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Resumo

Desenvolver aplicações para plataformas heterogéneas pode dificultar

significativamente o processo de codificação, visto que o uso de dis-

positivos de computação diferentes significa ter que lidar com arquite-

turas diferentes, modelos de programação e organização de memória

diversos, espaços de endereçamento de memória disjuntos, etc. Este

documento propõe que o processo de desenvolvimento pode ser simpli-

ficado ao virtualizar um ambiente de memória partilhada tradicional

em cima de um sistema de memoria heterogéneo distribúıdo e ex-

pondo um modelo de memória unificado ao programador. O sistema

de memória liberta o programador da gestão manual dos dados e per-

mite o uso de memória dinâmica acesśıvel por todos os dispositivos.

O sistema de memória proposto foi implementado e validado na frame-

work GAMA usando três algoritmos para testar o sistema: SAXPY,

simulação N-Body “all-pairs” e Barnes-Hut. Estes algoritmos foram

usados para avaliar o desempenho e a escalabilidade da framework

quando equipada com o sistema de memória proposto.

Os resultados mostram que, de uma forma geral, o sistema de memória

melhorou o desempenho de todos os algoritmos. O sistema de memória

provou ser mais útil em algoritmos com uma alta razão de computação

sobre acessos a memória e especialmente em algoritmos irregulares ao

melhorar também a escalabilidade. O alocador de memória paralelo

mostrou óptimos resultados quando usado apenas no CPU, mas teve

problemas na velocidade de alocação quando foram adicionados GPUs

ao sistema.



Abstract

Developing applications for heterogeneous platforms can significantly

complicate the coding process, since different processing devices mean

different architectures, programming and memory models, disjoint ad-

dress spaces and so on. This document proposes that the development

process can be eased by virtualizing a traditional shared memory envi-

ronment on top of the heterogeneous distributed system and exposing

a unified memory model to the developer. The memory system frees

the developer from having to manually manage data movements and

allows the use of dynamic memory, accessible by all the devices.

The proposed memory system was implemented and validated on the

GAMA framework using three algorithms to benchmark the system:

SAXPY, all-pairs N-Body simulation and Barnes-Hut N-Body simu-

lation. These algorithms were used to evaluate the framework’s per-

formance and scalability when equipped with the proposed memory

system.

The results show that, overall, the memory system improved perfor-

mance on all algorithms. The memory system proved most useful

on algorithms with high ratio of computation over memory accesses

by improving execution times and especially useful on irregular algo-

rithms by improving scalability as well. The parallel memory allocator

showed great results when used only on CPU, but had speed issues

when GPUs were added the system.
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Chapter 1

Introduction

Discontent is the first necessity of progress.

– Thomas A. Edison

Graphics processors (GPUs) were developed to accelerate the creation and ma-

nipulation of computer graphics. With the increasing popularity of video games

these processors became quite common and powerful, enclosing great computation

capability[28]. Recent architecture improvements on the pipeline programability

and the introduction of general purpose programming languages like CUDA[30]

(Compute Unified Device Architecture) and OpenCL[37] (Open Computing Lan-

guage), made the GPU a popular processor in a vast array of areas varying from

scientific simulation on high end super computer clusters to simple video decoding

on common desktop computers.

The CPU (Central Processing Unit) was designed with a more generalist pur-

pose in mind and was oriented to the execution of sequential code. For many

years the strategy for improving CPU performance was based on increasing chip

clock rates, but due to physical limitations, that is no longer a viable solution[38].

With this limitation and Moore’s law[27] still in effect, the alternative was to in-

crease the number of processing cores in a single die. This is a dramatic change

in CPU architecture since one can no longer expect to see performance improv-

ing in sequential code by simply upgrading the CPU, the algorithms have to be

rethought and recoded in order to take advantage of the new parallel nature of
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the CPU.

With the new parallel orientation of the CPU and performance scalability

no longer being transparent to the programmer, the algorithms must explicitly

explore parallelism in order to take advantage of the new CPU parallel architec-

tures. This presents an unique opportunity to broaden horizons and explore other

parallel processors to implement the new algorithms. The GPU is an excellent

candidate because, not only it is almost ubiquitous in modern consumer comput-

ers, but it also encloses great computational potential, with a peak arithmetic

performance that far exceeds its CPU counterpart. Many state of the art super

computers are also equipped with gpus as seen on the top5001 list (June 2012).

However, one should not focus on which processor to use (CPU or GPU) but on

how to use both simultaneously and fully take advantage of the machine potential.

This is not always an easy task since, despite the new found parallel nature of

modern CPUs, GPUs and CPUs are still very different (architectures, instruction

sets, memory hierarchies, programming languages, etc.) and developing for these

systems can be very challenging. To improve productivity when programing for

heterogeneous CPUs+GPUs systems, new development tools are a fundamental

requirement.

1.1 Distributed shared memory systems

In parallel programming two main programming models exist – shared mem-

ory and message passing. The shared memory programming model is the more

straightforward of the two because it is a natural extension of the single proces-

sor programing model: the data resides in a memory pool that can be directly

accessed by any thread at any given time. This model is generally common on

tightly coupled processor machines, where all processor chips and processor cores

share a common interface to the memory. This shared interface to the memory

is however a serialization point and thus a scalability bottleneck.

In distributed memory systems, each processor (or group of processors) has

its private memory and is connected to others processors by a high speed (low

1Top500 http://www.top500.org/lists/2012/06
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latency high bandwidth) network. These systems do not have the same scalabil-

ity problems as a shared-memory machine, since there are dedicated interfaces

to memory and with a well designed interconnection network topology between

processors or group of processors, this type of system can scale virtually indef-

initely. The tradeoff for scalability is the increase in programming complexity.

These systems generally support a message passing programing model where each

thread can access data in its private memory directly, but has to request non-

local data explicitly before accessing it. This requires the programmer to have a

deeper knowledge of his program data requirements and to design the algorithms

to minimise remote data accesses.

Since discrete GPUs have dedicated memory, general purpose computing lan-

guages such as CUDA or OpenCL require the programmer to explicitly move

data between the (CPU) host memory and the (GPU) device dedicated mem-

ory, similarly to distributed memory systems. Recent improvements on GPU

architectures and programming languages allow the programmer to access host

memory from the GPU directly, so explicitly memory movements are no longer

compulsory. This eases the programming effort, but sacrifies scalability because,

much like shared memory system, serializes memory accesses with other devices

on the machine. So in an heterogeneous system with GPUs, we are faced with

the same problem as with a multi processor system – programming simplicity vs

scalability – with the added complexity of the asymmetric nature of host memory

and device memory, that have different sizes, bandwidths, clock frequencies, etc.

A way to circumvent the additional programming complexity of distributed

memory systems is to use a shared memory abstraction layer on top of the message

passing system – distributed shared memory (DSM) system. With the DSM, the

physical disjoint memory spaces can be addressed as a single, logically shared,

memory space. A software distributed shared memory system can be interpreted

as an extension to the underlying operating system virtual memory. Similarly to

the operating system virtual memory mechanism, the software DSM is completely

transparent to the programmer.
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1.2 Dynamic memory allocators

Another important step in bringing a familiar multi-core homogeneous environ-

ment to an heterogeneous CPU+GPU computing system is to enable the use

of dynamic memory on these heterogenous systems as in a shared memory en-

vironment. Dynamic memory allocators are used in a variety of applications.

The inability to use dynamic memory, poses a barrier to porting existing shared

memory programs (that rely on dynamic memory) to heterogeneous systems.

Dynamic memory is already possible on accelerators like modern GPUs, but

the data allocated dynamically by GPU threads are only accessible by those

GPU’s threads. The data is not visible by other GPUs’ and CPUs’ threads.

The same happens with dynamically allocated memory by CPU threads. An

heterogeneous dynamic memory allocator on an heterogeneous system should

behave as a traditional memory allocator on a traditional system, all dynamic

memory allocated by the system’s threads should be accessible by any other

thread.

1.3 Motivation and goals

The new found general purpose side of the GPU, started a new era in software

development. This opened a lot of possibilities, but also introduced software de-

velopers to new challenges – new architectures, programming models, program-

ming languages, etc. New parallel CPU architectures already put a hard strain

on programing complexity and the introduction of GPU many-core architectures

only increased the problem. The use of both CPU and GPU simultaneously only

adds to the already existing intrinsic difficulties of parallel programming of both

families of processors with disjoint memory spaces and different memory models,

with different consistency models and synchronization primitives.

This document proposes that the programming burden of heterogenous plat-

forms can be eased by delegating data management to a runtime memory system.

This system should unify the disjoint memory address spaces and expose to the

programmer a single memory model. This frees the programmer from having

to explicitly deal with data transfers and use architecture specific data man-
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agement primitives. By charging the memory runtime system with these tasks,

also enables the opportunity of the memory manager to work with the runtime

scheduler and dynamically optimize data transfers. The heterogeneous memory

subsystem should not only improve programing productivity but also improve

code portability with the minimum negative impact in performance.

The memory runtime system should also allow the programmer to reserve and

free memory dynamically. Not only traditional multi-core systems allow the use

of dynamic memory but several algorithms and applications rely on the use of

dynamic memory. The necessity of enabling the use of dynamic memory is further

confirmed by the recent efforts of bringing dynamic memory to GPUs [17][30].

Constructing a familiar and flexible memory environment on heterogeneous sys-

tems must include a dynamic memory manager.

The proposed heterogeneous runtime memory system allows: (1) The pro-

grammer to be data location agnostic – no explicit data movement requirement

by the programmer or even be aware of whether the accelerators have dedicated

memory or not. (2) Improve code portability – the systems exposes a unified

architecture independent memory model and memory operations. (3) Runtime

data management optimizations – by optimizing data movement at runtime, the

system can adapt to the system characteristics at real time. (4) The use of dy-

namic memory – any thread on a system can allocate and free memory visible by

the whole system, independently of the device where the threads reside. The dy-

namic memory manager also has the same four characteristics that other modern

memory allocators have: fast alloc/free operations, thread scalability, false share

avoidance and low fragmentation.

The focus of this work is set on CPU(s) and GPU(s) heterogeneous systems,

but the model should be flexible enough to suport other systems with aditional

classes of acelarators, like FPGAs, DSPs, etc. The heterogenous memory runtime

system was implemented and tested on the GPU And Multicore Aware (GAMA)

heterogeneous framework.
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1.4 Document organization

Chapter 1 gives a brief introduction to heterogenous programing, the problems

software developers face and possible solutions. Chapter 2 presents an overview of

the modern CPU multi-core architectures and GPU many-core architectures; and

gives some background on existing programing models, distributed shared mem-

ory systems, parallel memory allocators and heterogeneous frameworks. Chapter

3 specifies in detail the problem and the proposed approach on how to tackle it.

Chapter 4 details the proposed heterogeneous runtime memory system – the mem-

ory model, heterogeneous distributed shared memory and heterogeneous parallel

memory allocator. Chapter 5 contais the experimental validation of the proposed

memory system on the GAMA heterogenous framework. Chapter 6 gives a final

overview on the project, summarizing and criticizing the project and commenting

on future work.
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Chapter 2

Background and related work

If I have seen further it is by standing on ye sholders of Giants.

– Isaac Newton

Heterogeneous systems can be very diversified and include a great variety of

accelerators. The focus of this project however resides solely on CPUs and GPUs

only heterogeneous systems. In this chapter some background is given on the

multi-core CPU architectures and many-core GPU architectures. The history

and characteristics of software distributed memory systems and parallel memory

allocators is described as well. The chapter ends with an overview and critical

analysis of existing heterogeneous frameworks’ memory systems.

