

Declaração

Nome: Roberto Manuel Dias Machado

Endereço Electrónico: rmdmachado@gmail.com

Telefone: 916748994

Bilhete de Identidade: 13441167

Título da Dissertação: Validating Common Criteria Documentation using Alloy

Orientador: Doutor Manuel Bernardo Barbosa

Ano de conclusão: 2011

Designação do Mestrado: Mestrado em Engenharia Informática

Este trabalho for realizado no âmbito de uma bolsa de investigação financiada através do
projecto de prestação de serviços de consultoria STORK, estabelecido entre a empresa
Multicert - Serviços de Certificação Electrónica, S. A. e a Universidade do Minho.

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA DISSERTAÇÃO APENAS
PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO
INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, 31 de Outubro de 2011

Roberto Manuel Dias Machado

Acknowledgements

First of all I want to thank my supervisor Professor Manuel Bernardo Barbosa for the
research guidance and also for all the suggestions that improved this dissertation. I am
grateful to Professor Alcino Cunha for the advice with Alloy.

Many thanks to the Multicert company for allowing me to participate in the CESeCore
Project and to the CESeCore Technical Committee for the always interesting meetings.
A special thank you to Nuno Santos who was always available to help. Also thanks to
European Union Seventh Framework Programme, for granting me with a scholarship which
made most of this work possible.

I take this opportunity to thank my colleagues at CeSIUM, that have helped me direct
this student association for the last two years. I must also thank my colleagues at AAUM
for their understanding when I was less available. A special thank you as well to my mates
at Group Buddies.

I want to give a special thank you to all my friends that always support me as well, and
at the same time I want to apologize for not being so present in the last year. A special
acknowledgement to João that helped me with my doubts regarding the english language.

Thank you to my friend and partner of long work nights André. A special thank you to
Marta for all the kind support.

Family, I don’t have words to describe how much I’m thankful to all of you, especially my
parents and my brother. Thank you for all the support since day zero of my life.

Last but certainly not least, I would like to thank to my aunt and uncle André and Angelina,
and my cousins Ricardo and Luís, for their support in this five years that I have spent in
Braga. You not only gave me a roof, you also gave me a second family.

iii

iv

“Rejoice with your family in the beautiful land of life!”
- Albert Einstein

Dedico este trabalho aos meus tios André e Angelina.

vi

Resumo

O software criptográfico é frequentemente associado a componentes críticos de sistemas
que requerem esforços adicionais para melhorar o seu nível de segurança. A certificação
de software criptográfico é necessária para garantir que este vai de encontro às garantias
de segurança desejadas. Esta certificação tem que seguir standards tais como Common
Criteria (CC) para assegurar que a avaliação foi feita de uma forma rigorosa.

CC é um standard internacionalmente reconhecido que permite a certificação de software de
segurança com relevo para a produção de provas do correcto desenvolvimento do software.
Estas provas geralmente tomam a forma de uma série de documentos que podem custar
tempo e dinheiro às organizações que pretendem conseguir certificações de software.

Esta tese de mestrado trata da análise de todo o processo de certificação CC. Em específico,
trata da documentação produzida como prova para uma avaliação. Pesquisa foi efectuada
para compreender o processo de certificação, a documentação produzida, o Protection
Profile e o Security Target, que mereceram especial atenção e, por último, técnicas que
possam melhorar o desenvolvimento de documentação e a sua validação.

Geralmente os métodos formais são utilizados em procedimentos de certificação para obter
fortes garantias de correcção para os níveis de segurança mais elevados. No trabalho aqui
apresentado mostramos que os métodos formais também podem ser usados para aumentar
o rigor do processo de certificação ao nível da análise documental. Usamos a linguagem
de especificação Alloy para modelar os conceitos fundamentais de uma certificação de
segurança de acordo com CC, e subsequentemente para mostrar como estes modelos podem
ser usados para validar a consistência da documentação do Protection Profile e do Security
Target.

Durante este trabalho estivemos envolvidos no projecto de certificação de um core crip-
tográfico num pacote de software para certificação digital, o projecto CESeCore1. Olhamos
para a documentação do CESeCore para desenvolver os nossos modelos e para validar a
dita documentação. Para este projecto escrevemos ainda um documento que descreve todo
o processo de certificação do CESeCore.

Finalmente, desenvolvemos um protótipo daquilo que pode vir a ser uma ferramenta para
ajudar na criação de documentos para a certificação CC. Este protótipo usa os modelos
Alloy como bases e permite-nos carregar documentos produzidos pela certificação CC,
modificá-los, analisá-los e validá-los. Esta pode vir a ser uma ferramenta interessante para
a indústria envolvida em certificação CC.

1
www.cesecore.eu

vii

viii

Abstract

Cryptographic software is typically associated with critical components of systems that
require additional efforts in order to improve their level of assurance. Therefore, the
certification of cryptographic software is necessary to ensure that it meets the desired
guarantees. This certification must follow standards such as Common Criteria (CC) to
ensure that the evaluation was conducted in a rigorous way.

CC is an internationally recognized standard that allows for security software certification
with the focus on producing evidence of the software development. This evidence usually
takes the form of a series of documents that can cost the organizations that intend to
achieve software certifications time and money.

This master thesis focuses on the analysis of the whole CC process of certification. Specifi-
cally, all the documentation produced as evidence for the evaluation. Research is conducted
to understand the process of certification, the documentation produced, the Protection Pro-
file and the Security Target, both of which deserved special attention, and lastly techniques
that could improve the development of documentation and its validation.

Typically, formal methods are enforced in certification procedures in order to obtain strong
correctness guarantees for the highest levels of assurance. In the presented work we show
that formal methods can also be used to increase the rigor of the certification process at
the documentation analysis level. We use the Alloy specification language to model the
fundamental concepts of a security certification according to the CC, and then show how
these models can be used to validate the consistency of Protection Profile and Security
Target documentation.

During this work we have been involved in a cryptographic certification process in a soft-
ware package for digital certification, project CESeCore2. We look at the documentation
for CESeCore to develop our models and to validate said documentation. For this project
we have also written a document that describes all the process of the CESeCore certifica-
tion.

Finally, we have developed a prototype of what could be a tool to aid in the creation of an
ion document for the CC certification. This prototype uses the Alloy models as bases and
allows us to load documents produced for CESeCore certification, modify these documents,
analyze them and validate the models. This could be an interesting tool for the industry
involved in CC certifications.

2
www.cesecore.eu

ix

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Contributions . 4

1.4 Dissertation Outline . 5

2 The Common Criteria Standard 7

2.1 Brief History . 8

2.2 Common Criteria Goals . 9

2.3 The Common Criteria Framework . 9

2.3.1 CC Part 1: Introduction and General Model 10

2.3.2 CC Part 2: Security Functional Components 11

2.3.3 CC Part 3: Security Assurance Components 12

2.3.4 Common Evaluation Methodology 14

2.4 Evaluation Assurance Levels . 15

2.5 Common Criteria Process . 18

2.6 General Model . 19

2.6.1 Sufficiency of the Countermeasures 21

2.6.2 Correctness of the TOE . 21

2.6.3 Correctness of the Operational Environment 22

2.6.4 Common Criteria Evaluation . 22

2.7 Formal Methods in Common Criteria . 24

2.8 Other applications of Formal Methods in CC Certifications 26

3 Common Criteria Documentation 29

3.1 CC Documentation Structure . 30

xi

3.2 Restrictions Imposed in the General Model 32

3.3 Protection Profile . 33

3.3.1 Contents of a Protection Profile . 35

3.3.2 Choice of Protection Profile . 36

3.3.3 Consistency Concerns for the Protection Profile 38

3.4 Security Target . 38

3.4.1 Contents of a Security Target . 39

3.4.2 Using a Security Target . 42

3.4.3 Sensitive Information . 42

3.4.4 Consistency Concerns for the Security Target 43

3.4.5 SFR Dependencies . 43

3.4.6 Generation of Information from the Security Target 45

3.5 Functional Specification . 45

3.5.1 Contents of a Functional Specification for EAL4 46

3.5.2 Generate Information for Functional Specification 47

4 CC Documentation Modeling and Validation in Alloy 49

4.1 Modeling with Alloy . 50

4.1.1 Relational Logic . 51

4.1.2 Alloy Models . 52

4.2 Abstract Model . 54

4.3 Full Model . 56

4.4 Checking Consistency and Validation of Documents 59

4.4.1 Checking Consistency . 59

4.4.2 SFR Dependencies . 61

4.4.3 SFR Tracing . 62

5 Case Studies 65

5.1 RSA Keon CA System . 65

5.1.1 Description of Keon CA . 66

5.1.2 Target of Evaluation . 66

5.1.3 Security Environment . 67

5.1.4 Security Objectives . 67

5.1.5 Security Requirements . 67

xii

CONTENTS

5.1.6 Evaluation Process . 67

5.2 The CESeCore Project . 68

5.2.1 Protection Profile and Security Target for CESeCore 68

5.2.2 Description of CESeCore . 69

5.2.3 Target Of Evaluation . 70

5.2.4 Security Environment . 72

5.2.5 Security Requirements . 73

5.3 Validation of the CESeCore Documentation 74

5.3.1 Abstract Model Application . 74

5.3.2 Sensitive Information in the Full Model 75

5.3.3 Consistency Checking for the Sensitive Information 76

5.3.4 SFR Dependencies . 78

5.3.5 SFR Tracing . 79

5.4 CC Documentation in XML . 80

5.5 ToolBox for CC Documentation Development 81

5.5.1 Functional Requirements Specification 81

5.5.2 Non-Functional Requirements . 84

5.5.3 Design . 85

5.5.4 State of Implementation . 86

6 Conclusions and Future Work 87

6.1 Conclusion . 87

6.2 Future Work . 88

References 91

xiii

xiv

List of Figures

1.1 CC Evaluation process . 2

1.2 Documentation for Common Criteria Evaluation 3

2.1 CC evaluation process overview . 7

2.2 CC evaluation process overview . 18

2.3 Evidence Evaluation Process . 19

2.4 The General Model of the CC evaluation process 20

3.1 Common Criteria Documentation Structure 30

3.2 Documentation for analyzes . 31

3.3 Security Objectives and Security Police Definition 32

3.4 Detailed General Model . 33

3.5 Contents of a Protection Profile . 35

3.6 Protection Profile Decision Tree . 37

3.7 Contents of a Security Target . 39

3.8 Dependency table for Class FAU: Security audit 44

3.9 Contents of a Functional Specification . 47

4.1 Structure of the Alloy Models . 50

4.2 Alloy analyzer instance for a farm problem 51

4.3 Evaluator of the Alloy Analyzer . 61

5.1 The TOE Boundary of Keon CA system . 67

5.2 Integration of CESeCore with other applications 69

5.3 TheTOE Boundary of CESeCore . 70

5.4 Deliverables for the CESeCore Project . 74

5.5 Abstract Model Instance for a Run with 3 of Scope 75

xv

5.6 Sensitive Information included in the Full Model 75

5.7 Validation of the Full Model - inconsistent 76

5.8 Example of a correct assertion in the model 77

5.9 Example of a assertion that creates a counterexample 77

5.10 Counterexample visualized in the Tree option 78

5.11 Exemples of SFR Dependencies in Alloy . 79

5.12 Components declaration and assertion for Dependencies 79

5.13 SFR Tracing for the Functional Specification 80

5.14 CC Documentation in XML . 81

5.15 Use Case for the Main Features . 82

5.16 Logic Model for the ToolBox . 85

xvi

Listings

4.1 Declaration Part . 53

4.2 Example of a fact in Alloy . 53

4.3 Running the model to find a valid instance 54

4.4 Exemple of a assertion in Alloy . 54

4.5 Threat in Alloy . 55

4.6 Threat Agent in Alloy . 55

4.7 Asset in Alloy . 55

4.8 Information Risk in Alloy . 55

4.9 Risk in Alloy . 56

4.10 Security Objective in Alloy . 56

4.11 Security Functional Requirement in Alloy 56

4.12 Threat Agents for the TOE . 57

4.13 Security Information Goals present in CESeCore 57

4.14 Example of Sensitive Information . 57

4.15 Threat in Alloy . 58

4.16 Information Risk example for a set of Threat Agents 58

4.17 Example of a Security Objective . 58

4.18 Example of a Risk . 58

4.19 Example of a Security Functional Requirement in Alloy 58

4.20 Example of a Asset . 59

4.21 Security Objective countering the Threat in the Asset 59

4.22 Security Objective countering the Threat in the Asset 60

4.23 Threat Agent in Alloy . 60

4.24 New declaration of a SFRs . 61

4.25 List of Dependencies in the SFRs . 61

4.26 Components (SFRs) . 62

xvii

4.27 Declaration of the dependencies . 62

4.28 Checking the SFR Dependencies . 62

4.29 Interface in the Abstract Model . 63

4.30 Interface Roles in the Full Model . 63

4.31 Assertions for the SFR Tracing . 63

xviii

List of Tables

2.1 Security Functional Classes . 12

2.2 Security Assurance Classes . 13

2.3 EAL Description . 15

2.4 EAL4 Components . 17

3.1 Functional Specification Component Requirement 45

4.1 Set and logical operators used in Alloy Modeling Language (Alloy) 52

5.1 Extended Security Requirements on CESeCore 73

xix

xx

Acronyms

AA Alloy Analyzer

Alloy Alloy Modeling Language

CA Certification Authority

CC Common Criteria

CCRA Common Criteria Mutual Recognition Agreement

CEM Common Evaluation Methodology

CESeCore CESeCore Project

CIMC Certificate Issuing and Management Components Family of Protection
Profiles

CRL Certificate Revocation List

CTCPEC Canadian Trusted Computer Product Evaluation Criteria

DOD Department of Defense

EAL Evaluation Assurance Level

ED Embedded Device

FC Federal Criteria

IDE Integrated Development Environment

IT Information Technology

ITSEC Information Technology Security Evaluation Criteria

JVM Java Virtual Machine

GUI Graphical User Interface

Keon CA RSA Keon CA System

Keon ST RSA Keon CA System version 6.7 Security Target

MIT Massachusetts Institute of Technology

MLS Multi Level Security

xxi

NIAP National Information Assurance Partnership

NIST U.S. National Institute of Standards and Technology

NSA National Security Agency

OSP Organizational Security Policie

PCA Polymorphous Computing Architecture

PDF Portable Document Format

SAR Security Assurance Requirement

SFR Security Functional Requirement

SPD Security Policies Definition

SPM Security Policy Modeling

TCSEC Trusted Computer System Evaluation Criteria

TLS Top Level Specification

TOE Target of Evaluation

TSF TOE Security Function

TSFI TOE Security Function Interfaces

UML Unified Modeling Language

XML Extensible Markup Language

xxii

Chapter 1

Introduction

Software plays a major role in critical systems such as cars, airplanes, health care de-
vices, telecommunication and several other mainstream appliances. However, much of the
software present in modern society does not give us correctness or security guarantees.
Historically, this has led to incidents of disastrous proportions [11].

Over the years, great efforts have been made in order to find the best practices for achieving
security, safety and dependability certificates to be delivered to users along with software
systems. This work is related to this effort of establishing a consistent regulation to ensure
that critical software is built in agreement with safety, security and reliability standards
[31].

Common Criteria (CC) [22] is a standard developed for Information Technology (IT) prod-
ucts evaluation, ensuring a consistent way to build confidence in the security of software
products. There are other standards oriented to software security certification, but CC
are widely recognized and a requisite for several governmental institutions. CC standards
contains a security vocabulary and a set of security methodologies so that customers, ven-
dors and evaluators can all use the same terms and proceed in conformity with all the
evaluation processes. It is important for the vendors that the customers have the software
products validated by independent third-parties, confirming his claims about the product.

Security testing and evaluation standards provide a way to standardize product compar-
isons. This also introduces development and documentation methodologies that will im-
prove the development of the products and the customers’ level of assurance. CC is an
internationally recognized standard that allows security software certification with focus
on producing evidence on the software development.

The evaluation process in a CC certification can be divided into three phases: the prepara-
tion phase and project launch; the phase in which evidence for the evaluation is produced
and the validation and certificate emission phase. Figure 1.1 transposes this process divi-
sion. The second phase is a series of cycles of evidence production, evaluation, commentary,
modification, resubmission and re-evaluation iterated until the evaluator is satisfied that
the requirements for evaluation are complete.

