
Mário André Barbosa Eiras

Formalizing Alloy with a shallow embedding
to Isabelle/HOL

M
ár

io
 A

nd
ré

 B
ar

bo
sa

 E
ira

s

Outubro de 2011UM
in

ho
 |

 2
01

1
Fo

rm
al

iz
in

g
Al

lo
y

w
ith

 a
 s

ha
llo

w
 e

m
be

dd
in

g
to

 Is
ab

el
le

/H
OL

Universidade do Minho
Escola de Engenharia

Outubro de 2011

Tese de Mestrado
Engenharia Informática

Trabalho efectuado sob a orientação do
Professor Doutor Manuel Alcino Cunha

Mário André Barbosa Eiras

Formalizing Alloy with a shallow embedding
to Isabelle/HOL

Universidade do Minho
Escola de Engenharia

Abstract

Formal methods are techniques developed with a mathematical basis in

order to ensure a high level of quality on a software product. In this group of

techniques there are some which favor the simplicity of use over the reliability

of the results in order to reduce the resources that such approaches require.

These so called ”lightweight” formal methods emphasize partial specifications

and rely on automatic analysis.

Alloy is a declarative specification language designed to be ”lightweight”.

It was designed along with a model checking tool named Alloy Analyzer which

can automatically analyze specifications and search for counter examples in

a limited small scope. However, sometimes model checking is not enough

and unbounded verification is needed.

In this work we defined a strategy to embed the logic of Alloy into the logic

of the theorem prover Isabelle/HOL. We implemented a tool to automatically

perform the shallow embedding, allowing the unbounded verification of Alloy

specifications through the use of a theorem prover.

iii

iv

Resumo

Métodos formais são técnicas desenvolvidas com uma base matemática cujo

objectivo é garantir um elevado ńıvel de qualidade num produto de software.

Entre este conjunto de técnicas existem algumas que privilegiam a simplici-

dade de uso sobre a fiabilidade dos resultados, a fim de reduzir os recursos que

estas abordagens exigem. Estes métodos formais conhecidos como ”leves”,

enfatizam a especificação parcial e análise automática.

Alloy é uma linguagem de especificação declarativa criada para ser ”leve”.

Ela foi criada juntamente com uma ferramenta de model checking designada

por Alloy Analyzer que pode analisar automaticamente as especificações e

procura contra exemplos num pequeno universo. Contudo, por vezes uma

abordagem como model checking não é suficiente e a verificação total é

necessária.

Neste trabalho definimos uma estratégia para incorporar a lógica do Alloy

na lógica do theorem prover Isabelle/HOL e implementamos uma ferramenta

para executar automaticamente essa tradução, permitindo a verificação de

especificações em Alloy através do uso de um theorem prover.

v

vi

Contents

1 Introduction 9

2 Alloy 12

2.1 Relations . 13

2.2 Constraints . 15

2.3 Alloy Analyzer . 17

2.4 Grammar and Semantics . 19

3 Isabelle/HOL 24

3.1 Types and terms . 25

3.2 Proofs . 27

3.3 Locales . 30

4 Shallow vs Deep embedding 32

4.1 Shallow embedding . 33

4.2 Deep embedding . 35

4.3 Conclusions . 38

5 Embedding Alloy into Isabelle/HOL 40

5.1 Relations . 40

5.2 Formulas . 45

5.3 Declarations . 46

5.4 Implementation . 49

vii

6 Verifying Alloy specifications using Isabelle/HOL 51

6.1 Alloy auxiliary theory . 51

6.2 Arity . 53

6.3 Examples of proofs . 54

7 Related work 58

7.1 Prioni . 58

7.2 Dynamite . 60

7.3 Categorical calculus of relations 62

7.4 SMT solving . 63

8 Conclusion 65

A Proof of a property in a deep embedding 67

B Address Book 69

B.1 Alloy specification . 69

B.2 Embedding and proofs . 70

C Mark and sweep garbage collection 75

C.1 Alloy specification . 75

C.2 Embedding and proofs . 77

viii

Chapter 1

Introduction

Nowadays, formal methods are widely used to specify software systems and

verify them. Both these components are deeply connected since the verifi-

cation step requires a specification. In the early stages of development of a

software system, the developer knows the structure and the components that

are supposed to be implemented and how these components should interact.

The implementation of a software system comes later and reflects this ab-

stract definition the developer had in mind at the start. Often, developers

find out that the ideas they had about a software system where wrong, either

because of some incoherence or in some extreme cases because of contradic-

tory ideas. The worse is that in most cases these problems are found after

its implementation.

The full formalization and verification of complex models can be a expen-

sive task, both in time and money. The ”lightweight formal methods” are a

more viable way of verifying software. The idea is to specify and automat-

ically analyze only those important and critical components of the software

that justify the costs. By focusing the verification on a partial specifica-

tion the time consumed in the specification process is reduced and by using

automatic analysis the resources needed for verification are also significantly

lower comparing with a theorem prover approach. Obviously, the verification

9

of a partial specification does not provide the same confidence level as the

verification of a complete specification but on most cases it is enough.

One of those so called ”lightweight” formal methods is Alloy [8]. Alloy

is a formal language targeted at bounded model checking. It is based on Z

notation [2], which in turn is based on first order logic and Zermelo-Fraenkel

set theory.

The syntax is simple and resembles a typical object oriented language.

It allows the specification of entities and the relationships between them; in

fact, relations are the most important concept behind Alloy since they serve

as the base for the specification of any model. It also allows the specifica-

tion of invariants and propositions about entities and relations. This is done

with relational algebra and first order logic, which grants Alloy great ex-

pressiveness but makes the verification of Alloy propositions an undecidable

problem.

Generally there are various ways to verify that a model follows a given

specification. The preferred way of doing this is through the use of automatic

tools. Unfortunately this is not always possible because some specification

languages, probably most, have an undecidable underlying logic. Alloy is in

that category but, still, models can be automatically verified by the Alloy

Analyzer. The truth is that this tool relies on bounded model checking

algorithms to verify properties and does not prove the veracity of the specified

assertions. Given a maximum size for the model, the Alloy Analyzer verifies

the specified properties for all possible instances of the finite model. In that

process, the model is translated to a propositional logic formula which can

be verified by any SAT solver.

Although the Alloy language allows the definition of unbounded models,

the Alloy Analyzer is limited to a finite scope specified by the user, and

because of the exponential complexity of SAT solving algorithms this scope

is very limited. So, even if the Alloy Analyzer proves some property P in

a model of size n, it is always possible that P does not hold on a model of

10

size n + 1 or bigger. One possible solution is the use of theorem provers

in the verification of Alloy models. Unlike model checking, theorem provers

require user guidance to prove most properties, but they can be used to verify

properties in arbitrarily big models.

Our goal is to develop a framework to perform unbounded verification of

Alloy models using an off-the-shelf theorem prover. Theorem provers differ on

the underlying logical system, being the most popular Higher-Order Logic

(Isabelle [11] and PVS [12]) and the Calculus of Inductive Constructions

(Coq [14]). Since Alloy logic (and syntax) is slightly different from those, an

embedding of the model to the theorem prover logic must be performed.

Regarding embeddings, there are two possible approaches namely shallow

embedding and deep embedding [16, 6]. In a shallow embedding the model

is written in the theorem prover logic. For instance, a fact of an Alloy

specification would translate to an axiom of the theorem prover. In a deep

embedding the syntax of Alloy is translated to a data type which is then used

to represent any specific model. A deep embedding allows reasoning over the

structure of the model and language, but it is more difficult to understand

and, therefore, verify the specification, whereas a shallow embedding is more

readable and makes it easier to reason over the specification.

In this work we will describe the development and usage of our tool that

automatically performs a shallow embedding of Alloy specifications into Is-

abelle/HOL. We will start with an overview of Alloy language in the chapter

2 where we present the semantics of a subset of the language. On chapter

3 we present an overview of Isabelle/HOL and on chapter 4 we analyze the

two possible approaches regarding the embedding of Alloys’s logic. On chap-

ter 5 we explain how we perform the embedding of the logic of Alloy into

Isabelle/HOL and on chapter 6 we explain how to verify an embedded spec-

ification in Isabelle/HOL. Chapter 7 presents an overview of some related

work. On chapter 8 we present some conclusions about this work, exposing

the main flaws and advantages of our approach.

11

Chapter 2

Alloy

Alloy [8] has been developed at MIT, appearing as a fairly limited prototype

language for the first time in 1997. It has since passed trough a lot of changes,

like syntactic tweaks and other major additions, that have increased the

expressiveness of the language including the support of quantifiers and high

arity relations. The Alloy language was developed together with the Alloy

Analyzer tool to support the so called ”lightweight formal methods”. The

language was designed to allow automatic verification and the Alloy Analyzer

was created to fulfill that task.

Alloy is a simple declarative language capable of capturing the behavior

and constraints of a software system. Alloy’s underlying logic was heavily

influenced by Z notation. Like Z, Alloy supports higher order quantifications

although first order quantifications are the most used due to the limited

support of higher order quantifications in the Alloy Analyzer. In Z, the most

common datatypes are sets and relations which are also present in Alloy.

In fact, all datatypes present in Alloy models are sets and relations but, in

Alloy, a set is just a particular case of a relation and all relations are finite.

Because of this, the concept of relation is an important one when dealing

with Alloy. Despite of its influences in regards to the underlying logic, its

syntax is actually very different from Z notation and is more reminiscent of

12

other languages such as the Object Constraint Language [13]. Being a simple

language, Alloy is not expressive enough to capture every detail in a software

system, but it is enough to capture the structural constraints and behavior

of most systems and it has the advantage of allowing automatic analysis. In

a few words, Alloy could be described as a language with a good balance

between expressiveness and simplicity.

This chapter presents an overview of the Alloy language. Note that only

the subset of the language important for this work is explained in this chapter.

As an example we will construct a model of an address book similar to the

one found in [8].

2.1 Relations

All data and structures in Alloy are represented as relations of arbitrary

arity on a finite universe. There are three primitive relations, automatically

defined in every Alloy specification:

• univ is the set of all atoms;

• none is the empty relation, usually denoted in common math notation

as ∅;

• iden is the identity relation which can be described as the set of all

tuples relating one atom to itself.

The most basic relations that can be created in Alloy are the unary re-

lations which are sets of atoms. These relations are introduced with an

signature as follows:

sig Name, Addr, Book { }

Here we have defined 3 relations. The relation Name which represents the

set of names, the relation Addr which represents the set of addresses and the

13

relation Book representing the set of address books. These top-level relations

are disjoint. In this specification, the relation univ is automatically defined

as the union of the relations Name, Addr and Book.

A typical address book application may have the support for groups and

the possibility to represent an address as an alias. Both, aliases and groups,

are represented as names in an address book. Also, names and addresses

can be the target of aliases and groups. To represent this we introduce the

classification hierarchy of Alloy which is similar to the class hierarchy found

in object oriented programing languages.

abstract sig Target {}

sig Addr extends Target {}

abstract sig Name extends Target {}

sig Alias, Group extends Name {}

sig Book {}

Now the relations Name and Addr are subsets of the new relation Target,

and since this relation is declared as abstract it is in fact the union of the

relations Name and Addr. The same can be said about the relation Name

which is the union of the relations Alias and Group. The relations Target

and Book, although not being explicitly defined as an extension of another

relation, can be understood as an extension of univ, which in turn can be

perceived as an abstract relation equal to the union of Book and Target.

Now that we have these sets of atoms we can specify the structure of

the address book by declaring relations of arity higher than 1. Usually an

address book has a set of names and for these names there should be some

target.

sig Book {

names: set Name,

addr: names->some Target

}

14

In the context of the signature Book, the relation names is just a set of

atoms from Name and the relation addr is a relation from names to Target.

The words set and some indicate the multiplicity of the relations. Only two

of these words are being used in this example, but there are four in total:

• set indicates that the multiplicity of the respective set in the rela-

tion can be anything, in fact we could think of it as the absence of

multiplicity;

• lone indicates that there is no more than one atom from the respective

set in the relation;

• one means there is exactly one atom related;

• some indicates that there is one or more elements related.

