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AC K N OW L E D G E M E N T S



A B S T R AC T

Mobile devices running Android operating system are increasingly used to surf the web, and, generally

speaking, to access a broad spectrum of network-based services. Its successful deployment as a mobile

platform, however, also means it is an increasingly relevant target of malicious efforts that try to

identify and exploit its vulnerabilities, and to gain access to valuable personal and organizational data.

On the other hand, Android OS-based devices could be used as a valuable on-site security auditing

tool, but lack a set of coherent and fully functional applications, specially developed for this inherently

resource-constrained platform.

The ultimate goal of this project is to start the development of a set of coherent and integrated tools

that, ultimately, will enable Android OS-based devices to be used in network security auditing. These

tools will include traffic filtering, network mapping, vulnerability assessment and intrusion detection.

This project will also help identify and raise awareness to current network-based threats to Android

OS-based devices.
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R E S U M O

Os dispositivos móveis que correm o sistema operativo Android são amplamente usados para navegar

na internet e aceder um vasto leque de serviços online. No entanto, o facto de ser uma plataforma

móvel usada à escala global, coloca-a como um alvo extremamente apetecido para ataques maliciosos

que tentam identificar e explorar potenciais vulnerabilidades, a fim de aceder a dados privados. Por

outro lado, os dispositivos Android podem ser usados como uma valiosa ferramenta de auditoria

móvel.

O objetivo final deste projeto passa pelo desenvolvimento de um conjunto de ferramentas que possi-

bilitem aos dispositivos que suportam Android avaliar redes de internet em termos de segurança. Estas

ferramentas deverão incluir filtragem de tráfego, mapeação de redes, avaliação de vulnerabilidades e

deteção de intrusões. Este projecto pretende também alertar os utilizadores para os perigos do uso de

internet em dispositivos Android.
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I N T RO D U C T I O N

Introduction

1.1 M OT I VAT I O N

1.2 O B J E C T I V E S

1.3 S T RU C T U R E
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2

A N D RO I D OV E RV I E W

Since this project involves the development of an Android application, even though it runs a bit off the

scope of common applications, it was mandatory to get a deep understanding of Android architecture

and components. This chapter introduces these topics.

2.1 A N D RO I D A R C H I T E C T U R E

Android platform architecture consists of four main layers, presented in Figure 1. At the bottom,

we found the Linux Kernel, responsible for bridging hardware and software, providing drivers and

essential components to the operating system’s life. Above the kernel is placed a set of libraries and

the , which is a lighter version of the specially designed and optimized for Android. The Application

Framework was built on top of libraries and the virtual machine to provide higher-level services to

applications in the form of Java classes. The topmost layer is composed of Android applications which

with users interact. The following sections present a deeper insight into each layer.

Figure 1.: Android architecture
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Android version Linux kernel version
Android Cupcake 1.5 Linux kernel 2.6.27
Android Donut 1.6 Linux kernel 2.6.29
Android Éclair 2.0/2.1 Linux kernel 2.6.29
Android Froyo 2.2 Linux kernel 2.6.32
Android Gingerbread 2.3.x Linux kernel 2.6.35
Android Honeycomb 3.x Linux kernel 2.6.36
Android Ice Cream Sandwich 4.0.x Linux kernel 3.0.1
Android Jelly Bean 4.1.x Linux kernel 3.0.31
Android Jelly Bean 4.2.x Linux kernel 3.4.0

Table 1.: Linux kernel versions and Android realeases

2.1.1 Linux kernel

Android adopted a famous kernel with proven value concerning efficiency and security. Due to the

wide set of constraints that mobile devices present comparing to desktop devices, the Linux kernel

suffered some changes. It was properly modified in order to achieve exceptional results in an embed-

ded environment. Therefore, the Android kernel is not a regular distribution of the Linux kernel, but

a fork of the mainline kernel source code which allows the Android development team to both imple-

ment their necessary changes and follow the Linux kernel updates. This is a big advantage, because

the Linux kernel is developed and maintained by a large community that releases, frequently, new

patches and versions with enhancements, what lead Android kernel to adopt these enhancements. In

fact, every new release of Android usually benefits from a new Linux kernel version. Table 1 shows

Android releases and the corresponding Linux kernel version.

Google created the 1 to share the Android source code, that goes under the Apache Software Li-

cense, Version 2.0, and related documentation. Since Android is a product of the Open Set Alliance,

which includes a considerable amount of mobile manufactures that present different specifications of

hardware, several branches of the Android kernel source code are kept on the git repository2.

The way a mobile device operates is quite different from a laptop or desktop. As mentioned earlier,

the Linux kernel suffered several modifications in order to fit a mobile device needs. It became an

Androidized kernel Yaghmour (2013). The following presents some of the most significant changes

and new components brought to the kernel:

• Wakelocks was one of the updated components. In Linux, the power management behaves

according to the position of the lid in a laptop computer. If the lid is down, the power manage-

ment will usually put the computer into ”suspend” or ”sleep” mode, the state of the processes is

stored in RAM and the remain hardware turns off. This allows the laptop to save battery power.

1 http://source.android.com
2 https://android.googlesource.com



A mobile device should be in ”sleep” mode as often as it is possible, but must not ”sleep” when

important processes are executing. Wakelocks are used to keep the system awake. Drivers de-

velopers need to grab and release wakelocks when important processing is being done or when

an application is waiting for the user’s input.

• Low-Memory Killer executes before the default kernel killer. When the system lacks of

free memory, processes can no longer allocate more memory and the kernel kills a task to get

available space. This task is chosen based on priorities. Android’s low-memory killer attributes

levels to processes depending on the components they are running and applies a threshold for

each type of process. Android avoids the state by reaching this threshold and killing tasks.

• Binder is an mechanism adopted by Android that was based on OpenBinder. By we understand

a framework that has the purpose of exchanging signals and data across multiple processes. It is

used for message passing, synchronization, shared memory and remote procedure calls. Binder

develops an important role among Android application components, as Content Providers, Ser-

vices, etc Gargenta (2013).

• Anonymous Shared Memory (ashmem) is another mechanism that is implemented as the

POSIX SHM functionality, part of the System V IPC in Linux. However, the Android develop-

ment team argued that this mechanism leads to resource leakage within the kernel Yaghmour

(2013). Therefore, ashmem is based on POSIX SHM, but takes some enhancements. For in-

stance, it uses reference counting to destroy memory regions when all processes have exited

and reduces mapped regions when the system needs memory.

• Alarm is another example of a driver that required some improvements comparing to the one of

the default kernel. Android introduces the alarm timer, an hybrid solution that triggers a to fire

when an event is supposed to run, while the system is running and, when the system suspends,

the alarm timer looks at the list of events and sets the to fire an alarm when the earliest event is

to run Stultz (2011).

• Logger is a new mechanism of logging developed specially to Android. In Linux, typically, he

find two logging systems: the kernel’s own log, accessed through the dmesg command, and

the system’s log, stored at /var/log/. In Android there is a logger driver on the kernel that

maintains circular buffers in RAM where it logs every incoming event eLinux webpage (2012).

This contrasts with Linux logging systems, because they use task-switches and file-writers to

log each event, turning the process quite complex and heavy.

From a security point-of-view, Android inherited the user-based permission model from Linux

that will be explained further. A new security feature was implemented on kernel, available as a

build option called ANDROID PARANOID NETWORK, that restricts the access to some networking

features, depending on the of the calling process Dubey and Misra (2013).



2.1.2 Native Libraries

Android has a considerable amount of dynamically loaded libraries that supports both Android system

to execute internal tasks and developers to use native code in their applications. Native libraries are

written in C/C++, being available through the . These libraries are placed at /system/lib in the

Android filesystem. The following list presents the most relevant libraries:

• Media Libraries Enables playback and recording of audio and video formats. Based on Open-

Core from PacketVideo;

• SQLite Provides relational databases that can be used by applications and systems;

• SSL Provides support for typical cryptographic functions;

• Bionic System C library;

• WebKit Browser-rendering engine used by Android browsers;

• Surface Manager Provides support for the display system;

• SGL Graphics engine used by Android for 2D.

2.1.3 Android Runtime

Android development team decided to use Java as the main language to build Android applications,

because it is one of the most world wide used programming languages. In Java, there is a Java compiler

that translate Java code into architecture-independent byte-code, which is executed at runtime by a

byte-code interpreter known as ”virtual machine”. We are used to the . However, it is heavy to mobile

devices. Therefore, Google decided to build a new ”virtual machine” to deal with Java code and it is

called Dalvik. Apparently the name was stolen from a village in Iceland. The is designed to achieve

good results in embedded environments, that uses slow CPUs, less RAM and are battery powered.

2.1.4 Application Framework

Similar to native libraries, the Application Framework offers a set of libraries to support developers.