This evidence usually takes the form of a series of documents, depending on the cycles
presented before, that could cost the organizations that want to achieve software certifi-
cations time and money [42]. The number of iterations that one requirement could take
depends on the quality of the documents and whether they are correctly formulated so as

1

to be presented to the evaluators.

Figure 1.1: CC Evaluation process

The amount of evidence that CC requires depends on the level of assurance desired with the
evaluation. There are seven levels of assurance called Evaluation Assurance Level (EAL).
In the highest levels of assurance, CC uses formal methods in some of its requirements to
obtain rigorous correctness guarantees [38].

Formal methods are typically applied in software production to achieve a higher level in
terms of correctness or security guarantees [9]. However, in this thesis, and following other
works [5], we apply formal methods to the analysis of CC documentation.

The Alloy Modeling Language (Alloy)1 is a language for describing structural properties
[26]. The models written in Alloy are usually much smaller than the systems they model
and yet they can be used to verify important properties of their underlying systems [44].
Alloy models can be analyzed through the Alloy Analyzer (AA) [25], a fully automatic tool
built on top of a SAT solver to simulate models and check their properties. Alloy can be
seen as a formal methods technique. In the end of this chapter we introduce Alloy in more
detail.

1.1 Motivation

In software certification a great number of documents have to be produced as evidence of
the evaluation process. In the CC’s case, where the evaluation focuses mainly on the pro-
duction of evidence in the form of documents, this work is always tedious and can become
expensive with a great number of human resources occupation, even though the production
of these documents is mostly a systematic process. The documentation produced for the
CC evaluation process is also complicated to understand and vague on how its concepts
relate [39].

CC concepts, sometimes abstract in their definitions, are an ample catalogue of threats,
security objectives, security requirements, etc. When we are producing evidence for CC, in
the form of a set of interrelated documents, it is necessary to clarify how all the concepts
are transposed from each document to the others. To do this work manually can result
in uncertainty regarding the correctness and sufficiency of the security objectives that are
being certified [36].

The most important documents in the CC certification are the Protection Profiles and
the Security Target. These two documents are interrelated since the Security Target is a
subset of the Protection Profiles. This is an instantiation of the General Model concepts
present on the CC, as we can see in Figure 1.2.

The use of Protection Profiles in the process of certification was pioneered by the CC as
1http://alloy.mit.edu/

2

http://alloy.mit.edu/

1.1. Motivation

Figure 1.2: Documentation for Common Criteria Evaluation

it is a document produced for a family of products with the same characteristics. In it,
all the elements used in a CC certification for that family of products are specified as
an instantiation of CC concepts present in the General Model. Protection Profiles are
implementation independent.

The Security Target is a subset of the Protection Profiles oriented towards software prod-
uct implementation. In it all the concepts used in the CC certification are specified. All
the others documents relative to the software product development are based on the infor-
mation stated in the Security Target. We use Alloy to model this documentation structure
and minimize the problems presented in this section.

A little More About Alloy

Specification languages are a type of formal language used in system analysis, require-
ments analysis and systems design [43]. As opposed to normal programming languages
which are directly executable, formal languages are used along the whole system develop-
ment process. With a specification language we can describe the system at a high level
of abstraction, allowing representations of system properties in a way that is more under-
standable to humans. If the level of abstraction at which we use the specification language
isn’t high enough we cannot take advantage of these techniques. Some specification lan-
guage examples are Alloy, Z, VDM, CASL, etc [29]. We present the Alloy language, which
is used in this work to model and validate CC documentation.

Alloy was developed in the Massachusetts Institute of Technology (MIT) by Daniel Jackson
in the late 90s for the purpose of abstract software design. It is a lightweight modeling
language based on Z. Alloy supports the description of basic structure (graphically, or as
textual declarations), as well as more intricate constraints and operations describing how
structures change dynamically (both expressed as logical formulas) [26].

An Alloy model consists of a type declaration part, a number of formulas (facts), and an
assertion. The AA checks the validity of the assertion taking into account a user-provided
scope and an upper bound on the number of elements considered for each type [4]. In case
the assertion is not valid, the analyzer produces a counterexample with symbolic values
for each type and relation [12].

3

In Alloy types represent sets of atoms and are introduced using the signature construct.
Atoms are something abstract and their type means nothing to the AA. These atoms
establish relations between them and that is the key point in Alloy: every Alloy expression
is a relation. Alloy is equipped with a set of operators similar to set theory operators
and a set of quantifiers. Alloy also has a set of commands, non-parameterized constraints
(assumptions) of the system, which are expressed as facts. These constraints are considered
to be true at all times. Parameterized or reusable formulas expected to be used in different
contexts are expressed as predicates and reusable expressions are expressed as functions.
The properties to be checked are expressed as assertions. More details can be found
elsewhere [27]. We explain in Section 4.1 how to build models in Alloy.

We use Alloy to model the various levels of abstraction present in the CC documentation
and validate the main documents used as evidence in software certifications with CC.
We chose Alloy for our work because it is a simple specification language that, when
complemented with the AA, allows us to quickly build and analyze models.

1.2 Objectives

The main objectives for this work are several. Firstly, to study the CC standard in a way
that would allow us to explain the whole certification process and how to elaborate a CC
certification. Also a main objective is to understand how all the evidence is produced.
With the objective of understanding how the evidence is produced comes the objective
of understanding the problems associated with the elaboration of all the documents that
need to be presented for validation during a CC certification. During this analysis we also
intend to study ways to minimize this problem.

Another objective for this work is the use of Alloy in the software product certification
process that could help its development in a correct way and that could help reduce the
costs in the always expensive certifications. We want to use these techniques to analyze the
CC certifications model and documentation. We also intend to use these same techniques
to validate these documents.

This work’s last assignment is to specify a prototype for a tool that could aid the process
of document development for the CC. We also want to develop a proof of concept for this
tool, since the development of the complete application is out of the scope of this masters
dissertation.

1.3 Contributions

In this work we present an overview of the CC security certification standard and how
we can use Alloy to help in the evidence development process. This work is included
in the project developed by Multicert2 in the CESeCore Project (CESeCore)3. In this
project, Multicert, in a consortium with three more european companies, are conducting a
software security certification, more specifically, a CC certification. As an example, along
with the work for this dissertation, we look at the documentation of the RSA Keon CA
System (Keon CA) digital certification and the CESeCore with CC.

2
www.multicert.com

3
www.cesecore.eu

4

1.4. Dissertation Outline

In this work we analyze the Protection Profiles [35] used in the Keon CA and in the CESeC-
ore, the Security Target of both certification, [30] and [37]. To analyze these documents
we have built models of the concepts in CC and used them to represent the documentation
used in CC certification. We have used Alloy to build these models.

We use Alloy to model the fundamental concepts of a security certification according to
the CC. We model the information that we consider sensitive and validate it in the CC
certification main documents. We want to be able to assertively answer several questions
that have come up when analyzing the CC documents and validate the consistency of the
main documents of CC: the Protection Profile and the Security Target. Other documents
can be partially analyzed with these models and we can also infer information to include in
the documents created from the Security Target. With this we are using formal methods
techniques in a non-conventional way so as to analyze the rigor of the certification process
at the documentation analysis level.

AA allows us to use the models and change them, quickly making changes and analyzing
the documentation again. This, however, requires some knowledge of the Alloy language
that not everyone has. With this in mind we believe that there was space for a tool to aid
in the use of the alloy models. Another aspect that makes the need for a tool evident has
to do with the difficulty felt in the elaboration of the evidence for the evaluation.

We have developed a prototype of what could be a tool to aid in the creation of documen-
tation for the CC certification. This prototype uses the Alloy models as basis and allows us
to load documents produced for CC certification, modify these documents, analyze them
and validate these models. This could be an interesting tool for the industry involved in
CC certifications.

1.4 Dissertation Outline

This work is divided into 6 Chapters. In the first chapter, the current one, we present an
introduction to all the work undertaken for this dissertation.

Chapter 2:
presents an overview of the CC standard. We begin by presenting a brief history of
the standard and its main goals. Afterwards, we present CC’s framework and, in
more detail, the EALs and the General Model. This chapter finishes with the CC’s
standard vision on formal methods and some works with this techniques on CC’s
certifications.

Chapter 3:
presents the CC documentation that is used as evidence in the certification processes.
Firstly, we present the documentation structure of all the documents used in the CC
certification. Afterwards, we present the documents considered for this work and
what is interesting to analyze in the context of our modulation in Alloy in detail.
The documents presented in detail in this chapter are the Protection Profile, the
Security Target and the Functional Specification.

Chapter 4:
presents the modulation and validation of the CC documents presented in the pre-
vious chapter. Firstly, a brief tutorial on Alloy and the main characteristics of this

5

specification language is presented. To continue, a set of Alloy models that are
used in the validation of the points specified in the chapter before for the main CC
documents is presented.

Chapter 5:
presents the case studies that were used in this work. Initially, we present the case
study for the RSA Keon CA System followed by the CESeCore Project. We also
present the application of the Alloy models presented in the previous chapter in
the CESeCore Project. This chapter ends with the presentation of an application to
support our work with Alloy. We also present XMLs templates for the CC documents
and parsers to work with this templates in this chapter.

In the last chapter we present this work’s conclusion and what we expect to be future work,
especially that which concerns with the development of the tool to aid in the production
of theCC documentation.

Related Publications

A portion of the work presented in this dissertation has been previously published in the
form of conference papers:

• Roberto Machado. Cryptographic Software Certification with Common Criteria
Evaluation Assurance Level 4+. In MI-STAR 2011. 2011.

• Roberto Machado. Modeling and Validating Cryptographic Software Documentation
for Common Criteria Certification. In INForum. 2011.

6

Chapter 2

The Common Criteria Standard

In this chapter we present a detailed overview of the CC standard, its process, all the con-
cepts related with CC certification and an overview of the use of formal method techniques
in the context of software certifications. CC is an internationally recognized standard for
security certification and this very fact is one of its strengths.

So as to begin, we introduce a very brief history of the CC standard in Section 2.1. There
are others standards for security certification. In Section 2.2 we present some advantages
and disadvantages of using the CC.

The CC standard is a framework divided into three parts. We explain these three parts in
Section 2.3. All the components needed for a CC certification are in them. The first part
of the standard introduces all the concepts and terminology used during a CC certification.
The second part introduces the security functional components that are available to specify
the security requirements of a certification. The third part introduces the security assurance
components that define what kind of guarantees a certification has to assure in terms
of evidence to be delivered for evaluation. We also present the document used by the
evaluators to understand how to make a proper evaluation.

CC evaluations are ranked in levels of assurance. In CCs, they are called Evaluation
Assurance Levels (EALs). This is useful to comprehend how deep of an evaluation was
made in terms of certification requirements. In Section 2.4 we present those levels.

Figure 2.1: CC evaluation process overview

We also introduce an overview of the CC evaluation process. The process is based on the
evaluation of evidence that serves as input and results in a certificate, which ensures that a
certification was completed successfully. Figure 2.1 shows the flow of this evaluation [34].

In the second part of this chapter we present a brief overview of formal methods and how
these techniques are included in the CC standard. We also present some work related with

7

the use of formal methods in the certification of software. In Section 2.7 we present an
example of how formal methods are used in a CC certification successfully.

2.1 Brief History

For many years, people related to software security development tried to elaborate a stan-
dard to certify the security of software. The U.S. Defense Department, the main driver
since the early days, launched the Trusted Computer System Evaluation Criteria (TCSEC)
in the late 70’s, also known as the Orange Book, the first standard for evaluating IT secu-
rity. Since the release of the Orange Book, several attempts have been made to standardize
such descriptions, especially for operating systems platforms. The trend has been toward
increasing power and complexity [21]. A major result of this standardization activity is
the Common Criteria, that was developed out of these previous approaches:

• Trusted Computer System Evaluation Criteria (TCSEC) - United States Department
of Defense (DOD) 5200.28 Standard also know as the Orange Book ;

• Federal Criteria (FC) a draft approach by the U.S. National Institute of Standards
and Technology (NIST) and the National Security Agency (NSA) to replace TCSEC
in 1992;

• Information Technology Security Evaluation Criteria (ITSEC) - developed in the
early 1990s by France, Germany, the Netherlands and the U.K.;

• Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) - the Canadian
standard first developed in 1993 from the U.S. DOD standard.

The Common Criteria for Information Technology Security Evaluation (abbreviated as
Common Criteria or CC) is an international standard for computer security certification.
It is currently in version 3.1, which was released in 2009. The rationale behind CC is to
formalize the language used by customers, developers and security evaluators to have the
same understanding when security requirements are specified and evaluated.

At this moment, 26 countries are participating in the CC program, Portugal isn’t one of
these countries. Participating countries sign the Common Criteria Mutual Recognition
Agreement (CCRA) which basically states the conditions for participation including the
requirement that each member country recognize certificates issued from the other member
countries. This is probably the greatest advantage of CC for vendors, since they certify
their products only once and all CCRA members will recognize that certification. This
was not possible with previous standards. Each CCRA member nation has a CC governing
entity or Scheme responsible for managing the implementation and use of the CC in their
country.

There are two types of CCRA member nations, the certificate-authorizing countries and
the certificate-consuming countries. The first ones are countries that have been approved
to issue the CC certificates, the second ones are countries that recognize the certificates
but can not issue them.

The CC standards documents are downloadable from the Common Criteria Portal1 website
free of charge.

1http://www.commoncriteriaportal.org/

8

http://www.commoncriteriaportal.org/

2.3. The Common Criteria Framework

2.2 Common Criteria Goals

CC standards have several characteristics that define them as the leaders on the certifi-
cation of security products. However, some critics define CC as nothing more than a pile
of documentation, even though it can be proved to be valuable for vendors that want to
make their products’ security claims certified and profit from that certification.

As we present in the previous section, CC was developed from a set of other existing security
evaluation standards, including the two more popular, the TCSEC from the USA and the
standard European/Australian ITSEC. Its other main characteristic is its international
recognition. Right from the beginning fourteen countries have signed an agreement to
recognize this standard for high-quality IT security evaluations. As stated in Section 2.1,
today there are 26 countries participating in the CC program.

The CC specify methods for the evaluation criteria as well as to conduct evaluations.
The stringent standards that CC sets and maintains imply that all people involved in
a certification follow that standard in a rigorous way. Any laboratory that wishes to
conduct CC evaluations must be certified through a rigorous process, and must maintain
that certification through periodic reinspection.

Another important aspect is that CC is an independent evaluation of security assurance.
Evaluation testing results are submitted to the CC Scheme in the lab’s host country for
validation so as to insure that the evaluation process has been followed correctly, to enforce
consistency across labs, and to prevent any financial motives from influencing the evaluation
outcomes.

This set of characteristics already allows us to realize the value of CC, even though it also
has some disadvantages. The most relevant is the cost of CC evaluations. An evaluation
with CC can sometimes take years to complete and can also fail. A vendor, when deciding
to evaluate his software product, must analyze it’s viability and what EAL (see Section 2.4)
to follow. Otherwise, the certification can be commercially non-compensatory.

2.3 The Common Criteria Framework

CC standard provides a framework to describe and evaluate security attributes of a prod-
uct. In this standard, we find a language that provides us with a vocabulary to express
customer security requirements and vendor product claims. Allied to this, CC standard
also has guidelines for evaluators to perform consistent security evaluations. CC standards
documents capture these descriptions in four parts:

• CC Part 1: Introduction and General Model

• CC Part 2: Security Functional Components

• CC Part 3: Security Assurance Components

• Common Evaluation Methodology

Reading the CC standard is a bit like reading a dictionary. It is important to have some
guidance on how to look to at the documents and on what is contained in them. In the
following section we provide an overview of each of the parts presented above.

9

2.3.1 CC Part 1: Introduction and General Model

CC Part 1 explains how the CC works. It is a document that aims to introduce people to
the standard and should be read by everyone involved in CC certification. This document
explains the objectives of the CC, the basic philosophy of the evaluation process, and
definitions for components related to CC. An introduction to the basic security concepts
necessary for evaluation of IT products is also given.