The relation names may look like a unary relation and addr may look like

a binary relation, but they are respectively a binary and a ternary relation.

In the case of names it relates each atom from Book with a set of atoms

from Name, as for addr it relates each atom from Book with a binary relation

between atoms from names and atoms from Target, where the multiplicity

some indicates that for each atom from names there is at least one related

atom in Target. Note that although names is a binary relation, in the context

of the Book signature, it is interpreted as an unary relation.

2.2 Constraints

Now that we have specified the structure of our address book we need to

add some constraints to specify its behavior, but for that purpose we need

to have some knowledge about the relational operations and logic connectors

of Alloy. The simpler logic expression is the relation inclusion, represented

as in. Operators such as logic conjunction, represented as or, and logic

15

disjunction, represented as and, among others are part of Alloy and, since it

is a first order logic, universal and existential quantifiers are also supported.

Regarding relational operations, there are, among many other:

• + denoting the union of two relations with the same arity, yielding the

set of all tuples from both relations.

• ^ denoting the transitive closure. Looking at a binary relation as a set

of edges of a graph, the result of its transitive closure is the set of pairs

that relate a vertice with all other vertices reachable from itself.

• . denoting the composition of relations. It has a similar meaning to

the function composition. For instance, the composition of the relation

{〈a, b〉, 〈b, c〉} with {〈b, b, b〉, 〈b, c, d〉} is {〈a, b, b〉, 〈a, c, d〉}.

Now we are ready to define constraints in our model.

sig Book {

names: set Name,

addr: names->some (names + Addr)

}{

no n: Name | n in n.^addr

all a: Alias | lone a.addr

}

The first formula makes use of the transitive closure to specify that for

any book there is no name related to itself neither directly nor indirectly, in

other words, it means it is not possible to reach a name n from itself. The

second constraint specifies that for every address book, any alias is related

with a maximum of one address. We have also changed the declaration of the

addr relation, so that a name of an address book is only related to addresses

or names contained in the book.

The expected behavior of a software system is specified using assertions.

For example, one obvious action that is performed on an address book is

16

search. A search action takes a book and a name and looks up the book for

addresses related to that name. Let’s begin by defining this function.

fun lookup [b: Book, n: Name] : set Addr { n.^(b.addr) & Addr }

The expression n.^(b.addr) is the set of targets related to n. Since we

are only interested in addresses, the result is intersected with the set Addr in

order to filter the relevant targets.

Finally, to specify how a search should behave, we make an assertion. If

a name is present in an address book it should be related to some address.

Using the previous declared function lookup we could specify this expected

behavior:

assert lookupYields {

all b: Book, n: b.names | some lookup [b,n]

}

2.3 Alloy Analyzer

Alloy Analyzer was the first tool designed to verify Alloy specifications and

was created by the same people that created the Alloy language. Alloy

was designed to be automatically checked for correctness so, to support the

language, this tool was developed.

Alloy Analyzer checks the assertions of a given Alloy specification and

tries to find a counter example in a bounded universe. If it finds a counter

example it means that it is not valid, and it presents the found counter

example as a graph where vertices represent atoms and the edges represent

tuples of arities 2 and higher.

To exemplify, we define the operation add in address book specification.

This operation adds a Target to a Book. In Alloy this can be done with

a predicate stating that Book b’ is the result of adding the Target t as a

possible target for the Name n in the Book b.

17

pred add [b, b’: Book, n: Name, t: Target] {

b’.addr = b.addr + n->t

}

A behavior that some may be erroneously expecting is that if we add the

Target t as a target for the Name n the targets related to a different Name

do not change. This behavior is specified by the following assertion:

assert addLocal {

all b, b’: Book, n, n’: Name, t: Target |

add [b, b’, n, t] and n != n’

implies

lookup [b, n’] = lookup [b’, n’]

}

To check this assertion we can use the command check addLocal for

4 but 2 Book which looks for counter examples in an universe with at most

two atoms from Book and four atoms from Target. Figure 2.1 shows one of

the counter examples found by Alloy Analyzer.

Figure 2.1: Counter example to the addLocal assertion.

18

In this figure, vertices represent books, groups and addresses. If a tuple

(b, n) is in the relation names then it is represented as an arrow labeled

names starting at the vertex b and pointing to the vertex n. Similarly, if

a tuple (b, g, t) is in the relation addr, it is also presented as an edge

but the label in this case is addr[g]. The counter example presented in the

Figure 2.1 shows that if we add Addr1 to Group1 it will be reachable from

Group0 since this group is a target of Group1.

2.4 Grammar and Semantics

The goal of the address book example was to show some syntax and the

purpose of an Alloy specification, but to fully understand the language we

need to expand this knowledge further with a formal approach.

A specification in Alloy starts with an header indicating a name for the

specification which may be followed by imports and then the paragraphs

which are the definitions. The importance and the main objective of imports

is to allow the usage of previously defined predicates and functions in other

specifications without having to define them again. This is useful but unnec-

essary since the same result can be achieved through the declaration of the

necessary elements instead of importing them. For this reason imports are

ignored in this work but can be implemented in the future. Integers are also

not supported. The complete supported grammar is presented in the Figure

2.2.

Figure 2.3 presents the semantics of relational expressions. In this figure

φ denotes formulas, x denotes identifiers, A and B are denoting relational

expressions, and the semantics of a relational expression A is denoted by

E[[A]]Γ. We use Γ to denote the binding between the relation names and

relations, which are just sets of tuples.

Some operations like + and - are equivalent to the respective set opera-

tions so their semantics is easy to describe. On the other hand, the semantics

19

module ::= header paragraph*
header ::= module moduleId
paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl

sigDecl ::= [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
sigBody ::= decl,* [constraintSeq]
factDecl ::= fact [factId] constraintSeq
assertDecl ::= assert [assertId] constraintSeq
funDecl ::= fun [sigRef ::] funId [decl,*] : declExpr expr
predDecl ::= pred [sigRef ::] predId [decl,*] constraintSeq
decl ::= varId,+ : declExpr
letDecl ::= varId = expr
declExpr ::= declSetExpr | declRelExpr
declSetExpr ::= [mult] expr
declRelExpr ::= declRelExpr [mult] -> [mult] declRelExpr
declRelExpr ::= declRelExpr | expr

mult ::= lone | one | some
expr ::= [@] varId | sigRef | this | none | univ | iden | unOp expr

| expr binOp expr | expr [expr]

| let letDecl,+ | expr | constraint thenOp expr elseOp expr
| [expr ::] funRef [expr,*] | (expr)

constraintBody ::= constraintSeq | | constraint
constraintSeq ::= constraint*
constraint ::= expr [neg] compOp expr | quantifier expr | neg constraint

| constraint logicOp constraint | constraintSeq | (constraint)
| constraint thenOp constraint [elseOp constraint]
| quantifier decl,+ constraintBody | expr : declExpr
| let letDecl,+ constraintBody | [expr ::] predRef [expr,*]

thenOp ::= implies | =>
elseOp ::= else

neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^
compOp ::= in | =
funRef ::= funId
predRef ::= predId
sigRef ::= sigId | univ

Figure 2.2: Alloy’s grammar.

20

E[[x]]Γ ≡ Γ(x)

E[[A + B]]Γ ≡ E[[A]]Γ ∪ E[[B]]Γ

E[[A - B]]Γ ≡ E[[A]]Γ \ E[[B]]Γ

E[[A & B]]Γ ≡ E[[A]]Γ ∩ E[[B]]Γ

E[[A . B]]Γ ≡ {〈a1,· · · an, b1,· · · bn〉 |
∃x. 〈a1,· · · an, x〉 ∈ E[[A]]Γ ∧
〈x, b1,· · · bn〉 ∈ E[[B]]Γ}

E[[A :> B]]Γ ≡ {〈a1,· · · an〉 |
〈an〉 ∈ E[[B]]Γ ∧ 〈a1,· · · an〉 ∈ E[[A]]Γ}

E[[A <: B]]Γ ≡ {〈a1,· · · an〉 |
〈a1〉 ∈ E[[A]]Γ ∧ 〈a1,· · · an〉 ∈ E[[B]]Γ}

E[[let x = A | B]]Γ ≡ E[[B]]Γ⊕(x 7→E[[A]]Γ)

E[[φ => A else B]]Γ ≡
{
E[[A]]Γ if φ
E[[B]]Γ if ¬φ

E[[~A]]Γ ≡ {〈a, b〉 | 〈b, a〉 ∈ E[[A]]Γ}
E[[*A]]Γ ≡ E[[^A+ iden]]Γ

E[[^A]]Γ ≡ {〈a, b〉 | 〈a, b〉 ∈ E[[A]]Γ

∨ ∃x. 〈a, x〉 ∈ E[[A]]Γ ∧ 〈x, b〉 ∈ E[[^A]]Γ}

E[[univ]]Γ ≡
⋃
{Γ(s) | s is a sig}

E[[iden]]Γ ≡ {〈x, x〉 | 〈x〉 ∈ E[[univ]]Γ}
E[[none]]Γ ≡ ∅

Figure 2.3: Semantics of relations.

of other operations, such as transitive closure, are more complex. Transitive

closure and transitive reflexive closure are described using a recursive defini-

tion. If we look at a binary relation as a graph we can think of its transitive

closure as the reachability relation where a is related with b if we can reach

b from a. The relation univ is the relation that contains all atoms of the

21

specification, and for that reason it is defined as the union of all signature

relations.

On figure 2.4 we describe the semantics of logic formulas. We use φ

and ψ to denote formulas, x denotes identifiers, A and B denote relational

expressions, t denotes tuples, and F [[φ]]Γ denotes the semantics of a formula

φ. Although higher order quantifications are supported by the Alloy language

they are rarely used because Alloy Analyzer does not support them, so we

chose to support first order quantifications only. For this reason we define the

semantics of this language using first order logic. Notice that Γ⊕ (x 7→ {t})
binds the identifier x to the singleton relation {t}.

F [[A inB]]Γ ≡ E[[A]]Γ ⊆ E[[B]]Γ

F [[A=B]]Γ ≡ E[[A]]Γ = E[[B]]Γ

F [[no A]]Γ ≡¬F [[some A]]Γ

F [[lone A]]Γ ≡ ∀x. ∀y. (x ∈ E[[A]]Γ ∧ y ∈ E[[A]]Γ) =⇒ x = y

F [[one A]]Γ ≡ F [[loneA]]Γ ∧ F [[someA]]Γ

F [[some A]]Γ ≡ ∃x.x ∈ E[[A]]Γ

F [[not φ]]Γ ≡ ¬F [[φ]]Γ

F [[φ and ψ]]Γ ≡ F [[φ]]Γ ∧ F [[ψ]]Γ

F [[φ or ψ]]Γ ≡ F [[φ]]Γ ∨ F [[ψ]]Γ

F [[φ iff ψ]]Γ ≡ F [[φ]]Γ ⇐⇒ F [[ψ]]Γ

F [[no x : A | φ]]Γ ≡ ¬∃t ∈ E[[A]]Γ. F [[φ]]Γ⊕(x 7→{t})

F [[lone x : A | φ]]Γ ≡ ∀t ∈ E[[A]]Γ. ∀t′ ∈ E[[A]]Γ.

(F [[φ]]Γ⊕(x 7→{t}) ∧ F [[φ]]Γ⊕(x 7→{t′})) =⇒ t = t′

F [[one x : A | φ]]Γ ≡ F [[lone x : A | φ]]Γ ∧ F [[some x : A | φ]]Γ

F [[some x : A | φ]]Γ ≡ ∃t ∈ E[[A]]Γ. F [[φ]]Γ⊕(x 7→{t})

F [[all x : A | φ]]Γ ≡ ∀t ∈ E[[A]]Γ. F [[φ]]Γ⊕(x 7→{t})

Figure 2.4: Semantics of formulas.

22

For such a simple language, Alloy actually has a complex type system.

