
University of Minho
Informatics Department

Master in Informatics

OL3 - JavaScript library for 3D scenes

Bruno Gustavo Rego Amaral da Costa

Supervised by:

Professor Doutor Jorge Gustavo Rocha

Braga, October 30, 2012

Abstract

The main purpose of this thesis is the implementation of an open source
JavaScript library for the navigation of dynamic three-dimensional scenes
through the browser, using asynchronous data from different servers and
without the need for plugins.

Due to the recent developments of Hypertext Markup Language (HTML)5
and the new capabilities of JavaScript for supporting 3D graphics using Web
Graphics Library (WebGL), users can now break free from the traditional
two dimensional web, and experience three-dimensional scenes through the
browser. Using these new specifications a library for the visualisation and
navigation of three-dimensional scenes is a step towards a more immersive
experience of the web. The library should be capable of loading geometry
data from servers asynchronously and provide tools for a free and immersive
navigation of the scenes obtained from the server.

The library was developed and most functionalities were implemented,
such as asynchronous loading of data and navigation. Data management is
partly implemented, as there are still some issues regarding the overlapping of
geometry, but the issue is well defined and a solution is nearly implemented.

Overall, the library has it’s strong points and issues, yet it is almost ready
to be usable. Further work is still required and additional possibilities and
functions can be studied and implemented.

i

Resumo

O objetivo desta tese é a implementação de uma biblioteca JavaScript open
source para a navegação de cenas tridimensionais dinâmicas através do
browser, utilizando dados assíncronos de diferentes servidores e sem a ne-
cessidade de plugins.

Tendo em conta os recentes desenvolvimentos do HTML5 e as novas ca-
pacidades do JavaScript para suportar gráficos 3D recorrendo ao WebGL, os
utilizadores podem agora libertar-se da barreira bidimensional da web tradi-
cional, e experiênciar cenas tridimensionais através do browser. Utilizando
estas novas especificações, uma biblioteca para a navegação e visualização
de cenas tridimensionais é um passo em frente para uma experiência mais
imersiva da web. A biblioteca deve ser capaz de carregar geometria a partir
de servidores assincronamente e fornecer ferramentas para uma navegação
livre e imersiva das cenas obtidas do servidor.

A biblioteca foi desenvolvida e a maioria das funcionalidades foram imple-
mentadas tais como carregamento de dados assíncronos e navegação. Gestão
dos dados está parcialmente implementada, no entanto ainda existem algu-
mas falhas no sobreposicionamento de geometria, no entanto a falha está bem
definida e uma solução está prestes a ser implementada.

De um ponto de vista geral, a biblioteca tem pontos fortes e algumas
falhas, no entanto está quase pronta a ser utilizada. Trabalho futuro ainda é
preciso, tal como o estudo de novas funcionalidades e a sua implementação.

iii

Contents

Listings viii

List of Figures x

Acronyms xii

1 Introduction 1
1.1 Objectives . 2
1.2 Thesis Outline . 2

2 State of the Art 5
2.1 WebGL . 5
2.2 Extensible 3D . 9

2.2.1 Profiles and Components 10
2.2.2 X3D File Structure . 11
2.2.3 User interaction . 13

2.3 X3DOM . 15
2.3.1 X3Dom Architecture 17

2.4 OpenLayers . 20
2.4.1 Using OpenLayers . 21

2.5 WebGL Earth . 28
2.6 Web 3D Service . 31

2.6.1 GetCapabilities . 32
2.6.2 GetScene . 32
2.6.3 GetTile . 33

v

Contents

2.6.4 GetLayerInfo . 33
2.6.5 GetFeatureInfo . 33

3 Implementation 35
3.1 JavaScript Object and Initial Requirements 35

3.1.1 Object Oriented Programming in JavaScript and the
OL3 Object . 36

3.1.2 Asynchronous Communication with the Web Server . . 37
3.1.3 GetCapabilities . 39
3.1.4 Bounding Box . 40

3.2 OL3 Structures . 42
3.2.1 Scene . 42
3.2.2 Camera Implementation 43
3.2.3 Layer . 52

4 OL3 in Action 59
4.1 Manage code development using Git 59

4.1.1 Complementary code management tools 60
4.2 How to get OL3 code . 60
4.3 How to create a very basic map 62
4.4 How to contribute to the OL3 development 64

5 Conclusions and Future Work 67
5.1 Research . 67
5.2 Implementation . 69
5.3 Future Work . 71
5.4 Conclusion . 71

vi

Listings

2.1 JavaScript code required to initialize the WebGLRendering-
Context . 6

2.2 Html required to initialize the scene 6
2.3 init function . 7
2.4 initWebGL function . 7
2.5 initBuffers function . 8
2.6 drawScene function . 9
2.7 X3D syntax necessary for the creation of a scene with a blue

sphere . 11
2.8 Creating a map with OpenLayers 21
2.9 OpenLayers constructor . 21
2.10 Creating a OpenLayers layer 22
2.11 OpenLayers map with different layers 23
2.12 Creating additional controls 25
2.13 Creating a Graticule control 26
2.14 Creating a Point of Interest with text 26
2.15 Textfile needed for creating a Point of Interest with text . . . 26
2.16 Creating a WebGL Earth globe 29
2.17 Options object for WebGL Earth 29
3.1 Class implementation . 36
3.2 New class definition . 37
3.3 Instantiating a new Person Object 37
3.4 Example of XMLHttpRequest using jQuery 38
3.5 Example of a GetCapabilities reply describing a get scene request 39
3.6 Creating a Scene . 42

vii

Listings

3.7 Scene default variables . 42
3.8 Emitting a ray . 48
3.9 Intersection of a plane with a line function 50
3.10 Creating a new Layer . 52
3.11 Calculating the grid’s columns and rows 54
4.1 Obtaining the library source code 61
4.2 Making a commit . 61
4.3 Making a commit . 61
4.4 Including the libraries . 62
4.5 Including the OL3 library files 62
4.6 Setting up a scene . 62
4.7 The HTML body for using a scene 63
4.8 Function syntax . 64
4.9 Class syntax . 65

viii

List of Figures

2.1 Graphical result of Listing 2.7 14
2.2 X3DOM Profile compared with existing X3D Profiles 19
2.3 HTML page with an OpenLayers map 22
2.4 OpenLayers map with a simple WMS layer 23
2.5 OpenLayers map with a multiple layers 24
2.6 OpenLayers map with a inactive layer 25
2.7 OpenLayers map with active layer 25
2.8 OpenLayers map with Graticule overlay 26
2.9 OpenLayers map with Points of Interest 27
2.10 OpenLayers map with Points of Interest and related informa-

tion box . 27
2.11 OpenLayers map with vector shapes 28
2.12 WebGL Earth globe . 30
2.13 WebGL Earth globe zoomed in 31

3.1 3D Bounding box (left) and current implementation (right) . . 41
3.2 Camera viewing frustum - obtained in Lighthouse3d.com . . . 45
3.3 Loaded geometry for a untiled model using a GetScene request 54
3.4 Loaded geometry for a untiled model using a GetScene request

and tiled geometry using a GetTile request 55
3.5 Grid representation . 55
3.6 Temporary Grid construction 56
3.7 Temporary Grid layout . 58

4.1 Web interface of the OL3 repository 61

ix

Acronyms

AJAX Asynchronous JavaScript and XML. x, 20, 35, 39

API Application programming interface. x, 2, 5, 6, 16, 20, 32, 38, 67

CAD Computer-aided Design. x, 11

CRS Coordinate Reference System. x, 40, 41

CSS Cascading Style Sheets. x, 16

DID Distributed Interactive Simulation. x, 11

DOM Document Object Model. x, 5, 7, 15–18, 43, 53, 68, 70

DTD Document Type Definition. x, 12

GeoJSON Geo JavaScript Object Notation. x, 21

GeoRSS GeoRSS-Simple. x, 21

GIS Geographic Information System. x

GLSL OpenGL Shading Language. x, 5

GML Geography Markup Language. x, 21

HTML Hypertext Markup Language. i, iii, x, 1, 2, 5–7, 15, 17, 21, 25, 28,
29, 35, 42–44, 51, 53, 62, 64, 67, 68, 70, 71

HTTP Hypertext Transfer Protocol. x, 38

xi

Acronyms

KML Keyhole Markup Language. x, 21

LOD Level of Detail. x, 32, 33, 40, 54–58, 70, 71

NURBS Non-uniform Rational Basis Spline. x, 11

OpenGL Open Graphics Library. x, 5, 6, 9, 16, 17

OpenGL ES OpenGL for Embedded Systems. x, 5, 6

OS Operating System. x, 17

SAI Scene Access Interface. x, 20

SVG Scalable Vector Graphics. x, 16, 17, 19

URL Uniform Resource Locator. x, 39, 52

VRML Virtual Reality Modeling Language. x, 1, 9, 16, 68

VRML97 Virtual Reality Modeling Language 2.0. x, 9, 11

W3C World Wide Web Consortium. x, 31

W3DS Web 3D Service. x, 2, 31, 32, 39–42, 52–55, 57, 58, 64, 67–70

WebGL Web Graphics Library. i, iii, x, 1, 2, 5–7, 9, 28, 67

WMS Web Map Server. x, 22, 23, 31, 69

X3D Extensible 3D. x, 2, 9–20, 31, 32, 35, 43, 53, 67, 68

X3DOM Extensible 3D Document Object Model. x, 2, 15, 17–20, 33, 35,
43–46, 48, 62, 64, 67, 68, 70

XHR XMLHttpRequest. x, 38

XML Extensible Markup Language. x, 9, 11–13, 17, 32, 33, 38–40, 68

xii

Chapter 1

Introduction

With the development of HTML5 and the increased capabilities of JavaScript,
including the support for 3D graphics through the use of WebGL, one should
consider the impact and the new opportunities those specifications allow.
Until now, the usage of 3D graphics was made using plug-ins, like Virtual
Reality Modeling Language (VRML) or Flash forcing the user to install third
party software. With HTML5 and WebGL, the browser can now take ad-
vantage of the processing power offered by the graphic card, thus allowing
the users to access 3D contents using the computer display card’s Graphics
Processing Unit out of the box.

One field which would greatly benefit from the adaptation to a three-
dimensional navigation system would be mapping software. The current prac-
tice in map navigation through the browser is made in a two dimensional
system; users can pan the map around and zoom in and out, but the viewpoint
is always from above and there is no perception of the space. As we experience
the world in a multidimensional way and not in a top-down two-dimensional
point of view, browsing a map as a three-dimensional representation seems
more similar to our experiences on our daily life than a two dimensional one.

Using the emerging specifications and the similarity to our daily life which
three dimensions allow, the creation of a library to navigate three-dimensional
scenes is a step towards a better immersive experience in map navigation.
Taking as reference the existing libraries of two-dimensional maps, an analysis

1

Chapter 1. Introduction

was made of the essential elements for navigation and then adapting them to
a three-dimensional world. From this analysis, two key points were found: the
first is obtaining the data which represents the geometry of the scene through
asynchronous requests, the second is to supply the user with an adequate
Application programming interface (API) which allows him to create a rich
web application whose functionality is the navigation of a scene with all the
freedom three dimensions can allow.

The goal of this work is to develop a client side library to help the de-
velopment of rich web 3D applications. The library will provide the core
components to create such 3D web applications, like getting 3D data from
remote servers, combine different 3D scenes and navigation controls.

1.1 Objectives

The objective of this thesis is the investigation of the current technologies
for 3D scene visualization in the browser as well as the available open source
client-side web mapping solutions.