The introduction to Part 1 explains that CC provides a standard set of IT security char-
acteristics for functionality and assurance. These security characteristics are used during
security evaluations allowing comparisons of the independent evaluations results. CC eval-
uations provide a specified level of confidence that the claimed security functionality will
meet customer needs. With this, customers have more information so as to make an
informed purchasing decision.

Part 1 contains a chapter dedicated to define the terms which are used in a specialized way
throughout the CC. We can visit this chapter when we want to understand any concept
that we find in the CC standard. This is an extensive dictionary of CC terms, 15 pages of
terms, acronyms and abbreviations used in the standards. Some concepts aren’t explained
here, leaving its definition to appear in the specific context.

The CC is flexible in what to evaluate and is therefore not tied to the boundaries of IT
products as they are commonly understood. Therefore, in the context of evaluation, the CC
uses the term Target of Evaluation (TOE). TOE is defined as a set of software, firmware
and/or hardware possibly accompanied by guidance. After defining the TOE, CC Part 1
also presents the evaluation context and describes the audience to which the evaluation
criteria are addressed.

In the last chapters, it defines the various operations by which the functional and assurance
components given in CC Part 2 and CC Part 3 may be tailored through the use of permitted
operations, and introduces the General Model of CC, the Protection Profile and Security
Targets. These are explained in detail bellow.

Security Functional and Assurance Requirements

The Security Functional Requirements describe the desired behavior expected of a TOE
and are intended to meet the security objectives stated in a Protection Profile or Secu-
rity Target. The Security Assurance Requirement (SAR) are requirements to establish a
standard way of expressing the assurance requirements for the TOEs. The scale for rating
assurance for TOEs is called Evaluation Assurance Levels and is presented bellow.

General Model

The general model descriptions in CC Part 1 allows us to understand the philosophy behind
the CC evaluation process. CC is based on providing customers assurance by evaluating
products and evidence rather than through theoretical modelling and simulation. In the
CC process, products are evaluated after it has been developed, since CC uses "after-the-
fact" evaluation.

The General Model is a main component for our work. The building of models to analyze

10

2.3. The Common Criteria Framework

the documentation of the CC evaluation is based on them. In Section 2.6 we explain the
General Model and the concepts involved in detail.

Protection Profile

The Protection Profile’s main goal is to state a security problem rigorously for a given
collection of systems or products, known as the TOE and to specify security requirements
to address the problem without dictating how these requirements will be implemented. A
Protection Profile is a combination of threats, security objectives, assumptions, Security
Functional Requirement (SFR), SAR and rationales. It also specifies generic security
evaluation criteria to substantiate a given family of information system products vendor’s
claims. In order to get a product evaluated and certified according to the CC, the product
vendor has to define a Security Target which may comply with one or more Protection
Profile.

Vendors can evaluate their products against the requirements present in one of these appli-
cable Protection Profile or they can make their own claims and have those claims evaluated
in the CC evaluation process. Nevertheless, some governmental agencies have established
policies requiring some products to only be evaluated against an applicable Protection
Profile.

In Section 3.3 Protection Profiles are presented in more detail.

Security Target

The Security Target is a security specification for a software product. This is the central
document, typically provided by the developer of the product, that specifies security eval-
uation criteria to substantiate the vendor’s claims for the product’s security properties.
A Security Target defines information assurance security requirements for the given infor-
mation system product, which is called the TOE. A Security Target is a complete and
rigorous description of a security problem in terms of TOE description, threats, assump-
tions, security objectives, SFRs, SARs, and rationales [23].

In Section 3.4 we present the Security Target in more detail.

2.3.2 CC Part 2: Security Functional Components

As already mentioned, the CC standards have a standard vocabulary. This allows cus-
tomers to express their security needs and vendors to manage the security characteristics
of their products in a consistent manner. In this CC Part 2, Security functional components
are defined as the basis for the security functional requirements expressed in a Protection
Profile or a Security Target.The SFR are standard identifiers and descriptions of security
features about the product itself. These requirements describe the desired security behav-
ior expected of a TOE and are intended to meet the Security Objectives as stated in a
Protection Profile or an Security Target. These security features are the countermeasures
to the threats.

SFRs are organized into eleven major groups called Security Functional Classes. We can
easily understand that these classes define all of the potential security functions a product

11

Table 2.1: Security Functional Classes

Class ID Class Name Description
FAU Security Audit Security event audi record handling
FCO Communications Non-repudiation or origin and re-

ceipt
FCS Cryptographic Support Cryptographic operation and key

management
FDP User Data Protection Protecting user data transferred

within the TOE
FIA Identification and Au-

thentication
User identification and authentica-
tion

FMT Security Management Management of TOE security func-
tions, attributes and data

FPR Privacy Includes anonymity, pseudo-nymity,
unlink ability and unobservability

FPT Protection of the TSF Protect TSF data. Recovery and
self-test

FRU Resource Utilization Includes fault tolerance, service pri-
ority and resource allocation

FTA TOE Access Restricts access to TOE
FTP Trusted Paths/Chan-

nels
Trusted communications paths and
channels with the TSF

could provide. The Security Functional Classes from CC Part 2 are listed in Table 2.1:

The SFR classes contain several families, components and elements. All of this information
is contained in CC Part 2, and are the result of decades of effort to identify, describe and
categorize effective countermeasures to a wide variety of IT threats. Using the "dictionary"
of security functions we can remove the ambiguity of using different terms for the same
requirement. To accommodate a wide variety of product types and security features, SFRs
may include operations that further refine the definitions.

The SFRs may have dependencies. If an SFR has any dependence on another SFR and
you include this SFR, you must also include those dependencies.

2.3.3 CC Part 3: Security Assurance Components

The CC standard’s main objective is to improve customer confidence (assurance) in the
security of the IT products they purchase and use. Security features are one way to provide
that confidence, but providing security in the product development process improves it even
more. This CC Part 3 defines the assurance requirements of the CC, with this we can gain
assurance through the evaluation of development process.

CC uses a set of independent evaluation techniques to provide assurance. We apply these
techniques through the production of evidence for the evaluation. These evaluation tech-
niques include:

• Examination and analysis of the soundness of vendor development procedures and

12

2.3. The Common Criteria Framework

Table 2.2: Security Assurance Classes

Class ID Class Name Description
ADV Development Product architecture, functional

specifications, internals, implemen-
tation and design

AGD Guidance Documents Operation and installation guides
ALC Lifecycle Support Configuration management, deliv-

ery, development, flaw remediation
security

ATE Test Test coverage, depth. Functional
and independent testing

AVA Vulnerability Assess-
ment

Vulnerability analysis

ACO Composition Composition evidence, testing, vul-
nerability analysis and rationale

processes

• Verification of the application and adherence to those processes

• Analysis and comparison of the various TOE design evidence

• Comparison of the evidence against security requirements

• Validation of claims

• Analysis of user guidance

• Analysis of product tests

• Performance of independent functional tests

• Vulnerability analysis

• Penetration testing

As in CC Part 2, where SFR are used to describe security features about the product
itself, CC Part 3 and the security assurance components relate to the product development
process. SAR cover areas regarding the secure development, delivery and deployment of
the product. As in the CC Part 2 with the SFRs, the Security Assurance Classes are
organized in eight classes. The Security Assurance Classes are listed in table 2.2.

As the SFRf, the SAR classes are segmented into families, components and elements. For
example, the ADV, Development class is broken down into the following families:

• Security Architecture (ADV_ARC)

• Functional Specification (ADV_FSP)

• Implementation Representation (ADV_IMP)

• TOE Security Function Internals (ADV_INT)

13

• Security Policy Modeling (ADV_SPM)

• TOE Security Design (ADV_TDS)

Each family is further decomposed into components and elements that provide the details
of the specific requirements. The notation for SAR also has D, C and E element identifiers,
that respectively denote requirements for Developers, Content and Evaluators. Develop-
ers are the vendors or actual product developers, Content is the evidence documentation
produced for evaluation and finally Evaluators are the actual, independent, third-party
evaluators.

For example, ADV_ARC1.1, Security Architecture description, requires that the developer
design and implement the TOE so that the security features of the TSF cannot be bypassed.
A TSF can be something like a user authentication mechanism to detect or prevent unau-
thorized access to the system. Developers that use structured design methodologies will
be able to claim that they support this requirement. The content and presentation el-
ements are the evidence (documentation) presented to the evaluators to prove that the
requirements have been met. With this the evaluators shall confirm the claims made by
developers. In Section 2.3.4 we will present the Common Evaluation Methodology (CEM)
document that goes into this in much more detail, from the evaluator’s perspective.

It’s important to understand this SAR requirements. When defining with assurance re-
quirements what you want to achieve in your certification, you must keep in mind that
the evaluator will analyze every component of that requirement. So you may save yourself
some time and expense if you read the evaluator’s requirements in not only CC Part 3
but in CEM as well to find out precisely what the evaluator is going to be looking for
to satisfy each requirement. With this you will be prepared to correspond with all the
evidence necessary.

EAL is a set of collections of SARs with seven different levels of evaluation assurance. In
Section 2.4 we explain the EALs in more detail.

2.3.4 Common Evaluation Methodology

The Common Methodology for Information Technology Security Evaluation (CEM) is a
companion document to the Common Criteria for Information Technology Security Eval-
uation (CC). CEM is the standardized set of instructions to the evaluation labs on how to
evaluate the different assurance requirements. The CEM defines the minimum actions to
be performed by an evaluator in order to conduct a CC evaluation using the criteria and
evaluation evidence defined in it. The CEM guides the evaluator on what to look for and
to what depth should he evaluate the evidence. According to the EAL, the evaluator will
examine the evidence with different depths. The CEM does not define evaluator actions
for certain high assurance CC components, where there is as of yet no generally agreed on
guidance.

Evaluators are instructed to check, examine, record and report. These terms are defined
by the CEM as:

check - generate a verdict by simple comparison;

examine - generate a verdict by analysis, using evaluator expertise;

14

2.4. Evaluation Assurance Levels

Table 2.3: EAL Description

EAL Description
EAL1 Functionally Tested
EAL2 Structurally Tested
EAL3 Methodical Tested and Checked
EAL4 Methodically Designed, Tested and Reviewed
EAL5 Semi-formally Designed and Tested
EAL6 Semi-formally Verified, Designed and Tested
EAL7 Formally Verified and Tested

record - retain a written description of procedures, events, observations, insights and
results in sufficient detail to enable the work performed during the evaluation to be
reconstructed at a later time;

report - include evaluation results and supporting material in the Evaluation Technical
Report or in an Observation Report.

These definitions may be subjected to interpretations and variatons based on the evalua-
tors’ perspective and experience. They could be based on the background of the evaluator.
Even though the CC Part 3 describes evaluator actions for each SAR, the CEM provides
much more detailed instructions on what they have to do to satisfy the evaluation require-
ment. This level of detail helps ensure greater consistency across evaluators and across
inter nation Schemes.

2.4 Evaluation Assurance Levels

The assurance requirements define the level of the evaluation effort applied to the secure
development, delivery and deployment processes by the product developer. This can refer
both to the amount of evidence produced and reviewed to prove the security claims and
to the scope of aspects of the product development processes..

Each EAL embodies a recommended set of assurance requirements: the higher the EAL, the
more assurance the product has. The intent of higher levels is to provide higher confidence
that the system’s main security features are reliably implemented. We can use EALs to
choose which assurance requirements we want to satisfy. Table 2.3 has a description of the
seven levels. A customer can look at the EAL of a certain product and see what kind of
effort was put into the assessment of the security claims made by the vendor. The range
of EAL usually used to certify products goes from EAL2 to EAL4. EAL4 is the highest
level that is commercially advantageous and that is mutually recognized internationally.
The belief is that evaluations higher than EAL4 require unique and proprietary evaluation
techniques that cannot be duplicated or standardized internationally. It is also complicated
to find laboratories that will evaluate these levels.

In some cases, the evaluation may be augmented to include assurance requirements beyond
the minimum required for a particular EAL. Officially this is indicated by following the
EAL number with the word augmented and usually with a list of codes to indicate the
additional requirements. To simplify, vendors will often simply add a "plus" sign (as in

15

EAL4+) to indicate the augmented requirements. For example, in the project CESeCore,
that is evaluated with EAL 4+, the SAR ALC_FLR.2, Flaw reporting procedures were
added. As such, the EAL 4 would be denoted EAL4 augmented with ALC_FLR.2 or more
informally EAL4+. Table 2.4 shows the requirements presented in standard EAL4.

EAL4 certification

In this section we present an overview of an EAL4 certification of a software product
with CC. This is the assurance level which processes an interesting set of requirements
that assure us that the whole process of product improvement was developed with proper
security concerns. The choice of EAL4 is due to its balance between price level and
security certification guarantee [24]. Here we present this EAL because it was the one that
we studied in more detail along the work for the dissertation.

With EAL4 certification a software product was methodologically designed, tested and
reviewed, which means that good practices of development where followed, the software
was tested against the identified threats and the whole process was reviewed.

EAL4 provides assurance by a full Security Target and an analysis of the SFRs in that
Security Target, using a functional and complete interface specification, guidance docu-
mentation, a description of the basic modular design of the TOE, and a subset of the
implementation, to understand the security behavior. In what SARs are concerned, as we
can see in Table 2.4, EAL4 covers six class of assurance.

The analysis is supported by independent testing of the TOE Security Function (TSF), ev-
idence of developer testing based on the functional specification and TOE design, selective
independent confirmation of the developer test results, and a vulnerability analysis.

EAL4 also provides assurance through the use of development environment controls and
additional TOE configuration management including automation, and evidence of secure
delivery procedures. This EAL represents a meaningful increase in assurance from EAL3
by requiring more design description, the implementation representation for the entire TSF
and improved mechanisms and/or procedures that provide confidence that the TOE will
not be tampered with during development.

In Chapter 5 two examples of real-case CC certifications with EAL4+ are presented.

More than EALs

It is important to note that not all families and components from CC Part 3 are included
in the EALs. This is not to say that these do not provide meaningful and desirable
assurances. Instead, it is expected that these families and components will be considered
for augmentation of an EAL in those Protection Profiles and Security Targets to which
they prove to be useful.

This notion of EALs represents the belief that assurance in terms of customer confidence
is driven by evaluation and that more in-depth evaluation will give customers greater
confidence. This means that, in theory, the higher the EAL, the greater the confidence
the customer should have that the claims made by the vendor are true. The evaluations
with higher EALs require more detailed evidence and are subjected to careful evaluation.
These activities should represent greater proof of the vendor’s claims.

16

2.4. Evaluation Assurance Levels

Table 2.4: EAL4 Components

Assurance Class Assurance Components

ADV: Development

ADV_ARC.1 Security architecture de-
scription
ADV_FSP.4 Complete functional specifi-
cation
ADV_IMP.1 Implementation representa-
tion of the TSF
ADV_TDS.3 Basic modular design

AGD: Guidance documents AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures

ALC: Life-cycle support

ALC_CMC.4 Production support, accep-
tance procedures and automation
ALC_CMS.4 Problem tracking CM cov-
erage
ALC_DEL.1 Delivery procedures
ALC_DVS.1 Identification of security
measures
ALC_LCD.1 Developer defined life-cycle
model
ALC_TAT.1 Well-defined development
tools

ASE: Security Target evaluation

ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components defi-
nition
ASE_INT.1 Security Target introduction
ASE_OBJ.2 Security objectives
ASE_REQ.2 Derived security require-
ments
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification

ATE: Tests

ATE_COV.2 Analysis of coverage
ATE_DPT.1 Testing: basic design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA_VAN.3 Focused vulnerability analy-
sis

17

The security of a product is not measured by the EAL with which it was evaluated. A
product evaluated with EAL3 isn’t necessarily more secure than another evaluated with
EAL4. This only means that the product evaluated with EAL4 will have more evidence
collected during its evaluation process. There does seem to be a need for customers to
more easily grade the security of products, but EALs are not the way to achieve this.

2.5 Common Criteria Process

We can see the the CC certification process in five phases, as is presented in Figure 2.2. The
first phase that could be called Phase 0, has to do with the Pre-Evaluation Preparation. It is
a key element for a successful evaluation. The activities for that phase include: researching
customer requirements, understanding the CC standards, developing a compelling business
case, managing the project’s scope, allocating resources and selecting partners.