2.1 Parallel architectures

Different problems and objectives spawned several types of processor architec-

tures. Given the broad nature of problems that processors need to target, two

general approaches are taken – producing an all-purpose processor capable of

addressing all problem domains by sacrificing some performance over flexibility;

or producing domain specific processors, capable of tackling only a set of prob-

lems but being very efficient at it. Modern machines are normally equipped with

a general purpose processor (CPU) and one or more domain specific processors

7



(accelerators). One of the most popular and ubiquitous accelerator is the one

designed to tackle real time computer graphics (GPU).

2.1.1 CPU multi-core architecture

For many years the center of a computing device was a single-core architec-

ture processor, responsible for executing instructions sequentially one at a time.

Moore’s law predicted that the number of transistors in an integrated circuit could

be doubled inexpensively every two years [27] and that dictated the evolution of

the CPU, resulting in higher clock speeds. However, constraints in the current

processor manufacturing technology made this evolution path unsustainable. Due

to power consumption and heat dissipation restraints [38], the CPU clock rates

would eventually stagnate and alternatives were explored to complement (and

eventually replace) the increase in clock rates as the main improvement on newer

CPUs.

With power limitations and Moore’s Law still in effect manufacturers used

the extra transistors to increase the number of functional units by placing re-

dundant arithmetic and control units in a single die. In order to explore these

units new techniques were explored to extract parallelism at the instruction level

(ILP - Instruction Level Parallelism). Depending on manufacturer and processor

class different sets of ILP techniques are implemented – Pipelining, Very Long

Instruction Word (VLIW), Single Instruction Multiple Data (SIMD), etc.

The ILP techniques have the advantage of being used with little to no change

in the sequential source code written for traditional sequential processors, since

the processor will explore parallelism automatically and new parallel instructions

will be introduced in the program by the compiler simply by activating compila-

tion options. But the slow increase on main memory clock speeds when compared

to the CPU [40], made memory accesses increasingly costly and optimizations in-

troduced by ILP techniques produce poor results even with larger and faster

caches.

The solution to this problem could no longer pass through transparent paral-

lelism introduced by ILP techniques but through explicit parallelism. By divid-

ing an operation into several parallel tasks (computational threads) the processor

8



could hide a thread’s memory access latencies by executing instructions of another

thread until the data of the previous thread is available, thus keeping functional

units occupied – this technique is called Simultaneous Multi-Thread (SMT). SMT

efficiently helps hide memory accesses latencies but also introduces complexity

for the programmer since parallelism must be expressed in the algorithm/code

explicitly.

One way of increasing performance is to multiply the number of computational

units. This can be done on a single computational node by increasing the number

of CPUs per node – this technique is know as Symmetric Multiprocessor (SMP).

SMP is an old technique used when the technology does not mach the compu-

tational requirements of the task. Chip Multiprocessors (CMP) derive directly

from SMP but places the processors (cores) in a single die (processor package) –

multi-core architecture. CMP improves on SMP since communications between

processor cores are done inside the chip, which is faster, more energy efficient

and through the use of shared caches, it’s easier to keep the memory coher-

ent. This shift to paralel architectures stimulated the creation of new tools like

OpenMP[11], TBB[32] and Cilk[8] to help the software developers better explore

the processor potencial.

With the new tendency of placing multiple cores/processors in a single compu-

tational node the traditional communication mechanism between processors and

main memory had to be rethought. Since the communication channel to the mem-

ory is shared by all cores/processors, by increasing the number of cores/processors

in a node, the number of bus conflicts also increases. With few cores or processors

this problem is neglectable, but with the new tendency in increasing the number

of cores per processor, this communication model is unsustainable. The alterna-

tive comes in the form of NUMA (Non-Uniform Memory Access) architectures.

In a NUMA architecture, groups of processors/cores have a local memory and a

dedicated communication channel to it. In order for a processor to access non

local memory addresses it has to request the data from other processor’s local

memory.

The communication between processors/cores in the case of Intel processors

is done using QPI[19] (Quick Path Interconnect) or HT[18] (Hyper Transport) in

the case of AMD. Depending on the processor communication network topology,
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a processor might not have a direct communication channel between all the other

processors and a remote memory access might have to send its request through

several processors before it reaches the desired one. This adds latency to data

requests since the farther away (request wise) the data is, the slowest it is to

reach. NUMA architecture solves the scalability problem but introduces a new

one: memory access times are not uniform anymore, local memory access times

are faster than a non local access. A diagram of a NUMA architecture system

with four processors can be viewed in figure 2.1.

Figure 2.1: NUMA architecture in a four multi-core processor topology. Each
processor package has a dedicated channel to its local memory and communicates
with other CPUs through QPI/HT to access non local memory.

2.1.2 GPU many-core architecture

CPU architectures target a variety of different problems and so evolved with this

objective in mind, spawning very versatile architectures. More specific domains

produced different processors with very specific orientation architectures. One of

these domains was computer graphics and the class of processors produced for

this specific domain was the GPU.

GPUs are optimized for throughput instead of speed. A GPU architecture

sacrifices complex control logic (instruction prefetching, branching prediction,
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etc.) and large caches (to hide latency) in order to obtain a simpler computing

core using less transistors, allowing more cores to be packed in a single die. By

having lower clock rates, it reduces the energy consumption of the chip, making

heat dissipation easier, which in turn allows more cores per chip.

This type of architecture appeared to solve the realtime rasterization prob-

lem. Since rasterization is an intrinsically parallel task, the GPU architecture

had (and still has) the same parallel nature. From early on, these types of pro-

cessors enclosure great computational capability, but they were used exclusively

for computer graphics acceleration. It wasn’t until the late 90’s that the first

GPUs with programable pipelines appeared. Initial attempts to use GPUs as

general purpose used languages borrowed from computer graphics such as Cg[25]

(C for Graphics) or GLSL[34] (OpenGL Shading Language). But with still low

programmable capacity and no floating-point arithmetic capability, the use of the

GPU for general purpose computing was limited.

Floating point arithmetic capability emerged in these processors in the form

of floating-point color buffers in 2002[28]. The purpose of this was to produce

richer and more complex computer graphics but it opened the door for general

purpose computing on the GPU. Market competitiveness and demand for better

graphics stimulated further improvements and modern GPU architectures intro-

duced more programability on the previously fixed pipeline and improved floating

point support each time closer to IEEE754 specification.

The introduction of Nvidia’s Compute Unified Device Architecture (CUDA)[23]

marked an important step in GPGPU (General Purpose GPU), introducing a gen-

eral purpose language for GPU programming (C for CUDA), and replacing indus-

try specific terms like shaders, texels, pixels, etc. with more conventional terms

like cores, threads, cache, etc. Other GPGPU programing languages emerged like

the Khronos Group OpenCL[37] or Microsoft’s DirectCompute[9].

Nvidia Fermi’s architecture[41] (and it’s recent iteration, Kepler’s architec-

ture) is composed of simple computing cores called Stream Processors (SPs) or

CUDA cores. Each CUDA core is a pipelined scalar processor capable of sin-

gle precision integer or floating point operations. Double precision arithmetic is

achieved pairing two single precision cores. The SPs are grouped into Stream

Multi-Processors (SMs). High end versions of Nvidia Fermi processors have 32
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SPs per SM. Like the SPs, the number of SMs per chip varies, generally high end

versions have more SMs than lower versions of Fermi processors (GF110 GeForce

GTX 580 has 16 SMs). Each SM has load/store units (16 on GF110) and special

functional units (4 on GF110) that allow transcendental operations. An individ-

ual SM also has register memory and fast memory. This fast memory is used as

L1 cache and as an explicitly addressable memory (referred to as shared mem-

ory). This memory is shared by all CUDA cores within an SM. The chip also has

L2 cache, that is shared by all SMs on the chip and serves as the interface to the

chip outside memory be it device or host memory. The details are illustrated in

Figure 2.2
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Figure 2.2: Nvidia Fermi GF100/GF110 architecture. Chip diagram on the left
and SM diagram on the right. (Source Nvidia)

The execution model of each SM can be viewed as a 32-wide SIMD processor.

The threads are grouped into blocks (thread block) and the blocks are assigned to

SMs for execution. The execution model is not truly SIMD, since SMs deal with

conditions differently than an SIMD processor would. A SM does allow divergence

between threads (but with a considerable penalty). The model is called SIMT

(Single Instruction Multiple Thread). Threads can only be synchronized with

other threads from the same thread block, even if two blocks are assigned to the

12



same SM. However, CUDA has cache L2 atomic operations that can be used for

synchronization between threads of different blocks.

2.2 Distributed shared memory

There are several design considerations that have to be taken into account when

developing and implementing a distributed shared memory system[29] [12] [33].

These considerations can be divided into the following groups:

• Structure and Granularity – Structure refers to the layout of the data

in memory (linear array of words, data objects, language types, etc.) and

granularity refers to the size of the unit of sharing (byte, word, page, etc.).

• Coherence protocols and Consistency models – When there is data

replication, a coherence protocol guarantees that all nodes view all memory

positions in the same way. A consistency model determines the conditions

under which memory updates will be propagated through the system.

• Scalability – Distributed Shared Memory systems can have their scala-

bility limited by central bottlenecks (e.g sharing the same communication

bus) and global operations (e.g. synchronization operations).

• Heterogeneity – DSMs over heterogeneous systems are intrinsically more

complex. An heterogeneous DSM system might include subtle differences

(e.g. different memory size or cache levels) to more technical challenging dif-

ferences, like different processor architectures, instruction set architectures

(ISA), memory hierarchies, etc.

• Data location – When a thread requests data that is not in its local mem-

ory, the DSM must support mechanisms to find and retrieve the requested

data.

• Replacement strategy – When a cache is full, replacement strategies are

required to decide which cache lines should be replaced to free up space for

the new incoming data.
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• Trashing – Trashing happens when data that cannot be replicated is

needed by more than one device at a time or the data is being often written

by one device and read by other.

2.2.1 Structure and Granularity

Both these aspects of DSMs are closely related. Most DSMs do not structure their

memory[29] and use a simple memory pool. This way the DSM is faster (since

it introduces less computational overhead) and more flexible (since it has a lower

level view of the memory). Programs that use shared memory typically explore

data locality, i.e. a thread is likely to address spatially close address spaces in

the near future, so the use of bigger sharing units might reduce communication

overhead. On the other hand, a large “page” increases the probability that more

than one thread might need the same page at the same time and so increases the

probability of false sharing. Having the memory structured can help reduce these

problems but also introduces complexity. There isn’t a common page size on

DSMs with unstructured memories, implementations have the page sizes varying

from 16Bytes (Dash[20]) to 8KBytes (Mermaid[43]). Examples of DSMs with

structured memories are Munin[6] which structures memory into objects (integers,

arrays, structures, etc.) and Linda[1] that uses a database like type of structure.

2.2.2 Coherence protocols and Consistency models

“A memory consistency model is the logical sum of the ordering of events in each

processor and the coherence protocol” [35]. There are two kinds of coherence

protocols: write-invalidate and write-update[36]. 1) Write-invalidate – after a

piece of data is written locally, all copies of the same data on other nodes are

marked as invalid; 2) Write-update – after a piece of data is written locally, all

other copies of the same data are updated before any access to it is allowed. The

write-invalidate protocol allows data writes to be made locally (local update) but

data accesses by other nodes to the same data will always result in a cache miss.

