (recall fig. 4.1). For each pair of communicating entities
that were identified in the guideline 4.2.3, one must decide what type of data
is shared between them. To help in this decision, one can face a state as data
that is always available for others to read, and although it can be changed, it
does not disappear; while an event can be seen as data that is only available
for the first who grabs it ; once it is consumed by some entity, it ceases to
exist. Thus, states are permanent, but changeable, data, while events are
ephemeral data.

Example
In the Smart Library example, the commands sent by the Controller to the
lights are an example of shared phenomena. Each command from the Con-
troller to the lights is a shared event, since each command can only be exe-
cuted once.

In another example from the Smart Library, the Users can only enter and
leave the library if there are any gates open, so the Users must be able to
know, at any time, the state of the gates; therefore, the data about the gates
is shared with the Users. It represents shared states, because that data is
only viewed by Users and not actually consumed by them.

'

&

$

%

Identify phenomena shared between Physical Entities
Guideline Summary

Identify the type of data shared between communicating entities.
Distinguish between permanent/changeable data and ephemeral
data.

44 CHAPTER 4. GUIDELINES

4.3 Modelling Guidelines

After studying the problem carefully, one can move on to drawing CPN
diagrams. By using this language one guarantees the models can be executed
and simulated.

The following guidelines explain how to use CPN models and CPN Tools
to model reactive software systems.

4.3.1 Create pages

The first thing to do is to open CPN Tools in a new CPN model, and create
a few new pages: one page for each sensor; one page for each active actuator;
one page for each User; one page for the Controller; and, one page for the
top-most module.

The top-most module is where the overall structure of the model is shown;
it is addressed further in the description of the guidelines. Each page works as
an individual module, therefore, by following this guideline, one guarantees
model modularity. Other pages may be created to assist the management of
the model (such as a page to initialize all the modules) but the modelling
details of those pages are not addressed in these guidelines.'

&

$

%

Create pages
Guideline Summary

Create one page for each entity and an extra page for the top-most
module.

4.3.2 Draw the Physical Entities

In the previous analysis, active and passive actuators have been distin-
guished. This knowledge helps to decide which actuators shall be modelled as
individual modules (the ones that have an active role) and which ones shall
be modelled as simple tokens, or not be modelled at all (the ones that have a
passive role). This guideline focuses on sensors and active actuators, and for
each of these entities one must do the following five tasks: (i) draw states;
(ii) draw internal events; (iii) set the data flowing direction; (iv) declare
colour sets; and, (v) declare CPN ML primitives.

4.3. MODELLING GUIDELINES 45

An example is presented later in this guideline, in order to better explain
to the reader, the issues raised within the three first tasks.

Draw States

Every CPN module needs at least one place to hold the instances of the entity
it represents. The modellers must decide which of the following options best
suits their system under development, and their problem goals:

p∃ : one place for each possible state, so the location of a token is the current
state (or sub-state) of that token; or

p∀ : one place for all the tokens, regardless of their current states.

The option p∃ seems more intuitive and logical, if one desires to be able
to rapidly understand the global state of a model, only by looking at it. In
an analysis perspective this option seems better than the second; the states
of the entities are dealt in a graphical form rather than being dealt within
the colour sets, and manipulated with coding primitives. However, if being
aware of the global state of a model is not a mandatory requirement, the
option p∀ can be chosen, and may be less burdensome, since it decreases the
number of necessary states [11,23] (and therefore contributes to avoiding the
state-explosion problem).

The modellers may opt to use one single place to hold all the tokens that
represent an entity within the module of that entity, and deal with the states
through the colour sets and coding primitives. In order to ease the references
to such place, from this point on, is called main place.

Places may be either state places or event places. For example, a main
place is always a state place, because it holds tokens with information about
the state of an entity; this means that it always holds the same number of
tokens that it initially possesses. Any transition connected to this kind of
place can peek on the data inside it; the occurrence of such a transition can
consume tokens, in order to change their values, but those tokens have to
be restored right away. Consuming and restoring a token from a state place
can be seen as a single, instantaneous action. In an event place (a place that
holds tokens with information about events) the data within that place is
stored by some transitions, and consumed by others (which are two different
actions).

46 CHAPTER 4. GUIDELINES

To start sketching actual models, the modellers must draw the state places
(either one main place, or a place for each state of the entitty), with proper
names and colour sets. The colour sets may be formally specified afterwards,
but this way, the modellers can develop an early understanding of which data
types will be needed later (just a few tasks after this one).'

&

$

%

Draw States
Guideline Summary

For each Physical Entity, decide modelling either only one place,
or one place for each possible state. Draw the place(s) with proper
name(s) and colour set(s).

Draw internal events

If the decision about which internal events are needed has not yet been
made (recall guideline 4.2.4) then here comes the time to make it. The
modellers must draw a transition for every considered event and name each
one properly.'

&

$

%

Draw internal events
Guideline Summary

For each Physical Entity, decide modelling either only one tran-
sition, one transition for each event, or one transition for each
sub-event. Draw the transition(s) and name it (them) properly.

Set the data flowing direction

The modellers can now draw the arcs between states and internal events,
which will allow the data to flow along the model. Which data flows in each
arc is the next question, and the answer is found in the next two tasks.

Based on what have been discussed so far about the modelling of events
and the modelling of states, one can conclude that there are six possible ways
of modelling the internal behaviour of a Physical Entity:

4.3. MODELLING GUIDELINES 47

t∀ + p∀ : one transition for all events and one place for all states;

t∀ + p∃ : one transition for all events and one place for each state;

t∃ + p∀ : one transition for each event and one place for all states;

t∃ + p∃ : one transition for each event and one place for each state;

t∃s + p∀ : one transition for each sub-event and one place for all states;

t∃s + p∃ : one transition for each sub-event and one place for each state.

But are all these options really viable and trustworthy? The following
examples illustrate the differences between some modelling approaches, and
highlight a particularity of the option t∃ + p∃ .

Example
Let us recall the lights example, which possible events and states were de-
scribed in guideline 4.2.4.

The following images were not used in the Smart Library final model; they
were only drawn to illustrate the differences between modelling approaches.

(id,newstate)

toggle(light,newstate)

light
TOGGLE

[id=(#id light)]

Controller
Light Commands1

In
LightCOMMAND

Lights

initLights

LIGHT
In

1

1`("l1",OFF)

2

1`{id="l1",state=ON}++
1`{id="l2",state=OFF}

Figure 4.2: Modelling the Lights with one main place and only one transition

The example in fig. 4.2 is consistent with the option t∀ + p∀, where a
single transition and a single place exhibit, in a simple, but poorly detailed,
model, the complete behaviour of the lights; the real events are hidden by the
expression in the outgoing arc from the transition, and the states can only be
known by inspecting the colour set LIGHT. Whenever the Controller issues
a light command, the transition Toggle can occur for the corresponding light;
such occurrence can either change, or not change, the state of that light.

The example in fig. 4.3 is consistent with the option t∃ + p∀. In this
model, the behaviour of the lights is detailed by two transitions. Whenever
the Controller issues the command (id,ON), the transition Turn Light On

48 CHAPTER 4. GUIDELINES

light

turnLightOff(light)

(id,OFF)

turnLightOn(light)

light

(id,ON)

TURN LIGHT OFF

[id=(#id light)]

TURN LIGHT ON

[id=(#id light)]

Lights

LIGHT

Controller
Light Commands2

In
LightCOMMAND

In

initLights

Figure 4.3: Modelling the Lights with one main place and one transition for
each event

becomes enabled for the corresponding light; it works in a similar fashion for
the Turn Light Off transition.

The example in fig. 4.4 is consistent with the option t∃ + p∃; this ap-
proach can, and most probably will, introduce some errors, during the ex-
ecution of the model. The step exhibited in that figure shows an enabled
transition, because the conditions for that transition to occur are valid: the
command (“l1”,OFF), from the Controller to the Lights, tells to turn off the
light l1 and, at the moment, that light is on. But if that command was
meant to the light l2, then that same transition (Turn Light Off) would not
be enabled, because that light is already off. A command (“l2”,OFF) would
not be consumed in this step; it could be consumed after, though, if the light
l2 was turned on by a new command; that would enable the Turn Light
Off transition and the light l2 could be turned off erroneously, because that
was not the moment for that command to be consumed.

The example in fig. 4.5 is consistent with the option t∃s + p∃, which
is the most detailed approach for modelling the behaviour of the lights. In
this model, the occurrence of a transition that is bound to a particular light,
depends on the current state of that light (which did not happen with the
remaining exemplified options).

There is a remarkable difference in the amount of code needed in each
of the presented models: whereas in the first example, which uses a few
amount of graphics, the code incorporates several decisions (Which light?,
What is its current status?, What is the new state?) and actions (Change
the state of that light to the new state), the last example, uses a greater

4.3. MODELLING GUIDELINES 49

(light',OFF)(light',ON)

light' light'

light'light'

TURN LIGHT OFFTURN LIGHT ON

ON

1`"l1"

LIGHT'

OFF

1`"l2"

LIGHT'

Controller
Light Commands3

In
LightCOMMAND

In

Figure 4.4: Modelling the Lights with one place for each state and one tran-
sition for each event

number of graphics, but it does not need any extra code (i.e., code beyond
arc expressions) to describe all the behaviour of the lights.

Once the graphics for the Physical Entity have been outlined, then the
modellers can proceed with some coding.

