
Universidade do Minho

Escola de Engenharia

André Lopes Barbosa

Pattern based user interface generation

Novembro de 2012

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

André Lopes Barbosa

Pattern based user interface generation

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor António Nestor Ribeiro

Novembro de 2012

Abstract

Human Computer Interaction (HCI) is one of the most important aspects in

software development. In order to produce valuable products, software companies

are focusing more on the users and less on the technology behind their products.

This calls for new prospects for development cycles. Traditional methodologies are

focused on the internals and there is little support to build a User Interface (UI) in

a more iterative manner [12].

Model Driven Development (MDD) [21] is a technique that has been used to

increase software quality and boost development time. With MDD organizations

are able to implement iterative development methodologies that start with high

level models that are iteratively transformed into lower level models and ultimately

source code in an automated way. High level models have several advantages be-

cause they are platform independent, easier to maintain, easier to reuse and ulti-

mately they serve as documentation for the project.

Unified Modelling Language (UML) is an industry standard language for mod-

elling software. The problem with UML is that it’s not fit for UI models [4]. The UI

requires a new modelling language that is able to represent UI aspects accurately.

The HCI community came up with several solutions for this problems, ITS [28],

WISDOM [16], Unified Modeling Language for Interactive Applications (UMLi) [4]

and USer Interface eXtensible Mark-up Language (UsiXML) [23] are some examples

on this matter.

This work proposes a method to reuse previous UI knowledge using patterns of

high level models. The goal of this work is to improve the way developers build UI’s

and maximize re-usability. Patterns are tested and robust solutions that have been

used in other contexts and can even persist between different projects and teams.

This work integrates in the Forward Engineering method (FEM) developed by the

UsiXML community and uses the UsiXML User Interface Description Language

(UIDL) to represent patterns of high level UI models.

We developed a pattern definition using a set of descriptive fields and UsiXML

models. With the information provided by the pattern we are able to perform

model transformations from the domain and task models to an Abstract User In-

terface (AUI) model. This gives developers the ability to reuse the structure of a UI

developed in other context with a similar objective. This makes it easier for devel-

opers with little knowledge in HCI to develop good UI’s and also helps development

teams to maintain consistency across an application.

iii

iv

Resumo

A Human Computer Interaction (HCI) assumiu-se como um dos aspectos mais

importantes no desenvolvimento de software. Por forma a criar produtos com maior

qualidade, as empresas de software estão a desviar o foco da tecnologia para os

utilizadores, exigindo novas abordagens para os ciclos de desenvolvimento. As me-

todologias tradicionais são mais focadas em aspectos internos e há pouco suporte

para construir a User Interface (UI) de forma iterativa [12].

Model Driven Development (MDD) [21] é uma técnica usada para aumentar

a qualidade do software e diminuir o tempo de desenvolvimento. Com a MDD as

organizações são capazes de implementar metodologias de desenvolvimento iterativo

que começam com modelos de alto ńıvel que são transformados, iterativamente, em

modelos de ńıvel inferior e, até chegar ao código-fonte. Modelos de alto ńıvel têm

várias vantagens porque são independentes de plataforma, mais fáceis de manter,

mais fáceis de reutilizar e, finalmente, servem como documentação do projeto.

Unified Modelling Language (UML) é uma linguagem padrão da indústria para

modelação de software. O problema do UML é que não está apto para modelos de UI

[4]. A UI requer uma linguagem de modelação nova, que seja capaz de representar os

aspectos próprios da UI com precisão. A comunidade à volta da HCI desenvolveu

várias soluções para este problema, ITS [28], WISDOM [16], Unified Modeling

Language for Interactive Applications (UMLi) [4] e USer Interface eXtensible Mark-

up Language (UsiXML) [23] são alguns exemplos de projetos dentro desta área.

Este trabalho propõe um método para reutilizar conhecimento passado sobre a

UI usando padrões de modelos de alto ńıvel. O objetivo deste trabalho consiste em

abordar melhorias à forma como se constroem UI ’s e maximizar a sua reutilização.

Padrões são soluções testadas e robustas, que foram utilizadas em outros contextos

e podem até persistir entre diferentes projetos e equipas. Este trabalho integra-se

no método Forward Engineering (FEM) desenvolvido pela comunidade do UsiXML

e usa a User Interface Description Language (UIDL) do UsiXML para representar

padrões de modelos de UI de alto ńıvel.

Neste trabalho desenvolveu-se uma definição de padrão usando um conjunto de

campos descritivos e modelos em UsiXML. Com a informação fornecidas pelos pa-

drões é posśıvel realizar transformações de modelos a partir dos modelos de domı́nio

e tarefa e gerar um modelo de Abstract User Interface (AUI). Isto oferece aos enge-

nheiros de software a capacidade de reutilizar a estrutura de uma UI desenvolvida

noutro contexto com um objetivo similar. Assim torna-se mais fácil para engenhei-

ros com pouco conhecimento em HCI desenvolver boas UI ’s e também ajuda as

equipes de desenvolvimento a manter consistência ao longo de uma aplicação.

v

vi

Acknowledgements

First of all I want to thank my supervisor, Professor António Nestor for his guidance, pa-

tience, trust and support, even when that meant working nights. I also want to say thank

you to Professor José Creissac for providing me with all the documentation developed by

the UsiXML community.

Thank you to all my friends for your support, understanding and good humour. Above all,

thank you for helping me keep my sanity. Special thanks to Samuel for his companionship

during this long summer spent at the university. Next dinner is on me.

Thank you to my family for always making me feel special. Thank you to my grandfather

for teaching me the value of hard work. Thank you to my mother for her support and

delicious food. Thank you to my father for never letting me give up. Thank you to my

brothers for making me feel so proud. Thank you to my goddaughter for being so cute.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 3

1.3 Dissertation Outline . 3

2 Background 7

2.1 Early days . 9

2.1.1 ITS . 10

2.2 Optimization-based generation of interfaces 11

2.2.1 Gadget . 11

2.2.2 Supple . 13

2.3 User interface patterns . 15

2.3.1 IdealXML . 16

2.4 Specification languages . 18

2.4.1 UMLi . 19

2.4.2 WISDOM . 22

2.4.3 UsiXML . 23

2.5 Discussion . 26

3 UsiXML 29

3.1 UsiXML semantics . 30

3.2 UsiXML method . 31

3.2.1 Spem4UsiXML . 32

3.2.2 Forward engineering method . 36

4 Patterns in UsiXML 39

4.1 Concept . 40

4.2 Pattern definition . 41

ix

4.3 Example . 43

4.4 Requirements . 46

4.5 Algorithm . 48

5 UsiXML patterns tool 51

5.1 Package org.usixml . 52

5.2 Package org.usixml.aui . 53

5.3 Package org.usixml.domain . 54

5.4 Package org.usixml.task . 56

5.5 Package usixmlpatterns . 58

5.6 Implementation details . 59

6 Case study 63

6.1 Patterns . 63

6.1.1 List Documents Pattern . 64

6.1.2 Create document pattern . 66

6.1.3 Edit document pattern . 69

6.2 Case study models . 71

6.2.1 List Prescriptions . 72

6.2.2 Create Prescription . 74

6.2.3 Edit Prescription . 78

6.3 Case Study Implementation . 81

7 Conclusions and Future Work 85

A SPEM 2.0 93

x

List of Figures

2.1 Login window modelled in UMLi . 19

3.1 UsiXML specification as an UML class diagram. 30

3.2 Structure of the Spem4UsiXML meta-model. 33

3.3 Structure of the Spem4UsiXML method content meta-model package. . . 33

3.4 Structure of the Spem4UsiXML process structure meta-model package. . 35

3.5 The forward engineering method. 37

4.1 The first stage of the forward engineering method. 40

4.2 Proposal for the first stage of the forward engineering method. 41

4.3 UML specification of user interface conceptual pattern. 42

4.4 UML specification of the Create document pattern’s domain model. . . . 43

4.5 Task model for the Create document pattern. 44

4.6 Abstract User Interface model for the Create document pattern. 45

4.7 UML specification of an invoice’s domain model. 45

4.8 Task model to create an invoice. 46

4.9 Abstract User Interface model to create an invoice. 47

5.1 The org.usixml package. 52

5.2 The org.usixml.aui package. 53

5.3 The org.usixml.domain package. 55

5.4 The org.usixml.task package. 57

5.5 The usixmlpatterns package. 58

5.6 The UsiXMLPatterns User Interface (UI). 61

5.7 The UsiXMLPatterns UI to choose a path in the local file system. 61

5.8 Junit tests on Netbeans. 62

6.1 UML specification of a document domain model. 64

6.2 List documents pattern’s task model. 65

xi

6.3 List documents pattern’s task model. 66

6.4 Create document pattern’s task model. 67

6.5 Create document pattern’s task model. 68

6.6 Edit document pattern’s task model. 70

6.7 Edit document pattern’s task model. 71

6.8 UML specification of a medical prescription domain model. 71

6.9 List prescriptions task model. 72

6.10 Using UsiXMLPatterns to genera the AUI model to list prescriptions. . . 73

6.11 AUI model to list prescriptions. 74

6.12 Task model to create a medical prescription - part 1. 75

6.13 Task model to create a medical prescription - part 2. 76

6.14 Task model to create a medical prescription - part 3. 76

6.15 AUI model to create a prescription. 77

6.16 Task model to edit a prescription - part 1. 79

6.17 Task model to edit a prescription - part 2. 79

6.18 Task model to edit a prescription - part 3. 80

6.19 Task model to edit a prescription - part 4. 80

6.20 AUI model to edit a prescription. 81

6.21 Prescriptions List. 82

6.22 New Prescription. 83

A.1 Structure of the SPEM 2.0 meta-model. 94

A.2 Structure of the SPEM 2.0 method content meta-model package. 95

A.3 Main classes and associations of SPEM 2.0 process structure package package. 97

xii

Acronyms

AUI Abstract User Interface

BHW Better Hand Writing

CTT Concur Task Trees

DRY Don’t Repeat Yourself

FEM Forward Engineering method

GUI Graphical User Interface

HCI Human Computer Interaction

IDE Integrated Development Environment

MB-UIDE Model Based - User Interface Development Environment

MDD Model Driven Development

MDDUI Model Driven Development of User Interfaces

MDE Model Driven Engineering

OMG Object Management Group

SDK Software Development Kit

SPEM Software & Systems Process Engineering Metamodel

SPEM4UsiXML SPEM for UsiXML

UI User Interface

UIDL User Interface Description Language

UML Unified Modelling Language

UMLi Unified Modeling Language for Interactive Applications

xiii

UsiXML USer Interface eXtensible Mark-up Language

WISDOM Whitewater Interactive System Development with Object Models

XML eXtensible Mark-up Language

xiv

Chapter 1

Introduction

Nowadays what makes a software product stand out is getting less technological and

more related to how it handles the Human Computer Interaction (HCI). This may not

be true to every software product but it’s true for most of them. Usability aspects can’t

be neglected in any software and this has brought a lot of work in this field by both the

industry and academic communities.

Recent years have seen the proliferation of many types of computers and devices. In

order to perform their tasks, people now have available a wide variety of computational

devices ranging from traditional computers and laptops to mobile phones, tablets and even

televisions. While this increasing proliferation of fixed and mobile devices fits with the

need for ubiquitous access to information processing, this diversity offers new challenges to

the HCI software community like building and maintaining versions of single applications

across multiple devices.[3]

Model Driven Development (MDD) defining characteristic is that software development’s

primary focus and products are models rather than computer programs. The major

advantage of this is that we express models using concepts that are much less bound to

the underlying implementation technology and are much closer to the problem domain

relative to most popular programming languages [21].

Models are easier to maintain than the code itself and, most importantly, they’re platform

independent. This means that the same model can be used to generate code that runs on

a desktop environment, a web environment or even a mobile environment. This makes

a lot of sense for user interfaces because modern applications are becoming more and

more ubiquitous and it’s highly complex and time consuming to build a Graphical User

1

Interface (GUI) for every supported platform.

MDD is a good solution for the ubiquity problem but alone can’t solve all HCI con-

cerns that are as much important. Usability comes from experience and experimentation.

Building intuitive applications isn’t an easy task. Usually it’s an iterative process where

developers observe the needs of the users, build a version, put it to test with real users,

improve it and repeat the process. Of course this isn’t always possible because it takes a

lot a time and money.

By combining MDD of user interfaces and promoting the reuse of past developments

these two problems can be tackled at once. Patterns are widely used in several fields of

engineering (including software engineering) but are still a bit underutilized in the HCI

community. Most patterns repositories only contain implementation level models and are

designed to be read by humans instead of being processed by computers. This means

there is a gap in the utilization of patterns. There’s a lack of more high level pattern

definitions that could be used in the MDD process and help and serve as a base knowledge

to help developers make decisions and automate models transformations.

1.1 Motivation

Most developers spend a lot of their times designing their applications in a way that

they won’t have to repeat any code line (Don’t Repeat Yourself (DRY)) even between

separated projects. When it comes to the User Interface (UI) things can sometimes get

out of hand. This happens mainly because most developers don’t start building UI’s the

same way they build the core of their applications, that is modelling first. The lack of

UI models many times result in poor reuse of previous knowledge and sometimes even in

poor UI’s. This happens mainly because there isn’t a standard language for modelling

UI’s (like Unified Modelling Language (UML)).

USer Interface eXtensible Mark-up Language (UsiXML) is a new and powerful language

that has the potential to change the status quo and become a standard for modelling the

UI in a MDD compliant way with support for different phases and levels of abstraction.

Having solved the problem of creating models, the next logical step is to create tools

suited to help developers reuse models and previously acquired knowledge. In other

words, tools to improve existing Model Driven Development of User Interfaces (MDDUI)

methodologies using patterns.

2

1.2 Objective

The main objective of this work is to develop a tool that integrates in the MDDUI

methodology developed by the UsiXML community (Forward engineering method 3.2.2)

and uses patterns to automate the first stage of model transformations.

The first transformation of the Forward engineering method receive as input a Task and

a Domain models and should output an Abstract User Interface (AUI) model.

The objective is to develop a tool that will help developers with this transformation. The

creation of the AUI model is one of the most complex models in UI modelling[22]. That’s

because developers have to specify what components will appear in every kind of window.

The objective of this work is to use patterns to help in this stage. Instead of leaving the

hard work for developers or to create a complex optimization algorithm, our approach is

to leverage from previous knowledge and use it to effectively boost the development time

and quality.

With this objective in mind this tool have to meet the following requirements:

• read and interpret Task, Domain and AUI models;

• link the Task and Domain developing models to the Task and Domain models of a

pattern;

• generate an AUI model based on the information provided by the developing models

and the pattern models.

This work intends to contribute with an alternative path for the first phase of the Forward

Engineering method (FEM) (section 3.2.2).

Originally the first phase of the method receives a Task and a Domain models as input

and outputs an AUI model through manual transformations. This work will contribute

with a tool to automate this process by taking advantage of previous knowledge in the

form of patterns.

1.3 Dissertation Outline

This work is divided into 7 Chapters. In the first chapter, the current one, we present an

introduction to all the work undertaken for this dissertation.

3

1. Chapter 2: presents some background on MDDUI. In this chapter we present

several projects that contributed for the development of the state of the art on this

subject. We present some early projects that were very important in an historic

manner. Projects that propose alternative approaches that are very different from

the traditional. And finally we studied more recent projects with similar characteris-

tics that attempt to solve the problem of introducing models into the development

of UI’s. At the end of this chapter there’s a critic discussion of all the projects

mentioned above.

2. Chapter 3: presents a detailed view over UsiXML. We begin by presenting an

overview about the UsiXML project and its objectives. Afterwards we present the

semantics of the UsiXML’s User Interface Description Language (UIDL), version

1.8. Finally we present the engineering method developed by the UsiXML project.

The method is based on a meta-model, SPEM for UsiXML (SPEM4UsiXML) which

is itself based on the Software & Systems Process Engineering Metamodel (SPEM)

meta-mode that is approached on appendix A. After the meta-model we present

the method itself, the FEM.