The write-update protocol on the other hand will not produce cache misses but

each data write will always be a global update. Due to the cost of communication,

most DSMs implement a write-invalidate coherence protocol. The most natural
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and intuitive model is the Strict consistency model in which the programmer can

expect the most recently written value after a read operation. However, such a

strict model can have a severe impact in performance. Because of performance

considerations distributed shared memory systems implement more relaxed mem-

ory consistency models. Figure 2.3 represents several consistency models in an

hierarchical way.

Figure 2.3: Intuitive definitions of memory coherence. The arrows point from
stricter to weaker consistencies (Remastered version of original in [29])

2.2.3 Scalability

Most work about software DSMs and implementations rely on outdated architec-

tures (single-core processors and a single shared bus across processor packages).

Modern architectures have dedicated communication channels for different pro-

cessors with integrated memory controllers (NUMA architecture) in a structure

where each processor has its own private bus for its “local memory”. This re-

duces the scalability bottleneck but introduces complexity since memory accesses

latency times are no longer constant. Moreover, despite each GPU device having

its local memory, it’s not possible to directly access memory of a device from
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a different one, i.e, all communication between devices must pass through main

memory. Depending on the architecture, a GPU device might have to share a

memory communication channel with some or all other GPU devices.

2.2.4 Heterogeneity

Distributed memory systems over heterogeneous systems are intrinsically more

complex than homogeneous ones. A heterogeneous system might include subtle

differences (e.g. different memory size or cache levels) to more technical challeng-

ing differences, like different processor architectures, instruction set architectures

(ISA), memory hierarchies, etc. Some of these problems do not apply to CPU-

GPU computing. Using a common combination of CUDA GPUs and IA-32 CPUs

as an example, the CPU-GPU heterogenous system share the same programing

language (with small differences), same data representation (e. g. endianness),

etc. But other heterogeneous problems are still relevant: (1) Disjoint address

memory spaces; (2) Different ISAs and therefore different execution binaries; (3)

Computational capability, for example, limited support for conditional branching

and no support for recursion on the GPU; (4) Different Memory hierarchy, with

the introduction of CPU alien concepts such as explicit cache (shared memory) or

local memory; (5) Different memory interfaces with unique capabilities to lower

access latencies such as memory coalescing. There aren’t many implementations

of DSMs that support heterogeneous environments and most do not support

modern heterogeneous architectures like multicore and many-core heterogeneous

machines.

2.2.5 Data location

When a thread requests data that is not in its local memory, the DSM must

support mechanisms to find and retrieve the requested data. Systems where

there is no data migration or replication this can be trivially done, since data

resides only and always in the same centralized location. However, if data is

allowed to migrate and there is replication, the solution its not so easily achieved

and several approaches to the problem can be considered. These solutions can be

divided into to two groups[21]: Centralized approaches and Distributed manager

16



approaches. The Centralized approaches are simpler, but can overload the node

with data accesses and slow down the entire system. Distributed approaches scale

better but are significantly more complex.

2.2.6 Replacement strategy

Replacement strategies used in most DSMs are similar to the ones used in caching

mechanisms. There are several replacement strategies but the more common are

the least recently used (LRU) (or some approximation) or random replacement

(RR). Distributed shared memory systems can also have additional information

for each page that classifies them by type (e.g. shared, read-only, private, etc.)

and in turn are used in the replacement policy. A distributed caching system

would give evict priority to a shared read-only page over a privately owned page,

since the later would have to be written back in main memory in opposition to a

shared read-only page that could simply be erased. These page types cannot be

the only factor when deciding which page to replace, because a read-only page,

despite being easy to replace, could be accessed several times by that thread and

not having it in cache means that it needs to be fetched from main memory.

2.2.7 Trashing

Trashing is a common problem among DSMs and strategies to reduce trashing

generally revolve around some form of data replication. Munin allows the pro-

grammer to associate types to the shared data (private, migratory, read-only,

etc.). But not only is this only possible on a DSM with a structured memory but

also requires the programmer to specify the type of data (it’s not a transparent

process). Mirage[15] uses a dynamically tuned parameter on the coherence pro-

tocol that determines the minimum amount of time a page stays at a node (∆).

When a node writes on a shared page, that page remains writable on that node

for a minimum of ∆ time. Mirage dynamically analyses access patterns to tune

the ∆ value.
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2.3 Dynamic memory on parallel architectures

One of the recurring concerns when dealing with parallel architectures is scalabil-

ity and traditional memory allocators, designed to work on sequential machines,

tend to under perform and scale bad on parallel architectures. Modern memory

allocators were designed to address this problem. Several work exists on parallel

memory allocators like Hoard[7], Ptmalloc[42] and Michael’s allocator[26]. All

these memory allocators use different lock or almost lock free algorithms to deal

with the scalability problem.

Hoard[7] uses multiple processor heaps in addition to a global heap. Each

heap contains zero or more superblocks. Each superblock contains one or more

blocks of the same size. Statistics are maintained individually for each superblock

as well as collectively for the superblocks of each heap. When a processor heap

is found to have too much available space, one of its superblocks is moved to

the global heap. When a thread finds that its processor heap does not have

available blocks of the desired size, it checks if any superblocks of the desired size

are available in the global heap. Threads use their thread ids to decide which

processor heap to use for malloc. For free, a thread must return the block to its

original superblock and update the fullness statistics for the superblock as well

as the heap that owns it. Typically, malloc and free require one and two lock

acquisitions, respectively.

Michael’s allocator[26] recicles some of Hoard’s high level structures (heaps,

blocks and superblocks), reorganizes them slightly and replaces any locking mech-

anism with atomic operations (atomic CAS). This makes the allocator com-

pletely lock free. Each heap contains superblocks and each superblock is divided

into same size blocks. Superblocks are classified and grouped into different size

classes depending on their block size and each size class contains several processor

heaps. XMalloc[17] ports the models introduced by both CPU exclusive Hoard

and Michael’s allocators to the GPU. XMalloc is a GPU parallel memory allocator

implemented in CUDA. It follows a similar data structure to Hoard’s superblocks

and borrows the atomic CAS based lock-free idea from Michael’s allocator.
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2.4 Heterogeneous frameworks memory systems

With the popularity of the GPU for general purpose computing increasing re-

cently also did the interest in developing tools to aid developers to use not only

the GPU but both GPU and CPU. In an effort to ease the software development

process in heterogeneous architectures, some frameworks arose (including the

GAMA framework). These heterogeneous frameworks have different approaches

and propose different programming and memory models. Of the several existing

heterogeneous frameworks three stand out by their different approaches to data

management: Harmony[13], Merge[22] and StarPU[4].

Harmony is a runtime system that offers a programing and execution model

for heterogeneous systems. The objective is to simplify the programing of auxil-

iary accelerators like GPUs, FPGAs (Field-Programmable Gate Array) and Intel

IXPs1 without sacrificing performance. The programmer writes a collection of

compute kernels that are dynamically assigned to available computing resources.

The execution model is similar to out-of-order scheduling and execution of instruc-

tions on a superscalar processor – kernels are scheduled for execution depending

on availability of data (data dependencies) and resources (accelerators). Each

kernel only computes data on its own address space, which means that the same

kernel cannot run simultaneously on different processors.

Merge is a framework for multi-core heterogeneous systems. The framework

offers a programing language (Merge high level language) that uses the map-

reduce patterns. The map-reduce enables automatic parallelization of the code

and allows the framework to create independent work units to be assigned to

processor cores. Merge uses EXOCHI [39] to implement the API for the various

heterogeneous processors. EXOCHI can also be used by the programmer to ex-

tend Merge to others heterogeneous architectures. This framework is one of the

most similar to a SMP (Symmetric multiprocessing) system in terms of memory

operations, but the drawback is that it needs all the devices to share the same

memory pool. This narrows the type of devices it supports and excludes the

dedicated GPUs, the most popular accelerators today.

StarPU is a runtime system with dynamic task scheduling. A task is a set

1Intel family of network processors based on ARM micro-architectures.
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of architecture specific implementations of the same computational kernel. Each

task is then assigned to the available heterogeneous processors by the scheduler.

StarPU implements a virtual shared memory with a relaxed consistency model

with caching capability[3]. This framework is the more complete in terms of data

management. It allows the access of data by any device on the system as in a

shared memory environment and it moves data and keeps memory consistency

automatically[2]. The framework uses the GMAC[16] system to manage data.

The GMAC system has similar characteristics as the proposed DSM – reduced

programming effort and improved code portability by freeing the developer from

having to deal with data movements explicitly. However, it has some short-

comings: Despite the CPU being able to access any program variable, (1) code

running in the GPU cannot access variables hosted in CPU memory and (2)

code running in the GPU cannot access variables hosted in other GPUs. Also, it

does not support dynamic allocation and deallocation of memory (visible by all

computing devices) by code running on GPUs.

2.5 GAMA framework

The GPU And Multicore Aware (GAMA) framework is a framework designed to

extract performance and simplify the coding process of heterogenous comput-

ing environments with GPUs and other classes of accelerators. The framework

unifies the independent programming, execution, and memory models of the dif-

ferent computing devices into a single one. This not only simplifies the coding

process but also makes the source code independent of the underlying hardware,

improving both coding productivity and portability. The framework is still in

development and currently only supports systems with x86-64 processors and

CUDA capable GPUs.

To implementing an algorithm, the programmer has to code at least two

methods – the kernel and the dice method. This is identified as a job. The

GAMA kernel works in a similar way as a CUDA or OpenCL kernel, it defines

which data each thread will manipulate and how that data will be handled. The

dice method defines how the data input domain will be divided across the parallel

tasks and how many tasks will be generated from the kernel. It is similar to the
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way we can define the number of threads and the granularity of each thread in

OpenMP or the thread organization topology (grid and block sizes) in CUDA,

but more flexible.

The framework builds individual binaries from the kernel targeted at the dif-

ferent computing device’s architectures in the system and generates tasks from

the dicing method. The runtime scheduler then dynamically assigns the tasks to

different computing devices and executes the appropriate binary automatically.

The programmer can implement an algorithm as a collection of jobs and tasks

from different jobs can run in parallel or can be explicitly sequentialized by a syn-

chronization primitive. The primitive guarantees that all tasks from the previous

job have finished by the time tasks from the next job start.
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Chapter 3

Problem Statement and Thesis

Simple things should be simple; complex things should be possible.

– Alan Kay

Heterogeneous systems introduced new programming challenges and aggra-

vated existing ones. In this chapter, some of the problems with an asymmetric

distributed memory system typical of heterogeneous environments will be pre-

sented and analyzed. In the end a solution for these problems is proposed and

justified.

3.1 Problem

Data management is a significant and difficult problem when programming het-

erogeneous systems since correct data placement is crucial for achieving fast exe-

cution times. When dealing with these kind of systems the programmer is faced

with several problems regarding data and memory:

• Explicit data movement – Accelerators have dedicated memory and, since

generally the device cannot access host memory and vice versa, the pro-

grammer has to explicitly move the data to and from the devices. This

requires the programmer to have a deep knowledge of his program data

requirements and to explicitly code his algorithm in an effort to accommo-
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date those data requirements with a minimum impact in performance due

to memory copy latencies.