'

&

$

%

Set the data flowing direction
Guideline Summary

For each Physical Entity, draw the arcs between places and tran-
sitions.

Declare colour sets

Creating colour sets entails making more design decisions; each modelling
approach may require specific data type structures, then it is important to
spend some time thinking about what really is important to the problem and
which are the best options.

50 CHAPTER 4. GUIDELINES

light'

light'

light'

light'

light'

light'

(light',OFF)(light',ON) (light',OFF)(light',ON)

light'

light'

TURN LIGHT OFF
light is on

TURN LIGHT ON
light is off

TURN LIGHT OFF
light is off

TURN LIGHT ON
light is on

ON

1`"l1"

LIGHT'

OFF

1`"l2"

LIGHT'

Controller
Light Commands4

In
LightCOMMAND

In

Figure 4.5: Modelling the Lights with one place for each state and one tran-
sition for each sub-event

In a first approach, the colour sets must be as simple as possible, only
describing imperative attributes (which, depending on previous choices, may
or may not include the states of the entity).

The decision of which colour set to use is not always trivial, and a particu-
lar problem comes with the use of the list colour set. In a coding perspective,
lists are appealing, due to the many available primitives that help managing
the data within the lists, for example, maintaining a particular order among
tokens inside a list is easy, from a programmer’s viewpoint. However, in a
visual perspective, it is another matter; if one desires to achieve a model that
can rapidly be read and understood, then lists are hardly the best choice.
Lists are structured types, similar to arrays in general programming lan-
guages thereby, a list is represented by a single token, that may carry a lot
of other tokens inside themselves. The graphics in CPN models show the
number of tokens in each place at any moment, so, when using a list colour
set, the number of tokens inside the place is always 1 (at least for each list
inside the place); the tokens within the lists are not counted, whether the
lists contain one, several, or no tokens at all. The only way to acquire such
intel is by inspecting the lists, which may prove itself laborious when working
with several lists, containing several tokens.

4.3. MODELLING GUIDELINES 51

Example
The following code snippet shows three simple colour sets, and two compound
ones, from the Smart Library example, declared in CPN ML:

1 c o l s e t ObjID = STRING ;
c o l s e t UID = STRING ;

3 c o l s e t AreaID = with ENTRYAREA | A1 | A2 | B1 | B2 |
EXITAREA | OUTSIDE ;

c o l s e t USER = r e c o r d i d : UID ∗
5 p o s i t i o n : AreaID ;

c o l s e t ObjIDs = l i s t ObjID ;

Listing 4.1: A few colour sets used in the Smart Library example

The first and second lines declare the types of the Object and of the
User’s ids, respectively. The third colour set enumerates the different areas
of the library; in this example, the library has seven areas where the Users
are sensed by the presence sensors. The USER colour set declares a user as
having an id and a position within the library. The last colour set declares a
list of object ids; this is an example of how lists can be useful; this colour set
is used, for example, in an attribute of the presence sensors, because each of
these sensors needs to be aware of which Physical Entities are in its area of
sensibility, so it can inform the Controller which objects are affected by its
readings.

'

&

$

%

Declare colour sets
Guideline Summary

Declare the colour sets, only describing imperative attributes (in
a first approach); other attributes can be added later.

Declare CPN ML primitives

The modellers can continue coding a little bit more, in order to create the
functions and variables that are needed by the models (in the code segments
of the transitions and in the arc expressions).

52 CHAPTER 4. GUIDELINES

One must write the CPN ML primitives that validate the conditions im-
posed to the occurrence of each internal events (which means implementing
the guards on transitions); and assign a behaviour to those events (i.e., imple-
menting the code segments of each transition). A more experienced modeller
may deal with time inscriptions right away, but these can also be dealt with
later, once a first version of the model is functional and stable. CPN time
inscriptions are not discussed in these guidelines.'

&

$

%

Declare CPN ML primitives
Guideline Summary

Write CPN ML functions and variables for the code segments of
each transition and for the arc expressions.

Draw interfaces for shared phenomena

The Physical Entities are not, by themselves, sufficient to complete the
model. Once they assume graphical form in the CPN model and have their
own behaviour, they must be prepared for establishing communication with
other entities (the Controller and the Users). Thus, is it necessary to draw
some interfaces to allow the exchange of phenomena between different enti-
ties.

Recalling what have been said in section 2.3.1, the CPN modelling lan-
guage allows two representations of shared places: sockets and fusion places.
A fusion place is like two (or more) places that were merged, and are ac-
cessed by two (or more) different entities, that share their contents, while a
port place is a place that can communicate with another port place through a
private communication channel (a socket). It can either be an unidirectional
or a bidirectional socket. The doubt comes when one has to decide whether
use fusion or port places, for each kind of data (states and events).

In CPN Tools, a socket can only be shared between two entities, and it
is not possible to share port places. Since a state place must be accessible to
several entities, port places are not suitable to depict such places. In contrast,
fusion places are perfectly fit to share a state place; in CPN Tools, creating a
fusion place from a common place, requires only tagging that common place
with the desired fusion tag; all the places with a particular fusion tag become

4.3. MODELLING GUIDELINES 53

representations of the same single place. Therefore, it is advisable the use of
fusion places for shared states, and the use of port places for shared events.

To draw the interfaces for shared phenomena, the modellers must create
the necessary fusion and port places, with the proper arcs, colour sets, and
variables. Once again, the readers are advised to weight the pros and cons
of using lists for such places. The lists do not favour the fast reading and
comprehension of the model, but they are very useful to manage the tokens.

Example
The Gate-Display module shown in fig. 4.6 demonstrates the use of fusion
and port places. The Gate Display Commands place is a fusion place because
it stores commands, which are events, sent by the Controller to this entity;
yet, the place Gates with Displays is a port place, because it is a state place
and the tokens within it are consulted by another module.

The two remaining places are also port places, but for another reason;
these places contain data that can change for testing the model. Therefore,
these places are shared with another module where all the places with con-
figurable data are initialized for model simulation. That module is presented
further in this chapter.

defaultmsgdefaultmsg

gd

closeDefaultMsg(
gd,defaultmsg)

n

gd

openMsgList(gd_state,
gd_msg,gd,defaultmsg,n)

CLOSE GATE AND
SHOW DEFAULT MSG

[gd_id=(#id gd)]

OPEN GATE AND
SHOW MSG LIST

[gd_id=(#id gd)]

Max
Messages

MaxMsgs
INT

Default
Message

DefaultMessage
MESSAGE

Gates with
 Displays

GatesDisplays
GateDISPLAY

Gate_Display
Commands

In
GateDisplayCOMMAND

In

GatesDisplays

DefaultMessage

MaxMsgs

(gd_id,OPENGD,gd_msg)(gd_id,CLOSEDGD,gd_msg)

Figure 4.6: The Gate-Display module in the Smart Library example

The top-most module is built alongside the creation of these interfaces
for shared phenomena; the modules of the Controller, of the Users, and of
each Physical Entity are represented in the top-most module by substitution

54 CHAPTER 4. GUIDELINES

transitions, which are connected by the corresponding interfaces for shared
events. Because the top-most module does not have regular transitions (only
substitution transitions) the arcs in this module do not exhibit expressions;
the module only indicates which of the remaining modules has enabled tran-
sitions (if any does) in each step of a simulation.'

&

$

%

Draw interfaces for shared phenomena
Guideline Summary

Draw places for interfaces; it is advisable the use of fusion places
for shared states, and the use of port places for shared events.
Draw the interfaces for shared-events in the top-most module, and
create the corresponding substitution transitions.

4.3.3 Draw scenarios

Last but not least, one must create scenarios to depict the desired behaviours
of both the Controller and the Users. Three tasks must be carried out to do
so: (i) create initial values; (ii) create the desired behaviour of the Controller;
and (iii) create the Users’ desired behaviour.

Create initial values

To test a CPN model, it is necessary to create instances of Physical Entities,
and initialize the proper places (the main place and/or the other state places)
with those values. By doing so, the models become parameterisable.

Example
In order to expedite the Smart Library simulations, an auxiliary module was
created to initialize the main places of the entities, the Users in the library,
and other configurable data, with their respective values (because the module
is too big, it is not shown at this point of the dissertation; however, it can
be found in the appendix, in the section A.12, together with its thorough
description).

The following code snippet exhibits the declarations of some of the vari-
ables:

4.3. MODELLING GUIDELINES 55

v a l i n i t U s e r s =
2 1 ‘{ i d=”u1 ” , p o s i t i o n=OUTSIDE}++

1 ‘{ i d=”u2 ” , p o s i t i o n=OUTSIDE}++
4 1 ‘{ i d=”u3 ” , p o s i t i o n=A1}++

1 ‘{ i d=”u4 ” , p o s i t i o n=ENTRYAREA}++
6 1 ‘{ i d=”u5 ” , p o s i t i o n=EXITAREA} ;

8 v a l i n i t L i g h t s =
1 ‘{ i d=”l−a1 ” , p o s i t i o n=A1 , s t a t e=OFF} ++

10 1 ‘{ i d=”l−a2 ” , p o s i t i o n=A2 , s t a t e=OFF}++
1 ‘{ i d=”l−b1 ” , p o s i t i o n=B1 , s t a t e=OFF}++

12 1 ‘{ i d=”l−b2 ” , p o s i t i o n=B2 , s t a t e=OFF} ;

Listing 4.2: Two variables used in the Smart Library example

'

&

$

%

Create initial values
Guideline Summary

Create instances of Physical Entities, and initialize the proper
places.