The practical result of the investigation is the development of a JavaScript
library that allows users to visualize and navigate dynamic three-dimensional
scenes through the browser, using asynchronous data from different servers
through HTML5 and Extensible 3D (X3D), without the need for plug-ins.
The objective of this library is to provide a platform for the development
of rich client-side web applications that allow navigation in 3D scenes with
asynchronous loading of geometry data.

1.2 Thesis Outline

Chapter 2 (State of the Art) gives an overview of the current technolo-
gies which enable the creation of the library such as WebGL, X3D,
Extensible 3D Document Object Model (X3DOM) and Web 3D Service
(W3DS). A study was also made gathering information about existing

2

Chapter 1. Introduction

JavaScript libraries used in scene navigation, which were analyzed as a
foundation for the structure and usability of OL3, namely OpenLayers
and WebGL Earth.

Chapter 3 (Implementation) illustrates the implementation of the Ol3
library. Beginning with a small introduction about Object Oriented
Programming in JavaScript and name spaces, required to create the Ol3
object, this section presents the basic functions needed for the library;
asynchronous communication with the web server, the GetCapabilities
request and the bounding box. After describing the previous elements,
this chapter details the library’s different objects, the Scene, the Camera
and the Layer.

Chapter 4 (OL3 in Action) provides a description of how the code was
managed during the development stages, as well as how to obtain the
code and implement new classes. This chapter also has a small tutorial
in how to setup a small scene in the browser.

Chapter 5 (Conclusions and Future Work) is a summary of the thesis,
as well as a discussion of the issues left unresolved and a reflection of
the paths left open and how they might be approached.

3

Chapter 1. Introduction

4

Chapter 2

State of the Art

Prior to the development of the library, a study was made. Existing libraries
were found and their capabilities were studied, in order to identify their strong
points and flaws. Due to the innovations presented by this library there are
few reference works, thus we present scarce information, and there are no
open source libraries for map browsing which allow the users to navigate a
map in three dimensions using the browser.

The current state of technologies was also reviewed, as to find suitable
tools to develop the library, and to provide the readers with some background
information about the new specifications used in the development of the
library.

2.1 WebGL

WebGL is an API which is used to create 3D graphics in a Web browser. Its
specification[2] was released in March 2011 and is managed by the Khronos
Group. This specification, based in OpenGL for Embedded Systems (OpenGL
ES) 2.0, allows the use of OpenGL Shading Language (GLSL) and is semanti-
cally similar to the standard Open Graphics Library (OpenGL) API. WebGL
uses HTML5 Canvas element as Document Object Model (DOM) interface
and, being a DOM API, WebGL can be used with DOM compatible languages
like JavaScript, and is supported in most browsers. There are also libraries for

5

Chapter 2. State of the Art

WebGL development, such as WebGLU, X3DOM, Processing.js, SpiderGL
and PhiloGL.

Desktop browser support is widely available, as Mozilla Firefox, Google
Chrome, Safari and Opera have WebGL implemented, leaving Internet Ex-
plorer as the notable exception. WebGL has also penetrated the mobile plat-
forms, as some mobile browsers have WebGL support, mostly present in the
Android operating system.

The HTML Canvas element is a rendering destination in web pages, and
allows the use of different rendering APIs such as CanvasRenderingContext2D
and WebGLRenderingContext. This context is where the WebGL API resides.
This API can be used with Libraries or with OpenGL ES 2.0.

In order to use the WebGL API, one must create a WebGLRenderingCon-
text object for a specified HTMLCanvasElement. To do so, the getContext()
method must be called. When the context is created, OpenGL creates a view
port rectangle, with the same width and height as the Canvas element.

1 if (!window.WebGLRenderingContext) {
2 // the browser doesn’t even know what WebGL is
3 window.location = "http://get.webgl.org";
4 } else {
5 var canvas = document.getElementById("myCanvas");
6 var ctx = canvas.getContext("webgl");
7 if (!ctx) {
8 // browser supports WebGL but initialisation failed.
9 window.location = "http://get.webgl.org/troubleshooting";

10 }
11 }

Listing 2.1: JavaScript code required to initialize the
WebGLRenderingContext

Next will be presented a small example of how to create a simple cube with
WebGL.

1 <body onload="init()">
2 <canvas id="glcanvas" width="640" height="480"></canvas>

6

Chapter 2. State of the Art

3 </body>

Listing 2.2: Html required to initialize the scene

The HTML canvas element will contain the WebGL view port. When the
body element is loaded, the init() function will run.

1 function init() {
2 var canvas = document.getElementById("glcanvas");
3 initWebGL(canvas);
4 if (gl) {
5 gl.clearColor(0.0, 0.0, 0.0, 1.0);
6 gl.enable(gl.DEPTH_TEST);
7 gl.depthFunc(gl.LEQUAL);
8 gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);
9 initBuffers();

10 setInterval(drawScene, 15);
11 }
12 }

Listing 2.3: init function

The init function, as depicted in listing 2.3, will obtain the canvas element
from the DOM and will use the initWebGL, listing 2.4, to create the We-
bGLRenderingContext.

Having a valid WebGLRenderingContext object, the buffers are initiated
using the initBuffers function, as shown in listing 2.5. This function will
create the vertices array, vertex index array and the colors array. Then it
will create the necessary array buffers. The drawScene function, as shown
in listing 2.6, will be executed at a regular interval clearing the canvas and
drawing the cube.

1 function initWebGL(canvas) {
2 gl = null;
3 try {
4 gl = canvas.getContext("webgl") || canvas.getContext("experimental-

webgl");
5 }
6 catch(e) {}

7

Chapter 2. State of the Art

7 }

Listing 2.4: initWebGL function

1 function initBuffers() {
2 var vertices = [
3 -1.0, -1.0, 1.0,
4 1.0, -1.0, 1.0,
5 //cut due to large amount of lines
6 -1.0, 1.0, -1.0
7];
8
9 var colors = [

10 [1.0, 1.0, 1.0, 1.0], // Front face: white
11 [1.0, 0.0, 0.0, 1.0], // Back face: red
12 [0.0, 1.0, 0.0, 1.0], // Top face: green
13 [0.0, 0.0, 1.0, 1.0], // Bottom face: blue
14 [1.0, 1.0, 0.0, 1.0], // Right face: yellow
15 [1.0, 0.0, 1.0, 1.0] // Left face: purple
16];
17 var generatedColors = [];
18
19 for (j=0; j<6; j++) {
20 var c = colors[j];
21 for (var i=0; i<4; i++) {
22 generatedColors = generatedColors.concat(c);
23 }
24 }
25
26 cubeVerticesColorBuffer = gl.createBuffer();
27 gl.bindBuffer(gl.ARRAY_BUFFER, cubeVerticesColorBuffer);
28 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(generatedColors), gl.

STATIC_DRAW);
29
30 cubeVerticesIndexBuffer = gl.createBuffer();
31 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, cubeVerticesIndexBuffer);
32 var cubeVertexIndices = [
33 0, 1, 2, 0, 2, 3,
34 4, 5, 6, 4, 6, 7,
35 8, 9, 10, 8, 10, 11,

8

Chapter 2. State of the Art

36 12, 13, 14, 12, 14, 15,
37 16, 17, 18, 16, 18, 19,
38 20, 21, 22, 20, 22, 23
39];
40 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(cubeVertexIndices),

gl.STATIC_DRAW);
41 }

Listing 2.5: initBuffers function

1 function drawScene() {
2 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
3 perspectiveMatrix = makePerspective(45, 640.0/480.0, 0.1, 100.0);
4 loadIdentity();
5 mvTranslate([-0.0, 0.0, -6.0]);
6 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, cubeVerticesIndexBuffer);
7 setMatrixUniforms();
8 gl.drawElements(gl.TRIANGLES, 36, gl.UNSIGNED_SHORT, 0);
9 }

Listing 2.6: drawScene function

As can be seen from the example, the syntax is quite similar to OpenGL, and
the transition from OpenGL to WebGL seamlessly.

2.2 Extensible 3D

X3D is a open standards file format used to represent real-time 3D scenes
and their incorporation into non-3D content. A development from VRML, it
extends the capabilities of Virtual Reality Modeling Language 2.0 (VRML97)
and allows the user to encode the scenes using the VRML97 syntax as well
as Extensible Markup Language (XML).

Due to its wide array of components and profiles which provide different
features, X3D can be used in diverse fields such as engineering and scientific vi-
sualisations or medical visualisation as well as multimedia and entertainment.
Besides 3D graphics, these being polygonal geometry, parametric geometry,
hierarchical transformations, lightning, materials, texture mapping, X3D also
supports shaders (both pixel and vertex shaders). 2D graphics can also be

9

Chapter 2. State of the Art

used, such as text, 2D vector graphics and can be composed in both 2D and
3D.

Besides the creation of graphics, X3D provides the users with animation
tools such as timers, interpolators, humanoid animation and morphing, and to
allow for richer experiences when viewing the scenes, X3D allows the mapping
of audio and video to geometry.

Interaction is also a part of X3D , through the use of mouse and keyboard
input, as well as camera and user movement within the scene, collision, prox-
imity and visibility detection and physical simulation.
Networking is also possible, enabling the creation of scenes with assets located
in multiple locations within a network or in the World Wide Web.

X3D uses a scene graph to display the various graphic nodes that create
the 3D scene. This scene graph has a tree structure, directed and acyclic.
This means the scene has a beginning of the graph, the different nodes have a
parent-child relationship and there are no cycles in the graph. The 3D scene is
therefore defined in a hierarchical structure, with the different nodes properly
organized and their relations evident.

2.2.1 Profiles and Components

X3D has a modular structure and has different profiles, made up by com-
ponents. Profiles are a set of functionalities and components, which allow
the users to have different levels of support and make the scene-graph more
portable and easily translated to other formats. All profiles are a superset of
the previous profile.

X3D has seven different profiles; Core, Interchange, Interactive, MPEG-
4Interactive, CADInterchage, Immersive and Full.

Core This profile provides minimal definitions, and is not intended for regular
use. Since this profile only includes metadata nodes and no geometry
nodes, coupled with specific components chosen by users, a scene can
be defined.

10

Chapter 2. State of the Art

Interchange The Interchange profile has all the basic nodes needed to define
a geometry, appearance and keyframe-based animation.

Interactive The Interactive enhances the Interchange profile by adding user
interaction nodes to the scene.

MPEG-4Interactive Implements the MPEG-4 multimedia specification.

CADInterchange Created in order to support Computer-aided Design (CAD)
models. Has some nodes from the Interchange profile plus new nodes
required for the CAD support.

Immersive This profile is the most similar to VRML97. Has all the defini-
tions from Interactive as well as nodes for the support of 2D geometry,
environmental effects and events.

Full This profile, as the name implies, includes all the nodes defined by the
X3D specification. Besides providing all the functionality the previous
profiles, this also adds other capabilities such as Non-uniform Rational
Basis Spline (NURBS) support, GeoSpatial Humanoid animation and
Distributed Interactive Simulation (DID).

Each X3D node is part of a component and, according to its level, possesses
either the same or enhanced features. The usage of components can provide
node functionality which is not present at the chosen profile, thus enabling the
user to ensure cross platform compatibility and a controlled environment. This
also provides the advantage of loading a smaller profile and allow selective
functionalities of different or larger profiles to be used.

