
Hugo Manuel Sousa Ribeiro

Spreadsheet Smells

Tese de Mestrado
Mestrado em Informática
Trabalho efectuado sob a orientação de
Prof. Dr. João Saraiva e Dr. Jácome Cunha

Novembro 2011

2

acknowledgements

This dissertation has been influenced by many people, some over the past year, and some
over my entire life. I am specially thankful to my supervisors Ph.D João Saraiva and Ph.D
Jacome Cunha for their amazing skill in matter of guidance, they always knew how to put
me in the right track.

Then, I must thank my parents and my brother for all the patience, support, and all the
teachings given. They made me who I am today, as a student and a human being.

I mus thank my girlfriend Rita Barros for all the support, patience to put up with my
bad mood, and willing to listen when I felt more below. She was the best!

I cannot forget my friends, specially Nhoca, Lautas and Paulo Lopes they had an impor-
tant role helping me to relax, keep the cool, make company and gave their support when I
needed.

I must also thank Software Improvement Group in general, José Pedro, Miguel Ferreira
and Joost Visser for the time spent, hospitality and knowledge provided during my stay at
their headquarters.

To all the personal that worked close to me during this past year, specially Christophe
Peixoto, André Riboira, Jorge Mendes and others, that helped me when some problem
showed and I tried the answer with them. And to all the people that I didn’t mention but
here and there helped me to go through this past year.

i

ii ACKNOWLEDGEMENTS

Resumo

Olhando para as folhas de cálculo como uma linguagem de programação faz dela a lin-
guagem mais usada em todo mundo. Na verdade alguns estudos dizem que os chamados
de programadores não-profissionais excedem em grande número os programadores profis-
sionais. Por causa disso e da falta de mecanismos como abstracção, encapsulamento, ou
programação estruturada, 90% das folhas de cálculo têm erros. Esta dissertação apresenta
um esforço feito para ajudar com este problema.

O objectivo principal desta dissertação é desenvolver uma ferramenta que permita de-
tectar possiveis problemas em folhas de cálculo, esses problemas chamamos "smells" (uma
indicação superficial que geralmente aponta para um problema mais profundo). Para isso,
introduzimos alguns conceitos teoricos como metricas e smells, como por exemplo o Smell
das Dependências Funcionais que adaptamos das bases de dados. Apresentámos o estudo
que foi feito, mostrando os resultados obtidos pela ferramenta aplicada a um grande con-
junto de folhas de cálculo, o EUSES Corpus.

iii

iv RESUMO

Abstract

Viewing spreadsheets as a programing language makes it the most used programming
language worldwide. In fact some studies performed show that the so called "end-user"
programmers surpass the professional programmers by far. Because of this and the lack
of support for abstraction, testing, encapsulation or structured programming, 90% of the
spreadsheets in the real world have errors. This dissertation presents an effort to help with
this problem.

The main goal of this dissertation is to create a technique that allows us to detect prob-
able problems in spreadsheets, problems called smells (a surface indication that usually
corresponds to a deeper problem). Thus, we first introduce some theoretic concepts like
metrics and smells, such as for instance the Functional Dependency Smell that was adapted
from databases. We present the study we made, showing the results obtained with the tool
applied to a large set of spreadsheets, the EUSES corpus.

v

vi ABSTRACT

Contents

acknowledgements i

Resumo iii

Abstract v

Contents . ix

List of Figures . xi

List of Tables . xvi

1 Introduction 1

1.1 Structure of the dissertation . 3

2 State of the Art 5

3 Software Quality Assessment Based on Metrics 9

3.1 Program Metrics . 10

3.1.1 Why measure things? . 10

3.1.2 How to measure things? . 11

3.1.3 Software Metrics . 12

3.2 Spreadsheet Metrics . 12

3.2.1 Functionality . 13

3.2.2 Reliability . 14

3.2.3 Usability . 14

vii

viii CONTENTS

3.2.4 Efficiency . 15

3.2.5 Maintainability . 15

4 Bad Smells 17

4.1 Software Smells . 18

4.2 Spreadsheet Smells . 19

4.2.1 Statistical Smells . 19

4.2.2 Type Smells . 20

4.2.3 Content Smell . 22

4.2.4 Functional Dependencies Based Smells 24

4.2.5 Ochiai Smells . 28

5 Evaluation 31

5.1 EUSES Corpus . 32

5.2 Classification Model . 32

5.3 SmellSheet Detective - The Tool . 33

5.4 Results . 34

5.4.1 Database Sheets . 36

5.4.2 Financial Sheets . 40

5.4.3 Grades Sheets . 45

5.4.4 Homework Sheets . 50

5.4.5 Inventory Sheets . 54

5.4.6 Modeling Sheets . 58

5.4.7 Global Discussion . 62

6 Conclusion 67

6.1 Future work . 69

A Metric Tables 71

CONTENTS ix

References 73

x CONTENTS

List of Figures

1.1 Example of a spreadsheet. 2

2.1 Spreadsheet error taxonomy. 7

3.1 Different metrics for different stages. 12

3.2 The Software Quality Model ISO/IEC 9126. 13

4.1 Motivation example for smells . 19

4.2 Window of search in Type Smells . 21

4.3 Window of search in Type Smells . 22

4.4 Reference to Blank Cells Example . 24

4.5 Attribute match lattice . 26

4.6 Conditional Functional Dependency Example 27

4.7 Ochiai Example . 28

4.8 Output of ochiai to the spreadsheet in Figure 4.7 29

5.1 “SmellSheet Detective”Architecture. 33

5.2 Horizontal Organization Data Example. 35

5.3 Vertical Organization Data Example. 35

6.1 Formula Relative Explanation. 69

xi

xii LIST OF FIGURES

List of Tables

4.1 Mantyla Taxonomy . 18

4.2 Functional Dependency Example 1. 25

4.3 Functional Dependency Example 2. 25

5.1 Data orientation in spreadsheets. 32

5.2 DB_basicdata HAFO Permits. 36

5.3 DB_cattrainchecklist Sheet1. 36

5.4 DB_duck94_otherdata RHBSept. 36

5.5 DB_SteamTool 3. STEAM SYSTEM PROFILING. 37

5.6 DB_NamingConventionDataS#A855B Summary. 37

5.7 DB_rmomatrix MATRIX. 37

5.8 DB_ADC%20Databases ADC_data_Table1. 37

5.9 DB_Population Pop.l1. 38

5.10 DB_dab1 Sheet3. 38

5.11 Database Result Totals. 39

5.12 Database Statistical Result by Smell. 39

5.13 Database Statistical Result by Level. 40

5.14 FIN_CMSAauditreport2002_2003 Sheet1. 41

5.15 FIN_FinalAnnexFSSN06001 Annex3. 41

5.16 FIN_Cost%20Statement Blad1 (2). 41

5.17 FIN_Financial%20Compariso#A7ED8 Financial Comparison Analysis. . . 42

xiii

xiv LIST OF TABLES

5.18 FIN_finrpt00 Five Year Review. 42

5.19 FIN_income-statement Income Statement. 42

5.20 FIN_MATHCOUNTS%20Financial Sheet1. 42

5.21 FIN_hospitaldataset2002 MEMORIAL. 42

5.22 Financial Result Totals. 43

5.23 Financial Statistical Result by Smell. 44

5.24 Financial Statistical Result by Level. 44

5.25 GRD_483_grades_web grades. 45

5.26 GRD_as474gradestopost lab grades. 45

5.27 GRD_2003FP785DZ 2003FP785DZ. 46

5.28 GRD_dss-2001 Sheet1. 46

5.29 GRD_firsttrimester Sheet1. 46

5.30 GRD_99execgrades Exec Grades. 46

5.31 GRD_CRJ%20230_Spring%20grades ClassRosterExportServlet. 47

5.32 GRD_anat1f03post post1. 47

5.33 GRD_2000_places_School Sheet1. 47

5.34 Grades Result Totals. 48

5.35 Grades Statistical Result by Smell. 48

5.36 Grades Statistical Result by Level. 49

5.37 HOME_finalGRADES Writing Assng. 50

5.38 HOME_AClassSchedule2003 Schedule. 50

5.39 HOME_D6 D6.2. 50

5.40 HOME_comments02 Sheet2. 51

5.41 HOME_2101_Homework 2101. 51

5.42 HOME_cgs1540 Sheet1. 51

5.43 HOME_Econ%20homework%20one Sheet1. 51

5.44 HOME_Fin_Eval-Budgets-Web 1997. 51

5.45 HOME_cis105Winter2004calendar January 2004. 52

LIST OF TABLES xv

5.46 Homework Result Totals. 52

5.47 Homework Statistical Result by Smell. 53

5.48 Homework Statistical Result by Level. 53

5.49 INV_1996El_Final_Files WRAP Domain. 54

5.50 INV_Inventory%20Log%20Sheet Basement. 54

5.51 INV_AssetAccountCodes ACCT Asset. 54

5.52 INV_outline TOC for Pam. 54

5.53 INV_InsuranceApplication-#A8A10 Page 4. 55

5.54 INV_Licensing%20Inventory#A88C0 Purchase Data. 55

5.55 INV_PrimaryProduction2003 Dec. 55

5.56 INV_ICATINV iccat tag. 55

5.57 INV_2003-fairact II. Inherently Governmental. 56

5.58 INV_CL2003-007_AnnexB ANNEX B. 56

5.59 Inventory Result Totals. 57

5.60 Inventory Statistical Result by Smell. 57

5.61 Inventory Statistical Result by Level. 57

5.62 MOD_skill-certificates-071103 West. 58

5.63 MOD_Analytic_work Sheet 1. 59

5.64 MOD_rs2002-0152att CALFED Watershed. 59

5.65 MOD_PSCCUNYawards Sheet1. 59

5.66 MOD_IROS2003-Program-Final Sessions. 59

5.67 MOD_Teaching%20Evaluation#A8732 Sheet1. 59

5.68 MOD_CancelsFullstOct02 CancelsFullLstOct02. 60

5.69 Modeling Result Totals. 60

5.70 Modeling Statistical Result Totals by Smell. 61

5.71 Modeling Statistical Result Totals by Level. 61

5.72 Global Result Totals. 62

5.73 Where to use or not the smells. 64

xvi LIST OF TABLES

A.1 Cell Level Metrics. 71

A.2 Sheet Level Metrics. 72

A.3 Spreadsheet Level Metrics. 72

Chapter 1

Introduction

The spreadsheets are used worldwide by all kind of person, specially non-professional
programmers, the also called "end-user" programmers [22]. An end-user can be a teacher,
an engineer, a student, anyone that is not a professional programmer is considered one.
These end-user programmers outnumber the professional programmers by far. In fact a
study performed by Scaffidi et al. in 2005 estimates that only in U.S. exists 11 million of
end users against only 2.75 million of professional programmers [31]. Still in this study
they project to 2012 a total of 90 millions of end users from which 55 million will be from
spreadsheets or databases.

The dimension of users presented by Scaffidi implies that millions of new spreadsheets
are created every year. And because these end users are not professional programmers when
they create a new spreadsheet they usually do not look to any principles of programming,
instead all they care is getting the job done. This approach by the users, and the lack
support for abstraction, testing, encapsulation, or structured programming in spreadsheets
as a programming language, leads to the results presented in some studies that report that
up to 90% of real-world spreadsheets contain errors [30].

A spreadsheet is a computer adaptation of a paper ledger sheet and it consists of a grid
of rows and columns. It is an environment that simplifies manipulation of numbers. A
spreadsheet is a digital document composed by a grid of rows and columns filled with
cells containing three types of data, Labels, Constants and Formulas. Labels are text en-
tries mainly used to identify items and help understanding the spreadsheet. Constants are
numeric, dates or booleans entries that can be used in computation; Formulas are the en-
tries that have an equation inside (formula) that will be used to display the resulting value.

1

2 CHAPTER 1. INTRODUCTION

Formulas must start with "=" symbol and constant values can be used as parameters. For
instance a formula can be used to sum all values from a row or column. Formulas can also
be just a reference to other cells. By doing this the cell with that formula will present the
same value presented in the referenced cell.