3. Chapter 4: presents a solution to leverage from UsiXML patterns at a conceptual

level. Starts with a concept of how this should integrate in the FEM method. After

we specify the contents of a pattern in order to satisfy the concept vision. The next

section gives an example of how a pattern should look like and how it should be

used. Afterwards we specify a set of requirements that should be met in order to

implement the concept. The chapter ends with a description of an algorithm to

perform the model transformation specified by the concept.

4. Chapter 5: presents the implementation of a prototype application that satisfies

the requirements of the concept. In this chapter we start by describing a software

architecture to satisfy the requirements mentioned in the previous chapter. We

end this chapter with some implementation details like the developed UI for the

prototype.

5. Chapter 6: presents a case study that uses the prototype application. In this

chapter we develop models for the UI of an application called Better Hand Writing

(BHW) that is meant to manage digital medical prescriptions. We start by stating

the requirements of the application and choose the best suited patterns to use in

its development.

4

In the last chapter we present this work’s conclusion and where future projects on this

work should focus.

5

6

Chapter 2

Background

In this chapter is described the state of the art regarding Model Driven Development

of User Interfaces (MDDUI). We’ll present several techniques to develop User Interface

(UI)’s using Model Driven Development (MDD) principles. There is significant ongoing

research in this field since the late 1980s and this chapter makes a short summary of that

research.

MDD [21] defining characteristic is that software development’s primary focus and prod-

ucts are models rather than computer programs. The major advantage of this is that

we express models using concepts that are much less bound to the underlying implemen-

tation technology and are much closer to the problem domain relative to most popular

programming languages.

Models are easier to maintain than the code itself and, most importantly, they’re platform

independent. This means that the same model can be used to generate code that runs on

a desktop environment, a web environment or even a mobile environment. This makes

a very important feature for UI’s because modern applications are becoming more and

more ubiquitous and it’s highly complex and time consuming to build a UI for every

supported platform.

There are different kinds of models and several techniques to model UI’s. Some tools

like Janus[2] only require a domain model to generate a user interface while others like

Trident[26, 25] and Adept[9] also use a task model. All these approaches automate part

of the development process. Other approaches like ITS[28] require more work from the

developers because they don’t generate any model.

There are also some recent projects using different techniques to generate UI’s. Gadget[6]

7

or Supple[7] use numeric optimization techniques to generate better UI’s.

Patterns are widely used in every field of engineering. One of the earlier definitions of

patterns can be found in [1]. Almost twenty years later patterns were brought to software

engineering by Gamma et al. [8].

Patterns bring many advantages, not only they make the development of a product less

time consuming and thus less expensive but can also guarantee a higher level of qual-

ity because patterns are solutions that have been tested and used in other projects.

IdealXML[14, 13] is a tool that helps developers to take advantage of patterns while

developing UI models.

Although there have been a lot of academic work surrounding MDDUI, this work is

struggling to be adopted by the industry. There are some theories of what’s missing,

Molina [12] says that better tool support is needed while Montero et al. [14] says that a

common language for representing UI models should the next step.

Unified Modelling Language (UML) [20] is the industry standard for software modelling

but, unfortunately, is not completely fit to model UI’s. Fortunately, the software engineer-

ing community has developed some new modelling languages in the past few years to over-

come this problem. Unified Modeling Language for Interactive Applications (UMLi)[4]

is an extension to UML that provides an alternative diagram notation for describing

Abstract User Interface (AUI) models. Whitewater Interactive System Development with

Object Models (WISDOM)[16] is an engineering method for interactive software develop-

ment that includes a notation for UI models.Concur Task Trees (CTT) [18] aims at task

modelling by dividing the task model in three essential parts:

• First a hierarchical logical decomposition of the tasks represented by a tree-like

structure;

• Then an identification of the temporal relationships among tasks at the same level;

• And finally an identification of the objects associated with each task and of the

actions which allow them to communicate with each other.

USer Interface eXtensible Mark-up Language (UsiXML) [23] is a User Interface Descrip-

tion Language (UIDL) aimed at expressing user interfaces built with various modalities of

interaction and independently of them. UsiXML is eXtensible Mark-up Language (XML)

compliant to enable flexible exchange of information and powerful communication be-

tween models and tools used in UI engineering [23]. One of the great advantages of

8

UsiXML is platform independence providing a multi-path development of user interfaces

[11]. UsiXML characteristics and features give it the potential to become a standard for

modelling UI’s like UML is for software architecture.

There is a lot of work regarding MDDUI and the idea that models can simplify the

development process is becoming more consensual. Section 2.1 focus on projects from the

beginnings of MDDUI, namely Its, section 2.1.1, which was one of the most important

and innovative projects of its time.

Section 2.2 will describe optimization based techniques and the Gadget and Supple

projects will be examined with more depth.

Section 2.3 refers to the usage of patterns in UI design . This section also includes an

analysis of IdealXML, a knowledge based tool for designing UI’s.

Section 2.4 is about specification languages for UI’s. We will look into UMLi, WISDOM

and UsiXML with some detail.

2.1 Early days

Research in model-based user interface development comes from the 1980s[22]. Their

roots come from user interface management systems (UIMS)[15]. These tools seeked to

provide an alternative paradigm for constructing interfaces. Rather than using a toolkit

library, developers would write a specification in a specialized, high-level specification lan-

guage. This specification would be automatically translated into an executable program,

or interpreted at run-time to generate the appropriate interface.

Through the 1980s and 1990s specification languages became more sophisticated, sup-

porting richer and more detailed representations that allowed systems to generate more

sophisticated interfaces.

Since that time there were essentially two approaches to model driven development of

user interfaces. Some tried to minimize the work of developers and generate most of the

model from just a domain model like in Janus[2] or a task model as in Trident[26, 25].

The second approach was to give more power to the developer letting him produce all or

most of the work like in Its[28].

Section 2.1.1 provides a more detailed study on ITS.

9

2.1.1 ITS

The Its[28] system was developed in the early 90s by the IBM research and develop-

ment department. It was successfully used to develop several large applications like the

information kiosks for Seville Expo 92.

The Its architecture divides applications in four layers. The action layer implements the

application’s back-end computations. The dialogue layer defines the content of the user

interface independent of its style, much like an abstract user interface model. Content

specifies the objects included in each frame of the interface, the flow of control among

frames, and what actions are associated with each object. The style rule layer defines how

the dialogue is presented to the user in terms of appearance and interaction techniques.

Finally the style program layer implements the primitive toolkit objects that are composed

by the rule layer into complete interaction techniques.

Before Its came along there were mainly two types of layered architectures that provided

the required flexibility in application development. User Interface Management Systems

(UIMS) and toolkits. UIMS separate the business layer from the interface. Back-end

computations are separated from the dialogue control and style. Style, however, was often

treated in a single interface layer. Toolkits separated style from the application. Dialogue

control remained in the back-end while the implementation of interaction techniques is

hidden in a code library.

The four layers in Its present a series of advantages that separate this tool from its

predecessors. Like in previous UIMS there is a separation from back-end computations

and the interface itself. By separating the action layer from the dialogue allows actions

to be reused in different applications.

Splitting the interface into separate layers for style-independent dialogue, rule base and

toolkit also gives some benefits. First, the dialogue remains independent of style. A

dialogue can be mapped into any different style simply by firing the appropriate rule.

Second, interface designers control style rather than application programmers. The rule

layer represents the selection criteria for all interaction techniques.

Each layer in Its architecture corresponds to one of four roles in application development:

application programmer, application expert, style expert and style programmer. An

application expert is familiar with the domain of the application. The application expert

typically is neither trained in software development or part of an information systems

department. In Its, the application expert is the author of the dialogue. A style expert

10

may be a graphic artist or a human factors engineer. Rules give them direct control over

style in Its.

Its is a specification-based system. The main difference between these tools from automated-

design tools like Janus[2] is that the modelling language is open whereas in automated-

design tools are closed. By lifting this limitation for the developers the final result can

have a higher level of quality although it’s dependent from the capabilities of the developer

himself.

Even though Its is a specification-based system, this doesn’t mean that developers have

to specify every feature of every individual window. Developers are forced to specify the

content of dialogues which is equivalent to the abstract user interface and this is, as been

proved to be by experience, the most difficult model to generate by the automated-design

tools. The style rules layer or the concrete user interface model doesn’t have to be totally

specified. This doesn’t mean that ITS generates this model but that developers can

reuse rule sets from libraries that contain the abstract to concrete mapping for significant

portions of the interface specifications.

2.2 Optimization-based generation of interfaces

Recent work is beginning to reveal that numerical optimization can play a role on mod-

ern approaches for generating interfaces and displays. Gadget[6] and Supple[7] are two

examples of this tendency.

The first is a framework that aims to provide developers with none or few knowledge on

numerical optimization a set of tools that allows them to generate user interfaces through

optimization methods.

The second is a tool that aims the generation of personalized user interfaces at run time.

The main motivation behind Supple is that current user interfaces are developed with only

a limited set of user abilities in mind leaving people with special needs with difficulties

to interact with their applications.

2.2.1 Gadget

Although optimization-based techniques appear to offer several potential advantages most

programmers are intimidated or uncomfortable by the math required to program an opti-

11

mization. Although optimization toolkits are available, they typically require substantial

specialized knowledge because they have mostly been designed for physics simulations

and other traditional optimization problems.

Gadget provides a set of abstractions for many optimization concepts along with a set of

mechanisms to help programmers quickly create optimizations, including an efficient lazy

evaluation framework, a powerful and configurable optimization structure, and a library

of reusable components. A programmer creating an optimization using the Gadget tool-

kit needs to supply three essential components: an initializer, iterations and evaluations.

The initializer creates the initial solutions to be optimized. This might be based on

an existing algorithm, or done randomly. Iterations are responsible to transform one

potential solution into another, typically using models that are at least partially random.

Finally, evaluations are used to judge the different notions of goodness in a solution.

There’s a standard framework to abstract the concepts and constructs behind evaluations.

Gadget allows programmers to focus on creating evaluations to measure criteria that are

important to the problem. Gadget then combines these evaluations and uses them to

choose between a set of possible solutions. This process is divided into five stages.

First the framework presents each evaluation with the current potential solution, which is

called the prior solution. Each evaluation returns an array of double values representing

its interpretation of the prior solution. This collection of arrays of double values is called

the prior result.

On the second stage the framework uses an iteration object to modify the prior solution

and create a new one, called the post solution.

Third, the framework presents the post solution to each evaluation. Each individual

evaluation returns interpretations that are then combined to create a post result.

In the fourth step, the framework uses a method to compare the prior result with the

post result. This is possible by requiring each evaluation to be capable of comparing two

arrays of double values that it has created and providing a double value in the range of

−1 to 1, where −1 indicates the evaluation has a strong preference for the prior solution,

0 indicates that the evaluation is indifferent and 1 indicates that the evaluation has a

strong preference for the post solution.

Finally, the result of this comparison indicates whether the framework should go with

the post solution or revert to the prior solution. To choose between them, the values

retrieved from the fourth step are multiplied by the weight associated with its respective

12

evaluation and then summed. If the sum is greater than 0, the framework prefers the

post solution, else it reverts to the prior solution.

2.2.2 Supple

Most of today’s software interfaces are designed with the assumption that they are going

to be used by an able-bodied person, who is using a typical set of input and output devices,

who has typical perceptual and cognitive abilities, and who is sitting in a stable, warm

environment. Any deviation from this pattern requires a new design. In [7] is argued that

automatic personalized generation of interfaces is a feasible and scalable solution for this

challenge. Supple can automatically generate interfaces adapted to a persons devices,

tasks, preferences and abilities at run-time. It is not intended to replace user interface

designers, instead it offers an alternative user interface for those people whose devices,

tasks, preferences and abilities are not sufficiently addressed by the original designs.

Support for users with special needs is often forgotten by interface designers. When this

problem is addressed there are three popular patterns that are usually followed, manual

redesign of the interface, limited customization support, or by supplying an external as-

sistive technology. The first approach is clearly not scalable, new devices constantly enter

the market, and people’s abilities or preferences both differ greatly and often cannot be

anticipated in advance. Second, today’s customization approaches typically only support

changes to the organization of tool bars and menus and cosmetic changes to other parts

of the interface. Furthermore, even when given the opportunity, most people do not

customize their applications. Finally, assistive technologies, while they often enable com-

puter access for people who would otherwise not have it, also have limitations. They’re

impractical for users with temporal impairments, they do not adapt to people whose abil-

ities change over time and they’re often abandoned by people who need them because of

factors like cost, complexity, configuration, and the need for ongoing maintenance.

In contrast with this approach, Supple generates personalized interfaces to suit the par-

ticular contexts of individual users. In order to be able to generate these personalized

interfaces, Supple makes three important contributions:

• Defines an interface generation as a discrete constrained optimization problem and

solve it with a branch-and-bound algorithm using constraint propagation. This

general approach allows the Supple system to automatically generate “optimal”

user interfaces given a declarative description of an interface, device characteristics,

13

available widgets, and a user and device specific cost function.

• Two types of cost functions were developed to guide the optimization process. The

first is factored in a manner that enables preference-based personalization as well

as fast computation, allowing Supple to generate user interfaces in under 1 sec-

ond in most cases. The second explicitly models a person’s ability to control the

pointer, allowing Supple to generate user interfaces adapted to unusual interaction

techniques or abilities, such as an input jittery eye tracker or a user’s limited range

of motion due to a motor impairment.

• Supple also supports two approaches for dynamic personalization of generated in-

terfaces: an automatic system driven adaptation to the current task, and a user

driven customization.

Like other automatic user interface generation systems, Supple relies on an interface spec-

ification (I). Additionally, Supple also uses an explicit device model (D) to describe the

capabilities and limitations of the platform for which the interface is to be generated. Fi-

nally, in order to reflect individual differences among usage patterns, Supple additionally

includes a usage model, represented in terms of user traces (T).

Supple adopts a functional representation of user interfaces that is, one that says what

functionality the interface should expose to the user instead of how to present those fea-

tures. Like a number of previous systems, Supple represents basic functionality in terms

of types of data that need to be exchanged between the application and the user. Seman-

tic groupings of basic elements are expressed through container types which also serve

as reusable abstractions. Supple chooses not to adopt a task-oriented approach for two

reasons. First, because task-oriented descriptions are typically first compiled into a data-

oriented functional description. Second, task-oriented languages are particularly useful

for capturing task-oriented processes such as store checkout or making a hotel reservation.

Most direct manipulation systems, however, support a broad range of possible tasks and

make simultaneously available numerous reversible actions. Such interfaces would not

benefit significantly from a task-oriented representation.

Most people use only a small subset of functions available in any application, and different

users use different subsets. To adapt to a person’s tasks and long-term usage patterns,

the user interface should be rendered such that important functionalism is easy to ma-

nipulate and to navigate to. Instead of relying on explicit annotations by the designer or

the user, Supple relies on usage traces, which can correspond either to actual or antici-

pated usage. Usage traces provide not just interaction frequency for primitive widgets,

14

but also frequencies of transitions among different interface elements. In the context of

the optimization framework, traces offer the possibility of computing expected cost with

respect to anticipated use.

Supple is an optimization-based tool to generate user interfaces. Unlike GADGET it is

not a simple framework to be used by programmers, it implements all the optimization

related logic. Developers are only obliged to supply the specification. Unlike most of the

recent tools in this field, Supple only requires the abstract user interface model and a

set of constraints, it doesn’t use tasks. The main advantage regarding other solutions is

that constraint set is dynamic and depends both on the user and the device. This allows

Supple to generate good user interfaces to every user even if the designer doesn’t have

much information about the users preferences.

2.3 User interface patterns

Patterns are widely used in every field of engineering. One of the earlier definitions of

patterns can be found on [1]. Almost twenty years later patterns were brought to software

engineering by [8].

Patterns bring many advantages, not only they make the development of a product less

time consuming and thus less expensive but can also guarantee a higher level of quality

because patterns are solutions that have been tested and used in other projects.