The most simple type rules are related to the arity of expressions. The

operations in, =, &, - and + only apply to relations with the same arity, the

composition can not be applied to two relations with arity 1, and the unary

operations ~, * and ^ only applies to binary relations. The type system

also includes rules to detect irrelevant expressions. Basically the type of an

expression is the product of the union of some signatures. The application of

some operations may be irrelevant depending on the types of the relations.

For instance, the intersection of two relations with the same arity but with

disjoint types always yields none. The type system of Alloy Analyzer presents

errors to the user when such expressions are found. This type system is

presented with more detail in [15]. In this thesis we will assume all Alloy

specifications to be type correct.

23

Chapter 3

Isabelle/HOL

Isabelle [11] is a generic theorem prover that provides a meta-logic allowing

the instantiation of other logics. Probably, the most known logic used in

Isabelle is HOL, which is an higher order logic instantiation allowing the

specification of datatypes, inductive definitions and functions in addition to

theorems. HOL is a typed logic, with a type system similar to those found

in functional programing languages such as Haskell. In fact, the syntax itself

shares some similarities with functional programing languages.

In this work’s context, Isabelle was the theorem prover chosen to em-

bed Alloy’s logic. Isabelle/HOL provides a rich environment with enough

expressiveness to embed Alloy’s underling logic and therefore it is enough to

fulfill our objectives. Besides there is no embedding of Alloy to Isabelle/HOL

which makes this something new and useful for formal methods practitioners

acquainted with Isabelle.

To better understand the embedding of Alloy’s logic, this chapter presents

an overview of Isabelle/HOL.

24

3.1 Types and terms

Isabelle/HOL is a typed logic with types ranging from the most simple like

bool, the type of booleans, to more complex types with polymorphism. The

possibilities to define a type are vast. The definition of the type bool for

instance is a simple statement that this type exists. This type is then refined

with constant definitions and axioms stating that it has exactly 2 habitants

namely True and False. Another example is the polymorphic type of sets,

defined as a type synonym of a function type.

types ’a set = "’a => bool"

Note that function types in Isabelle/HOL are represented using the binary

type constructor =>. Also note that the type "’a => bool" is surrounded

by quotation marks, which happens in Isabelle/HOL to make it possible to

distinguish between the HOL specific terms and expressions from the meta

logic. However, quotation marks can be avoided in simple expressions with

only one term.

It is also possible to define completely new inductive data structures using

a data type definition of the form:

datatype (α1 , ..., αn)t = C1 τ11 ...τ1k1
| ... | Cm τm1 ...τ1km

where t is the type constructor, α1, ..., αn are n different type variables,

C1, ..., Cm are m different data constructors and τij is a type that may depend

on the type variables. For instance, take the list data type definition as an

example:

datatype ’a list =

Nil ("[]")

| Cons ’a "’a list" (infixr "#" 65)

25

In this example the constructors are Nil, the empty list, and Cons, the

constructor of non-empty lists. Note that for both constructors an alternative

representation is being defined, [] as a synonym of Nil and # as an infix

operator synonym of Cons. The constructor Cons takes an element of type

’a as the head of the list and a list of type "’a list" as the tail. Also, a

datatype definition automatically defines some laws useful to deal with the

respective types in proofs. This includes an induction principle, which in this

particular case is encoded in the following lemma:

[|?P []; !!a list. ?P list ==> ?P (a # list)|] ==> ?P ?list

This means that if a property P is valid for the empty list [] and if, for

any a and list, being valid for list implies it is also valid for a # list then

it must be valid for every list. In this lemma !! is the universal quantifier

of the meta logic and ==> is the implication of the meta logic. The symbol ?

indicates that the variable following it is an unknown that can be arbitrarily

instantiated as needed.

Types and data structures alone do not have a great functionality or pur-

pose. What is still missing are the functions. Functions in Isabelle/HOL are

total, which means they always terminate. If the recursion is of a primitive

kind, where each call simplifies the arguments, then Isabelle can automat-

ically prove that the recursion always terminates. Those functions usually

can be defined in the form:

primrec name :: type (optional syntax) where equations

Take the following function as an example.

primrec append :: "’a list => ’a list => ’a list"

(infixr "@" 65) where

append_Nil:"[] @ ys = ys"

| append_Cons: "(x#xs) @ ys = x # xs @ ys"

26

This function appends a list to another. Since the arguments are always

simplified it is obvious that it terminates so it must be a total function, oth-

erwise ”primrec” could not be used. This also defines the rules append Nil

and append Cons corresponding to each equation allowing them to be used

in other contexts.

Other functions that do not use recursion at all can be declared simply as

an abbreviation. An example of this kind of function is the set membership.

As it was mentioned earlier, sets are defined as a synonym of a function.

An element x is said to be in the set A if and only if A(x) equals True, so

x ∈ A ≡ A(x).

definition member :: "’a => ’a set => bool" where

mem_def: "member x A = A x"

This way, the actual definition of a set is hidden to the user.

3.2 Proofs

A standard proof in Isabelle/HOL is done by applying a sequence of rules

to simplify our goal until it becomes trivial. Given a list, if we append an

empty list to it, it surely results in the same list we had in the beginning.

We can prove this lemma as follows:

lemma app_Nil2: "xs @ [] = xs"

apply (induct_tac xs)

apply (subst append_Nil)

apply (rule refl)

apply (subst append_Cons)

apply (erule ssubst)

apply (rule refl)

done

27

First we apply the inductive rule shown before which simplifies our initial

goal into other two proof goals, one for the case Nil and one for the case of

Cons.

goal (2 subgoals):

1. [] @ [] = []

2. !!a list. list @ [] = list ==> (a # list) @ [] = a # list

The first goal is made trivial and solved by the reflexivity rule after per-

forming a substitution using the rule append Nil. To simplify the second

goal we need to perform a similar substitution but in this case using the rule

append Cons.

goal (1 subgoal):

1. !!a list. list @ [] = list ==> a # list @ [] = a # list

The next steps are trivial. Performing a substitution using the premise,

we get a trivial goal solved by the reflexivity rule.

The problem with this kind of proof is that, although it is easy to make,

it is hard to understand. Isar [10] is a structured proof language that extends

the apply-style proofs, making proofs human readable. Figure 3.1 presents a

simplified grammar of Isar proofs.

Using Isar to produce the same proof presented earlier we have a proof

that follows the same strategy as before but is now more human readable.

lemma append_Nil2: "xs @ [] = xs"

proof (induct xs)

case Nil

show "[] @ [] = []"

proof (subst append_Nil)

show "[] = []"..

qed

next

28

proof ::= proof [method] statement∗ qed

| by method

| ..
statement ::= fix variables

| assume propositions

| [from fact∗] (show | have) propositions proof

| case label
propositions ::= proposition

| proposition and propositions

proposition ::= [label:] string

fact ::= label

Figure 3.1: Simplified grammar of Isar proofs.

case Cons

fix a xs

assume p: "xs @ [] = xs"

from p show "(a # xs) @ [] = a # xs"

proof (subst append_Cons)

from p show "a # xs @ [] = a # xs"

proof (rule ssubst)

show "a # xs = a # xs"..

qed

qed

qed

The rules applied in this proof are actually the same used in the apply-

style proof but the reader is able to understand the context in which the

rules are being applied and what is the result. The proof command applies

the inductive rule of list to xs. The application of a rule is optional and

the main purpose of the proof command is to change the proof mode from

29

”prove” to ”state”. Basically in the ”prove” mode, we can write apply-style

proofs whereas the ”state” mode allows us to write Isar statements.

In the ”state” mode we can use the command case which starts a proof

of one of the cases of the previously applied induction rule. The command

show changes the mode back from ”state” to ”prove”. To prove this case

we use the command proof again applying a new rule and we end the proof

of this case by trivially solving it with ... Note that each proof command

must end with qed. To introduce the second case of the proof we use the

command next and the rest is similar to the first case.

The Isar proof is actually bigger than the apply-style proof, so it is im-

portant to note that Isar is not intended to shorten the proofs. It is intended

to make the verification process easier and more readable in complex proofs.

This particular lemma is so simple that it could be verified in two steps by

applying induction and then the method auto. The method auto automati-

cally simplifies the proof and tries to apply certain rules and in some simple

cases like this it is almost always enough to solve the proof.

3.3 Locales

In Isabelle/HOL a locale is a parametric theory. The basis of a locale consists

of a series of parameters and assumptions. Introducing a parameter in a

locale is done with the keyword fix and assumptions are introduced with

the keyword assume. These elements only exist in the context of the locale.

Most commands can be used in the context of the locale by adding (in

locale-name) after the command name, this adds the declaration to the re-

spective locale and new declarations may use elements already declared in

the locale. The commands that can be used include definition, primrec,

lemma and others.

A locale can be applied to constants making the assumptions and lemmas

of the locale available in every context of Isabelle/HOL. This requires us to

30

prove that every assumption holds for the provided constants. The result

is that every declaration in the locale becomes available in HOL, for the

provided instantiation.

31

Chapter 4

Shallow vs Deep embedding

To verify an Alloy specification using Isabelle/HOL, we must perform an em-

bedding of Alloy’s logic to the logic of Isabelle/HOL. There are two possible

approaches [16, 6], namely a deep embedding and a shallow embedding.

In a shallow embedding the logic of the theorem prover is used directly

to describe the specification model, in other words, it maps the specification

language syntax to the theorem prover syntax. For instance, if a logic con-

nective P exists in the modeling language and a logic connective P’ exists in

the theorem prover language with the same semantics, then this connective

P’ is a possible result of the mapping for P on a shallow embedding.

On the other hand, following the deep embedding strategy, the specifica-

tion language would be formalized as datatypes of the theorem prover logic

and its semantics would be described in functions for those datatypes. So,

each model of the specification language would be mapped to an instance

of that datatype. This means that those datatypes and semantic functions

would be a part of the resulting embedding, and they would remain the same

for every model of a specification language.

The objective of this chapter is to explore both strategies and find out

which one is the best to our purposes. To better understand the differences

between these approaches we introduce a toy language based on Alloy and

32

perform both embeddings into Isabelle/HOL. In the context of this new logic

a relation is a set of pairs, of a base set U . The following grammar defines this

relational logic where atomic propositions are inclusion between relational

expressions:

formula = relation in relation

| not formula

| formula and formula

relation = identifier

| relation + relation

| relation - relation

| relation . relation

| ~ relation

| iden

| none

The semantic of this language can be defined for a given a binding Γ

which maps identifiers (relation names) to the corresponding relation. The

semantic of the language is similar to the one defined in Figure 2.3 and Figure

2.4, and is omitted.

4.1 Shallow embedding

In a shallow embedding, the underlying logic of the theorem prover is used

directly to describe the model. Each formula, data type or function on the

model is represented as a formula, data type or function with the same seman-

tic value. This may result in a model very similar to the original, depending

on the theorem prover syntactic sugar and similarities to the modeling lan-

33

guage. The disadvantage is that the structure of the model is lost, hence it

is impossible to reason over its structure.

To illustrate this approach let’s take the previous defined language and

perform an embedding to Isabelle/HOL. In the context of this toy language,

a relation is a set of pairs, which is already defined in the HOL standard

libraries and is denoted as (’a * ’b) set. The content of the list is irrel-

evant and may be left undefined. All operations presented are part of the

standard Isabelle/HOL libraries. The following rules show a possible shallow

embedding where the translation of a relation A is denoted by R[A] and the

translation of a formula φ is denoted by F [φ].

R[x] = x

R[A+B] =R[A] Un R[B]

R[A-B] =R[A] - R[B]

R[A.B] =R[A] O R[B]

R[~A] = converse R[A]

R[iden] = Id

R[none] = {}

F [A in B] =R[A] <= R[B]

F [not φ] = ~F [φ]

F [φ and ψ] = F [φ] & F [ψ]

Looking at the definition of this shallow embedding it is possible to note

similarities in some operations which is a great advantage since it benefits

the readability of the code. The differences between the model and the

embedding could be reduced even further by using the syntactic sugar of

Isabelle.