Create the desired behaviour of the Controller

At this point of the process, the shared places must have already been drawn
for the Controller and the Users’ modules (recall guideline 4.3.2), which is
a start; but, from now on, the modellers have to decide how to process the
data that arrives in the input shared places, and to whom send the results of
that processing, i.e., to which output shared places should tokens be added.
Receiving, processing, and sending (or redirecting) data is, in short, the
behaviour of the Controller. The question is: how to model the processing
of data?

Entities like the Controller and the Users usually have many possible
behaviours to be depicted; scenarios seem a suitable way of illustrating those
behaviours. Creating scenarios requires creativity, and depends a lot on the
nature of the problem under consideration, and how the modellers face it. In
the words of Sinan Si Alhir:

56 CHAPTER 4. GUIDELINES

It is important to stress that building and analyzing scenarios is
a creative process of discovery [2].

According to what must have been decided in the guideline 4.2.3, the
Controller has a predefined set of tasks (the so called functionalities) that
must be modelled. Each task can be carried out by a single and atomic
(uninterruptible) action, or by a set of actions (an activity) that occur se-
quentially and that can be interrupted by the occurrence of events external
to that activity. In addition to this, each task can be executed through dif-
ferent courses of action that may, or may not, produce the same results. The
behaviour of the Controller must then be divided into scenarios that describe
these tasks and their possible courses of action. Each scenario can be rep-
resented in individual modules, but they can also be included in the same
module; since there are no evidences that one solution is better than the
other, that remains as another choice for the modellers to make. The divide
to conquer strategy may be a way of coping with complexity, but apart from
that, the results obtained in model simulation and in formal analysis, do
not exhibit differences between modelling scenarios separately, or modelling
them together.

So, how does one create scenarios in CPN Tools? This can be compared
to modelling with sequence or collaboration diagrams in UML, and similarly
to those models, there are no rules to state exactly how to produce a scenario
with CPN, but one can provide some ideas (or again, some guidelines) to do
so. It is never too much to remind that guidelines propose a way of dealing
with problems, and they do not give a mandatory solution, neither they try
to overlook other solutions.

The first issue to consider in the modelling of scenarios refers to the rep-
resentation of actions and activities. Because actions are non-inturreptible
occurrences, then each action should be represented in a single transition;
activities, on the other hand, should be represented in different, consecutive
transitions, so they can be interrupted by external factors, if needed. As
it was referred above, activities may sometimes be divided into alternative
paths of execution, which may lead to the same result (the same final state)
or to distinct ones (different final states). A particular strategy, presented
and described in [14], may be used to model the divergent paths; at first, one
must find the variation points (VPs) where a scenario splits into different
courses of action. Those VPs are modelled by a place (let us call it place of
divergency) with so many output transitions as the new paths that may be

4.3. MODELLING GUIDELINES 57

followed. Those transitions are in concurrency with each other, so the occur-
rence of one of those transitions disables the others. Each transition leads
to a different course of action, describing the entity’s possible behaviours.
Fig. 4.7 illustrates that strategy.

VP
Choose A

SP1 SP2

Behaviour A

A

Behaviour B

B

VP
Choose B

SP0

SP
Done

removeChoice
(sp,S B)

removeChoice
(sp,S A)

SP_t

SP_t

sp sp

A B

[S B, ...]

[choicePossible
(sp,S A)]

[choicePossible
(sp,S B)]

Figure 4.7: Variation Points leading to alternative behaviours (This image
is a generic version of an example from [14] and is here in order to better
explain the authors’ strategy)

In fig. 4.7, the place of divergency is called SP0, and the black transitions
are the VPs. Each VP leads to a possible behaviour that is referred by a
substitution transition and described in a new module (of which no examples
are shown). The token in SP0 is a list of the choices to be followed along
the execution of the model; in this example, the transition VP Choose B
is the chosen one; other choices may appear after this one, if the module
referred by the substitution transition Behaviour B also has alternative paths
of execution.

Example
This scenario modelling strategy was applied in the Smart Library example,

58 CHAPTER 4. GUIDELINES

but not strictly as it is described in [14]. For example, there is a scenario
where the Controller must choose whether to issue a command for the Light
module, or to issue a command for the GateAndDisplay module. The issuing
of each command corresponds to a different behaviour, but as it can be seen
in fig. 4.8, those behaviours are not described in different modules, because
they are simple enough (just a single function) to be included in the same
module.

(uid,wantedbooks)

updateLPSData(usrs)
initPresenceReadings

initPresenceReadings

makeGateDisplayCommand(
uid,oids,wantedbooks)

(uid,oids,2)

(uid,oids,1)

makeDecision(usrs)

init Presence
Sensor Readings

Make Light
Command

Get first reading
and decide what to do

[usrs<>[] andalso
(#3 (List.hd usrs))<>[]]

User DB

User DB
UIDxObjIDs

LPS Position
to LPS

Out
UIDxAreaID

PresSensors
Readings

PSensorReadings
PresSensorREADINGs

Light
Commands

Out

LightCOMMAND

Gate_Display
Commands

Out

GateDisplayCOMMAND

sensor reading
and option

UIDxObjIDsxINT

Presence Sensors
Readings

I/O
PresSensorREADINGs
I/O

Out

Out

PSensorReadings

Out

User DB

Make Gate with
Display Command

List.tl usrs

usrs

makeLightCommand(uid,oids)

Figure 4.8: One scenario of the Controller

Another issue can be observed in the Controller module; the synchroniza-
tion of actions. Because in the Smart Library example, gates and displays
have to be synchronized, they are modelled as one single entity. In fact,
when the Controller issues a command for the GateAndDisplay module, it
should be issuing two commands, one for a Gate module, and another for
a Display module, and those modules should process the commands at the
same time. The CPN language provides primitives to model that situation,
through transition synchronization; however, the CPN Tools does not sup-
port that technique.

There are three ways of working around the CPN Tools lack of support
for transition synchronization; if one wishes to make sure that two different

4.3. MODELLING GUIDELINES 59

actions occur at the same time, one can either:

• represent the two actions in the same transition;

• represent the two actions in separate transitions, and manually bind
the next transition to be fired (which is only viable in interactive sim-
ulations);

• represent the two actions in separate transitions, and add a token as a
resource that is shared with other transitions which are not synchro-
nized with those two; once the token is consumed by the first of the
two synchronized transitions, it is only restored when the second tran-
sition occurs, thus preventing other transitions of being enabled while
the synchronized ones are still occurring.

Although viable, the last strategy must be used carefully because it may
lead to deadlocks and overload of tokens, which may turn out to be cum-
bersome and uncessary management work. Although narrower, the other
options are safer and easier to deal with.

In short, actions and activities may be modelled in the CPN modelling
language as it follows:

• single action - single transition;

• synchronized actions (for automatic simulations) - single transition
(safer choice) or competitive, sequential transitions;

• synchronized actions (for interactive simulations) - separate transitions;

• single activity, with only one course of action - sequential transitions
without VPs;

• single activity, with more than one course of action - sequential transi-
tions, with VPs.

One final thing must be pointed out about the modelling of scenarios.
Scenarios are models prone to change; the conditions that support a given
scenario may change rapidly, and when that happens, the scenarios need to
be adapted according to the new conditions. If the problem being modelled
is quite simple and is not subject to major changes, then the modellers can
choose to create more graphical scenarios, which can be quickly read and

60 CHAPTER 4. GUIDELINES

easily understood. On the other hand, if the problem is likely to change over
time, requiring new scenarios to be considered or old ones to be disregarded,
then the modellers should opt to draw less graphics and write more code,
because code can be easily modified and is much more scalable. Thereby,
it is advisable to build scenarios that are simple and easily configurable,
and because of that, the modellers may sometimes have to choose code over
graphics.

The use of scenarios, as they were described in these guidelines, benefits in
two ways the modelling of reactive software systems with the CPN modelling
language; it ensures the model can be easily configured, and

(...) the model reflects all the partial behaviours identified and
discussed with the clients and users of the system under develop-
ment. [13]'

&

$

%

Create the desired behaviour of the Controller
Guideline Summary

Draw actions and activities of the Controller. Each action should
be represented in a single transition; activities, should be repre-
sented in different, consecutive transitions. Build scenarios that
are simple and easily configurable (might have to choose code over
graphics).

Create the Users’ desired behaviour

What has been said in the previous task about modelling with scenarios, also
applies to the Users’ module.

Example
In the Smart Library example, the Users’ module was modelled like is shown
in fig. 4.9.

Users can perform four kinds of actions: move between areas of the library,
request trajectories to their previously requested books in their LPS devices,
and also pick up from and return books to bookshelves.

In the first action, Users inside or near the Library can Move Between
Areas by choosing one path from the Library Paths place. This choice is

4.3. MODELLING GUIDELINES 61

initUsers

returnBook(b)

pickUpBook(b)

b

u

u

b

(#id u)u

initUsers

gd
(a1,a2)

updateUserPosition(
u,gd,a1,a2)

u

RETURN
BOOK

[getUserPosition(u)=
getBookPosition(b)
andalso
not(isBookOnShelf(b))]

PICK UP
BOOK

[getUserPosition(u)=getBookPosition(b)
andalso isBookOnShelf(b)]

REQUEST
TRAJECTORY

[(#position u)<>OUTSIDE andalso
(#position u)<>ENTRYAREA]

init Users

MOVE BETWEEN
AREAS

[getUserPosition(u)=a1]

Users

Users USER

Books
Books
BOOK

Pressure Sensor
Requests

Out
ObjIDxINT

Trajectory
Requests

Out
UID

Gates with
 Displays

GatesDisplays

GateDISPLAY

Library
Paths

Paths
AreaIDxAreaID

Users inside or
near the Library

I/O USERI/O

Paths GatesDisplays

Out

Out
Books

Users

(#id b,2)

(#id b,1)

Figure 4.9: The User module in the Smart Library example

restricted by two conditions: a User can only move to another area, if there
is a path from that User’s position to the area he wants to go to, and that
path is not blocked by a closed gate.