In this layer, libraries are written in Java and are available through Java APIs. The following list

describes the most used libraries:

• Activity Manager Manages the activity lifecycle of applications and various application com-

ponents. When an application requests to start an activity, Activity Manager provides this ser-

vice;



• Resource Manager Provides access to resources such as strings, graphics, and layout files;

• Location Manager Provides support for location updates (e.g., GPS);

• Notification Manager Applications interested in getting notified about certain events are pro-

vided this service through Notification Manager. For instance, if an application is interested in

knowing when a new e-mail has been received, it will use the Notification Manager service;

• Package Manager The Package Manager service, along with installd (package management

daemon), is responsible for installing applications on the system and maintaining information

about installed applications and their components;

• Content Providers Enables applications to access data from other applications or share its own

data with them;

• Views Provides a rich set of views that an application can use to display information.

2.1.5 Applications

The top layer is composed of the main pieces of the entire system: applications. Android usually

comes with several applications, as browser, mail, contacts, etc. Through Google Play, and other third

party markets, users may download and install applications that are no different from those previously

installed on the device. Android applications present the following filesystem structure:

• src includes the java packages and files;

• gen holds auto generated code for resources;

• Android x contains the android jar file for the targeted version of Android, denoted by x (for

instance, Android 2.3.3);

• assets comprises those files that the developer bundles to the application;

• bin stores files for compiling and running the application, as the apk file and classes.dex files;

• res contains all application resources: layouts, values (like strings) and drawables;

• AndroidManifest.xml defines the application components;

• proguard-project.txt is the proguard configuration file.

Later in this document several references to Android folders will be made.



2.2 A N D RO I D C O M P O N E N T S

The following sections present the Android components by which applications consists of. Each

component was designed to develop a special role in the application’s life and some rules need to be

carried out in order to get the desired behavior as well as efficiency.

2.2.1 Activities

Android provides the application’s visual interface through the Activity component. Once created, it

exhibits elements that users can interact with, like buttons, text boxes, spinners, etc. When developers

are implementing Android activities, concepts regarding visual design must be taken into account so

that users may have a pleasant experience. Regular applications have several activities, because the

visual interface changes according to the user’s desire, while he keeps tapping and clicking along the

application’s execution. Android provides mechanisms to save activities state when they are paused

or stopped and keeps them in a stack so that they can be restarted later. This process is presented in

Figure 2 that illustrates the activity lifecycle Android webpage (2013a).

Activities begin the execution calling onCreate() that, usually, defines the layout for the activ-

ity’s user interface. The activity becomes visible when onStart() runs. Once the activity is visible,

onResume() takes place and the activity just stops being visible when another activity comes to

the foreground. When this happens, onPause() is called. If the system needs memory to execute

activities with higher priority, the activity is killed. If the activity is requested to run again, it can

continue the previous task. The activity may also be stopped through onStop(). While stopped

it cannot go back to the previous task, but might be restarted through onRestart(). At last, the

activity is destroyed calling onDestroy(). The activity’s lifecycle ends.

2.2.2 Services

When developers intend to launch some task that has no visible elements they use Services. This

component is designed to perform long running operations in the background. For this reason, a

service is able to run even if the component that called it, or even the application, stops its execution.

Services usually take care of operations like internet downloads, music playing, etc.

Services may be called in two distinct ways. An application component, as an activity, may start a

service calling startService(). It may run in the background indefinitely, even if the component

that started it is destroyed. After completes its operations, the service should stop itself.

In the other way, a service can be bound to an application component, if this binds to it by call-

ing bindService(). In this case, the service executes using a service-client interface providing

interaction with components, as sending requests, getting results, etc. A bound service runs while it



Figure 2.: The activity lifecycle

is bound to some application component, being destroyed after that. Note that the same service may

assume both forms, unbound and bound.

The service lifecycle shows these two approaches in Figure 3 Android webpage (2013h). On the

left side we can see that an unbounded service starts its work by calling onStartCommand(). After

performing it may be stopped by a client or by itself, calling onDestroy(). In a bounded service,

onBind() starts its execution and when all clients unbind the service, it calls onUnbind() and

onDestroy().

Services play a major role in the scope of this project, because it’s through a service that Droid-

guardian is able to perform indefinitely in the background, being started when the device boots, as we

will explain further.

2.2.3 Broadcast Receivers

Broadcast receivers are built to handle events created by applications or by the system. Receivers

are designed to perform a certain action when notified that some event occurred. For instance, a



Figure 3.: The service lifecycle

receiver can be set to start an activity when the device boots. The developer registers the action

BOOT COMPLETED wrapped in a package called intent. When the system performs this action, sends

the package to the receiver. The receiver checks the action inside. If it is the desired action, the

receiver sends another package to the system requesting an activity to start. Receivers must always be

associated with intents. An Intent is a messaging object that connects all components in an Android

applications by allowing them to be invoked and share some data Android webpage (2013c). Figure 4

exhibits the way application components use intents to communicate.

2.2.4 Content Providers

It is common that Android applications need to access and share some resources in order to provide the

user useful features. These resources can be user’s personal data, as videos, audio, images, contacts,

etc. Android supplies a consistent standard interface to data that also handles and secure data access.

Content providers offer this mechanism as an application component, by which it allows the appli-

cation to access a data repository. Providers are primarily designed to be used by other applications,

even though they can be called only to manage its application’s internal data. Providers present data



Figure 4.: Broadcasting an intent to start an activity

to external applications using a relational database like interface, providing CRUD (create, retrieve,

update and delete) functions and a system Android webpage (2013e).



3

A N D RO I D S E C U R I T Y

Android was designed to protect applications considering both security-oriented developers and those

less familiar with safety concerns. By default, Android enforces good levels of protection, inheriting

the Linux security model, but also applying its own mechanisms. It is provided with a multi-layered

security that supplies the flexibility required for an open platform, while providing protection for all

users of the platform Android webpage (2013g). This chapter introduces a general overview into

Android security features.

3.1 S Y S T E M A N D K E R N E L L E V E L S E C U R I T Y

The Android platform comprises three main blocks: device hardware, operating system and appli-

cation runtime. Each block presents secure mechanisms that are briefly described in the following

sections.

3.1.1 Linux Security

Android has inherited security mechanisms from the Linux kernel, namely, a user-based permissions

model, process isolation and extensible mechanism for secure . The user-based permissions model

was originally developed for Unix environments, thus Linux takes advantage of it. In fact, the user-

based permissions model has proven its good design concerning security issues over time. Every user

registered in the system has an unique identifier number known as . Along with users, there are groups

that are identified by its unique . One group might have one or more users, and one user might belong

to one or more groups. Note that all users belong to at least one group, which is the group that contains

all users. Every resource in the system, or in simple terms, every file in the system has an owner, that

is identified by its . This owner has the responsibility over the file and is able to alter its permissions.

Files have also a group associated which is identified by its . Each file on a Linux system has three

sets of permissions: owner, group and world. The owner and the group are those mentioned before.

The world is considered to be every user registered on the system. Each file might be accessed by

three types: read, write and execute. So, each set of permissions can include read (r), which allows an

14



entity to read the file; write (w) which allows an entity to write the file; and execute (x) which allows

an entity to execute the file. According to its permissions, a file may be read and/or wrote and/or

executed by its owner, that has an unique , and/or by every member of the file’s group, and/or by all

other users that have an account on the system Gollmann (2011).

3.1.2 Application Sandbox

Using the user-based permissions model, the system’s resources have a robust access control. Android

took this feature and built an application sandbox where each application can only access its own

files and components (unless the developer grants other permissions that we’ll see later). When an

application is installed on the system, an new unique is assigned to it and the application runs under

this . In addiction, all data stored by that application is assigned the same . The Linux permissions

are set on this application to allow read, write and execute access by its owner and no permissions

otherwise. This mechanism is illustrated in Figure 5 Marko Gargenta (2013).

Figure 5.: Application sandboxing

3.1.3 Filesystem Isolation

The user-based permissions model is also used to provide filesystem isolation, which fits in the appli-

cation sandboxing model. Android creates a specific directory to each installed application under the



path /data/data/. Each directory is configured such that the associated application’s is the owner

and only its permissions are set. Within this directory is /files directory that stores all files created

by the application. These files are granted the same permissions and run under the owner’s , providing

isolation access from other applications. This access control is enforced to all applications. However,

if a user access the Linux kernel using the root will break down the sandboxing mechanism and be

able to access any data stored in any application.

Linux permissions access control works on every Android filesystem except on the SD card (/sdcard

directory). Therefore, any file written to external storage is accessible by any application.

3.1.4 Security-Enhanced Android

As mentioned above, the user-based permissions model grants protection from the Android founda-

tions. However this model enforces a mechanism that increases the risk of harm, as we will see later

in the section. To overcome the related threats, Android began to use a component that has been

in the Linux kernel in the last years, . This mechanism applies a model Smalley and Craig (2013)

that reduces the effect of malicious software and protect users from potential flaws in code Android

webpage (2013f).