Particularly on user interfaces, these are very important features because building a good

user interface is a very complex and time consuming process. On most software projects

it takes about half of the time frame allocated to that project, so patterns can help to

make this process more efficient. Also there’s the problem of usability. This is one of

the most important aspects of software projects but its still very difficult to build a user

interface compliant with human computer interaction (HCI) rules. By using patterns this

can be easily achieved if the patterns are already compliant with these rules.

Patterns are usually stored in catalogues. In [8] a pattern is composed by the following

fields:

• The Pattern name resumes the pattern in one or two words that we use to refer

to named pattern.

• The Problem describes in which situations the pattern should be applied.

15

• The Solution describes how the pattern works, what elements it has and how they

relate to each other.

• The Consequences describe the side effects of using the pattern.

This is the specification used for software design patterns but it’s also used in most

user interface patterns catalogs. In [27] documentation of patterns is divided in two

categories, descriptive patterns and generative patterns. Descriptive patterns are meant

to be interpreted by humans so they describe the solution in a generic way so that the

pattern can be used in a wide range of contexts while generative patterns maximize

expressivity over genericity thus, they can be used in more restricted range of contexts

but the solution is specific enough to be interpreted by machines.

Design patterns like the ones described in [8] are generative patterns because their solution

is specified in UML which is a formal language that can be easily interpreted by machines

to perform transformations.

A list of catalogues for user interfaces can be found in [5]. Most of these catalogues define

their solutions with text and images because there isn’t a reference language to specify

user interfaces. Thus most of these patterns are descriptive patterns that can only be

used by humans.

In order to take full advantage of patterns we need a way to document them. Generative

patterns are the most useful in the context of this project but to use them we need to

find a language to specify these patterns so that they can be interpreted by a machine to

generate a concrete user interface. applications. In section 2.3.1 is described IdealXML

a tool for developing user interface models that takes advantages of patterns.

2.3.1 IdealXML

IdealXML[14, 13] is an experience-based environment for user interface design. Experi-

ence is the accumulation of knowledge or skills that result from direct participation in

events or activities. Developers have a strong tendency to towards reusing designs that

worked well for them in the past. Unfortunately, this design reuse is usually limited by

personal experience, and there is usually few sharing of knowledge among developers.

IdealXML manipulates a pattern repository, where patterns are organized following a

hierarchical structure. At the top, this structure has different models related with a

Model Based - User Interface Development Environment (MB-UIDE): domain, task,

16

presentation and mapping, context and user models are left for future work. IdealXML is

shipped with a predefined collection of patterns from a variety of sources. These patterns

are the initial base of knowledge.

IdealXML is an MB-UIDE and designers can, using several graphical notations, specify

domain models, task models, abstract presentation models and mapping models between

them. Some of these models are stored in the pattern repository and new ones can always

be added.

IdealXML also allows for the animation of a task model to generate a hi-fi prototype

of the future user interface while still in the first development stages. This is achieved

by using CTT [18], UsiXML [23] and a set of heuristics to transform the task model

specification into an abstract UI.

Prototyping consists in the creation of a preliminary version of the future UI (prototype)

so that the user and the experts can find possible problems in the design of the UI, both

from the functional and from the usability points of view. Prototyping techniques fall

into two main categories:

• Lo-fi: this family of techniques is mostly used in requirements analysis stage to

validate the requirements with the user in user-centred approaches.

• Hi-fi: they are aimed at the creation of preliminarily versions of the UI with an

acceptable degree of quality. This kind of techniques produces a UI prototype which

is closer to final future one.

Abstract prototyping was devised because it was found that the sooner developers started

drawing realistic pictures or positioning real widgets, the longer it took them to converge

on a good design.

As it was mentioned above, IdealXML uses a set of heuristics to transform the task model

into an abstract interface model:

• Each cluster of interrelated task cases becomes an interaction space in the navigation

map, so an abstract task is a container.

• A container also can be an interaction task or an application task in a hierarchical

task decomposition.

• A component rises when an interaction or application task is found in a hierarchical

task decomposition.

17

• A component can have several facets (input, output, control and navigation). These

facets allow the user to interact with the system.

The animation of the abstract user interface that resulted from the designed task model

is grounded in the identification of the enabled task set (ETS). Having identified the ETC

for a task model, the next step is to identify the effects of performing each task in each

ETS. The result of this analysis is a state and transitions occur when tasks are performed.

In IdealXML’s proposal, the task model specification is split into states. Each state is

a set of interrelated tasks, including temporal relationships between those tasks, usually

connected to an essential use case.

2.4 Specification languages

In [13] was stated that one of the most important challenges to overcome in model driven

development of user interfaces is the creation of a specification language that would be

massively adopted and became a common ground between developers like UML is for

software architecture.

Over the years many languages were developed to try and overcome this obstacle. In [19]

were enumerated some of the problems found with that time user interface models:

• Partial models, most models deal only with a portion of the spectrum of inter-

face characteristics. Some emphasize domain, others emphasize tasks, some others

emphasize presentation guidelines and so on.

• Insufficient underlying model, several model-based systems use modelling paradigms

proven successful in other applications areas, but that come up short for interface

development. These underlying models typically result in partial interface models

of restricted expressiveness.

• System-dependent models, many interface models are non-declarative and are

embedded implicitly into their associated model-based systems, sometimes at code

level. These generic models are tied to the interface generation schema of their

system, and are therefore unusable in any other environment.

• Inflexible models, experience with model-based systems suggests that interface

developers often wish to change, modify, or expand the interface model associated

with a particular model-based environment. However, model-based systems do not

18

offer facilities to such modifications, nor the interface models in question are defined

in a way that modifications can be easily accomplished. Thus the inclusion of an

open meta-model like in UML could be an important factor of success.

Next, two recent specification languages for user interfaces that try to overcome these

problems will be presented. In section 2.4.1 will be presented UMLi, an extension to

UML to support the modelling of user interfaces. Section 2.4.1, presents WISDOM [16],

an engineering method for small software companies with an UML based notation with

support for UI modelling. Finally, section 2.4.3 will be presented UsiXML, a language

with potential to become a standard in user interface specification.

2.4.1 UMLi

Although user interfaces represent an essential part of software systems, UML seems to

have been developed with little attention to specific details of user interface models. It’s

possible to use UML to model important aspects of user interfaces but these models

usually get widely unnatural.

UMLi[4] doesn’t try to replace UML entirely. The UMLi meta-model fully integrates

with UML this makes possible to integrate UMLi models with other UML models.

It is possible to model abstract and concrete interfaces using class models in UML. How-

ever class models don’t provide an intuitive representation of the interface. UMLi provides

an alternative diagram notation for describing abstract interaction objects.

Figure 2.1: Login window modelled in UMLi

19

Figure 2.1 shows an abstract user interface for a login windows modelled in UMLi. The

upper container has four entities, username and password represented as upward tri-

angles, are indication for what is expected as user input. These are similar to labels.

UsernameParam and PasswordParam are the actual input controllers where the users

should write their username and password. These four entities could be replaced by two

entities of the type editors, rendered as rhombis. On the lower container are represented

two possible actions for the users. These are represented as right-pointing arrows.

UMLi’s user interface diagram consists of six constructors:

• FreeContainers rendered as dashed cubes. A FreeContainer is a top-level inter-

action class that no other interaction class can contain.

• Containers rendered as dashed cylinders. A Container is a mechanism that groups

interaction classes other than FreeContainers.

• Inputters rendered as downward triangles. An Inputter receives information from

users.

• Editors rendered as rhombi. An Editor facilitates the two-way exchange of infor-

mation.

• Displayers rendered as upward triangles. A Displayer sends information to users.

• ActionInvokers rendered as right-pointing arrows. An ActionInvoker receives

direct instructions from users.

Tasks are usually represented in a tree notation in which leaf nodes are primitive tasks

and non-leaf nodes group and describe relationships between their children nodes. There

is a set of three essential features present in most task modelling languages:

• Hierarchical decomposition, high-level tasks systematically decompose into less

abstract tasks.

• Temporal relationships, the order in which a composite task’s children are carried

out depends on the parent’s temporal relation.

• Primitive tasks, the lowest-level nodes described in the task model are primitive

tasks. An action task, for example, corresponds to an activity the application carries

out. An interaction task involves some degree of human-computer interaction.

Use cases and activities in UMLi represent the notion of task with a set of features that

include all the elementary ones mentioned above.

20

Using use cases and their scenarios, it’s possible to elicit user interface functionalities re-

quired to let users achieve their goals. Possible ways to perform actions that support the

functionalities elicited using use cases can be identified using activities. Therefore, map-

ping use cases into top level activities can help describe a set of interface functionalities

similar to that described by task models in other specification languages.

Use-case diagrams in UMLi are UML use-case diagrams. Activity diagrams in UMLi,

however, extend activity diagrams in UML. UMLi provides a notation for a set of macros

for activity diagrams that can be used to model behaviour categories usually observed in

user interfaces: optional, order independent, and repeatable behaviours.

Using these macro notations, activity diagrams in UMLi can cope better with the ten-

dency that activity diagrams have to become complex even when modelling the behaviour

of simple user interfaces.

In order to represent relationships between models in UMLi object flows are used in

activity diagrams to describe how to use class instances to perform actions in action

states. By using object flows, it’s possible to incorporate the notion of state into activity

diagrams that are primarily used for modelling behaviour. In UMLi, it’s also possible

to use object flows to describe how to use interaction class instances. However, object

flow states—rendered as dashed arrows connecting objects to action states—have specific

semantics when associating interaction objects to activities and action states. UMLi

specifies categories of object flow states specific to interaction objects:

• The interacts object flows relate primitive interaction objects to action states,

which are primitive activities. They indicate that associated action states are re-

sponsible for interactions in which users invoke object operations or visualize the

results of object operations.

• The presents object flows relate FreeContainers to activities and specify that the

associated FreeContainers should be visible while the activities are active.

• The confirms object flows relate ActionInvokers to selection states and specify

that selection states have finished normally.

• The cancels object flows relate ActionInvokers to composite activities or selection

states and specify that activities or selection states have not finished normally and

that the application flow of control should be rerouted to a previous state.

• The activates object flows relate ActionInvokers to other activities, thereby trig-

21

gering the associated activities that start when an event occurs.

In [4] is mentioned a case study specified both in UML and UMLi. A set of metrics

were applied to each specification. The results of these metrics show that constructing

and maintaining interactive system models should be simpler and easier in UMLi than in

UML.

2.4.2 WISDOM

WISDOM [16] is a lightweight software engineering method. Lightweight in the sense

that it can be learnt and applied in a couple of days or weeks. WISDOM is object-

oriented and it uses the UML to specify, visualise and document the artefacts of the

development project. WISDOM is specifically adapted to develop interactive systems,

because it uses and extends the UML to support Human Computer Interaction (HCI)

techniques. Finally WISDOM is evolutionary, in the sense that the project evolves in a

sequence of incremental prototypes, ultimately leading to the end product.

WISDOM’s specification is divided in three key issues:

• Process;

• Architecture;

• Notation.

The Wisdom process defines the steps for successfully implementing the Wisdom method

in a software development organisation. The WISDOM process is divided in four devel-

opment phases called evolutionary phases:

• Inception, focus on the interiorisation the project, the team should understand

the system’s context and user’s profile and start writing requirements.

• Elaboration, focus on requirements, system analysis and UI’s architecture design

• Construction, in this phase the focus is on designing both the system and it’s UI

and than implement that design.

• Transition, the last phase is focused on evaluate the implementation and gather

feedback.

Throughout all phases, there is a constant build, test loop. Every phase includes the

22

construction of a prototype and evaluation of that prototype. Thus the concept of Evo-

lutionary Prototyping.

The WISDOM architecture specifies the different models of interest to effectively develop

an interactive system under the framework of the WISDOM process. The Wisdom model

architecture combines both the internal and user interface architectures. Software engi-

neering methods traditionally focus on the organisation of the internal components and

their relationships - the internal architecture of the software system. Since early project

inception WISDOM also focus on the external or UI architecture. Like the internal archi-

tecture is more than a set of internal components, the UI architecture is also more than a

set of UI components. In Wisdom the external architecture not only concerns individual

UI components but also (and essentially) the overall structure and organisation of the

UI.

The WISDOM notation is a subset and extension profile of UML, the standard object-

oriented language for visualising, specifying, constructing and documenting the artifacts

of a software-intensive system. WISDOM uses a subset of the UML and extend the

language using it’s built-in extension mechanism in order to provide some modelling

constructs useful to design interactive systems. For a detailed description of the Wisdom

notation refer to [16].

2.4.3 UsiXML

UsiXML (USer Interface eXtensible Markup Language) is a User Interface Description

Language (UIDL) that uses Model-Driven Engineering (MDE) for specifying a User In-

terface (UI) at an implementation independent level. The UI specifications are usually

specified in different models. Each UI level is described by a model(s). UsiXML is based

on the Cameleon reference framework[3]. This framework describes a UI in four main

levels of abstraction: task and domain level, abstract UI level, concrete UI and final UI.

On the basis of these 4 levels, UsiXML proposes a set of models:

• Transformation model: contains a set of rules in order to enable a transformation

of one specification to another.

• Domain model: describes the classes of the objects manipulated by the users

while interacting with the system.

• Task model: describes the interactive task as viewed by the user interacting with

23

the system. The task model is expressed according to the CTT specification [18].

• Abstract user interface model: represents the view and behaviour of the domain

concepts and functions in platform independent way.

• Concrete user interface model: represents a concretization of the abstract user

interface model.

• Mapping model: contains a series of related mappings between models or elements

of models.

• Context model: describes the three aspects of a context of use, which is a user

carrying out an interactive task using a specific computing platform in a given

surrounding environment.

• Resource model: contains definitions of resources attached to abstract or concrete

interaction objects.

The user interface model in UsiXML consists of a list of component models (described

above) in any order and any number. It doesn’t need to include one of each model

component and there can be more than one of a particular kind of model component.

It’s also composed by a creation date, a list of modification dates, a list of authors and a

schema version.

UsiXML allows designers to apply a multi-path development of user interfaces. In this

development paradigm, a user interface can be specified and produced at and from differ-

ent, and possibly multiple, levels of abstraction while maintaining the mappings between

these levels if required. Thus, the development process can be initiated from any level of

abstraction and proceed towards obtaining one or many final user interfaces for various

contexts of use at other levels of abstraction. In this way, the model-to-model transfor-

mation, which is the cornerstone of Model-Driven Architecture (MDA), can be supported

in multiple configurations, based on composition of three basic transformation types[11]:

• abstraction, is the process of substitution of the input artefacts into more abstract

ones;

• reification, is the process of substitution of the input artefacts into more concrete

ones;

• translation, is the process of substitution of the input artefacts aimed at a partic-

ular context of use into others that are aimed for a different context.

24

Multi-path UI development is based on the Cameleon Reference Framework[3], which

defines UI development steps for multi-context interactive applications. The development

process with this framework is structured in four steps where each developments step is

able to manipulate a set of artefacts in the form of models:

• Final UI (FUI): is the operational UI. Any UI running on a particular computing

platform either by interpretation or by execution.

• Concrete UI (CUI): it’s a transformation of the abstract UI for a given context of

use into Concrete Interaction Objects (CIOs). It defines widgets layout and interface

navigation. The CUI abstracts a FUI into a UI definition that is independent of

any computing platform. Although a CUI makes explicit the final appearance and

style of a FUI, it is still a mockup that runs only within a particular environment.

A CUI can also be considered as a reification of an AUI at the upper level and an

abstraction of the FUI with respect to the platform.

• Abstract UI (AUI): defines interaction spaces by grouping subtasks according

to various criteria, a navigation scheme between the interaction spaces and selects

Abstract Interaction Objects (AIOs) for each concept so that they are independent

of any modality. An AUI abstracts a CUI into a UI definition that is independent of

any modality of interaction. An AUI can also be considered as a canonical expres-

sion of the rendering of the domain concepts and tasks in a way that is independent

from any modality of interaction. An AUI is considered as an abstraction of a CUI

with respect to modality.