Figure 1.1: Example of a spreadsheet.

In spreadsheets the mapping to the cells is made by using a combination of letters
(columns) and numbers (rows) for example: the code "A10" represents the first column
row 10. In Fig. 1.1 we can see an example of a spreadsheet. The values in the column A
(green values1) are Labels, the values in purple are constants (numbers) that will be used
by the formula in the cell B4 (orange) to calculate their sum.

Nowadays we can find many software to work with spreadsheets, from the most com-
mon solutions desktop-based as Excel [5] or the open source versions of it, the calc from
LibreOffice [9] or from OpenOffice [10], to the more recent approach brought by Google a
web-based system like Google Docs [13]. This new branch of spreadsheets is just a conse-
quence of the evolution of the technology that is rapidly advancing to full web systems.

Many studies refer the high rate of errors in spreadsheets and how this is costly to
companies. Thus, in this work we look for smells in spreadsheets so we can lead to the
way of improving those spreadsheets. Smells were introduced to the software engineering

1Colors are visible in digital version of this document.

1.1. STRUCTURE OF THE DISSERTATION 3

by Martin Fowler [11] in 1999 and the name points directly to the concept: something that

smells is something that does not look correct. This concept has been studied in parallel
by us and by Hermmans in [7], but in different perspectives, we do not trace a parallelism
between our smells and the ones introduced by Fowler.

In order to detect something that does not look correct in spreadsheets we analyze a large
repository of spreadsheets; the EUSES corpus. We used the EUSES Corpus [17] since it
contains more than 5000 spreadsheets. The study that we will present is a massive analyze
to a randomly selected sample from the EUSES. First we selected a bunch of spreadsheets
from each category of the EUSES, and then from those we selected ten sheets from each
category, all the picks were random.

1.1 Structure of the dissertation

This dissertation is structured as follows:

Chapter 2: discusses the state of the art and is where we will present some previous studies
done by other authors.

Chapter 3: explains the need of measuring software and some guidelines of how should
we do it. This chapter also introduces the concept of metric and introduce the metrics that
can be used in spreadsheets.

Chapter 4: presents the concept of software smell and how we use it in spreadsheets.
In this chapter we describe in detail the smells that we will be using in the “SmellSheet
Detective”.

Chapter 5: is where all the evolution results will be shown. This chapter is where we
present the study per se, we describe the sample used, explain the process, present the tool
and the results obtained.

Chapter 6: is where we take all the conclusions of the work, and point out some interesting
future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

Summary:
In this chapter we present some of the research that is related to ours. We
present works about the measurements of softwares in general, spreadsheet
analysis and spreadsheet errors and also present some work in the field of
smells, on software and spreadsheets.

Efforts related to our research include a wide range of studies. From studies about
spreadsheets errors, spreadsheet analysis, spreadsheet visualization and smells in spread-
sheets, to general analysis of software or metric definitions. In this chapter, we will do a
brief exposition about those studies.

Measurements:

The main purpose of Alves et al. [2] is to give meaning to values obtained by the use of
metrics in measuring software. They present a way to define relevant thresholds so that
the results obtained may be better understandable and more meaningful. Alves et al. work
rests in three assumptions: “i) it should respect the statistical properties of the metric, such
as scale and distribution; ii) it should be based on data analysis from a representative set
of systems (benchmark); iii) it should be repeatable, transparent and straightforward to
execute.”

Still in the field of measurements we can underline the work made by Heitlager et
al. [15]. In this paper, it is presented a way to measure the maintainability of a software
that is based on the standard ISO 9126 [18]. This model is not just theoretical, they really

5

6 CHAPTER 2. STATE OF THE ART

use it in the analysis made by their company "Software Improvement Group".

Spreadsheet Analysis:

Related to spreadsheet analysis we must stress the work of Bergar [3] who presents a list of
complexity metrics to be used in spreadsheets. This work does not provide any justification
for the metrics chosen. Hodnigg et al. [16] defend that the comprehension of a spreadsheet
may be simplified by a good technique of visualization, so they use complexity measures
as an indicator of a proper visualization. They divide their metrics in three groups: general

metrics, where they consider the number of formulas or the number of non-empty cells;
formula complexity, where they include metrics such as the chain calculation or the Fan-in
and Fan-out of a cell; and finally the metrics they call further complexity arguments where
they measure the existence of any scripts, e.g. VBA or python, the existence of user-defined
functions or external sources.

Smells:

Fowler [11] was the first to introduce the concept of smell and to create a list of 22 smells
pointing a possible solution for each one of them. In the sequence of Fowler study, Mantyla
et al. [21] has created a taxonomy for the smells listed by Fowler so they could be easier to
understand. They created five groups of smells, the bloaters, the object-oriented abusers,
the change preventers, the dispensables and the couplers.

Still in smells but now to spreadsheets we should refer the very recent work of Hermans
et al. [7] that used smells to detect weaknesses in spreadsheets. They also make a relation
between their smells for spreadsheets with those that Fowler listed, presenting, like Fowler
did, a possible way of refactoring. Their work differs from the work we present in this
thesis in the fundamental approach to define spreadsheet smells: while Hermans adapt
Fowler smells to the spreadsheet realm, we analyze a large corpus and based on that we
define spreadsheet specific smells.

Spreadsheet Errors:

In this specific field, we refer Powell et al. [26], [27] studies, where they dissects errors in
spreadsheets, which type of errors occur, their consequences, which ones are more com-
mon, how to prevent them and how to detect them.

7

More recently by Panko et al. [23] proposed a taxonomy for spreadsheet errors to help
other researchers. This taxonomy is a revision of one previously proposed by him [24]. In
Figure. 2.1 we can see the new proposed taxonomy.

Figure 2.1: Spreadsheet error taxonomy.

8 CHAPTER 2. STATE OF THE ART

Chapter 3

Software Quality Assessment Based on
Metrics

Summary:
In this chapter we start by introducing the need of measure things daily
and then we try to explain why are these measurements needed in the com-
puter science, and how they may be done. Finally we talk about metrics
for spreadsheets, where we present five groups of metrics and also some
metrics that can be used to measure things in spreadsheets. These metrics
are grouped by levels: cell, sheet and spreadsheet.

“ Measurements: is the process by which numbers or symbols are assigned

to attributes of entities in the real world in such a way as to describe them

according to clearly define rules” Fenton et al. [8]

In our daily life we use measurements in almost every task that we accomplish even
without realizing it. In the morning when we wake up we measure the time needed to get
to work in time, we measure the time needed to warm up the coffee so it do not get to hot
or to cold, if we need to pay something in a shop we measure the correct change so we do
not get deceived, and in many other tasks. Measurements are built-in our everyday and we
need them to understand it and properly interact with it.

In computer science this reality is transposed to our work and we use it for instance
to measure the quality of software. Software quality measurement is the quantification to
what extent a system possesses the desirable characteristics. This can be made through

9

10 CHAPTER 3. SOFTWARE QUALITY ASSESSMENT BASED ON METRICS

qualitative or quantitative measures, either way a measurable set of attributes related to
the desired characteristics must be stressed out. In the ISO/IEC 9126 standard [18] is
described a model for software product quality that categorizes the global notion of quality
into six main characteristics: functionality, reliability, usability, efficiency, maintainability,
and portability. This standard is used for example, by the company SIG1 to create their own
model to measure maintainability [15]. In their model they have a ranked base approach
that rates each system in five levels ++, +, o, -, - - in which ++ is the best result and - - is the
worst. This rating is done by analyzing a large set of systems in order to create thresholds
so they can rate the systems according their level. In the evaluation of our results we will
use a similar technique to rate the smells found in the spreadsheets.

In this chapter we briefly will discuss about software metrics, why to use them, how to
use them, some issues that occur when defining what to measure and identify some kinds of
popular metrics used to measure software. Then, in the second part of this chapter we will
present spreadsheet metrics making the link between spreadsheets and programs written in
other programing languages. Furthermore, we will be presented a catalog of metrics for
spreadsheets.

3.1 Program Metrics

Knowing and accepting the fact that we constantly measure things in order to control our
life, I will try to explain how this measures are used in the field of computer science.
Computer science involves several activities like analyzing, planing, costing, testing, im-
plementing, maintaining, and others. Because each activity can be quite distinct, different
measurements can be needed in order to properly quantify some attribute from one entity.
Depending on the characteristic that we want to measure a different set of measurements
will be needed.

3.1.1 Why measure things?

Departing from Tom DeMarco’s quote "You can’t control what you can’t measure!" [6] we
can agree and say that the global purpose of measure things is to control every (possible)
outcome from a certain situation. But this measurements can be made to "control" many

1Software Improvement Group. http://www.sig.eu

3.1. PROGRAM METRICS 11

characteristics of some product. Like we saw before we have different kinds of measures
and each can serve more than one purpose, generally each one helps to understand a given
property. For instance, if we want to study the maintainability of one software artifact,
measure things like Lines Of Code (LOC), or the Size of the methods/functions can help us
with that, instead if we want to measure the quality of software, measurements like time or
effort need to be done.

Despite each metric gives an indicator of some possible attribute, when creating a more
global evaluation about one entity we should not make a straightforward analysis for each
individual metric, because, for instance when we have two software programs one with
1000 LOC and other with 500 LOC, say that the one with 1000 is easier to maintain may
not be true. We need to see each metric as a portion of the whole, and how many more
metrics better will be the final conclusions.

3.1.2 How to measure things?

Sometimes in computer science the definition of what and how something should be mea-
sured can be quite difficult to define because there are attributes that can depend on the
context or interpretation. For instance, if we want to measure attributes like width or height
from one person, they are quite simple to measure, but if we want to measure the beauty
or the IQ the task becomes a more complicated because beauty and IQ are subjective mea-
sures and depend on how or who measures them. In order to surpass these obstacles we
have to define objectives.

As we can see in Figure. 3.2 the definition of objectives always depend on the priorities
from people involved. A client will need different information about a product from a
manager, and because of this we have to make them as specific as possible and not let
any interpretation to be made. They must be clear and simple otherwise the conclusions
taken from them can also depend on interpretation. For instance, when performing a study
that measures the percentage of fat women in Portugal if we just say "30% of the women
from Portugal are fat", we are leaving the attribute fat to interpretation, so in order to avoid
different interpretations we must explain what do we mean by fat. Instead we should say
something like "30% of the women from Portugal have 10kg more than the advised in
relation to their age and height".

12 CHAPTER 3. SOFTWARE QUALITY ASSESSMENT BASED ON METRICS

Figure 3.1: Different metrics for different stages. (Adapted from
http://www.cefetrn.br/placido/disciplina/pgp/aulas/Metricas.pdf)

3.1.3 Software Metrics

A software metric is the evaluation of a property from one software artifact by looking
directly to the source code. There are many different software metrics, and each can help
to measure many characteristics. If we look at the ISO/IEC 9126 standard [18] six main
characteristics are used to give the notion of quality: functionality, usability, efficiency,
maintainability and portability. These characteristics are divided in 27 sub-characteristics,
and each sub-characteristics uses one or more metrics for its measurement. For instance,
in Heitlager et al. [15] they explain a model to measure maintainability of a software using
specific metrics: lines of code, cyclomatic complexity or code duplication.

The ISO/IEC 9126 will also be used to create the quality model used to classify some
spreadsheet metrics presented in the next section.

3.2 Spreadsheet Metrics

The use of spreadsheets by non-professional programmers is well know, those that we call
"end-user" programmers, raise exponentially the total number of users of spreadsheets. If
we count with this "end-user" programmers, the spreadsheet programming language is the
language with more programmers worldwide. But not only "end-user" programmers use
spreadsheets, there are reports of many companies losing money due to errors in spread-

3.2. SPREADSHEET METRICS 13

sheets [14], meaning that there are many companies using them.

Due the current high complexity of spreadsheets and their frequent use [29], [16], they
must be looked at like any other computer program from another programing language.
This means that the use of metrics to measure and quantify entities in spreadsheets can
be made like in other programing language. In fact, we can easily map the structure of
a spreadsheet to an object oriented programing language: we just have to look at spread-
sheets as a source code file, sheets as classes, cells as methods and functions as statements.
Knowing this Peixoto [25], created a quality model that we will be using to classify some
spreadsheet metrics according five characteristics .