3.2 A N D RO I D A P P L I C AT I O N S E C U R I T Y

Android applications extend the core Android operating system. The previous security features were

not able to ensure the protection level desired to a world wide used mobile platform as Android,

therefore a set of artifacts were developed granting applications safety in a satisfactory degree. They

are briefly described as follows.

3.2.1 Manifest Permissions

Besides the user-based permissions model adopted from the Linux kernel, Android brought a new

permissions model know as Manifest permissions. As mentioned earlier, each application is only

allowed to access its own data, by default. However, Android offers a lot of resources and libraries

so that developers can build powerful and useful applications. But, the gain of power brings security

vulnerabilities. For instance, Android provides network resources that allow applications to establish

internet communications. But, malicious applications could take advantage of this feature and use it

to spread user’s personal data.

Google decided to implement the Manifest permissions model that forces developers to specify

which resources their applications use when executing. Each resource requires a permission that must

be declared on the Manifest file. At installation time, permissions are set to the application and it will



only have access to the declared resources. Using the previous example, if the developer wants to use

network resources, he declares the INTERNET permission through the following statement:

<uses-permission android:name="android.permission.INTERNET"/>

on the Manifest file. Before the installation, the user gets the list of all Manifest permissions. This

feature brings two main advantages. First, it alerts the user to all possible dangerous actions the

application may take. For instance, if the user intends to install a simple game and the Manifest file

exhibits SMS and phone call permissions, which means that the application can send SMS and make

phone calls, something doesn’t seem to be right. The user makes his judgement and decides to either

install or not install the application. The second advantage ensures the protection of the application

against malware. In the case of one application gets compromised, the attacker will only be able to

access the resources that the application was allowed to. For instance, if an application that takes

photos has only permission to use the camera and gets compromised, the attacker will only be able to

access the camera and none of the remaining resources that need Manifest permission.

Android comprises a large set of Manifest permissions Android webpage (2013d) and regular ap-

plications take advantage of a considerable amount of them. Since there is a considerable set of

permissions that causes no harm to the device, users don’t need explicitly to accept them in order to

install applications. Therefore, Google established four categories where Manifest permissions falls

into, described as follows:

• Normal. Permissions to access inoffensive resource. For that reason they are granted by default.

As example, the permission to change the device’s background;

• Dangerous Permissions to access resources that might cause harm to users. In this case, users

must accept them before the installation. As example, the permission to access private data, or

establish internet connections;

• Signature Permissions that were required by other applications signed with the same digital

certificate. If the application is signed by the same certificate as the declaring app, the permis-

sion will be granted; if not, the app being installed will no be granted the permission. The user

is never questioned about these permissions in order to start an installation;

• SignatureOrSystem These permissions follows the same rule as Signature permissions, but

adding a new rule that checks the Android system image. This type of permission is used by

device manufacturers to allow applications created by different vendors to work together within

that Android builds.

An important rule that follows the Manifest permission is the Principle of Least Privilege Six (2011),

which states that each application should keep permissions at its minimum, using the weak permission

instead of a strong one that allows the application to execute tasks that will not be called. For instance,

if the application only needs to read contacts, the permission required should be READ CONTACTS

and not full access to contacts that also allow to write contacts.



3.2.2 Application Signing

Google requires all Android applications to be signed through a digital certificate, being the private key

held by the application’s developer. This process ensures the authentication of a developer when he’s

trying to deploy his application into the market and establishes trust relationships between applications.

Signing an application does not require a . In fact, most of Android applications are self-signed by

developers. Google released tools that allow developers to sign their applications and provides useful

documentation to facilitate the process Android webpage (2013b).

The Application signing process concede an useful feature to developers that build more than one

application. As mentioned earlier, each application is assigned an unique and is not allowed, by de-

fault, to share data and resources with other applications. However, if an user installs more than one

application signed by the same developer, which means the same digital certificate, and these applica-

tions declare the shareUserId attribute in the Manifest file, Android assigns these applications the

same . Therefore, they are seen by the Linux kernel as the same application and are able to share data

and resources.

3.2.3 Android Security Overview by Google

Android Security chief, Adrian Ludwing, presented the Google’s approach to fight malware and sta-

tistical data regarding infected devices Ludwig et al. (2013) . Android enforces several layers of

protection since the user accesses Google Play until the application is running on its device. These

layers were introduced as follows:

• Google Play;

• Unknown Sources Warning;

• Install Confirmation;

• Verify Apps Consent;

• Verify Apps Warning;

• Runtime Security Checks;

• Sandbox and Permissions.

Google Play requires developer information and application signing. Furthermore, each application

is reviewed before it becomes available. This process involves a set of procedures that checks static

code dynamic behaviors. Heuristics and similarities on-device data are applied. After the analysis it

is assigned a probability of threat tag to the application, being Block, Warn or Allow.



Android does not allow the installation of applications from unknown sources by default. This

feature ensures that all installed applications had passed the Play Store test. If the user disables this

rule by allowing unknown sources, the following alert is displayed ”Your phone and personal data are

more vulnerable to attack by apps from unkown sources. You agree that your are solely responsible

for any damage to your phone or loss of data that may result from using these apps”. Also, the

feature Verify Apps inspects applications prior to install, applying an additional layer of security. If

the application presents suspicious code, the installation process might be blocked, in sever cases, or

triggers a warning. This is quite useful for those applications that skip the Google Play process review,

i.e. were installed from third-party sources.



4

R E L AT E D W O R K

Droidguardian was inspired by a powerful tool called Little Snitch, that aims to raise awareness re-

garding internet connection attempts from the system’s applications. Little Snitch provides a graphi-

cal interface so that users can filter outgoing internet connections1 through rules and accept or reject

connections in real time. In order to develop Droidguardian, a deep study and understanding of Lit-

tle Snitch took place and the following section will cover the relevant details. It might be important

to stress the fact that Little Snitch is designed exclusively for Mac OS X operating system and it is

not open source. All information presented below stems from both the use of the tool and available

documentation reading.

Since Android is an embedded Linux environment product, in the initial research phase to design

Droidguardian we stumbled upon a very interesting tool, quite similar to Little Snitch, although much

simpler, called TuxGuardian. This tool aims to exhibit in real time all outgoing internet connection

attempts, allowing users to accept or reject such connections. TuxGuardian was designed for Linux

based operating systems and is open source, which led to a thorough analysis introduced later in this

chapter.

4.1 L I T T L E S N I T C H

Little SnitchObjective Development Software GmbH (2013b) is by definition a firewall built for Mac

OS X. However, it is not a regular firewall that operates at network packet level, checking protocol

headers, but a firewall that acts at higher level, closer to the application layer. Little Snitch is set to

intercept network connections attempts originated from all the system’s applications and processes.

Once a network connection attempt occurs in the system’s kernel, it is intercepted by Little Snitch

which will either accept it or reject it. This decision is based on a set of rules created by the user and

by Little Snitch. The following section introduces Little Snitch rules.

1 Later versions of Little Snitch allow to manage incoming internet connections as well, but this feature is out of this project
scope.
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4.1.1 Little Snitch rules

A rule is composed of four elements:

• Condition

• Action

• Lifetime

• Annotations

When an application, or Unix process, tries to establish an internet connection, it passes to the

system some required data, as an address and a port. These data is collected by Little Snitch that

compares it to the existing rule. The condition field of each rule has the following properties:

• Process

• Process owner

• Server

• Port

• Protocol

• Direction

• Enabled

An internet connection might be seen as a triplet that includes a server, a port and a protocol. It has

associated the process that triggered the connection and the owner of the process. The server is the

remote internet address and Little Snitch handles them using numeric sets, hostnames and domains.

The port points to services. Protocols (, or ) states the behavior of the internet connection. Processes

are applications, as Safari, Mail, etc, and UNIX processes, as storeagent, ntpd, etc. These processes

are owned by an entity, as System, root, etc. There are two other properties that belongs to conditions:

connection direction and enabled. The first one indicates if the connection is incoming or outgoing

and the last one may be seen as a flag that states if the rule is on or off.

Connection attempts are compared to these properties and, if a match occurs, the matched rule

takes its action. A connection that matches an off enabled rule is not handled. The action is one of the

following:

• Allow

• Deny



• Ask

It’s easy to understand that the rule may either allow or deny the connection. In the first case, the

connection is established as if it was not intercepted by Little Snitch. In the second, the process at-

tempting the connection receives an error, like a network failure, and the connection does not take

place. The ask action is triggered when Little Snitch does not have the connection data stored, in a

sequence of either being the first time the connection occurs or the user didn’t want to save it earlier.