• Task and Domain (T&D): describe the various tasks to be carried out and the

domain-oriented concepts as they are required by these tasks to be performed. These

objects are considered as instances of classes representing the concepts manipulated.

UsiXML is also very extensible. At the model level USIXML allows to define any kind of

model. In this sense it is possible to instantiate any new model of the above mentioned

classes. At meta-model level USIXML offers a modular structure which clearly segregates

the models it describes. This facilitates the integration of new classes of models into

UsiXML. The model and its concept is simply declared along with its relationships with

other models. Rules exploiting this new model can be defined afterwards.

In conclusion, UsiXML solves every problem stated in [19]. UsiXML was designed for user

interfaces, it’s not an adaptation of some modelling language that was meant for other

use. It provides several classes of models with different abstraction levels so that every

25

part of the interface is specified. By allowing the application of multi-path development

process, it makes sure that every specification is platform independent. Finally, it’s a

flexible language, UsiXML provides mechanisms that can be used to extend and modify

it’s models and transformation rules.

2.5 Discussion

The first tools in this chapter were Janus[2] and Its[28]. These tools represent the begin-

ning of MDDUI and at the same time two different approaches to this subject. Developers

using Janus will decrease the development time of their applications. This seems to be

the main goal of the project. Because it only needs one input, the domain model, it

doesn’t take a lot of effort to create a UI. Of course this also means that the generated

UI won’t have the same quality as one built by hand (depending on the abilities of the

developer) and this is the most criticized aspect of Janus. On the other hand, Its can

produce high quality UI’s. But the amount of work necessary to build something is huge

compared to Janus. Its also provides a way to divide work through the development team

which is a very interesting feature because it facilitates the implementation of different

development methodologies alongside this tool.

By analysing these two projects one can infer that MDD can be used with two objectives

in mind:

1. to build low-cost prototypes of an application rapidly;

2. to enhance the quality of the final product.

Janus is clearly a tool that can be used to rapidly create a prototype of an application

that can be used to communicate with customers or other stake holders. Its is aimed at

building better applications with large teams.

In section 2.2 were introduced a couple of projects that use numeric optimization to

generate UI’s. The first project was Gadget[6]. This is a framework that abstracts the

programmer from the optimization itself. The problem with this project is that it’s

not a complete solution. Developers still have to produce evaluations which can be a

tricky subject because it’s not trivial to determine what properties make a user interface

“good”. The second project, Supple[7], it’s more mature and complete. The objective

behind Supple is to generate UI’s at run time that are optimal for people with special

needs.

26

Although Gadget is meant to simplify numeric optimization of UI’s in a way that it could

be used by any developer it still looks very complex to use this system.

Supple is a more complete system. It receives three types of input models:

• one related to the domain;

• other related to the user;

• and other related to the platform it’s supposed to run on.

This makes Supple easier for developers but doesn’t give them much control of the final

UI. The great advantage of this system its his capability to dynamically adapt to the

needs of every user.

Section 2.3 covered the use of UI patterns in the process of modelling a UI. In this section

IdealXML[14, 13] was looked in detail. IdealXML is a tool where designers can, using

several graphical notations, specify Domain models, Task models, AUI models and map-

ping models between them. IdealXML manipulates a pattern repository, where patterns

are organized following a hierarchical structure. This enables the usage of patterns at

design time.

Unfortunately, like in most projects in this field, IdealXML is an academic project and

it’s not ready to be adopted by the industry.

Section 2.4 covered “Specification Languages”. This is the most important topic ap-

proached on this chapter because the lack of a standard language to describe UI’s is one

of the most setbacks on this field. In this section we’ve looked into three projects that

are trying to solve this issue.

First we analysed UMLi [4]. UMLi is an extension to UML with support for interaction

models. The second project was WISDOM [16]. Like UMLi, WISDOM provides an

extension to UML in order to support interactive models.

The third project in this section was, UsiXML [11]. UsiXML is a UIDL based on the

Cameleon reference framework[3]. UsiXML supports every step in the Cameleon frame-

work. UsiXML is a little different from the first two ones because it doesn’t try to extend

UML. UsiXML introduces it’s own set of models but reuses familiar notations, like UML

for domain models and CTT for task models.

Both WISDOM and UsiXML, ship with an engineering method, with different approaches.

WISDOM’s method focus on the development of the entire product while UsiXML is fo-

27

cused on the UI. Both methods have their advantages and disadvantages. But, if we’re

looking for a standard tool that can be used by most organizations, UsiXML’s approach

is more generic and therefore has better probability to find a place in the industry.

UMLi doesn’t propose an engineering method. This project seems to be the less featured

one. It reuses some of UML models to model interactive features, and only introduces a

new notation for AUI models. This can play in favour of UMLi because it’s the easiest

one to understand and it’s the project that would take the least effort to integrate in an

organization’s workflow.

In conclusion, WISDOM and UsiXML are the most full-featured butUsiXML is more

generic then WISDOM. UMLi is less featured but at the same time easier to integrate in

an organization.

Trying to guess which of these projects has the most probability of becoming a standard

is a difficult task. Although there is one more parameter that can call the tie off which

is community. UsiXML is building a large and strong community1 around it. Taking

all things into account, UsiXML shows the best probability of becoming a standard in

MDDUI.

1http://www.usixml.eu/all-end-user-club

28

Chapter 3

UsiXML

In section 2.4.3 USer Interface eXtensible Mark-up Language (UsiXML) was referred

as part of the state of the art. In this chapter this subject will be studied in more

depth. The focus of this chapter will not be just UsiXML as a User Interface Description

Language (UIDL) but the whole project behind it.

UsiXML’s specification, version 1.8, was released in February 14th, 2007. In April of 2009

was founded a consortium with the objective of lowering the total application costs and

development time by adding versatile context driven capabilities to UsiXML that would

bring it far beyond the state of the art, up to the achievement of its standardisation.

The UsiXML consortium started with three main goals that would guide the entire

project. The first goal is the UsiXML “µ7” concept elicitation and promotion. The

µ7 concept means that it should be possible to specify a User Interface (UI) for an in-

teractive application that should support multi-device, multi-platform, multi-user, multi-

linguality/culturality, multi-organisation, multicontext, or multi-modality capabilities.

The second goal is the development of theUsiXML language and the Model Driven Devel-

opment of User Interfaces (MDDUI) method. The UsiXML language should guarantee

interoperability, reusability, and maintainability of interactive applications developed. For

this reason UsiXML is an open eXtensible Mark-up Language (XML)-compliant standard

UIDL. There should be models to cover every µ7 aspects. Finally, UsiXML should define

a flexible methodological framework that accommodates various development paths as

found in organisations and that can be tailored to their specific needs.

The third goal is to set up development tools and demonstration of the validity on ap-

plications. There should be a suite of software tools that support the methodological

29

framework defined in the second goal that can be later integrated or connected to avail-

able software environments. A UsiXML service will be defined and developed once so

that this service can be deployed many times, especially for all environments requir-

ing them to reduce the total cost of development. UsiXML will provide developers with

various knowledge bases containing usability and accessibility guidelines that can be semi-

automatically verified on any UsiXML-produced UI so as to guarantee a certain level of

quality.

Section 3.1 provides a description of the UsiXML semantics. In section 3.2 refers to the

UsiXML engineering method for developing UI’s.

3.1 UsiXML semantics

The core component of a user interface specified in UsiXML consists of a uiModel, which

is itself decomposed into several models. Not all models should be included. Only those

models which are required for the particular UI are included in a UsiXML file. Figure

3.1 shows the components of UsiXML in an Unified Modelling Language (UML) class

diagram.

Figure 3.1: UsiXML specification as an UML class diagram.

The uiModel is the topmost superclass containing common features shared by all compo-

nent models of a user interface. A uiModel may consist of a list of component models in

30

any order and any number:

• Transformation model: contains a set of rules in order to enable a transformation

of one specification to another.

• Domain model: describes the classes of the objects manipulated by the users

while interacting with the system.

• Task model: describes the interactive task as viewed by the user interacting with

the system. The task model is expressed according to the CTT specification [18].

• Abstract user interface model: represents the view and behavior of the domain

concepts and functions in platform independent way.

• Concrete user interface model: represents a concretization of the abstract user

interface model.

• Mapping model: contains a series of related mappings between models or elements

of models.

• Context model: describes the three aspects of a context of use, which is a user

carrying out an interactive task using a specific computing platform in a given

surrounding environment.

• Resource model: contains definitions of resources attached to abstract or concrete

interaction objects.

The uiModel is also composed by a creation date, a schema version, a set of authors, a

set of versions and a set of comments. A complete reference to UsiXML semantics can be

found in [23]. This section refer to version 1.8. There is a newer version in development

that it’s not yet available that might redefine some of the concepts explained here.

3.2 UsiXML method

The Model Driven Engineering (MDE) approach allows developing a UI by transforming

progressively UsiXML models in order to obtain specifications that are detailed and

precise enough to be rendered or transformed into code.

The usage of the Cameleon reference framework[3] allowed UsiXML development to be

divided in a set of phases that can be achieved through a set of transformations (see section

2.4.3). These features supplied a base structure for the development of an engineering

31

method called Forward engineering method referenced in section 3.2.2. This method is

an instantiation of a meta-model called SPEM for UsiXML (SPEM4UsiXML) that we’ll

see in section 3.2.1 and can be used to develop other engineering methods. It’s based on

Software & Systems Process Engineering Metamodel (SPEM) 2.0 a method meta-model

specification from the Object Management Group (OMG). In appendix A is an overview

of this specification.

3.2.1 Spem4UsiXML

SPEM4UsiXML is dedicated to UsiXML method modelling. The goal of this meta-model

is to propose a set of key elements to define any UsiXML based engineering method.

SPEM4UsiXML is an extension of SPEM 2.0 that adds some new classes. SPEM4UsiXML

separates the operational aspect of a method from its temporal aspect. This means

that SPEM4UsiXML reuses theUML diagrams for the presentation of various UsiXML

method concepts. As shown in figure 3.2, the SPEM4UsiXML meta-model uses seven

main meta-model packages inherited from SPEM: Method Content, Process Structure,

Process Behaviour, Process With Methods, Core Method Plug-in and Managed Content.

SPEM4UsiXML extends some of the classes from Method Content and Process Structure

as we’ll explain in this section.

A complete reference for the SPEM4UsiXML meta-model can be found in [24]

The Method Content and Process Structure packages are the only ones that were extended

from the original SPEM specification. Hereafter these extensions will be described.

Method Content

The method content meta-model package defines the core elements of every method (pro-

ducer, work unit and work product) independently of any process or project.

As shown in figure 3.4, SPEM4UsiXML adds new classes to the original SPEM method

content meta-model package in order to specify the several development steps and sub-

steps and also the different kinds of product and producer. The important classes of the

SPEM4UsiXML method content meta-model are:

• The Development Step Definition defines the transformation being performed

by Role Definition instances. A Development Step is associated to an input and an

output, Work Products. A Development Step Definition can be:

32

Figure 3.2: Structure of the Spem4UsiXML meta-model.

Figure 3.3: Structure of the Spem4UsiXML method content meta-model package.

33

– A Reification Definition defines the transformation of a Work Product Def-

inition of higher-level into a Work Product Definition of lower-level.

– An Abstraction Definition defines the transformation of a Work Product

Definition of lower-level into a Work Product Definition of higher-level.

– A Translation Definition defines the transformation a Work Product Defi-

nition based on context.

– The Code generation Definition defines the transformation of a Model

Definition into a Code Definition.

– The Code reverse engineering Definition defines the transformation of a

Code Definition into a Model Definition.

• A Development Sub-Step Definition defines the sub-steps of a Development

Step. A sub-step can be achieved using a service (Service Definition). Each service

can be based on a set of transformation rules, a program, the context or a template

in order to enact the Development Sub-Step.

• A Step Definition is an abstract generalization class that defines a set of properties

that are inherited by Development Step, and Development Sub-Step.

• The Work Product Definition describes the product which is used, modified, and

produced by Development Steps. A Work Product Definition can be: a UsiXML

model (Model Definition) or UI code (Code Definition).

• A Role Definition defines a set of related skills, competencies, and responsibilities

of an individual or a set of individuals. Roles are used by a Development Step or

by a Development Sub-Step to define who performs them as well as to define a set

of Work Product Definitions they are responsible for. A Role Definition can be:

– A Tool Definition describes any automation unit that performs the Devel-

opment Step or Development Sub-Step.

– The Human Actor Definition describes any person, or organization that

performs the Development Step or Development Sub-Step.

Process Structure

The process structure meta-model defines the structure of the method process. This

package represents a process decomposed as a set of Activity classes that are linked to

34

Role classes and Work Product classes. This structure is useful to express the fact that

a life-cycle is composed by set of phases, and each phase is composed by set of activities.

Figure 3.4: Structure of the Spem4UsiXML process structure meta-model package.

As shown in figure 3.4, SPEM4UsiXML adds some new classes to the originalSPEM

process structure package in order to specify the control flow of the development steps

and sub-steps and also the different products and producers used in the method process.

The important classes of the SPEM4UsiXML process structure package are:

• The Development Path defines the properties of a UsiXML method.

• A Breakdown Element is an abstract generalization class that defines a set of

properties available to the elements of a UsiXML method (Product, Development

Step and Producer).

• A Work Breakdown Element provides specific properties for Breakdown Ele-

ments that represent Development Step and Development Sub-Step.

• A Step Use is an abstract generalization class that defines a set of properties

available to Development Step, and Development Sub-Step.

• The Development Step Use defines the transformation steps of the method that

are being performed by Role Use instances. A Development Step Use is associated

to an input and an output Work Product Use. A Development Step Use can be:

a reification , an abstraction, a translation, a code generation or a code reverse

35

engineering.

• A Development Sub-Step Use defines the sub-steps of a Development Step Use.

• A Role Use represents a performer of a Development Step Use or a Development

Sub-Step Use.

• The Work Product Use represents an input and/or output type for a Development

Step. It can concern a model (Model Use) or code (Code Use).

• The Control Flow represents a relationship between two Work Breakdown El-

ements in which one Work Breakdown Element depends on the start or end of

another Work Breakdown Element in order to begin or end.

3.2.2 Forward engineering method

The starting point of the Forward Engineering method (FEM) is a task and a domain

model (products). These models are then transformed (work) into an Abstract User

Interface (AUI) model (product) which is then transformed (work) into a Concrete user

interface model (product). Finally the code (product) is generated (work).

In order to achieve these transformations, a sequence of development step, reifications and

code generation, are performed. Each development step may involve a set of development

sub-steps. For example, the first development step involves the development sub-step,

Identification of Abstract user interface structure. This sub-step consists in the definition

of groups of an abstract interaction (an element of the abstract user interface). Each group

corresponds to a group of tasks (in task model) tightly coupled together. To achieve its

work, the sub-step can use a sequence of rules. For example, the sub-step: Identification

of Abstract UI structure uses the sequence of two rules:

1. For each leaf task of a task tree, create an Abstract Individual Element;

2. Create an Abstract Container structure similar to the task decomposition structure.

Every development step takes as input a UsiXML model and transforms it into another

UsiXML model by involving a set of development sub-steps, which in turn, manipu-

late sub-steps models by using a set of rules. Note that, a development sub-step can

use templates of transformations instead of rules. For example, the step Generating the

user interface code can use a template based approach in order to generate the UI code.

Another note is that, each development step and development sub-step has a producer

36

responsible of its execution. For example, the first development step can have a human

actor who verifies the transformation done in this step. In turn, the sub-step: Identifica-

tion of Abstract UI structure can have a transformation tool that can execute the rules

sequence of this sub-step.

Figure 3.5: The forward engineering method.

More information in deeper detail about the FEM can be found in[10].

37

38

Chapter 4

Patterns in UsiXML

In chapter 2 was introduced some background on Model Driven Development of User

Interfaces (MDDUI). In that chapter we described several projects related to this field

and, most importantly, we identified some issues related to this subject that should be

solved in order for the industry to advance:

• the lack of a common language to describe user interface models;

• the lack of tools to enable the reuse of these models at a conceptual level.