According to these rules, translating a lemma such as ”~~A in A” to

Isabelle/HOL leads to the lemma "(converse (converse A)) <= A” which

34

can be proved automatically:

lemma "converse (converse X) <= X"

by auto

4.2 Deep embedding

In a deep embedding, the modeling language is described trough data types.

For our toy language these could be:

datatype aBinOp = APlus | AMinus | AComp

datatype arel = AVar ident

| AConv arel

| ABinOp aBinOp arel arel

| AID

| ANone

datatype aform = AIn arel arel

| ANot aform

| AAnd aform aform

The type ident is not very important but, since all the identifiers are

mapped to an habitant of ident though an injective function, the domain

of ident should be as big as the domain of identifiers. A possible approach

would be to define ident as a synonym of nat.

These data types describe the structure of the grammar. This makes the

embedding process a straightforward task consisting of a simple mapping of

the model symbols to the data type symbols with some minor tweaks.

Since these data types alone do not have the semantic value of the original

language, for the embedding to be complete, there must be an additional

35

definition. A formula on the original model is mapped to an habitant of

this data type so the verification of assertions is only possible through the

computation of its semantic value. As defined in the shallow embedding,

the semantic value of a relation is a set of pairs and the semantic value of a

formula is a boolean. In the following definitions, b is a binding that maps

identifiers to relations, R[b, x] and F[b, x] denotes the semantic value of

x in the enviroment b, of relational expressions and formulas, respectively.

primrec semr :: "(nat => (’a * ’a) set) => arel => (’a * ’a) set"

("R[_,_]" 200) where

"R[b, AVar x] = b x" |

"R[b, AConv e] = (converse (R[b,e]))" |

"R[b, ABinOp bop l r] = (case bop of

APlus => R[b,l] Un R[b,r]

| AMinus => R[b,l] - R[b,r]

| AComp => (R[b,l]) O (R[b,r]))" |

"R[b, ANone] = {}" |

"R[b, AID] = Id"

primrec semf :: "(nat => (’a * ’a) set) => aform => bool"

("F[_,_]" 200) where

"F[b, AIn l r] = (R[b,l] <= R[b,r])" |

"F[b, ANot f] = (~ (F[b,f]))" |

"F[b, AAnd l r] = (F[b,l] & F[b,r])"

With this approach the expression ”~~A in A” is translated to HOL

as ”F[b, AIn (AConv (AConv (AVar 1))) (AVar 1)]” where b is a well

formed instanciation that maps the relation name ”1” to a relation.

Since the structure of the data types is identical to the grammar, it means

the structure of the model is preserved in the embedding which allow us to

reason by induction over the structure of a formula or a relation and allow

us to define properties about its structure. This is impossible in a shallow

embedding since it does not preserve the structure of the original model.

36

The syntax resulting from this approach might be confusing at first be-

cause of how the relation names are presented and because there is a semantic

value function which makes the verification process harder and with bigger

proofs compared with a shallow embedding.

This embedding allows us to prove generic properties about the language

which cannot be proved in a shallow embedding. For instance, we might want

to prove that the semantics of expressions is the same after a simplification

algorithm is applied. To ilustrate this example take a look at the following

simplification rules:

R.none none none.R none

R.iden R iden.R R

R + none R none + R R

R - none R none - R none

~~R R

With these rules in mind, we can implement an algorithm that simplifies

the syntactic tree.

primrec simp :: "arel => arel" where

"simp (ABinOp bop l r) = (

let l’ = simp l;

r’ = simp r in

case bop of

APlus => if l’ = ANone

then r’

else if r’ = ANone

then l’

else ABinOp bop l’ r’

| AMinus => if l’ = ANone

then ANone

else if r’ = ANone

then l’

37

else ABinOp bop l’ r’

| AComp => if l’ = ANone | r’ = ANone

then ANone

else if l’ = AID

then r’

else if r’ = AID

then l’

else ABinOp bop l’ r’)" |

"simp (AConv r) = (

let r’ = simp r in

if EX x. r’ = AConv x

then THE x. r’ = AConv x

else AConv r’)" |

"simp (AVar x) = (AVar x)" |

"simp ANone = ANone" |

"simp AID = AID"

Now we are able to express and verify that this simplification algorithm

keeps the semantics of the original expressions by writing and proving the

following lemma:

lemma "R[b, r] = R[b, simp r]"

The proof of this lemma is presented in the appendix A. Since the shallow

embedding does not preserve the structure of the language it does not allow

the verification of a property like this.

4.3 Conclusions

Shallow and deep embeddings are different approaches for the formalization

of specification languages, but both have their exclusive advantages. Since

the deep embedding of a language preserves its structure, it is possible to

prove properties which can not be verified in a shallow embedding. On other

38

hand, the result of a shallow embedding is simpler and easier to understand

and in most cases, proofs are simpler than they would be on a deep embed-

ding. The conclusion is that both approaches are good for different targets.

In this work we are not interested in the properties of the language and we

do not intend to verify properties about it. Our intentions are to verify Alloy

specifications and for that reason a shallow embedding is the appropriate

choice.

39

Chapter 5

Embedding Alloy into

Isabelle/HOL

The embedding of an Alloy specification into Isabelle/HOL requires the

translation of its syntactic constructs. Our goal is to define a semantic pre-

serving embedding and implement a tool to perform it automatically. This

chapter describes this process in detail.

5.1 Relations

This sections describes the theory Alloy.thy which includes the definitions

of some types and relational operations. Relations of arbitrary arity are not

explicitly defined in the standard Isabelle/HOL libraries so the first task is

to define them. Since relations are sets of tuples and there is already a type

set in Isabelle/HOL, part of the task is solved. However defining tuples

of arbitrary arity is not so simple. Actually, types for tuples of any arity

may be easily written in Isabelle/HOL using pairs, for instance triplets can

be written as (’a * (’b * ’c)) but, these tuples have a problem. Since

different arities are represented as different types, some relational operators

require one definition for each possible arity. In the particular case of the

40

relational composition it would require one definition for each possible pair

of arities and therefor the axiomatization of such a theory would be infinite.

It is possible to use this typed approach (actually it was done before [1])

by defining only the operations needed in each specification. For instance, a

model with binary and unary compositions only needs these two instances of

composition defined. An automated tool could analyze the specifications and

generate the definitions as needed. Since we assume that all Alloy models

are type correct, there is a better option, which is to represent tuples using

lists and allow relations to be arbitrary sets of such tuples. Type correctness

will ensure that all tuples in a set will always have the same arity. With this

untyped approach we only need one definition for each relational operation.

First we declare a type atom1. The habitants of this type are irrelevant

and since we intend to analyze specifications for arbitrarily big domains, by

defining this type we would be defining a bound for our verification. For

those reasons it should be declared without any definitions:

typedecl atom

Next we define two type synonyms acording to what was explained before:

type_synonym tuple = "atom list"

type_synonym relation = "tuple set"

Variables are translated using a binding Γ that maps names to relations.

In Alloy, quantified variables are singletons, but in HOL the quantified vari-

ables are tuples thus, every quantified variable v in the context of an ex-

pression is replaced with {v}. For every other relation name, the binding Γ

returns a relation with the same name which is previously defined in HOL.

In the figure 5.1 we present the translation of relational expressions.

Constants are translated to a relation with the the same name. In the

particular case of the constants univ, iden and none we have the following

definitions:
1Actually there is no need to define this type, instead we could use a type variable

’atom but then the type relation would be a polymorphic type.

41

R[x]Γ ≡ Γ(x)

R[A + B]Γ ≡R[A]Γ + R[B]Γ

R[A - B]Γ ≡R[A]Γ - R[B]Γ

R[A .B]Γ ≡R[A]Γ . R[B]Γ

R[A & B]Γ ≡R[A]Γ & R[B]Γ

R[A :> B]Γ ≡R[A]Γ :> R[B]Γ

R[A <: B]Γ ≡R[A]Γ <: R[B]Γ

R[φ => A else B]Γ ≡ if φ then R[A]Γ else R[B]Γ

R[let x = A | B]Γ ≡ let x = R[A]Γ in R[B]Γ

R[*A]Γ ≡ *R[A]Γ

R[^A]Γ ≡ ^R[A]Γ

R[~A]Γ ≡ ~R[A]Γ

R[fun[a1, . . . , an]]Γ ≡ fun R[a1]Γ . . . R[an]Γ

R[univ]Γ ≡ univ

R[iden]Γ ≡ iden

R[none]Γ ≡ none

Figure 5.1: Embedding of relational expressions.

definition univ :: "relation" where

"univ == {[x] | x. True}"

definition iden :: "relation" where

"iden == {[x, x] | x. True}"

definition none :: "relation" where

"none == {}"

The converse of some relation R is the set of the reversed lists (tuples) in

that relation:

definition conv :: "relation => relation" ("~_" [999] 1000) where

42

"~r == {rev x | x . x : r}"

The &, + and - operations are already defined in Isabelle/HOL and are

written as Int, Un and - respectively, but since we want the embedding to

be as similar as possible we defined equivalente operations with the syntax

of Alloy.

abbreviation rel_union :: "relation => relation => relation"

(infixl "+" 65) where

"r + s == r Un s"

abbreviation rel_inter :: "relation => relation => relation"

(infixl "&" 70) where

"r & s == r Int s"

The composition of two relations A and B, is the set containing all the

lists that can be created with lists from the set A and lists from the set B,

for which the last atom in the list from A is the same as the first in the list

from B. The lists with this correspondence, appended without the common

element, form an element of the composed relation. It was defined as follows:

definition comp :: "relation => relation => relation"

(infixl "." 85) where

"l . r == {xs @ ys | xs ys. EX w. (xs @ [w] : l) & (w # ys : r)}"

The product of two relations A and B is the the set of all lists created by

appending one list from A with one list from B.

definition prod :: "relation => relation => relation"

(infixl "->" 75) where

"prod a b == {x @ y | x y . (x : a) & (y : b)}"

The restriction operator :> filters the lists that start like some list on the

restriction relation. Likewise the restriction operatior <: filters the lists that

end like some list on the restriction relation.

43

definition doma :: "relation => relation => relation"

(infixl "<:" 80) where

"R <: S == {x . x : S & (EX y x’ . y : R & x = y @ x’)}"

definition rang :: "relation => relation => relation"

(infixl ":>" 80) where

"R :> S == {x . x : R & (EX y x’ . y : S & x = x’ @ y)}"

Probably the most complex operations in Alloy are the transitive closure

and transitive-reflexive closure. These are defined using inductive set defini-

tions. Any one of them could be defined by the other by a simple identity

but our approach was to define both independently so the inductive rules are

automaticaly defined for both operations as well.

inductive_set tcl :: "relation => relation" for r :: relation

where

base: "[i, j] : r ==> [i, j] : tcl r" |

step: "[i, j] : r ==> [j, k] : tcl r ==> [i, k] : tcl r"

abbreviation tcl2 :: "relation => relation" ("^_" [99] 99) where

"^r == tcl r"

inductive_set trcl :: "relation => relation" for r :: relation

where

base: "i : iden ==> i : trcl r" |

step: "[i, j] : r ==> [j, k] : trcl r ==> [i, k] : trcl r"

abbreviation trcl2 :: "relation => relation" ("*_" [99] 99) where

"*r == trcl r"

44

5.2 Formulas

Translating formulas from Alloy to Isabelle/HOL is, in part, a straightfor-

ward task. Most logical connectors and set predicates found in the semantics

defined in figure 2.4 are already defined in Isabelle/HOL and therefore its

translation is obvious.

Figure 5.2 shows how to embed Alloy formulas in Isabelle/HOL.

F [A inB]Γ ≡R[A]Γ <= R[B]Γ

F [A=B]Γ ≡R[A]Γ = R[B]Γ

F [no A]Γ ≡ no R[A]Γ

F [lone A]Γ ≡ lone R[A]Γ

F [one A]Γ ≡ one R[A]Γ

F [some A]Γ ≡ some R[A]Γ

F [not φ]Γ ≡ ˜F [φ]Γ

F [φ and ψ]Γ ≡ F [φ]Γ & F [ψ]Γ

F [φ or ψ]Γ ≡ F [φ]Γ | F [ψ]Γ

F [φ iff ψ]Γ ≡ F [φ]Γ <-> F [ψ]Γ

F [no x : A | φ]Γ ≡ ˜F [some A]Γ

F [lone x : A | φ]Γ ≡ ALL x :R[A]Γ. ALL y :R[A]Γ.