Therefore, Little Snitch launches a dialog message, called Connection Alert, reporting the connection

attempt, revealing the connection properties and providing choice buttons so that the user may decide

what to do. Figure 6 shows a Little Snitch Connection Alert window. The figure reveals the Con-

nection Summary, a short text indicating the server (ax.init.itunes.apple.com), the port (80) and the

protocol (http); the Action, composed by the choice buttons Allow and Deny; the Rule Lifetime, where

the user assigns a time tag to the rule; Rule Options to determine if this application (iTunes) is allowed

to established every connection or if there are some restrictions regarding the server, port and proto-

col. At last, the Research Assist Button exhibits some detailed information about the connection’s

properties that may help users to decide what to do.

Figure 6.: Little Snitch Connection Alert window

Rule Lifetime plays an important role. It allow users to define the frequency they want that connec-

tion to occur. He can choose one of the following tags:

• Forever - The rule never expires;

• Until Quit - The rule expires when the last instance of the process that matches the rule termi-

nates;

• Until Logout - The rule expires when the user who created the rule logs out;

• Until Restart - The rule expires when the computer is restarted;

• Minutes - The rule expires a certain amount of time after it was created;



• Once - The connection takes places and the rule is not saved.

The descriptions above explain how Little Snitch perform. For instance, a forever rule will only

display a Connection Alert once. All matching connections after the rule is setted up will be executed

according to the action’s rule. On the other side, if the user chooses the once tag, is either allowing

or denying the connection only this time and desires to be notified if it happen again. In this case, the

Connection Alert will be prompt as if it was the first time this connection appears in the system.

As mentioned earlier, Little Snitch is a powerful tool. It has a mechanism to distinguish important

processes that need to establish internet connections in order to keep the system executing without

problems. These processes are automatically granted permission to connect to external servers. How-

ever, the user may check the related rules and change them. For this reason, Little Snitch provides the

Annotation field, in which rules are characterized as Protected or Unapproved to inform the user about

their special status. Besides this feature, Little Snitch provides different profiles to each network the

system is connected, and other useful features that make this tool quite robust and valuable.

4.1.2 Little Snitch architecture

A simple version of Little Snitch architecture is presented in Figure 7. At the bottom we find a Kernel

Extension responsible for the interception of connection attempts. The ability to refuse an internet

connection cannot be performed at user level. Therefore, Little Snitch developers was forced to oper-

ate at kernel level, building a Kernel Extension Objective Development Software GmbH (2013a). The

collected data from the bottom layer is sent to the layer above, the Network Filter. The matching pro-

cess is done in this layer. At the top is placed the user interface that permit users to check information,

define rules, etc.

Figure 7.: Little Snitch architecture



4.2 T U X G UA R D I A N

TuxGuardian da Silva (2006) is an open source tool designed for Linux based operating systems, that

intercepts outgoing internet requests and triggers notification alerts to the user. Its basic behavior is

quite similar to Little Snitch. Although this tool stopped being updated since 2006, it was very impor-

tant in the scope of this project and played a major role in Droidguardian’s development process. In

fact, that’s where the name Droidguardian came from. The following sections presents TuxGuardian

in detail.

4.2.1 TuxGuardian architecture

TuxGuardian is a host firewall that emerged to overcome the complexity of Linux security model to

lay users, providing an interface to implement access control policies to the network outgoing traffic.

It consists of a three layered architecture showed in Figure 8. Each layer has a specific function and

establishes a communication to the next layer.

Figure 8.: TuxGuardian architecture

The Security Module is the bottom layer and takes advantage of the framework to implement

hook functions that grab internet socket requests. Namely, TuxGuardian uses the callback functions

socket create and socket listen to intercept both socket client and socket server internet

connection requests2. Local socket requests are not handled. Through this mechanism, TuxGuardian

is able to block outgoing connections. In the same way as Little Snitch, this operation must be exe-

cuted in kernel space. When the security module detects a connection attempt, sends a message to the

layer above and waits a response in order to either deny or allow the connection.

The Daemon is by definition a program that executes in background waiting for some event to take

place. In this case, it waits for the security module messages, that consists of the of the process

that created the connection request. This communication process is established through local sockets.

2 For the sake of simplicity, we will not cover security modules framework in this chapter, but it will be detailed later in this
document.



When the daemon gets the security module’s message, checks the storage file to find a connection

match. This procedure is also very similar to Little Snitch. If a match is found, TuxGuardian executes

the corresponding action. Otherwise, it launches a notification window to get the user’s response.

Note that TuxGuardian is able to perform without the component, denying all connections that are

not placed in the storage file. In order to enforce a security measure, TuxGuardian keeps the MD5

hash of each process path. Through s, the daemon gets the process path name in the /proc directory

and calculates its MD5 hash so that modified programs cannot access internet.

The or Frontend displays the notification windows. The user receives the process name (the com-

plete process path, for instance /bin/ping) that created the connection attempt and decides to either

accept it or reject it. Along with the process path, the corresponding MD5 hash is also displayed. Fig-

ure 9 presents the TuxGuardian notification window.

Figure 9.: TuxGuardian notification window

4.2.2 TuxGuardian Protocol

The communication between layers is established through the da Silva and Weber (2006). This

comprises a structure with the following fields:

• Sender

• Sequence number

• Query type

• Query data

Sender specifies the layer which sent the message:

• TG MODULE,

• TG DAEMON,



• TG FRONTEND

corresponding to the security module, the daemon and the frontend, respectively. Sequence number

acts as the message identifier. Query type characterizes the message, or query, as follows:

• TG ASK PERMIT APP refers to the query sent by the security module to the daemon asking

permission to either allow or deny the connection request;

• TG RESPOND PERMIT APP refers to the response the security module gets from the daemon

to the question above. Query data field stores the permission value;

• TG PERMIT SERVER refers to the first query, but indicating that the connection request in-

volves a server;

• TG RESPOND PERMIT SERVER refers to the response obtained from the previous question.

Depending on the nature of the query, Query data may store a or the permission values: either yes

or no.



5

T E C H N I C A L C O N C E P T S

The development process of DroidGuardian comprised several parts and required some technical con-

cepts. This chapter introduces those concepts along with relevant details that were fundamental to the

development process.

5.1 L I N U X S E C U R I T Y M O D U L E S

Typically, developers find every resources they need in the Android . When some resources are miss-

ing, Android provides the so that they can bring the potential of native code to their applications.

But, sometimes there are situations where it is necessary to go deeper into the Android software stack.

This is one of those situations. In order to be able to reject an internet connection in real time, the

operation must be executed at kernel level. The framework is the basis of DroidGuardian, providing

the ability to deny an internet connection. This section explains in detail the framework and how it

allows to operate with internet connections requests.

5.1.1 Introduction

In 2001, Peter Loscocco and Stephen Smalley wrote an article introducing the Loscocco and Smalley

(2001). The main reason that led to the development of such mechanism was the flawed assumption

that adequate security should reside in applications, leaving the role of the operating system behind

Loscocco et al. (1998). They supported the idea that secure applications require secure operating

systems. A strong concept related to operating systems security is access control policy. In a simple

manner, this term specifies what operations associated with an object are authorized to perform. Linux

kernel inherited from the UNIX security model the that allows the owner of an object to set the

security policy for that object (the control of access is based on the discretion of the owner). However,

this model of access control brings some advantages. For instance, every program executed by a

certain user receives all of the privileges associated with that user. Therefore it is able to change the

permissions of all user’s objects, creating potential security threats. In this sense, a was purposed to

protect the system against vulnerabilities left by other access control models. In the operating system
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constrains the ability of a subject to perform an operation on an object, depending on the security

attributes. Whenever a subject attempts to access an object, an authorization rule enforced by the

operating system kernel checks these security attributes in order to allow or deny the access.

At the Linux Kernel 2.5 Summit, the , based on the security issues previously mentioned, presented

their work on , a security mechanism of a flexible access control architecture in the Linux kernel.

reiterated the need for such support in the mainstream Linux kernel. Other projects were presented

to enforce access policies, namely , and POSIX.1e capabilities. Given these projects, Linus Torvalds

decided to provide a general framework for security policy, called . This framework allow many differ-

ent access control models to be implemented as loadable kernel modules. Linus enforced that should

be truly generic, where using a different security model was a question of loading a different kernel

module. The framework should also be conceptually simple, minimally invasive and efficient. At

last, the mechanism should be able to support the POSIX.1e capabilities logic as an optional security

module Wright et al. (2002).

This security framework has motivated developers and gave them freedom to build their own ac-

cording to how they consider that kernel objects should be accessed. 1 was originally developed by the

and has been in the mainstream kernel since version 2.6 (December 2003). presents three forms of

access control, , and . It uses the filesystem to mark executables when keeping track of permissions.