• Poor code portability – With a specific accelerator comes a specific memory

model and set of primitives to manage data movement and synchronization

(intra and inter devices). If the program has to be ported to another archi-

tecture, the algorithm has to be recoded to incorporate the new architecture

specific memory model and primitives.

• No opportunity for runtime optimizations – By programming a device di-

rectly, the data movement operations are fixed and hardcoded to the pro-

gram upon compilation. This leaves no room to dynamically “measure” the

state of the system and decide the best option regarding data management.

With no runtime help, the user is confined to a “trial and error” approach

to determine the best way to move data around with the least performance

impact. This also poses a potencial problem when adding new devices since

it requires the programmer to repeat the “trial and error” process to find

the best option on the new system with additional computing devices.

• Use of dynamic memory – Regardless of the programming model, acceler-

ator code follows a simple pattern: copy data to the device; execute the

device code on the that data; copy data back from device. The use of dy-

namic memory is generally not included in the model. Recent improvements

on GPU architectures and programming models allow the programmer to

allocate and free memory inside of the device, but this memory is not acces-

sible by all cores/threads on the device and certainly not by other devices

or CPU.

All these problems increase coding complexity and require the programmer

to be familiar with the architecture and its primitives. This can have a signif-

icant impact in coding time and decrease productivity. This can even be more

problematic if the code has to be ported to other architectures, which generally

requires the algorithm to be recoded to incorporate the new architecture specific

memory models and primitives. Existing heterogeneous frameworks try to tackle
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some of these problems, but assume an easy and static data division (no data de-

pendencies between devices and no dynamic memory required) or avoid the issue

altogether by requiring the use of accelerators that don’t have dedicated memory

and share the host memory. StarPU stands out as an exception in this regard by

acknowledging the importance of data management in code performance and of-

fers automatic data movement and dynamic management of data dependencies.

Unfortunately GMAC, StarPU’s DSM, does not offer support for remote data

access by the GPU threads, nor the use of dynamic memory.

3.2 Thesis

We propose a novel software memory system model for heterogeneous parallel

machines that (1) unifies the disjoint address spaces of host main memory (CPU

address space) and accelerator dedicated memory (GPU address space); and (2)

allows the use and allocation of dynamic memory by all devices, i.e. each device

can reserve and free memory visible by all devices on the system.

We argue that to simplify the programming effort and improve code portabil-

ity on heterogeneous computing systems, the use of a distributed shared memory

system with suport for dynamic memory is an important step. The heteroge-

neous memory system also follows a unified, architecture independent memory

model. This essentially virtualizes a more familiar shared memory system on

top of an asymmetric distributed memory system. The heterogeneous memory

system allows:

• The programmer to be data location agnostic – No explicit data movement

necessary. The runtime memory system will detect memory dependencies

and move the data accordingly. The programmer manages and accesses

data in the same way as in a shared memory system.

• Better code portability – The system unifies the different devices memory

models into a single architecture independent memory model. The system

also exposes a single set of data management and synchronization opera-

tions. The programmer will not have to know or use any of the underlying
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architecture specific data management primitives. This allows the code to

be ported without any modifications.

• Runtime data management optimizations – By delegating the data move-

ment operations to the runtime system, it is possible for the memory system

to dynamically optimize data movement for the current system characteris-

tics and coordinate with the runtime scheduler to improve data reutilization

and minimize data movement.

• Use of dynamic memory – The memory system allows any thread by any

device to allocate memory, visible and accessible by any other thread on

the system, at any given time. This helps bring the capabilities of hetero-

geneous systems closer to the ones of a traditional shared memory (CPU

only) system.

The heterogeneous dynamic memory allocator follows the same four charac-

teristics as a modern parallel memory allocator:

• Speed – An allocation/free operation should perform as fast as a sequential

memory allocator. In the case of the heterogeneous memory allocator, these

operations should be as fast as the (CPU only) parallel allocator.

• Scalability – The memory operations (alloc/free) should scale with the num-

ber of processors on the system i.e. the alloc and free operations execution

time should remain constant, independently of the number of processors.

• False share avoidance – The allocator should avoid the sharing of memory

pages in which different processors have data in the same memory page.

• Low Fragmentation – Heavy fragmentation can lead to under use of total

available free memory and a significant decrease in performance of allocation

and free operations.
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Chapter 4

Design and Implementation

Software is not limited by physics,

like buildings are. It is limited by imagination, by design, by organization.

In short, it is limited by properties of people, not by properties of the world.

– Ralph Johnson

The proposed heterogeneous memory system can be divided into two main

components – a DSM and a dynamic memory manager. The DSM maintains

a virtual memory pool, shared across all computing devices, and the dynamic

memory manager allows the dynamic allocation and deallocation of memory in

this pool. In this chapter, the proposed memory and programming model will

be presented together with the design of the heterogeneous DSM and memory

manager.

4.1 Programming and memory model

Traditionally when using accelerators, the programmer declares data objects that

are associated with a co-processor. The data is then moved to the specific co-

processors and one or more kernels are executed on that data. An example of

this model can be viewed in Figure 4.1. The memory space must be allocated in

both the host and the device. Then the data is copied to the device, the kernel
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is executed and after the execution, the data is copied back to the host. If using

multiple devices, this process must be repeated for each device.

Figure 4.1: Simple example on how to execute a kernel in a single CUDA GPU

With a DSM there is no need to explicitly request memory on the different

devices. Programmers have only to allocate data and run a single kernel (a job in

GAMA terminology). The runtime system assigns the processor specific kernels

(generated from the user’s architecture independent kernel) to the respective de-

vices and manages data transfers automatically. Figure 4.2 shows an example of

running a job in the GAMA framework with the DSM system. The programmer

only has to allocate the necessary data and execute the job. Since the execution

is done asynchronously, the programmer must also use a synchronization barrier

if needed.

The system exposes a simple API for allocating/freeing memory – an alloc and

dealloc methods (Table 4.1). The programmer only has to specify memory size

and the memory properties required – HOST, DEVICE or SHARED. Memory

allocated with the HOST property will only be accessible by the host. Memory

allocated with the DEVICE property will only be accessible by the computing

device that allocated it. Finally, memory allocated with the SHARED property

27



Figure 4.2: Simple example on how to execute a job in GAMA regardless of the
number of accelerators

will be accessible by all computing devices on the system. This distinction can

be useful since some data might only be necessary in the current thread/device

scope, and specifying this fact explicitly allows the memory runtime system to

avoid unnecessary data tracking, improving performance.

When coding the algorithm, aside from the kernel and the dice method re-

quired by the GAMA framework, the programmer has to specify two additional

data methods. These methods allow the memory runtime system to identify the

different tasks’ data requirements and manage data coherence accordingly. One of

the methods identifies the read-only data (ReadOnlyElems(void)) and the other

the read/write data (ReadWriteElems(void)) for each thread. These methods

must return a list of the elements that will not be modified and the ones that will

(respectively). Since the only requirement of the methods is for the output to be

a list of elements, the body of the methods (i.e how the list is created) can be as

complex as the programmer needs them to be.

The DSM follows a weak consistency model and tasks generated from a job

are scheduled arbitrarily. Order between jobs can be enforced by using the syn-

chronization primitive “synchronize()”. The programmer can also manage access

to shared resources within a job using atomic operations such as “atomicCAS”,

“atomicAdd” and “atomicSub”. The full list and description of all primitives can
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be consulted in Table 4.1.

API methods Description

alloc(s, mem type) Allocates Memory with size “s” with differ-
ent visibilities depending on “mem type”. If
“mem type” is HOST, the memory is only
visible by the host. If DEVICE, the mem-
ory is only visible by the computing device
that allocated it. If SHARED, the memory
is visible by all computing devices.

dealloc(ptr, mem type) Frees the memory in “ptr” pointer allocated
with type “mem type”.

atomicCAS(var, cval, nval) Atomically tests if the variable “var” has the
“cval” value. If successful, “var” is updated
with “nval”

atomicAdd(var,val) Atomically adds the value “val” to the cur-
rent value of “var”

atomicSub(var,val) Atomically subtracts the value “val” to the
current value of “var”

synchronize() Acts as a barrier for all the currently execut-
ing tasks. After this point all the previously
launched tasks are guaranteed to have fin-
ished and the data on the host is coherent

Table 4.1: Low level memory API

4.2 Distributed shared memory system

The proposed distributed shared memory system is designed for heterogenous

computing systems with CPUs and accelerators. The heterogenous DSM unifies

the disjoint address spaces of host main memory and accelerator memory (GPU

address space), freeing the programmer from having to explicitly manage data

transfers across computing devices.

4.2.1 Conceptual model

The heterogeneous DSM organizes its memory pool into pages with the same

size. A page is the smallest unit of transfer between physical address spaces. The
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DSM follows a single writer, multiple reader model (SWMR), i.e. only one valid

copy of a page with write permission exists on the system at any given time, but

several valid copies of read-only pages are allowed. Note that if a page with write

permissions exists, then no read-only copies of the same data can exist simulta-

neously. The system is centralized on the host, which is responsible for serving

data requests and guarantees coherence. The memory system is hierarchically

organized in two levels – (1) central memory, residing on the host address space,

where the original data is stored before task execution and where data requests

are fetched from; and (2) device memory, computing devices’ private memory

where copies of necessary pages will reside during task execution. Page coherence

is maintained using the MSI protocol (Modified, Shared, Invalid). A high level

diagram of the model and how it works can be viewed in Figure 4.3.

Figure 4.3: Diagram of the DSM mechanism of data replication between central
memory and all the computing devices. The diagram shows the Device 1 receiving
a Read-Only page from central memory; Device 2 returning a Read/Write page to
central memory; and Device 3 receiving a Read/Write page from central memory.

30



Centralized vs Distributed manager approaches

In regard to data location, two groups of solutions exist: centralized approaches

and distributed approaches. A distributed solution scales better but it is also

more complex. The distributed approach would require not only the CPU but also

the accelerators to deal with all the necessary bookkeeping operations associated

with a distributed solution (manage data state, data location, incoming/outgoing

request queues, etc.). This solution would require a high cyclomatic complex

implementation, to which simple accelerators like GPUs are very sensible to.

Also, this type of solution generally requires fine-grain thread control capability,

which the GPU does not have as well.

By following a centralized approach on the host, the memory runtime sys-

tem enables the use of simple accelerators and minimizes the overhead on them.

The centralized solution could potentially limit scalability, but given the limited

number of acceleratores that can be fitted in a single machine, the scalability

impact should be minimal. Efficient techniques of doing the data transfers be-

tween the central memory and the devices’ memory (discussed further on) can

also reduce the problem. In short, the centralized approach introduces the least

computational overhead on the accelerator side, enables the use of feature poor

accelerators, and does not use features not guaranteed to work in future archi-

tectures by manufactures.

Coherence protocol and Consistency model

The memory runtime system uses a set of centralized tables on the host to keep

track of all the pages state and location on the system. There is a table for each

device that matches current device pages with their state. Since the system uses

the MSI memory coherence protocol, each page can be in one of three states:

Modified, Shared or Invalid. Modified means that the computing device has a

page that was altered and needs to be copied back to the host; Shared means that

page is valid and may or may not exist another copy of the page in other device;

and Invalid means that the page is outdated and a recent copy must be fetched

from the host. All these states are defined from the central memory perspective.

The heterogeneous DSM follows an implicit Acquire-Release consistency model.
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When a task is scheduled to run, the runtime memory system determines the task

data requirements. If read/write data is required, an acquire action is performed

on the corresponding memory pages and the data is moved onto the respective de-

vice prior to the task execution (data prefetching). After execution the respective

pages are copied back and a release action is performed. All these actions are per-

formed automatically by the runtime system with no programmer intervention.