Figure 3.2: The Software Quality Model ISO/IEC 9126.

In the Figure. 3.2 we can see the software quality model created by Peixoto.

3.2.1 Functionality

This characteristic measures the ability of software to satisfy the user needs. This depends
in four sub-characteristics:

• Suitability: measures if the spreadsheet has the right properties for the purpose it is
meant. It is measured with metrics Number of incongruences and Number of refer-

ences to Blank Cells in Formulas;

• Accuracy: is a faithful measurement or representation of the true, correctness. It is

14 CHAPTER 3. SOFTWARE QUALITY ASSESSMENT BASED ON METRICS

measured using metrics as Number of Output Cells with Errors/Bad Content, Number

of incongruences and Number of Blank Cells referenced in Formulas;

• Interoperability: is the ability of two or more Sheets or components to exchange
information and to use the information that has been exchanged. This uses metrics
as Data been exchanged between Sheets, Quantity of rightful formulas, Total of Cells

with references and Total of references;

• Security: verifies the existence of protected cells, sheets or even the entire workbook.
This uses metrics as Protected Formulas, Protected Cell for Data only for reading

and Use Password to lock Workbook/Worksheets.

3.2.2 Reliability

This is the is capacity from a software to maintain its quality after a period of time and
under specific conditions, it depends in three sub-characteristics;

• Maturity: evaluates if the spreadsheet is fully developed, for this metrics like: Num-

ber of Labeled Rows/Columns that are empties, Number of Blank Cells in a matrix,
Number of Blank Cells and Difference between the Sheets that the Spreadsheet have,
and the ones been used, are used.

• Fault Tolerance: is the property to continue operating properly in the event of one
or more faults within some of its components, for this we use metrics like Number

of Cells been referenced (Directly or indirectly) by many other Cells and Number of

Complex Formulas.

• Recoverability: is the capacity to restore a previous state, this characteristic does not
apply because a spreadsheet can not restore itself.

3.2.3 Usability

Usability is the capability of a software being understood to the users, this characteristic
depends in four sub-characteristics;

• Understandability: is the capacity of a spreadsheet being understood, for this we
measure Different colors for different types of Data, Separate Input, Computation

and Output and Number of Cells.

3.2. SPREADSHEET METRICS 15

• Learnability: evaluates the easiness for the user to use the spreadsheet, for this we
use metrics Number of Cells, Different colors for different types of Data, Separate

Input, Computation and Output, Number of Complex Formulas and Amount of Data

being exchanged between Sheets.

• Operability: evaluates the capacity of work with the spreadsheet, for this we measure
if it has Data Validation Drop Down Lists and Separated Inputs, Computation and

Outputs.

• Attractiveness: measures how attractive is to the user, for this we measure the use
of colors, the existence of Data Validation Drop Down Lists and Separated Inputs,

Computation and Outputs.

3.2.4 Efficiency

Efficiency is the ratio resources/performance of a software, this characteristic depends in
two sub-characteristics.

• Time Behavior: estimates the computing time. For this we use the Number of V-

Lookup’s and other search formulas, and Number of Complex Formulas.

• Resources Utilization: estimates the resources needed. For this we use the Number

of V-Lookup’s, the Amount of Blank-Cells and Number of Complex Formulas.

3.2.5 Maintainability

Maintainability is the ease which a software can be modified/updated. This characteristic
depends in four sub-characteristics.

• Analyzability: measure the capacity to analyze a spreadsheet, in order to conclude
the effort needed for diagnosis deficiencies. In this we measure the Number of Cells,
if the data is or not well organized, the Number of References and the Number of

Formulas.

• Changeability: evaluates the ease of change of a spreadsheet and concludes the effort
needed for that modifications. In this characteristic we have to measure How Well is

the Data Organized, the Number of Referenced Cells and the Number of Cells.

16 CHAPTER 3. SOFTWARE QUALITY ASSESSMENT BASED ON METRICS

• Stability: evaluates how stable is a spreadsheet. For this we use the Number of

Complex Formulas and the Number of Cells Referenced by Other Cells (directly or

indirectly).

• Testability: evaluates how well can we test a spreadsheet. For this we only use the
Number of Formulas.

In Peixoto’s dissertation he also discusses portability, but we will not use it in the classifi-
cation.

These classifications were also done in three levels, cell, sheet and spreadsheet.
From many of the metrics shown in Table A.1, Table A.2, Table A.3(Appendix A) we can
infer new ones. For instance to measure the data density from one sheet we can somehow
use the "#Cells" and the "#Blank Cells" to obtain a valid measure.

Cell Level: At the cell level Table A.1 we only have a few metrics, some of the metrics
identified were the Fan-in, Fan-out, that together represent all the references from a cell,
we also have references to empty cells and constants in formulas.

Sheet Level: At the sheet level we have a bigger set than on the cell because it uses all
the results from the cell. Besides the metrics from the cell level we also have those in Table
A.2.

Spreadsheet Level: At the spreadsheet level the set grows because, like at the sheet
level, it inherit metrics from cell level, on spreadsheet happens the same but from the sheet
level.

Chapter 4

Bad Smells

Summary:
In this chapter we first introduce the notion of smell in software presenting
a taxonomy that uses a catalog of smells previously created by Fowler. We
then discuss spreadsheet smells and present in detail our catalog of smells,
the ones that we will use in the “SmellSheet Detective”. In this catalog we
have statistical smells, type smells, input smells, functional dependencies
smells and the ochiai smell.

“Code Smell: A code smell is a surface indication that usually corresponds to

a deeper problem in the system.” Martin Fowler Website

The notion of "bad smell" was introduced to the computer science by Fowler in [11],
and it emerged in his book because he felt the need to define when and where to apply
internal structure improvements to a software. Since that was a complicated task he used
"bad smells" as a flag to do it. A "bad smell" is an indicator of some possible bigger
problem, like usually we say, something that smells.

This "new" notion is just an helpful tool and still depends on some previous criteria
definition to be used. For instance the notion of what is a too big method can depend on
the product, who analyzes it and the purpose of the analysis. Like the author says “no set
of metrics rivals informed human intuition” [11].

In spite of the fact that this concept was thought to object oriented programing language,
I think we can say that it fits in spreadsheets like a glove because in spreadsheets we almost

17

18 CHAPTER 4. BAD SMELLS

never can tell if something is an error. Most of the times we point to something that does
not feel right or something that could be done in a better way.

In the first part of this chapter we will see a list of smells that was introduced by Fowler
in [11] but organized by Mantyla et al. [21] taxonomy. Then we will talk about smells in
spreadsheets, were we will introduce the list of smells that we created and explain in detail
how each one of them works.

4.1 Software Smells

Martin introduced the list of software smells in 2000. In 2003 Mantyla created a taxonomy
to group them so it would be easier to understand them. This taxonomy is a posterior
improvement of the taxonomy made to his thesis1.

Group Smells
Long Methods
Large Classes

The bloaters Long Parameter List
Long Methods
Primitive Obsession
Switch Statements

The Object-Orientation Abusers Temporary Field
Refused Bequest
Alternative Classes with Different Interfaces
Divergent Change

The Change Preventers Shotgun Surgery
Parallel Inheritance Hierarchies
Lazy Class
Data Class

The Dispensables Duplicate Code
Dead Code
Speculative Generality
Feature Envy

The Couplers Inappropriate Intimacy
Message Chains
Middle Man

Table 4.1: Mantyla Taxonomy

1http://www.soberit.hut.fi/mmantyla/badcodesmellstaxonomy.htm

4.2. SPREADSHEET SMELLS 19

4.2 Spreadsheet Smells

The smells mentioned by Fowler are in single flat list, but Mantyla has created a taxonomy
for all these smells. Similarly to what Mantyla has done we also grouped our smells by
categories, five to be more specific: Statistical Smells, Type Smells, Content Smells, Func-

tional Dependencies Based Smell, Ochiai Semlls. We will see how are they used by in our
application.

Figure 4.1: Motivation example for smells

In the Figure 4.1 we present a spreadsheet, slightly adapted from one in the EUSES
repository, where all kind of smells can be observed. All those smells will be automatically
detected and flagged out by our tool “SmellSheet Detective”(Section 5.3).

4.2.1 Statistical Smells

This groups smells that are calculated through some kind of statistical analysis. In this
category we only have the Standard Deviation smell. The standard deviation smell detects
cells that are outside the normal distribution.

20 CHAPTER 4. BAD SMELLS

Detection

Most of the times when we fill a spreadsheet with numeric values we organize them either
by row or column, and many times we introduce wrong values without noticing. So, the
Standard Deviation smell is detected by analyzing the spreadsheets row (column) by row
(column) and flagging the values outside the normal distribution of 95,4% (two Standard
deviations). In the detection of this smell neither formulas nor labels are taken into account.

Example

If we look to the Figure 4.1 we can see, for instance, that in the column B the standard
deviation is of 2.369E8. Then the normal distribution values acceptable should be within
[5.868E8, 1.534E9] and so in the cell B4 we detect a smell because it contains the value
123 that is outside that interval.

4.2.2 Type Smells

In this group of smells we have Empty Cell and Pattern Finder. They are both in this
category because in both of them is made an analyze to the type of cell: Label, Number,
Formula or Empty Cells.

• Empty Cell
Many times we forgot to fill some cells in spreadsheets that should be filled. In order
to detect some of these cells we created the Empty Cell smell. The Empty Cell locates
all the empty cells in the middle of others non empty cells, this means that if we have
an empty line we will not find that line, or if we just have one label in the line we
will see it just as a label.

Detection

In the detection of the Empty Cell what we do is select all the possible windows of
cells from each row (column) and verify if in that window there is an empty cell. In
the Figure 4.2 we can see in green the cases where the smell is detected. For this
smell we used a window of five cells because after looking to many spreadsheets we

4.2. SPREADSHEET SMELLS 21

Figure 4.2: Window of search in Empty Cell Smells

thought that was an acceptable size, but in order to guarantee that is the best size
more tests should be made.

Example 4.2.1

Taking the example spreadsheet from Figure 4.1 we can see that the cells D2 and C6
have empty cells, and they are in the middle of cells with labels fulfilling what we
said above, to have at least four cells surrounding it. Still from the same Figure we
can see that more white cells exist, for instance in column I there are plenty, but these
cells do not fulfill the condition. The analysis for this example is by column, if we
look by row all the empty cells from the column I would be detected.

• Pattern Finder
The need of this smell came from the fact that many times we introduce values (nu-
meric or labels) in the middle of formulas to simplify in the moment and then when
reusing the spreadsheet we may forget to correct that "problem". In order to detect
those cells we created the Pattern Finder, but not only for formulas. The Pattern

Finder finds patterns in the sheet and if in some row we have only Numbers and in
the middle of those numbers we find a Label/Empty Cell/Formula we point that cell
as a smell.

22 CHAPTER 4. BAD SMELLS

Detection

The detection of the Pattern Finder are quite similar to the one for the Empty Cell.
In fact they almost overlap each other because in this we also detect empty cells.
The major differences between them is that in this smell we detect not only empty
cells but also every other kind of cells, and, in this smell we use a smaller window,
just four cells. We chose to use a smaller window because the occurrence of patterns
without empty cells is quite smaller.

Once again more tests should be done in order to guarantee that this is a good size
for the window.

Figure 4.3: Window of search in Pattern Finder Smells

In the Figure 4.3 we can see in detail how this detection is made.

Example 4.2.2

Taking the example spreadsheet from Figure 4.1 we can see that the cell G3 contains
the value "o" so is from the type Label, and this cell is surrounded by Numbers
creating a window of four cells like the one shown in Figure 4.3. This means that G3
is a smell, maybe that "o" is a typo and it should be a "0" (zero).

4.2.3 Content Smell

In this category we will have the smells found through the analysis of the content of the
cell. We have putted in this category the String Distance smell and Reference to Blank

Cells smell.