Smack (Simple Mandatory Access Control Kernel)2 has been in the mainstream kernel since ver-

sion 2.6.26 (July 2008). This module was implemented to provide simplicity to users. The complexity

of is avoided by defining access controls in terms of the access modes already in use.

AppArmor (Application Armor)3 was originally developed by Immunix, which was a commercial

operating system acquired by Novell in 2005. Novell laid off AppArmor programmers in 2007, but

they continued the work. Since 2009, Canonical contributes to the project. This module has been in

the mainstream Linux kernel since version 2.6.36 (October 2010). While is based on applying labels

to files, AppArmor uses pathnames to make security decisions. For instance, two different security

policies may be applied to the same file if that file is accessed by way of two different names. Many

Linux administrators claim that AppArmor is the easiest security module to configure. Yet, others

state that a pathname-based mechanism is insecure and that security policies should apply directly to

objects (or to labels attached directly to objects) rather than to names given to objects.

TOMOYO Linux4 is another implementation for Linux. It has been in the mainstream kernel since

version 2.6.30 (June 2009). This security mechanism follows the pathname-based philosophy, like

AppArmor. TOMOYO Linux focuses on the behavior of a system, allowing each process to declare

behaviors and resources needed to achieve its purpose. A precise comparison chart is available at

http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#comparison.

1 http://selinuxproject.org
2 http://schaufler-ca.com
3 http://wiki.apparmor.net
4 http://tomoyo.sourceforge.jp

http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#comparison


Recently, Yama has been added to the mainstream kernel since version 3.4 (May 2012). Yama is

a that collects a number of system wide security protections that are not handled by the core kernel

itself.

Since the first release of the framework that new updates are committed in almost every new version

of the Linux kernel. It is important to refer that between version 2.6.25 and 2.6.27, the boot engine

changed and became no longer a removable module. Since then, the is loaded at compile time.

5.1.2 Design

The basic abstraction of the interface is to intercede in the access to internal kernel objects. Security

modules should answer a simple question ”May a subject S perform a kernel operation OP on an

internal kernel object OBJ?”. The mechanism that allow modules to execute this task lies in hook

functions that are placed in the kernel code, as shown in Figure 10.

Figure 10.: LSM hook functions architecture

Immediately before the kernel access the object, represented as inode in Figure 10, the hook makes

a call to a function that the must provide. The module, based on policy rules, either allow or deny the

access, forcing an error code return in the last case.

5.1.3 Implementation

The framework comprises a few files in the kernel. Figure 11 highlights the relevant files that imple-

ment the security mechanism.



Figure 11.: framework files in the Linux kernel

Header file

The include/linux/security.h file contains the hook functions declarations. The source

code may be divided into two parts, depending on the value of the conditional group CONFIG SECURITY

being true or false. In the first case, an extensive structure with pointers to all hook functions is de-

clared. If false, only default functions are declared and the kernel loads the default security module.

The code snippet in Listing 5.1, extracted from the Linux kernel v3.11, presents the initial function

pointers in the structure security operations.

struct security_operations {

char name[SECURITY_NAME_MAX + 1];

int (*ptrace_access_check) (struct task_struct *child, unsigned int mode);

int (*ptrace_traceme) (struct task_struct *parent);

int (*capget) (struct task_struct *target,

kernel_cap_t *effective,

kernel_cap_t *inheritable, kernel_cap_t *permitted);

int (*capset) (struct cred *new,

const struct cred *old,

const kernel_cap_t *effective,

const kernel_cap_t *inheritable,

const kernel_cap_t *permitted);

int (*capable) (const struct cred *cred, struct user_namespace *ns,

int cap, int audit);

int (*quotactl) (int cmds, int type, int id, struct super_block *sb);

int (*quota_on) (struct dentry *dentry);

int (*syslog) (int type);

int (*settime) (const struct timespec *ts, const struct timezone *tz);

int (*vm_enough_memory) (struct mm_struct *mm, long pages);

Listing 5.1: Security structure declaration (Linux kernel v3.11)

Along with the structure, the functions prototypes are declared, as shown in Listing 5.2. Some

security hooks are declared depending on conditional groups:

• CONFIG SECURITY PATH, includes security hooks for pathname based access control;



• CONFIG SECURITY NETWORK, enables socket and network security hooks;

• CONFIG SECURITY NETWORK XFRM, security hooks for XFRM framework, that implement

per-packet access controls based on labels derived from IPSec policy;

• CONFIG KEYS, provides support for retaining authentication tokens and access keys in the

kernel;

• CONFIG AUDIT, enables auditing infrastructure that can be used with another kernel subsys-

tem.

int security_ptrace_access_check(struct task_struct *child, unsigned int mode);

int security_ptrace_traceme(struct task_struct *parent);

int security_capget(struct task_struct *target,

kernel_cap_t *effective,

kernel_cap_t *inheritable,

kernel_cap_t *permitted);

int security_capset(struct cred *new, const struct cred *old,

const kernel_cap_t *effective,

const kernel_cap_t *inheritable,

const kernel_cap_t *permitted);

int security_capable(const struct cred *cred, struct user_namespace *ns,

int cap);

int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,

int cap);

int security_quotactl(int cmds, int type, int id, struct super_block *sb);

int security_quota_on(struct dentry *dentry);

int security_syslog(int type);

int security_settime(const struct timespec *ts, const struct timezone *tz);

int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);

Listing 5.2: Security functions declaration (Linux kernel v3.11)

If the configurable option CONFIG SECURITY is not selected, the default security module is

loaded. This module only executes a few capabilities, being permissive in all other hooks, which

means that allow access to all kernel internal objects. Listing 5.3 exhibits some of these hooks’ source

code.

static inline int security_capable(const struct cred *cred,

struct user_namespace *ns, int cap)

{

return cap_capable(cred, ns, cap, SECURITY_CAP_AUDIT);

}

static inline int security_capable_noaudit(const struct cred *cred,

struct user_namespace *ns, int cap) {

return cap_capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);



}

static inline int security_quotactl(int cmds, int type, int id,

struct super_block *sb)

{

return 0;

}

static inline int security_quota_on(struct dentry *dentry)

{

return 0;

}

static inline int security_syslog(int type)

{

return 0;

}

Listing 5.3: Default security functions (Linux kernel v3.11)

The same process is kept to the other configurable options. Depending on their values, security

hooks are either declared or coded with default instructions.

Linux capabilities

Linux capabilities were designed to provide a solution to the UNIX-style user privilege set composed

by privilege users (root) and non-privilege users (regular user). The first type has permission to exe-

cute every operation and the former can only execute a few set of operations. Therefore, processes

run either with all permissions or with very restrictive permissions. Unfortunately, most of the time

processes do not need all privileges to execute a task and this exposure raises serious risks when a

process gets compromised Wikipedia (2013).

In the scope of , a set of functions, called common capabilities, were developed to give the security

framework a default behavior in the case no other is loaded. These functions are plugged in the kernel

to overcome the problem mentioned above. In security/commoncap.c we can see the source

code of these functions.

If no is loaded, there must be a default function hook that does not execute any operation and

let the process access kernel internal objects. The file security/capability.c have all hook

functions with the default code. If the return type is void, functions have no operations, otherwise is

int and functions just return 0, which is the value to turn the hook permissive. Listing 5.4 shows

some of these hook functions.

static int cap_syslog(int type)

{

return 0;



}

static int cap_quotactl(int cmds, int type, int id, struct super_block *sb)

{

return 0;

}

static int cap_quota_on(struct dentry *dentry)

{

return 0;

}

static int cap_bprm_check_security(struct linux_binprm *bprm)

{

return 0;

}

static void cap_bprm_committing_creds(struct linux_binprm *bprm)

{

}

Listing 5.4: Capability functions (Linux kernel v3.11)

These functions are called in the structure security operations if the respective hook func-

tions are not declared. Listing 5.5 presents the code snippet of the function security fixup ops.

#define set_to_cap_if_null(ops, function) \

do { \

if (!ops->function) { \

ops->function = cap_##function; \

pr_debug("Had to override the " #function \

" security operation with the default.\n");\

} \

} while (0)

void __init security_fixup_ops(struct security_operations *ops)

{

set_to_cap_if_null(ops, ptrace_access_check);

set_to_cap_if_null(ops, ptrace_traceme);

set_to_cap_if_null(ops, capget);

set_to_cap_if_null(ops, capset);

set_to_cap_if_null(ops, capable);

set_to_cap_if_null(ops, quotactl);

set_to_cap_if_null(ops, quota_on);

set_to_cap_if_null(ops, syslog);

set_to_cap_if_null(ops, settime);

set_to_cap_if_null(ops, vm_enough_memory);

(...)



}

Listing 5.5: security fixup ops function (Linux kernel v3.11)

Framework initialization

The header file mentioned in Figure 5.1.3 declares some functions in charge of getting the loaded, as

shown in Listing 5.6.