Figure 2.2: CC evaluation process overview

The second phase, Phase 1, the Project Launch has to do with the kickoff of the evalu-
ation, here the meetings with the evaluation entities and the terms of the evaluation are
defined. In this phase the Protection Profile to be used is defined and the Security Target
is elaborated. The third phase, Phase 2, the Evaluation and Feedback phase is a series of
cycles of interaction with the evaluators that include activities such as evidence production,
evaluation, modification, resubmission and re-evaluation. Figure 2.3 shows the workflow
of these cycles, as something deliverable starts, is produced and submitted as evidence.
This evidence is evaluated and an observation report is produced by the evaluators. That
report announces if the evidence is accepted or rejected. If it is rejected, then it must be
updated and submitted again. Otherwise, in case of acceptance, the work unit is complete.
This phase is the longest of the whole and the more critical.

The fourth phase, Phase 3, Validation and Certification, is the last phase directly related
with the evaluation. This is when the whole certification is reviewed by the validators and
if everything is evaluated successfully the product is certified. The last phase mentioned
here, Phase 4, Assurance Maintenance, has to do with the problem that arises from each
certification only being valid for one version of the software product. As such, the vendor,

18

2.6. General Model

Figure 2.3: Evidence Evaluation Process

when revising his product, also has to revalidate it’s certification, providing new evidence
along with the new claims for the product. In the context of this dissertation we focus on
Phases 1 and 2.

2.6 General Model

This is the model that explains how the concepts in CC are related. CC discusses security
using a set of security concepts and terminology. To work with CC, submitting evalu-
ations or evaluating them, an understanding of these concepts and the terminology is a
prerequisite.

These concepts are quite general and not intended to restrict the class of IT security
problems to which the CC is applicable. The General Model is a fundamental component
for our work, since it is based on it that we build the models to analyze the CC evaluation
documentation.

In order to understand the CC language, it is important to realize that IT organizations
have assets they want to protect; those assets are subjected to threats; those threats can
be opposed by countermeasures. We present the security concepts below and the relations
between them are presented in Figure 2.4.

Assets Entities that someone places value upon. This could mean the contents of a file
or a server, the authenticity of votes cast in an election, the availability of an electronic
commerce process, etc.

Owners Place value on those assets. It is their responsibility to safeguard assets of
interest.

19

Figure 2.4: The General Model of the CC evaluation process

Threat Agents May also place value on the assets and seek to abuse assets in a manner
contrary to the interests of the owner.

Threats Potential for impairment of assets such that the value of the assets to the owners
would be reduced.

Risk Comes from the threats inflicted by Threat Agents on the Assets, based on the
likelihood of a threat being realized and the impact on the assets when that threat is
realized.

Countermeasures Subsequently, countermeasures are imposed to reduce the risks to
assets. These countermeasures may consist of IT countermeasures (such as firewalls and
smart cards) and non-IT countermeasures (such as guards and procedures). In our work,
only IT countermeasures are considered.

Two important elements about countermeasures:

• the countermeasures are sufficient: if the countermeasures do what they claim
to do, the threats to the assets are countered;

• the countermeasures are correct: the countermeasures do what they claim to
do.

Evaluation of these countermeasures is important to see if they are being used in a sufficient
and correct way.

20

2.6. General Model

2.6.1 Sufficiency of the Countermeasures

The sufficiency of the countermeasures is one of the main points in an evaluation. Coun-
termeasures are exposed in the Security Target. In Section 3.4 this document is explained
in more detail. Here we present a brief description of the parts related to the sufficiency
of the countermeasures.

The Security Target as of now contains a description of the assets and the threats to
those assets. Subsequently, it describes the countermeasures and demonstrates that these
countermeasures are sufficient to counter these threats: if the countermeasures do what
they claim to do, the threats are countered. Countermeasures are shown in the Security
Target as the Security Objectives. The countermeasures are divided into two groups in the
Security Target: the security objectives for the TOE, which describe the countermeasure(s)
for which correctness will be determined in the evaluation and the security objectives for
the Operational Environment, that describe the countermeasures for which correctness will
not be determined in the evaluation.

The reason for this division is that in the CC only the IT countermeasures’ correctness
is suitable to be assessed. As such, the non-IT countermeasures (e.g. human security
guards, procedures) are always in the Operational Environment. Assessing correctness of
countermeasures costs time and money. This could possibly make it infeasible to assess
the correctness of all IT countermeasures. The correctness of some IT countermeasures
may already have been assessed in another evaluation. It is therefore not cost-effective to
assess this correctness again.

The IT countermeasures whose correctness will be assessed during the evaluation are the
ones that come from the Security Objectives for the TOE. A detailing of this Security
Objectives for the TOE is necessary and is accomplished with the introduction of the
Security Functional Requirements (SFRs). These SFRs are formulated in a standardized
language (described in CC Part 2) to ensure exactness and facilitate comparability.

With this stated we can say that a correct TOE, with all the SFRs covered, in combination
with a correct operational environment, with all the security objectives for the operational
environment, will counter all the threats. In the next two sections correctness of the TOE
and correctness of the operational environment are discussed separately.

2.6.2 Correctness of the TOE

An attacker can exploit vulnerabilities, damaging and/or abusing the assets. This becomes
possible because a TOE can be incorrectly designed and implemented and can therefore
contain errors that lead to the vulnerabilities used by attackers. Accidental errors made
during the development, poor design, intentional addtion of malicious code, poor testing,
among others, cause these vulnerabilities to arise.

Some of the tasks that can be performed to reduce risks are:

• testing the TOE;

• examining various design representations of the TOE;

• examining the physical security of the development environment of the TOE.

21

These activities are presented in the context of the CC in the form of Security Assurance
Requirements (SARs) and are defined in the Security Target. These SARs are formulated
in a standardized language (described in CC Part 3) to ensure exactness and facilitate
comparability. If the SARs are met, there is assurance in the correctness of the TOE
and the TOE is therefore less likely to contain vulnerabilities that can be exploited by
attackers. The level of assurance that exists in the correctness of the TOE is determined
by the EALs, which are explained in Section 2.4.

2.6.3 Correctness of the Operational Environment

As in the TOE, the operation environment can also be incorrectly designed and imple-
mented, and may therefore contain errors that lead to vulnerabilities. By exploiting these
vulnerabilities, attackers may still damage and/or abuse the assets. However, in the CC,
no assurance is obtained regarding the correctness of the operational environment. Or,
in other words, the operational environment is not evaluated. As far as the evaluation is
concerned, the operational environment is assumed to be a 100% correct instantiation of
the security objectives for the operational environment.

2.6.4 Common Criteria Evaluation

The CC has two types of evaluation: a Security Target/TOE evaluation and an evaluation
of the Protection Profiles. In general the CC uses the term evaluation to refer to a Security
Target/TOE evaluation.

The Security Target/TOE evaluation has the following steps defined in the CC:

a) a Security Target evaluation, where the sufficiency of the TOE and the operational
environment are determined;

b) a TOE evaluation, where the correctness of the TOE is determined. As stated earlier,
the TOE evaluation does not assess correctness of the operational environment.

In the case of the Security Target evaluation, the criteria applied are defined in CC Part 3,
where the ASE assurance requirement is explained. The precise method to apply the ASE
criteria is determined by the evaluation methodology that is used. The TOE evaluation
is more complex. The main inputs to a TOE evaluation are: the evaluation evidence,
which includes the TOE and Security Target, but will usually also include input from the
development environment, such as design documents or developer test results. The TOE
evaluation consists of applying the SARs (from the Security Target) to the evaluation
evidence. The precise method to apply a specific SAR is determined by the evaluation
methodology that is used.

The evaluation scheme under which the evaluation is carried out and the evaluation
methodology followed states how the results must be presented. The results of the TOE
evaluation process are either:

• all SARs have been met and therefore we have the specified level of assurance that
the TOE meets the SFRs as stated in the Security Target;

22

2.6. General Model

• not all SARs have been met and therefore we do not have the specified level of
assurance that the TOE meets the SFRs as stated in the Security Target.

As we have stated before, the TOE evaluation may be carried out after TOE development
has finished, or in parallel with TOE development.

Below we present two other methodologies defined by the CC standard: how to counter
Threats and the relation between Security Objectives and SFRs.

Countering Threats

Countering a threat does not necessarily mean removing that threat, it can also mean
sufficiently diminishing that threat or sufficiently mitigating that threat. Examples of
removing a threat are:

• removing the ability to execute the adverse action from the threat agent;

• moving, changing or protecting the asset in such a way that the adverse action is no
longer applicable to it;

• removing the threat agent (e.g. removing machines that frequently crash it from a
network).

Examples of diminishing a threat are:

• restricting the ability of a threat agent to perform adverse actions;

• restricting a threat agent opportunity to execute an adverse action;

• reducing the likelihood of an executed adverse action being successful;

• reducing the motivation to execute an adverse action of a threat agent by deterrence;

• requiring greater expertise or greater resources from the threat agent.

Examples of mitigating the effects of a threat are:

• making frequent back-ups of the asset;

• obtaining spare copies of an asset;

• insuring an asset;

• ensuring that successful adverse actions are always detected in a timely fashion, so
that appropriate action can be taken.

These are examples of countermeasures that can be used to remove, reduce or mitigate a
Threat.

23

Relation between SFRs and Security Objectives

In the Security Target we have a chapter that contains a security requirements rationale
where two sections about SFRs are present: a tracing that shows which SFRs address
and which Security Objectives for the TOE are relevant and a set of justifications that
show that all Security Objectives for the TOE are effectively addressed by the SFRs. In
terms of relation carnality we can say that each SFR traces back to at least one Security
Objective and that each Security Objective for the TOE has at least one SFR tracing to
it. Multiple SFRs may trace to the same security objective for the TOE, indicating that
the combination of those security requirements meets that security objective for the TOE.

The security requirements rationale demonstrates that the tracing is effective: if all SFRs
tracing to a particular security objective for the TOE are satisfied, that security objective
for the TOE is achieved. This demonstration should analyze the effects of satisfying the
relevant SFRs as far as achieving the security objective for the TOE is concerned and lead
to the conclusion that this is indeed the case. In cases where SFRs very closely resemble
security objectives for the TOE, the demonstration can be very simple.

2.7 Formal Methods in Common Criteria

This section introduces the other theme used in this dissertation. Even though formal
methods are already recognized in CC certification and explicitly used in the higher EAL,
other approaches to the use of formal methods have been used to help in software certifica-
tion [1]. The contribution that formal methods can provide for the certification of software
is achieved through software specification and verification [40]. Using formal methods to
assure the correctness of cryptographic software makes even more sense due to the connec-
tion that this type of software has with critical components [2].

Formal methods are used today for various purposes in software systems. The myth that
they can only be used in critical software, that they are extremely expensive and not worth
the hassle is no longer valid [16]. In this work we show that these techniques can be used to
validate documentation, increase assurance in documents, help construct documentation,
etc [13]. We present some examples in Section 2.8.

We show how CC consider formal methods in the more rigorous certification levels to
improve assurance. They advise the use of formal methods as a way to improve the software
development process. This means that in CC, formal methods are used during normal
software development process. In this dissertation work we will use Alloy, a particular
formal methods technique, to model and validate documentation used as evidence in the
CC certification process.

The highest level of CC assurance, EAL7, requires a formal specification of a product’s
security functions, its security model and formal proof of correspondence between the two.

Although the CC is just a framework that can be used in a variety of circumstances, its
documentation does provide some guidance on the use of formal methods. This is in Annex
5 of CC Part 3 [24] Supplementary material on formal methods.

Although it does not recommend any particular formal methods it does give four examples:

• The Z specification language is highly expressive and supports many different

24

2.7. Formal Methods in Common Criteria

methods or styles of formal specification. The use of Z has been predominantly
directed towards model-oriented specification, using schemas to formally specify op-
erations.

• ACL2 is an open-source formal system comprising a LISP-based specification lan-
guage and a theorem prover.

• Isabelle is a popular generic theorem proving environment that allows mathematical
formulae to be expressed in a formal language. It also provides tools for proving those
formulae within a logical calculus.

• The B method is a formal system based on the propositional calculus, the first
order of predicate calculus with inference rules and a set theory

If the developer uses a formal system which is already accepted by the evaluation authority
the evaluator can rely on the level of formality and strength of the system and focus on the
instantiation of the formal system to TOE specifications and correspondence proofs [20].

Below, we present a new process already used to obtain a CC certification with EAL7. We
end this chapter with an overview of cases that use formal methods out of the traditional
scope of CC to increase the success of the certifications.

CC evaluation of Embedded Device with EAL7

In this section we will follow the approach used in [19], where formal methods are used
practically to certify a secure software system. This serves as an example of a CC eval-
uation using formal methods. This work is defined as innovative, to increase the use of
formal methods in software certification. This approach was formulated to support a CC
evaluation of an Embedded Device (ED) software piece’s security. The CC requires a for-
mal proof correspondence between a formal specification of ED’s security functions and its
required security properties as well as a demonstration that ED’s implementation satisfied
the formal specification.

The process presented in [19] is divided into five steps. First of all, 1) given source code
annotated with Floyd-Hoare preconditions and postconditions and 2) a security property
of interest, the problem is how to establish that the code satisfies the property. The Top
Level Specification (TLS) purpose is to provide a precise yet understandable description of
the allowed security-relevant external behavior of ED’s separation kernel and to make the
assumptions on which the TLS is based explicitly. The five steps of the process are listed
as follows, with all explanation available to be consulted in [19]:

1. Formulate a TLS of the code as a state machine model;

2. Formally express the security property as a property of the state machine model.
Confirm that the property is preserved under refinement;

3. Translate the TLS and the property into the language of a mechanical prover and
formally prove that the TLS satisfies the property;

4. Given source code annotated with preconditions and postconditions, partition the
code into three categories - Event, Other, and Trusted Code - based on criteria
determined by the property of interest;

25

5. So as to demonstrate that the Event Code does not violate the property of interest,
construct:

(a) A mapping from the Event Code to the TLS events and from the code states
to the states in the TLS;

(b) A mapping from preconditions and postconditions of the TLS events to the pre-
conditions and postconditions that annotate to the corresponding Event Code.

Demonstrate separately that both Trusted Code and Other Code are benign. Based
on these results, conclude that the code refines the TLS.

This work has introduced a novel and affordable approach to verifying security down to the
source level. Tools such as checkers and theorem provers are already available for verifying
that a formal specification satisfies a security property of interest [18]. This type of tools
could help bring formal methods to the software certification process even more.

2.8 Other applications of Formal Methods in CC Certifica-
tions

We now present some works that use formal methods in software certification. These works
are related with CC certifications, some of them directly related to the highest levels of
EALs, others simply use these techniques aiming to improve the level of assurance in an
evaluation component. In the previous section we have already presented an example of
formal methods applied in the CC evaluation process.

The work by Hashii et al [17] presents the lessons learned using Alloy to formally specify an
Multi Level Security (MLS) on the Darpa Polymorphous Computing Architecture (PCA),
while it was under a high assurance certification process. PCA is a multi-processor ar-
chitecture that allows a processor to morph during operations to provide the best type
of processor for the job at hand. The goal of MLS-PCA is to create a high assurance
security infrastructure for multi-processor distributed applications, with a certification like
CC EAL7. In this work, we discuss the benefits of the formal specification being three-
fold. Firstly, the act of writing the specification forces one to examine the details of the
design at a higher, more abstract level, than one would get from writing code. This allows
the designers to focus on the issues that are important and gain distance from those that
are not. In addition, both the writing and analysis of formal specifications allows one to
encounter and deal with problems in the design phase. Eliminating problems after coding
is extremely costly, mainly due to the need for regression testing. Finally, the ability to
mathematically verify that specification holds to some criteria provides confidence that the
design is correct.