(F [φ]Γ⊕(x 7→{x}) & F [φ]Γ⊕(x 7→{y})) --> (x = y)

F [one x : A | φ]Γ ≡ F [lone x : A | φ]Γ & F [some x : A | φ]Γ

F [some x : A | φ]Γ ≡ EX x :R[A]Γ. F [φ]Γ⊕(x 7→{x})

F [all x : A | φ]Γ ≡ ALL x :R[A]Γ. F [φ]Γ⊕(x 7→{x})

F [pred[a1, . . . , an]]Γ ≡ pred R[a1]Γ . . . R[an]Γ

Figure 5.2: Embedding of formulas.

Note that for some operations, instead of performing complex translations

of formulas we chose to define equivalent operators in Isabelle/HOL with the

same syntax used in Alloy. These operations are no, lone, one and some,

45

which are defined in the theory Alloy.thy using similar definitions to those

found in the figure 2.4.

definition no :: "relation => bool" where

"no R == R = {}"

definition lone :: "relation => bool" where

"lone r == (ALL x y . ((x : r) & (y : r) --> (x = y)))"

definition one :: "relation => bool" where

"one R == EX! x. x : R"

definition some :: "relation => bool" where

"some R == EX x. x : R"

5.3 Declarations

A specifications in Alloy is translated to an Isabelle/HOL theory. To this

theory we give the same name of the model. The theory Alloy.thy is always

imported so the header looks like this:

theory theory name

imports Alloy

begin

Our approach was to use a locale to define the content of a module.

Although we did not perform the embedding of specifications with multiple

modules, we chose to use a locale because it could make it easier in a future

work. The definition of a locale uses the same name as the original Alloy

module and all relations, facts, definitions and assertions in the module are

defined in the context of the locale.

46

Signatures are the base of any Alloy model. Not only they define new

relations but also properties regarding those relations. A signature alone

declares a new unary relation and defines its hierarchy. A field declares a

relation with a arity higher than 1 and defines some properties about its

multiplicity. Consider the address book specification in the appendix B.1.

The embedding of the declarations of this specification is presented in figure

5.3.

theory addressBook

imports Alloy

begin

locale addressBook =

assumes fin_univ: "finite univ"

fixes Target :: relation

fixes Addr :: relation

assumes Addr_def: "Addr in Target"

fixes Name :: relation

fixes Alias :: relation

assumes Alias_def: "Alias in Name"

fixes Group :: relation

assumes Group_def: "Group in Name"

assumes disj_Alias_Group: "disj Alias Group"

assumes Name_def: "Name in Target"

assumes abstract_Name: "Name = Alias + Group"

assumes disj_Addr_Name: "disj Addr Name"

assumes Target_def: "Target in univ"

assumes abstract_Target: "Target = Addr + Name"

fixes Book :: relation

fixes names :: relation

assumes Book_names_range: "ALL this : Book. (({this} . names) in Name)"

fixes addr :: relation

assumes Book_addr_range: "ALL this : Book.

(({this} . addr) in (({this} . names) -> (({this} . names) + Addr)))"

assumes Book_addr_mR1: "ALL this : Book. ALL var_0 : ({this} . names).

some ({var_0} . ({this} . addr))"

assumes Book_def: "Book in univ"

assumes Book_fact_0: "ALL this : Book. ~(EX n : Name.

({n} in ({n} . ^({this} . addr)))) &

(ALL a : Alias. lone ({a} . ({this} . addr)))"

assumes disj_Target_Book: "disj Target Book"

assumes names_type:"names in (Book -> Name)"

assumes addr_type:"addr in (((Book -> Name) -> Name) + ((Book -> Name) -> Addr))"

Figure 5.3: Embedding of the signatures of the addressBook specification.

The first statement in the locale is the assumption that univ is finite.

All relations and fields are declared with the fixes command followed with

47

the relation name. The most difficult task is to define the constraints of this

relations. If a relations is abstract then it is the union of all its extensions

so, in this example, Name = Alias + Group. If a relation is an extension of

another relation, it is contained in its parent, for instance Addr in Target.

The constraints of a field declaration are far more complex than the others

already explained. In this example, the first assumption regarding the field

declaration addr simply states that for each book in Book, addr relates atoms

from ({this} . names) with atoms from (({this} . names) + Addr). A

similar assumption is present for every field declaration. The other assump-

tion is related to the multiplicity of the relation addr, stating that each tuple

from ({this} . names) is related with some tuple from ({this} . addr).

An assumption is generated for each multiplicity of the relation. For in-

stance a relation declared as R : S1 m1->m2 . . . mn−1->mn Sx, where Si are

relations and mi are multiplicities, generates n assumptions.

Generaly speaking, the translation of a signature and respective field

declarations is done as follows:

D[sig A {R : S1 m1->m2 . . . mn−1->mn Sx}] =

fixes A

fixes R

assumes "ALL this : A. ({this} . R) <= S1 -> . . . -> Sn"

assumes "ALL this : A. ALL var 0 : S2. . . . ALL var x-2 : Sx.

m1 (((this . R) . var x-2) var 0)

assumes "ALL this : A. ALL var 0 : S1. m2 (var 0 . (this . R))

. . .

assumes "ALL this : A. ALL var 0 : Sx. mn−1 (this . R . var 0)

assumes "ALL this : A. ALL var 0 : S1. . . . ALL var x-2 : Sx−1.

mn (var x-2 . (. . . . var 0 . (this . R)))

Additionally, if a signature A is abstract we add the assumption that A

is the union of all its extensions. If A is not abstract then we write the

assumption that A contains all its extensions.

48

Assertions are translated to lemmas with no proof. The proof must be

written by the user. The Alloy commands check and run are completely

ignored since their only purpose is to inform Alloy Analyzer the boundaries of

verification. Functions and predicates are translated to definitions. Generally

speaking, the translation of predicates, functions and assertions is done as

follows:

P[pred pred name [arg1 : rel1, . . . , argn : reln] { body }] =

definition (in locale name) pred name :: "relation => . . . => relation => bool" where

"pred name arg1 . . . argn == F[body]"

P[fun fun name [arg1 : rel1, . . . , argn : reln] : m rel { body }] =

definition (in locale name) fun name :: "relation => . . . => relation => relation" where

"fun name arg1 . . . argn == R[body]"

A[assert assert name { body }] =

lemma (in locale name) assert name : "F[body]"

Take a look at the Figure 5.4 for an example. This figure presents a

predicate and an assertions from the address book specification found in the

Appendix B.1.

definition (in addressBook) add ::

"relation => relation => relation => relation => bool"

where

"add b b’ n t == ((b’ . addr) = ((b . addr) + (n -> t)))"

lemma (in addressBook) delUndoesAdd:

"(ALL b : Book. ALL b’ : Book. ALL b’’ : Book. ALL n : Name. ALL t : Target.

(no ({n} . ({b} . addr)) & (add {b} {b’} {n} {t}) & (del {b’} {b’’} {n} {t})

--> (({b} . addr) = ({b’’} . addr))))"

Figure 5.4: Embedding of an assertion and a predicate of the addressBook
specification.

5.4 Implementation

To preform this embedding process automatically we implemented a tool.

The implementations was made in Java using some classes of Alloy Analyzer

49

which include the parser and lexical analyzer. The syntactic tree we get

from the Alloy Analyzer methods is previously verified to be correctly or

incorrectly typed. For this reason we assume that, if there is no error, the

syntactic tree is well typed and no additional verification is needed.

The Java code can be found in http://sourceforge.net/projects/

alloytoisabelle along with some examples.

The full embedding of the addressBook example automatically generated

by this tool can be found in Appendix B.2.

50

Chapter 6

Verifying Alloy specifications

using Isabelle/HOL

Verification of a specification is achieved by proving the generated lem-

mas. The basis for this verification is already defined in the libraries of

Isabelle/HOL or in the provided Alloy.thy library. In Alloy.thy library

we have included some lemmas that were helpful in the test cases we used.

These are mostly simple generic properties such as associativity and distribu-

tivity of some operations.

6.1 Alloy auxiliary theory

There is no way to describe a strategy that always proves the required asser-

tions, otherwise all this work would be pointless since it would be possible

to automatically verify the assertions. The verification task requires us to

look at what we assume to be true and somehow find a connection with the

target property. In a big specification with a great number of facts this can

be a hard task and in these cases it may help to start by selecting the as-

sumptions that we can relate to the assertion we want to verify, and then

trying to construct a proof focusing on those assumptions. A good strategy

51

to collect the facts we need is to use Alloy Analyzer and test if the assertion

still holds when we remove some facts. This is not 100% effective but it is

a great help. Writing the actual proof is more complicated because there is

not much help one can get to consistently progress in this area. Practice is

probably the best way to improve.

To help the verification process we have included some lemmas in Alloy.thy.

These are generic lemmas such as associativity, transitivity, distributivity.

The following are some of the approximately thirty lemmas included in this

theory:

lemma prod_assoc:

shows "A -> (B -> C) = (A -> B) -> C"

lemma prod_Un_dist:

shows "A -> (B + C) = A -> B + A -> C"

lemma no_doma:

assumes "R <= univ"

shows "(R . S = {}) = (R <: S = {})"

lemma comp_distrib_l:

shows "R . (S + T) = R . S + R . T"

lemma plus_minus:

shows "no (R & S) ==> R + S - S = R"

lemma no_prod_in_comp:

assumes "R <= univ"

assumes "no (R . S)"

assumes "X in R"

shows "no (S & (X -> T))"

52

6.2 Arity

Because we have defined tuples as lists, sometimes we are required to prove

that some relation has a specific arity. We can check the arity of a relation

as follows:

definition arity :: "relation => nat => bool" where

"arity r n == ALL x : r. n = length x"

We know that every relation that appears in our translated models has an

arity but Isabelle/HOL does not know that because we chose to go with an

untyped approach. The price to pay is that whenever we want to apply a

lemma that only works for well formed relations or for a specific arity, we need

to write a proof for that. For instance, the associativity of the composition

depends on the arity of the middle relation:

lemma comp_assoc:

assumes "arity B b"

assumes "b > 1"

shows "A . (B . C) = (A . B) . C"

Fortunately proving that a relation has an arity of n is simple but un-

fortunately it is also tedious. These proofs are done by repeatedly applying

some simple lemmas.

lemma univ_arity:

shows "arity univ 1"

lemma iden_arity:

shows "arity iden 2"

lemma none_arity:

shows "arity none x"

53

lemma prod_arity:

shows "[|arity A a; arity B b|] ==> arity (A -> B) (a + b)"

lemma comp_arity:

shows "[|arity A a; arity B b|] ==> arity (A . B) (a + b - 1 - 1)"

lemma Un_arity:

shows "[|arity A n; arity B n|] ==> arity (A Un B) n"

lemma in_arity:

shows "[|arity A n; B <= A|] ==> arity B n"

lemma arity_tcl:

shows "arity (^A) 2"

lemma arity_trcl:

shows "arity (*A) 2"

Although these lemmas are simple we did not find a way to use them

automatically. In principle it should be possible to define a tactic to prove

arity related properties automatically.

6.3 Examples of proofs

The first specification we verified was the address book example presented

in the Chapter 2. Both the full specification and respective embedding can

be found in the Appendix B. In this example we are required to verify the

following assertion:

assert delUndoesAdd {

54

all b, b’, b’’: Book, n: Name, t: Target |

no n.(b.addr) and add [b, b’, n, t] and del [b’, b’’, n, t]

implies

b.addr = b’’.addr

}

This is a simple assertion stating that if we add a new tuple to a relation

and then remove it, we have the original relation. This is obvious and easily

verified by applying a similar lemma present in Alloy.thy. The first step in

the proof is to apply the definitions of the predicates add and del. The next

steps consist in the application of the two auxiliary lemmas no prod in comp

and plus minus. We first show that no ({b} . addr & {n} -> {t}) using

the lemma no prod in comp and then we use this property to prove the goal

by using the lemma plus minus.

lemma (in addressBook) delUndoesAdd:

"(ALL b : Book. ALL b’ : Book. ALL b’’ : Book. ALL n : Name. ALL t : Target.