/* prototypes */

extern int security_init(void);

extern int security_module_enable(struct security_operations *ops);

extern int register_security(struct security_operations *ops);

extern void __init security_fixup_ops(struct security_operations *ops);

Listing 5.6: Framework initialization functions (Linux kernel v3.11)

These functions are implemented in security/security.c. The first function being executed

is security init. The source code is present in Listing 5.7.

/* Boot-time LSM user choice */

static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =

CONFIG_DEFAULT_SECURITY;

static struct security_operations *security_ops;

static struct security_operations default_security_ops = {

.name = "default",

};

(...)

int __init security_init(void)

{

printk(KERN_INFO "Security Framework initialized\n");

security_fixup_ops(&default_security_ops);

security_ops = &default_security_ops;

do_security_initcalls();

return 0;

}

Listing 5.7: security init function (Linux kernel v3.11)

At first, the default module is loaded with the available routines cited in 5.1.3, by security fixup ops(&default security ops).

Then security init() updates the kernel’s security structure security ops with the data ear-



lier initialized and makes a call to do security initcalls() that implements a loop presented

in Listing 5.8.

static void __init do_security_initcalls(void)

{

initcall_t *call;

call = __security_initcall_start;

while (call < __security_initcall_end) {

(*call) ();

call++;

}

}

Listing 5.8: do security initcalls function (Linux kernel v3.11)

The callbacks security initcall start and security initcall end are declared

in include/linux/init.h and the code snippet is shown in Listing 5.9.

/*

* Used for initialization calls..

*/

typedef int (*initcall_t)(void);

typedef void (*exitcall_t)(void);

extern initcall_t __con_initcall_start[], __con_initcall_end[];

extern initcall_t __security_initcall_start[], __security_initcall_end[];

Listing 5.9: init callbacks (Linux kernel v3.11)

LSM registration

There are several implementations adopted in the kernel, but this only runs one at a time. Therefore,

there must be a way to register the desired . This is achieved through the execution of register security(struct

security operations *ops), exhibited in Listing 5.10

int __init register_security(struct security_operations *ops)

{

if (verify(ops)) {

printk(KERN_DEBUG "%s could not verify "

"security_operations structure.\n", __func__);

return -EINVAL;

}

if (security_ops != &default_security_ops)

return -EAGAIN;

security_ops = ops;



return 0;

}

Listing 5.10: register security function (Linux kernel v3.11)

Some rudimentary check is done on the structure ops by verify(struct security operations

*ops). If there is already a security module registered with the kernel, an error will be returned. Oth-

erwise, the structure security ops gets the hook functions in the structure ops and return success.

There is other important function related to the registration, that is security module enable.

Each must pass this method before registering its own operations to avoid security registration races.

This method may also be used to check if the is currently loaded during kernel initialization. List-

ing 5.11 presents this function.

int __init security_module_enable(struct security_operations *ops)

{

return !strcmp(ops->name, chosen_lsm);

}

Listing 5.11: register security function (Linux kernel v3.11)

At last, the security functions declarations previously mentioned in Figure 5.1.3, are implemented

by returning the function callback present in the structure security operations. A code snippet

is available at Listing 5.12.

int security_socket_create(int family, int type, int protocol, int kern)

{

return security_ops->socket_create(family, type, protocol, kern);

}

int security_socket_post_create(struct socket *sock, int family,

int type, int protocol, int kern)

{

return security_ops->socket_post_create(sock, family, type,

protocol, kern);

}

int security_socket_bind(struct socket *sock, struct sockaddr *address, int

addrlen)

{

return security_ops->socket_bind(sock, address, addrlen);

}

int security_socket_connect(struct socket *sock, struct sockaddr *address, int

addrlen)



{

return security_ops->socket_connect(sock, address, addrlen);

}

Listing 5.12: register security function (Linux kernel v3.11)

Security functions in the kernel

Security functions presented in the previous subsection are called depending on each objective. For

instance, the socket create hook is part of the socket implementation, in net/socket.c. Note

the code snippet in Listing 5.13.

int sock_create_lite(int family, int type, int protocol, struct socket **res)

{

int err;

struct socket *sock = NULL;

err = security_socket_create(family, type, protocol, 1);

if (err)

goto out;

(...)

}

int __sock_create(struct net *net, int family, int type, int protocol,

struct socket **res, int kern)

{

int err;

struct socket *sock;

const struct net_proto_family *pf;

(...)

err = security_socket_create(family, type, protocol, kern);

if (err)

return err;

(...)

}

Listing 5.13: socket create hook in socket implementation (Linux kernel v3.11)

This hook is simply a flag in which the returned value is checked and if it is different from 0, the

kernel blocks the socket creation. That is the reason why the default capability functions always return

0.



5.2 L I N U X K E R N E L M O D U L E S

5.3 S O C K E T S

Sockets are a well known mechanism that provides through Unix file descriptors (since this project

is based on the Unix environment). This section introduces relevant details regarding both internet

sockets and local (Unix domain) sockets. Sockets are handled differently regarding the virtual mem-

ory of the system: user space and kernel space. Firstly we’ll present a simple server-client model

implemented at user space followed by some particularities of socket implementation at kernel level.

5.3.1 User space sockets

Unix systems provide a programming interface to easily carry out tasks using sockets. This is present

in the sys/socket.h header file. Sockets follow a server-client based model, in which a sequence

of primitives needs to be invoked in order to established the connection. This sequence depends on

the protocol that will take place. Usually, sockets fall into the or . Both require different primitives to

settle connections. In the scope of this project, only stream sockets are used. Therefore, this section

will focus on the basic behavior of stream sockets. Figure 12 illustrates a typical case and may be

described as follows:

1. The server initializes the process by creating a file descriptor (socket descriptor). This process

is accomplished through the socket() primitive:

int socket(int domain, int type, int protocol);

The returned value defines the socket descriptor. As arguments, domain specifies the socket

family (AF INET, AF INET6, AF UNIX, etc), type specifies the socket type (SOCK DGRAM,

SOCK STREAM, etc) and protocol indicates a particular protocol to be used with the socket, but

usually takes the value 0.

2. Once created, the socket is unnamed and needs to be bound to an address in order to be identified

by the system. This address will be assigned depending on the socket family. The bind()

primitive is presented as follows:

int bind(int socket, const struct sockaddr *address, socklen_t address_len);



Figure 12.: Typical server-client based model of sockets

If the returned value is 0, the operation was successful. In case of error, returns -1. The argument

socket specifies the socket descriptor previously created, the address points to the address to be

bound to the socket and address len indicates the length of the address structure.

3. After the binding, the server is ready to establish a connection to a client. Thus, the server is

kept listening to connection requests through listen():

int listen(int socket, int backlog);

The function expresses the success or failure of the operation through the returned value, being

0 or -1, respectively. It takes as arguments the file descriptor and a backlog that defines the

length of the socket’s listen queue, where connection requests are stored.

4. At this point, the server is waiting for some request from a client. To set up a client socket,

primarily it is executed the socket() primitive to create a file descriptor.

5. Once the socket descriptor is created, the client must specify the server address to get connected.

The connect() primitive is used:



int connect(int socket, const struct sockaddr *address, socklen_t

address_len);

It returns 0 on success or -1 on error. The socket indicates the client socket descriptor, the

address points to the server address and address len defines the length of the address.

6. The server receives the connection request and is able to accept it through the accept()

primitive:

int accept (int socket, struct sockaddr *address, socklen_t *address_len);

This primitive returns a newly connected socket descriptor. The address is filled with the address

of the client and address len defines the length of this address. Both sockets are ready to start

the communication.

7. The client and server may exchange data through some primitives. In this case, we’ll introduce

sendmsg() and recvmsg():

ssize_t sendmsg (int socket, const struct msghdr *message, int flags);

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

This primitives use a special structure to store data in the message argument, that is the struct

msghdr. Further in this section we’ll inspect this structure. The flags argument specifies some

conditions such as, for instance, blocking the function until the total amount of data requested

is returned, by the flag MSG WAITALL. The total amount of data exchanged is stored on the

returned value.

8. At last, when all data has been exchanged, both sockets need to close its connections, calling

the close() primitive:

int close(int fildes);

The socket descriptor is passed as argument.



5.3.2 Address Formats

As previously mentioned, in the primitives bind(), connect() and accept() the argument

address points to a struct sockaddr based on the socket’s family. If we want to communicate

through internet sockets, the family is defined as AF INET or AF INET6, depending on the version,

IPv4 or IPv6, respectively, and a struct sockaddr in is used to handle internet addresses:

struct sockaddr_in {

short sin_family;

unsigned short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

}

This structure defines the required data to create an internet address: the port and the address Hall

(2012). These fields are specified by sin port and sin addr, respectively. The former is stored

as an unsigned short. The last is defined by a struct in addr that contains an unsigned

long to store the address value:

struct in_addr {

unsigned long s_addr;

}

These structures are declared in the netinet/in.h header file .