2.2.2 X3D File Structure

The X3D files rely on the XML-syntax or the VRML97 encoding to define a
scene graph. A small example of the XML-syntax used is given below:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.2//EN" "http://www.web3d.org/

specifications/x3d-3.2.dtd">

11

Chapter 2. State of the Art

3 <X3D profile=’Immersive’ version=’3.2’>
4 <head>
5 <meta name=’filename’ content=’sample.x3d’/> <meta name=’

description’ content=’a simple blue light’/>
6 <meta name=’author’ content=’author’s name’/>
7 </head>
8 <Scene>
9 <Viewpoint centerOfRotation=’0 -1 0’ position=’0 -1 7’/>

10 <NavigationInfo type=’’EXAMINE’ ’ANY’’/>
11 <Transform rotation=’0 1 0 3’>
12 <Shape>
13 <Sphere/>
14 <Appearance>
15 <Material DEF=’LightBlue’ diffuseColor=’0.1 0.5 1’/>
16 </Appearance>
17 </Shape>
18 </Transform>
19 </Scene>
20 </X3D>

Listing 2.7: X3D syntax necessary for the creation of a scene with a blue
sphere

Given the previous example of the X3D scene graph, the following describes
the structure of a X3D file:

• A file header

• Start of the X3D root node

• A X3D header section

• The X3D scene graph

• End of the X3D root node

File header The file header, as shown in lines 1-2 of Listing 2.7, is com-
prised of a XML declaration and an optional Document Type Definition
(DTD).

12

Chapter 2. State of the Art

Start of the root node The root node, line 3 of Listing 2.7, has a XSD
declaration for the X3D file and must include a version and a profile.
There are three available versions; 3.0, 3.1 and 3.2. The profile will
inform which of the X3D available profiles will be used. The root node
is also responsible for the beginning of the scene graph.

X3D header section In the X3D header section, as seen in lines 4-8 of
Listing 2.7, there is information pertaining to the file or its author,
copyright, description and other relevant information the author decides
to include. These are defined by a name-value pair, where the name
defines the attribute and the value the corresponding content of said
attribute. It is also possible to reference components in the header, and
this allows the user to use components which aren’t part of the current
profile, without the need to load all the components of a higher profile.

The X3D scene graph As shown in lines 9-20 of Listing 2.7, the scene
graph is where all nodes which represent elements in the scene are
present. Nodes can be used as a XML opening and closing element pair,
as seen on lines 12 and 18 in Listing 2.7 or as a singleton element, line
13 of Listing 2.7, which may or may not include attributes.

End of the X3D root node This node closes the X3D scene graph.

2.2.3 User interaction

X3D scenes are not static, users can interact with the scenes. One possible
interaction is the navigation in the three-dimensional space created by the
author. Using the navigation node, line 14 of Listing 2.7, one can move in
several modes through the scene. Below is a short description of the navigation
capabilities:

EXAMINE This mode is used for rotating solitary objects.

FLY The FLY mode allows zooming in, out and move around the scene.

13

Chapter 2. State of the Art

Figure 2.1: Graphical result of Listing 2.7

LOOKAT This mode allows for the user to select geometry of interest using
the pointer.

WALK Used for exploration, but contrary to the FLY mode this is on the
ground, from a first person point of view.

ANY Allows for the user select any mode available from the previously
described.

NONE Gives user zero control of navigation, thus enabling the author to
create customized navigation which will be part of an application where
the X3D scene will be present.

In FLY, WALK and NONE modes, there is collision detection between the
viewing camera and the geometry which disables the camera from passing
through objects present in the scene. WALK mode also implements terrain
following, in which there is an avatar where the camera is placed and the

14

Chapter 2. State of the Art

author can define the heights where the user is capable of surpassing and those
which he can’t. One can also make use of animation in order to constrain the
user movement and guide the him through the scene.

2.3 X3DOM

The main purpose of the X3DOM is to create a human readable 3D scene
graph which can be embedded in the HTML DOM, and allow the development
of rich applications with the same ease and approach used in developing HTML
applications.

Since there is no method that allows the update or synchronisation of the
X3D elements, thus only allowing a single import of the DOM elements, the
X3D scene model is static; X3DOM creates a bridge between the X3D scene
model and the HTML5, providing a seamless integration between the two
which allows the manipulation of the 3D content by changing the DOM and
support for some HTML events on 3D objects.

X3D is used to define the scene graph and render the scene, and all
interaction and scene graph manipulation will be handled using the standard
DOM based scripting like all HTML documents. With this approach, X3DOM
aims to improve the 3D Web by using less technology, by reducing the 3D
system to a visualisation component and use Web technology for scripting
and dynamics.

According to the HTML5 specification, X3D is referenced as a the method
to declare 3D scenes, although there is no integration mode defined. X3DOM’s
purpose is to integrate 3D content directly into the DOM tree, as is text,
images, audio and video.

When developing X3DOM, the authors reflected upon the state of 3D
graphics in the Web[6].A short summary of their study follows.

• Rendering with plugins

Flash Until version 10, there was no support for 3D in Adobe Flash,
therefore users had to use 2D vector shapes and math to create

15

Chapter 2. State of the Art

simple 3D rendering systems. Since version 10, Flash now supports
simple 3D transformations, yet those are still very limited.

Silverlight Microsoft Silverlight developed this plugin based on the
.NET Framework to create something similar to Adobe Flash. Like-
wise, this plugin has little support for 3D, mainly allowing users
to transform 2D graphics in a 3D space.

Java, Java3D, JOGL and JavaFX Developed by Sun, Java3D in-
corporated the VRML and X3D design, yet failed to thrive in the
Web, later being dropped by Sun.

O3D Developed by Google, this API relies on two layers; a lower level
implemented using C/C++ which is the browser plugin and a
higher level implemented in JavaScript. Targeted to JavaScript
programmers, it fails to offer a efficient method to define the scene
content in a declarative way, forcing users to rely on JavaScript
to create and alter the scene-graph content. Another drawback of
O3D is the performance, hindered by the need to implement all
the logic and behaviours in JavaScript.

• Rendering without plugins

CSS and SVG approach Although not a true 3D, using Scalable
Vector Graphics (SVG), Cascading Style Sheets (CSS) and the
Canvas element, developers built 3D pipelines. Apple also improved
its WebKit engine and made possible to apply 3D transformations
to 2D DOM elements.

Hardware accelerated rendering This proposal intends to incorpo-
rate 3D rendering in the browsers. Mozilla’s Canvas3D or 3D-
Context from Opera are two examples which wrap OpenGL and
allow users to call OpenGL commands for the Canvas element.
Although functional, these implementations have a drawback; just
like O3D, there is no efficient method to define the scene content
and the performance is not up to par.

16

Chapter 2. State of the Art

Rendering with plugins has two drawbacks; the first being that they are not
installed by default in the systems, thus leaving that task to the users, which
may cause issues with the browser or the Operating System (OS). The second
issue is that the application and event models are present inside the plugin,
and not in the DOM.

2.3.1 X3Dom Architecture

Since the current JavaScript/OpenGL implementation lacks a scene graph
implementation like the one present in X3D, X3DOM proposes a simple so-
lution to the problem using HTML5 and X3D.

The most important reason for this approach, is that the HTML5 speci-
fication uses X3D for declarative 3D scenes although the DOM integration
is not defined, nor how to access the scene graph content. Another reason
for this implementation strategy is that X3D can be defined using a XML
encoding and there is a DOM tree interface present in the binding interface,
yet it lacks a live updating mechanism and the ability to change the DOM
content.

X3DOM’s purpose is to produce the results in place rather than in a
plugin, much like the way SVG is implemented in the browser. In order to do
so, X3DOMs implementation only supports a subset of the X3D specification
and has the X3D nodes mapped as DOM elements. X3D will be used to
render the scene, leaving all manipulations of the scene graph to the standard
DOM-based browser scripting.

The authors intend to reduce the 3D system to a mere visualisation com-
ponent, leaving all else to current web technologies. X3DOM will then be a
connector between the HTML5 and X3D.

Connector

This connector provides the bridge between the browser font ends with the
X3D back ends, allowing for the communication of changes in the DOM or
the X3D representation. The front end adapter will access the DOM tree
contents and be able to read and write the DOM representation of the X3D

17

Chapter 2. State of the Art

scene. As for the back end adapter, it should have access to the X3D runtime
context and reflect the DOM tree. It is up to the connector to keep both
adapters in sync therefore being able to reflect changes in both directions.

Model Updates

All changes to the DOM tree or DOM elements must affect the X3D tree by
means of the back end adapter. These changes not only include X3D nodes
but all the different X3D structures.

Observer Responses

The X3D execution model can change the X3D tree, when user interaction
or timed events require, therefore, the connector must reflect those changes
in the DOM representation of the scene. To achieve this, specific X3D tree
elements will have observers, which will ensure the required changes are made.

Media streams

The connector must handle media downstream and upstream. Some elements
in the X3D can require media elements such as texture images, movies and
sound, therefore X3DOM must be able to access these through the browser
streaming mechanism. It is also required for the back end to access the
graphics context from the front end.

Scalability and Multi-Profile Support

X3DOM allows the integration of 3D structures in the DOM. This works
perfectly with small amount of data, yet when a more demanding size of data
is required, users can rely on the Inline node. This object allows dividing the
3D scene in multiple files and locations. One feature of notice is that each
inlined scene has support for different profiles, allowing for a better control
of necessary modules.

As stated in 2.2.1, X3D has support for multiple profiles allowing users
to create scalable scenes. X3DOM supports this feature and also implements

18

Chapter 2. State of the Art

a specific profile as seen in 2.3.1.
This X3DOM profile is an extension of the Interactive Profile with added

Figure 2.2: X3DOM Profile compared with existing X3D Profiles

animation and event-handling components.
Scripting and Prototypes are not supported, thus scripting must rely on

the browser side.

X3D Elements as Single Point of Access

In order to allow a single point of access for the manipulation of the X3D
element, the authors propose the following:

X3D Element Attributes Based in the SVG-spec, the X3D element must
possess attributes to configure the render and execution engine. This
includes such attributes as xmlns, x, y, width, height, version
and baseProfile. The last two are required in order to request a specific
X3D profile and runtime version.

19

Chapter 2. State of the Art

SAI Interface The X3D specification allows the creation of bindings for
different languages and runtime manipulation of the scene. X3DOM
through the Scene Access Interface (SAI) allows the interfacing with
the X3D element using browser-side scripting.

2.4 OpenLayers

OpenLayers is an open source client side JavaScript API created for the vi-
sualization of geographical data in browsers.

OpenLayers works using Client / Server model, where OpenLayers is the
web map client and remote services are required to provide the data.

The client automatically request the data as needed, while the users nav-
igate the map. These requests behind the scenes are done asynchronously,
using Asynchronous JavaScript and XML (AJAX).

Since OpenLayers does not contain any data, we must rely on third-party
services to provide the data. The map services supported by OpenLayers are:

• Web Map Service

• Web Feature Service

• Google Maps

• OpenStreetMap

• Virtual Earth

• Yahoo! Maps

• UMN MapServer

• MapGuide Open Source

• GeoServer

• ka-Map

• World Wind servers

20

Chapter 2. State of the Art

• ArcGIS Server

Besides the previous services, OpenLayers also includes support for GeoRSS-
Simple (GeoRSS), Keyhole Markup Language (KML), Geography Markup
Language (GML), and Geo JavaScript Object Notation (GeoJSON).

OpenLayers supports multiple services simultaneously, allowing the user
to gather data from different servers and displaying the results in different
layers. One example is using a service as the main map source, and request a
sewer line map which will be overlaid over the geographical data.

2.4.1 Using OpenLayers

Creating a Map

In order to create a map in a HTML document, one needs to obey to condi-
tions; include the OpenLayers JavaScript library in the document and create
an element to place the map.