(no ({n} . ({b} . addr)) & (add {b} {b’} {n} {t}) & (del {b’} {b’’} {n} {t}) -->

(({b} . addr) = ({b’’} . addr))))"

proof clarify

fix b b’ b’’ n t

assume b_in: "b : Book" and b’_in: "b’ : Book" and b’’_in: "b’’ : Book"

and n_in: "n : Name" and t_in: "t : Target" and no: "no ({n} . ({b} . addr))"

and add: "add {b} {b’} {n} {t}" and del: "del {b’} {b’’} {n} {t}"

thus "{b} . addr = {b’’} . addr"

proof (simp add: add_def del_def)

assume "n : Name" with Name_def and Target_def have n_in: "{n} in univ" by auto

assume "no ({n} . ({b} . addr))" with n_in have "no ({b} . addr & {n} -> {t})"

by (drule_tac no_prod_in_comp) auto

with this show "{b} . addr = {b} . addr + {n} -> {t} - {n} -> {t}"

by (drule_tac R = "{b} . addr" and S = "{n} -> {t}" in plus_minus) auto

qed

qed

Another assertion in the address book specification is the following:

assert lookupYields {

all b: Book, n: b.names | some lookup [b,n]

}

55

Which translates to the following Isabelle/HOL lemma:

definition (in addressBook) lookup ::

"relation => relation => relation" where

"lookup b n == ((n . ^(b . addr)) & Addr)"

lemma (in addressBook) lookupYields:

"(ALL b : Book. ALL n : ({b} . names). some (lookup {b} {n}))"

The definition of lookup uses transitive closure and in some cases this

means the proof is not as straightforward as it is for other lemmas. If we

think of the relation b.addr as the set of edges of a graph we can say that

the lookup function gives the set of addresses reachable from the node n.

So, this assertion states that for each name in a given book there is some

addresses related to that name either directly or indirectly via another name.

This is only true because the set of addresses is finite and that reflects in a

proof that requires the set Addr to be finite. In this proof we use one of the

most complex lemmas in the theory Alloy.thy:

lemma f_tcl:

assumes "N in univ"

assumes "L in univ"

assumes "finite N"

assumes "ALL n : N. EX x : N + L. n @ x : T"

assumes "~(EX n : N. {n} in {n} . ^T)"

shows "ALL n : N. EX l : L. (n @ l : ^T)"

This lemma states that if the set N is finite, if we can reach a vertex of L

from every vertex in N and if there is no loop starting at the vertices of set

N, then a vertex from L is reachable from a vertex in N.

The proof of lookupYields can be described in two parts. The first

consists of showing that the assumptions of the lemma f tcl hold for this

particular context. More precisely it consists of showing that:

56

1. {b} . name in univ

2. Addr in univ

3. finite ({b} . name)

4. ALL n : {b} . name.

EX x : {b}. name + Addr. n @ x : {b} . addr

5. ~(EX n : {b} . name. {n} in {n} . ^({b} . addr))

The first three assumptions are simple and easy to verify. The fourth

property is proved from the assumption Book addr mR1 of the locale and

the fifth is derived from a similar fact of the Book signature:

ALL this : Book.

~(EX n : Name. ({n} in ({n} . ^({this} . addr))))

The second part of the proof consists of showing that the result of the

lemma f tcl implies our goal. Since the goal is very similar to the property

derived from f tcl, this is a simple step.

The complete proofs can be found in Appendix B.2.

57

Chapter 7

Related work

Umbounded verification of Alloy specifications is not a new problem. Various

embeddings of Alloy have been done before to various theorem prover logics.

This chapter explores four alternatives.

7.1 Prioni

Prioni [1] is a tool that allows users to verify Alloy specifications using a

theorem prover by performing embeddings of Alloy specification to the logic

of a theorem prover. The target language of the embedding is Athena, a type-

ω denotational proof language developed by Arkoudas, the author of Prioni,

whose underlying logic is a polymorphic multi-sorted first order logic.

In Athena, types are introduced with a domain declaration such as:

(domain X)

It also supports polymorphic types, for instance the polymorphic type of

sets may be introduced with the statement (domain (Set-Of T)). Athena

also allows the definition of inductive types, generating an inductive rule and

related axioms. Functions are declared with the command declare. Assum-

ing that the types A, B and C are already defined, the statement (declare

58

f (-> (A B) C)) declares a function f whose type is A → B → C. Note

that in the declarations of polymorphic functions, the variables used in the

polymorphic types must appear before the arrow:

(declare union ((T) -> ((Set-Of T) (Set-Of T)) (Set-Of T)))

Prioni translates Alloy specifications to a typed first-order finite-set the-

ory providing an axiomization of Alloy’s underlying logic and a library with

some important lemmas which can be used in proofs. In the axiomization,

relations are represented as sets of tuples. Relations are defined as needed.

For instance, binary relations are defined as follows:

(structure (Pair-Of S T) (pair S T))

Since relations of different arities have different types, some relational op-

erators must be defined for each relation arity. For instance, the composition

of two binary relations is defined as follows:

(declare comp-2-2 ((S T U) -> ((Set-Of (Pair-Of S T))

(Set-Of (Pair-Of T U))) (Set-Of (Pair-Of S U))))

(forall ?R1 ?R2 ?x ?y (iff (in (pair ?x ?y) (comp-2-2 ?R1 ?R2))

(exists ?z (and (in (pair ?x ?z) ?R1)

(in (pair ?z ?y) ?R2)))))

In a similar way to the definitions of relations, operators are also defined

as needed so, if the composition of two relations with arity n and m appears

in a specification, an operator comp-n-m is defined.

Transitive closure is defined using an exponentiation operation for binary

relations. For instance some of the axioms are:

(define pow-def-1

(forall ?R ?x ?y

(iff (in (tup [?x ?y]) (pow ?R zero))

59

(= ?x ?y))))

(define pow-def-2

(forall ?R ?k ?x ?y

(iff (in (tup [?x ?y]) (pow ?R (succ ?k)))

(exists ?z

(and (in [?x ?z] ?R)

(in [?z ?y] (pow ?R ?k)))))))

The transitive closure is then defined with an axiom stating that if a pair

(a, b) is in the transitive closure of R then there is a natural k such that (a, b)

is in the power Rk

This implementation was done for one of the first versions of Alloy but,

the language has evolved and today has some differences from what it was

back then.

7.2 Dynamite

Another unbounded verification solution for Alloy language is Dynamite [5].

Like Prioni, the unbounded verification is done through an existing theorem

prover (in this case PVS) and it also integrates Alloy Analyzer in a way

that allows users to check the model in a finite small scope before trying

to perform an unbounded verification with the theorem prover. The main

differences between these two approaches are in the theory generated by the

embedding. Whereas Prioni creates specific definitions and axioms for each

arity present in the model relations, Dynamite converts all relations to binary

relations, using the same finite axiomization for every model.

Dynamite embeddings result in a fork algebra theory defined by structures

whose domain R is a set of binary relations of a universe B, in other words,

R ⊆ P(B ×B).

Similar operators to those found in Alloy and some other are also part of

60

this algebra: union (+), intersection (&), complement (denoted as r for any

binary relation r), converse (∼), binary composition (.), reflexive-transitive

closure (∗), empty binary relation (∅), universal bynary relation (denoted as

1) and the identity relation (iden). All these operators must be closed under

B. There is a binary operation fork (O) defined as follows: rOs = {〈a, b? c〉 |
〈a, b〉 ∈ r ∧ 〈a, c〉 ∈ s}

This definition requires an injective function ? closed on B. Since ? is

injective, a ? b can be seen as a representation of 〈a, b〉. The tuple projection

relations π and ρ are defined as:

π ={〈a ? b, a〉 | a, b ∈ B}

ρ ={〈b ? a, a〉 | a, b ∈ B}

There is also the operation ⊗ defined as: r ⊗ s = {〈a ? b, c ? d〉 | 〈a, c〉 ∈
r ∧ 〈b, d〉 ∈ s}

The composition of relations of different arities is handled differently due

to the convertion of every relation to a binary relations. For any two relations

R and S the composition • is handled as follows:

R•S =

∼ π.Ran(R.S).ρ if arity(R) = 1 ∧ arity(S) > 2

Ran(R.S) if arity(R) = 1 ∧ arity(S) ≤ 2

R.(iden⊗ (· · · ⊗ ((iden⊗ S).π))) if |R| 6= 1 and arity(S) = 1

R.(iden⊗ (· · · ⊗ (iden⊗ S))) if |R| 6= 1 and arity(S) > 1

With these operations defined, the translation of Alloy relations and ex-

pressions is done as follows:

61

T [C] = C F [r in s] = T [r] in T [s]

T [∼ r] =∼ T [r] F [!α] =!F [α]

T [r.s] = T [r] • T [s] F [α || β] = F [α] || F [β]

T [∗r] = ∗T [r] F [α && β] = F [α] && F [β]

T [r + s] = T [r] + T [s] F [some x : R | α] = some x : T [R] | F [α]

T [r − s] = T [r] & T [s] F [all x : R | α] = all x : T [R] | F [α]

T [r & s] = T [r] & T [s]

With a pretty printer change in PVS, the translated formulas and rela-

tions are presented with a syntax similar to the Alloy language, which is a

great advantage making it easier to understand. However the similarities dis-

appear as proofs evolve. This approach seems to forget that Alloy relations

are finite and some theorems may not be verifiable without this assumption.

7.3 Categorical calculus of relations

This work [3] is an evolution of the work described in the previous section

[5]. It aims at embedding the logic of Alloy into a much simpler logic that

in turn can be embedded in the logic of a theorem prover. Basically, it relies

on the idea that a point free expression is simpler than its point wise version

and therefore verifying an assertions in a point free version should be easier.

The embedding provided can be described by two major steps, the first

part consists in embedding Alloy’s logic into first order logic and the sec-

ond part consists in embedding first order logic into categorical calculus of

relations. The result is then automatically verified in Prover9 [9].

Relational logic is a first order logic enhanced with some relational op-

erations which makes it an appropriate solution to represent Alloy’s logic

since they share many similarities. However, this representation is as com-

plex as the original Alloy expressions. The excessive amount of quantifiers

(and quantified variables) is not desired since it increases the complexity of

62

expressions so, in a second step every expression is translated to a point free

version.

To solve the problem of translating relational logic formulas to point free

formulas, this work explores the approach defined in [4] and defines a new

solution that translates first order logic formulas to point free expression in

a fork algebra (FA).

To simplify even further, an heuristic algorithm is used. This algorithm

repeatedly applies simplification rules as long as it is possible.

The simplification of formulas is a major advantage for verification pur-

poses but in most cases the meaning of the original specification becomes

hard to understand, but since the purpose of this work is to use the auto-

matic theorem prover Prover9 this is not relevant. Since the logic of Alloy

is undecidable, this approach will not be able to verify some specifications,

specially those with transitive closures.

7.4 SMT solving

This approach [7] consist of using a SAT modulo theories (SMT) solver to

verify or refute assertions automatically. Alloy specifications are translated

to the standard SMT-LIB language allowing them to be verified in multiple

SMT solvers.

Relations declared by signatures and respective field declarations appear-

ing in the specification are represented as a predicates in a first order logic.

Hierarchical properties are also expressed trough predicates as well as mul-

tiplicity. Functions and predicates are eliminated by expanding every occur-

rence.

To test this approach the authors tried to verify some specifications that

found in the library of examples of Alloy Analyzer. The solver verified the

com1 specification and others, but for the markswep specification the solver

1This specification is one of the examples presented in Alloy Analyzer.

63

was unable to verify any of its assertions. For comparison, we applied our

approach to this example and succeeded in proving one of the assertions

(see Appendix C). The source of complexity in this specification resides

in the transitive closure. We also believe the solver is unable to verify the

lookupYields assertion presented in the Appendix B, because it uses tran-

sitive closure and also because it is only true if a certain relation is finite.