The second action is also restricted by two conditions, that make it im-
possible for a User to request a trajectory to a book while outside the library.
If the User is inside the library (i.e., if the User has crossed one of the entry
gates of the library) then the transition Request Trajectory can be executed.

The third and fourth actions refer to the handling of books, and they can
only happen if the User is near the book (which is the first condition), and
also if the book is on the shelf (in the Pick Up Book action) or off the shelf
(in the Return Book action).

These actions could be modelled in different modules, which would demon-
strate the scenarios independence from each other, and for complex scenarios

62 CHAPTER 4. GUIDELINES

would help managing them; but that was not necessary because in the Smart
Library example, the scenarios are quite simple (they can be described by a
simple function), and separating them in different modules would not make
it easier to manage them; on the contrary, it could be more cumbersome
having to manage several pages to deal with simple scenarios.

'

&

$

%

Create the Users’ desired behaviour
Guideline Summary

Draw actions and activities to be performed by Users . Each ac-
tion should be represented in a single transition; activities, should
be represented in different, consecutive transitions. Build scenar-
ios that are simple and easily configurable (might have to choose
code over graphics).

Summary

In this chapter, analysis and modelling guidelines are proposed, to model
reactive software systems with the CPN modelling language.

The analysis guidelines start by identifying all the entities within the
environment of a system (all the Physical Entities and all the Users) and
then, identifying the main functions of the Controller and the actions that
Users can perform. Afterwards, it must be identified how the entities are
structured, i.e., how are they connected among themselves. The two last
guidelines concern the identification of the internal behaviour and the exter-
nal (or shared) behaviour of each Physical Entity.

The modelling guidelines start by explaining how to create a CPN model
in CPN Tools. Then the Physical Entities are tackled, by means of modelling
their states and events, designing their internal architecture, and declaring, in
CPN ML their attributes and functions. Once the Physical Entities assume
its structure and properties, the external architecture of the model can be
dealt with, by creating the interfaces of communication for all the entities
within the model. At last, scenarios must be created in order to depict the
expected behaviours of both the Controller and the Users.

Chapter 5

Conclusions and Future Work

Prologue

This section gives a short overview of this dissertation,
and explains its major contributions. Finally, some
notes are given on how this work can be further devel-
oped.

5.1 Conclusions

This work presents an approach to modelling reactive software systems, more
specifically controllers, by means of a set of guidelines that explain and ex-
emplify their respective processes of analysis and modelling. By using CPNs
as the modelling language, the results of this work contribute to creating
formal and executable models, that can be used as specification of software
systems.

This approach stands on an architecture capable of representing general
controller systems, by differentiating three major components: Controller,
Physical Entities, and Users [13]. This disjunction is based on the differences
among the behaviours of each component, thus it is possible to apply appro-
priate modelling techniques for each individual behaviour. The Controller
and the Users can be modelled through scenarios, which are formalisms able
to represent desired behaviour, and the various Physical Entities can be mod-
elled separatelly, representing their assumed behaviours.

63

64 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Having a well-defined basis for constructing the models makes more ex-
plicit: (1) the overall system structure; (2) the various system components;
and (3) the general communication network.

This architecture requires the existence of hierarchical modelling mech-
anisms, and the CPNs are a viable formalism in that way. Apart from hi-
erarchy, the CPNs have a natural support to other characteristics that are
thoroughly explored in the proposed guidelines.

The models built according to these guidelines benefit from modularity,
parameterisation, configurability, and executability.

Model modularity allows to represent each component of a composite sys-
tem individually, and then connect each other via communication interfaces,
where they can share information. In the context of reactive software systems
modelling, it must be possible to consider several types of user and several
types of physical entities, and modularity makes it possible. The use of mod-
ules allows one to quickly include or exclude entities to a model, without
having to change the other entities, whose behaviour remains the same.

Parameterization is used, rather than, once again, resorting to modules,
to handle the instantiation of entities. Because module instantiation can be
quite laborious in CPNs, it is preferable to represent different instances of
an entity as token values. Storing parameters in tokens makes the models
expandable, which leverages from easy management of resources. For exam-
ple, the effort to model one user or one thousand users is similar, if users are
represented by tokens; one either creates one token or one thousand tokens,
which is easier than having to create that amount of module instances1. It
would not be practicable having to create one thousand modules with exactly
the same features and purpose. Apart from this, the use of parameters lays
groundwork for configuration.

Configurability is achieved by the proposed guidelines by means of param-
eters and an initialization module, and by means of scenarios. The guidelines
suggest the creation of an auxiliary module that sets up the configuration
of the initialization module; when executed, that module hands out all the
initial parameters to their respective entities. In a model with several mod-
ules it is important to gather in the same page all the configurable data, so
no information is forgotten. The models also have configurable scenarios.

1Certainly, the initialization of one or one thousand tokens has its differences; initial-
izing one thousand tokens requires either patience, or mastery of a language capable of
generating the adequate values. But it still is simpler and quicker to create tokens, than
to create modules.

5.1. CONCLUSIONS 65

Scenarios are a modelling technique for depicting several courses of action,
thereby, it becomes possible to represent in the same model a great number
os possible behaviours. The use of scenarios for modelling the Controller and
the Users is suggested, due to the nature of their behaviours; these entities
do not have the same well-established and well-known behaviour as Physical
Entities do. The behaviour of the Controller depends on the purposes and
goals of each problem, and therefore differs from one system to another; in
addition to this, users are completely unpredictable and so, the representa-
tion of their behaviour requires discovering just a set of possible behaviours,
that are of interest in the context of the problem. For those two compo-
nents (Controller and Users), the description of their behaviour may denote
multiple branches representing possible choices, one for each condition the
component may be subjected to.

The development of models is a process of discovery [33]. Model exe-
cutability supports experimentation [43], which is essential under such cir-
cumstances. This feature derives into model animation and simulation, which
not only enable model testing, but also provides a good view of the model
operation. The model testing, although shallow, is trustworthy and ensures
a correct model operation; and model simulation helps in understanding the
modelled system. Another benefit from executability and simulation, is that
they make the models one step closer to being turned into prototypes, which
in such an early stage of software development, can be a valuable asset for
producing a useful and reliable system.

In addition to these features, any CPN model can be submitted to per-
formance analysis and can be formally verified, which are desirable qualities
in any software model. While formal analysis ensures the correctness of the
model and allows one to study its dynamic properties, performance analysis
enables to reason about the efficiency of the model, providing methods for
finding out response times, delays, throughputs, and resource usage.

All the just described properties of CPNs make this modelling language
an adequate tool for modelling reactive software systems, but also to sim-
ilar systems, with non-trivial behaviours. The guidelines proposed in this
dissertation are targeted at controllers, but other kinds of reactive software
systems can also make use of their guidance such as real-time systems, em-
bedded systems, and user interfaces, since the guidelines clearly distinguish
each different step of the analysis and modelling processes.

Although CPNs are not object-oriented (OO), the guidelines are described
in an OO perspective: identifying and modelling entities separately, each

66 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

with its own data and behaviour, resembles working with classes with their
private attributes and private methods; describing and modelling interfaces
for shared states and shared events resembles describing public attributes and
public methods, respectively. Yet, many features of the OO paradigm are still
missing such as polymorphism and inheritance (among others). Nevertheless,
the approach pursued by the proposed guidelines tries to lessen the effects
of the so-called “gap between analysis and design models” [8, 28], a common
flaw in systems development, which hampers the evolution of software.

The CPN modelling language is undoubtedly adequate for modelling con-
currency and parallelism, but it presents some drawbacks with respect to the
modelling of scenarios. Scenarios are sequences of events happening in a
predicted and controlled manner, with a well-defined structure; the CPNs
do not allow to model such a structure as clearly as one could wish. UML,
for example, provides a much better way of doing it, with Sequence Dia-
grams. Hence, an integration of CPNs and UML appears like something
both languages would leverage from2. And since the guidelines aim the OO
paradigm (which is on the foundations of UML), it would be possible to apply
the guidelines to a modelling approach including both languages.

5.2 Future Work

These guidelines are not the one final solution for the modelling of reactive
software systems; they are far from being perfect (after all, there is no such
thing as perfect guidelines) and future changes can be done in order to better
tackle the problem. As future work, it is intended to apply the guidelines
to other demonstrative examples, including industry-level examples, in order
to test and prove their suitability to different situations. As suggestions for
future improvements, it is proposed addressing timed CPNs, systems with
multiple controllers, and systems with multiple kinds of users.

It is also intended to study and analyse the feasibility of using a multi-
language approach. An example would be joining CPNs and UML to create
more structured scenarios.

This work can also proceed in the academic field, within the APEX

2In fact, in UML 1.5, the activity diagrams were restructured in order to adopt some
concepts from the PNs [36]. This, however, does not make CPNs disposable, because the
formal grounds and simulation techniques of CPNs are still better and more developed
than those in UML.