The first issue can be solved by USer Interface eXtensible Mark-up Language (UsiXML)

(chapter 3). UsiXML is a User Interface Description Language (UIDL) with support for

multiple development phases. With all the advantages granted by UsiXML and the strong

community it’s building, UsiXML has the potential to become an industry standard for

describing User Interface (UI) models.

The lack of tools to enable the reuse of these models at a conceptual level is still a problem.

There are several libraries of user interface patterns at a concrete level but there’s very

low support for conceptual user interface patterns.

In the course of this chapter we’ll describe a solution that takes advantage of UI patterns

at a conceptual level during the first stage of the Forward Engineering method (FEM).

More specifically, we’re aiming at the use of generative patterns[27]. This kind of patterns

are more specific and more bound to be interpreted by machines. The goal is to use

patterns to automate the first stage of the FEM. Hence, diminish the development time

and increase the quality of the final product.

39

4.1 Concept

In section 3.2.2 we described the FEM. This methodology was introduced as a path to

develop UI’s using UsiXML and passing through multiple stages and levels of abstraction.

In this section we’ll be focusing on the first stage of the FEM.

Figure 4.1: The first stage of the forward engineering method.

The first phase of the FEM receives two inputs, a domain model and a task model. The

goal of this phase is to work on these models in a way that the output is an Abstract

User Interface (AUI) model.

The first phase of the FEM is divided in three steps:

• Identification of abstract UI structure;

• Selection of abstract UI components;

• Identification of arrangement of abstract UI components.

The identification of abstract UI structure consists on the definition of groups of abstract

interaction. Each group corresponds to a group of tasks tightly coupled together.

The selection of abstract UI components consists on finding the best abstract individual

component type to support one or several tasks.

The identification of arrangement of abstract UI components consists on the spatio tem-

poral arrangement of elements in the AUI. This structure should respect the temporal

relations defined in the task model.

The goal of this concept is to provide a solution to automate this process. Because this is

a very complex transformation, developing a algorithm to accomplish this work it’s not

feasible. Maximize usability should always be the focus of any technique that attempts

40

to build UI’s and usability usually comes from experience and user’s feedback. With this

in mind we concluded that the best way to automate this transformation is by taking

advantage of previous works and tested solutions. In other words, giving the nature of

the problem, the best way to solve it, is using patterns.

Figure 4.2: Proposal for the first stage of the forward engineering method.

Figure 4.2 shows the first stage of the FEM with some changes. The input models should

form a pattern instantiation. This means that for this method to work, the input can’t

be random, it should follow a structure that will provide additional information to the

system. Another step was introduced in the first stage of the method. The first step is

now the pattern recognition. This will allow the system to gather additional information

related to the input models. By combining the information gathered from the pattern

with it’s instantiation the system should now be capable of following the other steps on

its own without any need for human intervention.

4.2 Pattern definition

In section 4.1 we defined a concept to automate the first stage of the FEM using patterns.

In this section we’ll define a pattern to be used with the concept.

Most pattern catalogues describe patterns with the following set of key attributes:

• Name, is a way to reference the pattern. Should be a short and descriptive set of

words.

41

• Problem, is a description of what problem is that particular pattern trying to

solve. This will constraint the set of contexts where the pattern should be used.

• Solution, describes how the problem should be solved. This is the heart of the

pattern.

• Consequences, describes a set of side effects that can happen by using this pattern.

There are other fields that are often included as well like an alias, the author name or

the version. These attributes are very generic and used on most patterns catalogues.

The Name and Consequences are descriptive fields that should be interpreted by humans.

So they should be represented in natural language.

The Problem defines the context of use for the pattern. In section 4.1 we defined that the

input models should form a pattern instantiation. This means that the problem should

be defined as a domain and a task models.

The Solution should represent the end result of using a pattern. We are studying the

first stage of the FEM and the result of this stage is an AUI model. Thus the solution in

the pattern should be the resulting AUI model for the task and domain models provided

by the problem. This AUI model will serve as a template for the pattern instantiation’s

AUI model.

Figure 4.3: UML specification of user interface conceptual pattern.

Figure 4.3 shows the UML specification of a pattern. It contains a set of descriptive fields,

a Task and Domain models (problem) and an Abstract User interface model (solution).

The structure of a pattern for this concept is similar to the one found in [8]. A pattern

42

has a set of descriptive elements, namely:

• Name, the name of the pattern;

• Alias, a secondary name for the pattern, this field is optional;

• AuthorName, the name of the pattern’s author;

• Version, the current version of the pattern;

• Description, a short text description of the pattern, meant to be read by humans;

• Strengths, a short text describing the best features of the pattern, this field is

optional;

• Weaknesses, a short text describing what’s worse about the patter or what could

be improved, this field is optional;

• Consequences, a short text describing side effects that can occur while using this

pattern, this field is also optional.

The “problem” that the pattern is trying to solve is represented by a domain and a task

model. The “solution” is represented by an AUI model.

4.3 Example

In section 4.1 was introduced a concept to automate the first stage of the FEM based

on patterns. Section 4.2 defined the structure of the patterns needed for the concept to

work. In this section we’ll see an example of a pattern. Also we’ll use this pattern to

demonstrate the work-flow of the concept described in section 4.1.

For the sake of this example we’ll use a pattern for the creation of documents.

Table 6.2 shows the descriptive fields for the Create Document pattern.

Figure 4.4: UML specification of the Create document pattern’s domain model.

43

Name Create Document
Alias Build Document
Author André Barbosa
Version 1.0
Description This pattern describes the creation of a document. It goes from the struc-

ture of the document itself in the domain model to the specification of the
task. The resulting interface contains a container for the every different
section of the document and a separate container for the document lines
that should only appear after the user call the “New Line” function.

Strengths The usage of this pattern results in a familiar interface that most users
will recognize and understand without any external help.

Weaknesses The usage of this pattern may cause a poor user experience in smaller
screens.

Consequences There aren’t any consequences by the use of this pattern besides user’s
satisfaction.

Table 4.1: Descriptive fields for the Create Document pattern.

Figure 6.1 shows the domain model for the Create document pattern specified in UML.

The domain model for this pattern represents a document and it can and should be

reused in other document related patterns. This model contains a Document class that

is composed by a header represented by the DocHeader class, a set of lines represented

by the DocLine class and a footer represented by the DocFooter class.

Figure 4.5: Task model for the Create document pattern.

Figure 4.5 shows the task model for the Create document pattern. There’s a main ab-

stract task named Create Document at the top followed by other three abstract tasks

and an interaction task named SubmitDocument. The Create Document Header and Cre-

ateDocumentFooter abstract tasks don’t have any child tasks because there isn’t enough

details in the domain model to go further. The CreateDocumentLines task has two chil-

44

dren tasks, an interaction task named ClickNewDocumentLine that gives access to the

CreateDocumentLine abstract task that also doesn’t have any child.

Figure 4.6: Abstract User Interface model for the Create document pattern.

Figure 4.6 shows the Abstract User Interface model for the Create document pattern.

There is a container called NewDocument composed by three elements. DocHeader and

DocFooter are two containers that are related to the CreateDocumentHeader and Create-

DocumentFooter abstract tasks respectively. The NewDocumentLine listener is related

to the ClickNewDocumentLine interaction task and should trigger the NewDocumentLine

container that displays a form for the CreateDocumentLine task.

To continue with this example, let’s create an instantiation of the Create Document

pattern. A classic type of documents is an invoice.

Figure 4.7: UML specification of an invoice’s domain model.

Figure 4.7 shows the domain model of an invoice. As expected it’s very similar to the

domain model of the Create Document pattern. There’s a class named Invoice that is

45

composed by an InvoiceHeader, an InvoiceFooter and a set of InvoiceLine objects. The

main difference between this model and the early one is that this one has more details.

Figure 4.8: Task model to create an invoice.

Figure 4.8 shows the task model to create an invoice. CreateDocumentHeader, Create-

DocumentFooter and CreateDocumentLine were childless tasks in the pattern. This is

an instantiation of the pattern and because the domain model is also more detailed, the

task model carries more details as well.

By using the method described in section 4.1 we reach the Abstract User Interface mode

from figure 4.9. The Abstract User Interface from the pattern in figure 4.6 serves as a

template for the new model. The structure defined in the pattern is kept but is now more

detailed. The empty containers from the pattern are now filled with input controllers.

This is possible because the task model has more information.

4.4 Requirements

In order to satisfy the concept described in section 4.1 the application should implement

the requirements listed below.

• Read and interpret Task, Domain and AUI models.

The application needs to be able to load Task, Domain and AUI models from a

file to memory. This is essential because these are the components of a pattern as

explained on section 4.2. Also the input models for the transformation are a Task

46

Figure 4.9: Abstract User Interface model to create an invoice.

and a Domain model. The files containing the models should be in the format used

by the UsiXML tool set.

• Validate that the input models are an instantiation of the input pattern.

It’s essential for the application to validate that the inputs are correct. Otherwise

the transformation would give unexpected results.

• Link the developing models to the pattern models.

The application needs a way of linking the input models with the pattern. This is

essential for the transformation to occur.

• Generate an AUI model based on the information provided by the de-

veloping models and the pattern models.

The main objective of the application is to transform the provided Task and Domain

models into an AUI model. this process is achieved by combining the information

contained on both the input models and the pattern.

47

• Write the resulting AUI model to a file.

The AUI model that results from the transformation should be stored in a file

compatible with the UsiXML tool set.

Above was described a list of requirements that should be implemented by the application.

Bellow is a description of the application’s features in the form of user stories.

• “As a developer, I want to load a Task, a Domain and an AUI models from my hard

drive so that they form a pattern.”

• “As a developer, I want to load a Task and a Domain models from my hard drive

so that they can be matched against a pattern.”

• “As a developer, I want to select the output directory for the generated AUI model

in my hard drive so that I can use it with other tools.”

4.5 Algorithm

This section explains the algorithm used to generate AUI model from the input models

and a pattern.

There are two restrictions on the models that need to be followed for the algorithm to

work. Elements should follow a naming convention and the models that instantiate the

pattern should indicate the associated elements in the pattern.

First, there are a few naming conventions for the UsiXML elements used to describe

the different models. This conventions serve to match the different elements of different

models.

• All names should come in the CamelCase format.

• The name of a container (AbstractCompoundIU) should equals the name of the

class in the domain model that it represents.

• The name of a task should start with a word that represents the action of that task.

Supported actions are: “Show”, “Click” and “Fill”.

An example of this name conventions can be found on the models shown in section 4.1.

The second restriction is that the elements of the pattern instantiation that have an

associated element in the pattern should indicate that element. That is accomplished

48

by adding an extra attribute called pattern id, the value should be the id of the corre-

sponding element. To demonstrate this, we’ll use eXtensible Mark-up Language (XML)

representation of the models instead of the graphical one like in previous sections.

1 <?xml version=”1 .0 ” encoding=”UTF−8”?>
2 <org . usixml . task : TaskModel xmi : version=”2 .0 ” xmlns : xmi=”http ://www. omg . org /XMI” xmlns :←↩

xsi=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ” xmlns : org . usixml . task=”http :// org .←↩
usixml . task /2 .0 ”>

3 <tasks id=”1” name=”CreateDocument ”>

4 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ” type=”←↩
ORDERINDEPENDENCE”>

5 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”3”/>

6 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”2”/>

7 </expressions>

8 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ” type=”←↩
ORDERINDEPENDENCE”>

9 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”4”/>

10 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”3”/>

11 </expressions>

12 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ”>

13 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”5”/>

14 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”4”/>

15 </expressions>

16 <part id=”2” name=”CreateDocumentHeader ”/>

17 <part id=”3” name=”CreateDocumentLines ”>

18 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ”>

19 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”7”←↩
/>

20 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”USER” target=”6”/>

21 </expressions>

22 <part id=”6” name=”ClickNewDocumentLine ”/>

23 <part id=”7” name=”CreateDocumentLine ”/>

24 </part>

25 <part id=”4” name=”CreateDocumentFooter ”/>

26 <part id=”5” name=”ClickSubmitDocument ”/>

27 </tasks>

28 </org . usixml . task : TaskModel>

Code block 4.1: Task model from Create Document pattern

1 <?xml version=”1 .0 ” encoding=”UTF−8”?>
2 <org . usixml . task : TaskModel xmi : version=”2 .0 ” xmlns : xmi=”http ://www. omg . org /XMI” xmlns :←↩

xsi=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ” xmlns : org . usixml . task=”http :// org .←↩
usixml . task /2 .0 ”>

3 <tasks id=”1” pattern_id=”1” name=”Create Invo i ce ”>

4 (. . .)

5 <part id=”4” pattern_id=”4” name=”Create Invo i ceFoote r ”>

6 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ”>

7 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”USER” target=”16 ”/>

8 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”SYSTEM” target=”15 ”/>

49

9 </expressions>

10 <part id=”15 ” name=”ShowInvoiceFooterForm ”/>

11 <part id=”16 ” name=”F i l lD i s c oun t ”/>

12 </part>

13 <part id=”17 ” pattern_id=”5” name=”Cl ickSubmit Invo ice ”/>

14 </tasks>

15 </org . usixml . task : TaskModel>

Code block 4.2: Create Invoice task model

As you can see in code block 4.2, some tasks (main task represented with an element tasks

and the others in an element part) have an attribute pattern id. This value of pattern id

is an integer that can be found as an id in a task from code block 4.1.

The algorithm itself is divided into the following steps:

1. Match the elements of the pattern’s task and AUI models;

2. Iterate through the elements of pattern’s AUI model and for each:

(a) Get the correspondent task element from the pattern task model;

(b) Get the correspondent task element from the input task model using the pat-

tern id attribute;

(c) Replicate the AUI element to the generated AUI model, with a name inferred

from the task element;

(d) Recursive call through child AUI elements;

(e) Iterate through current input task model elements without pattern id and try

to generate a correspondent AUI element using the naming convention.

At the end of this algorithm the application has generated a new AUI model based on

the provided pattern. The pattern’s template provides the structure and disposition of

the final AUI model, while the action word in the name of each task element provides the

type of AUI element to use.

50

Chapter 5

UsiXML patterns tool

Given the requirements for the project presented on section 4.4 we are now able to start

developing the application that will support the model transformation. In this chapter

we’ll present a prototype for this concept.

The architecture for this project is divided in six packages with different objectives that

will be introduced below:

• org.usixml

Contains abstract classes to represent USer Interface eXtensible Mark-up Language

(UsiXML) models and elements.

• org.usixml.aui

Contains classes to represent both the Abstract User Interface (AUI) model and it’s

elements.

• org.usixml.domain

Contains classes to represent both the Domain model and it’s elements.

• org.usixml.task

Contains classes to represent both the Task model and it’s elements.

• usixmlpatterns

It’s the main package of the application. Contains the class representation for a

pattern and the Main method that runs the interface.

• utils

51

This package contains some utility classes and methods that are used throughout

the application but aren’t part of the core of the project.

In the subsections that follows we’ll go into detail for each package and it’s compo-

nents.

5.1 Package org.usixml

Figure 5.1 shows the org.usixml package. This package contains some abstract

classes to help represent the UsiXML models and elements.

Figure 5.1: The org.usixml package.

This package is composed by three classes. The UsiXMLElementList is the class at

the top of the hierarchy. This class manages a list of objects of the type UsiXM-

LElement. The class UsiXMLElement inherits from UsiXMLElementList. This

means that every UsiXML element can have a set of child elements. Finally the

class UsiXMLModel also inherits from UsiXMLElementList, meaning that every

UsiXML model is basically a list of UsiXML elements.

52

5.2 Package org.usixml.aui

Figure 5.2 shows the org.usixml.aui package. This package contains a class repre-

sentation for the AUI model and it’s elements.

Figure 5.2: The org.usixml.aui package.

53

This package is composed by five classes. The AbstractUIElement abstract class

inherits from UsiXMLElement and it’s the superclass of every AUI element. Ab-

stractCompoundIU, AbstractSelectionIU and AbstractDataIU are the AUI elements

represented here.