Unfortunately the assumption that every relation in Alloy is finite is lacking

in this work.

The authors describe the marksweep specification as a complex one, but

we actually think this problem is simpler then the COM assertions which

they have verified automatically. This makes us conclude that there is still a

long way to go for automatic approaches, mainly because of the difficult of

dealing with transitive closure.

64

Chapter 8

Conclusion

We presented a solution to the problem of unbounded verification of Alloy.

There is already some work on this subject as explained in Chapter 7. How-

ever there are some details that differentiate our approach from others. The

most obvious difference is the target theorem prover, which is a great advan-

tage for those who only know how to work with this Isabelle/HOL instead of

PVS or Athena. Also, since automatic theorem provers cannot verify every

assertion, we have the advantage of allowing to prove what the automatic

approaches could not verify. For instance we were able to verify one assertion

of the marksweep specification for which the SMT solver in [7] found false

counter examples.

Our approach tries to create an embedding of Alloy into Isabelle/HOL

that resembles Alloy as much as possible. This is a great advantage because

it is easier for those familiar with Alloy to understand the specification in

Isabelle/HOL. Unfortunately there are also one problem with our approach.

We used an untyped approach because it allowed the definition of operations

that work for any relation. The consequences are that in the context of a

proof we might need to show that a relation has an arity n in order to apply

a certain rule. This adds complexity to the proof without little benefit. As

a future work we could try to find a workaround to this problem. One possi-

65

bility is implement tactics in Isabelle/HOL to solve these simple properties.

Another approach to solve this problem would be to implement an automatic

embedding to Coq such that relations are translated to an habitant of a de-

pendent type. A dependent type would solve this problem by making the

type of a relation dependent of its arity. This way the application of a lemma

that depends on the arity of a relation could be applied without the need to

prove that some relation has a particular arity.

66

Appendix A

Proof of a property in a deep

embedding

lemma "R[b, r] = R[b, simp r]"

proof (induct r)

case (AVar x) thus ?case by auto

next

case (AConv x) thus ?case by (cases "simp x") auto

next

case (ABinOp bop l r)

assume l: "R[b,l] = R[b,simp l]" and r: "R[b,r] = R[b,simp r]"

show ?case

proof (cases bop)

case APlus

assume bop: "bop = APlus"

show ?thesis

proof (cases "simp l")

case (AVar n) with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case (AConv x) with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case (ABinOp bop’ l’ r’) with l and r and bop show ?thesis

by (cases "simp r") simp_all

next

case AID with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case ANone with l and r and bop show ?thesis by (cases "simp r") simp_all

qed

next

67

case AMinus

assume bop: "bop = AMinus"

show ?thesis

proof (cases "simp l")

case (AVar n) with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case (AConv x) with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case (ABinOp bop’ l’ r’) with l and r and bop show ?thesis

by (cases "simp r") simp_all

next

case AID with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case ANone with l and r and bop show ?thesis by (cases "simp r") simp_all

qed

next

case AComp

assume bop: "bop = AComp"

show ?thesis

proof (cases "simp l")

case (AVar n) with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case (AConv x) with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case (ABinOp bop’ l’ r’) with l and r and bop show ?thesis

by (cases "simp r") simp_all

next

case AID with l and r and bop show ?thesis by (cases "simp r") simp_all

next

case ANone with l and r and bop show ?thesis by (cases "simp r") simp_all

qed

qed

next

case AID show ?case by auto

next

case ANone show ?case by auto

qed

68

Appendix B

Address Book

B.1 Alloy specification

module addressBook

abstract sig Target { }

sig Addr extends Target { }

abstract sig Name extends Target { }

sig Alias, Group extends Name { }

sig Book {

names: set Name,

addr: names ->some (names + Addr)

} {

no n: Name | n in n.^addr

all a: Alias | lone a.addr

}

pred add [b, b’: Book, n: Name, t: Target] { b’.addr = b.addr + n->t }

pred del [b, b’: Book, n: Name, t: Target] { b’.addr = b.addr - n->t }

fun lookup [b: Book, n: Name] : set Addr { n.^(b.addr) & Addr }

assert delUndoesAdd {

all b, b’, b’’: Book, n: Name, t: Target |

no n.(b.addr) and add [b, b’, n, t] and del [b’, b’’, n, t]

implies

b.addr = b’’.addr

}

69

// This should not find any counterexample.

check delUndoesAdd for 3

assert addIdempotent {

all b, b’, b’’: Book, n: Name, t: Target |

add [b, b’, n, t] and add [b’, b’’, n, t]

implies

b’.addr = b’’.addr

}

// This should not find any counterexample.

check addIdempotent for 3

assert addLocal {

all b, b’: Book, n, n’: Name, t: Target |

add [b, b’, n, t] and n != n’

implies

lookup [b, n’] = lookup [b’, n’]

}

// This shows a counterexample

check addLocal for 3 but 2 Book

assert lookupYields {

all b: Book, n: b.names | some lookup [b,n]

}

// This should not find any counterexample.

check lookupYields for 4 but 1 Book

B.2 Embedding and proofs

theory addressBook

imports Alloy

begin

locale addressBook =

assumes fin_univ: "finite univ"

fixes Target :: relation

fixes Addr :: relation

assumes Addr_def: "Addr in Target"

fixes Name :: relation

70

fixes Alias :: relation

assumes Alias_def: "Alias in Name"

fixes Group :: relation

assumes Group_def: "Group in Name"

assumes disj_Alias_Group: "disj Alias Group"

assumes Name_def: "Name in Target"

assumes abstract_Name: "Name = Alias + Group"

assumes disj_Addr_Name: "disj Addr Name"

assumes Target_def: "Target in univ"

assumes abstract_Target: "Target = Addr + Name"

fixes Book :: relation

fixes names :: relation

assumes Book_names_range: "ALL this : Book. (({this} . names) in Name)"

fixes addr :: relation

assumes Book_addr_range: "ALL this : Book.

(({this} . addr) in (({this} . names) -> (({this} . names) + Addr)))"

assumes Book_addr_mR1: "ALL this : Book. ALL var_0 : ({this} . names).

some ({var_0} . ({this} . addr))"

assumes Book_def: "Book in univ"

assumes Book_fact_0: "ALL this : Book.

~(EX n : Name. ({n} in ({n} . ^({this} . addr)))) &

(ALL a : Alias. lone ({a} . ({this} . addr)))"

assumes disj_Target_Book: "disj Target Book"

assumes names_type:"names in (Book -> Name)"

assumes addr_type:"addr in (((Book -> Name) -> Name) + ((Book -> Name) -> Addr))"

definition (in addressBook) add :: "relation => relation => relation => relation => bool"

where

"add b b’ n t == ((b’ . addr) = ((b . addr) + (n -> t)))"

definition (in addressBook) del :: "relation => relation => relation => relation => bool"

where

"del b b’ n t == ((b’ . addr) = ((b . addr) - (n -> t)))"

definition (in addressBook) lookup :: "relation => relation => relation" where

"lookup b n == ((n . ^(b . addr)) & Addr)"

lemma (in addressBook) delUndoesAdd:

"(ALL b : Book. ALL b’ : Book. ALL b’’ : Book. ALL n : Name. ALL t : Target.

(no ({n} . ({b} . addr)) & (add {b} {b’} {n} {t}) & (del {b’} {b’’} {n} {t}) -->

(({b} . addr) = ({b’’} . addr))))"

proof clarify

fix b b’ b’’ n t

assume b_in: "b : Book" and b’_in: "b’ : Book" and b’’_in: "b’’ : Book"

and n_in: "n : Name" and t_in: "t : Target" and no: "no ({n} . ({b} . addr))"

and add: "add {b} {b’} {n} {t}" and del: "del {b’} {b’’} {n} {t}"

71

thus "{b} . addr = {b’’} . addr"

proof (simp add: add_def del_def)

assume "n : Name" with Name_def and Target_def have n_in: "{n} in univ" by auto

assume "no ({n} . ({b} . addr))" with n_in have "no ({b} . addr & {n} -> {t})"

by (drule_tac no_prod_in_comp) auto

with this show "{b} . addr = {b} . addr + {n} -> {t} - {n} -> {t}"

by (drule_tac R = "{b} . addr" and S = "{n} -> {t}" in plus_minus) auto

qed

qed

lemma (in addressBook) addIdempotent:

"(ALL b : Book. ALL b’ : Book. ALL b’’ : Book. ALL n : Name. ALL t : Target.

((add {b} {b’} {n} {t}) & (add {b’} {b’’} {n} {t}) -->

(({b’} . addr) = ({b’’} . addr))))"

by (auto simp add: add_def)

(* This assertion is false.

lemma (in addressBook) addLocal:

"(ALL b : Book. ALL b’ : Book. ALL n : Name. ALL n’ : Name. ALL t : Target.

((add {b} {b’} {n} {t}) & ({n} ~= {n’}) --> ((lookup {b} {n’}) = (lookup {b’} {n’}))))"

*)

lemma (in addressBook) lookupYields: "(ALL b : Book. ALL n : ({b} . names).

some (lookup {b} {n}))"

proof (auto simp add: some_def lookup_def)

fix b n

from Name_def and Target_def have Name_in_univ: "Name in univ" by auto

from this and fin_univ have finite_Name: "finite Name" by (rule finite_subset)

assume b: "b : Book" with Book_names_range and Name_def

have nin: "{b} . names in Name" by (simp add: Ball_def)

with Target_def and Name_def

have ns: "{b} . names in univ" by auto

from b and Book_addr_mR1 have "ALL var_0 : ({b} . names).

some ({var_0} . ({b} . addr))"

by auto

from this have a: "ALL n : ({b} . names). EX x : (({b} . names) + Addr).

n @ x : ({b} . addr)"

apply (auto simp only: some_def Ball_def)

apply (drule_tac x = x in spec)

apply (auto simp add: Bex_def)

apply (rule_tac x = xa in exI)

proof -

fix x xa

assume "x : {b} . names" with ns have U: "{x} in univ" by auto

assume "xa : {x} . ({b} . addr)" then have I: "{xa} in {x} . ({b} . addr)"

by auto

72

from U and this have P: "x @ xa : {b} . addr"

apply (drule_tac a = x and B = "{xa}" and C = "{b} . addr" in comp_to_prod)

by (auto simp add: prod_def)

assume "xa : {x} . ({b} . addr)" from this and P

show "(xa : {b} . names | xa : Addr) && x @ xa : {b} . addr"

proof auto

assume "xa ~: Addr" and "xa : {x} . ({b} . addr)"

from this and Book_addr_range and b have "xa : {b} . names"

apply (simp add: Ball_def)

apply (drule_tac x = "b" in spec)

apply (drule_tac P = "b : Book" in mp)

apply assumption

apply (drule_tac C = "{x}" in comp_mono_l)

apply (drule_tac A = "{x} . ({b} . addr)" and c = xa in subsetD)

apply assumption

apply (subgoal_tac "{b} in univ")

apply (subgoal_tac "{x} in univ")

apply (drule_tac X = "{xa}" and A = "{x}" and B = "{b} . names"

and C = "{b} . names + Addr" in comp_prod)

proof -

from ns show "{b} . names in univ" by assumption

assume "xa : {x} . ({b} . names -> ({b} . names + Addr))" then

show "{xa} in {x} . ({b} . names -> ({b} . names + Addr))" by simp

assume "{xa} in {b} . names + Addr" and "xa ~: Addr" then

show "xa : {b} . names" by auto

next

from U show "{x} in univ" by assumption

next

assume "b : Book" with Book_def show "{b} in univ" by auto

qed

from this show "xa : {b} . names" by assumption

qed

qed

have f: "ALL n : {b} . names. EX l : Addr. n @ l : tcl ({b} . addr)"

proof (rule_tac f_tcl)

from ns show "{b} . names in univ" by assumption

from Addr_def and Target_def show "Addr in univ" by auto

from finite_Name and Book_names_range and b show "finite ({b} . names)"

apply (simp add: Ball_def)

apply (drule_tac x = "b" in spec)

by (auto simp add: mp finite_subset)

from a show "ALL n : {b} . names. EX x : {b} . names + Addr. n @ x : {b} . addr"

by assumption

from nin and Book_fact_0 and b

show "~ (EX n : ({b} . names). {n} in {n} . ^({b} . addr))"

by (auto simp add: Ball_def)