Park et al [36] presents an Security Policy Modeling (SPM) requirement in the higher EALs
of CC, using Z notation for CC version 3. EALs 5 to 7 are referred to as the high-assurance
levels. In the highest levels such as EAL6 and EAL7, a formally specified and verified
security policy model is needed in evaluation. SPM provides increased assurance that TOE
satisfies security functional requirements. SPM establish a correspondence between security
policy models and functional specifications. A security policy model may be used as
guidance throughout the design, implementation, and review processes. It may be difficult
to develop the formal SPM because the CC doesn’t specify how to make the document

26

2.8. Other applications of Formal Methods in CC Certifications

and how to use formal methods in modeling security policy. In addition, industries have
rarely published the modeling result. In this work, a guideline for developing formal SPM
for CC v3.1 with the example of a smart card operating system is provided.

Singh et al [41] present a formal specification of an Access Control Policy model also in Z
notation for CC. The Insider Threat Study [3][7] provided the first comprehensive analysis
of the insider threat problem. As part of the Insider Threat study, the lack of an effective
access control mechanism is identified as one of the major issues that facilitated IT sab-
otage. Ninety three percent of the insiders in the IT sabotage cases exploited insufficient
access controls. Other causes of Insider threat include System misconfigurations, disgrun-
tled employees and overloaded system administrators etc. In this paper we focus on access
control element of the insider IT sabotage problem. In this a formal security policy model
for a security evaluation CC is developed, so as to provide a formal framework to allow
the implementation of an Internal threat protection security solution against unauthorized
access in network computing environments. The paper concludes with a case study along
with model verification.

Téri et al [45] uses the B Method to formalize the java Card Runtime Security Policy for
a CC evaluation. This work provides an overview of a set of techniques required to obtain
high EALs CC for a Java Card. The motivation for a Java Card evaluation is to reach
the same security level in the new open smart card as in traditional embedded platforms.
They introduce Unified Modeling Language (UML) and the B method to illustrate the
semi-formal and formal models required for a high level evaluation. With the B method
they intend to formally model the security mechanisms of the Java Card: the bytecode
verifier, the interpreter and the firewall.

In our case, we apply formal methods to increase the rigor of the certification process at the
documentation analysis level in the CC certification process. We use the Alloy specification
language to model the fundamental concepts of a security certification according to the
CC, and then show how these models can be used to validate the consistency of Protection
Profile and Security Target documentation.

27

28

Chapter 3

Common Criteria Documentation

We focus our work on the modeling and validation of documentation used in the certifica-
tion process of cryptographic software. As we have presented previously, in Chapter 2, CC
has several documents that are used as evidence in the certification process. In Section 2.6
we present the CC’s General Model that includes the relations between security concepts.
This will be the basis for the evidence documents. The documents that are more impor-
tant in the certification process, the Protection Profile and the Security Target, are the
focus of our work. These documents have a structure and properties that can be modeled
as we show in the current chapter. Our global approach aims to validate the consistency
of low level documentation, instances of Protection Profiles and Security Targets, against
restrictions imposed in the very Protection Profile and in the concepts of CC.

In this chapter we present the CC documentation structure and explain in detail the most
important documents in the certification process. The documents are interrelated, with
the Protection Profile being followed by the Security Target as the documents that are
in the CC documentation structure head. In the context of this work we also focus on
documents for the development of evidence.

The concepts and terminology present in CC translate how security is discussed during a
CC evaluation. We must understand these concepts and terminology for a correct use of
the CC. The concepts are quite general and are not intended to restrict the class of IT
security problems to which the CC is applicable. The restrictions that are present in the
CC standard are defined in the General Model.

We initiated this chapter by introducing the documentation structure for CC. Next, we
will present the restriction imposed by the General Model. After this, we will introduce
the Protection Profile and the CC in detail, presenting the relevant characteristics to be
analyzed in this type of documents. To conclude this chapter we also introduce another
document, the Functional Specification. This is the document where the software product’s
external interfaces are defined, with the SFR stated in the Security Target. We want to
be able to generate and validate information from the Security Target to be used in other
documents.

29

3.1 CC Documentation Structure

To achieve a CC certification we need to produce a considerable amount of documents. We
can see the documentation structure for CC in Figure 3.1. We can see the CC standards
as readable guidelines to produce the documents in the top. The next document is the
Protection Profile that gives origin to the Security Target. Some certifications may not use
a Protection Profile. This way, we can go from the CC standards to the Security Target.
This is explained in Section 3.3. The Sensitive Information present in the Security Target
is a subset of this document that represents assets considered more sensitive in the context
of the certification. This is explained in Section 3.4.

Figure 3.1: Common Criteria Documentation Structure

These documents are divided in evidence categories represented in Table 2.2. In this case
we present the Development Evidence in more detail because we are mostly interested in
this set of documents to perform our analysis. In the figure we only show the development
documents for an EAL4 evaluation.

For the purpose of this work we focus on four levels of documentation. Figure 3.2 presents
all four levels: General Model, Protection Profile, Security Target and the implementation
documents level represented with the Functional Specification document. All the security
concepts are represented in the General Model. This is the most abstract level of the
certification process and is valid for all type of software products. The Protection Profile

30

3.1. CC Documentation Structure

is an instantiation of the General Model and is related to a specific type of product. The
Security Target is the document where elements for a certification are defined and it is
related to a unique product as a security specification. It is usually a subset of one or
many Protection Profiles but it could also be a direct instantiation of the General Model.
All the other documents are produced in relation to the Security Target. In our work we
also considered the Functional Specification document, where the product implementation
for the security functional requirements are stated.

Figure 3.2: Documentation for analyzes

The purpose of this work, as we can see in Figure 3.2 with the blue arrows, is to go through
this set of documents and perform an analysis of the most relevant security concepts. We
analyze the Protection Profile for consistency against restrictions imposed in the General
Model and with that information we can validate the document for all concepts included
in the analysis process. Much in the same way, we can check the Security Target against
restrictions imposed by the CC and in the Protection Profile validating the document for
all concepts included in the analysis process. In the case of the Security Target, we can
also analyze the security requirements in terms of sufficiency and correctness.

With the information present in the Security Target, we can generate contents present in
other documents of CC with a higher abstraction level. This can be used to fill in parts of
those documents. Alternatively, we can use use it to validate these parts comparing what
is in the Security Target and what is in the other CC documents. We use this process in
the Functional Specification document. This idea can be put into practice throughout the
process of producing documents for the CC certification process, thus enabling the people
that produce documents to quickly fill systematic parts of the process and save time.

Documents for evidence are very important in software certification with CC. In the
following sections we present each of the documents defined here as crucial for this work.
For each one of them we will introduce its purpose, which is important to understand
its utility in the certification process; its structure and components, mentioning what is
important for our work and which are the characteristics that make it important. We
will also analyze so as to perform consistency checks and to understand what should be

31

generated, according to its relevance. With this we aim to contribute to the CC certification
process and to help in the always tedious work that is producing the evidence for the
certification.

3.2 Restrictions Imposed in the General Model

From the beginning, we have understood that some concepts are too generic and that
detailing them would be necessary to fit the documents’ contents. This brought about our
work reformulating some things in the model presented in Figure 2.4. We are looking for
a model that approximates us to the reality present in the CC documents.

In the context of CC certifications we have the Security Policies Definition (SPD) concept
that includes the Threats, Organizational Security Policies (OSPs) and the Assumptions.
We don’t include all the SPD in our work because we are only interested on elements related
to TOE. As such, we will only consider the security objectives for the TOE and the Threats.
OSPs and Assumptions that are also defined in the SPD will not be considered, so we will
only refer to the Threat as the whole SPD. Figure 3.3 shows the relation between Security
Objectives and the SPD. However, even though OSP are also related to the Security
Objectives for the TOE we do not consider them relevant for our analysis.

Figure 3.3: Security Objectives and Security Police Definition

In Figure 3.4 we present a new representation of the General Model, that we will follow as
the basis for our work. In this model we have dropped the concept of the Owner as it is
irrelevant for security concerns.

The Assets were also divided into two new concepts. We understand that an Asset has
to have Sensitive Information, which holds the value, the information valuable to the
owner. Besides the Sensitive Information, the Asset is also represented by a Security
Information Goal. This represents the security goals that we need to consider for the
Sensitive Information represented by the Asset.

The Countermeasures are also detailed in the model into two other concepts. These are key
concepts in the CC certification process. In the context of the model, Security Objectives
are high level statements which target the Threats to the Assets. The Risks are the link
between Security Objectives and Threats, being the Security Objective the opponent to
the Risk provoked by the Threat.

Related to the Security Objective is the SFR which is certainly the most important concept
present in the CC standard. SFRs are a translation of the security objectives for the TOE
into a standardized language. CC provide a long catalogue of SFRs that can be used in

32

3.3. Protection Profile

Figure 3.4: Detailed General Model

certifications to counter Threats. We can see the SFRs as a set of countermeasures that
will fulfill the goal of the Security Objectives.

To analyze the restrictions imposed by the General Model we must look to Figure 3.4. We
can quickly understand that for a Threat to exist, a Threat Agent must give origin to it.
Therefore, we can claim that a Threat always has at least one Threat Agent. Following
the same reasoning, we can claim that an Asset always has at least one Threat whenever
there is Risk associated to it.

In terms of the Asset, it will have at least one Threat, a Threat Agent that gives origin to
said Threat and one Risk. We will need to verify if the Threat Agents associated with the
Threat in the Asset are the same Threat Agents of the Asset.

In the case of the Risk, they are the connection between the Threats and the Counter-
measures. We understand the Risks as something that results from a succeeded Threat
to an Asset. That damage must have origin in at least one Threat and can be prevented
by a countermeasure. These countermeasures are presented in the context of the CC as
Security Objectives that are supported by the SFR. Below we present examples of how to
counter Threats and the relation between Security Objectives and SFRs.

3.3 Protection Profile

The Protection Profile was an important innovation of the CC. Its main goal is to state
a security problem rigorously for a given collection of systems or products, known as the
TOE, and to specify security requirements to address that problem without dictating how
these requirements will be implemented [10].

A Protection Profile is a combination of threats, security objectives, assumptions, SFR,
SAR and rationales. It also specifies generic security evaluation criteria to substantiate a
given family of information system products vendor’s claims.

33

In order to get a product evaluated and certified according to the CC, the product vendor
has to define a Security Target which may comply with one or more Protection Profiles.
Also notice that a Protection Profile may inherit requirements from one or more other
Protection Profiles [22].

Another functionality of a Protection Profile is to specify the Evaluation Assurance Level
(EAL), a number 1 through 7 [24], indicating the depth and rigour of the security evalu-
ation, usually in the form of supporting documentation and testing, that a product meets
the security requirements specified in the Protection Profile. A Security Target that fol-
lows a certain Protection Profile must define its assurance level according to the Protection
Profile. A large number of Protection Profile have been developed and can be found in the
CC portal1.

The bulk of certified Protection Profiles are from the U.S. government ant the Smart Card
Industry. The following are some of the aproved Protection Profiles:

• Anti-Virus

• Certificate Management

• Databases

• Intrusion Detection System/Intrusion Prevention System

• Firewall

• Operatin System

• Router

• USB Encryption

• Virtual Private Network

• Wireless LAN

• Enterprise Security Management

• Enterprise Firewall

• Security IC Platform (Smart Card)

Vendors can evaluate their products against the requirements present in one of these ap-
plicable Protection Profiles or they can make their own claims and have those claims
evaluated in the CC evaluation process. However, some governmental agencies have es-
tablished policies requiring some products to only evaluate against applicable Protection
Profiles.

1http://www.commoncriteriaportal.org/pps/

34

http://www.commoncriteriaportal.org/pps/

3.3. Protection Profile

3.3.1 Contents of a Protection Profile

CC states the contents for the Protection Profile. Each Protection Profile contains a set of
mandatory parts. These parts must be integrated in the document following a structural
outline like the one in Figure 3.5. Nevertheless, alternative structures are allowed. As an
example, if the security requirements rationale is deemed complicated to explain and to
introduce in the middle of the document, then it could be included in an appendix of the
Protection Profile instead of the security requirements section.

Figure 3.5: Contents of a Protection Profile

We present a brief explanation of all the contents below.

Introduction The Protection Profile introduction describes the TOE for each Protection
Profile. Two levels of abstraction are intended: the Protection Profile reference, which
provides identification material for the Protection Profile and a TOE overview where the
TOE are briefly described.

The reference typically consists of a title, version, authors and publication date, facilitating
the index and reference of the Protection Profile and its inclusion in lists. To achieve this,
the reference must be unique so that it is possible to tell different Protection Profiles and
different versions of the same Protection Profile apart.

The TOE overview means to allow potential consumers of a TOE who are looking through
lists of evaluated products to find TOEs that may both meet their security needs and be
supported by their hardware, software and firmware. This also aims to allow developers
who may use the Protection Profile to design TOEs or to adapt existing products. We can
see the TOE overview as a brief description of its usage and of its major security features,
that identify the TOE type and any major non-TOE hardware/software/firmware made

35

available to the TOE.

Conformance Claims This section includes the CC conformance claims that specify
which version of CC is being followed. Conformity with other Protection Profiles and
with packages is written in the Protection Profile’s conformance claims. The conformance
rationale explains the rationale behind the claims. The conformance statement in the Pro-
tection Profile states how Security Targets and/or other Protection Profiles must conform
to that Protection Profile.

The author of the Protection Profile also has to specify if conformance with the Protection
Profile is "strict" or "demonstrable". Demonstrable conformance is orientated to the Pro-
tection Profile-author who requires evidence that the Security Target is a suitable solution
to the generic security problem described in the Protection Profile. Strict conformance is
oriented to the Protection Profile-author who requires evidence that the requirements in
the Protection Profile are met, that the Security Target is an instantiation of the Protec-
tion Profile, even though the Security Target could be broader than it. In essence, the
Security Target specifies that the TOE does at least the same as in the Protection Profile,
while the operational environment does at most the same as in the Protection Profile.

Security Problem Definition In the Security Problem Definition the security usage
assumptions, the Threats and the Organizational Security Policies (OSP) for the TOE are
defined. As we have said previously we only considered the Threats for our analysis.

Security Objectives This section of the Protection Profile shows the solution to the
security problem is divided between security objectives for the TOE and security objectives
for its operation environment.

Extended Components Definition This is the section where new components (i.e.
those not included in CC Part 2 or CC Part 3) may be defined. This allows new re-
quirements do the catalogue of functional and assurance requirements of the CC to be
added.

Security Requirements In this section the TOE’s security objective’s translation into
a standardized language is provided. This standardized language is in the form of SFRs.
The SARs is also included in this section defining which EAL must be followed with the
Protection Profile.

3.3.2 Choice of Protection Profile

The step of choosing the Protection Profile in the evaluation process is certainly one of
the most important. The Protection Profile is an improvement of CC and aims to serve
as guidance to the evaluation of software product types. The vendors choose a Protection
Profile that fits the security requirements of their product and will build its evaluation
against that Protection Profile. National Information Assurance Partnership (NIAP) has
stated in 2003 the following policies for acquiring products by the Department of Defense
(DOD) [21]:

36

3.3. Protection Profile

• If a Protection Profile for a given product type exists and some product have been
validated against that Protection Profile, then only those products must be procured;

• If a Protection Profile for a given product type exists but no products have been
validated against that Protection Profile, then the vendors are required to certify
their products and validate them against that Protection Profile in order the product
to be sold to the DOD;

• If no Protection Profile exists for the given product type, then the vendor must
certify their products submitting them for evaluation and validation against the
vendor-provided Security Target.

With these policies, any vendor that wants to see their products procured by the DOD has
to evaluate it with CC and if possible against a recognized Protection Profile. In Figure 3.6
the decision process described above is illustrated.

Figure 3.6: Protection Profile Decision Tree

Despite these policies, the CC don’t require that software products are evaluated against
Protection Profile and admit that sometimes this could be negative for the process of
evaluation. The Protection Profile imposes certain requirements that may not be appro-
priate for the software product, even if the product is of the same type, since it may have
particular features.

Developers can also choose a Protection Profile that is of the same type as the product
and, in the Security Target, claim to follow the Protection Profile with some restrictions
or with new requirements retrieved directly from the CC standard. They may even create
or establish new requirements themselves. This liberalization of requirement choice is also
an advantage of CC [21].