Read-only data does not require the use of the consistency mechanism.

One of the limitations of using heterogeneous systems is the inability to use

atomic operations, since these operations only guarantee atomicity to threads

running on the same device. The implicit Acquire-Release consistency model only

guarantees page exclusivity to a device and not to a thread, i.e. guarantees inter-

device exclusivity and not intra-device exclusivity. This further relaxed Acquire-

Release model allows the programmer to control resources with atomic operations.

The use of efficient, architecture specific and exclusive, atomic operations is thus

possible, because the memory system transparently guarantees data exclusivity

on the computing device. This way, the use of atomic operations is made viable

in an heterogeneous environment. It’s important to note that the programmer

uses a set of architecture independent atomic operations to write the kernels and

the framework replaces them with architecture specific ones at compile time.

4.2.2 Implementation

The memory system emulates a shared memory address space by first reserving

memory from main memory (host memory) and accelerators’ private memory

(device memory). The host memory will account for the totality of memory

available to the runtime system i.e. all the data allocated during execution must

fit in this pool. The device memory, generally smaller than host memory, serves as

an additional intermediate memory between the processor and the main memory.

Effectively, the devices’ memory can be viewed as an additional level of cache

memory. These memory pools are structured in pages of 4KBytes (configurable),

matching the operating system’s and GPU driver’s page size to avoid false sharing

and improve performance.

After the scheduler assigns a task to a computing device, before the task

32



is executed, the runtime memory system is called to make the necessary data

movements. The two data methods specified by the programmer, that indicate

the data requirements, are called. With these two methods, the memory runtime

system should then generate a list of pages with read/write and read-only permis-

sions. This list of pages is then cross-checked with the page tracking table. The

test checks three different aspects: (1) if the page has read/write permissions, i.e.

if it’s free (no lock in effect) to be copied; (2) if the page is already in the device

(if so, no copy is necessary); and (3) if the page is not going to evict another page

already on the device memory, required by an executing thread. After the test,

a new list of pages is outputted (depending on the outcome of the test for each

page) and the data is moved to the computing device.

The memory runtime system keeps track of all the executing tasks. After a

task finishes its execution, the page tables are updated and the necessary data is

copied back from the computing device to host memory. Only pages marked as

read/write are copied back.

Data movement optimizations

Since the overhead of moving data across PCI-Express is significant, doing a single

copy for each page is not sustainable. To reduce the cost of moving the necessary

data to device memory, the page copies are coalesced into the minimum number

of memory copies possible. To do this, the list of pages is ordered in regard

to their physical memory positions and then transferred in bulks of contiguous

memory positions. The process is represented in Figure 4.4. After the data is

scheduled to move, the task can be executed.

If the computing device does not have dedicated memory and shares the host

address space, no data copies are performed. The necessary acquire and release

operations and the additional bookkeeping operations to guarantee memory co-

herence are still done, but no actual data movement is performed, since the host

memory is the device’s private memory as well. These devices are said to have a

virtual private memory. In the current version of GAMA, the CPU itself fits the

profile of a dedicated memory-less device. Despite being the processor respon-

sible for managing the system, it is also capable of doing effective work and in
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Figure 4.4: Diagram of the of a coalescing process of seven pages into two memory
data movement operations

this context is a computing device like the accelerators. Since the CPU dedicated

memory is the host memory (by definition), as a computing device, it is seen as

any other accelerator but with no dedicated memory.

Modern accelerators can be set to use host memory instead of their dedicated

memory to simplify programming effort and accommodate large problem sizes at

the cost of performance. The heterogeneous DSM is able to take advantage of this

capability. If the hardware supports it, the caching mechanism can work in hybrid

mode by having some data in accelerator dedicated memory and the rest in host

memory. This process is transparent to the programmer and if the data required

by a given task is larger in size than the dedicated memory, the memory runtime

system will copy what it can to the dedicated memory (caching) and access the

rest through DMA. Although not ideal, since access times to different memory

positions might be considerably different, it makes the system more flexible.

Address translation and Replacement strategy

When shared data is accessed, the respective global virtual addresses are trans-

lated into device physical memory at access time. The translation mechanism is

hidden from the programmer through the use of smart pointers. These pointers
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have their access methods overloaded with methods that translate the addresses

during the access.

To reduce the overhead of address translation, the mapping mechanism from

virtual addresses to physical ones, follows a direct mapping approach. An alter-

native would be the use of a n-way associative mapping policy to reduce conflict

misses, but this comes with a higher address translation time cost. Although the

direct mapping mechanism is prone to trashing, it provides a way to do address

translation in constant time with little overhead.

The trashing problem is also more prone to happen in small caches (several

KBytes/few MBytes), since close addresses might overlap if the current working

domain is larger than the cache (not difficult in small caches). But since acceler-

ators dedicated memory, like a GPU, tends to vary between several hundreds of

MBytes to few GBytes the trashing problem is somewhat masked.

Runtime optimizations

The memory runtime system uses several techniques to reduce memory transfer-

ence latency – memory transfers coalescing, asynchronous data copies and data

prefetching. The last is achieved by cooperating with the runtime scheduler. By

performing the data transfers asynchronously, the memory runtime system is able

to move the data to the devices while they are executing tasks, thus reducing data

transfers penalties. However, the runtime memory system needs to know what

and where the data will be required.

Before a running task is over, the runtime scheduler can signal the memory

runtime system as to which will be the next task(s) to execute and where. The

runtime memory system can then perform the necessary operations (evaluate

the data requirements, check what pages need to be copied and coalesce the

memory copy operations) and copy the required data to the respective device

while the device itself is performing actual work. Since these operations are done

asynchronously, they can potentially be over before the current executing task of

the device is done executing and the new task (that requires the new data) starts

its execution. This minimizes idle time between execution of different tasks and

data movement penalties.
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4.3 Dynamic memory manager

The heterogeneous memory system is fitted with a dynamic memory allocator.

This memory allocator was designed to accommodate high thread volume envi-

ronments running on different architecture parallel processors simultaneously.

4.3.1 Conceptual model

The memory manager maintains as many heaps as processing cores plus a shared

pool (P heaps + 1 shared pool). A running thread can only access its respective

heap and the shared pool. The memory is organized into three groups hierarchi-

cally – blocks, super-blocks and hyper-blocks. A block is the minimum size unit

that a thread can reserve (small size requests will be round up to a block) and a

super-block is a group of 64 blocks. When the allocator receives an alloc request,

it calculates the number of blocks necessary to satisfy the request. If the cores

private heap does not have the number of blocks requested available sequentially,

a new super-block is fetched from the shared pool. A super-block is the minimum

amount of memory space that can be fetched from the shared pool. Requesting

several blocks at one time helps reduce the number of times a thread needs to

access the shared pool and thus reduces the serialization points in the system.

If the memory request size does not fit in a super-block, a hyper-block is

fetched from the shared pool to satisfy the request. A hyper-block is a group

of super-blocks that is used for large memory request sizes (requests bigger than

a super-block). A hyper-block contains the minimum amount of super blocks

necessary to satisfy the request. After receiving a deallocation request, if the

respective heap manages to get one or more (in case of a hyper-block) super-

blocks completely free, those super-blocks are returned to the shared pool. This

recycling mechanism assures that available space is returned to all threads of the

system as soon as possible and reduces fragmentation.

The shared pool stores two types of data and can be divided into two pools:

free super-blocks memory pool; and free hyper-blocks memory pool. Both these

pools are kept in a LIFO structure to improve locality. When a memory position

is freed and the heap must return free space to the shared pool, in case of a

freed super-block, it will be returned to the free super-blocks memory pool and
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in case of a hyper-block, it will be stored in the free hyper-blocks memory pool.

When a new allocation is made, if a private heap needs a new super-block, it

will search for free super-blocks first in the free super block memory pool, and

if a new hyper-block is needed, the allocator will first search for free space in

the free hyper-blocks pool. This improves the allocation speed of hyper-blocks.

Searching the free super-blocks pool to satisfy a hyper-block request can be slower

since the free super-blocks pool does not necessarily have the free super-blocks

sequentially organized. This requires the allocator to check for sequential groups

of super-blocks to form a new hyper-block. By storing previously allocated hyper-

blocks on an specific pool, the effort of creating a new hyper-block out of free

super-blocks does not have to be repeated. A high level diagram of this model

can be viewed in Figure 4.5.

Figure 4.5: Diagram of the memory allocator showing one heap returning a free
super-block to the shared pool and another heap fetching a new super-block from
the shared pool.
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4.3.2 Implementation

The allocator uses a hash function to map each individual thread with its corre-

sponding private heap. This process can result in collisions, but given the GAMA

execution model, that assigns the same number of worker threads (responsible

for the execution of tasks) as processing cores, collisions can always be avoided.

Each private heap is implemented as a double linked list of super-blocks as are

the free super-blocks and free hyper-blocks memory pools. To keep track of the

state of the super-blocks, a 64 bit mask, for each super-block, is stored and iden-

tifies the free and occupied blocks of the super-block. Together with the mask,

an additional flag identifies the super-block as being part of an hyper-block or

not.

The 64 bit masks, despite being used to identify the free and occupied blocks

locations in a super-block, can also, incidentally, be used to know the number

of free blocks in a super-block. However, using the masks to find the number of

free blocks requires somewhat complex bitwise arithmetic that without hardware

support cannot be done in constant time and can be time consuming. Since

neither the CPU or the GPU have special units to count the number of true

or false bits in an word/long word, an additional structure is used to store the

number of free blocks in a super-block. Despite storing redundant information,

this helps speed up the search for available space on the super-blocks of a core’s

heap. In the case of a super-block being part of an hyper-block, this structure

stores the number of super-blocks in that particular hyper-block.

Despite having multiple double linked lists that can vary in size, they were

implemented without the use of dynamic memory. This is possible given two

characteristics of the proposed model: the total number of super-blocks in the

system is constant and each super-block can only be reserved in a single pri-

vate heap or be available in the free super-blocks or hyper-blocks pool at any

given time. To implement the double linked lists two static arrays are used: the

next sblock and the prev sblock. Each index of the arrays represents a super-block

and the value stored in the arrays in that index, represents the index of the next

and the previous super-block (stored in the next sblock and the prev sblock arrays

respectively). A negative index represents a null connection. Each new list in
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the system only needs to store the index of the first element and use these two

arrays to find the other super-blocks of the list. Since the number of super-blocks

is constant, the size of the arrays is also constant and since each super-block can

only belong to a single list at any given time, only these two arrays are required

to keep track of all the lists in the system. This enables the use of flexible struc-

tures like double linked lists without requiring the use of dynamic memory, which

improves data locality and avoids dynamic memory allocation and deallocation

overhead.

Processing core definition

Since the allocator assigns a private heap to each core in the system, it is impor-

tant to define a processing core in the heterogeneous memory allocator context,

since different manufacturers have different definitions from each other and even

among themselves when referring to different architectures. In this context, a

processing core is an independent execution unit capable of decoding and execu-

tion of a thread in SISD or in SIMD fashion. With this definition a CPU core

is the same as defined by the manufactures, a GPU core however is not. GPU

manufacturers qualify a core as a single unit capable of executing an arithmetic

operation. However, these units are packed in groups since they share the same

fetching and decoding unit, the same instruction pointer, and some of these arith-

metic units can only do special types of arithmetic operations. In this context,

we call a GPU core as an independent group of these simple computing units

and qualify it as an SIMD “number of simple units per group”-wide processing

core. Using manufacturer nomenclature, a core is an SM in Nvidia GPUs (Fermi

architectures) and a compute unit in AMD GPUs (GCN architecture[24]), 32 and

64 wide respectively.