1 <html>
2 <head>
3 <title>OpenLayers Example</title>
4 <script src="http://openlayers.org/api/OpenLayers.js"></script>
5 </head>
6 <body>
7 <div style="width:100%; height:100%" id="mapID"></div>
8 </body>
9 </html>

Listing 2.8: Creating a map with OpenLayers

After having included the library as seen in line 4 of 2.8 and creating the
element for the map, line 7 of 2.8, the map is initialized with the following
constructor:

1 var map = new OpenLayers.Map(’mapId’)

Listing 2.9: OpenLayers constructor

The constructor takes one string as a parameter, that string is the id of the
HTML element created for the map, as seen on line 7 of listing 2.8

21

Chapter 2. State of the Art

Figure 2.3: HTML page with an OpenLayers map

The map is created, and controls are visible the top left corner, yet no
map images are visible. This is due to the fact that the map has no layers,
therefore nothing is displayed.

Creating a layer and populating the map

To display data in a map, users must create a layer and associate it with a
desired Web Map Server (WMS). This is accomplished using the following
JavaScript:

1 var wms = new OpenLayers.Layer.WMS(
2 "OpenLayers WMS",
3 "http://vmap0.tiles.osgeo.org/wms/vmap0",
4 {layers: ’basic’}
5);
6 map.addLayer(wms);

Listing 2.10: Creating a OpenLayers layer

Creating a layer is quite simple; one must user the Layer constructor and
then add the object to the map.

In the provided example, listing 2.10, we have the constructor being used

22

Chapter 2. State of the Art

in lines 1 to 5, where lines 2 and 3 are the required parameters, line 4 has
optional parameters and in line 6 the layer is added to the previously created
map as shown in listing 2.9.

A layer requires the user to provide the layer name and the layer url as
parameters. Additional parameters can be supplied, but in this case, only
which layer from the WMS is to be used.

Figure 2.4: OpenLayers map with a simple WMS layer

OpenLayers allows the use of several layers simultaneously, by overlaying
images and using transparency. To create an overlay, users must create a new
layer, like demonstrated in listing 2.10, but add specific optional parameters.

1 var dm_wms = new OpenLayers.Layer.WMS(
2 "Canadian Data",
3 "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap",
4 {
5 layers: "bathymetry,land_fn,park,drain_fn,drainage,"+
6 "prov_bound,fedlimit,rail,road,popplace",
7 transparent: "true",
8 format: "image/png"

23

Chapter 2. State of the Art

9 },
10 {isBaseLayer: false}
11);
12 map.addLayer(dm_wms);

Listing 2.11: OpenLayers map with different layers

The main difference between listings 2.11 and 2.10 is that in 2.11 line 9 the
provided parameter defines the layer as an overlay, and in line 6 the layer
transparency is forced, in order not to cover the base layer created in 2.10.

Figure 2.5: OpenLayers map with a multiple layers

24

Chapter 2. State of the Art

Controls and User Interface

OpenLayers adds default controls to the map, yet additional control elements
can be added for more interactivity. These can reside in the map or other
HTML elements present in the page.

1 map.addControl(new OpenLayers.Control.LayerSwitcher({’ascending’:false}));

Listing 2.12: Creating additional controls

This code(2.12) adds a Layer Switcher which allows users to toggle layer
visibility, as seen below.

Figure 2.6: OpenLayers map with a inactive layer

Figure 2.7: OpenLayers map with active layer

OpenLayers also provides users with a Graticule; this element creates a
grid in the map referencing latitudes and longitudes. With a regular size, it
adjusts its values according to the zoom level. In order to use the Graticule

25

Chapter 2. State of the Art

one uses the following JavaScript:

1 var grid = new OpenLayers.Control.Graticule({
2 numPoints: 2,
3 labelled: true
4 });
5 map.addControl(grid);

Listing 2.13: Creating a Graticule control

Figure 2.8: OpenLayers map with Graticule overlay

OpenLayers allows users to create text and points of interest. This is achieved
by creating a TAB separated text file, in which one includes the point latitude
and longitude, the title, the description and the icon to be displayed.

1 var textPOI = new OpenLayers.Layer.Text("text", {location: "./textfile.
txt"});

2 map.addLayer(textPOI);

Listing 2.14: Creating a Point of Interest with text

1 point title description icon
2 10,20 my orange title my orange description
3 2,4 my aqua title my aqua description
4 42,-71 my purple title my purple description
is great. http://www.

openlayers.org/api/img/zoom-world-mini.png

Listing 2.15: Textfile needed for creating a Point of Interest with text

26

Chapter 2. State of the Art

Figure 2.9: OpenLayers map with Points of Interest

Figure 2.10: OpenLayers map with Points of Interest and related information
box

Vector shapes such as polygons, lines or points can be drawn in a map.
The code required for drawing in a map is more complex that the previous
examples. This complexity is due to the fact that OpenLayers requires code
to create the layers for the shapes, the controllers which allow users to switch
the drawing tool and also mouse handling functions. For the sake of simplicity,
the code will not be listed, and only an image with the results will be shown.

27

Chapter 2. State of the Art

Figure 2.11: OpenLayers map with vector shapes

2.5 WebGL Earth

WebGLEarth is a project that provides users with a three-dimensional globe
in the browser or mobile devices. According to the authors, there is support
for the following functions:

• rotation and zoom of the globe

• camera tilt

• free movement in space

• support for existing maps like OpenStreetMap or Bing

• support for different layers or overlays like OpenLayers

• support for markers

• support for custom textures such as images from other planets

As requisites, WebGLEarth needs a browser that supports HTML5 canvas
object, the WebGL extension and JavaScript[1]. Creating a new scene in
WebGL Earth is simple, just like in OpenLayers as shown in 2.4.1.

28

Chapter 2. State of the Art

1 <!DOCTYPE HTML>
2 <html>
3 <head>
4 <script src="http://www.webglearth.com/api.js"></script>
5 <script>
6 function initialize() {
7 var options = { zoom: 3, position: [47.19537,8.524404], proxyHost:

’http://data.webglearth.com/cgi-bin/corsproxy.fcgi?url=’ };
8 var earth = new WebGLEarth(’earth_div’, options);
9 }

10
11 </head>
12 <body onload="initialize()">
13 <h1>WebGL Earth API: Hello World</h1>
14 <div id="earth_div" style="width:600px;height:400px;border:1px solid

gray; padding:2px;"></div>
15 </body>
16 </html>

Listing 2.16: Creating a WebGL Earth globe

In line four from listing 2.16, the library is included in the HTML page. Line
seven the options object is created, providing desired values for the globe and
the next line the globe is created, using as arguments a string defining the
associated div element and the options object. This options object can have
the following variables:

1 map - (WebGLEarth.Maps.OSM)
2 zoom : number
3 position : [lat,lng]
4 altitude : number
5 panning : boolean
6 tilting : boolean
7 zooming : boolean
8 atmosphere : boolean
9 proxyHost : string

Listing 2.17: Options object for WebGL Earth

From the names of the variables one can quickly infer what their purpose
is. map allows users to choose which map tiles will be used as textures, zoom

29

Chapter 2. State of the Art

is the zoom level for the tiles, position is a vector containing latitude and
longitude for the camera, altitude is the camera altitude in meters. panning,
tilting, zooming and atmosphere are boolean values which enable or disable
the function with the same name. proxyHost allows users to define a proxy.

WebGL Earth despite using 3D, is only a globe and the maps are displayed
as textures, as can be seen in image 2.12. When zooming close to the surface,
there is no sense of height. Since there are no digital elevation models, the
notion of the globe disappears when the camera gets close to the surface, the
visualization appears two dimensional, just like the one fond in OpenLayers
and image 2.13.

Figure 2.12: WebGL Earth globe

30

Chapter 2. State of the Art

Figure 2.13: WebGL Earth globe zoomed in

2.6 Web 3D Service

W3DS is a service for three-dimensional geodata such as digital elevation
models, city and building models, vegetation and street furniture.

The purpose of W3DS is much like that of WMS, yet while the later sup-
plies attributes and semantic information as well as images, W3DS purpose
is to provide scene graphs consisting of a tree like structure of nodes, groups,
transforms, shapes, materials, and geometries. In order to obtain attributes
like those found on WMS, users rely on the GetFeatureInfo provided by
W3DS. The data format supported by W3DS is X3D, since this is a World
Wide Web Consortium (W3C) standard. The level of detail for the provided
geometry goes from highly detailed 3D models to prototype-like structures,

31

Chapter 2. State of the Art

enabling a controlled performance and keeping the geometry detail to the
minimum needed.

TheW3DS API has five different operations; GetCapabilities, GetScene,
GetTile, GetLayerInfo, GetFeatureInfo. From those, only the first two are
mandatory, being the remaining optional.

All operations have parameters, and the following are mandatory and
common to every request:

SERVICE Service identifier (W3DS).

REQUEST Request identifier (GetCapabilities or GetScene).

VERSION The version of the operation to be used.

2.6.1 GetCapabilities

This operation allows users to know which resources are available in the server.
The reply is a XML which contains metadata about the server and the owner.
Also in the reply is information of available operations and a description of
all data present in the server. This description usually contains a list of layers
available and, for each layer, a list of their properties, like the coordinate
system, the size, styles, if it is tiled or if there are different Level of Detail
(LOD).

2.6.2 GetScene

Using the GetScene request, users can obtain 3D data from the server. As
parameters for the request, the following are mandatory; CRS which is the
coordinate system being used, BoundingBox which defines the rectangle en-
compassing the dataset, Format provides the server with the required output
format for the 3D data, most commonly the X3D file format .Layer informs
the server of which layers are to be included in the dataset.

32

Chapter 2. State of the Art

2.6.3 GetTile

Since X3DOM allows adding geometry data during runtime, and the data in
the server can be quite large, there is sectioned data. These are called tiles
and cannot be accessed by the GetScene request.
The GetTile request allows users to select specific tiles contained in the server
and the request has the following mandatory parameters; CRS, Layer and
Format just like the GetScene request as well as TileLevel which defines the
desired LOD for the tile, TileRow which is the row of the tile and TileCol
is the column.

2.6.4 GetLayerInfo

Layers have information about their attributes, and through the use of this
request, it is possible to obtain a XML document with the attributes of a
specified layer.

2.6.5 GetFeatureInfo

This request allows one to obtain information about features of a element con-
tained in a layer. Making a GetFeatureInfo request requires four mandatory
parameters; CRS, Layers, Format and Coordinates. CRS is the coordinate
system used, Layers is a list of layers the user is requesting information from,
Format is the reply format and Coordinates as the name implies is a pair of
coordinates used to search for the features.

33

Chapter 2. State of the Art

34

Chapter 3

Implementation

3.1 JavaScript Object and Initial Requirements

Before starting the development stage, one must define the requirements the
library must meet. In order to use the library, users should have a HTML5
compatible browser, as well as the X3DOM library and jQuery.

X3DOM as previously stated in section 2.3, is the bridge between the
browser and X3D. jQuery is a JavaScript library that intends to simplify
HTML document traversing and facilitate AJAX operations.

As for the OL3 library, it must fulfill the following requisites in order to
be a fully functional prototype.

• asynchronous communication with the server

• have the ability to make a GetCapabilities request and obtain the
information contained in the response

• implement a Bounding Box

• have a controlable camera and be aware of the camera’s position and
rotation

• be able to calculate the viewing frustrum

• the ability to differentiate layers

35

Chapter 3. Implementation

• capable of managing tiles of needed geometry

3.1.1 Object Oriented Programming in JavaScript and
the OL3 Object

When developing in JavaScript one must retain the following premises; in
JavaScript everything is an object and the use of name spacing avoids collision
with other libraries.