4.2. SPREADSHEET SMELLS 23

• String Distance
When writing in a computer many times we make typo errors, so, to detect those
we create the String Distance smell. In the String Distance smell we compare two
strings and find if the minimum number of edits needed to transform one string into
the other one.

Detection

The detection of this smell is made by using the algorithm created by Vladimir Lev-
enshtein [20] in 1966, Levenshtein Distance.

The Levenshtein Distance compares two strings and finds the minimum number of
edits needed to transform one string into the other. So in order to do it we have to
apply the Levenshtein Distance each string from a row (column) to all the others in
the same row (column) and verify if the result is 1.

At first no verification to the strings was being done, and this was a problem be-
cause, for instance if we had a spreadsheet with a row with alphabet all cells would
be pointed out. So, we limited the comparison only to strings longer than three char-
acters. The election of this value was made by looking into some spreadsheets and
selecting the string length producing best results.

Example 4.3.1

For String Distance, in the Figure 4.1 we can see a example of this smell. In the row
C, the word in the cell C8 "SUNLIGHT DISH LIQUIDS" is the plural of the word
in the cells C9 to C11 pointing to some probable typing error.

• Reference to Blank Cells
When we have a big spreadsheet with many formulas sometimes having a formula
using an empty cell in the calculation may lead to problems in the output, so in order
to detect those cells we created the Reference to Blank Cells.

In the Reference to Blank Cells smell we identify if there is any formula with refer-
ences to empty cells.

24 CHAPTER 4. BAD SMELLS

Detection

The detection of the Reference to Blank Cells smell is made by walking all the for-
mulas from the spreadsheet gathering all their references. Then, we just verify if
each of the gathered reference is a reference to an empty cell flagging those that are.

Example 4.3.2

For Reference to Blank Cells, no example is presented in Figure 4.1 because it dis-
plays the values and not the formulas used to compute each values. Thus, let us
introduce a new example to illustrate this smell.

Figure 4.4: Reference to Blank Cells Example

So if we look to the Figure 4.4 we can see that it is in column G where the final grade
of the students is calculated, the formula used to calculate the final grade is the one
presented in G5 (=(SOMA(B:E)/4)*0,4+F*0,6) and in E5 we have an empty cell.
Our “SmellSheet Detective”tool automatically detects this smell.

4.2.4 Functional Dependencies Based Smells

Similarly to what happens in databases, the existence of poor data, can be very costly for
the companies who use them. Regarding that and because the problem as already been
approached in the data mining field, we tried to adapt techniques used to identify dirty
values in databases to spreadsheets.

In [4] it is described a technique to identify dirty values using Conditional Functional
Dependencies (CFD), and this is one of the techniques that we will be using. Before we

4.2. SPREADSHEET SMELLS 25

start analyzing the algorithm let us introduce the concept of Functional Dependency (FD).

“Functional Dependency: are fundamental constraints that define the relation

between attributes.” [19]

This means that one attribute A in the relation R only points to another attribute B,
A→B. In other words this means that B is functionally dependent upon A, and every time
that we have the attribute A it will imply the attribute B.

A CFD is the same as a FD but instead of use all the data, it only uses part of the data.

Birth Country Nationality

China Chinese
Spain Spanish
Portugal Portuguese
Portugal Portuguese
Portugal Portuguese
Portugal Portuguese

Table 4.2: Functional Dependency Example
1.

Birth Country Nationality

China Chinese
Spain Spanish
Portugal Portuguese
Portugal Greek
Portugal Portuguese
Portugal Portuguese

Table 4.3: Functional Dependency Example
2.

In the Table 4.2 we can see that we have a relation between the Country of birth and the
Nationality, more specifically we can see that when we have a citizen born in "Portugal" it
is called as "Portuguese", so we can say that we have the FD BirthCountry→ Nationality,
so we have Portugal → Portuguese, China → Chinese and Spain → Spanish as CFD’s.
In the Table 4.3 we have Portugal → Portuguese, Portugal → Greek, China → Chinese

and Spain→ Spanish as CFD’s.
Next we will see how to apply this in spreadsheets.

Detection

In order to detect this smell some steps have to be taken:
1st Step - "Data collection" The first step towards the detection of this smell is the collec-
tion of all the data from the spreadsheet. In this step we gather all the information contained
in the all the cells from the spreadsheet. During this step we have to do an extra handling
when dealing with formulas cells.

Because formulas are always different from cell to cell, even if they perform the same
calculations we have to transform these "absolute" formulas into relative formulas. This

26 CHAPTER 4. BAD SMELLS

means that, for instance, if we had the cell A11 with the absolute formula SUM(A1:A10)
the correspondent relative formula would be SUM(R[-10]C:R[-1]C). With this all the for-
mulas that perform the same operations and with the same range but in different cells they
will have the same relative formula (same value for calculations).

2nd Step - "Matching Data" After the data collection we do an attribute lattice match,
meaning that we match every column (row) with each other until we have a maximum of
four matched columns (rows), depending on how we read the data from the spreadsheet.

Figure 4.5: Attribute match lattice.

To better understand how this match is done we should look tho the Figure 4.5 where each
letter represents the name of one column. For instance the data from column A, matched
with the data from the column B creates the new group of data AB that contains a subset
where the data from both are the same. For instance, if we have A = {{1, 2, 3}, {4, 5, 6} and
B ={{1, 2}, {3}, {4, 5, 6} then AB={{1, 2}, {3}, {4, 5, 6}.

3o Step - "Identify Dirty Values" After matching all the data we find all possible rules
of the form [A, B] → C. In this step we have to make some manual configurations to
adjust the quality of the dirty values returned. We have to define the support (θ), that is
the minimum number of times that a FD must occur in order to be considered, and the
maximum error frequency (α), that unlike the support, is the maximum number of times
that a FD can occur in order to be considered a possible problem. These two variables are

4.2. SPREADSHEET SMELLS 27

going to be used as follow: first we walk all the xi ⊂ X and for each one we get the mapped
yi′s ⊂ Y that we will use to verify if |ymax |

N ≥ θ and |ys |

N ≤ α. In here the X and Y are the
partitions, for instance for the example in the Figure 4.6 if we have the candidate (X,Y)
= ((A,B,C,D),(A,B,C,D,E)), X would be the partition from (A,B,C,D) that in this case is
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and Y would be the partition of (A,B,C,D,E) that in this
case is {{1, 2}{3, 4, 5, 6, 7, 8, 9, 10, 11, 12}}. To better understand this you should read the
paper [4]. In our tests we always used θ = 0.2 and α = 0.1.

4o Step - "Ranking" In the previous step we obtain a list with many dirty values some
of them can point to the same cells but using different CFDs, so in this step we sum the
number of occurrences for each cell and rate them by frequency. This step is made to help
us prioritizing the results.

Example 4.4

Figure 4.6: Conditional Functional Dependency Example

For instance if we take a look to the example in Figure 4.6 we can see that the data
from the columns A, B,C and D is all the same. But in the column E we have two different
values, "102" and "103". So, for the pink area we have the rule [A, B,C,D] → E103. This
is the ymax and happens ten times, so we can calculate the support, θ = 10

12 = 0.8. For the
light blue area we have the rule [A, B,C,D] → E102, this happens two times and with this
we can calculate the frequency, α = 2

12 = 0.16(6). After these calculations we just have to
validate if they are according our reference values, the ones that we present in step three
and we found as a smell the cells E1 and E2.

28 CHAPTER 4. BAD SMELLS

4.2.5 Ochiai Smells

The Ochiai smell is the application of the ochiai algorithm developed by Abreu et al. [1].
This algorithm is based in the ochiai similarity coefficient known from the biology domain
and was introduced by Abreu et al. [1] in the context of fault localization, and previously
adapted to spreadsheets by Riboira in the research for the SSaaPP project2.

Detection

The algorithm adapted by Riboira receives as arguments a list of the cells detected by our
smells and the spreadsheet being analyzed and with those it will calculate the probability
of error from each cell and its dependents. By dependents we mean the references to other
cells. For instance if we have a cell detected that is a formula that uses other cells the
calculations of this smell will give ratings to all the cells implied.

Example 4.5

Figure 4.7: Ochiai Example

In the Figure 4.7 is presented an example where a pattern smell occurs: in cell C6 the
pattern of constant values is broken by a formula (Section 4.2.2). So, applying the ochiai
to that cell we have the output presented in the Figure 4.8

For this example where we only give the cell C6 to the ochiai as a smell, the output
tell us that the cells A4, A5 and A6 have an 71% rate of being the source of the problem,
and the cell C6 and B6 have 100%. This means that the cells in column A are used by the
others to compute their values.

2http://ssaapp.di.uminho.pt/

4.2. SPREADSHEET SMELLS 29

celulas ochiai: Sheet1!C6
[...\TESTE REF NULLS.xls]
NEW 'Sheet1' !A4 (71%) <<< WARNING!
NEW 'Sheet1' !A5 (71%) <<< WARNING!
NEW 'Sheet1' !A6 (71%) <<< WARNING!
NEW 'Sheet1' !B6 (100%) <<< WARNING!

'Sheet1' !C6 (100%) <<< WARNING!

Figure 4.8: Output of ochiai to the spreadsheet in Figure 4.7.

30 CHAPTER 4. BAD SMELLS

Chapter 5

Evaluation

Summary:
In this chapter we start by presenting the sample of spreadsheets that we
will use in the study and we explain from where and how we select them.
Then, we explain the classification model that will be used to classify the
smells found. After we present the tool “SmellSheet Detective”and explain
how it works, we explain its architecture and how it was built.
In the end we show and explain the results: these results start from the gen-
eral to the particular, meaning that we show the global results and then we
walk each category from the sample used and present results for each se-
lected spreadsheet. In this process we analyze six spreadsheet categories,
namely: database, financial, grades, homework, inventory and modeling.

“True genius resides in the capacity for evaluation of uncertain, hazardous,

and conflicting information.” Winston Churchill

A successful evaluation of the results is always dependent on the data used on it: if we
have poor data or an insufficient sample the results and conclusions taken may not be the
more accurate. Knowing this, we searched for a big and representative set of spreadsheets
to use in our analysis, the EUSES Corpus [17]. This set has already been used by others to
perform analysis in spreadsheets [7].

31

32 CHAPTER 5. EVALUATION

5.1 EUSES Corpus

The EUSES Corpus is a repository built through a Google search by the name of the six ma-
jor categories (Database, Financial, Grades, Homework, Inventory and Modeling), leaving
an initial sample of ≈5600 spreadsheets that after some cleaning process made by the au-
thors (for example, by removing the unusable and the duplicated ones) narrow the sample
to ≈4500 spreadsheets. From these 4500 we randomly selected 180 where categories and
properties are presented in Table 5.1.

Category Vertically Horizontally Poor Data Total

Database 42 6 10 60
Financial 20 22 18 60
Grades 13 2 1 15
Homework 15 0 1 16
Inventory 9 1 4 14
Modeling 12 1 2 15

Table 5.1: Data orientation in spreadsheets.

More than half of the sample are spreadsheets from financial and database because these
two categories were the ones we found more important and with the best data.

5.2 Classification Model

After the selection of the sample to be analyzed we had to define how the results would
be measured and classified. For this we inspired ourselves in the technique used by the
Software Improvement Group [15] and classified the smells in four levels:

• Level 1: In this level fit the cells that are week smells, things that may be a smell;

• Level 2: In this level fit all the cells that we are almost certain that are smells but due
to the lack of understanding of the sheet we cannot guarantee it as a smell.

• Level 3: In this level goes all the cells that we are sure that are smells.

• Not Smell: In this category goes all the wrong detections, because the tool did not
work properly, or because the detection seem to be on purpose.

5.3. SMELLSHEET DETECTIVE - THE TOOL 33

The creation of this standard, made possible an uniform classification of the spreadsheets.

5.3 SmellSheet Detective - The Tool

In the analysis of the selected spreadsheet sample we used the tool “SmellSheet Detec-
tive”which implements the smells introduced in the Chapter 4. This implementation was
made in Java using the Google web toolkit [12] (GWT), the Apache POI [28] library and
the Google libraries to work with spreadsheets from the Google Docs.