– AbstractCompoundIU is a container of elements. This element can be used

to show an object’s properties or a form or other kind of interface element that

serves as a container for other elements.

– AbstractSelectionIU is an interactive element that triggers an event. It’s

mostly used to represent objects like buttons or links.

– AbstractDataIU is an input/output element. Should be used to get or set

the value of some property.

Lastly, the AbstractUIModel represents a AUI model. This class inherits directly

from UsiXMLModel.

5.3 Package org.usixml.domain

Figure 5.3 shows the org.usixml.domain package. This package contains a class

representation for the domain model and it’s elements.

This package seems more complex then the previous one, but it follows the same

structure. The class Domain Element inherits from UsiXMLElement and it’s the

superclass of every domain model elements. The class Class represents a class

composed by attributes an relationships (a class should also have methods but they

weren’t implemented for simplicity and because they’re not as relevant for the inter-

face). The class Relationship is an abstract class that inherits from DomainElement

and serves as the superclass for every type of relationship. The classes Generaliza-

tion and Association represent two types of relationships and thus inherit from

Relationship. Finally there’s the class Attribute that represents a class attribute.

An Attribute is also associated with the enumerator Visibility that specifies the

visibility of that given attribute.

– Class is a class contained on the domain model. It has the same definition as

in all object oriented programming or modelling languages.

54

Figure 5.3: The org.usixml.domain package.

– Relationship describes how two classes relate to each other. This relationship

can be of two types:

∗ Generalization means that the source class is a subclass of the target class;

∗ Association means that the source class has an attribute with the type of

the target class.

– Attribute is a property of a class. Every attribute as a visibility setting, it

can be:

∗ Public means that the attribute can be accessed from other classes;

∗ Protected means that the attribute can only be accessed from classes of

55

the same package;

∗ Private means that the attribute can only be accessed from inside the

class.

The last class in this package is DomainModel that represents the domain model

and thus inherits from UsiXMLModel

5.4 Package org.usixml.task

Figure 5.4 shows the org.usixml.task package. This package contains a class repre-

sentation for the task model and it’s elements.

This package has the same structure has the previous ones. The TaskElement class

inherits from UsiXMLElement and serves as superclass for every element of the task

model. The class Task represents a task and thus inherits from TaskElement, the

attribute pattern id is optional and should only be defined in the cases described

in section 4.5. The TemporalRelationship class represents a temporal relationship

between two tasks. It’s composed by a type which comes from the TemporalRe-

lationshipType enumeration, and a predecessor (pred) and successor (succ). The

pred and succ attributes are instances from the class TaskDecoration. A TaskDec-

oration includes a target (Task) and a nature that comes from the NatureSetting

enumeration.

– Task is a task that can be accomplished either by the user, the system or both.

This element is used to describe any interactive action of the application.

– TemporalRelationship describes how two tasks are related. There’s six

types of relation:

∗ Order Independence , doesn’t matter which task is executed first;

∗ Enabling , the execution of the predecessor task enables the execution of

the successor task;

∗ Choice , the user should choose between the two tasks and execute one

of them;

∗ Disabling , the execution of the predecessor task disables the execution

of the successor task;

56

Figure 5.4: The org.usixml.task package.

∗ Concurrency , the predecessor and successor tasks can be executed si-

multaneously;

∗ Suspend , the execution of the predecessor task suspends the execution

of the successor task.

– TaskDecoration wraps the task inside a TemporalRelationship. This is useful

to add a nature to the task that is specific for that order of execution. The

nature can be one of the following five types:

∗ Interactive , the task is executed with the collaboration of both the user

and the system;

57

∗ User , the task is executed by the user;

∗ System , the task is executed by the system;

∗ Expression ;

∗ Undefined .

Lastly, the TaskModel class represents the task model and thus inherits directly

from UsiXMLModel.

5.5 Package usixmlpatterns

Figure 5.5 shows the usixmlpatterns package. This is the most important package in

the project, because it contains all the logic that makes the model transformation.

Figure 5.5: The usixmlpatterns package.

58

This package is composed by two classes and an exceptions sub-package. The

UsiXMLPatterns class is the class that contains the Main method that starts

the application and runs the Graphical User Interface (GUI). The package Ex-

ceptions contains two classes, ActionNotSupportedException and IsNotAnInstanti-

ationOfThePatternException. The first one can occur when the program finds a

task that it’s not part of the pattern and don’t know what kind of element will

correspond in the AUI model. The second one occurs when the input models don’t

correspond to an instantiation of the pattern. The Pattern class is the most impor-

tant one. All the logic needed for the models transformation. We’ll go into detail

of it’s components (attributes and methods) below.

As we specified in section 4.2 a pattern is composed by three models. A domain

model, a task model and an AUI model that serves as template for the pattern’s

instantiations. Thus the Pattern class has three attributes:

• domain with the type DomainModel that represents the domain model of the

pattern;

• task with the type TaskModel that represents the task model of the pattern;

• template with the type AbstractUIModel that represents the AUI model of the

pattern and will serve as template to transform pattern’s instantiations into other

AUI models.

The most important method of the class is the buildAbstractUIModel method. This

method does the work of generating the AUI model for the provided models using the

patterns template as a start point. The details of the algorithm used to generate the AUI

model are presented in section 4.5.

5.6 Implementation details

The UsiXMLPatterns application was implemented in Java 7. The only restriction re-

garding the programming language was that it had to be object oriented because the

architecture was based on that principle. From all the available choices, Java was the

chosen language for the following reasons:

• familiarity with the language;

• comprehensive set of frameworks, including frameworks for GUI’s and for manag-

59

ing eXtensible Mark-up Language (XML) files which was essential to handle the

UsiXML models;

• comprehensive documentation available online free of charge.

We used the most recent version of the language (7), although it wont compile for ev-

erybody using an ancient Software Development Kit (SDK) due to its syntactic changes

because it’s packed with features1 that help building cleaner code like Type Inference for

Generic Instance Creation (Code Block 5.1) or Strings in switch Statements (Code Block

5.2).

1 Map<AbstractUIElement , Task> taskAuiModel = new HashMap<>() ;

Code block 5.1: Type Inference for Generic Instance Creation

1 switch (actionName) {
2 case ”Cl i ck ” :

3 element . addElement (new AbstractSelectionIU (

4 model . getNextId () , nameWithoutAction ,

5 new ArrayList<UsiXMLElement >())) ;

6 break ;

7 case ” F i l l ” :

8 element . addElement (new AbstractDataIU (

9 model . getNextId () , nameWithoutAction ,

10 new ArrayList<UsiXMLElement >())) ;

11 break ;

12 de f au l t :

13 throw new ActionNotSupportedException (actionName

14 + ” ”

15 + ” i s not supported . Supported a c t i on s ”

16 + ”are : \”Show\” , \”Cl i ck \” and \”F i l l \””) ;
17 }

Code block 5.2: Strings in switch Statements

The User Interface (UI) for the application was built using the SWING framework. The

UI is very small and simple. It consists on a GUI with a set of inputs where the user can

insert the path to the pattern’s model, the input models and to the location where the

generated AUI model should be stored. Figure 5.6 shows the UsiXMLPatterns application

UI.

If we click on one of the inputs, the application shows a modal to choose file location,

using the JFileChooser class from the SWING framework as shown in figure 5.7.

1http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

60

Figure 5.6: The UsiXMLPatterns UI.

Figure 5.7: The UsiXMLPatterns UI to choose a path in the local file system.

In order to ensure that all implemented features are working properly, a test suite was

developed using JUnit2. This framework was chosen in detriment of others like TestNG3

because it integrates very well with Netbeans (one of the most popular Java IDE’s) and

it was already familiar for everyone involved in the development. Figure 5.8 shows the

2http://www.junit.org
3http://testng.org/doc/index.html

61

Junit’s plugin for Netbeans with all tests passing.

Figure 5.8: Junit tests on Netbeans.

For versions control we used git4. Git is free, open-source and thanks to github5 it’s very

easy to create a repository. All the code produced for UsiXMLPatterns can be found at

https://github.com/nata79/UsiXMLPatterns.

4http://git-scm.com
5https://github.com

62

Chapter 6

Case study

In this chapter we will use the USer Interface eXtensible Mark-up Language (UsiXML)

Patterns prototype to build a case study. As a proof of concept we will build medical pre-

scription management application. A medical prescription is a document so it’s possible

to reuse the document concept used in Chapter 4. The medical prescription management

application will be called Better Hand Writing (BHW) and should cover the following

requirements:

• create a new prescription;

• edit an existing prescription;

• remove an existing prescription;

• list all prescriptions.

This chapter will start to document a documents patterns library. These patterns will

then be used on the case study application models in order to transform domain and task

models into Abstract User Interface (AUI) models as shown in chapter 4 with the tool

developed in chapter 5. Ultimately we will present the final result of the application’s

User Interface (UI) based on the developed models.

6.1 Patterns

A medical prescription is a document type. In that sense we should use a library of

document related patterns in order to meet our requirements. In this section we will

describe a pattern library with patterns to list, create and edit document(s).

63

A domain model can be used within different patterns. As this is a document patterns

library, all the patterns will have the same domain model that describes a document.

This domain model is shown in Figure 6.1 using the Unified Modelling Language (UML).

Figure 6.1: UML specification of a document domain model.

A document is composed by a header represented by the class DocumentHeader, a footer

represented by the class DocumentFooter and a set of lines represented by the class

DocumentLine. Note that this domain model was already used in this document in

section 4.3.

6.1.1 List Documents Pattern

In this subsection we will describe the List Documents Pattern. This is a pattern for

listing a set of documents that can be easily edited by adding new items, editing existing

ones or deleting them. As specified in section 4.2 a pattern is composed by a domain

model, a task model, an AUI model and a set of descriptive attributes. This subsection

starts by the descriptive attributes, then we will describe the task model and ultimately

the AUI model.

Table 6.1 shows the descriptive attributes for the List Documents Pattern. As these

attributes are meant to be read by humans they are written in plain English.

The task model should be created using the tool provided by UsiXML community. This

tool uses a notation similar to Concur Task Trees (CTT) [18] and will generate a task

file that later will be used by the tool developed in this work. The task model developed

for this pattern is shown in Figure 6.2.

This task model has a main task called DocumentList. This task has five child tasks:

ShowDocumentList, SelectDocument, EditDocument, DeleteDocument and NewDocument.

The ShowDocumentList is a system task and is responsible to render the document list to

the user. SelectDocument is a user task and represents the act of selecting an item on the

64

Name List Documents
Alias Documents Index
Author André Barbosa
Version 1.0
Description This pattern describes a list of documents. It shows a list of documents

with options for editing or deleting an element of the list and to create a
new document.

Strengths The usage of this pattern results in a familiar interface that most users
will recognize and understand without any external help.

Weaknesses The usage of this pattern may cause a poor user experience in smaller
screens.

Consequences There aren’t any consequences by the use of this pattern besides user’s
satisfaction.

Table 6.1: Documents list pattern description.

Figure 6.2: List documents pattern’s task model.

list by a user. EditDocument is an interactive task, meaning that it involves interaction

of the user with the system, and it should invoke the EditDocumentPattern, with the

selected document, that will be described later on this section. DeleteDocument is also

an interactive task because by performing this task, the user will invoke some behaviour

in the system, and in this case, the system will delete the selected document. Finally the

NewDocument task will invoke the Create Document Pattern that will also be described

later on this section.

At the lower end of the model, one can see a set of relationships between task decorations.

A task decoration is reference to a task with additional information saying who performs

the task. It can be performed by the user, the system or both (interactively). In the

graphical representation of the model this is represented by a color code, blue for system,

orange for user and green for interactive. There is only one type of relationship used in

this model. The symbol “>>” means “enables”. This means that the ShowDocumentList

task enables the user to perform the SelectDocument and NewDocument tasks and the

65

SelectDocument task enables the user to perform the EditDocument and DeleteDocument

tasks.

For the pattern to be complete we still need to specify an AUI model. This model will

serve as template to generate the AUI of the pattern instantiations. Like the task model,

the AUI model should also be developed using the appropriate tool provided by the

UsiXML community. This tool will generate a aui file that will later be used by the tool

developed in this work. The AUI model developed for this pattern is shown in Figure

6.3.

Figure 6.3: List documents pattern’s task model.

The AUI model is composed by one main CompoundIU, which is a container that can

be filled with any kind of controllers, a child CompoundIU and three SelectionIUs, a

SelectionIU is an interaction unit that in a lower level should be mapped to something

like a button or a link. The child CompoundIU labelled “List” will be the place where the

concrete document list will appear and provides the functionality for a user to select one

item. The first SelectionIU labelled “EditDocument” should launch the Edit Document

Pattern with the selected document. The second SelectionIU labelled “DeleteDocument”

deletes the selected document. Finally, the third SelectionIU labelled “NewDocument”

should launch the New Document Pattern.

6.1.2 Create document pattern

In this subsection we will describe the Create Document Pattern. This is a pattern for

creating a new document. As in the previous pattern the Create Document Pattern is

66

composed by a domain model, a task model, an AUI model and a set of descriptive

attributes. This subsection starts by the descriptive attributes, then we will describe the

task model an ultimately the AUI model. Note that in section 4.3 was already a definition

of a Create Document Pattern.

Name Create Document
Alias Build Document
Author André Barbosa
Version 1.0
Description This pattern describes the creation of a document. It goes from the struc-

ture of the document itself in the domain model to the specification of the
task. The resulting interface contains a container for the every different
section of the document and a separate container for the document lines
that should only appear after the user call the “New Line” function.

Strengths The usage of this pattern results in a familiar interface that most users
will recognize and understand without any external help.

Weaknesses The usage of this pattern may cause a poor user experience in smaller
screens.

Consequences There aren’t any consequences by the use of this pattern besides user’s
satisfaction.

Table 6.2: Descriptive fields for the Create Document pattern.

Table 6.3 shows the descriptive attributes for the Create Document Pattern. As these

attributes are meant to be read by humans they are written in plain English.

As with the previous pattern, the Create Document Pattern’s task model should be cre-

ated using the tool provided by the UsiXML community in order to later use the task

file. The task model developed for this pattern is shown in Figure 6.4.

Figure 6.4: Create document pattern’s task model.

This task model has a main task called CreateDocument. This task has four child tasks:

67

CreateDocumentHeader, CreateDocumentLineList, CreateDocumentFooter and Submit-

Document.

The CreateDocumentHeader task is a user task that provides the user the ability to

create the header of a document. CreateDocumentLines is an interactive task that allows

the user to create document lines for a document. This task is has two child tasks,

ClickNewDocumentLine and CreateNewDocumentLine, the first one enables the second

allowing the user to create a new document line. CreateDocumentFooter is a user task that

allows the user to create the contents of the document footer. Finally the SubmitDocument

task is an interactive task that allows the user to submit the new document.

On the bottom of the CreateDocument task there is the relationships between the child

tasks. Note that there is a symbol that has not been used before, “| = |”, which means

that the right and left task can be executed in any order.

To complete the pattern we now present the specified AUI model. As with the previous

pattern, this model will serve as template to generate the AUI of the pattern instantia-

tions. And as for the other models, we used the tool provided by the UsiXML community

in order to benefit from the .aui file that will later be used by the tool developed in this

work. The AUI model developed for this pattern is shown in Figure 6.5.

Figure 6.5: Create document pattern’s task model.

The AUI model is composed by two main CompoundIUs. The first one refers to the

document itself and second refers to an individual document line. The CompoundIU

68

labelled Document is composed by two child CompoundIUs and two SelectionIUs. The

first CompoudIU refers to the DocumentHeader and should contain inputs to create

the DocumentHeader attributes, the second CompoudIU refers to the DocumentFooter

and should contain inputs to create the DocumentFooter attributes. The SelectionIU

labelled NewDocumentLine should trigger the CompoundIU labelled DocumentLine that

will allow the user to create a new DocumentLine. Finally the SelectionIU labelled

SubmitDocument should submit the changes the user made to the document.