Since it is a prototype-based language, to create new objects one just
clones other objects. Using function someFunction() {}; is exactly the
same as var someFunction = function(){};. This newly created function
is also an object and can be added as a property of some other pre-existing
object.

When using code with other JavaScript libraries it is recommended the use
of namespaces. This will allow for lower naming collision with other libraries
and create unique groups that can be better organized and managed.

The namespace creation function guarantees that a single object with that
name is created, so when one tries to create a namespace that already exists,
an error will be thrown. The namespace chosen was OL3.

The selected namespace is then created and a Class function is added to
the object. This function intends to implement a construct similar to those
present in Java or C++. All the other classes implemented as a part of the
OL3 object are then created using the OL3 namespace and implement this
Class definition. This will guarantee a more organized and easier to maintain
structure.

1 OL3.Class = function(
2 // Class definition object: mandatory
3 __proto__
4) {
5 var Class = __proto__.hasOwnProperty("initialize") ?
6 // use it ...
7 __proto__.initialize :
8 // otherwise create one and assign it
9 (__proto__.initialize = function () {})

36

Chapter 3. Implementation

10 ;
11 Class.prototype = __proto__;
12 return Class;
13 };

Listing 3.1: Class implementation

The Class function of the OL3 object checks if a newly created object has
a initialize function; if so it will use it as a constructor, otherwise it will
create an empty one.

To define a new class, one would do the following:
1 OL3.Person = new OL3.Class(
2 {
3 initialize : function (name)
4 {
5 this.name = name;
6 }
7 sayName : function()
8 {
9 alert(this.name);

10 }
11 });

Listing 3.2: New class definition

To create a new instance of the Person class, all one needs to do is assign a
variable with the Person object.

1 var Human = new OL3.Person("John Doe");

Listing 3.3: Instantiating a new Person Object

Having the namespace and the Class function implemented, the next step
was the creation of objects that allowed connection to the server, obtaining
information about the data present in the server and objects that represented
the main structures needed; the Scene, the Camera and the Layer.

3.1.2 Asynchronous Communication with the Web Server

JavaScript supports asynchronous communications with web servers. Gath-
ering information and 3D data from a server is a common operation and so

37

Chapter 3. Implementation

an object to perform these tasks with a web server was created. This object,
named OL3.XMLHTTPRequest, uses the XMLHttpRequest (XHR) API to
send Hypertext Transfer Protocol (HTTP) requests to the server and load
the data contained in the response back to the scripts.

Any object which requires data to be loaded from the web server has a
function called getReply that is used by the OL3.XMLHTTPRequest object
when the data has been loaded successfully. The object’s getReply function
will act to what has been returned from the server and then, accordingly to
the required action, will parse and use the information, being this about a
layer or 3D data contained in the web server.

The OL3.XMLHTTPRequest implementation relies on the jQuery library
since it simplifies the use of XHR.

1 var jqxhr = $.ajax(urlRequest)
2 .done
3 (
4 function()
5 {
6 var reply = jqxhr.responseText;
7 parent.getReply(reply);
8 }
9)

10 .fail
11 (
12 function()
13 {
14 throw new Error("Error obtaining data from server");
15 }
16);

Listing 3.4: Example of XMLHttpRequest using jQuery

jQuery makes the implementation quite fast and simple, as can be seen in
the listing 3.4. This listing represents more than 50% of the code required to
create the OL3.XMLHTTPRequest object.

In line 6, the variable reply contains the data from the web server, and in
line 7, the getReply method from the object which made a request is being
supplied with the results. These are always XML files, which the object will

38

Chapter 3. Implementation

parse and create the necessary structures.

3.1.3 GetCapabilities

The OL3 implements a GetCapabilities request. By sending this request, a
client can obtain information about a W3DS server, such as available data,
supported formats among others.

Using the following Uniform Resource Locator (URL), one can make a
capabilities request to a W3DS server.[7]
http://3dwebgis.di.uminho.pt/geoserver3D/w3ds?VERSION=0.4.0&SERVICE=
w3ds&REQUEST=GetCapabilities

The request is made using AJAX, and relies on the OL3.XMLHTTPRequest
class. The reply is a XML file containing all the information relative to the
server. The information a GetCapabilities reply gives consists of the following
items; services supported, formats supported, spatial reference systems, list
of map layers, SLD/Styles and vendor specific codes.

1 <ows:Operation name="GetScene">
2 <ows:DCP>
3 <ows:HTTP>
4 <ows:Get xlink:href="http://3dwebgis.di.uminho.pt/geoserver3D/

w3ds?">
5 <ows:Constraint name="GetEncoding">
6 <ows:AllowedValues>
7 <ows:Value>KVP</ows:Value>
8 </ows:AllowedValues>
9 </ows:Constraint>

10 </ows:Get>
11 </ows:HTTP>
12 </ows:DCP>
13 </ows:Operation>

Listing 3.5: Example of a GetCapabilities reply describing a get scene request

Each time a layer is created, there is a new OL3.Capabilities object created
which is part of the layer object. Using a string containing the W3DS URL
and a string defining a name for the layer, the OL3.Capabilities object will

39

http://3dwebgis.di.uminho.pt/geoserver3D/w3ds?VERSION=0.4.0&SERVICE=w3ds&REQUEST=GetCapabilities
http://3dwebgis.di.uminho.pt/geoserver3D/w3ds?VERSION=0.4.0&SERVICE=w3ds&REQUEST=GetCapabilities

Chapter 3. Implementation

parse the reply XML obtained from the W3DS. From the data received, the
object will try to check if a layer with the name the user provided exists. If
found, the layer properties will be parsed and returned to the new layer. If
no information is found for the layer name requested, the new layer will not
be created.

Since the OL3.Capabilities object will communicate with the server, this
object possesses a getReply function.

This function will check if the reply from the W3DS server is a valid one
or an exception has occurred. In case the response is valid, then it proceeds
to find requested layer. When the layer is found, the OL3.Capabilities parsers
will obtain all the properties of the layer, such as the Coordinate Reference
System (CRS), the styles, the different LODs and if the layer is tiled or not.
These properties will then be sent back to the layer object and a new layer is
available to the user.

3.1.4 Bounding Box

"The bounding box is the computationally simplest of all linear
bounding containers, and the one most frequently used in many
applications." [9]

Inheriting from the geographic information metadata standard ISO 19115
Metadata Standard, this object represents the maximum extents of a two
dimensional object in a 2D coordinate system, being represented by a four
value pair of min(x), max(x), min(y) and max(y). These values must fully
enclose the object and the rectangle faces must be aligned with the axes of a
Cartesian coordinate system.

The Bounding Box class is a structure that contains the two delimiting
points of a layer, these being the lower left corner and the upper right corner.
In geospatial data, these serve as an approximation for the areal coverage of
the feature.[4]

The OL3 bounding box object contains an array with the four values
delimiting the rectangle.

lowercorner1 this value is the equivalent to min(x)

40

Chapter 3. Implementation

lowercorner2 this value is the equivalent to min(z)

uppercorner1 this value is the equivalent to max(x)

uppercorner2 this value is the equivalent to max(z)

Besides the rectangle values, there is a CRS variable, so that there is a refer-
ence to the coordinate system being used.

This being a library which allows navigation in 3D, one would assume
that the bounding box would be in 3D, with x, y and z axis, yet the values
returned by the W3DS only contain two axis (x and z).

Following is a description of the 3D bounding box implementation com-
pared with the W3DS implementation.

Figure 3.1: 3D Bounding box (left) and current implementation (right)

As can be seen in image 3.1, on the left side there is a 3D bounding
box and on the right is the current implementation. The light green shape
represents the y = 0 plane which intersects two cylinders. The 3D bounding

41

Chapter 3. Implementation

box containing the left cylinder is a blue cube which can be defined with
points p1x,y,z and p2x,y,z. Using the current implementation, shown on the
right, there is only p3x,z and p4x,z. With these vales one can only define a
rectangle, that when changed into 3D would represent all objects contained
inside a parallelogram extending into −∞ and +∞ in the y axis.

Since geographical data is quite uniform vertically, the need for a 3D
bounding box is not that relevant and is open for discussion. W3DS is only
the source for 3D data used by OL3, the bounding box implementation in
the server is irrelevant, and OL3 must use that implementation.

3.2 OL3 Structures

3.2.1 Scene

The Scene is a top-level object and acts as a container which allows children
objects to interact with each other. It contains a Camera object and a Layer
objects array. The Camera object will allow the different objects within the
scene to access the camera properties and the Layer array will contain all
layers associated with the scene.

The scene initialization is quite similar to the one used in OpenLayers, as
demonstrated in 2.8. The user creates a div element in the HTML document
which will contain the scene, and then he must initialize the scene by using
the following function:

1 var scene = new OL3.Scene(bb, options);

Listing 3.6: Creating a Scene

As seen in the example listing 3.6, one creates an scene object as a variable.
The bb argument provided is a Bounding Box, which is mandatory, but yet of
no use. As for the options variable, it is an object which contains properties
for the scene. This last object is not mandatory, for the Scene object has
default values, as shown in listing 3.7.

1 var default_args =

42

Chapter 3. Implementation

2 {
3 ’div’ :"#map",
4 ’width’ :450,
5 ’height’:450,
6 ’stat’ :false,
7 ’log’ :false
8 };

Listing 3.7: Scene default variables

The default arguments represent the following:

div This string is the id of the div element in which the user intends to
place the scene.

width / height These variables represent the width and height of the ren-
dering window for the X3DOM object, which will then be placed inside
the div element.

stat / log These two boolean variables are here to allow users to turn on
debug information regarding the X3DOM object.

When a scene is created, the HTML DOM is changed and X3D nodes are
inserted. These nodes are an empty X3D scene without any geometry nodes,
and the scene-graph resembles the one described in 11.

Inside the scene node there is a transform node, whose id is named "en-
trada".The node serves as an entry point where all 3D elements will be added.
Through this method one can identify clearly which elements of the scene-
graph are part of the initial scene, those outside the transform node, and the
ones added later, inside the transform node.

3.2.2 Camera Implementation

In order to allow interaction for the scene navigation, several implementations
of camera movement were studied. The main purpose of this study was to
allow the end-user to move the camera in the scene and the library always
being aware of the camera position and rotation. Through this constant
monitoring, it was also intended to have a notion of what geometry was seen

43

Chapter 3. Implementation

by the camera.
Three different implementations were studied; one which the user could

move the camera with buttons present in the HTML, the second approach
was standard X3DOM camera movement with the mouse and calculating
the viewing frustum, and finally using the same method as the previous, yet
instead of calculating the viewing frustum, rays are emitted from the four
corners of the camera and then calculating where they would intersect the
ground plane. A more detailed description is given below.

HTML buttons

This approach uses four transform nodes just below the scene root node and
HTML button elements to control transformations applied to the scene-graph.

The transform nodes are a translation node, to change the scene transla-
tion in the x, y and z axis, as well as three rotation nodes, one for each axis
of rotation. All the 3D elements will be placed inside these nodes, in order to
be affected by their transformation. By changing the values of the transform
nodes, one can change the scene in relation to the camera position.

This is the approach with the easier implementation, yet there is a minor
setback, as there is no simple method to calculate what geometry is within
the camera view port.

Viewing Frustum

The viewing frustum[5] is a volume in the modeling world where all the
visible objects reside, although some occlusions may occur. This volume has
the shape of a truncated pyramid when using a perspective projection, where
the apex resides in the camera position and the base in the far clipping plane.
The near clipping plane truncates the top of the pyramid, thus calling the
volume a frustum.