The use of Google in the application is because the technologies are evolving in the
direction of the browser-based approach, and thus we had to keep up and do something
according to it. Thus we built this tool that can work directly with a Google docs account
[13].

Figure 5.1: “SmellSheet Detective”Architecture.

Only having the Google docs as source of spreadsheets give rise to a security issue,
because many of the spreadsheets may be confidential and thus we don’t want to share them
with Google. For instance if one owns a company and wants to analyze the spreadsheets
used by it one may feel that is giving secrets away. In order to surpass this problem we
also have the possibility to directly analyze spreadsheets by uploading them to the tool

34 CHAPTER 5. EVALUATION

instead of login in Google account. This functionality is just a few steps away of being full
integrated.

With this we can describe the tool architecture as we see in Figure 5.1, where we have
three major nodes: Spreadsheet source, Computation Core and CSV outputs.

In the Spreadsheet source, as we mentioned before we have the Google docs or direct
upload. These two are the source from where the spreadsheets will be analyzed. If we use
the Google docs source, we have to login in with our Google account credentials and select
which spreadsheet to analyze. If we use the direct upload source, we just have to browse
the spreadsheet in our computer and select it.

In the Computation Core is where all the smells defined will be applied to the selected
spreadsheet(s).

Finally in the CSV outputs is were the outputs are created. Here we have three outputs,
two csv files and one xls file. In the csvs we have the results for each smell by analyzing
the data in two different ways, vertically and horizontally. In the xls file is where it will be
presented the results of the ochiai analysis mentioned in Chapter 4.

5.4 Results

In the representation of the results instead of full spreadsheets, we selected ten sheets per
category. This selection was made randomly. In some cases and since we were choosing
the sheets randomly, we got empty sheets. In these cases we choosed another sheet to
replace it. This happened just a few times because most of the spreadsheets have data; even
if in some of them there was few data in the sheets or if they looked like a word document
they had something to analyze. During the analysis of spreadsheets we realize that the
organization of the data could be done in two ways: either we can put the data organized
horizontally or vertically. This means that if the data was organized horizontally the values
would be co-related column by column. If we look to the Figure 5.2 we see a financial
spreadsheet where the expenses are presented for many years, putting these years side by
side. So the relation that makes sense to evaluate is between those values side by side.

In the Figure 5.3 we see a grade spreadsheet that unlike what happens to the Figure 5.2
the values that make sense to relate are the grades for each problem. So in this case we
have a vertical organization.

5.4. RESULTS 35

Figure 5.2: Horizontal Organization Data Example. (Adapted from
FIN_hospitaldataset2002 spreadsheet).

Figure 5.3: Vertical Organization Data Example. (Adapted from GRD_483_grades_web
spreadsheet).

Because of these two types of organization we decided to classify the sample used. To
do so, we opened all the spreadsheets one by one and that make us realize that most of the
spreadsheets had poor data in it: some were empty forms and others some sort of manuals
or catalogs were the data was mostly labels, so, we decided to identify some of these but
keeping a very permissive criteria because in spite we thought the data was poor, it was still
possible to analyze them. This lead to the fact that many of the spreadsheets characterized
as horizontal/vertical still hadn’t relevant data. The numbers of this classification can be
seen in the Table 5.1.

Next we will see the results for each of the six categories from the EUSES corpus.
During the presentation of the results first we will see the individual outputs for each sheet
and highlight some of the more relevant results. In the presentation of the results we will
hide the smells that had no cells flagged.

Then we will discuss the global results where we will group the results of all sheets
and make a statistical analysis to them. This statistical analysis will be done by level, and
smell and the values presented will always be an approximation because they will remain
accurate enough and will simplify the reading.

36 CHAPTER 5. EVALUATION

5.4.1 Database Sheets

With 60 spreadsheets the Database category is one of the two biggest samples that we have
used. Because this category mostly included spreadsheets similar to databases, most of the
cells were numeric and label values. The caption of each table is the name of the sheet with
the following format: DB_spreadsheet name sheet name. In the next sections the tables are
named likewise, just changing the first letters to meet the corresponding category. Also,
in the tables when the values occur followed by “matches” means that instead of number
of cells are the number of combinations founded, this only happens in the string distance
smell because the smell compares the cells two by two.

Results

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 9 0 0 1
F.D. Cells 2 1 0 0

Table 5.2: DB_basicdata HAFO Permits.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 2 0 0 21
Patterns 2 0 0 38

Table 5.3: DB_cattrainchecklist Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 0 0 0 1
String Dist. 0 0 0 6 Matches

Table 5.4: DB_duck94_otherdata RHBSept.

5.4. RESULTS 37

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 2 0 0 0
Patterns 2 0 0 0

Std. Dev. Cells 1 0 0 0
String Dist. 0 0 0 6 Matches

Table 5.5: DB_SteamTool 3. STEAM SYSTEM PROFILING.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 5 0 0 9
Patterns 5 0 0 9

F.D. Cells 2 4 1 0

Table 5.6: DB_NamingConventionDataS#A855B Summary.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 1 0 0
Patterns 0 1 0 0

String Dist. 0 0 0 6 Matches

Table 5.7: DB_rmomatrix MATRIX.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 15
Patterns 0 0 0 29

Std. Dev. Cells 0 0 0 18
F.D. Cells 0 2 0 0

Table 5.8: DB_ADC%20Databases ADC_data_Table1.

38 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 1
Patterns 0 0 0 2

Std. Dev. Cells 0 0 1 3

Table 5.9: DB_Population Pop.l1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 0 0 0 6 Matches

Table 5.10: DB_dab1 Sheet3.

Besides the results showed above, we also analyzed the sheet “DB_2004_admin_plan Goal

C” but because in this sheet all the results obtained were zero we did not create a table for
it.

From the results above, some got our attention. For instance, in Table 5.4 and Table 5.10
none of the detected cells were considered smells, making these sheets the ones with worst
percentage results in the category. On the other hand, Table 5.2 with ≈85% of the cells
flagged level 1 and ≈8% as level 2 is where we find the best percentage results for the
category.

Another thing we must notice is that in spite of for Table 5.4 the percentage results are
the worst, the Table 5.3 and Table 5.8 the number of not smells is substantially higher.

Discussion

Now we will see the general results for the Database category and discuss some of the
more relevant findings.

5.4. RESULTS 39

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 7 1 0 45 53
Patterns 7 1 0 78 86

Std. Dev. Cells 10 0 0 23 33
String Dist. 0 0 1 24 25

F.D. Cells 4 7 1 0 12
Ref2null 0 0 0 0 0

Total: 28 9 2 170 209

Table 5.11: Database Result Totals.

In the Table 5.11 is presented the total values for each smell and the total values by level
from all the sheets seen previously.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 13% 2% 0% 85%
Patterns 8% 1% 0% 91%

Std. Dev. Cells 30% 0 % 0% 70%
String Diff. 0% 0% 4% 96%

F.D. Cells 33% 58% 8% 0%
Ref2null 0% 0 % 0% 0%

Total: 13% 4% 1% 81%

Table 5.12: Database Statistical Result by Smell.

40 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 25% 11% 0% 26%
Patterns 25% 11% 0% 46%

Std. Dev. Cells 36% 0 % 0% 14%
String Diff. 0% 0% 50% 14%

F.D. Cells 14% 78% 50% 0%
Ref2null 0% 0 % 0% 0%

Table 5.13: Database Statistical Result by Level.

Observing the Tables 5.11, 5.12 and 5.13 the first thing that we notice is that no references
to empty cells have been found. This happens because in this category, from the ten selected
sheets, the data was mainly label and numeric values, not leaving room for this smell.

Another thing we can see in the tables is that the patterns and the empty cells are the
smells that happen more often and they have some overlap results. This happens because
these two smells have much in common. In fact the patterns will found almost all the results
that the empty cells do, and some more.

Still from the tables we can see that for the functional dependencies smell none of the
findings was considered not a smell. This is easy to understand why: like we have talked in
Section 4.2.4 the algorithm used to detect these smells was adapted from the databases, and
being this category the databases category was expected that the results were well behaved.

Also if we look to Table 5.12 we can see that most of the detected cells (≈81%) were
not considerate as smells, but we must consider that from these ≈81% of cells ≈72% were
either empty cells or patterns that were almost overlapped smells. This happens so much
because in this category many sheets were really like databases where null values are al-
lowed and in the spreadsheets were represented by empty cells. Still from these ≈81% cells
≈14% where string differences where the difference was in a numeric value.

5.4.2 Financial Sheets

Like the Database category the Financial is the other big sample with a total of 60 spread-
sheets. But unlike the Database this category is more complex in terms of types of data
having a little bit of all cell types (Formulas, Constants and Labels).

5.4. RESULTS 41

Results

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 4
Patterns 2 0 0 0

String Diff. 0 0 0 7 Matches
Ref2null 6 0 0 0

Table 5.14: FIN_CMSAauditreport2002_2003 Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 2 0 0
Patterns 0 2 0 0

Std. Dev. Cells 0 0 0 18
String Diff. 0 0 0 3 Matches

F.D. Cells 0 0 3 0
Ref2null 0 0 4 0

Table 5.15: FIN_FinalAnnexFSSN06001 Annex3.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 2
Patterns 0 0 0 2

Ref2null 8 0 0 0

Table 5.16: FIN_Cost%20Statement Blad1 (2).

42 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 3 0 0 6
Patterns 4 0 0 30

Std. Dev. Cells 0 0 0 1
String Diff. 0 0 0 3 Matches

Table 5.17: FIN_Financial%20Compariso#A7ED8 Financial Comparison Analysis.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 2 0 0 5
Ref2null 0 0 1 6

Table 5.18: FIN_finrpt00 Five Year Review.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 6
Patterns 0 0 0 6

Std. Dev. Cells 0 0 0 9

Table 5.19: FIN_income-statement Income Statement.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Ref2null 1 1 0 0

Table 5.20: FIN_MATHCOUNTS%20Financial Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 4
Patterns 0 0 0 16

5.4. RESULTS 43

Table 5.21: FIN_hospitaldataset2002 MEMORIAL.

Beside the sheets presented above we also analyzed the sheets “FIN_clienttemplate Finan-

cial Diagnostics” and “FIN_financial-greece_el GR”, but since the results obtained were
all zero no tables were created.

From the result tables presented we can notice that, for instance, for Table 5.19 and
Table 5.21 all the flagged cells were considered not smells making them the sheets with the
worst results from the sample. On the other hand Table 5.20 all the cells were correctly
flagged and therefore this is the sheet with the best results.

Other result that we must highlight is the pattern smell in Table 5.17 where 30 cells
were categorized as not smell. This value is quite high specially if we compare it to the rest
of the values.

We also must underline the standard deviation smell in Table 5.15 where we also ob-
tained a quite high value again, specially if compared to the other values.

Discussion

Now we will see the general results obtained in the Financial category and point some
interesting facts that can be extracted from them.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 3 2 0 22 27
Patterns 6 2 0 54 62

Std. Dev. Cells 2 0 0 33 35
String Diff. 0 0 0 13 13

F.D. Cells 0 0 3 0 3
Ref2null 9 1 7 6 23

Total: 20 5 10 128 163

Table 5.22: Financial Result Totals.

44 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 11% 7% 0% 81%
Patterns 10% 3% 0% 87%

Std. Dev. Cells 6% 0 % 0% 94%
String Diff. 0% 0% 0% 100%

F.D. Cells 0% 0% 100% 0%
Ref2null 39% 4 % 30% 26%

Total: 12% 3% 6% 79%

Table 5.23: Financial Statistical Result by Smell.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 15% 40% 0% 17%
Patterns 30% 40% 0% 42%

Std. Dev. Cells 10% 0 % 0% 26%
String Diff. 0% 0% 0% 10%

F.D. Cells 0% 0% 30% 0%
Ref2null 45% 20 % 70% 5%

Table 5.24: Financial Statistical Result by Level.

Unlike what happens in the previous category in which we did not find one type of smells,
in the Financial category we have results for every type of smell. Still, by observing Ta-
ble 5.22, Table 5.23 and Table 5.24 there are some facts that can be observed. One thing
that can be easily observed from the tables is that in the string distance smell all the flagged
matches were considered not smells. In spite of the detected smells were all wrong, they
can be easily corrected because all of them were either numeric values with a dollar mark
associated or index labels where the difference was in the number of the index.