37

3.3.3 Consistency Concerns for the Protection Profile

The concerns over Protection Profile consistency are based on the restrictions imposed in
the General Model. We need to check if the information present in the various chapters of
the Protection Profile follows the rules imposed by the CC standard in terms of relations
between the CC concepts. From the Protection Profile structure presented before we will
look at Threats, Security Objectives, Threat Agents, Assets and SFRs to analyze if these
elements are all in conformity with the restrictions present in the General Model.

We want to see if all the Threats are being countered by a Security Objective, that, in turn
is related to at least one SFR. We want to check if all Assets are taken into consideration
and are properly related to their Threats, Threat Agents and one Risk. We can also check
if we don’t have duplicate cases, for example, two Assets with the same Risk and same
Threats.

In Protection Profile consistency checking we are mainly concerned with the information
being properly placed in the document and if that information is sufficient and correct for
all the Assets addressed by the Protection Profile.

3.4 Security Target

In this section we present the Security Target document. We start by stating the impor-
tance of said document, after which we follow with the contents that a Security Target has
and a brief description of these contents. A perspective for using the Security Target is
given in Section 3.4.2. We also introduce the low assurance Security Target.

As we have previously stated, the Security Target is a security specification for a software
product. This is the central document, typically provided by the developer of the product,
and it specifies security evaluation criteria to substantiate the vendor’s claims for the
product’s security properties [10].

A Security Target defines information assurance security requirements for the given infor-
mation system product, which is called the TOE. A Security Target is a complete and
rigorous description of a security problem in terms of TOE description, threats, assump-
tions, security objectives, SFRs, SARs, and rationales [23]. The SARs are typically given
as a number 1 through 7 called EAL, which, as stated above, indicate the depth and rigor
of the security evaluation, usually in the form of supporting documentation and testing, to
ensure that the product meets the SFRs [24]. Unlike Protection Profiles, Security Targets
are implementation dependent [22].

A Security Target is the basis for the agreement between the developers, evaluators and,
where appropriate, users on the TOE security properties and on the scope of the evalua-
tion. A Security Target is usually derived from a given Protection Profile by instantiation;
in general, each Security Target corresponds to a particular Protection Profile definition.
A Security Target may then claim conformance to a Protection Profile by providing the
implementation details concerning the security requirements defined by that Protection
Profile [6]. Also, a Security Target may augment the requirements derived from the Pro-
tection Profile. Indeed there might be cases where there is no Protection Profile that
matches the security properties of a specific product. In this case, the product developer
could create his own Security Target without claiming conformance to any Protection Pro-

38

3.4. Security Target

file. A Security Target may also claim conformance to more than one Protection Profile
[22].

The Security Target document frames the CC evaluation effort by answering the question:
What is being evaluated?. A large number of Security Target for different types of products
have been developed and can be found in the CC portal2.

3.4.1 Contents of a Security Target

The CC states the contents for the Security Target. Each Security Target contains a
set of mandatory parts. These parts must be integrated into the document following a
structural outline like the one in Figure 3.7. However, alternative structures are allowed.
As an example, if the security requirements rationale is complicated to explain and to
introduce in the middle of the document, it could be included in one of the Security
Target’s appendixes instead of being included in the security requirements section.

Figure 3.7: Contents of a Security Target

We present a brief explanation of all the contents of a Security Target below.

Introduction Security Target introductions describe the TOE for each Security Target
and are intended to be in three levels of abstraction: the Protection Profile reference, which
provides identification material for the Protection Profile, a TOE overview where the TOE
are briefly described and the TOE description which describes the TOE in mode detail.

Any given Security Target contains a clear Security Target reference that identifies that
particular Security Target. A typical Security Target reference consists of a title, version,

2http://www.commoncriteriaportal.org/products/

39

http://www.commoncriteriaportal.org/products/

authors and publication date. The Security Target also contains a TOE reference that
identifies the TOE that claims conformance to it. A typical TOE reference consists of the
developer’s name, TOE name and TOE version number. The Security Target reference
must be unique. As a single TOE may be evaluated multiple times, for instance, by
different consumers, and therefore have multiple Security Targets, this reference is not
necessarily unique. The Security Target reference and the TOE reference facilitate indexing
and referencing the Security Target and TOE and their inclusion in summaries of lists of
evaluated TOEs/Products.

TOE overview intends to allow potential consumers of a TOE who are looking through
lists of evaluated products to find TOEs that may both meet their security needs and be
supported by their hardware, software and firmware. We can see the TOE overview as a
brief description of its usage and its major security features, which identify the TOE type
and any major non-TOE hardware/software/firmware available to it. The TOE overview
identifies the general type of TOE, such as: firewall, VPN-firewall, smart card, crypto-
modem, intranet, web server, database, web server and database, LAN, LAN with web
server and database, etc.

TOE description explains the TOE in detail, usually occupying several pages of a Security
Target. The TOE description should provide evaluators and potential consumers with a
general understanding of the security capabilities of the TOE in more detail than that
which was provided in its overview. The TOE description may also be used to describe
the wider application context into which it will fit.

This part of a Security Target is usually important as it is the explanation of the physical
and logical scopes. They describe the TOE in such a way that there remains no doubt
over whether a certain part or feature is in the TOE or whether this part or feature is
outside of it. The physical scope of the TOE consists of: a list of all hardware, firmware,
software and guidance parts that constitute the TOE. This list should be described at a
level of detail that is sufficient to give the reader a general understanding of those parts.
The logical scope of the TOE consists of the logical security features offered by the TOE
at a level of detail that is sufficient to give the reader a general understanding of those
features. This description is expected to be more detailed than the major security features
described in the TOE overview.

Conformance Claims This section includes the CC conformance claims that specify
which version of CC is being followed and whether the Security Target contains extended
security requirements or not. The conformity with Protection Profile (if any) and with
packages (if any) is written in the Protection Profile conformance claims. The Security
Target’s description of conformance to Protection Profiles means that the Security Target
lists the packages said conformance is being claimed to. The Security Target’s description
of conformance to packages means that the Security Target lists the packages said confor-
mance is being claimed to. The conformance rationale explains the rationale behind the
claims.

Security Problem Definition This section of the Security Target defines the security
problem that is to be addressed. The process of deriving the security problem definition is
not included in the scope of CC. However, the success of an evaluation strongly depends
on the Security Target, and the usefulness of the Security Target strongly depends on
the quality of the security problem definition. It is therefore often worthwhile to spend

40

3.4. Security Target

significant resources and use well-defined processes and analysis to derive a good security
problem definition.

The security Problem Definition is composed by threats, OSPs and assumptions. However,
according to CC Part 3 it is not mandatory to have statements in all sections. A Secu-
rity Target with threats does not need to have OSPs and vice versa. Also, any Security
Target may omit assumptions. It is also normal to discuss the relevant threats, OSPs and
assumptions separately for distinct domains of the TOE operational environment and for
the cases where the TOE is physically distributed.

Security Objectives After presenting the problem, it is necessary to present a solution.
In the Security Target, the section that presents the solution for the problem defined by
security problem definition is the Security Objectives section. The security objectives are
a concise and abstract statement of the intended solution to the problem defined by the
security problem definition. The security objectives are divided into three parts:

• provide a high-level, natural language solution to the problem

• divide this solution into two parts: security objectives for the TOE and security
objectives for the operation environment.

• demonstrate that the solution covers all of the presented problems.

With this section and based on the security objectives and the security objectives rationale
we can reach a conclusion: if all the security objectives are achieved then the security
problem as defined in security problem definition is solved. This means that all threats
are countered, all OSPs are enforced and all assumptions are upheld. This is one of the
objectives that we want to guarantee with this work.

Extended Components Definition In this section all the new components that were
created for the evaluation presented in the Security Target are included. In most cases, the
requirements are taken from CC Part 2 or CC Part 3, or are based on those components.
In some cases, there may be requirements in a Security Target that are not based on
components of the CC. In this case, new components (extended components) must be
defined, and this definition should be done in the Extended Components Definition. This
section is only for the new components and not for new requirements derived from other
components. These must be defined in the security requirements section.

Security Requirements The security requirements consist of two groups of require-
ments, as demonstrated before: SFRs, a translation of the security objectives for the TOE
into a standardized language; and the security assurance requirements (SARs), a descrip-
tion of how assurance is granted that the TOE meets the SFRs. The Security Target also
contains a security requirements rationale in this section that explains why this particular
set of SARs was deemed appropriate. There are no specific requirements for this expla-
nation. The goal for this explanation is to allow the readers of the Security Target to
understand the reasons why this particular set was chosen.

41

TOE summary specification This is the last mandatory piece of content for the Secu-
rity Target and aims to provide a description of how the TOE satisfies all the SFRs. The
TOE’s summary specification should allow potential consumers to understand the general
technical mechanisms that the TOE uses for this purpose. This should have a level of detail
sufficient for a plain understanding of the SFR’s covering of the TOE security objectives.

3.4.2 Using a Security Target

The roles that a Security Target has can be divided in two: before and especially during the
evaluation, the Security Target specifies "what is to be evaluated" and after the evaluation
the Security Target specifies "what was evaluated". During the evaluation the Security
Target serves as a point of agreement between the developer and the evaluator on the
exact security properties of the TOE and the exact scope of the evaluation. The point of
correctness and completeness of all the evidence are always the Security Target and what
the Security Target specifies. After the evaluation, the Security Target will serve for the
seller or the developer to present to the potential consumer of the TOE the security claims
achieved with the certification of the product. The Security Target describes the exact
security properties of the TOE in an abstract manner, and as such, the potential consumer
can rely on this description to prove that the TOE has been evaluated to meet the Security
Target. This means that the Security Target must be easy to use and easy to understand.

It is also important to understand for what the Security Target must not be used. The
Security Target must not be used essentially for two roles. Others exist, but we refer two
that are present in the CC: a detailed specification and a complete specification. A Security
Target is designed to be a security specification on a relatively high level of abstraction.
A Security Target should not, in general, contain detailed protocol specifications, detailed
descriptions of algorithms and/or mechanisms, long descriptions of detailed operations
etc. The Security Target was also designed to be a security specification and not a general
specification. Unless security-relevant, properties such as interoperability, physical size and
weight, required voltage etc. should not be part of a Security Target. This means that, in
general, a Security Target may be a part of a complete specification, but not a complete
specification itself.

3.4.3 Sensitive Information

The Sensitive Information appears in the certification process as an optional document
that works as a subset of the Security Target to clarify some of its elements. In some cases,
it is complicated to explain how threats are treated in the software development. This
document aims to further explain how the concepts are related in the Assets assumed as
sensitive to the system.

This document is presented as a listing of several Assets where for each of them we have:
description, threat, rationale, related SFR, protection required, control, access rights and
location. This can be traced to fit the General Model presented in the Figure 2.4. Having
this document as a subset of the Security Target we can perform analysis to validate the
Sensitive Information as well.

42

3.4. Security Target

3.4.4 Consistency Concerns for the Security Target

The Security Target is similar to the Protection Profile in terms of structure, so the con-
sistency checking is also similar. As we have seen before the Security Target is a subset of
the Protection Profile. This means that we can apply all of the consistency assumptions
from the Protection Profile to the Security Target.

In this case we do this analysis based in the General Model but, if applicable, with the
restrictions imposed by the Protection Profile. Suppose that it is stated in the Protection
Profile that all Threats must be countered with at least two Security Objectives. This must
be introduced in the Security Target analysis.

In the Security Target we are also concerned with the information being properly placed
in the document and if that information is sufficient and correct for all the Assets. We
also want to generate information to aim the verification of the Security Target in terms
of correction and sufficiency for the TOE, as presented in Section 2.6.1 and Section 2.6.2,
explained below.

3.4.5 SFR Dependencies

Some components of CC have dependencies between them. SFRs are one of those com-
ponents, where when an SFR isn’t self-sufficient for some functionality, it is dependent
on another functionality, or interacts with another component. We can consult the list
of dependencies in CC Part 2 component definitions. In order to ensure completeness of
the TOE security requirements, dependencies should be satisfied when requirements based
on components with dependencies are incorporated into Protection Profiles and Security
Target. We have prepared our analysis for the Security Target case. However, this can
also be used for Protection Profile.

Each SFR has its own lists of dependencies. However, these lists can be empty. There are
three list of dependencies: required, indirect required or optional. These lists of depen-
dencies are normative. This means that they should be followed through the Protection
Profile/Security Target. In other words: if component A has a dependency on component
B, this means that whenever a Protection Profile/Security Target contains a security re-
quirement based on component A, the Protection Profile/Security Target shall also contain
one of :

a) a security requirement based on component B;

b) a security requirement based on a component that is hierarchically higher than B;

c) a justification on why the Protection Profile/Security Target does not contain a security
requirement based on component B.

In cases a) and b), when a security requirement is included because of a dependency, it
may be necessary to complete operations (assignment, iteration, refinement, selection) on
that security requirement in a particular manner to make sure that it actually satisfies the
dependency. This operations are explained in the CC Part 2 and are out of the scope of
this work. In case c), the justification that a security requirement is not included should
address either:

43

• why the dependency is not necessary or useful;

• that the dependency has been addressed by the operational environment of the TOE,
in which case the justification should describe how the security objectives for the
operational environment address this dependency;

• that the dependency has been addressed by the other SFRs in some other manner.

We are interested in analysing this process in the Security Target, which could be compli-
cated to follow. It may also prove difficult to ensure that all the dependencies have been
taken into consideration.

Figure 3.8: Dependency table for Class FAU: Security audit

In Figure 3.8 we show a table retrieved from the CC standard. In that table we show
their direct, indirect and optional dependencies of a class of SFR. Each of the components
that is a dependency of some functional component is allocated a column. Each functional
component is allocated a row. The value in the table cell indicates whether the column
label component is directly required (indicated by a cross “X”), indirectly required (indicated
by a dash “-”), or optionally required (indicated by an “o”) by the row label component.
An example of a component with optional dependencies is FDP_ETC.1 Export of user
data without security attributes, which requires either FDP_ACC.1 Subset access control
or FDP_IFC.1 Subset information flow control to be present. So if FDP_ACC.1 Subset
access control is present, FDP_IFC.1 Subset information flow control is not necessary and
vice versa. If no character is presented, the component is not dependent upon another
component.

44

3.5. Functional Specification

Table 3.1: Functional Specification Component Requirement

EAL Component requirement
EAL1 Basic functional specification
EAL2 Security-enforcing functional specification
EAL3 Functional specification with complete summary
EAL4 Complete functional specification
EAL5 Complete semi-formal functional specification with additional error information
EAL6 Complete semi-formal functional specification with additional formal specification

3.4.6 Generation of Information from the Security Target

As we have stated many times through the course of this document, the Security Target is
the most important document in the CC certification process. It is based on this document
that all the other documents produced for evidence will retrieve their information. There is
information that can be generated from the Security Target and used to fill other documents
and validate them, such as the Functional Specification with the SFR Tracing presented
bellow. We can also generate information that will be used in the very CC. In this case
we are talking about the Correction and Sufficiency analysis that is made in the rationale
present in the Security Target.

SFR Tracing

SFR are the most important components in the software certification with CC. These
components are defined in the CC standard in the form of a catalogue of functional re-
quirements. They are picked for the Protection Profile or the Security Target, where the
authors of these documents can create other components and insert them into the docu-
ments to be used during CC evaluations. This results in an extensive catalogue of SFRs
that is hard do structure and relate to during an evaluation.

We want to validate the path that the SFRs do from the CC standards to the Functional
Specification. This means that we will trace the SFRs from the CC to the Protection
Profile, from the Protection Profile to the Security Target and from the Security Target
to the Functional Specification. We want to generate this information to help construct
these documents and validate them.

3.5 Functional Specification

Functional Specification is a document included in the development evidence class for the
CC process of certification. The objective of this document is to describe the functional
specifications of the software product. It contains the information necessary to fulfill the
requirements of CC component ADV_FSP. This document has several iterations, from 1
to 6 as can be seen in Table 3.1. According to the EAL chosen for the certification, with
this, the contents of the document vary. In the lower EALs this document is essentially
a specification of the interfaces for the software product, while in the higher EAL this
document includes formal presentations of the functional specifications for the TSF.