5.2. FUTURE WORK 67

project. Recalling the goals of the project, it seeks applying rapid proto-
typing for the study of human behaviour when facing software systems. The
models for the Smart Library example are stable and complete enough for
being tested and used by the project. They still need to be adapted to work
with the APEX framework (which is a tool developed within the APEX
project, that permits to create a virtual simulation of CPN models). Such
adaption would require some changes in code, but the structure of the models
is expected to remain untouched.

Also as future work, it would be important to analyse the developed
models with the formal analysis techniques available in CPN Tools, in order
to learn more about the correctness of the proposed solutions, and rectify
those that might need to be improved.

Another interesting test to verify the applicability and the usefulness of
the guidelines, would be to select a group of people (possibly students) with
the same level of knowledge concerning the CPN modelling language, and
ask them to model a practical example; half of the group would be using the
guidelines, and the others would not. This would allow to acquire feedback
about the usefulness of the guidelines, and about the issues (concerning anal-
ysis and modelling of reactive software systems) that should be more deeply
addressed.

Bibliography

[1] Collins English Dictionary Complete & Unabridged 10th Edition. Guide-
line. Jan 2013.

[2] S.S. Alhir. UML in a Nutshell: A Desktop Quick Reference. O’Reilly
Media, 1998.

[3] J.C.M. Baeten. A brief history of process algebra. Theor. Comput. Sci.,
335(2-3):131–146, May 2005.

[4] R. Bastide and P. Palanque. Petri Net Oobjects for the Design, Vali-
dation and Prototyping of User-Driven Interfaces. In Human-Computer
Interaction-INTERACT, volume 90, pages 625–631, 1990.

[5] Conrad Bock. Three Kinds of Behavior Model. Journal Of Object-
Oriented Programming, 12(4), July/August 1999. Available online at
January 31, 2013.

[6] W. Brauer and W. Reisig. Carl Adam Petri and “Petri Nets”. Funda-
mental Concepts in Computer Science, 3:129–139, 2009.

[7] F.P. Brooks. No Silver Bullet: Essence and Accidents of Software Engi-
neering. IEEE computer, 20(4):10–19, 1987.

[8] P. Coad and E. Yourdon. Object-Oriented Analysis (2. ed.). Yourdon
Press computing series. Yourdon Press, 1990.

[9] B.P. Douglass. Real-Time UML: Developing Efficient Objects for Embed-
ded Systems. The Addison-Wesley Object Technology Series. Addison-
Wesley, 2000.

[10] M. Elkoutbi and R.K. Keller. Modeling Interactive Systems with Hier-
archical Colored Petri Nets. Engineering, 1997.

69

70 BIBLIOGRAPHY

[11] J.M. Fernandes. MIDAS: Metodologia Orientada ao Objecto para De-
senvolvimento de Sistemas Embebidos. PhD thesis, Dep. Informática,
Universidade do Minho, February 2000.

[12] J.M. Fernandes, J.B. Jørgensen, S. Tjell, and J. Baek. Requirements
Engineering for Reactive Systems: Coloured Petri Nets for an Elevator
Controller. In Proceedings of the 14th Asia-Pacific Software Engineering
Conference, APSEC ’07, pages 294–301, Washington, DC, USA, 2007.
IEEE Computer Society.

[13] J.M. Fernandes, S. Tjell, and J.B. Jørgensen. Requirements Engineering
for Reactive Systems with Coloured Petri Nets: the Gas Pump Con-
troller Example. CPN 2007 - 8ht Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 207–222, 2007.

[14] J.M. Fernandes, S. Tjell, J.B. Jørgensen, and O. Ribeiro. Designing Tool
Support for Translating Use Cases and UML 2.0 Sequence Diagrams into
a Coloured Petri Net. pages 44–53, 2007.

[15] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley,
Menlo Park, CA, 1996.

[16] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Mod-
eling Language. Addison-Wesley Professional, 2004.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[18] C. Girault and R. Valk. Petri Nets for System Engineering: A Guide
to Modeling, Verification, and Applications. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2001.

[19] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci-
ence of Computer Programming, 8:231–74, 1987.

[20] D. Harel and A. Pnueli. On the Development of Reactive Systems. Weiz-
mann Institute of Science, Department of Computer Science, 1985.

[21] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts:
The Statemate Approach. McGraw-Hill, Inc., New York, NY, USA, 1st
edition, 1998.

BIBLIOGRAPHY 71

[22] M. Jackson. Problem Analysis and Structure. Nato Science Series Sub
Series III Computer and Systems Sciences, 180:3–20, 2001.

[23] K. Jensen. An Introduction to the Practical Use of Coloured Petri Nets.
Lectures on Petri Nets II: Applications, pages 237–292, 1998.

[24] K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

[25] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems. Software
Tools for Technology Transfer, 2(2):98–132, 2007.

[26] J.B. Jørgensen and J. Baek. Coloured Petri Nets in Development of a
Pervasive Health Care System. In WilM.P. Aalst and Eike Best, editors,
Applications and Theory of Petri Nets 2003, volume 2679 of Lecture
Notes in Computer Science, pages 256–275. Springer Berlin Heidelberg,
2003.

[27] J.B. Jørgensen, S. Tjell, and J.M. Fernandes. Formal Requirements
Modelling with Executable Use Cases and Coloured Petri Nets. Inno-
vations in Systems and Software Engineering, 5(1):13–25, 2009.

[28] H. Kaindl. Difficulties in the Transition from OO Analysis to Design.
Software, IEEE, 16(5):94–102, sep/oct 1999.

[29] M. Köhler. Object Petri Nets: Definitions, Properties, and Related Mod-
els. Univ., Bibliothek des Fachbereichs Informatik, 2003.

[30] C.A. Lakos, C.D. Keen, and TAS Hobart. Simulation with Object-
Oriented Petri Nets. In Australian Software Engineering Conference,
Sydney, 1991.

[31] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall,
2002.

[32] C. Maier and D. Moldt. Object Coloured Petri Nets - A Formal Tech-
nique for Object Oriented Modelling. Concurrent Object-Oriented Pro-
gramming and Petri Nets, pages 406–427, 2001.

72 BIBLIOGRAPHY

[33] J. Marincic, A.H. Mader, and R.J. Wieringa. Explaining Embedded
Software Modelling Decisions. In IEEE CS International Conference on
Software Science, Technology, and Engineering, SWSTE 2012, Herzlia,
Israel, pages 80–89, USA, 2012. IEEE Computer Society.

[34] J. Niu, J. Zou, and A. Ren. OOPN: Object-oriented Petri Nets and Its
Integrated Development Environment. In Proceedings of the Software
Engineering and Applications, SEA, 2003.

[35] C. Nyce and API CPCU. Predictive Analytics White Paper. American
Institute for CPCU. Insurance Institute of America, pages 9–10, 2007.

[36] Omg. OMG Unified Modeling Language (OMG UML), Superstructure
Specification (Version 2.4.1). Technical Report OMG Document Num-
ber: formal/2011-08-06, Object Management Group, August 2011.

[37] R.G. Pettit and H. Gomaa. Modeling State-Dependent Objects using
Colored Petri Nets. In CPN 01 Workshop on Modeling of Objects, Com-
ponents, and Agents, 2001.

[38] D. Ram and M. Rajasree. Enabling Design Evolution in Software
through Pattern Oriented Approach. In Dimitri Konstantas, Michel
Lonard, Yves Pigneur, and Shusma Patel, editors, Object-Oriented In-
formation Systems, volume 2817 of Lecture Notes in Computer Science,
pages 179–190. Springer Berlin / Heidelberg, 2003.

[39] J. Robertson and S. Robertson. Volere. Requirements Specification Tem-
plate. Edition 6.0. Technical report, Atlantic Systems Guild, 1998.

[40] J. Rumbaugh. OMT Insights: Perspectives on Modeling from the Jour-
nal of Object-Oriented Programming. Press Syndicate of the University
of Cambridge, 1996.

[41] J.A. Saldhana and S.M. Shatz. UML Diagrams to Object Petri Net
Models: An Approach for Modeling and Analysis. Electrical Engineer-
ing, pages 1–26, 2000.

[42] R. Schuette and T. Rotthowe. The Guidelines of Modeling An Ap-
proach to Enhance the Quality in Information Models. In Tok-Wang
Ling, Sudha Ram, and Mong Lee, editors, Conceptual Modeling ER

BIBLIOGRAPHY 73

98, volume 1507 of Lecture Notes in Computer Science, pages 240–254.
Springer Berlin Heidelberg, 1998.

[43] B. Selic. The Pragmatics of Model-Driven Development. Software,
IEEE, 20(5):19–25, 2003.

[44] F. Shull, I. Rus, and V. Basili. How Perspective-Based Reading Can
Improve Requirements Inspections. Computer, 33(7):73–79, 2000.

[45] J.L. Silva, O.R. Ribeiro, J.M. Fernandes., J.C. Campos, and M.D. Har-
rison. The APEX Framework: Prototyping of Ubiquitous Environments
Based on Petri Nets. In Proceedings of the Third International Con-
ference on Human-centred Software Engineering, HCSE’10, pages 6–21,
Berlin, Heidelberg, 2010. Springer-Verlag.

[46] I. Sommerville. Software engineering (5th ed.). Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA, 1995.

[47] W.M.P. van der Aalst. Three Good rReasons for Using a Petri-Net-
Based Workflow Management System. Information and Process Inte-
gration in Enterprises, pages 161–182, 1998.