Another thing that we can see is that unlike the string distance smell, in the functional
dependencies smell all the flagged cells are level 3. This may lead to conclude that this
smell works very well for this category but because all the cells came from the same sheet
(Table 5.15) we just can say that for that sheet this smell worked perfectly. In fact in this

5.4. RESULTS 45

sheet it helped to identify some cells that just by looking were really hard to detect.

Another smell that seems to behave nicely is the reference to empty cells where only
≈26% of the detected cells were considered not smell. One of the things that lead to this
is that in this category there are used many ranges and some of them go out of boundaries.
Also, many times they make use of empty cells that should be filled. Another thing is the
existence of some sheets that are forms to fill with data.

We can also notice that the patterns represent ≈42% of the not smells being the highest
value. One explanation for this is that most of the sheets have calculations in the middle of
the data creating blocks of cells with formulas mixed with values.

5.4.3 Grades Sheets

The Grades category is built by a set of 15 spreadsheets where, like the name suggests,
most of them are used to grade/classify something. Therefore the data in it has a little bit
of every type of cells, but the main percentage of cells are numeric values.

Results

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 1 0 0 0
Patterns 1 0 0 1

Std. Dev. Cells 1 0 0 7

Table 5.25: GRD_483_grades_web grades.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 9
Patterns 0 0 0 9

Std. Dev. Cells 1 0 0 4

Table 5.26: GRD_as474gradestopost lab grades.

46 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 0 0 0 97
String Diff. 0 0 0 14 Matches

F.D. Cells 0 0 0 81

Table 5.27: GRD_2003FP785DZ 2003FP785DZ.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 19
Patterns 0 0 0 26

String Diff. 0 0 3 1319 Matches
Ref2null 36 0 0 0

Table 5.28: GRD_dss-2001 Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 2
String Diff. 0 0 3 3 Matches

F.D. Cells 0 0 1 0
Ref2null 0 0 0 18

Table 5.29: GRD_firsttrimester Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Diff. 0 0 0 15 Matches

Table 5.30: GRD_99execgrades Exec Grades.

5.4. RESULTS 47

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 14 0 0 0
Patterns 15 0 0 0

Std. Dev. Cells 0 0 0 4
F.D. Cells 19 0 0 0

Ref2null 0 8 0 0

Table 5.31: GRD_CRJ%20230_Spring%20grades ClassRosterExportServlet.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 1 0 0
Patterns 0 1 0 0

Std. Dev. Cells 0 0 0 12
String Diff. 0 0 0 1 Match

F.D. Cells 0 0 0 8
Ref2null 0 0 1 0

Table 5.32: GRD_anat1f03post post1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 9
Patterns 0 5 0 9

Std. Dev. Cells 0 0 0 8
String Diff. 0 0 1 Match 1 Match

F.D. Cells 0 5 0 0

Table 5.33: GRD_2000_places_School Sheet1.

Besides the sheets presented above we also analyzed the sheet “GRD_Engineering En-

gines”, but since the results obtained were all zero no table was created.

Looking to the results presented, there are some values that must be highlighted. The
first one appear in Table 5.28 in the string distance smell: we got 1319 matches that were

48 CHAPTER 5. EVALUATION

not considered as smells. This was the highest value found in all the results from all the
categories.

Other thing we must notice is that in Table 5.27 and Table 5.30 all the flagged cells
were considered not smells, making of these two sheets the ones with worst results from
the category. Unlike these two sheets, the Table 5.31 is the sheet with best results for this
category. With only ≈7% of the cells (standard deviation) flagged not being considered as
smell.

Discussion

Now we will see the general results obtained in the Grades category and point some inter-
esting facts that can be extracted from them.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 15 1 0 40 56
Patterns 16 5 0 45 66

Std. Dev. Cells 2 0 0 132 134
String Dist. 0 0 4 1353 1357

F.D. Cells 55 5 1 89 150
Ref2null 0 8 1 18 27

Total: 88 19 6 1677 1790

Table 5.34: Grades Result Totals.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 27% 2% 0% 71%
Patterns 24% 8% 0% 68%

Std. Dev. Cells 1% 0 % 0% 99%
String Dist. 0% 0% 0% 100%

F.D. Cells 37% 3% 1% 59%
Ref2null 0% 30% 4% 67%

Total: 5% 1% 0% 94%

5.4. RESULTS 49

Table 5.35: Grades Statistical Result by Smell.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 17% 5% 0% 2%
Patterns 18% 26% 0% 3%

Std. Dev. Cells 2% 0 % 0% 8%
String Dist. 0% 0% 67% 81%

F.D. Cells 63% 26% 17% 5%
Ref2null 0% 42 % 17% 1%

Table 5.36: Grades Statistical Result by Level.

Once again, in this category all the smells have been found in the sample. If we pay
attention to Table 5.34, Table 5.35 and Table 5.36 there are some values that we must look
into. The first one is the high number of flagged matches in the string distance smell:
with 1353 matches it represents ≈100% of the results for that smell. This happens due to
the results already highlighted above where we present the results for this category. The
explanation for this value is simple and manageable because from these 1353 matches, 1347
were comparisons between numeric values read as strings. From all the 1353 detected, only
one is for sure a false detection. This problem was in the implementation of the smell. For
instance, when he verifies if is a numeric value if the value starts with empty space the
value would be read as a string.

Like the string distance, the standard deviation also has very poor results in this cat-
egory, with ≈99% of the cells detected not being considered as smells. We also have an
explanation for this. Because the grades of a student can be almost random, some go from
0 to 100, and thus the really bad or really good scores will be flagged as out of the standard
and so from all the cells we detect we only gave importance to those that were 0 or out of
the range considering every other cell as correct.

At last, we must notice once again the close results obtained by the empty cells and the
patterns.

50 CHAPTER 5. EVALUATION

5.4.4 Homework Sheets

The Homework category is built by a set of 16 spreadsheets that were some sort of home-
works. The spreadsheets in this category were so distinct that some of them could easily
be placed in some of the other categories: one could fit in Grades, other that could fit in
Database and even in Financial.

Results

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 3
Patterns 0 0 0 3

Std. Dev. Cells 5 0 0 0
F.D. Cells 1 0 0 0

Table 5.37: HOME_finalGRADES Writing Assng.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 2
Patterns 0 0 0 2

String Dist. 0 0 0 93

Table 5.38: HOME_AClassSchedule2003 Schedule.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 7
Patterns 0 0 0 12

String Dist. 0 0 0 100 Matches
F.D. Cells 0 0 0 1

Table 5.39: HOME_D6 D6.2.

5.4. RESULTS 51

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 27
Patterns 0 0 0 28

Table 5.40: HOME_comments02 Sheet2.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 1 Match 0 0 7 Matches

Table 5.41: HOME_2101_Homework 2101.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 0 0 0 23 Matches

Table 5.42: HOME_cgs1540 Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Patterns 0 0 0 9
Std. Dev. Cells 0 0 0 8

Table 5.43: HOME_Econ%20homework%20one Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 1 0 0 1
Patterns 1 1 0 1

Std. Dev. Cells 0 0 0 1

Table 5.44: HOME_Fin_Eval-Budgets-Web 1997.

52 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 1
Patterns 0 0 0 1

String Dist. 0 0 0 7 Matches

Table 5.45: HOME_cis105Winter2004calendar January 2004.

Like in the previous categories we also got one sheet where the results were all zero, the
“HOME_embaform statement of corporate support”, and therefore no table was created.

Looking to the tables above there are some facts that we must highlight. In Tables 5.38,
5.39, 5.40, 5.42, 5.43 and 5.45 all the detected cells were considered as not smell.

We also can see that the best percentage result obtained in this category is for the Ta-
ble 5.37 and Table 5.44 with only ≈50% of the smells being correctly accepted as ones.

Discussion

Now we will see the general results obtained in the Homework category and point some
interesting facts that can be extracted from them.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 1 0 0 41 42
Patterns 1 1 0 56 58

Std. Dev. Cells 5 0 0 9 14
String Dist. 1 0 0 230 231

F.D. Cells 1 0 0 1 2
Ref2null 0 0 0 0 0

Total: 9 1 0 337 347

Table 5.46: Homework Result Totals.

5.4. RESULTS 53

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 2% 0% 0% 98%
Patterns 2% 2% 0% 97%

Std. Dev. Cells 36% 0 % 0% 64%
String Dist. 0% 0% 0% 100%

F.D. Cells 50% 0% 0% 50%
Ref2null 0% 0 % 0% 0%

Total: 3% 0% 0% 97%

Table 5.47: Homework Statistical Result by Smell.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 11% 0% 0% 12%
Patterns 11% 100% 0% 17%

Std. Dev. Cells 56% 0 % 0% 3%
String Dist. 11% 0% 0% 68%

F.D. Cells 11% 0% 0% 0%
Ref2null 0% 0 % 0% 0%

Table 5.48: Homework Statistical Result by Level.

Like in the Database category we also did not obtain any results for the reference of empty
cells smell. In spite of in this category more formulas were used than in the Database their
use was almost cell by cell and no ranges not leaving much room for mistakes at this level.

Other thing that we can easily see from the tables is that we got really high rate of not
smells, ≈97% of the cells. And, from these ≈97%, the string distance smell is the one
with the highest value (≈68%). This happens because like we have showed previously, the
comparison between numeric values is a problem for this smell.

We must also notice once again the close results obtained by the empty cells and the
patterns.

54 CHAPTER 5. EVALUATION

5.4.5 Inventory Sheets

Now we will present the results from Inventory category. With 14 spreadsheets this is the
smaller category evaluated. The data in the spreadsheets from this category is quite similar
to the one found in the Database category, being mainly a list of items with descriptions
and so almost only constants are used.

Results

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 1 0 0 0
Patterns 1 0 0 0

F.D. Cells 1 1 0 0

Table 5.49: INV_1996El_Final_Files WRAP Domain.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 0 0 0 2

Table 5.50: INV_Inventory%20Log%20Sheet Basement.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 0 0 0 5

Table 5.51: INV_AssetAccountCodes ACCT Asset.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 29
Patterns 0 0 0 29

String Dist. 0 0 0 101 Matches

5.4. RESULTS 55

Table 5.52: INV_outline TOC for Pam.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 2
Patterns 0 0 0 2

String Dist. 0 0 0 2 Matches

Table 5.53: INV_InsuranceApplication-#A8A10 Page 4.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 0 0 0 3 Matches
F.D. Cells 0 0 0 5

Table 5.54: INV_Licensing%20Inventory#A88C0 Purchase Data.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Patterns 0 0 0 1
String Dist. 0 0 1 Match 3 Matches

Table 5.55: INV_PrimaryProduction2003 Dec.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 71
Patterns 0 0 0 72

Std. Dev. Cells 0 0 0 24
String Dist. 0 0 1 Match 3 Matches

F.D. Cells 0 0 0 4

Table 5.56: INV_ICATINV iccat tag.

56 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 1 0 0 0
String Dist. 1 Match 0 0 43 Matches

F.D. Cells 0 0 0 2

Table 5.57: INV_2003-fairact II. Inherently Governmental.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 6
Patterns 0 0 0 6

Table 5.58: INV_CL2003-007_AnnexB ANNEX B.

For the first time from the sample selected we did not get any sheet with no results. Still in
the Table 5.50, Table 5.52, Table 5.53, Table 5.54, Table 5.51, Table 5.58 all of the flagged
cells were considered not smells making them the ones with worst percentage results. From
those five Table 5.52 is the one that presents the worstest scenario.

On the other hand, in this category we also have a sheet where all the cells were consid-
ered as smell, Table 5.49 with three smells level 1 and one level 2.

Discussion

Now we will see the general results obtained in the Inventory category and point some
interesting facts that can be extracted from them.