The camera controls in this implementation rely on mouse interactions
with the canvas element. All changes to the scene and the camera are handled
by X3DOM, therefore to have the camera position and rotation as well as
what geometry is visible, one must obtain those values from X3DOM.

44

Chapter 3. Implementation

Figure 3.2: Camera viewing frustum - obtained in Lighthouse3d.com

Obtaining the position and rotation of the camera object is quite straight
forward. When a user changes the camera position the view port element
triggers an event and three objects are returned; the first is an array with
the three position values. The second is the camera rotation, in which there
is an array with the rotation amount for each axis, as well as a rotation value.
The third value is a matrix which is used to calculate the viewing frustum.

From the matrix returned by moving the camera, the up vector is obtained
from the values contained inside, as well as the right and look vectors. In
addition to those vectors, the near clipping distance and the far clipping
distance are required; these values are hard coded in X3DOM and are 0.1
and 100000. These two values represent the distance from the camera to the
near plane and far plane, and these are the planes which contain the visible
objects. Using the near and far clipping distances it is possible to calculate
the center point of the clipping planes.

The far, fc, and near clipping planes center nc is obtained using the
following two formulas:

fcx,y,z = px,y,z + dx,y,z × farDist

45

Chapter 3. Implementation

ncx,y,z = px,y,z + dx,y,z × nearDist

Where p is the camera position, d is a normalized vector with the direction
of the camera’s viewing ray, farDist is the far clipping distance and nearDist

is the near clipping distance.
Using the field of view, which is obtained from the X3DOM viewpoint

object, the aspect ratio and the clipping distances, one can obtain the the
width and the height of the near and far planes.

Height of near plane

Hnear = 2× tan(fov/2)× nearDist

Where fov is the field of view and nearDist is the near clipping distance.

Width of near plane

Wnear = Hnear × ratio

Using the height of the near plane Hnear calculated previously, multi-
plying it with the value of the aspect ratio ratio one obtains the width
of the near plane.

Height of far plane

Hfar = 2× tan(fov/2)× farDist

With the field of view fov and the far clipping plane distance, farDist,
the height of the far plane is obtained.

Width of far plane
Wfar = Hfar × ratio

As for the width of the far clipping plane, it can be calculated using
the height of the far plane, Hfar, and the aspect ratio ratio.

46

Chapter 3. Implementation

From the values calculated with the previous formulas, the only remaining
step to obtain the viewing frustum is to know the values of the four points
defining the corners of the near and far clipping planes.

To determine the far clipping plane corners, one must use the following
functions:

ftlx,y,z = fcx,y,z + (upx,y,z ×Hfar/2)− (rightx,y,z ×Wfar/2)

ftrx,y,z = fcx,y,z + (upx,y,z ×Hfar/2) + (rightx,y,z ×Wfar/2)

fblx,y,z = fcx,y,z − (upx,y,z ×Hfar/2)− (rightx,y,z ×Wfar/2)

fbrx,y,z = fcx,y,z − (upx,y,z ×Hfar/2) + (rightx,y,z ×Wfar/2)

Where ftl is the far top left corner, ftr is the far top right corner, fbl the
far bottom left corner and fbr the far bottom right corner of the plane. fc is
the far clipping plane center, up is the up vector and right the right vector.
The Wfar stands for width of the far clipping plane and Hfar the height of
the far clipping plane.

The same functions can be used to determine the corners of the near
clipping plane, ntl, ntr, nbl and nbr. One still uses the up and right vectors,
up and right, but instead of the width and height of the far clipping plane,
the width and height of the near clipping plane are used, Hnear and Wnear.

ntlx,y,z = ncx,y,z + (upx,y,z ×Hnear/2)− (rightx,y,z ×Wnear/2)

47

Chapter 3. Implementation

ntrx,y,z = ncx,y,z + (upx,y,z ×Hnear/2) + (rightx,y,z ×Wnear/2)

nblx,y,z = ncx,y,z − (upx,y,z ×Hnear/2)− (rightx,y,z ×Wnear/2)

nbrx,y,z = ncx,y,z − (upx,y,z ×Hnear/2) + (rightx,y,z ×Wnear/2)

Ray Emission

Using the previously described approach of the viewing frustum as a starting
point, there is another solution to obtaining the four edges defining the sides
of the truncated pyramid. X3DOM allows users to emit rays at specific points
in the view port. These rays will return a normalized vector with a direction
in the form of a X3DOM Line object, comprised of a starting position and
a direction. If one emits four rays, one at each view port corner, the result
would be the direction of the four edges defining the pyramid sides of the
viewing frustum.

To emit a ray at a given position the following method is used:

1 var line = viewarea.calcViewRay(x, y);

Listing 3.8: Emitting a ray

In this approach there is no need to calculate the viewing frustum and the
clipping planes, only the edges of the pyramid. This is done because of the
intersection with the y = 0 plane. This intersection is detailed in the following
subsection.

48

Chapter 3. Implementation

y = 0 plane intersection

To load only the needed geometry from the server and keep the amount
data to a minimum, one must find what is seen by the camera and therefore
required to be loaded. Since the far clipping distance is 100000, loading all
data between the camera and the far clipping plane might be unnecessary.
Since the navigation in made most of the time from a bird’s eye perspective,
the approach was intersecting the viewing frustum with the y = 0 plane.

The first step for this approach is to understand the math behind that
operation[10]. That being done, the next step is to implement the appropriate
functions. An explanation for both follows.

Given the plane defined by x1, x2, x3 and a line passing through x4 and x5,
the intersecting point can be solved by the following simultaneous equations
for x, y, z and t

0 =

∣∣∣∣∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣∣∣∣∣
(3.1)

x = x4 + (x5 − x4)t (3.2)

y = y4 + (y5 − y4)t (3.3)

z = z4 + (z5 − z4)t (3.4)

where t is:

49

Chapter 3. Implementation

t = −

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0
x1 x2 x3 x5 − x4

y1 y2 y3 y5 − y4

z1 z2 z3 z5 − z4

∣∣∣∣∣∣∣∣∣∣∣∣

′ (3.5)

When moving from the theory to implementation, most implementations
found were in Java or C++, and required the creation of specific classes. One
implementation in GNU Octave was found[8] which did not required creating
classes or complex structures and a port was done to JavaScript.

1 linePlaneIntersect: function(lineP1, lineP2, quad)
2 {
3 var t = null;
4 var p = null;
5 var lineDir = {};
6 lineDir.x = lineP1.x - lineP2.x;
7 lineDir.y = lineP1.y - lineP2.y;
8 lineDir.z = lineP1.z - lineP2.z;
9 var numerator = Utils.dot(quad.normal, lineDir);

10 if(Math.abs(numerator) > 0.000001)
11 {
12 t = (Utils.dot(quad.normal,Utils.subtract2Points(quad.point1,

lineP1))) / numerator;
13 p = new OL3.Point(parseFloat(lineP1.x) + parseFloat(lineDir.x*t),

parseFloat(lineP1.y) + parseFloat(lineDir.y*t), parseFloat(lineP1.z)
+ parseFloat(lineDir.z*t));

14 return p;
15 } else
16 {
17 return null;
18 }

50

Chapter 3. Implementation

19 },

Listing 3.9: Intersection of a plane with a line function

The function linePlaneIntersect takes as arguments two points crossed by
the line lineP1 and lineP2 and a plane quad. This plane object besides four
points contains a normal, which will be used to calculate the intersection. If
the dot product of the plane’s normal and the lineDir is of significant value,
as seen in line 9 of listing 3.9, then there is an intersection and that point,
p, is calculated. Besides calculating the point of intersection, the function
also provides t, which can be used to check if the intersection is contained
between the two points lineP1 and lineP2.

Using either the Viewing Frustum approach described in 3.2.2 or the Ray
emission method described in 3.2.2 one can obtain the four lines that contain
all objects visible by the camera. Intersecting those lines with the y = 0
plane, the four points that create the bounding box of the visible objects are
calculated. Using this bounding box it’s just a matter of asking the server for
geometry inside those points to obtain all the data needed.

Comparison between the different approaches

The HTML buttons method as a user interface does what is required, as
it allows a controlled navigation. Although a controlled navigation is good
for inexperienced users, as it avoids getting lost, it doesn’t work well with
large amounts of data as the library cannot calculate the bounds of camera
visibility.

When using the viewing frustum the navigation is smoother yet more
unrestrained, therefore inexperienced users can get lost navigating the scene.
This approach however, does allow the library to calculate the visible objects,
making this optimal for large amounts of data that need to be gathered from
the server when needed. This implementation had a error, as there were issues
when changing the camera and obtaining the points of intersection in the
y = 0 plane. These where swapped on some axis and when swiveling the
camera the geometry requested from the server was wrong. Due to this error
the Ray emission was found as a viable solution.

51

Chapter 3. Implementation

The ray emission approach allows users to experience the same smooth
and unrestrained navigation as the viewing frustum implementation, but since
the amount of functions required to obtain the four points is considerably
smaller and the library produces no errors calculating the intersection points
when the camera swivels, this is the current method used by the Camera
class.

3.2.3 Layer

Just like in OpenLayers different geographical information has different layers,
so OL3 borrows the layers concept in order to separate different geometry
information.

As an example, if one should have terrain data, buildings and sewage lines
in a scene, one would separate the terrain, the buildings and the sewage in
different layers. This separation will benefit the library as a more adequate
method of controlling the geometry information in the scene graph and to
allow easier access and perform changes in specific geometry groups. This
separation also allows users to request only what they wish to load, since they
could be interested in only parts of the geometry contained in the W3DS
server, say for example only the buildings and sewage lines, but no terrain.

Each time a Layer is created, the Scene object adds the new Layer to an
array. This is done so users or other objects can access any layer contained
the scene.

1 var buildings = new OL3.Layer(parent,urlEntry, nameLayerEntry);

Listing 3.10: Creating a new Layer

Creating a Layer is a straight-forward process, using the constructor and
supplying a scene which will contain the Layer, parent, a URL for the W3DS
server, urlEntry, and the last parameter is the name of the layer as contained
in the web server, nameLayerEntry.

When instantiating a new Layer, the object will use the Ol3.Capabilities
class to check if it is a valid layer. This is done so that the layer can have a
valid W3DS URL and a valid name. This valid name implies that the name
of the layer must be the same as a layer name in the W3DS server being used.

52

Chapter 3. Implementation

Doing so ensures that the layer will have available data in the server to be
shown to the users.

If there is no such layer in the W3DS server, the Layer object will not be
added to the scene, avoiding later requests for non-existent geometry data
from the server.

Obtaining geometry data from a server

A Layer is responsible for obtaining geometry data from the server and dis-
playing it to the users. In the server one can find two types of layers; the first
being untiled models and the second tiled geometry. When creating a layer,
at the time the capabilities file is parsed, there is information whether the
layer is tiled or not. This is reflected in a property of the layer object, and
therefore, when making requests for geometry one needs to differentiate the
requests. If the layer is not tiled the GetScene request is used, as described
in page 32, otherwise the GetTile request is used as seen in page 33.

Making a request to the W3DS server for geometry is made just like
the Capabilities request; a OL3.XMLHTTPRequest is created providing the
server with the required data, and then the server returns the X3D file asyn-
chronously. As soon as the server makes the data available to the layer object,
the X3D file is parsed and the nodes are inserted in the DOM. Although the
geometry comes in the same format, X3D, the approaches to deciding which
data is requested from the server are different.

Loading a untiled model, the layer makes a request to the server for the
geometry and when the data is received, the X3D nodes are parsed and then
inserted into the scene-graph entry point of the HTML DOM.