[48] W.M.P. van der Aalst, A.H.M Hofstede, and M. Weske. Business Pro-
cess Management: A Survey. In WilM.P. Aalst and Mathias Weske,
editors, Business Process Management, volume 2678 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin Heidelberg, 2003.

[49] R.J. Wieringa. Design methods for reactive systems - Yourdon, Statem-
ate, and the UML. Morgan Kaufmann, 2003.

[50] E.S.K. Yu. Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering. In Requirements Engineering, 1997., Pro-
ceedings of the Third IEEE International Symposium on, pages 226–235.
IEEE, 1997.

Appendix A

Models for the Smart Library

This appendix presents and explains the model developed for the Smart
Library example. The model is split in the following modules:

Top-Most The module that shows the overall architecture of the model.

Lights The module that shows the assumed behaviour of the lights.

Gates with Displays The module that shows the assumed behaviour of
the gates and the displays.

Presence Sensors The module that shows the assumed behaviour of the
presence sensors.

Pressure Sensors The module that shows the assumed behaviour of the
pressure sensors.

LPS The module that shows the assumed behaviour of the LPS devices.

Users The module that shows the desired behaviour of the users.

Controller - scenario: Presence Sensor Readings The module that shows
the desired behaviour of the controller related to the processing of the
readings from the presence sensors.

Controller - scenario: Pressure Sensor Readings The module that shows
the desired behaviour of the controller related to the processing of the
readings from the pressure sensors.

75

76 APPENDIX A. MODELS FOR THE SMART LIBRARY

Controller - scenario: LPS Requests The module that shows the de-
sired behaviour of the controller related to the processing of requests
for destination, from the LPS devices.

Controller - scenario: Trajectory Requests The module that shows the
desired behaviour of the controller related to the processing of requests
for trajectory, from the LPS devices.

Init The module that sets up all the configurable data, and initializes the
model.

Before proceeding to the presentation of the modules, it is important to
explain the difference between the representation of the Users’ scenarios and
those of the Controller; why are the scenarios of the Controller split in various
modules, while the scenarios of the Users are not?

In a first approach, the scenarios of the controller were modelled together,
since they are not too complex and they can fit distinctly in the same CPN
Tools page. However, in order to make them easier to explaining and more
comprehensible, it was decided to present them in separate modules. The
separation of scenarios in pages does not affect any functionality nor any
basic structure of the model; it merely changes the visual appearance of
the model. The same would not happen with the Users’ module, since all
scenarios in that module need the same port place. The only way to perform
such division of the scenarios would be to change that port place into a fusion
set, but that would go against what is suggested by the guidelines proposed
in this dissertation (recall 4.3.2, where the guidelines suggest the use of port
places for the shared events, and of fusion sets for shared states.)

The reader might notice different colours (not to be confused with colour
sets) in the design of the model:

• Black graphics concern what belongs to that module;

• Green graphics concern what belongs to the module of the Controller
and to its communication interfaces;

• Pink graphics concern what belongs to the module of the Users and to
its communication interfaces;

• Blue graphics concern initialization data;

77

• Grey graphics concern global variables that do not need to actually
belong to a module, but that are used by one or many modules.

The modules presented next do not exhibit any simulation feedback, to
avoid an overload of information in the images.

78 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.1 Top-Most module

Controller
Pressure S Readings

Ctrl-PressureSReadingsCtrl-PressureSReadings ObjIDxPressureSensorSTATE

Presence Sensors
Readings

Controller
Trajectory Requests

Ctrl-TrajectoryRequestsCtrl-TrajectoryRequests
LPS

UIDxBOOKs

UIDxAreaID

LightCOMMAND

GateDisplayCOMMAND

PresSensorREADINGs

Presence
Sensor

Presence SensorPresence Sensor

Pressure
Sensor

Pressure SensorPressure Sensor

GateDisplay

GateDisplayGateDisplay

LPS

LPSLPS

Light

LightLight

Controller
Presence S Readings

Ctrl-PresenceSReadings

Controller
LPS Readings

Ctrl-LpsRequestsCtrl-LpsRequests

Gate_Display
Commands

Pressure Sensors
Readings

Light
Commands

New LPS
Position

Trajectory
Request

LPS
Requests

Users inside or
 near the library

Pressure Sensor
Requests

Trajectory
Requests

User

UserUser

UID

USER

ObjIDxINT

Ctrl-PresenceSReadings

Figure A.1: The Top-Most module

The Top-Most module in fig. A.1 shows the overall architecture of the
model. The structural resemblance to the architecture presented in fig. 4.1
is evident: the substitution transitions on the left are all related to the Con-
troller and to its scenarios; the substitution transitions in the middle rep-
resent all the Physical Entities; and the substitution transition on the right
represents the Users. The places between substitution transitions represent
the interfaces of communication, in a similar fashion to the one shown in
fig. 4.1.

Because this is the primary module that only shows the hierarchy of the
model, the arcs do not have any expressions. During simulation, this module
only shows which modules are enabled in each step, rather than showing the
flowing of data.

A.2. LIGHTS MODULE 79

A.2 Lights module

l

turnLightOff(l)

(l_id,OFF)

turnLightOn(l)

l

(l_id,ON)

TURN LIGHT OFFTURN LIGHT ON

Lights
Lights

LIGHT

Light
Commands

In LightCOMMANDIn

Lights

[l_id=(#id l)] [l_id=(#id l)]

Figure A.2: The Lights module

Fig. A.2 represents the module of the Lights and it is composed by:

• one main place called Lights, where the instances of lights are stored;

• one place called Light Commands, that makes the interface with the
Controller and that stores the commands sent by it;

• two transitions (Turn Light On/Off) that represent the assumed be-
haviour of the Lights.

A command issued by the Controller to this module carries the id of the
light that it concerns, and the state to which that light must be changed.
The Turn Light On transition will be enabled for any light l with id=l id, if
an (l id,ON) command is issued. The Turn Light Off transition occurs in a
similar fashion, with the command (l id,OFF).

80 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.3 Gates with Displays module

defaultmsgdefaultmsg

gd

closeDefaultMsg(
gd,defaultmsg)

n

gd

openMsgList(gd_state,
gd_msg,gd,defaultmsg,n)

CLOSE GATE AND
SHOW DEFAULT MSG

[gd_id=(#id gd)]

OPEN GATE AND
SHOW MSG LIST

[gd_id=(#id gd)]

Max
Messages

MaxMsgs
INT

Default
Message

DefaultMessage
MESSAGE

Gates with
 Displays

GatesDisplays
GateDISPLAY

Gate_Display
Commands

In
GateDisplayCOMMAND

In

GatesDisplays

DefaultMessage

MaxMsgs

(gd_id,OPENGD,gd_msg)(gd_id,CLOSEDGD,gd_msg)

Figure A.3: The Gates with Display module

This module concerns the behaviour of Gates and the behaviour of Dis-
plays; because these behaviours must be synchronized, the two Physical En-
tities were modelled together, as an entity with a behaviour that corresponds
to the occurrence in parallel of the two behaviours.

Fig. A.3 is composed by:

• one main place called Gates with Displays, where the instances of gates
with displays are stored;

• one place called Gate Display Commands, that makes the interface with
the Controller and that stores the commands sent by it;

• two transitions (Close Gate and Show Default Msg and Open Gate and
Show Msg List) that represent the assumed behaviour of the gates with
displays;

• two other places that store data concerning the displays. The place
Default Message contains a string representing a default message that
appears in the display when nobody is near the gate with display. The
place Max Messages contains an integer the maximum number of mes-
sages to be shown, at the same time, in the display.

A.3. GATES WITH DISPLAYS MODULE 81

A command issued by the Controller to this module, carries the id of the
gate with display that it concerns, and the state to which the gate with
display must be changed. The Close Gate and Show Default Msg tran-
sition will be enabled for any gate with display gd with id=gd id, if an
(gd id,CLOSEDGD,gd msg) command is issued. The Open Gate and Show
Msg List transition occurs in a similar fashion.

82 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.4 Presence Sensor module

setState(us,IDLE)

us

(usid,n)

(usid,n)

(usid,n+1)

(usid,0) (usid,0)

(usid,n)

us

usrs

presenceReading(u,us,usrs)

u

usrs

absenceReading(us,usrs)

us

setState(us,BUSY)

Start
Timer

[usid=getSensorId(us)
andalso n=0
andalso getState(us)=BUSY]

Few Energy
Changes

[usid=getSensorId(us)
andalso
getState(us)=BUSY
andalso n>0]

Great Energy
Changes

[isUserInRange(u,us)
andalso
usid=getSensorId(us)]

Timers

Timers ObjIDxINT

Presence Sensors
Readings

I/O

Presence
Sensors

PresenceSensors

Users inside or
near library

I/OI/O

PresenceSensors

I/O

Timers

PresSensorREADINGs

PresSENSOR

USER

Figure A.4: The Presence Sensors module

Fig. A.4 represents the module of the Presence Sensors, and it is composed
by:

• one main place called Presence Sensors, where the instances of presence
sensors are stored;

• one place called Presence Sensors Readings, that makes the interface
with the Controller and that stores the readings from these sensors to
be forwarded to the Controller;

• one place called Users inside or near the library, that makes the inter-
face with the Users and that stores instances of Users;

• two transitions (Great Energy Changes and Few Energy Changes) that
represent the assumed behaviour of the presence sensors;

• one place Timers, that stores a counter (a timer) for each instance of
presence sensor;

• one transition Start Timer, for starting the timer of a sensor, whenever
that sensor is Busy (the sensor is either Busy or Idle).