5.4. RESULTS 57

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 1 0 0 108 109
Patterns 1 0 0 110 111

Std. Dev. Cells 1 0 0 31 32
String Dist. 1 0 2 155 158

F.D. Cells 1 1 0 11 13
Ref2null 0 0 0 0 0

Total: 5 1 2 415 423

Table 5.59: Inventory Result Totals.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 1% 0% 0% 99%
Patterns 1% 0% 0% 99%

Std. Dev. Cells 3% 0 % 0% 97%
String Dist. 1% 0% 1% 98%

F.D. Cells 8% 8% 0% 85%
Ref2null 0% 0 % 0% 0%

Total: 1% 0% 0% 98%

Table 5.60: Inventory Statistical Result by Smell.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 20% 0% 0% 26%
Patterns 20% 0% 0% 27%

Std. Dev. Cells 20% 0 % 0% 7%
String Dist. 20% 0% 100% 37%

F.D. Cells 20% 100% 0% 3%
Ref2null 0% 0 % 0% 0%

Table 5.61: Inventory Statistical Result by Level.

58 CHAPTER 5. EVALUATION

The general conclusions about this category are quite similar to the ones taken in the Home-

work category. We did not obtain any results for the reference of empty cells smell because
once again the data in here was almost only constants and therefore without formulas we
can not have this smell.

Like in Homework, in this category we also got a high rate of not smells, with ≈98% is
even higher. But, instead of the fault being only from the string distance smell like in the
Homework, the empty cells and the patters also gave a big help. These three smells had
high rates because of two reasons: 1) the string distance once again had the problem with
comparison between numeric values; 2) In the empty cells and patterns the problem was
the same because almost all of the detected cells overlap each other, and the problem was
that being this category similar to the Database, many of the cells make sense to be empty.

We must also notice once again the close results obtained by the empty cells and the
patterns.

5.4.6 Modeling Sheets

The final category analyzed was Modeling. With a total of 15 spreadsheets from this cate-
gory the data present in them was mostly constants but there were one or two sheets with
formulas, even if very simple formulas.

Results

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Std. Dev. Cells 1 0 0 2
F.D. Cells 3 0 0 0

Table 5.62: MOD_skill-certificates-071103 West.

5.4. RESULTS 59

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 13 0 0 0
Patterns 14 0 0 3

String Dist. 9 Matches 1 Match 0 2 Matches

Table 5.63: MOD_Analytic_work Sheet 1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 0 0 0 7 Matches
F.D. Cells 0 0 1 0

Table 5.64: MOD_rs2002-0152att CALFED Watershed.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 0 1 Match 0 563 Matches

Table 5.65: MOD_PSCCUNYawards Sheet1.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 0 0 0 18
Patterns 0 0 0 18

String Dist. 0 0 0 37 Matches

Table 5.66: MOD_IROS2003-Program-Final Sessions.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

String Dist. 1 Match 0 0 19 Matches

Table 5.67: MOD_Teaching%20Evaluation#A8732 Sheet1.

60 CHAPTER 5. EVALUATION

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 75 0 0 0
Patterns 79 0 0 0

Std. Dev. Cells 0 0 0 4
String Dist. 1 Match 0 0 17 Matches

F.D. Cells 0 0 0 20

Table 5.68: MOD_CancelsFullstOct02 CancelsFullLstOct02.

The results obtained for the sheets “MOD_Draft_SIP_Timeline Summary & Timeline”,
“MOD_Template%20-%20Config#A7D35 Types” and “MOD_alfabetischelijst Sheet1” are
all zero.

In this category we can see that in Table 5.66 all the flagged cells were considered not
smell, so, this is the sheet where we found the worst results. Other value to highlight is the
string distance in the Table 5.65, with 563 matches it is the highest value from this category.

We also got some good results, for instance in Table 5.63 where ≈88% of the cells were
considered as smells, or even in Table 5.68 with ≈79%.

Discussion

Now we will see the general results obtained in the Modeling category and point some
interesting facts that can be extracted from them.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 88 0 0 18 106
Patterns 93 0 0 21 114

Std. Dev. Cells 1 0 0 6 7
String Dist. 11 2 0 645 658

F.D. Cells 3 0 1 20 24
Ref2null 0 0 0 0 0

Total: 196 2 1 710 909

Table 5.69: Modeling Result Totals.

5.4. RESULTS 61

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 83% 0% 0% 17%
Patterns 82% 0% 0% 18%

Std. Dev. Cells 14% 0 % 0% 86%
String Dist. 2% 0% 0% 98%

F.D. Cells 13% 0% 4% 83%
Ref2null 0% 0% 0% 0%

Total: 22% 0% 0% 78%

Table 5.70: Modeling Statistical Result Totals by Smell.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell

Empty Cells 45% 0% 0% 3%
Patterns 47% 0% 0% 3%

Std. Dev. Cells 1% 0 % 0% 1%
String Dist. 6% 100% 0% 91%

F.D. Cells 2% 0% 100% 3%
Ref2null 0% 0 % 0% 0%

Table 5.71: Modeling Statistical Result Totals by Level.

Like in the rest of the categories the Modeling category also got an highest rate of not
smells, with ≈78% of not smells. But in this category this happen due the high value of
not smells in the string distance that got ≈91% of not smells leaving all the others with
less than 4%. This high result in this smell once again comes from the match with numeric
values.

Other thing that we can see is that in the empty cells and patterns, besides the fact that
they still have close results, for the first time these smells got lowest rate of not smells, with
less than ≈18%.

We can also see that once again we got no results for the references to empty cells.
This happen because like in the Homework category the few formulas considered are used
without ranges making it harder to miss.

62 CHAPTER 5. EVALUATION

If we look to Table 5.69 we can see that the functional dependencies smell got all their
bad results from Table 5.68 and this was because the kind of data in the sheet was not good
for the algorithm because it did not seem to have dependent values.

5.4.7 Global Discussion

The exhaustive analysis made to these six categories and because we opened all the sheets
and analyze them all one by one, some general and interesting facts must be highlighted.
In terms of the results, the first thing we must say is that by the fact of the empty cells
and the patterns smell being calculated in a very similar way, the results of one most of
the times overlap the other. Other thing about the results is the fact that the sample used
being gathered from the Internet and we can’t ask the authors of the spreadsheets what they
meant to do, or if what is done is correct or not, so many of the not smell were also because
we did not know the domain of the sheets and we had no one to ask.

PPPPPPPPPPP
Smell

Level
Level 1 Level 2 Level 3 Not Smell Total

Empty Cells 115 4 0 274 393
Patterns 124 9 0 364 497

Std. Dev. Cells 21 0 0 234 255
String Dist. 13 2 7 2420 2442

F.D. Cells 64 13 6 121 204
Ref2null 9 9 8 24 50

Total: 346 37 21 3437 3841

Table 5.72: Global Result Totals.

From the results presented in Table 5.72 we can say that some results may be improved.
For instance, the string distance smell that is the one with more wrong detections, from the
2420 wrongly detected smells, with an improvement on the string distance algorithm as
discussed on Section 6.1 we believe that 2134 of those wrongly detected smells will not be
considered so. This would lead to an improvement in this smell of ≈ 88%. The other smell
where the results would be improved is the standard deviation smell, in this one we do not
have a percentage of improvement because most of the wrong detections was due the lack
of knowledge of the domain of the spreadsheet.

5.4. RESULTS 63

This analysis also showed some problems with the current implementation of the “Smell-
Sheet Detective”tool. The first one was that whenever two or more cells were merged our
tool just notices the existence of one leaving the others empty. Imagine that you merge A1,
A2 and A3 creating a larger cell where you put the input “10”, for our tool it was like A1
had input of “10” and the rest (A2 and A3) were empty. To solve this we would have to
somehow identify these merged cells, and put in each of them a special mark in order to
identify them during the analysis.

Another problem detected on the tool was related the high number o matches found in
the string distance smell. Because we use the Levenshtein distance algorithm to find close
strings and this algorithm is thought specially for strings, most of the wrong string distance
detected came from the use of the algorithm in numeric strings or strings with numeric
values. One solution for this problem would be the identification of the character where the
strings were different and if that character was a numeric value we would ignore it.

Finally, another problem that we were able to detect, was that in some sheets many cells
were the sum of others but with the result inserted by hand and not using a formula. This
happens for instance in the sheet “FIN_hospitaldataset2002 MEMORIAL” on the cell F22,
this is an interesting feature that we should add to our tool. This has happened at least
in three of the sheets analyzed, being the example the one with more cases. Three times
may not be a high number of occurrences, but since the analysis made was not to find those
cases we believe that if we search properly more cases would be found. Also, this proposed
feature is just a theoretical proposal that should be studied properly by performing some
tests and analyzing the results obtained.

64 CHAPTER 5. EVALUATION

HHH
HHH

HH
Smell

Rate
Usable Not Usable Neutral

Empty Cells Modeling Database; Grades; Finan-
cial; Homework; Inventory

Patterns Modeling Database; Grades; Finan-
cial; Homework; Inventory

Std. Dev. Financial(**) Database; Grades; Model-
ing; Homework; Inventory

String Dist.(*) Database; Grades; Finan-
cial; Homework; Inven-
tory; Modeling

F.D. Cells Database; Grades; Finan-
cial; Modeling

Homework; Inventory

Ref2null Grades; Financial; Home-
work; Modeling

Database;
Inventory

Table 5.73: Where to use or not the smells.

In the Table 5.73 we can see in which category each smell should be used.
(*) The string distance smell in all the categories must be improved in order to be used.
These improvements will be mentioned in the Chapter 6.
(**) The standard deviation smell for the Financial category in order to give meaningful
results must also be improved with the help of the Layout Smell that will be introduce in
Chapter 6.

In the Database category we can say that the empty cell and the patterns smell should
not be used because due the structure of the sheet they will flag many false smells. The
reference to blank cells because in this type of sheets we have no formulas we may or may
not use it because the result will always be null. On the other hand, the smell that can be
used is the functional dependencies and the string distance smell.

In the Financial category we should not use the the empty cell and the patterns smell,
but the rest of the smells may be used.

In the Grades category we should not use the empty cell, the patterns, and the standard
deviation smell because due the type of data they get bad results. On the other hand the
string distance, the functional dependencies and the references to blank cells may be used.

5.4. RESULTS 65

The reference to blank cells in spite of the results obtained being just ≈34% of true smells,
this happens because one of the sheets analyzed (Table 5.29) was an empty form to fill and
the total (≈67%) of the not smells cam from that sheet.

In the Homework category the the type of sheet is so distinct that for some smells their
use will depend on the sheet. For instance, the functional dependencies smell we have some
sheets that perform well and others that do not. On the other hand the string distance and
the reference to blank cells may be used safely.

The Modeling category once again we have a smell with bad results but that we chose to
classify as usable, like the in the grades for the reference to blank cells in this category the
not smells obtained for the functional dependencies smell came all from the same sheet.
On this category the only smell that we should not use is the standard deviation smell.

Finally the Inventory category. In this one the only smells that should be used are the
string distance and the reference to blank cells.

66 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

This thesis was mostly directed to the assembly of a technique that allowed us to perform
a good and reliable analysis of spreadsheets. Thus, all the steps needed to construct such
a technique and corresponding tool, “SmellSheet Detective”and results obtained by it are
shown.

The main goal was the creation of smells for spreadsheets. As we can see from the
Chapter 4 this was successfully accomplished because we created a catalog with seven
distinct smells, even if in the case of the pattern smell and the empty cell smell they were
very similar.

Because the spreadsheets used in the analysis were product of a Google search, some
doubts about their quality arise. This happens because, if we think clearly, we know that
companies have secrets that need to be protected and so, it would be likely that the im-
portant and more complex spreadsheets used by these companies in their daily work were
not available for the general public. Thus we had to know how good were the spread-
sheets in EUSES in order to rely (or not) on the results obtained. In spite of the sample
selected (∼200 spreadsheets) may not be the perfect sample, still it should give some ac-
curate indicators of the status of the EUSES Corpus. From the work done in order to build
Table 5.1 in Chap. 5 I can say that in the category of financial the average of spreadsheets is
quite good and complex enough for future analysis, the category of database is also a good
representative of databases on spreadsheets.