6.1.3 Edit document pattern

In this subsection we will describe the Edit Document Pattern. This is a pattern for

editing a document. As the previous pattern the Edit Document Pattern is composed by

a domain model, a task model, an AUI model and a set of descriptive attributes. This

subsection starts by the descriptive attributes, then we will describe the task model an

ultimately the AUI model.

Name Edit Document
Alias Update Document
Author André Barbosa
Version 1.0
Description This pattern describes the edition of a document. It allows a user to edit

an existing document.
Strengths The usage of this pattern results in a familiar interface that most users

will recognize and understand without any external help.
Weaknesses The usage of this pattern may cause a poor user experience in smaller

screens.
Consequences There aren’t any consequences by the use of this pattern besides user’s

satisfaction.

Table 6.3: Edit document pattern.

Table 6.3 shows the descriptive attributes for the Edit Document Pattern. As these

attributes are meant to be read by humans they are written in plain English.

As with the previous pattern, the Edit Document Pattern’s task model should be created

using the tool provided by the UsiXML community in order to later use the task file.

The task model developed for this pattern is shown in Figure 6.6.

This task model has a main task called EditDocument. This task has four child tasks: Ed-

itDocumentHeader, EditDocumentLineList, EditDocumentFooter and SubmitDocument.

69

Figure 6.6: Edit document pattern’s task model.

The EditDocumentHeader task is a user task that provides the user functionality to edit

the header of a document. EditDocumentLines is an interactive task that allows the user

to edit the lines of a document (this task is more complex and will be explained in detail

after this paragraph). EditDocumentFooter is a user task that allows the user to edit the

contents of the document footer. Finally the SubmitDocument task is an interactive task

that allows the user to submit the changes made to the document.

The EditDocumentLines task is composed by five child tasks. These tasks enable the user

to select the option of editing and deleting a selected document line or create a new one.

The defined relationships indicate the order on which these tasks should be executed.

To complete the pattern we now present the specified AUI model. As with the previous

pattern, this model will serve as template to generate the AUI of the pattern instantia-

tions. And as for the other models, we used the tool provided by the UsiXML community

in order to benefit from the .aui file that will later be used by the tool developed in this

work. The AUI model developed for this pattern is shown in Figure 6.7.

The AUI model is composed by two main CompoundIUs. The first one refers to the doc-

ument itself and the second one refers to an individual document line. The CompoundIU

labelled Document is composed by two child CompoundIUs and four SelectionIUs. The

first CompoudIU refers to the DocumentHeader and should contain inputs to edit the

DocumentHeader attributes, the second CompoudIU refers to the DocumentFooter and

should contain inputs to edit the DocumentFooter attributes. The SelectionIU labelled

NewDocumentLine should trigger the CompoundIU labelled DocumentLine that will al-

low the user to create a new DocumentLine. The SelectionIU labelled EditDocumentLine

should trigger the CompoundIU labelled DocumentLine with the selected DocumentLine

that will allow the user to edit a that DocumentLine. The SelectionIU labelled Delete-

DocumentLine should delete the selected DocumentLine. Finally the SelectionIU labelled

SubmitDocument should submit the changes the user made to the document.

70

Figure 6.7: Edit document pattern’s task model.

6.2 Case study models

In this section we will introduce the models specific to our case study, the BHW appli-

cation. We will build a domain model and three task models that will instantiate the

patterns from the previous section and use those patterns to generate the AUI models for

the BHW application. Figure 6.8 shows the UML specification of medical prescription.

Figure 6.8: UML specification of a medical prescription domain model.

A prescription, like any document is composed by a header represented by the class

PrescriptionHeader, a footer represented by the class PrescriptionFooter and a set of

lines represented by the class PrescriptionLine.

A PrescriptionHeader contains a string attribute for the PatientName. The Prescription-

Footer contains a string attribute for the DoctorSignature. Finally, each PrescriptionLine

is composed by string attribute for the MedicineDescription, an integer attribute for the

Qunatity and an integer attribute for the Frequency.

71

6.2.1 List Prescriptions

To implement the List Prescriptions feature we need to start by developing a task model.

As we did for the patterns, we have to use the tool provided by the UsiXML community

in order to get the task file. Figure 6.9 shows the task model to list a set of medical

prescriptions.

Figure 6.9: List prescriptions task model.

This task model is very similar to the one from List Documents Pattern, as expected.

There is a main task called PrescriptionList, that refers to DocumentList in the pattern.

This task has five child tasks: ShowPrescriptionList, SelectPrescription, EditPrescription,

DeletePrescription and NewPrescription. There is an obvious connection between these

tasks and the ones from the pattern’s task model. Because this feature only displays a

set of items it is fairly simple and doesn’t add more complexity from the pattern. Usually

the complexity comes when the tasks interacts with more details from the domain model

as in the features that we will present below.

The first step to generate the AUI model from the pattern is to link the List Prescriptions

task model to the task model from the List Documents Pattern. Currently the prototype

application doesn’t support any “smart” way to do this, thus, it should be done directly

editing the task file with a text editor. For each task that has a correspondent task

in the pattern we should add the pattern_id property with the value of the id of the

correspondent task in the pattern’s task model. The final result of this process should

look like the code block 6.1.

1 <?xml version=”1 .0 ” encoding=”UTF−8”?>
2 <org . usixml . task : TaskModel xmi : version=”2 .0 ” xmlns : xmi=”http ://www. omg . org /XMI” xmlns :←↩

xsi=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ” xmlns : org . usixml . task=”http :// org .←↩
usixml . task /2 .0 ”>

3 <tasks id=”1” name=”Pr e s c r i p t i o nL i s t ” pattern_id=”1”>

4 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ”>

5 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”3”/>

72

6 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”SYSTEM” target=”2”/>

7 </expressions>

8 <expressions xsi : type=”org . usixml . task : TemporalRelat ionship ” type=”CHOICE”>

9 <succ xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”5”/>

10 <pred xsi : type=”org . usixml . task : TaskDecoration ” nature=”INTERACTIVE” target=”4”/>

11 </expressions>

12 <part id=”2” name=”ShowPresc r ip t i onL i s t ” pattern_id=”2”/>

13 <part id=”3” name=”Se l e c tP r e s c r i p t i o n ” pattern_id=”3” />

14 <part id=”4” name=”Ed i tP r e s c r i p t i on ” pattern_id=”4” />

15 <part id=”5” name=”De l e t eP r e s c r i p t i on ” pattern_id=”5” />

16 <part id=”6” name=”NewPrescr ipt ion ” pattern_id=”6” />

17 </tasks>

18 </org . usixml . task : TaskModel>

Code block 6.1: Task model list prescriptions

As an example, one can see that the PrescriptionList task has the property pattern_id

with the value of“1”which is the id of the DocumentList task in the pattern’s task model.

After setting the task model we can now use the prototype application from the last

chapter to generate the AUI model to the list prescriptions feature as shown in figure

6.10.

Figure 6.10: Using UsiXMLPatterns to genera the AUI model to list prescriptions.

The application should receive as input the paths for the models that make the pattern

(domain, task and AUI models), the paths for the input models (domain and task models)

and the path to where the resulting AUI model should be saved.

After clicking the “Generate” button, the application will apply the transformation and

save the resulting model on the provided path. The end result of the AUI model is shown

in Figure 6.11.

73

Figure 6.11: AUI model to list prescriptions.

The resulting AUI model follows the exact same structure from the pattern’s AUI model.

The AUI model is composed by one main CompoundIU, a child CompoundIU and three

SelectionIUs. The child CompoundIU labelled “List” will be the place where the concrete

prescription list will appear and should provide the functionality for a user to select one

item. The first SelectionIU labelled “EditPrescription” should launch the Edit Prescrip-

tion feature with the selected prescription. The second SelectionIU labelled “DeletePre-

scription” deletes the selected prescription. Finally, the third SelectionIU labelled “New-

Prescription” should launch the New Prescription feature.

6.2.2 Create Prescription

To implement the Create Prescription feature we need to start by developing a task model.

As we did previously, we are going to use the tool provided by the UsiXML community

in order to get the task file. Figures 6.12, 6.13 and 6.14 shows the task model to create

a medical prescription. Note that the model had to be split in three images to fit on the

pages.

This task model has a main task called CreatePrescription. This task has four child

tasks: CreatePrescriptionHeader, CreatePrescriptionLines, CreatePrescriptionFooter and

SubmitPrescription.

The CreatePrescriptionHeader task is a user task that provides the user functionality

to create the header of a prescription. CreatePrescriptionLines is an interactive task

that allows the user to edit the lines of a document. CreatePrescriptionFooter is a user

74

task that allows the user to create the contents of the prescription footer. Finally the

SubmitPrescription task is an interactive task that allows the user to submit the new

prescription.

Figure 6.12: Task model to create a medical prescription - part 1.

The CreatePrescriptionHeader task has two child tasks. The ShowPrescriptionHeader-

Form is a system task that means that the system should render the form before the

user interact with it, this temporal relationship is represented using the symbol “>>” at

the lower end of the task graphical representation. The second child task is FillPatient-

Name, this is a user task and means that the user should fill the name of the patient in a

form. These child tasks do not have correspondents on the pattern’s task model because

they are related with attributes present on the prescription’s domain model but not on

the document’s domain model. When the application applies the transformation, it will

generate de AUI elements accordingly to the algorithm specified in section 4.5.

The CreatePrescriptionLines task is composed by two child tasks. The ClickNewPre-

scriptionLine is an interactive task that means that the user can ask the system for a

form that will enable him to create a prescription line which is the second child task,

CreatePrescriptionLine. The CreatePrescriptionLine task starts with a system task,

ShowPrescriptionLineForm, then, the user should fill the form as specified by the tasks

FillMedicineDescription, FillQuantity and FillFrequency. After filling the form the user

75

Figure 6.13: Task model to create a medical prescription - part 2.

is enabled to submit the prescription line by the task SubmitPrescriptionLine. As we

saw earlier in the CreatePrescriptionHeader task, there are tasks here that also don’t

correspond to any task on the pattern’s task model. The application will handle them

the same way according to transformation’s algorithm.

Figure 6.14: Task model to create a medical prescription - part 3.

The CreatePrescriptionFooter task is very similar in structure with the CreatePrescrip-

tioHeader task, we have a ShowPrescriptionFooterForm system task that enables a Fill-

76

DoctorSignature user task.

Finally, the SubmitPrescription task is enabled after the user completes the earlier ones

and let’s the user tell the system that he can save this prescription.

As we did for the List Prescriptions feature, now we have to link this task model with

the task model from the pattern. Again, we have to open the .task file with a text

editor and add the pattern_id property to the tasks that have a direct correspond on

the pattern’s task model.

After completing the linking process we are able to load the models into the application

and perform the transformation to generate the AUI model for the Create Prescription

feature. Figure 6.15 shows the resulting AUI model.

Figure 6.15: AUI model to create a prescription.

This AUI model is very interesting because we can see here some details that we haven’t

seen with the List Prescriptions feature. Comparing it with the AUI model from the

Create Document Pattern we can notice that they follow the same structure but this one

has elements that were not present in the pattern. The PrescriptionHeader CompoundIU

corresponds to the DocumentHeader in the pattern, yet, in the current model, we have

a DataIU element labelled PatientName. A DataIU element is controller that expects

77

user input, it should be mapped to some kind input field. This happens because in the

task model, there is a task named FillPatientName under the task CreatePrescription-

Header and the application inferred that there should be an DataIU with this name

in the PrescriptionHeader CoumpoundIU. The same behaviour can be observed in the

PrescriptionFooter and PrescriptionLine CompoundIUs.

6.2.3 Edit Prescription

To implement the Edit Prescription feature we need to start by developing a task model,

following the same process as the above features. Figures 6.16, 6.17, 6.18 and 6.19, show

the task model to edit a medical prescription. Note that the model had to be split in four

figures to fit on the pages.

This task model has a main task called EditPrescription. This task has four child tasks:

EditPrescriptionHeader, EditPrescriptionLines, EditPrescriptionFooter and SubmitPre-

scription.

The EditPrescriptionHeader task is a user task that provides the functionality for a

user to edit the header of a prescription. EditPrescriptionLines is an interactive task

that allows the user to edit the lines of a document. EditPrescriptionFooter is a user

task that allows the user to edit the attributes of the prescription footer. Finally the

SubmitPrescription task is an interactive task that allows the user to submit the changes

made to the prescription.

The EditPrescriptionHeader task has two child tasks. The ShowPrescriptionHeaderForm

is a system task that means that the system should render the form before the user

interact with it, this temporal relationship is represented using the symbol “>>” at the

lower end of the task graphical representation. The second child task is FillPatientName,

this is a user task and means that the user should fill the name of the patient in a form.

The EditPrescriptionLines task is composed by five child tasks. The ClickNewPrescrip-

tionLine is an interactive task that means that the user can ask the system for a form

that will enable him to create a prescription line. The ClickEditPrescriptionLine is an

interactive task that means that the user can ask the system for a form that will enable

him to edit a selected prescription line. The ClickDeletePrescriptionLine is an interactive

task that means that the user can ask the system to delete a selected prescription line.

Finally CreatePrescriptionLine and EditPrescriptionLine are meant to let the user fill a

78

Figure 6.16: Task model to edit a prescription - part 1.

Figure 6.17: Task model to edit a prescription - part 2.

form for a description line. The difference is that the first is to create a new prescription

line and the second to edit an existing one.

The EditPrescriptionFooter task is very similar in structure with the EditPrescriptio-

Header task, we have a ShowPrescriptionFooterForm system task that enables a FillDoc-

torSignature user task.

79

Figure 6.18: Task model to edit a prescription - part 3.

Figure 6.19: Task model to edit a prescription - part 4.

Finally, the SubmitPrescription task is enabled after the user completes the earlier ones

and let’s the user tell the system that he can save the changes made to the current

prescription.

As we did for the List Prescriptions and Create Prescription features, now we have to

link this task model with the task model from the pattern. Again, we have to open the

.task file with a text editor and add the pattern_id property to the tasks that have a

direct correspond on the pattern’s task model.

After completing the linking process we are able to load the models into the application

80

and perform the transformation to generate the AUI model for the Edit Prescription

feature. Figure 6.20 shows the resulting AUI model.

Figure 6.20: AUI model to edit a prescription.

In this AUI model we can see the same effect that we saw earlier with the Create Pre-

scription feature. Comparing it with the AUI model from the Edit Document Pattern

we can notice that they follow the same structure but this one has elements that were

not present in the pattern. As in the previous feature, the new elements are related to

attributes that are not present in the pattern domain model but exist in the prescription

domain model.

6.3 Case Study Implementation

To complete the case study we will present a possible implementation for the BHW appli-

cation. The UI was developed based on the AUI models developed in this chapter. This

implementation was developed using the Java language and the Swing framework. Fig-

ure 6.21 shows the List Prescriptions screen and Figure 6.22 shows the New Prescription

screen.

81

Figure 6.21: Prescriptions List.

The Prescription List screen is composed by a list of prescriptions and three buttons, Edit

Prescription, Delete Prescription and New Prescription. Comparing this screen with the

AUI model to list prescriptions, one can see that the List CompoundIU was mapped to

the list aligned on the right of the screen and the three SelectionIU were mapped to

the three buttons placed at the left of the list. Clicking the Edit Prescription or the

Delete Prescription buttons without selecting a prescription from the list won’t yield

any result. The Edit Prescription button should launch a window compliant with the

Edit Prescription AUI model passing the selected prescription as argument in order to

be edited. The DeletePrescription button will delete the selected prescription from the

list. Finally the New Prescription button will launch the window shown on Figure 6.22

to allow the user to create a new prescription.

The New Prescription screen has three titled panels, Prescription Header, Prescription

Lines and Prescription Footer. By looking at the New Prescription AUI model, one can

see three CompoundIUs in the main CompoundIU labelled Prescription. We can easily

notice that these three CompoundIU were mapped into each of the three titled panels.