Block and super-block sizes

Although configurable, the block size should be a multiple of the DSM page

size. Like the DSM itself, that uses the same page size as the operating system

and the GPU driver to avoid false sharing, the memory allocator (that runs on

top of the DSM) needs to follow the same methodology, for block sizes, for the
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same reasons. Since the minimum amount of memory that can be reserved by any

thread is a block, no two threads will require the same memory page to access data

allocated in two different blocks, i.e. there is no possibility of false sharing and

no unnecessary page bouncing between two different devices (ping-pong effect).

The choice for a 64 block sized super-block was both a compromise and a

choice of convenience. Since the super-block is the minimum size of free memory

that can be fetched and returned to the shared memory pool, and being the shared

memory pool the only serialization point between independent processing cores,

the super-block size is relevant for the memory allocator performance. A smaller

block size reduces fragmentation, but increases the chance that a heap might need

to access the shared pool and the chance that it might have to wait to access it.

A bigger block-size reduces the chances of accessing the shared pool and thus

serialization chances, but increases the memory fragmentation. Preliminary tests

showed the 64 block sized super-block as a good compromise between serialization

chances and fragmentation in terms of performance. The performance results are

also influenced by the fact that the development and test machine used 64 bit

processors. The mask arithmetic, necessary to manage the super-blocks state,

didn’t perform faster with smaller super-block sizes (e.g. 32 block size with 32

bit masks) but performed slower with bigger super-block sizes (e.g. 128).

Almost lock free approach

The allocation and deallocation follows an almost exclusive lock free approach.

This is achieved by using compare and swap (CAS) operations. When a thread

approaches a critical section, it reads a value and tries to updated with an atomic

CAS. If successful, it will enter the critical section, if not, meaning the value was

altered by another thread, the operation is repeated until successful. This is the

methodology followed by several lock free scalable parallel memory allocators.

The lock free (atomic operations only) approach is problematic when dealing

with heterogeneous systems. The atomicity of these operations is only guaranteed

among intra device threads. Atomic operations executed by two threads running

in different processors (e.g CPU and GPU) are not atomic. This is not generally a

problem since each processor has its private heap, but the shared heap is accessible
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by all devices. When accessing the shared heap the atomic CAS approach is not

viable and distributed locks are necessary. The implemented solution is a modified

version of the Eisenberg and McGuire algorithm[14]. This algorithm allows each

thread to enter the critical section only when they have the token. The token is

passed around and always belongs to one and only one thread at a time. Before

receiving the token, the threads should first announce their intention to enter the

critical section. As soon as their turn comes they receive the token and can enter

the critical section. At the end, the token is passed to another thread waiting

for its turn. In an effort to minimize the performance impact of this lock, in an

otherwise lock free implementation, an hybrid Eisenberg and McGuire and atomic

CAS algorithm was implemented. Instead of alternating the token between all

threads on the system, the token is used only to select computing devices. Once

a device has the token, the atomic CAS approach is used to control the critical

section between the device’s threads.

GPU specific optimizations

One of the shortcomings of the GPU is that, even though it allows thread diversion

in the same thread warp, threads running simultaneously on the same SM, have to

share the same instruction pointer. This is achieved by the hardware by grouping

the threads that share the same execution path and running the different groups

sequentially. This is an hybrid between MIMD and SIMD models that Nvidia in

particular calls SIMT (Single Instruction Multiple Thread). When GPU threads

try to allocate memory, all threads running in the same warp will reserve different

memory positions which translates into a unique execution path for all threads

in a warp. This represents the worst case scenario in an SIMT processor since all

threads will run sequentially.

To avoid this issue, GPU threads allocate memory in a different way than the

CPU threads. When the threads in a warp try to reserve memory, only one will be

able to actually place the request. However, this thread (chosen randomly) will

request the necessary data for all threads in its warp. Since intra block threads are

able to synchronize and comunicate quickly, all threads can register their request

sizes and a single thread can place the actual reserve request. After the request is
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satisfied, the thread that allocated the memory can comunicate resulting memory

pointers to the other threads. This communication and synchronization is done

through on-chip fast memory, which results on a penalty of only a few clock

cycles. This effectively removes the serialization issue and speeds the allocation

time in the GPU.
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Chapter 5

Validation

A fact is a simple statement that everyone believes. It is innocent,

unless found guilty. A hypothesis is a novel suggestion that no one wants

to believe. It is guilty, until found effective.

– Edward Teller

In this chapter the proposed heterogeneous distributed memory system is

validated on the GAMA framework. It starts with a description of the languages

and tools used for development and tests. It continues with a brief description

of the test cases used to benchmark the DSM and ends with the presentation

and discussion of the results obtained. The tests made aim to compare the

GAMA framework with and without the proposed DSM in different aspects such

as performance and scalability.

5.1 Experimental setup

All the tests in this document were made in the same heterogeneous machine

with multiple CPUs and GPUs. The machine is composed of two Intel Xeon

processors with 6 cores each and three Nvidia’s GTX 580 GPUs. The machine

was running the Linux operating system with 2.6.43 kernel. The exact details

of the machine can be seen in Table 5.1 and both Intel and Nvidia’s processors

details can be consulted in Table 5.2.
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Machine components Details

CPUs 2 Intel Xeon E5645
GPUs 3 Nvidia GTX 580 (1.5GB)
Main memory 12GB (ddr3 1333MHz)
Operating System Fedora linux (love lock)
Linux kernel 2.6.43.8 (x86 64)

Table 5.1: Test machine details

Device CPU GPU

Name Xeon E5645 GTX 580
Architecture Nehalem Fermi
Code Name Westmere-EP GF110
Core clock 2.4GHz 800MHz
Shader clock – 1600MHz
Cores 6 512(32*16SMs)
L1 cache 32KB ic + 32KB dc per core 64KB per SM
L2 cache 256KB per core 768KB shared
L3 cache 12MB shared –
Year 2010 2010

Table 5.2: Test machine’s processors details

Since currently the GAMA framework is being developed in C/C++ and in C

for CUDA, the proposed heterogeneous distributed shared memory system and

memory allocator was also developed in C/C++ and C for CUDA. The C/C++

portion of the code was compiled with GCC 4.6 and the C for CUDA portion

was compiled with NVCC 5.0 (release candidate), with -O2 optimizations in both

compilers.

5.2 Case studies

Aside from the synthetic tests used to evaluate particular aspects of the proposed

heterogeneous memory system, three additional test cases were implemented in

GAMA and used to benchmark the framework with and without the proposed

memory system. The test cases used are SAXPY, and two n-body simulation

algorithms: a naive direct sum algorithm[31] and a Barnes-Hut algorithm[5].
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5.2.1 SAXPY

SAXPY stands for Single-precision real Alpha times X Plus Y and is a first

level (vector-vector) operation in the Basic Linear Algebra Subprograms (BLAS)

package. The operation computes Y ← αX+Y , where X and Y are both vectors

and α is a scalar value.

The algorithm is easily parallelized since each element of the result vector Y

can be computed independently, i.e. for a vector size n, each element Yi with

1 <= i <= n, can be calculated as Yi = α ∗ Xi + Yi. This algorithm has the

advantage of exposing a lot of parallelism and can be easily coded, however it

has a low ratio between computation and memory accesses making it memory

bound. The SAXPY algorithm is an excellent test case since it is a very used

BLAS operation.

5.2.2 N-body simulation (all-pairs)

N-body simulation is the simulation of the movement of particles (bodies) in

space under the influence of forces (gravitational, electric, magnetic, etc.) from

other bodies in the system. The n-body problem was originally proposed by Isaac

Newton and proved that a spherical body can be modelled as a point mass. The

n-body problem has been completely solved for 2 bodies but is deemed impossible

for an arbitrary (larger than 2) number of bodies. Numerical integration methods

exist for these cases, but the solutions are an approximation.

The all-pairs method evaluates the resulting net force applied on a body by all

other bodies pair-wise. This process is repeated for all the bodies in the system.

Although simple, this method has a computational complexity of O(n2) which

makes it prohibitively slow for a large input set. Given the parallelism potential

of the algorithm, implementations of it in many-core architectures have produced

good results[31].

This algorithm, much like SAXPY, exposes a lot of parallelism but also has

the characteristic of being cache friendly by having significant data reutilization.

This is the kind of algorithm that the GPU handles well and should provide a

good test to the software cache of the DSM when compared with the existing

hardware cache mechanism.
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The algorithm was implemented in GAMA following a similar approach de-

veloped by Nyland et. al.[31]. Although each pair interaction between bodies can

be done in parallel, such a fine thread granularity would require a lot of memory

and produce a memory bottleneck, since the results of each pair-wise interaction

would have to be stored so that the resulting net force could be later calculated.

The implemented algorithm reduces the parallelism by sequentializing the com-

putation of the resulting net force for a single body and doing this operation in

parallel for each body. This reduces the available parallelism from O(n2) to O(n).

5.2.3 N-Body simulation (Barnes-Hut)

The Barnes-Hut algorithm[5] is used for N-Body simulation as an alternative

to the brute-force all-pairs method. The algorithm recursively structures the

bodies hierarchically according to their distance from each other by grouping

them into increasingly smaller boxes/cells. This structure is stored in an octree

(a three dimensional binary tree), where each of the eight branches represents

a 3D octant and further branches of each octant represent a similar subdivision

of the respective octant. This subdivision stops when all bodies have a private

octant (no other bodies in the cell). Information about each octant is also stored

such as the mass and center of mass of the bodies it contains. An example of this

division in 2D space can be viewed in Figure 5.1.

To calculate the net force between bodies, for each body, the octree is traversed

and the interaction between other bodies is calculated. If a body (or group of

bodies) is deemed far enough, the respective mass and center of mass of that

octant is used instead of each individual body in the octant. A body is determined

to be far enough away if the ratio between the width(s) of the octant the body is

in and the distance between the body and the octant’s center of mass(d) is bellow

a threshold (θ) i.e. s/d < θ. The threshold is commonly set at 0.5 (θ = 0.5).

This approximation reduces the algorithm complexity from O(n2) to O(n log n).

Since this is a tree based algorithm, the Barnes-Hut algorithm follows an

irregular memory access pattern. This is an issue for automatic caching mecha-

nisms since these algorithms do not explore data spacial locality causing a lot of

cache misses. This algorithm presents itself as a difficult class of algorithms for
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Figure 5.1: Complete Barnes-Hut tree decomposition of a distribution of 5000
particles in 2D space (source Wikimedia).

automatic caches and provides a challenge for both the proposed DSM’s software

prefetching and coalescing mechanism and the GPU hardware’s.

The algorithm was implemented in GAMA and was influenced by Burtscher’s

et. al.[10] implementation. Burtscher et. al. proved the suitability of irregular

code on many-core architectures by implementing and optimizing the Barnes-Hut

algorithm on an Nvidia’s CUDA GPU and achieving results 74 times better than

an optimized sequential CPU version. Despite this implementation being GPU

tailored, a parallel CPU version was also developed to test the suitability of the

approached used, but optimized for parallel CPUs. The code was implemented

in OpenMP and achieved better results than all the openly available parallel

Barnes-Hut CPU implementations.