In local sockets, where the family is defined by AF UNIX, the address will be set using struct

sockaddr un:

#define UNIX_PATH_MAX 108

struct sockaddr_un {

sa_family_t sun_family;

char sun_path[UNIX_PATH_MAX];

}

In local sockets, the address is defined by the path of a file, in sun path. In the scope of this

project, there are two types of path (called namespaces) that is important to distinguish:

• Pathname: a null-terminated filesystem pathname is bound to the local socket;



• Abstract: the sun path[0] is a null byte. The socket’s address in this namespace is given the

additional bytes in sun path. The name has no connection to the filesystem pathnames5.

This structure is declared in the sys/un.h header file.

5.3.3 Address Lookup

Sockets store addresses as unsigned long, but they are displayed to users through the dotted

notation: x.x.x.x in case of v4, or x:x:x:x:x:x:x:x, in case of v6. In order to translate

internet socket addresses to the user’s reading format, the arpa/inet.h header file provides the

following function:

const char *inet_ntop(int af, const void *restrict src, char *restrict dst,

socklen_t size);

This function takes as arguments the internet family in af (AF INET or AF INET6); src points to

a buffer holding a struct in addr or a struct in6 addr; dst points to the destination string

and size indicates the maximum length of this string.

With internet address is also possible to get the host name and service name, using getnameinfo,

declared on the netdb.h header file:

int getnameinfo(const struct sockaddr *sa, socklen_t salen,

char *host, size_t hostlen,

char *serv, size_t servlen, int flags);

5.3.4 Kernel space sockets

In kernel space, the server-client based model is the same, but the primitives are different. In or-

der to understand how socket primitives are handled in kernel space it was necessary to check the

Linux Cross Reference6. Sockets are created through the sock create() primitive, declared in

the linux/net.h header file:

int sock_create(int family, int type, int proto, struct socket **res);

5 http://man7.org/linux/man-pages/man7/unix.7.html
6 http://lxr.free-electrons.com



The first three arguments are similar to the socket() primitive described above. Kernel creates a

socket by allocating memory to a struct socket and filling it in with the following data:

struct socket {

socket_state state;

short type;

unsigned long flags;

struct socket_wq __rcu *wq;

struct file * file;

struct sock * sk;

const struct proto_ops * ops;

}

From these structure’s fields it is important to highlight the following: type that indicates the socket

type (SOCK STREAM, SOCK DGRAM, etc); sk that specifies all internal networking protocol and is

an agnostic socket representation, i. e. the same structure is used by any socket independently of its

type or family; and ops that defines the socket operations. Once the sock create() primitive is

executed, the socket data is stored at res.

This socket will execute the remaining operations through the struct proto ops presented in

the struct socket by means of ops field:

struct proto_ops {

int family;

struct module *owner;

int (*release) (struct socket *sock);

int (* bind) (struct socket *sock, struct sockaddr *myaddr, int sockaddr_len)

;

int (* connect) (struct socket *sock, struct sockaddr *vaddr, int

sockaddr_len, int flags);

int (* accept) (struct socket *sock, struct socket *newsock, int flags);

int (* listen) (struct socket *sock, int len);

(...)

}

All primitives, bind(), connect(), listen(), accept(), and release(), which is the

kernel implementation of close(), are called through this structure that belongs to the socket. They

are the kernel implementation of those forementioned primitives in user space and take almost the

same arguments, but instead of using the socket descriptor, they point to the socket structure in sock.

To send and receive data, kernel declares the sock sendmsg and sock recvmsg primitives,

respectively:

int sock_sendmsg (struct socket *sock, struct msghdr *msg, size_t len);



int sock_recvmsg (struct socket *sock, struct msghdr *msg, size_t size, int flags

);

These primitives also take the struct msghdr as argument. This structure is used to store the

data that is exchanged in each sending and receiving process. It is declared in the linux/socket.h

header file and has the following fields:

struct msghdr {

void* msg_name;

int msg_namelen;

struct iovec* msg_iov;

__kernel_size_t msg_iovlen;

void* msg_control;

__kernel_size_t msg_controllen;

unsigned int msg_flags;

}

The first two elements are normally used in datagram exchange. The msg flags field indicates

several characteristics of the data received. The msg iov represents an array of buffers that contains or

points to the data that is sent and received. The msg iovlen defines the length of the struct iovec

used.

The struct iovec stores data as follows:

struct iovec {

void* iov_base;

size_t iov_len;

}

The iov base field points to the initial element of the data being passed and iov len defines its length.

This structure is used, because it allows to store data in different memory locations, providing a scatter

feature, optimizing the use of memory Stevens and Rago (2013). Also, the read operation applies a

gather feature, collection all spread data.



5.4 A N D RO I D T O O L S

Useful tools that allow the development of Android applications are found in the Android . It is the

case of the Emulator, placed at tools/ and the , placed at platform-tools/. This section

describes both tools regarding valuable their features to this project.

5.4.1 Android Emulator

Android provides a mobile device emulator based on the QEMU virtual machine, that runs on the

computer. This Emulator provides a real Android environment, being able to run any application. It is

very useful to developers, because avoids the need of having a real device in order to run applications.

However, depending on the computer, the performance of the Android Emulator may be considerable

low when compared to a real devices.

Figure 13.: Android Virtual Device configuration

The Android Emulator boots an Android image according to the configuration file. The allows

to define hardware and software characteristics of a specific model to run on the Android Emulator.

Figure 13 shows a snapshot of the window configuration. For instance, in the Device option it is

possible to choose an Android model, as Nexus 4, Nexus 7, Nexus 10, Galaxy Nexus, Nexus S, etc.



The Target element defines the Android version and the corresponding , as Android 2.3.3 - API Level

10, Android 4.4 - API Level 19, etc.

Once the is created, the Emulator may be launched through the Manager or using the command

line. This last provides more options and fits better our needs when developing DroidGuardian. Some

useful commands are presented as follow:

# emulator -avd <avd_name>

This command launches the Emulator with the image called avd name. files are usually stored at

.android/avd/ within the Android folder.

# emulator -avd <avd_name> -kernel <kernel_path>

In order to choose a kernel of our own to run on the Emulator, it is used the kernel flag providing

the image file system path of the kernel.

# emulator -avd <avd_name> -kernel <kernel_path> - show-kernel -verbose

To follow what is happening during the boot and to inspect the kernel prints, the Emulator provides

both show-kernel and verbose flags.

5.4.2 Android Debug Bridge

is another useful tool that connects the computer to Android devices (real or emulated). This connec-

tion brings powerful features that will be described in this section. The tool, mention as adb from now

on, is available as a command line. It is a client-server program that comprises three components:

• A client, that runs on the development computer;

• A server, that runs as a background process on the development computer. The server handles

communication between the client and the daemon;

• A daemon, that runs in background on the mobile device (real or emulated).

Once we start an Android Emulator, this becomes available to connection through adb. The follow-

ing command shows all Android devices running on the computer:

# adb devices



If we have one Android Emulator running on the computer, the output returned is the following:

List of devices attached

emulator-5554 device

With adb it is possible to:

• install an Android application on the emulator/device;

# adb install <path_to_apk>

• copy a specified file from the emulator/device to the development computer;

# adb pull <remote> <local>

• copy a specified file from the development computer to the emulator/device;

# adb push <local> <remote>

• print the logcat output;

# adb logcat

• start a remote shell in the target emulator/device:

# adb shell

There are more operations and options to perform with adb, that can be checked on the Android

online page7.

7 http://developer.android.com/tools/help/adb.html



5.5 A N D RO I D N D K A N D J N I

Android provides a powerful toolset that has multiple purposes, available at http://developer.

android.com/tools/sdk/ndk/index.html. The Android was built to supply developers

the capability to exploit the full power of mobile devices using native code. This is achieved through

the , which is a programming framework that provides connection between Java code that runs on the

virtual machine and native code, as C/C++. Native code is accessed by the Java side as a static library,

declared through the following statement:

static {

System.loadLibrary("native");

}

This native library implements a set of native methods called in Java. For instance:

public native void nativeMethodA();

public native String nativeMethodB(String str);

At this point, Java knows that in order to execute the nativeMethodA() and the nativeMethodB()

it has to inspect the native library stored as libnative.so placed at libs/armeabi/ in the

Android project folder.

This library consists of, at least, three files that should be placed at a folder called jni:

• the Android.mk configuration file;

• the header file;

• the C/C++ file.