Tiled geometry requires a different approach than the one used for untiled
models. Tiled geometry is used for large amounts of data, which makes it cum-
bersome to load in a single request. To avoid this setback, this data is divided
in square tiles. The W3DS server allows users to request tiles according to a
grid position. This grid depends on the bounding box of the geometry and
the level of detail desired. When creating a layer, the tile sizes are obtained
from the GetCapabilities response, and then the layer object will create a

53

Chapter 3. Implementation

Figure 3.3: Loaded geometry for a untiled model using a GetScene request

structure to contain the grid information. This structure is an array whose
length is dependent of the different LODs available. In each item of the array
is stored a two-dimensional array of tiles, reflecting a grid of tiles present in
the server for the respective LOD.

Tiles and the Grid

Tiled geometry is obtained using a GetTile request from a W3DS server. OL3
layers can either have untiled or tiled geometry. Layers with tiled geometry
possess a grid array, where grids are created and stored according to the
number of LODs present in the server for the specified layer.

For each level of detail, there is a specific tile size and using the tile size
and the layer’s bounding box, the amount of rows and columns composing
the grid are calculated.

1 this.numberColumns = Math.floor(width/tilesize);
2 this.numberRows = Math.floor(height/tilesize);

Listing 3.11: Calculating the grid’s columns and rows

54

Chapter 3. Implementation

Figure 3.4: Loaded geometry for a untiled model using a GetScene request
and tiled geometry using a GetTile request

The used W3DS server had exponential tile sizes, and the grid array structure
can be represented graphically as seen in figure 3.5. The smaller the square
is, the bigger the LOD.

Figure 3.5: Grid representation

Each grid contained in the array is itself a two-dimensional array, with
its size given by the number of columns and rows present in the grid. Each
element of that array is a tile.

The Tile object is a OL3 class that allows the library to check if the tile
has been requested from the server or if the tile is loaded in the scene. These

55

Chapter 3. Implementation

will help reduce the amount of data loaded as no repeated geometry will be
requested. It is also possible to check the tile’s lower corner, the row, column
and also the midpoint. Using both the grid and the tiles, loading the necessary
geometry from the server is simplified. With the method described in page 49,
the library will build a temporary grid to decide which geometry is required.

Figure 3.6: Temporary Grid construction

Starting with figure 3.6 as a reference, the first grid is the one with a
higher LOD and the last grid is the one with the lowest LOD.

The temporary grid is built in the following way; first the camera position

56

Chapter 3. Implementation

and the intersection points of the viewing frustum with the y = 0 plane are
obtained. The camera position intersects the grids in the point represented by
the blue circle and the viewing frustum for the first grid intersects the plane
in the four red circles, the second grid is intersected in the yellow circles and
the third grid in the green circles. The points coordinates are the same for
the different grids, but the column and row that contains them can differ.

After obtaining each grid’s rows and columns for the four points and using
the bounding box principle, the lower and upper corners of the points in the
grid are calculated, yet instead of coordinates, the row and column numbers
are used. The next step is calculating the 2D distance between the middle
of each tile contained in the box and the camera position. If the distance is
smaller than a threshold the tile is selected, else it’s discarded. This step is
repeated for all tiles in all the desired LOD grids.

Taking into account the exponential nature of the grids, using just the
previous method could create gaps or tiles of different LOD overlapping in
the loaded geometry. Two additional steps are required to ensure no such
errors occur. Each time a tile is required and not part of the grid with the
lowest LOD, three more are added to the required tiles, forming a 2×2 square
that aligns perfectly with the corresponding tile in the previous LOD grid.
As stated previously, the grid with the lower LOD doesn’t need this step,
because there are no larger tiles to align to. Gaps in the grid are now solved
and the only remaining action is to avoid overlapping. To do so, the groups
of tiles with higher LODs are checked against the next larger grid and if there
is an overlap, the tile from the larger grid is discarded. This is repeated for
all grids except for the one with the lowest LOD since there are no overlaps
possible.

There is now a temporary grid with different tile sizes built and all that
remains is to check which tiles are not yet loaded and request them from the
W3DS server using a GetTile request.

57

Chapter 3. Implementation

Figure 3.7: Temporary Grid layout

Image 3.7 represent the completed temporary grid. The green cube rep-
resents the camera and the blue dot on the grid is the camera position in
the grid. The red dots represent the four points where the camera viewing
frustum intersects the y = 0 plane. The tiles are loaded in sets of four and
the grid is now built with several LOD and no gaps or overlaps. Tiles that fall
outside the viewable area are not loaded, therefore no extra data was used
from the W3DS server.

58

Chapter 4

OL3 in Action

In the previous chapter we described the implementation of the OL3 library,
focusing on specific algorithms that were needed to handle the specific re-
quirement of 3D data.

In this chapter, we will show how to get the existing code, how to set up
and run a simple web page with a very basic map and finally, we show how
to contribute to the OL3 implementation by sending pull requests.

4.1 Manage code development using Git

When several developers are working on the same project, code management
tools are required to manage all contributions. These tools allow multiple
users contributing to the code without overwriting, by accident, other con-
tributions made by the different elements involved in the project. Also there
is the possibility to track the complete history of the project’s development,
and what changes were made during the development process and by whom.
The history capabilities of code management tools are a good provider of in-
formation to be included in the release notes, informing users of the changes
made since the previous version.

We are using the Bitbucket online git repository to store our project.

59

Chapter 4. OL3 in Action

4.1.1 Complementary code management tools

Besides code versioning and management, the online repository offers are
complementary tools like viewing source code, commit history as well as issue
tracking and wiki.

Issue tracking is a powerful tool for developers, since all involved in the
project as well as users can submit issues found either when developing or using
the software. These issues can then be ranked according to their importance,
marking more serious errors as more important issues and therefore giving
them more prominence over others. Issues can also be delegated to specific
users or teams, avoiding redundant work by other developers.

The wiki provided by the repository allows the developers to create guides
to help users getting started using the library, by providing tutorials, as
well as create guides to explain other developers how they can help in the
development, by explaining how the library is structured and how to create
additional functions and objects.

4.2 How to get OL3 code

Downloading the existing code is quite simple. Everyone can get the code
and the most simple way to do it, is to download the code using the web
interface of the repository.

60

Chapter 4. OL3 in Action

Figure 4.1: Web interface of the OL3 repository

The code can also be downloaded using git, on the command line. In order
to do so, one must have git installed in the computer and run the following
command in the terminal:

1 git clone https://bgc@bitbucket.org/bgc/3dlayers.git

Listing 4.1: Obtaining the library source code

After making changes, the user can then commit the code, using the following
command.

1 git commit -a

Listing 4.2: Making a commit

To send the source to the repository, the user must "push" the source. This
is achieved by doing the following.

1 git push

Listing 4.3: Making a commit

IDEs, like Eclipse have plugins that support remote git repositories. In this
kind of setup, a new project can be created with the downloaded code. Basi-
cally, these plugins are interfaces on top of git.

61

Chapter 4. OL3 in Action

4.3 How to create a very basic map

OL3 has used OpenLayers as a guide, due to its maturity. Creating a simple
map in OL3 is therefore quite similar to creating one in OpenLayers.

The first step is including the needed external libraries, namely jQuery
and X3DOM.

1 <script type="text/javascript" src="../jq/jquery-1.6.2.js"></script>
2 <script type="text/javascript" src="../x3/x3dom.js"></script>
3 <link type="text/css" rel="stylesheet" href="../x3/x3dom.css">

Listing 4.4: Including the libraries

The next step is including the OL3 library files. This is done with the following
HTML.

1 <script type="text/javascript" src="OL3Helpers/namespace.js"></script>
2 <script type="text/javascript" src="OL3.js"></script>
3 <script type="text/javascript" src="OL3Structures/Point.js"></script>
4 <script type="text/javascript" src="OL3Helpers/Utils.js"></script>
5 <script type="text/javascript" src="OL3Structures/Vector.js"></script>
6 <script type="text/javascript" src="OL3Structures/Line.js"></script>
7 <script type="text/javascript" src="OL3Structures/Quad.js"></script>
8 <script type="text/javascript" src="OL3Structures/GridPoint.js"></script>
9 <script type="text/javascript" src="OL3Helpers/XMLHTTPRequest.js"></script

>
10 <script type="text/javascript" src="OL3Structures/Tile.js"></script>
11 <script type="text/javascript" src="OL3Structures/Grid.js"></script>
12 <script type="text/javascript" src="OL3Structures/Camera.js"></script>
13 <script type="text/javascript" src="OL3Structures/BBox.js"></script>
14 <script type="text/javascript" src="OL3Structures/SimpleGrid.js"></script>
15 <script type="text/javascript" src="OL3Capabilities/Capabilites.js"></

script>
16 <script type="text/javascript" src="OL3Elements/Layer.js"></script>
17 <script type="text/javascript" src="OL3Elements/Scene.js"></script>

Listing 4.5: Including the OL3 library files

Still in the HTML head, one must include the following JavaScript code:

1 function viewFunc(evt)
2 {

62

Chapter 4. OL3 in Action

3 var vFpos = evt.position;
4 var vFrot = evt.orientation;
5 var vFmat = evt.matrix;
6 cena.camera.viewFunc(evt);
7 }
8 var cena;
9 var camada;

10 var bb;
11 function init()
12 {
13 bb = new OL3.BBox();
14 bb.setBounds([0,1,20,40]);
15 cena = new OL3.Scene(bb);
16 /*camada = new OL3.Layer(cena,"http://3dwebgis.di.uminho" +
17 ".pt/geoserver3D/w3ds?version=0.4&SERVICE=W3DS&REQUEST=",
18 "geoserver3D:dem_tiled_3d");*/
19 camada = new OL3.Layer(cena,
20 "http://localhost/3dlayers/OL3/geoserver" +
21 "-GetCapabilities_dual" +
22 ".xml",
23 "geoserver3D:dem_tiled_3d");
24 }
25 $(document).ready(function(){init();});

Listing 4.6: Setting up a scene

1 <body>
2 <div id="map"></div>
3 <script type="text/javascript">
4 function addIt()
5 {
6 document.getElementById(’vp_global’).addEventListener(’

viewpointChanged’, viewFunc, false);
7 }
8 </script>
9 </body>

Listing 4.7: The HTML body for using a scene

The viewFunc defined in lines 1 - 7 in listing 4.6 is created so that when the
camera moves the camera information is obtained and sent to the OL3 camera

63

Chapter 4. OL3 in Action

object. This function is later added to the X3DOM viewpoint as shown in
the function addIt() in listing 4.7.

Next variables are declared, cena for the scene, camada for the layer and
bb for a bounding box. The bounding box is mandatory, yet at the current
stage it’s not used, so any values can be supplied as the corners. The init()
function, as shown in listing 4.6 lines 11 - 24, will instantiate the object
that represent the scene. The bounding box is created with fictional values
and a new scene is created with the fictional bounding box and the default
parameters, as seen in listing 3.7. After the creation of a scene, it is populated
with a layer. The layer has the parameters parent, which is the containing
scene, the url for the W3DS server being used and the layer name being
requested from the W3DS server. The last line in the listing is to execute the
init() function when the HTML document is ready.

If the layer exists in the server and is available to the user, then the scene
will be drawn in the <div id="map"> element.

4.4 How to contribute to the OL3 develop-
ment

Using git to create a local copy of the library, one can contribute to the
development. There are two possibilities; improving class functionalities and
adding new classes.

Improving class functionalities can be made either by changing pre-existing
functions in order to make them better or by adding new functions to objects,
thus enabling them to perform more actions.