The version implemented in GAMA takes advantage of the framework flexi-

bility and uses a GPU tailored code (similar to Burtscher’s) when running a task

on a GPU and a CPU tailored version (based on the OpenMP version) when

the task is ran on a CPU. It is important to note that this distinction and the

architecture specific binary switch is made at runtime by the framework and is

done automatically.
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5.3 Results

The results are organized into two categories: the proposed distributed shared

memory system and the parallel memory allocator. The parallel memory allocator

was tested with synthetic benchmarks and the DSM was tested with the three

algoritms presented previously. All reported values represent an average of 30

test runs.

5.3.1 DSM performance results

The first set of tests was made using the SAXPY algorithm. The results when

using a single CPU and a single GPU can be viewed in Figure 5.2. For every

input size used, the algorithm is 30% slower on average when using the DSM.

This result can be justified by the lack of data reutilization and the low ratio

between computation and memory accesses in the algorithm. The computation

done by each individual thread requires three memory accesses, two loads and a

store, all done in different memory locations. Since there is no data reutilization,

the data cached in the device’s memory by the DSM does not speeds up memory

accesses, actually it slows the algorithm down since it introduces an additional

memory copy.

The performance impact is aggravated further by the low ratio between com-

putation and memory accesses. Each thread only has to do two arithmetic oper-

ations for each three memory accesses. This is a problem since the DSM has to

translate virtual memory addresses into physical addresses in each memory ac-

cess. Since there are more memory accesses than computation on the algorithm,

the DSM introduces more computation overhead, due to the address translation,

than the effective computation present on the algorithm.

The regular memory access pattern of the algorithm also has some impact in

the DSM performance with this algorithm. The GPU is designed to hide memory

access latency using fast thread switching between threads that are waiting for

data with ones with the data ready, and coalescing independent memory requests

with a single one reducing request contention on the bus. These mechanisms

work exceptionally well on algorithms such as SAXPY. This translates into an

algorithm that having the data in host memory, instead of device’s memory,
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causes little performance impact. All these characteristics of the algorithm and

the DSM add up, causing a bad performance of the framework using the DSM

when compared with the non DSM version.
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Figure 5.2: SAXPY algorithm results
running on a single CPU/single GPU
configuration, with and without DSM for
for different problem sizes (from 225 to
228 elements)
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Figure 5.3: SAXPY algorithm results
running on a single CPU/two GPU con-
figuration, with and without DSM for for
different problem sizes (from 225 to 228

elements)

Despite the bad results of the DSM for the SAXPY algorithm using a single

CPU/single GPU configuration, when using a single CPU/ two GPU configura-

tion, the results are slightly more encouraging. The results for this configuration

can be viewed in Figure 5.3. The DSM version in this case is only about 10%

slower on average than the no DSM version. This is due to the better scalability

of the framework for this algorithm when using the DSM. The two GPUs version

is only 1.2 times faster on average than the single GPU version, but the two GPUs

version with the DSM is 1.6 times faster on average than its single GPU version

counterpart. The use of multiple GPUs introduces contention problems on the

PCI-Express bus. This can be a scalability bottleneck if the bus is saturated

which means that, despite the non DSM favorable nature of the algorithm, the

DSM version can be faster than the non DSM version for a large enough input

set as verified by the results for an input size of 228 elements.

The next algorithm tested was the all-pairs N-Body simulation algorithm.

The results of the algorithm running on a single CPU/single GPU configuration

for multiple problem sizes can be viewed in Figure 5.4. The results show that
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the DSM version performs slower than the non DSM version for small input sizes

(smaller than 219 bodies), and performs significantly faster for larger input sizes

(bigger than 220 bodies)

This algorithm does not have the same low ratio between computation and

memory accesses problem as the SAXPY algorithm, but, like the SAXPY algo-

rithm, it has a regular memory access pattern. Not only this N-Body simulation

algorithm has a regular access pattern, but also has significant data reutilization.

Both these characteristics allows for a good performance of the hardware cache

(the algorithm explores both temporal and spacial locality) and a significantly

worse DSM performance, due to the additional overhead, for a small input sizes.

However, the DSM version is faster than the standard version for the 220 and

221 bodies input sizes – 1.6 times faster. Since the algorithm is cache friendly, it

should perform well with the DSM version of GAMA, however, with the small

problem input sizes that doesn’t happen. The reason is that the problem input

sizes are not big enough to hide the DSM overhead. But with a big enough input

size such as 220 bodies, the overhead introduced by the DSM is masked by the

effective work and the algorithm is able to take advantage of the device’s faster

dedicated memory.

The results for the single CPU/two GPU configuration, shown in Figure 5.5,

follow the same pattern as the single CPU/single GPU configuration discussed

above – the DSM version performs faster than the standard version for big input

problem sizes. Note that, since the the algorithm has a high ratio between com-

putation and memory accesses, the framework does not have the same scalability

problems as with the SAXPY algorithm. With the 220 and 221 bodies input sizes,

both two GPUs configurations with and without DSM are 2 times faster than

their single GPU version counterpart. This supports that the DSM version is

faster than the standard version for large input sizes and slower on smaller input

sizes because of the overhead introduced by the DSM and not by PCI-Express

saturation for large input sizes like the SAXPY algorithm.

The last algorithm tested was the Barnes-Hut N-Body simulation algorithm.

The results of the algorithm running on a single CPU/single GPU configuration

for multiple problem sizes can be viewed in Figure 5.6. The DSM version is

4.4 times on average better than the non DSM version. This algorithm differs
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Figure 5.4: N-Body (all-pairs) algorithm
results running on a single CPU/single
GPU configuration, with and without
DSM for for different problem sizes (from
217 to 220 bodies)
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Figure 5.5: N-Body (all-pairs) algorithm
results running on a single CPU/two
GPU configuration, with and without
DSM for for different problem sizes (from
217 to 220 bodies)

from the previous ones mainly due to the irregular memory access patterns. The

algorithm implementation used in these tests was made considering the GPU

drawbacks and limitations and considerable work was done to reduce the impact

of these limitations. Despite the effort done, such as reducing the memory access

irregularity, the algorithm is still irregular. The irregularity translates into poor

hardware memory coalescing and high cache miss ratio, i.e., many main memory

accesses. The DSM version reduces the issue since it moves the data to a closer

(faster) memory for the device(s) (from host memory to device’s memory). This

reduces hardware cache misses latency penalties and significantly improves the

algorithm’s performance.

The results of the algorithm running on a single CPU/two GPU configuration

for the same problem sizes can be viewed in Figure 5.7. The DSM version is 7

times on average faster than the non DSM counterpart. This improvement of

the two GPU configuration versus the single GPU configuration is due to both

good scalability of the DSM version and poor scalability results of the framework

without DSM. The DSM with two GPUs version is 1.85 times faster than single

GPU version on average, and up to 2.2 times faster in one case. On the other

hand, the no DSM two GPU version is only 1.15 times faster than the single GPU

configuration version on average. As the DSM results with two GPUs for other
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algorithms presented previously, the results for this algorithm show that the DSM

improves or maintains the advantage of the non DSM version when compared the

sigle GPU configuration results.
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Figure 5.6: N-Body (Barnes-Hut) al-
gorithm results running on a single
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Since the DSM acts as an additional cache level, one would expect it to suffer

from the same problems as the hardware cache when faced with an irregular

algorithm, i.e., many cache misses. The DSM improves on the hardware caching

mechanism by (1) having a larger memory size available for caching and (2) by

having a more efficient prefetching and coalescing mechanism. The advantage of

having a larger cache is self explanatory, the bigger the space available to store

the problem data the smaller is the probability of the data not being in cache. In

this particular case the cache size improves more than 1000 times, from several

hundreds of KBytes to a few GBytes. The second factor is the prefetching and

coalescing mechanism. Since the DSM allows the programmer to specify the

data requirements of the algorithms as a method, the mapping between threads

and their data requirements can be as complex and specific as the programmer

wants it to be. Using this ”thread-data mapping” method, the prefetching and

coalescing mechanism can be tuned for the specified algorithm.

Overall the DSM has acceptable performances on non favorable algorithms

like the SAXPY algorithm by allowing multi GPU scalability, and great results
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Algorithm SAXPY N-Body (All-Pairs) N-Body (Barnes-Hut)

CPU + 1 GPU(s) 0.874 1.614 4.265
CPU + 2 GPU(s) 1.009 1.730 8.694

Table 5.3: Speed up of all algorithms when using the DSM vs not using, for
the different accelerators configurations. The speedups were calculated using the
biggest problem size for each algorithm, i.e. 228, 221 and 222 for the SAXPY,
N-Body (All-Pairs) and N-Body (Barnes-Hut) respectively.

on irregular algorithms like the Barnes-Hut N-Body simulation algorithm by im-

proving on the non DSM version significantly (both on single and multiple GPUs

configurations). The DSM also significantly improved the performance on reg-

ular algorithms with data reutilization, but only for large enough input sizes.

The SAXPY algorithm had the worse results but given the nature of the algo-

rithm itself, the results are somewhat expected. The DSM results with two GPUs

showed improved performance when compared to the respective non DSM ver-

sions. Even the “non DSM suitable” SAXPY algorithm showed better results by,

not only closing the performance gap between the DSM and non DSM versions,

but by exceeding the non DSM version for a large problem size. The all-pairs N-

Body simulation algorithm saw a negative impact in performance with the DSM

for small input sizes, but for large enough input sizes, the DSM was able to mask

the overhead introduced and the algorithm was able to take advantage of the

faster memory provided by the DSM. Some speedups of the DSM version vs the

non DSM version can be viewed in Table 5.3.

5.3.2 Memory allocator results

Even though none of the algorithms implemented required dynamic memory, the

framework itself requires it, e.g. to manage work queues. Since many of these

dynamic control structures need to be accessible by all the system’s computing

devices, the use of a heterogeneous memory allocator is required.

To test the heterogeneous memory allocator, a synthetic benchmark was used

to evaluate the allocator performance. The test allocates random sizes of memory

in parallel on a 12 core processor (up to 24 simultaneous threads with hyper-

threading). Each thread makes several allocations and registers the time. The
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result of the test is an average of the allocation time of all memory allocations

made by all threads. Figure 5.8 shows the results when using the proposed

memory allocator versus the GNU’s standard C library allocator for different

number of parallel threads. The results clearly show the scalability problems

with the standard dynamic memory allocator and point to constant allocation

time for the heterogenous memory allocator. Figure 5.9 shows the heterogeneous

memory allocator results when compared with the allocation time of the GNU

memory allocator for one thread. Even when using 24 threads the heterogeneous

allocator is faster than the GNU allocator with a single thread. On average the

proposed allocator is 9.8 times faster than the GNU memory allocator.
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Figure 5.8: Scalability results of the pro-
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malloc.
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The memory allocator results running on multiple GPUs configurations can

be viewed in Figure 5.10. As can be seen the performance of the allocator on

the GPU is much worse than on the CPU. Despite not showing scalability issues

when used with two or three GPUs compared to a single GPU, the performance

is several times slower than the CPU only configuration. The performance is

similar to the GNU memory allocator using 16 threads. The proposed model

does in fact assures good scalability performance but the centralized model of

DSM has a disastrous impact in the allocator performance of the GPU. Every

allocation must check if there is free memory available and what location(s) is(are)

available to satisfy the request. Since all the memory is centralized on the host,

all these checks must be done in host memory and in the case of the GPUs, must
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go through the high latency PCI-Express bus.
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Figure 5.10: Scalability results for the proposed memory allocator when using
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5.3.3 Concluding remarks

The proposed DSM system showed to positively impact performance whenever

there is data reutilization (temporal locality on memory accesses) and for irregular

addressing patterns (where the hardware memory accesses coalescing mechanism

cannot improve performance). Additionally, results get better as the data set

size increases. This was made evident with the all-pairs code, where the DSM

allowed for better results. The DSM worsened SAXPY algorithm performance

due to the overhead introduced. The DSM was also able to improve scalability

on algorithms with low ratio of computation over memory accesses (SAXPY) and

irregular algorithms (Barnes-Hut).