73

qed

assume "n \<in> {b} . names"

with b and f show "EX x. x : {n} . tcl ({b} . addr) & x : Addr"

apply (simp only: Ball_def Bex_def)

apply (drule_tac x = n in spec)

apply (drule_tac mp)

apply auto

apply (rule_tac x = x in exI)

proof -

fix x

assume "n @ x : tcl ({b} . addr)" then have aux: "{n} -> {x} in ^({b} . addr)"

by (auto simp add: prod_def)

assume "n : {b} . names" with nin have "{n} in Name" by auto

with Name_in_univ have "{n} in univ" by auto

with aux have aux: "x : {n} . ^({b} . addr)"

apply (drule_tac B = "{x}" and C = "tcl ({b} . addr)" in prod_to_comp)

by (auto simp add: some_def)

assume "x : Addr" with aux show "x : {n} . ^({b} . addr) && x : Addr" by auto

qed

qed

end

74

Appendix C

Mark and sweep garbage

collection

C.1 Alloy specification

module marksweepgc

// a node in the heap

sig Node {}

sig HeapState {

left, right : Node -> lone Node,

marked : set Node,

freeList : lone Node

}

pred clearMarks[hs, hs’ : HeapState] {

// clear marked set

no hs’.marked

// left and right fields are unchanged

hs’.left = hs.left

hs’.right = hs.right

}

// simulate the recursion of the mark() function using transitive closure

fun reachable[hs: HeapState, n: Node] : set Node {

n + n.^(hs.left + hs.right)

}

75

pred mark[hs: HeapState, from : Node, hs’: HeapState] {

hs’.marked = hs.reachable[from]

hs’.left = hs.left

hs’.right = hs.right

}

// complete hack to simulate behavior of code to set freeList

pred setFreeList[hs, hs’: HeapState] {

// especially hackish

hs’.freeList.*(hs’.left) in (Node - hs.marked)

all n: Node |

(n !in hs.marked) => {

no hs’.right[n]

hs’.left[n] in (hs’.freeList.*(hs’.left))

n in hs’.freeList.*(hs’.left)

} else {

hs’.left[n] = hs.left[n]

hs’.right[n] = hs.right[n]

}

hs’.marked = hs.marked

}

pred GC[hs: HeapState, root : Node, hs’: HeapState] {

some hs1, hs2: HeapState |

hs.clearMarks[hs1] && hs1.mark[root, hs2] && hs2.setFreeList[hs’]

}

assert Soundness1 {

all h, h’ : HeapState, root : Node |

h.GC[root, h’] =>

(all live : h.reachable[root] | {

h’.left[live] = h.left[live]

h’.right[live] = h.right[live]

})

}

assert Soundness2 {

all h, h’ : HeapState, root : Node |

h.GC[root, h’] =>

no h’.reachable[root] & h’.reachable[h’.freeList]

}

assert Completeness {

all h, h’ : HeapState, root : Node |

h.GC[root, h’] =>

76

(Node - h’.reachable[root]) in h’.reachable[h’.freeList]

}

check Soundness1 for 3 expect 0

check Soundness2 for 3 expect 0

check Completeness for 3 expect 0

C.2 Embedding and proofs

theory marksweepgc

imports Alloy

begin

locale marksweepgc =

assumes fin_univ: "finite univ"

fixes Node :: relation

assumes Node_def: "Node in univ"

fixes HeapState :: relation

fixes left :: relation

assumes HeapState_left_range: "ALL this : HeapState.

(({this} . left) in (Node -> Node))"

assumes HeapState_left_mR1: "ALL this : HeapState. ALL var_0 : Node.

lone ({var_0} . ({this} . left))"

fixes right :: relation

assumes HeapState_right_range: "ALL this : HeapState.

(({this} . right) in (Node -> Node))"

assumes HeapState_right_mR1: "ALL this : HeapState. ALL var_0 : Node.

lone ({var_0} . ({this} . right))"

fixes marked :: relation

assumes HeapState_marked_range: "ALL this : HeapState.

(({this} . marked) in Node)"

fixes freeList :: relation

assumes HeapState_freeList_range: "ALL this : HeapState.

(({this} . freeList) in Node)"

assumes HeapState_freeList_m: "ALL this : HeapState. lone ({this} . freeList)"

assumes HeapState_def: "HeapState in univ"

assumes disj_Node_HeapState: "disj Node HeapState"

assumes marked_type:"marked in (HeapState -> Node)"

assumes freeList_type:"freeList in (HeapState -> Node)"

assumes left_type:"left in ((HeapState -> Node) -> Node)"

assumes right_type:"right in ((HeapState -> Node) -> Node)"

definition (in marksweepgc) clearMarks :: "relation => relation => bool" where

"clearMarks hs hs’ ==

77

no (hs’ . marked) &

((hs’ . left) = (hs . left)) & ((hs’ . right) = (hs . right))"

definition (in marksweepgc) reachable :: "relation => relation => relation" where

"reachable hs n == (n + (n . ^((hs . left) + (hs . right))))"

definition (in marksweepgc) mark :: "relation => relation => relation => bool" where

"mark hs from hs’ == ((hs’ . marked) = (reachable hs from)) &

((hs’ . left) = (hs . left)) & ((hs’ . right) = (hs . right))"

definition (in marksweepgc) setFreeList :: "relation => relation => bool" where

"setFreeList hs hs’ == (((hs’ . freeList) . *(hs’ . left)) in (Node - (hs . marked)))

& (ALL n : Node. (if ({n} !in (hs . marked))

then no ({n} . (hs’ . right)) &

(({n} . (hs’ . left)) in ((hs’ . freeList) . *(hs’ . left))) &

({n} in ((hs’ . freeList) . *(hs’ . left)))

else (({n} . (hs’ . left)) = ({n} . (hs . left))) &

(({n} . (hs’ . right)) = ({n} . (hs . right))))) &

((hs’ . marked) = (hs . marked))"

definition (in marksweepgc) GC :: "relation => relation => relation => bool" where

"GC hs root hs’ == (EX hs1 : HeapState. EX hs2 : HeapState.

(clearMarks hs {hs1}) & (mark {hs1} root {hs2}) & (setFreeList {hs2} hs’))"

lemma (in marksweepgc) Soundness1:

"(ALL h : HeapState. ALL h’ : HeapState. ALL root : Node.

((GC {h} {root} {h’}) -->

(ALL live : (reachable {h} {root}).

(({live} . ({h’} . left)) = ({live} . ({h} . left))) &

(({live} . ({h’} . right)) = ({live} . ({h} . right))))))"

proof (simp only: GC_def, clarify)

fix h h’ root hs1 hs2 live

assume clearMarks: "clearMarks {h} {hs1}" and mark: "mark {hs1} {root} {hs2}"

hence left: "{hs2} . left = {h} . left" by (simp add: clearMarks_def mark_def)

from clearMarks and mark have right: "{hs2} . right = {h} . right"

by (simp add: clearMarks_def mark_def)

from left and right have reach: "reachable {h} {root} = reachable {hs2} {root}"

by (simp only: reachable_def)

from left have left: "{live} . ({hs2} . left) = {live} . ({h} . left)" by auto

from right have right: "{live} . ({hs2} . right) = {live} . ({h} . right)" by auto

from mark and reach have marked: "{hs2} . marked = reachable {h} {root}"

by (simp add: mark_def reachable_def)

assume "live \<in> reachable {h} {root}" with marked

have live: "live : {hs2} . marked" by simp

assume h: "h : HeapState" with HeapState_left_range

have left’: "{h} . left in Node -> Node" by simp

78

with h and HeapState_right_range have right’: "{h} . right in Node -> Node" by simp

assume root: "root : Node" with Node_def have root’: "{root} in univ" by auto

assume "live : reachable {h} {root}" with root have live’: "live : Node"

proof (auto simp add: reachable_def)

from left’ and right’ have "{h} . left + {h} . right in Node -> Node" by simp

with Node_def have "^({h} . left + {h} . right) in Node -> Node"

by (rule_tac tcl_in) auto

hence p: "{root} . ^({h} . left + {h} . right) in {root} . (Node -> Node)"

by (drule_tac C = "{root}" in comp_mono_l) simp

assume "live : {root} . ^({h} . left + {h} . right)" with p

have "{live} in {root} . (Node -> Node)" by auto

with root’ and Node_def show "live : Node"

by (drule_tac X = "{live}" and B = "Node" and C = "Node" in comp_prod) auto

qed

assume "setFreeList {hs2} {h’}" with live’ and live

show "{live} . ({h’} . left) = {live} . ({h} . left) &&

{live} . ({h’} . right) = {live} . ({h} . right)"

apply (simp add: setFreeList_def Ball_def)

apply (drule conjunct2)

apply (drule conjunct1)

apply (drule_tac x = live in spec)

by (simp add: mp left right)

qed

lemma (in marksweepgc) Soundness2:

"(ALL h : HeapState. ALL h’ : HeapState. ALL root : Node.

((GC {h} {root} {h’}) -->

no ((reachable {h’} {root}) & (reachable {h’} ({h’} . freeList)))))"

lemma (in marksweepgc) Completeness:

"(ALL h : HeapState. ALL h’ : HeapState. ALL root : Node.

((GC {h} {root} {h’}) -->

((Node - (reachable {h’} {root})) in (reachable {h’} ({h’} . freeList)))))"

end

79

Bibliography

[1] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin C. Rinard. Integrating model

checking and theorem proving for relational reasoning. In Rudolf Berghammer, Bernhard Möller, and

Georg Struth, editors, RelMiCS, volume 3051 of Lecture Notes in Computer Science, pages 21–33.

Springer, 2003.

[2] S. M. Brien and J. E. Nicholls. Z Base Standard. ISO/IEC JTC1/SC22, 1992. Accepted for ISO

standardization, ISO/IEC JTC1/SC22.

[3] Alcino Cunha and Nuno Macedo. Automated unbounded verification of alloy specifications with

prover9. 2011.

[4] Marcelo F. Frias, Carlos López Pombo, and Nazareno Aguirre. An equational calculus for Alloy. In

Jim Davies, Wolfram Schulte, and Michael Barnett, editors, ICFEM, volume 3308 of Lecture Notes

in Computer Science, pages 162–175. Springer, 2004.

[5] Marcelo F. Frias, Carlos López Pombo, and Mariano M. Moscato. Alloy Analyzer+PVS in the

analysis and verification of Alloy specifications. In Orna Grumberg and Michael Huth, editors,

TACAS, volume 4424 of Lecture Notes in Computer Science, pages 587–601. Springer, 2007.

[6] François Garillot and Benjamin Werner. Simple types in type theory: Deep and shallow encodings.

In Klaus Schneider and Jens Brandt, editors, TPHOLs, volume 4732 of Lecture Notes in Computer

Science, pages 368–382. Springer, 2007.

[7] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via SMT solving. In 17th

International Symposium on Formal Methods (FM), pages 133–148, June 2011.

[8] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge,

Mass., 2006.

[9] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.

[10] Tobias Nipkow. A tutorial introduction to structured isar proofs.

[11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for

Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

80

[12] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide. Computer

Science Laboratory, SRI International, Menlo Park, CA, September 2001.

[13] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Reference Manual,

The (2nd Edition). Pearson Higher Education, 2004.

[14] The Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.3, April

2011. http://coq.inria.fr.

[15] Emina Torlak. A constraint solver for software engineering: finding models and cores of large

relational specifications. PhD thesis, Cambridge, MA, USA, 2009. AAI0821754.

[16] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shallow versus deep em-

bedding. In Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan, editors, TPHOLs, volume

3223 of Lecture Notes in Computer Science, pages 305–320. Springer, 2004.

81