Inside each panel, we can also note that each controller were mapped with the DataIU

82

Figure 6.22: New Prescription.

and SelectionIU elements present on the AUI model. Pressing the New Prescription Line

button would launch a window with the form to create a new PrescriptionLine as spec-

ified in the AUI model. The Submit Prescription button corresponds to the SelectionIU

labelled SubmitPrescription and, on click, should save the new prescription and close the

New Prescription window.

83

84

Chapter 7

Conclusions and Future Work

The introductory chapter (chapter 1) of this dissertation started by stating the importance

of Human Computer Interaction (HCI) on today’s technological industry. Usability is

often one of the most important aspects of a software product. And it’s also true that

nowadays HCI can come in many forms (or platforms). The proliferation of mobile

equipments takes a huge impact on application’s development. Different sizes, different

resolutions and different input methods need different User Interface (UI)’s.

Model Driven Development of User Interfaces (MDDUI) was presented as a possible

solution to help maintain consistency of UI’s, boost their development time and even

improve their quality. Models are easier to maintain and faster to build than code. And,

if we’re dealing with ubiquitous problems, models can also be platform independent.

By using models it’s easier to promote re-usability of previous knowledge on different

projects.

The main goal of this project was to promote the reuse of previous knowledge in the

form of patterns. The approach we choose was to create patterns at a conceptual level

using USer Interface eXtensible Mark-up Language (UsiXML) models. We opted by this

approach because:

1. models at a higher level of abstraction are more platform independent and thus are

easier to reuse in different contexts;

2. in a Model Driven Development (MDD) approach, most decisions are made at a

conceptual level;

3. lower level patterns tend to take concerns about design and other presentational

85

aspects that should not be a concern of an engineering method.

The way we choose to achieve this goal was by integrating into an established engineering

method, developed by the UsiXML community, the Forward Engineering method (FEM).

By doing this we could more easily specify what should be the inputs and outputs of the

developing tool. As presented on section 3.2.2, the FEM starts with a domain and a task

models that should originate an Abstract User Interface (AUI) model. This is a hard

transformation to achieve and thus very susceptible to human errors and at same time

critical for how the final UI will perform in terms of usability. The concept we designed

acts on this stage. Section 4.2 defines a pattern as a set of these input and output models,

among other descriptive attributes. We took this approach towards patterns because:

1. allows the development of a tool capable of understanding the patterns and apply

them to developing models without human interference;

2. patterns can be easily produced using UsiXML modelling tools;

3. thanks to the set of descriptive attributes, patterns are still very accessible for

humans even if their not part of a technical team and/or are not familiar with

UsiXML.

Developers can benefit by using these patterns because they get the identification of

abstract UI structure and the spatiotemporal arrangement of elements in the AUI for

free. Meaning that using the information gathered from a pattern an automated tool can

easily arrange the AUI elements in the right way as specified by the pattern. A tool can

infer which elements are related and should stay close and in which order elements should

be presented.

The biggest fragility with this approach relies on the selection of abstract UI elements.

The fittest element for a task depends o the nature of the task. In the way UsiXML

specifies tasks, based on Concur Task Trees (CTT) [18], it’s easy for a human to un-

derstand what’s the best AUI element for a given task but it’s not well optimized for a

machine to infer this information. Thus we specified a naming convention with support

for common actions that are than mapped into AUI elements. This solution works for set

of situations but it’s not scalable. It doesn’t support every type of possible actions and

limits developers to use the English language in their models.

After designing this concept, we implemented a prototype that serves as prove of concept

for the specified features. The prototype had to be compliant with UsiXML tools released

in July, 2012. This raised a problem because this set of tools are not compliant with

86

the version 1.8 of the UsiXML’s specification. Which is the most recent version publicly

available. Although the changes weren’t too significant this prevented the UsiXML models

and elements class representations to be generated automatically from the specification.

For this reason, the prototype doesn’t support every UsiXML’s elements (although it

supports most of them).

As future work, there are several improvements that could be made on the prototype:

• in order to match elements from the pattern models with the elements from the

input models, input model’s elements need a pattern id property that indicates the

corresponding element in the pattern. A matching algorithm that took leverage

of the models hierarchy complemented with a drag and drop UI would be a more

elegant solution;

• the prototype doesn’t help a developer to find a suited pattern for the input models,

only validates if the input models are in fact an instantiation of the pattern. A

better user experience could be provided if the system were able to search for

suited patterns in a given repository. A possible implementation would be through

integration with a tool like IdealXML [13];

• the UsiXML language is still under development and constant change. Probably

further work will necessary for the tool to be compliant with the next versions of

UsiXML’s tools.

87

88

Bibliography

[1] Alexander, C., Ishikawa, S., and Silverstein, M. A Pattern Language:

Towns, Buildings, Construction. Oxford University Press, New York, 1977.

[2] Balzert, H., Hofmann, F., Kruschinski, V., and Niemann, C. The janus

application development environment - generating more than the user interface. In

Computer-Aided Design of User Interfaces I, Proceedings of the Second International

Workshop on Computer-Aided Design of User Interfaces, June 5-7, 1996, Namur,

Belgium (1996), J. Vanderdonckt, Ed., Presses Universitaires de Namur, pp. 183–208.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and

Vanderdonckt, J. A unifying reference framework for multi-target user interfaces.

INTERACTING WITH COMPUTERS 15 (2003), 289–308.

[4] da Silva, P. P., and Paton, N. W. User interface modeling in umli. IEEE

Softw. 20 (July 2003), 62–69.

[5] Erickson, T. The interaction design patterns page. http://www.visi.com/

~snowfall/InteractionPatterns.html, Nov. 2011.

[6] Fogarty, J., and Hudson, S. E. Gadget: a toolkit for optimization-based

approaches to interface and display generation. ACM Trans. Graph. 23, 3 (Aug.

2004), 730–730.

[7] Gajos, K. Z., Weld, D. S., and Wobbrock, J. O. Automatically generating

personalized user interfaces with supple. Artif. Intell. 174, 12-13 (Aug. 2010), 910–

950.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns.

Addison-Wesley, Boston, MA, 1995.

89

http://www.visi.com/~snowfall/InteractionPatterns.html
http://www.visi.com/~snowfall/InteractionPatterns.html

[9] Johnson, P., Johnson, H., and Wilson, S. Scenario-based design. John Wiley

& Sons, Inc., New York, NY, USA, 1995, ch. Rapid prototyping of user interfaces

driven by task models, pp. 209–246.

[10] Limbourg, Q., and Vanderdonckt, J. Multipath transformational develop-

ment of user interfaces with graph transformations. In Human-Centered Software

Engineering. 2009, pp. 107–138.

[11] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and

López-Jaquero, V. Usixml: a language supporting multi-path development of

user interfaces. Springer-Verlag, pp. 11–13.

[12] Molina, P. J. A review to model-based user interface development technology. In

MBUI (2004).

[13] Montero, F., Lozano, M., and González, P. Idealxml: an experience-based

environment for user interface design and pattern manipulation. Tech. rep., 2005.

[14] Montero, F., and López-Jaquero, V. Idealxml: An interaction design tool. In

CADUI’06 (2006), pp. 245–252.

[15] Myers, B. A. User interface software tools. ACM TRANSACTIONS ON

COMPUTER-HUMAN INTERACTION 2 (1993), 64–103.

[16] Nunes, N. J., and e Cunha, J. F. Object modeling and user interface design.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001, ch. Wisdom

- Whitewater interactive system development with object models, pp. 197–243.

[17] Object Management Group, Inc. Software & Systems Process Engineering

Metamodel Specification v2.0, omg ed., Oct. 2007.

[18] Paternò, F., Mancini, C., and Meniconi, S. Concurtasktrees: A diagrammatic

notation for specifying task models. In Proceedings of the IFIP TC13 Interantional

Conference on Human-Computer Interaction (London, UK, UK, 1997), INTERACT

’97, Chapman & Hall, Ltd., pp. 362–369.

[19] Puerta, A. The mecano project: Comprehensive and integrated support for model-

based interface development. In In Computer-Aided Design of User Interfaces (1996),

Namur University Press, pp. 5–7.

[20] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language

Reference Manual. Addison-Wesley Professional, Jan. 1999.

90

[21] Selic, B. The pragmatics of model-driven development. IEEE Softw. 20 (September

2003), 19–25.

[22] Szekely, P. Retrospective and challenges for model-based interface development.

In Design, Specification and Verification of Interactive Systems ’96 (1996), Springer-

Verlag, pp. 1–27.

[23] Usixml Consortium. Usixml, user interface extensible markup language.

[24] Usixml Consortium. Usixml method specification.

[25] Vanderdonckt, J. Knowledge-based systems for automated user interface gen-

eration: the trident experience. Tech. rep., IN PROCEEDINGS OF THE CHI ’95

WORKSHOP ON KNOWLEDGE-BASED SUPPORT FOR THE USER INTER-

FACE DESIGN PROCESS, 1995.

[26] Vanderdonckt, J. Readings in intelligent user interfaces. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1998, ch. Automatic generation of a user

interface for highly interactive business-oriented applications, pp. 516–520.

[27] Vanderdonckt, J., and Simarro, F. M. Generative pattern-based design of

user interfaces. In Proceedings of the 1st International Workshop on Pattern-Driven

Engineering of Interactive Computing Systems (New York, NY, USA, 2010), PEICS

’10, ACM, pp. 12–19.

[28] Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S. Its: a

tool for rapidly developing interactive applications. ACM Trans. Inf. Syst. 8, 3 (July

1990), 204–236.

91

92

Appendix A

SPEM 2.0

Software & Systems Process Engineering Metamodel (SPEM) 2.0 is an Object Manage-

ment Group (OMG) standard dedicated to software method modelling. This section is

an overview of the main features and meta-models defined in SPEM 2.0. A complete

specification can be found in [17].

The goal of SPEM is to propose minimal elements necessary to define any software and

systems development method, without adding specific features to address particular do-

mains. As a result, this meta-model supports a large range of development methods of

different styles, levels of formalism, and life-cycle models.

SPEM is a Unified Modelling Language (UML) profile, meaning that SPEM reuses UML

whenever possible. Consequently, SPEM uses UML for various software model concepts

presentations.

The current version of SPEM is 2.0 and it was completely reformulated from the previous

one in order to separate the operational aspect of a method from the temporal aspect of a

method. As shown in figure A.1, the SPEM 2.0 meta-model uses seven main meta-model

packages:

• Method Content package describes the static aspect of a method;

• Process Structure and Process Behaviour packages describe the dynamic as-

pect of a method, Process With Methods package describes the link between

these two aspects;

• Core package provides the common classes that are used in the different packages;

• Method Plug-in package describes the configuration of a method and Managed

93

Content package describes the documentation of a method.

Figure A.1: Structure of the SPEM 2.0 meta-model.

In the following subsections we’ll go into some detail for each package in order to get a

better understanding of the SPEM 2.0 method meta-model.

Core package

The Core meta-model package contains abstract generalization classes that are specialized

in the other meta-model packages. These abstract generalization classes are used to define

common properties of their specialized classes. The main elements of the core package

are:

• The Kind class, that expresses a refined vocabulary specific to a method;

• Work Definition is an abstract generalization class that represents the work being

performed by a specific role, or the work performed throughout a life-cycle.

94

• Work Definition Parameter is an abstract generalization class that represents

parameters for Work Definitions.

• Work Definition Performer is an abstract generalization class that represents

the relationship of a work performer (role) to a Work Definition.

Method content

The method content meta-model package defines the core elements of every method (pro-

ducer, work unit and work product) independently of any process or development project.

It describes the specific development steps that are achieved by which roles with which

resources and results, without specifying the placement of these steps within a specific

development life-cycle.

Figure A.2: Structure of the SPEM 2.0 method content meta-model package.

Figure A.2 shows the Method Content meta-model package. The main classes of the

Method content meta-model are:

• The Task Definition defines the work being performed by Roles Definition in-

stances. A Task is associated with input and output Work Products.

• A Step describes a meaningful and consistent part of the overall work described for

95

a Task Definition. The collection of Steps defined for a Task Definition represents

all the work that should be done to achieve the overall development goal of the Task

Definition.

• The Work Product Definition describes the product which is used, modified,

and produced by Task Definitions.

• The Role Definition designs a general reusable definition of an organizational role.

It defines a set of related skills, competencies, and responsibilities of an individual

or a set of individuals. Roles are used by Task Definitions to define who performs

them as well as to define a set of Work Product Definitions they are responsible for.

Process Structure

The process structure meta-mode defines the structure of the method process. This

package represents a process decomposed as a set of Activity classes that are linked to

Role classes and Work Product classes. This structure is useful to express the fact that

a life-cycle is composed by set of phases, and each phase is composed by set of activities.

Figure A.3 illustrates the Process Structure meta-model package. The most important

classes of this meta-model are:

• A WorkDefinition (coming from the Core package) is performed by a Work Defi-

nition Performer, which is a role, and, through this role, by a Process Performer.

• A Breakdown Element is an abstract generalization class that defines a set of

properties available to all of its specializations.

• A Work Breakdown Element provides specific properties for Breakdown Ele-

ments that represent work.

• An Activity defines basic units of work within a process as well as a process itself.

Every activity can represent a process in SPEM 2.0. It relates to Work Product

Use instances via instances of the Process Parameter class and Role Use instances

via Process Performer instances. An activity can be used by another activity, so

that the structure of the source activity is copied into the target activity.

• The Role Use represents a performer of an Activity or a participant of the Activity.

A Role Use is only specific to the context of an Activity. It is not a general reusable

definition of an organizational role like the Role Definition of the Method Content

96

Figure A.3: Main classes and associations of SPEM 2.0 process structure package package.

package.

• A Work Product Use represents an input and/or output type for an Activity or

represents a general participant of the Activity.

• The Work Sequence represents a relationship between two Work Breakdown El-

ements in which one Work Breakdown Element depends on the start or finish of

another Work Breakdown Elements in order to begin or end.

The Process Behaviour meta-model package allows extending these process structures

with behavioural models. However, it does not introduce its own formalism for behaviour

models, but instead provides links to existing externally-defined behaviour models, en-

abling reuse of these approaches from other OMG or third party specifications.

97

Process With Methods

SPEM 2.0 separates reusable core method contents (expressed using the Method Con-

tent meta-model) from its temporal aspect (expressed using the Process Structure meta-

model).

The Process With Methods meta-model package allows the integration of the process

definition with instances of the core method content elements. This integration allows

the specification of how and which method elements will be applied in a particular state

of the process.

For example, a Task Definition can be invoked many times throughout a development pro-

cess. Each invocation is defined with an individual element of the Process With Methods

meta-model which is called Task Use. The latter manages the Task Definition invocation

by changing for example the roles involved in performing the task or an omission of spe-

cific work product input types. A Task Use represents a binding for a Task Definition in

the context of one specific Activity. Therefore, one Task Definition can be represented by

many Task Uses, each within the context of an Activity with its own set of relationships.

The SPEM 2.0 specification also contains a Managed Content and Method Plug-in

meta-models. The first one introduces concepts for managing the textual documentation

of a method while de latter defines concepts for designing and managing repositories of

method content and processes.

98

	Introduction
	Motivation
	Objective
	Dissertation Outline

	Background
	Early days
	ITS

	Optimization-based generation of interfaces
	Gadget
	Supple

	User interface patterns
	IdealXML

	Specification languages
	UMLi
	WISDOM
	UsiXML

	Discussion

	UsiXML
	UsiXML semantics
	UsiXML method
	Spem4UsiXML
	Forward engineering method

	Patterns in UsiXML
	Concept
	Pattern definition
	Example
	Requirements
	Algorithm

	UsiXML patterns tool
	Package org.usixml
	Package org.usixml.aui
	Package org.usixml.domain
	Package org.usixml.task
	Package usixmlpatterns
	Implementation details

	Case study
	Patterns
	List Documents Pattern
	Create document pattern
	Edit document pattern

	Case study models
	List Prescriptions
	Create Prescription
	Edit Prescription

	Case Study Implementation

	Conclusions and Future Work
	SPEM 2.0