The dynamic memory allocator proved to be more efficient and scalable that

the GNU counterpart when only memory sharing CPU cores are involved; when-

ever there are GPU threads allocating memory, requests must go through the

PCI-Express bus compromising performance.
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Chapter 6

Conclusion

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ’Eureka!’ but ’That’s funny...’.

– Isaac Asimov

In this chapter, a summary of the project’s contributions is made together

with a critical analysis of the project goals and results. The chapter ends with

some future work recommendations.

6.1 Project aftermath

This thesis was set on the goal of easing the programming effort of heteroge-

nous CPUs and GPUs systems because of disjoint memory spaces and different

memory models, with different consistency models and synchronization primi-

tives. The proposed strategy was to design and implement an heterogeneous

memory system that unified the disjoint address spaces, of host main memory

and accelerator memory and, allowed the use and allocation of dynamic memory

by all computing devices. This system should (1) improve code portability, (2)

allow the programmer to be data location agnostic, (3) allow runtime memory

management optimizations and (4) allow the use of dynamic memory.

• Improved code portability – The proposed memory system follows a

single memory model and exposes a single memory API regardless of the
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memory models and memory primitives of each of the system’s proces-

sors/accelerators. This way the programmer does not have to use architec-

ture specific memory primitives (data movement, synchronization, atomics,

etc.) or change the algorithm implementation to accommodate different

memory models. The generated code is thus agnostic to the system’s pro-

cessors architectures.

• Data location agnostic programmer – The DSM organizes the different

memory address spaces hierarchically, where the host memory is the main

memory (just as in a traditional CPU) and the device’s private memory

works as an intermediate memory between the device’s hardware cache and

the host memory. This effectively extends the device’s memory hierarchy

in one additional level of cache. The device’s private memory is managed

automatically by the runtime system and, like most traditional caches, is

completely transparent to the programmer. The mechanism was designed

to support accelerators with different dedicated memory sizes and even with

no dedicated memory at all (the accelerator shares the main memory with

the CPU), without changing the framework’s memory and programming

model. This allows the programmer to take advantage of any accelerator’s

dedicated memory without having to add additional specific functionalities

to the code for that effect, or even having to know which (if any) accelerator

has dedicated memory – as far as the programmer is concerned, all data

resides in a single shared memory pool.

• Runtime memory management optimizations – By relieving the pro-

grammer from having to manage data movements, the runtime system is

then responsible for it. This puts the memory runtime system in a good

position to adapt itself to the different families of accelerators and cooper-

ate with the GAMA runtime scheduler in an attempt to reduce latency and

improve performance. The implemented DSM uses several techniques to

reduce memory transference latency – memory transfers coalescing, asyn-

chronous data copies and data prefetching. The coalescing mechanism tries

to group several data requests into groups and move the data in each group

in a single operation. This helps reduce data movement overhead by min-
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imizing the number of transfers between devices. The asynchronous data

movement is an excellent way to hide high latency memory copies (e.g.

through PCI-Express) with effective computation. By using asynchronous

copies the device does not have to wait for the data copy operation to end

to start computation. This technique can be paired with the prefetching

mechanism. Before a running task is over, the runtime scheduler can signal

the memory runtime system as to which will be the next task to execute.

With this information the memory system can evaluate the data dependen-

cies of the task, determine which data needs to be copied and what is the

minimum number of data movement operations required, and finally do the

data movement operations. Since this can all be done asynchronously, this

set of operations can potentially be all done before the currently running

task is over and the next task can start as soon as the current one is done.

By cooperating with the runtime scheduler, the memory system can adapt

to the system state at runtime and hide data movement latency effectively

independently of current workload distribution.

• Dynamic memory allocator – The heterogenous dynamic memory man-

ager should itself follow the same 4 characteristics of modern parallel mem-

ory allocators: speed, scalability, false share avoidance and low fragmenta-

tion. The proposed memory allocator organizes the memory hierarchically

into blocks, super-blocks and hyper-blocks. Each processor core has its pri-

vate heap and share the same shared pool. If a core does not have free

blocks in its private heap, fetches new blocks (grouped into a super-block)

from the shared pool. This private heap model paired with the fetching of

new blocks from the shared pool in groups of super-blocks guarantees scal-

ability by reducing synchronization points. When a deallocation request is

received, if a heap is able to have a free super-block, that super-block is then

returned to the shared pool. This mechanism aims to reduce fragmentation

by recycling free space as soon as possible. Hyper-blocks, resulting from

allocating sizes bigger than a super-block (i.e. custom size super-blocks),

despite being stored in a specific structure are also returned to the shared

heap as soon as they are available for recycling. A “lock less” oriented im-
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plementation is essential to achieve speed and having blocks, super-blocks

and hyper-blocks sizes as multiples of the DSM memory pages guarantees

no false sharing.

When tested and benchmarked the proposed heterogeneous memory system

showed mixed results. The parallel memory allocator using only CPU threads

showed great results when compared to the GNU memory allocator. The alloca-

tor not only showed great scalability results but was significantly faster than the

GNU memory allocator. Despite the CPU only results, when adding GPUs to the

mix the average allocation time increased tremendously. The GPU threads allo-

cation time was significantly higher than CPU threads. Since the DSM follows

a central memory model, all allocation requests had to check for free memory

and reserve it in host memory. These requests must go through PCI-Express and

the latency introduced by the bus proved to be too costly. This, however, does

not invalidates the proposed model (having multiple independent heaps for each

processing core), but the central memory implementation was a deal breaker. A

distributed memory model would allow a significant decrease in allocation times

by removing the need to check for available space on remote memory. Unfor-

tunately, given the simple nature of modern accelerators, the centralized model

introduces the least overhead and stands as the best solution for the proposed

heterogenous DSM.

Since the GAMA framework itself uses the memory allocator to manage dy-

namic structures (runtime task creation, work queues, etc.), one obvious concern

is how is the framework’s performance being affected by the memory allocator.

Fortunately, all the framework’s managing and bookkeeping operations are exe-

cuted on the CPU side. Since the memory allocator’s performance issues only

arouse when used by GPU threads, the framework itself is not negatively affected.

Actually, given that GAMA spawns several threads to manage the system, the

framework is better off with the proposed memory allocator than with the GNU

memory allocator.

The DSM results were significantly more encouraging. The DSM was bench-

marked against three different algorithms, SAXPY, all-pairs N-Body simulation

and Barnes-Hut N-Body simulation algorithms. SAXPY achieved the worst re-

sults of the three algorithms when using the DSM. The algorithm has several char-
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acteristics that made it a terrible candidate for the DSM – no data reutilization,

low ratio between computation and memory accesses and required more arith-

metic operations to translate memory addresses than to do the actual SAXPY

operation. Despite the algorithm being an “worst case scenario” for the DSM,

when suiting the system with more than one GPU, the DSM showed improved

results and in a particular problem size the DSM version was faster than the

no DSM one. Being a memory bound algorithm, the contention introduced on

PCI-E bus by the GPUs is a scalability bottleneck. The DSM however proved to

be more efficient managing data across the PCI-E bus than the Nvidia’s driver.

The all-pairs N-Body algorithm is more “cache friendly” since it has a regular

memory access pattern and has data reutilization. Being a good algorithm for

both the hardware cache (of the GPUs) and software cache (of the DSM), this

algorithm stood as good benchmark of both caches. The performance of the

DSM version was worse than the no DSM version for small input sizes, but was

significantly faster for large input sizes. Unfortunately, the overhead introduced

by the DSM is still significant when compared to an hardware cache and for small

input sizes, with a “cache friendly” algorithm, the hardware cache is big and

efficient enough to not justify the use of a software cache. For large input sizes,

however, the additional space provided by the cache of the DSM is significant and

the DSM is able to better mask data movement latency and address translation

overhead with effective computation.

If the SAXPY algorithm is the DSM “worst case scenario” the Barnes-Hut

algorithm is definitely the best. The DSM version was significantly faster than

the no DSM version for the multiple problem sizes and hardware configurations.

The reason is the irregular nature of the algorithm. This irregularity translates

into poor hardware memory coalescing and high cache miss ratio. By moving the

data to faster memory (device memory vs host memory) the cache miss penalty

is significantly less time consuming and by having the prefetching and coalescing

mechanism tuned for the specific algorithm (due to the users data methods) the

DSM can use its software cache much more efficiently than the hardware cache.

The DSM version superiority is more obvious when adding multiple GPUs. While

the no DSM version problems are aggravated by having multiple GPUs, the DSM

version achieved almost linear scalability results on average (linear in some cases).
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Overall the DSM performance is positive. It had good results for the all-pairs

algorithm despite requiring a large enough problem size to mask the overhead

of the DSM (memory copies latency and address translation overhead). The

Barnes-Hut algorithm was an all out winner and showed the advantage of using a

system like this for irregular algorithms. The impact in performance of not using

the accelerator memory on irregular algorithms can be significant and can be a

scalability bottleneck. The DSM solves both problems and with no additional

coding effort from the programmer. SAXPY achieved the worst results of all

algorithms, but given the nature of the algorithm, that was to be expected.

However, even with an algorithm of this nature, the DSM proved to be useful to

improve scalability.

6.2 Future work

The obvious candidate for rework is the memory allocator. Despite the bad

allocation times with GPUs, the proposed model produced great results with

CPUs only. The centralized memory model encouraged by the DSM was not

suitable for the memory allocator. Unfortunately, a redesign of the memory

allocator to allocate memory at the speed of device’s private memory on main

memory, requires a shift to a more distributed model of DSM as well. Be as it may,

any solution of this kind would require significant administrative code running on

the accelerator managing distributed tables and incoming and outgoing messages

queues. Not only this is high cyclomatic complexity code but, allied with the lack

of fine-grain thread management, might proved to be a challenge to implement

efficiently. GPU architectures seem to be increasingly more complete in terms of

general purpose features in each generation and features required for a potential

distributed memory manager might not be very far away. For example, new AMD

GCN processors support page fault signals that could be used to detect software

cache misses and trigger a thread to fetch the required page. Unfortunately,

currently, that feature is not available to programmers but could be on the near

future.

Another aspect that requires improvement is the job’s two data dependencies

methods for read-only and read/write data. Although important and in some
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cases (like irregular algorithms) might prove crucial to achieve performance, at

this point it stands as a requirement. One possible future feature of the DSM

would be the ability to generate these methods automatically. This capability

requires a compiler capable of doing some sort of pointer analysis to statically

evaluate the data dependencies. The main goal would be to decrease the learning

curve of new programmers to the framework and make it more flexible. By making

the coding of a data dependencies method optional, the user coding process could

be further expedited and leaves the requirement of a custom method only if the

automatic generated one proved to be inefficient.
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