The Android.mk file comprises several configurations required by the ndk-build tool. This tool is

brought by the Android and allows to compile native code generating library files as well as executable

files. The minimum intructions of an Android.mk file are presented as follows:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := native

LOCAL_SRC_FILES := native.c

include $(BUILD_SHARED_LIBRARY)

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html


This file specifies the native source files location, in LOCAL PATH, the name of both the library and

the native code file, in LOCAL MODULE and LOCAL SRC FILES. The statement CLEAR VARS indi-

cates no dependent configuration disrupts compilation Ratabouil (2012). At last BUILD SHARED LIBRARY

instructs to build a shared library.

The header file name follows a pattern: <package name> <class>.h . Imagine that the Java

class that loaded the library is called LoadLibrary and the Java package that contains this class is

called com.android.droidguardian. The name of the header file will be:

com android droidguardian LoadLibrary.h

This file is automatically generated by a tool called javah provided by the . It was designed to build

header files to the and may be called as follows:

# javah -jni -d <path_to_jni_folder> -classpath <path_to_class_files> com.android

.droidguardian.LoadLibrary

This tool operates over .class files which means that the Java code must be compiled before.

The native code goes on regular .c/.cpp files. The next section will introduce basic concepts in

order to get a native library running on Java.

5.5.1 JNI concepts

5.6 A N D RO I D S D K
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I M P L E M E N T I N G D RO I D G UA R D I A N

6.1 S E T T I N G U P T H E E N V I RO N M E N T

The development process of DroidGuardian comprised several stages that corresponding to the layer

level that was being handled. The kernel module requested a completely different environment when

compared to the Java layer implementation environment.

In order to fully understand the framework it was necessary to manipulate a real Linux kernel,

as well as compile and install. Since the work machine used was a MacBook Pro, a new partition

was created to install the Xubuntu. This is a different flavor of Ubuntu Linux operating system that

provides a light user interface. Basically, the only used program was the console, because all required

steps could be executed through the command line and using Vim. This is why a lighter and simpler

user interface was enough to carry on the desired tasks on the Linux environment. The new partition

was created using rEFIt1.

Running Linux on a new partition provided speed and efficiency when setting up the Android

environment, to build and launch a new image on the emulator. However, handling loadable kernel

modules on a separated partition proved to be a mistake, due to the system’s blocking when kernel

failures were reached by programming errors. To overcome this inconvenience, programming tests

with loadable kernel modules started to be done in a virtual machine. This way, if the code contained

flaws that could led to a kernel panic, the virtual machine could easily be restarted causing no pain to

the host operating system. VMWare was used to virtualize a Xubuntu operating system, being OS X

the host operating system.

Regarding the Android application development environment, Eclipse was chosen as the , because

is widely used, well documented and almost all issues an user may face are solved in internet forums,

books and other sources.

Application testing was conducted on both the Android emulator and a real device. The device was

a Commtiva z71 running Android 2.3.3, level 10.

1 http://refit.sourceforge.net
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6.2 K E R N E L M O D U L E

The main challenge in this project consisted in the manipulation of hook functions to properly handle

socket connections at kernel level.

6.3 N AT I V E L AY E R

Users control internet connection attempts through an Android application. This application may be

divided into two layers: Native layer and Java layer. This section introduces the former and the

following section presents the last.

6.4 JAVA L AY E R

The topmost layer of DroidGuardian has the only purpose of displaying the data to the user. This is

achieved through an Android application, that is provided with both the necessary components and a

powerful . Android components, presented in a previous chapter, were carefully studied in order to

ensure that DroidGuardian was being built with the proper pieces. However, when compared to the

usual Android applications lifecycle, DroidGuardian may be seen as a different kind of application

that was not though to follow the good tips when it concerns the behavior of applications in mobile

environments. But, more on that later.

The process flow of the Java layer is illustrated in Figure 14. It presents the following classes:

• BootReceiver: operates as a BroadcastReceiver that starts DroidGuardian after the device

booting process.

• Daemon: acts as a Service to run in background while the device is on.

• QueryActivity: is the Activity responsible for displaying the data of queries to the user.

• Query: does not extend an Android component, being used to translate a native query into a

Java query.

• DialogWindow: is bounded to the QueryActivity, building a fragment to display the

dialog window.

DroidGuardian was design to run as a daemon, silently and unnoticed, until internet connection

requests arose to trigger the dialog window. Also, applications may launch internet requests at any

time since the device starts running. Therefore, DroidGuardian needs to start listening as soon as

possible. Android fires an intent immediately after the booting process, allowing applications to

receive it:

android.intent.action.BOOT COMPLETED



Figure 14.: Process flow in the Java layer

This intent is received trough Receivers or BroadcastReceivers that overwrite a callback named

onReceive(). This method is responsible for grabbing intents and triggering whatever action the

developer wants. In this case, the BootReceiver’s onReceive() method starts the daemon

allowing DroidGuardian to connect to the kernel module and start listening internet requests.

The following steps describe the process flow of the Java layer:

1. Android sends BOOT COMPLETED intent action and BootReceiver grabs it.

2. BootReceiver starts the service Daemon after grabbing the intent.

3. The Daemon service launches two threads: ServerTask and ClientTask. The former

operates as a server in the stream socket protocol and will run until an external perturbation,

as low memory, destroys the service. If nothing happen, this socket server will run while the

device is on. The last acts as the client socket in this connection. However, the client code

is not implemented in this class but in the native library. This thread calls the native method

startDaemon() that kicks off the native engine.

4. Once executing, the server socket starts a while(1) loop in which queries’ data will be ex-

changed between the server and the client.



5. When the client gets a query sends it to the server, that receives it through the read() method of

the InputStream interface.

6. Immediately after reading the query, the server invokes an instance of the QueryActivity

class through intents, transmitting the query’s data.

7. Along with this call to QueryActivity, the server also initializes a new server socket, called

internal server, that will handle the communication between the Daemon and the QueryActivity.

8. The QueryActivity gets the query’s data in a special format. Then, creates an instance

of the Query class, which has as instance variables the fields that will ultimately display the

information to the user.

9. This process culminates with the execution of the DialogWindow. The QueryActivity

instantiates a new Activity Fragment and exhibits it through the show() method.

10. The DialogWindow fills itself with a View that contains a text, a spinner and buttons. The text

displays the internet connection request information so that the user may decide what option to

chose in the spinner and what button to click on.

11. Once the user clicks a button, the DialogWindow executes a method that provides from a Java

Interface and is implemented in the QueryActivity class. This method starts the internal

client socket that will send the user’s action to the internal server, listening on the Daemon’s

server loop. After sending the message, the internal client closes itself.

12. The internal server gets the information, stores it in a variable and closes itself.

13. At last, the server reads this variable’s value and sends the message back to the native client.

14. This process is repeated every time a new connection request reaches the Java layer.

6.5 D E C I S I O N S

While developing DroidGuardian, various doubts and questions came out regarding the best way to

implement certain features. This section presents those cases along with the decision taken and its

explanation.

Dialog vs Notification

The dialog window don’t follow the correct rules that Android states when it comes to alert the user

that some event occurred. Dialogs exist for this purpose, but in a different context. A dialog alert

should be used inside an activity that the user intentionally invoked. For instance, when the user



triggers an action to delete data from a certain folder it is expected that a dialog window pops up

asking if he intends to delete that data. This is a consequence of the user’s action.

In situations where an event occurs outside the application that the user is interacting with, Android

offers the Notification interface. Notifications are messages displayed on the notification bar, placed

at the top (or bottom) of Android devices, by icons. When a new icon appears on the notification bar,

it means that some event took place as a result from a background action. The user is able to expand

the notification bar to check all notifications that, usually, comprise some short information text. By

clicking on the notification area, it may fill the screen with data related to the event that occurred,

depending on how the notification was developed. Users are free to keep notifications unread for as

long as they want, without lose performance.

Considering both elements, dialogs and notification, the DroidGuardian case fits better in the last,

because the event that triggers an alert to the user happens in background. However, taking the internet

connection request to the notification bar would lead to a longest response time when compared to the

dialog. The time the user takes to provide his input is included in the total amount of time that the

socket waits in the kernel in order to accept or reject the connection. It is known that kernel operations

should be executed as fast as possible and that keeping the kernel stuck could bring several damages

to the system. Even though it is kept waiting a considerable amount of time using dialogs, compared

to notifications this time would increase.

It was decided that disrupt the user from whatever he is doing, with an alert pop up was better than

keeping the kernel waiting long periods of time.

Service and Activity communication

The communication between the Daemon and the QueryActivity is established through local

sockets. This is the third nested socket connection that takes place since DroidGuardian intercepts an

internet connection attempt in the kernel and displays it to the user.
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Part II

A P E N D I C E S



A
S U P P O RT W O R K

Auxiliary results which are not main-stream
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B
D E TA I L S O F R E S U LT S

Details of results whose length would compromise readability of main text.
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C
L I S T I N G S

Should this be the case
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D
T O O L I N G

(Should this be the case)

Anyone using LATEX should consider having a look at TUG , the TEX Users Group
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