A.4. PRESENCE SENSOR MODULE 83

When a user u approaches a sensor us (us stands for user sensor because
this sensor is for detecting users, only), then the Great Energy Changes tran-
sition becomes enabled for that sensor. When there no users near the sensor,
and the corresponding timer has been started, then the Few Energy Changes
becomes enabled for that sensor. The occurrence of any of these transitions
puts a token in the place Presence Sensors Readings informing the Controller
that the user u is now, or is no longer, near the sensor us.

All timers have the initial value 0 (zero). Whenever a presence sensor
is Busy, the Start Timer transition can occur, increasing the value of the
corresponding timer. That value is reset by the occurrence of the Great
Energy Changes transition, indicating that the sensor is now, or continues,
Busy, and by the Few Energy Changes transition, indicating that the sensor
is now Idle.

84 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.5 Pressure Sensor module

(bookid,2)(bookid,1)

p_sp_s

toggleState(p_s,PS_OFF)

Deactivate
Sensor

Activate
Sensor

Pressure Sensor
Requests

In

Pressure Sensors
Readings

Out

Pressure
Sensors

PressureSensors
PressureSENSOR
PressureSensors

Out

In

(bookid,PS_ON) (bookid,PS_OFF)

toggleState(p_s,PS_ON)

ObjIDxPressureSensorSTATE

ObjIDxINT

Figure A.5: The Pressure Sensors module

Fig. A.5 represents the module of the Pressure Sensors, and it is composed
by:

• one main place called Pressure Sensors, where the instances of pressure
sensors are stored;

• one place called Pressure Sensors Readings, that makes the interface
with the Controller and that stores the readings from these sensors to
be forwarded to the Controller;

• one place called Pressure Sensor Requests, that makes the interface with
the Users and that stores requests for toggling the state of a pressure
sensor;

• two transitions (Activate Sensor and Deactivate Sensor) that represent
the assumed behaviour of the pressure sensors.

In this module, it is assumed that any book has a one-to-one relationship
with one pressure sensor; for each book, that is one pressure sensor, and that
sensor recognizes only that book.

A.5. PRESSURE SENSOR MODULE 85

When someone returns a book to its position on a bookshelf (represented
by a request (bookid,1)), then the Activate Sensor becomes enabled for the
sensor corresponding to that book; similarly, when someone picks up a book
from its position on a bookshelf (represented by a request (bookid,2)), then
the Deactivate Sensor becomes enabled for the corresponding sensor.

The occurrence of any of these transitions puts a token in the place Pres-
sure Sensors Readings informing the Controller that the sensor related to the
book with id=bookid is now on the state PS ON or PS OFF, respectively.

86 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.6 LPS module

(uid,a) updateCurrentPosition(uid,a,lps)

lps

updatePositionAndTrajectory(uid,a,lps)

lps

lps

requestTrajectory(lps,books)

(uid,books)

lps

(uid,[])

uid

lps(uid,a)

UPDATE
CURRENT POSITION
AND TRAJECTORY

[(#id lps)=uid andalso
(#trajectory lps)<>[] andalso
a=List.hd (#trajectory lps)]

UPDATE
TRAJECTORY

[isTrajectoryCompleted(lps)]

[(#id lps)=uid
andalso books<>[]]

REQUEST
DESTINATION

UPDATE CURRENT POSITION
AND

RECALCULATE TRAJECTORY

[(#id lps)=uid andalso
(#trajectory lps)<>[] andalso
a<>List.hd (#trajectory lps)]

Trajectory Requests
to controller

I/O LPS

LPS
Requests

I/O

UIDxBOOKs

Trajectory Requests
from users

In UID

LPS Position

In
UIDxAreaID

LPS
LPS
LPS

LPS

In

In

I/O

I/O

REQUEST TRAJECTORY

Figure A.6: The LPS module

Fig. A.6 represents the module of the LPS devices, and it is composed
by:

• one main place called LPS, where the instances of LPS devices are
stored;

• three places (LPS Position, LPS Requests, and Trajectory Requests to
controller) that make the interface with the Controller;

• one place called Trajectory Requests from users, that makes the inter-
face with the Users, and that stores requests from these, to acquire
trajectories from their current position to the location of one of their
requested books;

• five transitions (Update Current Position and Trajectory, Update Cur-
rent Position and Recalculate Trajectory, Request Destination, Request
Trajectory, and Update Trajectory) that represent the assumed be-
haviour of the LPS devices.

A.6. LPS MODULE 87

In this module, it is assumed that any LPS device has a one-to-one re-
lationship with the Users; for each user, that is only one device, and that
device carries only the data corresponding to that user. It is also assumed
that the system knows the books each user has requested; the process of
requiring a book is not addressed in the model of the Smart Library.

Whenever there are tokens in the place Trajectory Requests from users,
the transition Request Destination can occur, placing a token (uid,[]) in the
LPS Requests place. This last place stores requests (to be processed by the
Controller) to acquire the list of a user’s requested books. Once that list is
known by the LPS device, and if it is not empty, than the Request Trajectory
transition can occur for that device, placing a request for a new trajectory
in the place Trajectory Requests to controller ; those requests are fulfilled by
the Controller, which calculates the trajectory from a user’s position, to one
of his/hers requested books, and then sends that trajectory back to the place
Trajectory Requests to controller.

The place LPS Position stores the current position of users (sent to the
Controller by a Presence Sensor, and then sent to this module by the Con-
troller). The transitions that follow this place can only occur if a trajectory
has already been calculated for the LPS devices corresponding to the users’
ids in that place.

The first transition, Update Current Position and Trajectory, becomes
enabled only for users that follow the trajectory that was suggested to them;
when it occurs, it updates the corresponding LPS device position.

The second transition, Update Current Position and Recalculate Trajec-
tory, becomes enabled only for users who do not follow their suggested tra-
jectory; when it occurs, it issues a request for recalculating the trajectory,
by adding a token in the place Trajectory Requests to controller.

88 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.7 Users module

initUsers

returnBook(b)

pickUpBook(b)

b

u

u

b

(#id u)u

initUsers

gd
(a1,a2)

updateUserPosition(
u,gd,a1,a2)

u

RETURN
BOOK

[getUserPosition(u)=
getBookPosition(b)
andalso
not(isBookOnShelf(b))]

PICK UP
BOOK

[getUserPosition(u)=getBookPosition(b)
andalso isBookOnShelf(b)]

REQUEST
TRAJECTORY

[(#position u)<>OUTSIDE andalso
(#position u)<>ENTRYAREA]

init Users

MOVE BETWEEN
AREAS

[getUserPosition(u)=a1]

Users

Users USER

Books
Books
BOOK

Pressure Sensor
Requests

Out
ObjIDxINT

Trajectory
Requests

Out
UID

Gates with
 Displays

GatesDisplays

GateDISPLAY

Library
Paths

Paths
AreaIDxAreaID

Users inside or
near the Library

I/O USERI/O

Paths GatesDisplays

Out

Out
Books

Users

(#id b,2)

(#id b,1)

Figure A.7: The Users module

Fig. A.7 represents the module of the Users, and it is composed by:

• one place Users and one transition init Users that serve only to ini-
tialize the place Users inside or near the Library ;

• one place Users inside or near the Library, where the instances of users
are stored;

• four transitions (Move Between Areas, Request Trajectory, Pick Up
Book, and Return Book) that represent the users’ desired behaviour;

• one place Trajectory Requests, where the requests for acquiring trajec-
tories to requested books are stored;

A.7. USERS MODULE 89

• one place Pressure Sensor Requests, that stores information about the
moving a book from/to its location on the bookshelf, i.e., whether a
book was picked up from, or returned to its bookshelf;

• three places (Library Paths, Gates with Displays, and Books) that hold
the global data (global variables) which are used within this module.

This module considers only registered users.
All the four, pink, transitions refer to actions that users may perform.

The occurrence of the transition Move Between Areas, changes the current
position of the corresponding user, according to the data stored in the places
Library Paths and Gates with Displays.

The occurrence of the transition Request Trajectory puts a token in the
place Trajectory Requests, with the id of the user who is making the request.

The occurrence of the transitions Pick Up Book and Return Book, updates
the state of the corresponding book (in the place Books), and adds a token to
the place Pressure Sensor Requests, with the id of that book, and a number
indicating how it was moved (1 if it was returned, and 2 if it was picked up).