45

This document provides a high level description of the external interfaces of TOE, which
are necessary to satisfy the security functional requirements of the Security Target. There-
fore, all externally available interfaces are documented in the functional specifications.
Additionally, interfaces that provide security functions (directly or indirectly) are called
TOE Security Function Interfaces (TSFI). All effects, exceptions and error messages of
TSFI are described in this document, which also includes:

• Outputs of the TOE (e.g. certificates and Certificate Revocation Lists (CRLs) issued,
event log entries, etc.);

• Reasons for an interface to be irrelevant in terms of security (e.g. no reconfiguration
possible).

However, this document is not meant to describe how the TSF processes the requests
received by each interface, nor does it describe the communication flow when the TSF uses
its operational environment services. This information is addressed by the TOE design
(ADV_TDS) document.

There are different types of interfaces that need to be clarified in this document:

SFR-Enforcing - an interface that can be traced directly to an SFR;

SFR-Supporting - an interface that supports the TOE security policies;

SFR-non-interfering - an interface where no SFR-enforcing functionality has any de-
pendence.

This document is drawn up according to the contents of the Security Target. This contents
defines all the security requirements for the certification and must be followed through the
CC documents. In the case of the Functional Specification document, we want to generate
information, such as the SFR Tracing, to be able to validate this document or help build
it.

3.5.1 Contents of a Functional Specification for EAL4

In the case of Security Target there isn’t any structure defined in the CC standards, so
we will present the structure of the document produced for the CESeCore certification. In
Figure 3.9 we show the structure of an Functional Specification document. The main com-
ponent is the chapter interfaces where all the TSFI for the software product are specified.

Below we present a brief explanation of all the contents.

Introduction The introduction presents an introduction of the document in terms of
its purpose and objective in the context of the certification. It also presents the related
documents, that usually include the Security Target used in the same certification.

TOE Functional Architecture In this chapter an overview of the TOE is introduced,
in terms of its architecture. A set of diagrams representing different levels of abstraction
of the TOE architecture is usually presented.

46

3.5. Functional Specification

Figure 3.9: Contents of a Functional Specification

Interfaces As the assurance levels increase we need to provide greater description and
proof that the interface fits the designated category. Each TSFI is described in terms of
its:

• Purpose - general goal of the interface;

• Method of Use - how the interface is to be used;

• Actions - what the interfaces does;

• Paramaters - inputs and outputs;

• Parameter descriptions - meaningful descriptions;

• Log Events - events that need to be registered in the log;

• Related SFRs - SFR related with the interface.

SFR Tracing This chapter demonstrates that the SFRs trace to TSFIs is defined in
this document. All the SFRs are present in the Security Target. They have their presence
traced in the Functional Specification and also in what TSFIs they fit.

3.5.2 Generate Information for Functional Specification

We are mainly interested in the generation of SFR Tracing presented in Section 3.4.6. The
main objective of this document is to map the SFRs from the Security Target to the several
external interfaces for the TOE. We want to generate the information from the Security
Target and use it to validate this document.

We can also make some consistency checking in terms of seeing if all the SFR are being
mapped to at least one interface, and if all interfaces have SFRs associated.

47

48

Chapter 4

CC Documentation Modeling and

Validation in Alloy

Up to this point we have presented the context and motivation for this work. We have
presented an overview of CC, an overview of formal methods in the context of software
certification and we have presented the structure of CC documentation, with the documents
necessary for this work in detail. From this point on we will present the work done to
improve the elaboration of CC documents.

The elements of a CC certification presented in the previous chapter were modeled using a
formal specification language and were checked for consistency against restrictions imposed
by the CC standards or other documents used during the certification. With this we hope
to give a higher level of assurance to the documents produced in certifications and improve
their production process. We use Alloy Modeling Language (Alloy) in the context of this
work.

In the first place, we introduce an overview of the Alloy language. Subsequently, we present
a model that represents the security concepts retrieved from the CC documentation with a
few changes that we consider necessary to improve their application. This is based in the
General Model presented in Section 2.6. The model elaborated from the General Model is
the basis of all the other models.

For the two most important documents in CC certification, the Protection Profile and
the Security Target, which are similar in their structure, we have developed a model that
includes the elements relevant for analysis. After the inclusion of the necessary information
in the model we are able to perform consistency verifications in these models and to validate
them. As stated before, we also want to be able to generate information that could be
included in higher level CC documents as the Functional Specification.

In Figure 4.1 we show how the models are structured in documents. Henceforth, we shall
address each of them as individual models. In the top we have the most abstract level,
that represents the General Model, which we have called Abstract Model. Below this,
we have the Full Model. This is the model where we include the information present in
the Protection Profile and in the Security Target to perform consistency analyses. In the
lowest level we have two models: the SFR Tracing where we can generate the SFRs for
each interface and the SFR Dependencies where we can validate them.

To finalize, we perform consistency checking along these models in order to validate the CC

49

Figure 4.1: Structure of the Alloy Models

documentation identified for analysis. This consistency is based in restrictions, norms and
characteristics present in the CC standards and in other documents that are part of the
certification process, disposed hierarchically as presented in Figure 3.1. In the following
sections we present these Alloy models.

4.1 Modeling with Alloy

We have already introduced Alloy in Section 1.1 when we discussed formal techniques.
This was addressed more specifically when formal specification was discussed. We will use
Alloy to model the concepts used in the CC certification process, and with this verify the
consistency so as to validate the documents presented as evidence for evaluation. Alloy’s
approach is divided into three key elements that we describe below [27][32]:

logic Alloy uses first-order relational logic, where reasoning is based on statements written
in terms of atoms and relations between atoms. Any property or behavior is expressed
as a constraint using set, logical and relational operators.

language The Alloy language supports typing, sub-typing and compile-time type-checking,
giving more expressive power on top of the logic. It also allows for generically-
described modules to be re-used in different contexts. Also very useful is syntax sup-
port for three styles of writing Alloy model specifications that users can mix and vary
at will: predicate-calculus style, relational-calculus style and navigational-expression
style. Navigational-expression style, where expressions are sets and are addressed by
"navigating" from quantified variables, is the most common and natural.

analysis The Alloy Analyzer is a model-finder that tries either to find an instance of
the model or a counter-example to any property assertions specified in the model.
An instance is literally an instantiation of the atoms and relations in the model
specification. It performs a bounded-analysis by requiring a user-specified bound on
the number of atoms instantiated in the model. With this bound, it translates the
model into a boolean satisfiability (SAT) problem. Then, it hands the SAT problem
off to a commercial SAT solver such as Berkmin [15]. The resulting solution is then

50

4.1. Modeling with Alloy

interpreted under the scope of the model and presented to the user in a graphical
user-interface as show in Figure 4.2.

Figure 4.2: Alloy analyzer instance for a farm problem

In the following sections we present the three approach in more detail. This introduction
to Alloy serves as a tutorial to understand the logic, language and analyses on related to
working with CC documentation.

4.1.1 Relational Logic

In Alloy we build the models using atoms, tuples and relations. An atom is something
that is indivisible, a tuple is an ordered sequence of atoms and a relation is a set of tuples.
Relations in Alloy can only contain tuples of atoms and not tuples of other relations. This
is because relation logic used by Alloy is of a first-order variety [32].

We can think of relations as if they were tables. In a table we have multiple rows, where
each row corresponds to a tuple and each column in a tuple corresponds to an atom.
Subsequently, we can have an unary relation that is a table with one column, a binary
relation that is a table with two columns and so on. In a table, we also have the number
of rows in a relation that represents its size and the number of columns that represents its
arity. A scalar quantity is represented by a singleton set containing exactly one tuple with
one atom [28].

To express constraints and manipulate relations, we use operators. Alloy operators fall into
three classes: the standard set operators, the standard logical operators and the relational
operators. The standard set and logical operators listed in Table 4.1.

The relational operators require a little more treatment. Let p be a relation containing
k tuples of the form {p1, · · · , pm} and q be a relation containing l tuples of the form
{q1, · · · , qn} [27].

• p� > q - the relational product of p and q gives a new relation r = {p1, · · · , pm, q1, · · · , qn}
for every combination of a tuple from p and a tuple for q (kl pairs).

51

Table 4.1: Set and logical operators used in Alloy

Symbol Operator
+ union
- difference
& intersection
in subset
= equality
! negation

&& conjunction
|| disjunction

• p.q - the relational join of p and q is the relation containing tuples of the form
{p1, · · · , pm� 1, q2, · · · , qn} for each pair of tuples where the first is a tuple from p
and the second is a tuple from q and the last atom of the first tuple matches the first
atom of the second tuple.

• ˆp - the transitive closure of p is the smallest relation that contains p and is transitive.
Transitive means that if the relation contains (a, b) and (b, c), it also contains (a, c).
Note that p must a binary relation and that the resulting relation is also a binary
relation.

• ⇤p - the reflexive-transitive closure of p is the smallest relation that contains p and is
both transitive and reflexive, meaning that all tuples of the form (a, a) are present.
Again, p must be a binary relation and the resulting relation is also a binary relation.

• ⇠ p - the transpose of a binary relation r forms a new relation that has the order of
atoms in its tuples reversed. Therefore, if p contains (a, b) then r will contain (b, a).

• p <: q - the domain restriction of p and q is the relation r that contains those tuples
from q that start with an atom in p. Here, p must be a set. Therefore, a tuple
{q1, · · · , qn} only appears in r if q1 is found in p.

• p >: q - the range restriction of p and q is the relation r that contain those tuples
from p that end with an atom in q. This time, q must a set. Similarly, a tuple
{p1, · · · , pm} only appears in r if pm is found in q.

• p + +q - the relational override of p by q results in relation r that contains all tuples
in p except for those tuples whose first atom appears as the first atom in some tuple
in q. Those tuples are replaced by their corresponding ones in q.

Now, let us explore a brief tutorial on writing model specifications in Alloy.

4.1.2 Alloy Models

To explain the basic modeling techniques in Alloy, we will consider a classic model based
on the song “I’m My Own Grandpa”. In this problem we intended to prove that no one can
be their own Grandpa. In this case we only show that no one can be their own Father. For
the rest of the problem we advise consultation of the book “Software Abstractions” [27].

52

4.1. Modeling with Alloy

Defining object types

An Alloy model consist of a number of signatures (sig), or sets of atoms that describe
basic types in the model. Within these signatures, we can define relations that associate
these basic types to one another. Firstly, we define a abstract type called Person. This
is abstract because no one can simply just be a Person, seeing as we humans are divided
into Men and Women. In that person we are defining two relations, father and mother,
and saying that a Person can have zero or one Man as father, and zero or one Woman as
their mother. Next we declare the Man and the Woman that have a relation to declare if
they have a husband or a wife. All this is expressed with the following:

Listing 4.1: Declaration Part

1 abstract sig Person {
2 father: lone Man,
3 mother: lone Woman
4 }
5

6 sig Man extends Person {
7 wife: lone Woman
8 }
9

10 sig Woman extends Person {
11 husband: lone Man
12 }

The lone multiplicity states that the relation could have zero or one connections. As we
have said before, we only have at most one father or mother. In the case of the wife and
husband relation for our purpose we only consider at most one wife or one husband.

Specifying constraints

After defining object types, we want to be able to specify properties about their behavior
by specifying constraints. Although the possible relations have been sufficiently defined,
we may need to add certain constraints to prevent Alloy from producing trivial instances
or counterexamples during its model-finding. This is made through facts. A fact records
a constraint that is assumed to always hold. In this example its a fact that no one can
be their own ancestor and that if someone is the wife of other, the other is their husband.
This can be written with the following:

Listing 4.2: Example of a fact in Alloy

1 fact {
2 no p: Person | p in p.^(mother+father)
3 wife = ~husband
4 }

In the first line we are saying that no person (p) can be joined with the same p through the
mother or father relation. In the second line, with the relational operator transposition,
we state that if a Person is the wife, the other is her husband.

53

Running analyses

With the model in place, we can proceed to perform some analyses. We can simulate
the model by defining predicates on it which can either be true or false depending on the
instance. These are different from factual constraints, which are always required to be
true in any instance. Simulation of a predicate is the process of instructing Alloy to find
an instance for which the predicate is true. To obtain an instance of the model without
imposing any further constraints, we instruct Alloy to simulate the empty predicate show(),
which is effectively a non-constraint. In this case, Alloy just has to find an instance that
satisfies the object definitions and their factual constraints. Since Alloy only performs
bounded-analyses, we specify a maximum of 10 atoms in each object type (i.e. each sig).

Listing 4.3: Running the model to find a valid instance

1 pred show() {}
2 run show for 10

Figure 4.2 shows Alloys graphical output for a model related with a farm. Alternatively, we
can also define assertions on properties of the model that we believe to be true. Checking
is the process of instructing Alloy to find an instance satisfying the model but not the
assertion. For example, we want to ensure that nobody is their own father, which is valid,
and no counterexamples are found. We write this as:

Listing 4.4: Exemple of a assertion in Alloy

1 assert NoSelfFather {
2 no m: Man | m = m.father
3 }
4 // This should not find any counterexamples
5 check NoSelfFather

Alloy will then proceed to find an instance that satisfies the model but acts as a counterex-
ample to the assertion, an instance where someone is their own father. All of Alloy analyses
have to be run within a size bound on the number of atoms in each object type. Alloy
will check all models within this binding until a satisfying instance or counterexample is
found. Given that the running time of the analysis increases exponentially with size, we
can only check small models (8-12 atoms per object type) in reasonable time. However,
the philosophy behind Alloy is that if there are any inconsistencies with the model, they
are extremely likely to appear even in small models.

This section serves as a introduction to Alloy Modeling Language. We will now present
the models that we have developed in the context of this work.

4.2 Abstract Model

Our work began with the analysis of how the concepts presented in Section 2.6 are inter-
related. Along this section we will present our modulation in Alloy of the General Model.

All the components are taken in consideration except the owners since we don’t use these
components for our verification. As we said, some alterations are introduced in the General
Model’s Alloy modulation. We introduce all the components, one by one, explaining their

54

4.2. Abstract Model

relations and introducing new concepts that are created to detail the General Model model.
In the Abstract Model we only have declarations, in here where we declare all the concepts
as abstract so that only when we extend these declarations will they have meaning. At
this point, Alloy generates abstract instances of the concepts.

We start to show the model by demonstrating the relation between the Threat and the
Threat Agent. Naturally, Threats are triggered by a malicious user, defined in Alloy as:

Listing 4.5: Threat in Alloy

1 abstract sig Threat {
2 t_agent: some Threat_Agent
3 }

We state that a Threat will always have at least one Threat Agent. We have nothing to
relate to the Threat Agent. We nevertheless have to connect it with the Asset.

Listing 4.6: Threat Agent in Alloy

1 abstract sig Threat_Agent {}

The most important concept in the general model is the Asset. This is what’s important
to protect and what is meaningful for Threat Agents. We divide the concept into two
other concepts that we consider compose an Asset, so each Asset is composed by a pair.
A Security Information Goal, which is the part of the Asset we mean to assure and the
Sensitive Information, which is the information in the Asset. For example, some Sensitive
Information could represent access to a restricted component of the system and if some
Threat Agent has access to that area, he could damage that component, so we have a
problem of integrity. The resulting pair will be (Access Control ComponentX, Integrity).

Listing 4.7: Asset in Alloy

1 abstract sig Asset {
2 sinfg: one Security_Information_Goal,
3 si: one Sensitive_Information,
4 threat: some Threat,
5 ta_motivation: some Inf_Risk,
6 risk: one Risk
7 }

In addition to these two relations, the Assets also have a relation with the Threat, since
at least one is contained in it. We also have a relation with the Threat Agent, that passes
by a new atom introduced in the model that we called Information Risk. A Threat Agent
could abuse or/and damage an Asset with an attack that we called Inf_Risk. A single
Asset can be attacked by many Threat Agents.

Listing 4.8: Information Risk in Alloy

1 abstract sig Inf_Risk {
2 t_agent: some Threat_Agent
3 }

Another relation with the Asset is Risk, the pair Asset, Threat, always has at least one
Risk associated to it.