Still about the spreadsheets used we must say that in the financial category an interest
finding was made: the fact of many spreadsheets in this category had the data organized in
different way, instead of a vertical organization they had the data organized horizontally.

67

68 CHAPTER 6. CONCLUSION

This happens because in the financial category often there is a reference to many years,
and to have a reference of the values and to see the history of the companies they place the
values of each year side by side.

After this my final thoughts about the EUSES are that in spite of it still can be used for
some tests, it needs a proper cleaning in order to become a more reliable set of spreadsheets.

Other of the proposed goals was about the development of a tool.

About this we must say that in spite of the fact the current status of the tool is acceptable,
during the development there was a brainstorm of ideas and new possible features were
considered to enhance the results. Thus, we must say that the tool is not finished and some
work needs to be done. We can say that, for instance, the use of the standard deviation
smell must be ruled by the type of data and data organization and that the use of functional
dependencies does not make sense for spreadsheets with almost only numeric type cells.

Finally about the results obtained we can start by saying that, for the statistical smell,
the results lead to conclude that his use would be more accurate if we could apply it to
regions from a spreadsheet where the data were related instead of doing it for all the sheet.
This way the values used by the smell would always be related to each other.

In the type smells that had the empty cells smell and the pattern smell, maybe we could
either ignore the empty cells in the pattern smell or ignore the results from the empty cells
smell because often they overlap results. Still, the type smells were mostly helpful to find
forgotten cells in the spreadsheets.

The input smells were the string distance smell and the reference to empty cells smell.
For the string distance in spite of the fact that when theorizing it sounded great, the results
presented showed us the other way, this smell still has some work to be done. This work
will be mentioned in the Section 6.1

About the references to empty cells happens exactly the opposite, all the results found
were considered important finding because references to empty cells only make sense if the
spreadsheet is a form, other than that may lead to latter problems.

The functional dependencies smell was the more hard-working smell, obtained by adapt-
ing an algorithm used in databases it would be expected that this smell worked better in the
spreadsheets from databases. This not always happens, in fact many spreadsheets in the fi-
nancial category have better results. This can be easily explained by the fact that this smell
when analyzes a formula cell, instead of use the value calculate by the formula it uses the
relative formula and doing this many patterns may be found. For instance, when you have

6.1. FUTURE WORK 69

a full column with totals, the formulas of all those totals will be the same. This is easier to
understand by looking to the Fig. 6.1, in the figure we can see the different values for each

Figure 6.1: Formula Relative Explanation.

case, the computed value that is the generated by the formula, the regular formula that is
the formula read by excel, and the relative formula that is used by me to map the cells. We
can see that the relative formula is the same for the three cases in spite being different for
the others.

6.1 Future work

In the future the research of new smells is an important step, for instance, the detection of
constants in the middle of formulas, because the use of constants instead of a reference to
a cell may be problematic for future updates. With this smell we could detect some cells
forgotten during past updates.

Another thing we should do in the future is to create some sort of layout smell, a smell
to detect related cells in the spreadsheet. For instance if we have a column where the values
are grades from one exercise, the values from all that column would be one detected area.
This smell would be useful to identify cells out of boundaries and to combine with other
smells in order to improve their accurateness.

Other possible smell would be the detection of sums written by hand, like we have
mentioned in Section 5.4.7. There are some sheets where the result of the sum of some cell
are written by hand, and this can also lead to problems.

On the tool level, the improvement of the implementation of the existent smells also
needs to be done. For instance, in the functional dependencies the validation of results
that are implied by only one column should be deeper investigated because at the first
glance it seemed that almost all the detections made like this were wrong, but like we said
this is something that should be subject to a better analysis. Another improvement to be

70 CHAPTER 6. CONCLUSION

made is the on the string distance smell: a better parser should be created in order to avoid
date comparison, or values with the symbol of currencies, or even avoid results where the
Levenstein Distance is applied in numerical strings either full or partial e.g. "page 1" vs
"page 2" or "0123" vs "0113".

On the quality of the data, a new and more reliable set should be found/created, what
should be done is to clean and increment the existent one, we could either select by hand
(painful) each spreadsheet that we find good or we could use, for instance, a software like
the one that Software Improvement Group already has to analyze this corpus, select the
spreadsheets with best results and filter them to a new set of spreadsheets.

About the ochiai smell that was introduced but no results were shown, we think that,
since the output given by it being a percentage of correctness, in the future we could use it
to validate the other results.

Finally, one other thing that would be nice to do is to combine our spreadsheet smells
with the ones defined/adapted by Hermans.

Appendix A

Metric Tables

Metric Name Brief Description Fu
nc

tio
na

lit
y

R
el

ia
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

E
ffi

ci
en

cy

U
sa

bi
lit

y

#Fan-In References to other cells x x x x
#Fan-Out References from other cells x x x x
#References Total number of references x x x x
#Refs. to Empty Cells Number of refs. to a Empty cell x x x x x
#Constants in Formula Number of constants in a formula x x x x

Table A.1: Cell Level Metrics.

71

72 APPENDIX A. METRIC TABLES

Metric Name Brief Description Fu
nc

tio
na

lit
y

R
el

ia
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

E
ffi

ci
en

cy

U
sa

bi
lit

y

#Fan-In References to other sheets x x x x
#Fan-Out References from other sheets x x x x
#References Total number of references x x x x
#Paths Number cells with chain references x x x x
#Blank Cells Number of blank cells x
#Blank Rows Number of blank rows x x x
#Blank Columns Number of blank columns x x x
#Cells Total number of cells x x
#Rows Total rows x x
#Columns Total columns x x
#Labels Number of labels x x
#Numerical Number of numbers x x
#Formulas Number of formulas x x
#Complex Formulas Number of complex formulas x x x x
#Unique Formulas Number of unique formulas x x x x

Table A.2: Sheet Level Metrics.

Metric Name Brief Description Fu
nc

tio
na

lit
y

R
el

ia
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

E
ffi

ci
en

cy

U
sa

bi
lit

y

#Fan-In References to other spreadsheets x x x x
#Fan-Out References from other spreadsheets x x x x
#Paths Number cells with chain references x x x x
#Circular References References from one spreadsheet to

other, then to the same.
x x x x x

#Blank Sheets Number of blank sheets x

Table A.3: Spreadsheet Level Metrics.

Bibliography

[1] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. Spectrum-based multiple fault lo-
calization. In Proceedings of the 2009 IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE ’09, pages 88–99, Washington, DC, USA, 2009.
IEEE Computer Society.

[2] T. L. Alves, C. Ypma, and J. Visser. Deriving metric thresholds from benchmark data.
In International Conference on Software Maintenance, pages 1–10, 2010.

[3] A. Bregar. Complexity metrics for spreadsheet models. volume abs/0802.3895, pages
85–93, Klagenfurt, 2004.

[4] F. Chiang and R. J. Miller. Discovering data quality rules. The Proceedings of the

VLDB Endowment., 1:1166–1177, August 2008.

[5] M. Corporation. Excel. http://office.microsoft.com/pt-pt/excel/.

[6] T. DeMarco. Controlling Software Projects, Management Measurement & Estima-

tion. Prentice Hall, 1986.

[7] M. P. Felienne Hermans and A. van Deursen. Detecting and visualizing inter-
worksheet smells in spreadsheets. Technical report, Delft University of Technology,
2011.

[8] N. E. Fenton and S. L. Pfleeger. Software Metrics - A Rigorous and Practical Ap-

proach. PWS, 1998.

[9] T. D. Foundation. Libreoffice. http://www.libreoffice.org.

[10] T. S. A. Foundation. Openoffice. http://www.openoffice.org.

73

http://office.microsoft.com/pt-pt/excel/
http://www.libreoffice.org
http://www.openoffice.org

74 BIBLIOGRAPHY

[11] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

[12] Google. Google development toolkit (gwt). http://code.google.com/intl/
pt-PT/webtoolkit/.

[13] Google. Google docs. http://docs.google.com.

[14] E. S. R. I. Group. Eusprig. http://www.eusprig.org/horror-stories.htm.

[15] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintain-
ability. In Proceedings of the 6th International Conference on Quality of Information

and Communications Technology, pages 30–39, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] K. Hodnigg and R. T. Mittermeir. Metrics-based spreadsheet visualization: Support
for focused maintenance. volume abs/0809.3009, London, 2008.

[17] M. F. Ii and G. Rothermel. The euses spreadsheet corpus: A shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. In In 1st Work-

shop on End-User Software Engineering, pages 47–51, St. Louis, Missouri, USA,
2005.

[18] ISO. ISO/IEC 9126-1:2001, Software engineering – Product quality – Part 1: Quality
model. Technical report, International Organization for Standardization, 2001.

[19] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian. Metric functional
dependencies. In In Proceedings of International Conference on Data Engineering,
Shanghai, China, 2009.

[20] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady, 10:707, 1966.

[21] M. Mäntylä, J. Vanhanen, and C. Lassenius. A taxonomy and an initial empirical
study of bad smells in code. In Proceedings of the International Conference on Soft-

ware Maintenance, ICSM ’03, pages 381–384, Washington, DC, USA, 2003. IEEE
Computer Society.

[22] B. A. Nardi. A Small Matter of Programming: Perspectives on End User Computing.
MIT Press, Cambridge, MA, USA, 1st edition, 1993.

http://code.google.com/intl/pt-PT/webtoolkit/
http://code.google.com/intl/pt-PT/webtoolkit/
http://docs.google.com
http://www.eusprig.org/horror-stories.htm

BIBLIOGRAPHY 75

[23] R. R. Panko and S. Aurigemma. Revising the panko-halverson taxonomy of spread-
sheet errors. Decision Support System, 49:235–244, May 2010.

[24] R. R. Panko and R. P. Halverson Jr. Spreadsheets on trial: A survey of research on
spreadsheet risks. In Proceedings of the 29th Hawaii International Conference on

System Sciences Volume 2: Decision Support and Knowledge-Based Systems, HICSS
’96, pages 326–335, Washington, DC, USA, 1996. IEEE Computer Society.

[25] C. Peixoto. Quality model for spreadsheets. Master’s thesis, Informatics Department,
University of Minho, 2011.

[26] S. G. Powell, K. R. Baker, and B. Lawson. A critical review of the literature on
spreadsheet errors. Decision Support Systems, 46(1):128–138, 2008.

[27] S. G. Powell, K. R. Baker, and B. Lawson. Errors in operational spreadsheets: A
review of the state of the art. In Hawaii International Conference on System Sciences,
pages 1–8, Washington, DC, USA, 2009. IEEE Computer Society.

[28] T. A. P. Project. Apache poi. http://poi.apache.org/.

[29] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards. Quality control in spread-
sheets: A software engineering-based approach to spreadsheet development. In Pro-

ceedings of the 33rd Hawaii International Conference on System Sciences, pages 1–9,
Washington, DC, USA, 2000. IEEE Computer Society.

[30] K. Rajalingham, D. R. Chadwick, and B. Knight. Classification of spreadsheet errors.
In in: Symposium of the European Spreadsheet Risks Interest Group (EuSpRIG), Am-
sterdam, 2001.

[31] C. Scaffidi, M. Shaw, and B. Myers. The ‘55m end-user programmers’ estimate re-
visited. Technical report, Carnegie Mellon University, Pittsburgh, 2005.

http://poi.apache.org/

	acknowledgements
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables

	Introduction
	Structure of the dissertation

	State of the Art
	Software Quality Assessment Based on Metrics
	Program Metrics
	Why measure things?
	How to measure things?
	Software Metrics

	Spreadsheet Metrics
	Functionality
	Reliability
	Usability
	Efficiency
	Maintainability

	Bad Smells
	Software Smells
	Spreadsheet Smells
	Statistical Smells
	Type Smells
	Content Smell
	Functional Dependencies Based Smells
	Ochiai Smells

	Evaluation
	EUSES Corpus
	Classification Model
	SmellSheet Detective - The Tool
	Results
	Database Sheets
	Financial Sheets
	Grades Sheets
	Homework Sheets
	Inventory Sheets
	Modeling Sheets
	Global Discussion

	Conclusion
	Future work

	Metric Tables
	References