90 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.8 Controller scenario - Presence Sensor Read-

ings module

(uid,wantedbooks)

updateLPSData(usrs)
initPresenceReadings

initPresenceReadings

makeGateDisplayCommand(
uid,oids,wantedbooks)

(uid,oids,2)

(uid,oids,1)

makeDecision(usrs)

init Presence
Sensor Readings

Make Light
Command

Get first reading
and decide what to do

[usrs<>[] andalso
(#3 (List.hd usrs))<>[]]

User DB

User DB
UIDxObjIDs

LPS Position
to LPS

Out
UIDxAreaID

PresSensors
Readings

PSensorReadings
PresSensorREADINGs

Light
Commands

Out

LightCOMMAND

Gate_Display
Commands

Out

GateDisplayCOMMAND

sensor reading
and option

UIDxObjIDsxINT

Presence Sensors
Readings

I/O
PresSensorREADINGs
I/O

Out

Out

PSensorReadings

Out

User DB

Make Gate with
Display Command

List.tl usrs

usrs

makeLightCommand(uid,oids)

Figure A.8: The scenario of the Controller that relates to the processing of
data received from presence sensors

Fig. A.8 represents the scenario of the Controller that relates to the
processing of data received from presence sensors. This module is composed
by:

• one place PresSensors Readings and one transition init Presence Sen-
sor Readings, that serve only to initialize the place Presence Sensors
Readings ;

• one place Presence Sensors Readings, that stores the data coming from
presence sensors;

• three places (LPS Position to LPS, Light Commands, and Gate Display
Commands) that make the interfaces with the modules LPS, Lights,
and Gates with Displays, respectively;

A.8. CONTROLLER SCENARIO - PRESENCE SENSOR READINGSMODULE91

• one place User DB, where the Controller keeps its information about
the registered users;

• three transitions (Get first reading and decide what to do, Make Light
Command and Make Gate with Display Command) and one place (sen-
sor reading and option), that represent the desired behaviour of the
Controller in this scenario.

In this module it is assumed that the objects inside an area that is sensed
by a presence sensor, can only be of one kind, out of two: Lights, or Gates
with Displays.

Every reading from the presence sensors, leads to the occurrence of two,
out of three, possible events. The first event sends the user’s position, ac-
quired from that reading, to the LPS module; this event is performed by
the transition Get first reading and decide what to do, which will always be
enabled for any reading from the presence sensors.

The remaining events, Make Light Command and Make Gate with Display
Command, reflect two possible courses of action in this scenario: depending
on which objects are sensed by the presence sensor, the Controller either
issues a command for the Lights, or a command for the Gates with Displays.

92 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.9 Controller scenario - Pressure Sensor Read-

ings module

(uid,wantedbooks)

updateUserWantedBooks(
uid,wantedbooks,bookid,ps_state)

books

updateBookState(
bookid,ps_state,books)

Pressure Sensors
Readings

In

Book DB

Book DB

BOOKs

User DB

User DBUser DB

Book DB

In
ObjIDxPressureSensorSTATE

(bookid,ps_state)

UIDxObjIDs

Update Book State
Update User Wanted Books

Figure A.9: The scenario of the Controller that relates to the processing of
data received from pressure sensors

Fig. A.9 represents the scenario of the Controller that relates to the
processing of data received from pressure sensors. This module is composed
by:

• one place Pressure Sensors Readings, that stores the data coming from
pressure sensors;

• two places (User DB and Book DB), where the Controller keeps its
information about the registered users, and about the books of the
library;

• one transition Update Book State - Update User Wanted Books, that
represents the desired behaviour of the Controller, in this scenario.

Whenever a book is removed from, or returned to, its position on the
bookshelf, the corresponding pressure sensor is deactivated or activated, re-
spectively. When that happens the Controller is informed, in order to be
able to update its own information concerning the state of the book, and
concerning the user that handled that book. If the book was picked up from
its position by a user that was looking for it, then the list of requested books
from that user must be updated, reflecting this occurrence.

A.10. CONTROLLER SCENARIO - DESTINATION REQUESTSMODULE93

A.10 Controller scenario - Destination Re-

quests module

(uid,getBooksPositions(
wantedbooks,books))

books

(uid,wantedbooks)

(uid1,[])
Get Destination

[uid=uid1]

Book DB
Book DB

BOOKs

LPS
Requests

I/O
UIDxBOOKs

User DB
User DB

UIDxObjIDs
User DB

I/O

Book DB

Figure A.10: The scenario of the Controller that relates to the processing of
data received from LPS devices, for acquiring new destinations

Fig. A.10 represents the scenario of the Controller that relates to the
processing of requests from LPS devices, for acquiring a new destination.
This module is composed by:

• one place LPS Requests, that stores the requests for new destination
coming from LPS devices;

• two places (User DB and Book DB), where the Controller keeps its
information about the registered users, and about the books of the
library;

• one transition Get Destination, that represents the desired behaviour
of the Controller, in this scenario.

When a user requests a trajectory to its own LPS device, that Physical
Entity asks the Controller about two things: the first (Request Destination)
is explained in this scenario, and the second (Request Trajectory) is explained
in the next scenario.

This scenario works in a similar fashion to the previous one A.9: the
Controller consults its own information about the users and the books of the
library, to discover the location of one of the books requested by a user.

94 APPENDIX A. MODELS FOR THE SMART LIBRARY

A.11 Controller scenario - Trajectory Requests

module

addPath(lps,a1,a2)

lps

lps (a1,a2)

lpslps

lps

Update
LPS

[isTrajectoryCompleted(lps)]

Start Calculus

[not(isTrajectoryCompleted(lps))]

Add Path

addPathCondition(lps,a1,a2)

Trajectory

LPS

Library
Paths

Paths
AreaIDxAreaID

Trajectory
Request

I/O LPSI/O Paths

Figure A.11: The scenario of the Controller that relates to the processing of
data received from LPS devices, for acquiring new trajectories

Fig. A.11 represents the scenario of the Controller that relates to the
processing of requests from LPS devices, for acquiring a new trajectory. This
module is composed by:

• one place Trajectory Requests, that stores the requests for new trajec-
tory coming from LPS devices;

• three transitions (Start Calculus, Update LPS, and Add Path) and one
place (Trajectory), that represent the desired behaviour of the Con-
troller, in this scenario;

• one place Library Paths, that the Controller consults in order to choose
one of the possible paths inside the library.

Whenever a token is sent to the place Trajectory Requests, exhibiting a
trajectory that is not yet completed (i.e., the trajectory does not end at final
destination, which is the location of a particular book), the Start Calculus
transition can occur. When it does, the Add Path transition becomes enabled
for the corresponding LPS device (the one that requested this calculation)
and keeps adding possible paths to the trajectory of that device, until one of
those paths leads to the final destination. The choice of the path to add next,
does not follow any optimization algorithm, it only ensures that in every two
subsequent paths of the trajectory, the second path starts where the first
ends.

A.12. INIT MODULE 95

A.12 Init module

The last module is shown in fig. A.12.
The places on the right side of the transition Initialize Simulation are the

places for initializing the other modules of the Smart Library; each group in
an horizontal direction refers to a different module (except for the those in
the first horizontal group, that refer to global variables).

Reading from top to bottom it can be seen:

• Library Paths and Books, which refer the global variables;

• Users, representing the User’s module;

• Presence Sensors Readings, User DB, and Book DB, which refer to the
Controller module;

• Presence Sensors and Timers, which refer to the Presence Sensors mod-
ule;

• Gates with Displays, Default Message, and Max Messages, which refer
to the Gates with Displays module;

• Lights, which refers to the Lights module;

• LPS, which refers to the LPS module;

• Pressure Sensors, which refers to the Pressure Sensors module.

The remaining places, Init and Run, show (by having, or not having, one
token) whether this module has already, or not yet, been started.

96 APPENDIX A. MODELS FOR THE SMART LIBRARY

initPressureSensors

initBookdb

initLPS

()

initMaxMessages

initUserdb

initLights

initDefaultMessageinitGatesDisplays

initTimers

()

Initialize
Simulation

Pressure
Sensors

PressureSensors

Book DB

Book DB

LPS

LPS

Run

UNIT

Max
Messages
MaxMsgs

User DB

User DB

Lights

Lights

Default
Message

DefaultMessage

Gates with
 Displays

GatesDisplays

Presence
Sensors

PresenceSensors

Timers

Timers

Presence Sensors
Readings

PSensorReadings

Users

Users

Init

1`()

UNIT

Users

PSensorReadings

TimersPresenceSensors

GatesDisplays DefaultMessage

Lights

User DB

MaxMsgs

LPS

Book DB

PressureSensors

Library
Paths

PathsPaths

Books

BooksBooks

initBooks

AreaIDxAreaID BOOK

USER

PresSensorREADINGs UIDxObjIDs BOOKs

PresSENSOR ObjIDxINT

GateDISPLAY MESSAGE INT

LIGHT

LPS

PressureSENSOR

initPresenceReadings

initPresenceSensors

initUsers

initPaths

Figure A.12: The Init module

	Acknowledgements
	Abstract
	Resumo
	Introduction
	General Introduction
	Problem Statement
	Motivation
	Contributions
	Overview

	Modelling Behaviour
	Introduction
	Some Behavioural Models
	Statecharts / State Machines
	UML
	Petri Nets

	Coloured Petri Nets
	Structure and Concepts
	Tool Support

	The Smart Library Practical Example
	Informal Problem Description
	Informal Description of Specification Decisions
	Books
	Presence Sensors
	Lights
	Gates
	Displays
	Pressure Sensors
	Local Positioning Devices
	Users
	Controller

	Guidelines
	Modelling Approach
	Analysis Guidelines
	Identify the Physical Entities
	Identify the Users
	Identify functionality and structure
	Identify the private phenomena of the Physical Entities
	Identify phenomena shared between Physical Entities

	Modelling Guidelines
	Create pages
	Draw the Physical Entities
	Draw scenarios

	Conclusions and Future Work
	Conclusions
	Future Work

	Models for the Smart Library
	Top-Most module
	Lights module
	Gates with Displays module
	Presence Sensor module
	Pressure Sensor module
	LPS module
	Users module
	Controller scenario - Presence Sensor Readings module
	Controller scenario - Pressure Sensor Readings module
	Controller scenario - Destination Requests module
	Controller scenario - Trajectory Requests module
	Init module