1 exampleFunction : function()
2 {
3 //print object’s properties to console
4 console.log(this.properties);
5 },

Listing 4.8: Function syntax

The correct syntax for adding functions to a class is presented in the previous

64

Chapter 4. OL3 in Action

listing. The function name comes first, followed by : function(), where
additional parameters can be supplied in between the parenthesis. Inside the
brackets is the code.

Creating a new class to be used by OL3, one uses the following:

1 OL3.Person = new OL3.Class(
2 {
3 name : "",
4 age : 0,
5 sex: "",
6
7 initialize : function (name, age, sex)
8 {
9 this.name = name;

10 this.age = age;
11 this.sex = sex;
12 },
13 getName: function()
14 {
15 console.log(this.name);
16 },
17 getAge: function()
18 {
19 console.log(this.age);
20 },
21 getSex: function()
22 {
23 console.log(this.sex);
24 },
25 greet: function()
26 {
27 console.log("hello, my name is "+this.name);
28 }
29 });

Listing 4.9: Class syntax

Any OL3 class uses the OL3.Class template. This template uses the initialize()
function as a constructor, and variables are either declared before the construc-
tor by name or inside the constructor by name preceded by this.. Functions

65

Chapter 4. OL3 in Action

are created used the example given in listing 4.8. All variables and func-
tions declared outside the constructor follow a structure, name : value , or
name: function(){} , the comma acts in place of the semicolon, separating
the various expression that are part of the object.

66

Chapter 5

Conclusions and Future Work

Over the course of the research for the thesis and the library development,
a analysis of the current technologies and available libraries for scene navi-
gation was made. The new capabilities of HTML5 and WebGL allow for the
first time a plug in free and browser independent transition from the two
dimensional web to a three-dimensional visualization.

Scene navigation libraries can benefit from this three dimension ability,
therefore creating a more rich user experience as well as a more detailed data
set. Ol3 intends to be an open source solution that makes use of the new
available specifications and break free from the two dimensional restraints
experienced until now. Using JavaScript, X3DOM, X3D and WebGL, this
library provides the necessary tools to create a scene and obtain geometry
from W3DS servers, this being either full models or tiled geometry.

5.1 Research

The research part was a study in the emerging specifications that allow the
development of the library as well as existing open source libraries for scene
navigation. The specifications studied where WebGL, X3D, X3DOM and
W3DS.

WebGL, as shown in section 2.1, is an API that allows the use of 3D graph-

67

Chapter 5. Conclusions and Future Work

ics in the browser. Its compatibility with DOM languages such as JavaScript,
makes this a powerful tool to create plug in free and browser independent 3D
visualizations.

X3D, which was discussed in section 2.2, is an open standards file for-
mat for the representation of 3D scene graphs, and according to the HTML5
specification is the method to declare 3D scenes. Inheriting from VRML and
extending its capabilities, this file format extends its predecessor and allows
users to use the more familiar XML syntax.

Through the use of components and profiles, as seen in subsection 2.2.1,
it is possible for content creators to clearly define which features are required
from X3D, therefore creating a more concise experience and visualization in
different platforms. One setback in X3D is that no method exists to update
or synchronize the X3D elements which allows only a single import of the
scene and making it static. This is solved with the use of X3DOM

X3DOM creates a bridge between HTML5 and X3D, overcoming the up-
date and synchronization issues between the two. Through this library, it’s
possible to create dynamic X3D scenes in the DOM, where users can change
elements and the changes are reflected in the visualization. This scene ma-
nipulation is made through DOM scripting languages like JavaScript, leaving
the role of X3D as a scene graph definition and rendering.

W3DS is a service that provides three-dimensional geodata, and allied
with JavaScript and X3DOM, it is possible to create dynamic scenes which
are loaded from one or several W3DS servers asynchronously and only when
needed. This allows content creators to develop large amounts of data and
store it in the server, as there is no need to load all the data set. Querying
the service for details about the data and obtaining the actual data is quite
simple, as the server implements several requests, as shown in section 2.6.
These tools are the foundation for the development of the OL3 library.

Besides the study made about the technologies and specifications, a study
about existing open source libraries for scene navigation was made. The tar-
gets of this study were OpenLayers and WebGL Earth.

OpenLayers is an open source JavaScript library which allows the visual-
ization of geographical data in browsers. OpenLayers is quite simple to use,

68

Chapter 5. Conclusions and Future Work

and, in an HTML document, one only needs to include the library in the
document header and create a div element for the map. OpenLayers displays
map images as tiles, and has a asynchronous loader in order to load the re-
quired tiles.

OpenLayers is a quite mature library, with a diverse set of tools and map
support, yet it relies on a two-dimensional representation of the world. It is
a good reference for tools and asynchronous data loading, but the navigation
lacks a dimension.

WebGL Earth is a open source JavaScript library that allows users to
create and navigate a globe using a browser. Still in the early stages, it im-
plements a three-dimensional camera navigation system as well as loading
data asynchronously, yet the scene only offers a globe with modifiable tex-
tures. There is no sense of height and the textures are obtained from WMS
servers or can be defined by users. Although a nice step in breaking free from
the restraints of two dimensional web, the data is still two dimensional and
limited set of tools.

5.2 Implementation

After the research was made and an understanding of the specifications and
libraries required to create OL3 was achieved, the next step was the imple-
mentation.

The starting point the was implementation of a name space to avoid
collision with other JavaScript libraries and creating a construct so there
is a similarity with classes as present in Java and C++. After a structure
was defined, the next phase was setting up asynchronous communication
with the W3DS server, in order to obtain information and data from the
Web Service. The main information provider from the W3DS server is the
GetCapabilities, where one can find all information about the W3DS server
and the data contained within. The final requirement was the creation of a
bounding box class. Bounding boxes are present in WMS servers and W3DS
also uses these objects. Due to their importance in obtaining data and limit-

69

Chapter 5. Conclusions and Future Work

ing geodata extents, OL3 needs this class implemented before heading into
other objects.

The Scene class defines the main OL3 object, which represents a 3D scene.
All layers and the camera are a part of the Scene and use it as an access point
to all required data from other objects included in the Scene. This class is
also responsible for accessing the HTML DOM and creating the necessary
elements for the X3DOM view port to be rendered in. The Scene class was
implemented successfully and handles all required functions.

The Camera was problematic, as there were three different approaches
implemented. The need for constant information about camera position and
rotation as well as which coordinates delimited the viewing frustum made this
implementation difficult. The calculation of the viewing frustum used a large
amount of functions and the final result had some issues when swiveling the
camera and had to be abandoned due to the remaining time left for the library
development was not enough to resolve them. The next approach was the one
described in subsection 3.2.2, Emitting Rays, and proven more accurate and
with less lines of code needed. This class is implemented successfully and the
basic functions required are present.

The Layer class is a complex one. Different types of layers in the W3DS
server, tiled and untiled, create a need of versatility in handling requests and
data management. The Layer class went through many versions, and is yet
to be completed. In the initial phases, untiled layers where handled just like
tiled layers, in order to keep track of loaded geometry, yet at the current state,
there is no method to handle scene requests. The scene request method was
dropped as to implement a better tiled layer management, using the camera
properties and the grid object, as seen in subsection 3.2.3. This new tiled
layer method is nearly finished as there is a grid calculation for needed tiles
and there are no requests for already loaded tiles.

One issue left open for the layer object and regarding tile management
is that older tiles which are not needed are still kept in the scene and not
discarded. Also there is an issue regarding the overlap of tiles. Since older
tiles are not discarded when a new tile of different LOD is required it will
overlap the older tile present. This is an important issue that needs special

70

Chapter 5. Conclusions and Future Work

attention in order to make the Layer class more close to a final version.
Other issue left to resolve is handling of the untiled layers, which can be

either as a tiled layer with a fixed size and no LOD or a completely different
approach using small bounding boxes.

One final requirement for the Layer class is HTML controls for visibility
and implement functions to toggle the Layer visible or invisible. This is yet
to be implemented, but a viable solution has been studied.

5.3 Future Work

For future work in OL3, the most important elements in the list is closing the
issues the library currently has and were referenced in the previous section.

After completing the pending tasks, one option for future work is incor-
porating the Underscore JavaScript library to handle all tasks that require
array iteration. Since tiled layers can have many arrays and each time the
camera moves there is a need to iterate them in order to manage the tiles,
using Underscore can make this task faster.

To make the library more useful another option for future work would be
the creation of another type of Layer. This new object would be designed to
handle buildings and allow a 3D visualization of routing. Just like OpenLay-
ers there are implementations of two dimensional indoor routing available,
yet these could benefit from a three-dimensional representation as not all
navigation is made in two dimensions.

5.4 Conclusion

The library has the main features implemented, despite the issues reported
in the Layer class. The most difficult task was the Camera implementation
due to the errors encountered, yet the solution found was able to close the
issue and required much less functions than the one that had been previously

71

Chapter 5. Conclusions and Future Work

proposed.
The library does need more work, in order to be usable by the general

public and to be considered complete and functional, but the development
made until now is promising.

72

Bibliography

[1] http://www.webglearth.org/api @ www.webglearth.org. [Accessed
September 16th, 2011].

[2] WebGL Specification - Editor’s Draft. https://www.khronos.org/
registry/webgl/specs/latest/. [Accessed November 3rd, 2011].

[3] Brutzman, D., and Daly, L. Extensible 3d graphics for web authors.
2007.

[4] Caldwell, D. Unlocking the Mysteries of the Bounding Box. ALA
Map and Geography Round Table. . . . (2005).

[5] Fernandes, A. R. View Frustum Culling @
www.lighthouse3d.com. http://www.lighthouse3d.com/tutorials/
view-frustum-culling/. [Accessed May 17th, 2012].

[6] Jung, Y., Behr, J., and Graf, H. X3DOM AS CARRIER OF THE
VIRTUAL HERITAGE. Integration The Vlsi Journal (2001), 1–8.

[7] Rocha, J. G., and Oliveira, N. C. W3DS Open Source Implemen-
tation. [Accessed May 31st, 2012], 2012.

[8] Samyn, K. Line plane intersection - GNU Octave - a knol by Koen
Samyn. [Accessed June 5th, 2012].

[9] Sunday, D. Bounding Containers for Polygons, Polyhedra, and Point
Sets (2D & 3D).

73

https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/

Bibliography

[10] Wesstein, E. W. Line Plane Intersection. http://mathworld.
wolfram.com/Line-PlaneIntersection.html. [Accessed June 7th,
2012].

74

http://mathworld.wolfram.com/Line-PlaneIntersection.html
http://mathworld.wolfram.com/Line-PlaneIntersection.html

	Listings
	List of Figures
	Acronyms
	Introduction
	Objectives
	Thesis Outline

	State of the Art
	WebGL
	Extensible 3D
	Profiles and Components
	X3D File Structure
	User interaction

	X3DOM
	X3Dom Architecture

	OpenLayers
	Using OpenLayers

	WebGL Earth
	Web 3D Service
	GetCapabilities
	GetScene
	GetTile
	GetLayerInfo
	GetFeatureInfo

	Implementation
	JavaScript Object and Initial Requirements
	Object Oriented Programming in JavaScript and the OL3 Object
	Asynchronous Communication with the Web Server
	GetCapabilities
	Bounding Box

	OL3 Structures
	Scene
	Camera Implementation
	Layer

	OL3 in Action
	Manage code development using Git
	Complementary code management tools

	How to get OL3 code
	How to create a very basic map
	How to contribute to the OL3 development

	Conclusions and Future Work
	Research
	Implementation
	Future Work
	Conclusion