55

Listing 4.9: Risk in Alloy

1 abstract sig Risk {
2 threat: some Threat,
3 sec_objective: one Security_Objective
4 }

Risks are a central concept in the model as they relate Threats with Countermeasures.
Threats are the origin of Risks and Security Objectives are Countermeasures to Threats.
Security Objectives are defined in the CC as a statement of an intent to counter identified
threats and/or satisfy identified organization security policies and/or assumptions. In
the context of this work we only consider Threats, so we replace Security Objectives with
Countermeasures in the General Model. This Security Objectives have a set of SFR that
will counter the Threats.

Listing 4.10: Security Objective in Alloy

1 abstract sig Security_Objective {
2 srf: some SRF
3 }

The SFR are connected with the Security Objectives, and these are connected with Risk,
making it possible to browse all of them. This SFR will have an important role in our
work. They are the most important concept in the CC certification. It is necessary to
ensure that they are correctly applied, and properly considered in the several documents
of the CC evaluation.

Listing 4.11: Security Functional Requirement in Alloy

1 abstract sig SRF {}

This is the model used to represent the security concepts of CC. In Figure 3.4 we present
a version of the General Model with the new concepts introduced here for the Alloy model.
With this we can specify the contents of Protection Profiles and Security Targets making
it possible to analyze that information.

The Abstract Model is the basis for all the other models. In the next section we present
the Full Model where the information present in the Protection Profile/Security Target is
modeled in Alloy.

4.3 Full Model

In the section above we present the concepts used in a CC certification, but that part of the
model only allows us to understand how these concepts relate between them. We want to
analyze information present in the documents of CC certification, so we need to introduce
that information in our models to be able to perform analyses on these documents. The
information that we want to include in our models is that which is present in Protection
Profile and in the Security Target. Also, we can only include the information present in
the Sensitive Information document, a subset of the Security Target that we present in
Section 3.4.3.

56

4.3. Full Model

To include the document’s information, we have created a part for our Alloy models called
Full Model. In that Full Model, we extend the declarations present in the Abstract Model
with the information present in the documents. It is based on the Full Model that we
will perform consistency analyses on the documents. As such, we need to include the
information properly for each concept presented in the previous section. As an example,
here we create one atom for each Threat Agent, and this will be the Threat Agent set
available in the model:

Listing 4.12: Threat Agents for the TOE

1 one sig Administrator, Officer, Operator, Auditor, Other
2 extends Threat_Agent {}

There are restrictions associated to the security concepts that are important to validate.
In the Abstract Model presented above, some are already taken into account and speci-
fied. These restrictions could be validated when we introduce the information present in
documentation for validation in the Full Model. For example, when we say some (example
above), there will be at least one Threat_Agent for each Inf_Risk, and since Inf_Risk is
abstract, when we extend Inf_Risk we will always need to associate a Threat_Agent to
it.

To represent the documentation we understand that we could use the Sensitive Information,
a subset of the ST that contains all the information that must receive more attention in
the product under certification, as opposed to using all of the information present in the
ST and in the PP. With the Sensitive Information we have written a Full Model where
methodologies are applied so as to validate the documentation. We will present some
examples in Alloy of the Full Model. The examples presented here are retrieved from the
case study CESeCore, presented in Section 5.2.

Firstly, we present the Security Information Goals present in the CESeCore certification.
In this case, instead of “abstract” before the declaration, we have “one”. This means that
only one instance of that declaration could be created, allowing us to ensure that when we
perform some analyses on the model, we only will have one Confidentiality, one Integrity
and one Availability atom. All of the declarations present in the Full Model will have “one”.

Listing 4.13: Security Information Goals present in CESeCore

1 one sig Confidentiality, Integrity, Availability
2 extends Security_Information_Goal {}

The other concept that we use to complete the Asset pair the Sensitive Information. In it
we present an example of a Sensitive Information item. In this case we have Access Rules
Configuration, that will have the Security Information Goal Integrity associated to it. This
will give origin to the Asset (Access Rules Configuration, Integrity) that we will present
below.

Listing 4.14: Example of Sensitive Information

1 one sig Access_Rules_Configuration
2 extends Sensitive_Information {}

We have said before that a Threat is always associated with at least one Threat Agent.
Here we show the declaration of a Threat with a set of Threat Agents. Note that these
Threat Agents were already declared in the beginning of this section.

57

Listing 4.15: Threat in Alloy

1 -- Threat
2 one sig Tampering extends Threat {}{
3 t_agent = Administrator + Officer + Operator + Auditor + Other
4 }

As we have stated previously in the presentation of the General Model in Alloy, for each
Asset that has a Threat associated to it, there will also be a Threat Agent with a reason to
attack that Asset. Here we present an example of an Information Risk for a set of Threat
Agents that could damage an Asset.

Listing 4.16: Information Risk example for a set of Threat Agents

1 one sig Want_to_grant_his_role_more_access_rights_than_it_should_have
2 extends Inf_Risk {}{
3 t_agent = Officer + Operator + Auditor + Other
4 }

Moving on to Countermeasures, we have an example of a Security Objective, that is related
to an SFR. This Security Objective is used to counter a Threat that is covered by that
SFR.

Listing 4.17: Example of a Security Objective

1

2 one sig O_Configuration_management extends Security_Objective {}{
3 srf = FMT_MOF_1
4 }

The Risks are something that we don’t have information of on the documents and which
will always be something abstract. They exist to connect the Threats to the Security
Objectives when they are placed in the Asset declaration.

Listing 4.18: Example of a Risk

1 one sig Risk1 extends Risk {}{
2 threat = Tampering &&
3 sec_objective = O_Configuration_management
4 }

The SFR are the last concept that we need to introduce. The example below was already
used in the declaration of the Security Objective above.

Listing 4.19: Example of a Security Functional Requirement in Alloy

1

2 one sig FMT_MOF_1 extends SRF{}{}

The last concept represented is the one that connects all the dots in the model. The Asset
serves as point of collision for all the concepts presented before. The concept declarations
above are necessary for the declaration of the Asset. We can see that the Security In-
formation Goal (sinfg) is the Integrity, the Sensitive Information (si) is the Access Rules
Configuration, the Threat (threat) is Tampering, the Information Risk (ta_motivation) is
the same presented before and finally the Risk (risk) is the Risk that we presented above.
This is repeated for all the Assets present in a CC certification process.

58

4.4. Checking Consistency and Validation of Documents

Listing 4.20: Example of a Asset

1 // SI#1 Access Rules Configuration
2 one sig A_Access_Rules_Configuration extends Asset {}{
3 sinfg = Integrity &&
4 si = Access_Rules_Configuration &&
5 threat = Tampering &&
6 ta_motivation =

Want_to_grant_his_role_more_access_rights_than_it_should_have &&
7 risk = Risk1
8 }

In this section we presented the Full Model, with some examples of the case study for
CESeCore. However, there is some other information that we will need to introduce in this
model, and some other abstract declaration in the Abstract Model that we choose to only
introduce in the following section. That information is relative to the SFR Dependencies
and the SFR Tracing that we present in the next section.

4.4 Checking Consistency and Validation of Documents

In the two previous sections we have presented the Abstract Model and the Full Model
respectively. These two sections represent the declaration part of our Alloy model. In the
first case we have introduced the concepts present in the CC and in the second case we
have introduced the information from the documents that we want to analyze. In those
sections, although not directly, we have also introduced some restrictions to our possible
model so as to do some consistency analysis.

In this section we present the part related with the documentation analysis.

4.4.1 Checking Consistency

We have started our consistency verification from the General Model. In Section 3.2 we
have presented the consistency concerns for the General Model. In here we have stated that
all the restrictions present in that model must be used to ensure that all the information
present in the CC documents have their concepts correctly related. In the Abstract Model
we have introduced those restrictions. For example, when we have said that an Asset must
have a Threat and a Risk, we have guaranteed that in the Full Model we always have at
least one Threat and one Risk associated to every Asset. With this, as the Risks always
have a Security Objective associated, we guarantee that for all the Assets threatened, we
always have a Security Objective countering every Threat.

However, we don’t look for the model to see what we want to verify. We look at the CC
standard to see what are the restriction present for the General Model. In the standard,
as we state in Section 3.2, we can see, for example, that all Threats must be countered by
a Security Objective. Here we will present these verifications in Alloy, for our example:

Listing 4.21: Security Objective countering the Threat in the Asset

1 assert SOminThreat {
2 all a: Asset |
3 one a.risk.sec_objective &&
4 some a.risk.threat

59

5 }
6 check SOminThreat

In Alloy we can perform analyses on the model by using assertions. The AA uses its SAT
solver to quickly verify all the components and generate, if there are any, counterexamples
of the sentence checked. In this case the AA will look to all Assets and see if they have
a Security Objective associated. If not, the AA will produce a counterexample with that
instance.

Another example is to check if the Threat Agents that are responsible for a Threat to an
Asset are contained in the set of Threat Agents that could inflict said Threat. This is a
kind of information that could be incorrectly placed in the documentation and it is difficult
to analyze.

Listing 4.22: Security Objective countering the Threat in the Asset

1 assert TAinT {
2 all a: Asset |
3 a.ta_motivation.t_agent in a.threat.t_agent
4 }
5

6 check TAinT

We use these assertions so as to afterwards, including the information in the Full Model,
analyze the consistency of the model. Another example, to verify if there is only one
Sensitive Information, Security Information Goal pair or to verify if Assets always have a
Security Objective associated.

Listing 4.23: Threat Agent in Alloy

1 assert PairSIGSI {
2 no disj a,a’: Asset |
3 (a.sinfg + a.si) == (a’.sinfg + a’.si)
4 }

In this example, we can validate if all the Assets have the Security Objectives necessary to
guarantee that the Asset is protected against its Threats, or we can validate if the Threat
Agents associated to an Asset are present in the Threat that is being inflicted on that
Asset. We can also validate the uniqueness of the pairs that represent the Assets. With
this analysis we can validate the Sensitive Information retrieved from the Security Target.
The number of verifications is large and we can’t enumerate them all. However, we can
say that they cover the consistency concerns presented in the previous chapter for each
document.

Another aspect that we can validate is the Sufficiency and Correctness of Countermeasures,
explained in section 2.3.1. In order to achieve this, we can list combinations of atoms
present in the Full Model and analyze if indeed, for example, the combinations of a Security
Objectives set are sufficient to protect a specific Threat. In another example, we can see
the sufficiency of the SFR to cover a certain Security Objective. For example, in the
Protection Profile used in the CESeCore certification we can find the following example of
a rationale:

“O.Configuration Management is provided by FMT_MOF.1 (Management of se-
curity functions behavior) (iterations 1 and 2) which covers the requirement that only

60

4.4. Checking Consistency and Validation of Documents

authorized users can change the configuration of the system. FMT_MOF_CIMC.2
(Certificate profile management)...’

Here we can see that to cover the Security Objective presented we have two SFRs. With
the Alloy models we can generate information that allows us to see beforehand what are the
SFR that are associated with a Security Objective and validate them in terms of sufficiency.
To do this we use the evaluator present in the AA. Figure 4.3 presents the example above.

Figure 4.3: Evaluator of the Alloy Analyzer

4.4.2 SFR Dependencies

We are also using these models to check the dependencies that exist between the SFRs that
are normative by the CC and see if these dependencies are correctly handled in the Protec-
tion Profile/Security Target. We have presented the SFR Dependencies in Section 3.4.5.
In it, we have stated that the SFR have three dependency lists. As such, to begin our
inclusion of this new concept in our models we need to change the declaration of an SFR
in the Abstract Model.

Listing 4.24: New declaration of a SFRs

1 abstract sig SRF {
2 d_required: set SRF,
3 d_indrequired: set SRF,
4 d_optonally: set SRF
5 }

Now we have three lists of SFR in each SFR. In the Full Model we will fill this list with
information retrieved from the CC standards or another other document, like a Protection
Profile.

Listing 4.25: List of Dependencies in the SFRs

1

2 one sig FMT_MOF_1 extends SFR{}{
3 d_required = FMT_SMF_1 + FMT_SMR_1
4 d_indrequired = FIA_UID_1
5 }

After including this information in the Full Model for every SFR, we still have to include
the information from the document which dependencies we are analyzing. Normally, an
observation is included to all the components (SFR) that are included in the CC certifi-
cation. We declare each component’s dependencies and if we are including them or not.

61

To introduce that information we go back to the Abstract Model and declare two new
concepts: WichIs and Component.

Listing 4.26: Components (SFRs)

1 abstract sig WichIs {}
2

3 abstract sig Component {
4 srf: one SRF,
5 dependencies: set SRF -> WichIs
6 }

With the WichIs we can introduce if the dependency is included or not. Dependencies and
status at that point are included in the components for each Component (SFR). As such,
in the Full Model we now have to declare the two WichIs statuses, and all the Components.

Listing 4.27: Declaration of the dependencies

1

2 one sig Included,NotIncluded extends WichIs {}
3

4 one sig Cfau_gen_1 extends Component {}{
5 srf = FAU_GEN_1 &&
6 dependencies = FPT_STM_1 -> Included
7 }

After including all the information in the Full Model we can perform some analyses and
verify some properties. For example, we can verify if all the required dependencies are
included in the Security Target.

Listing 4.28: Checking the SFR Dependencies

1 assert checkDependencies {
2 all c : Component |
3 c.srf.d_required in c.dependencies
4 }
5

6 check checkDependencies

This analysis allows the validation of a difficult component of the documents. This is usu-
ally presented in expenses tables, which makes it difficult to ensure that all the components
are correctly placed.

4.4.3 SFR Tracing

Another type of verification that we can use this models for, with some alterations, is the
generation and validation of the SFR in the Functional Specification of the CC certification.
We can generate all the SFR for each Interface specified for the software product by looking
at the Asset and mapping the SFR that are connected to it and to the interface that involves
each Asset. We can validate the SFR present in the Functional Specification by doing the
opposite, by looking to the SFR present in the document and validating it against the SFR
related with each Asset. We introduce this in Section 3.4.6.

To perform these analyses we need to add some concepts and information to our models.
Firstly, we need to add the concept of an interface to the Abstract Model:

62

4.4. Checking Consistency and Validation of Documents

Listing 4.29: Interface in the Abstract Model

1

2 abstract sig Interface{
3 asset: some Asset,
4 relatedsrf: set SRF
5 }

We declare an Interface as something that connects at least one Asset to a set of SFRs.
After including the concept of an Interface in the Abstract Model we need to fill the Full
Model with all the Interfaces for a certification. Once again we use examples from the
CESeCore certification. In this case we include an Interface for the Roles.

Listing 4.30: Interface Roles in the Full Model

1

2 one sig Roles_ManageRoles extends Interface{}{
3 asset = A_Roles_Configuration +
4 A_Access_Rules_Configuration +
5 A_Roles_Configuration
6 relatedsrf = FMT_MOF_1 + FDP_ACF_1
7 }

Now that all the information is declared in the models we can run some analyses. We
want to see if we have some Assets and SFRs for all the Interfaces. This has to do with
consistency checking, to verify if the information is correctly placed in the documentation.
The second assertion has to do with SFR Tracing. We want to see if the SFRs present
in our previous Alloy model, when related to an Asset, are included in the Interface that
contains that Asset. This for all Interfaces.

Listing 4.31: Assertions for the SFR Tracing

1 assert AssetinInterface {
2 all i: Interface |
3 some i.asset && some i.relatedsrf
4 }
5

6 check AssetinInterface
7

8 assert checkSRFtracing {
9 all i: Interface |

10 i.asset.risk.sec_objective.srf in i.relatedsrf
11 }
12

13 check checkSRFtracing

This will allow us to validate the documents Functional Specifications where the interfaces
for a certification are defined. CC demand that a correct SFR Tracing is placed in that
document.

Other analyses could be performed based in this models, this is left as future work. The
main problem this work has presented until this point is the introduction of information in
the models. We understand that a tool that could perform parsing in the CC documents
is absolutely necessary to make the use of these models viable. In the next chapter we
introduce a proof of concept for a tool to aid the CC documentation development based on

63

these models that will allow for information inclusion and for easier manipulation of these
Alloy models as well.

64

Chapter 5

Case Studies

Along this document we have presented our contextualization of the CC standards and
the use of formal methods techniques in the CC certification process. We have also pre-
sented our motivation to perform this work on the CC documentation and finally we have
presented our work to improve document development and validation in the CC documen-
tation process. In this chapter we will introduce the case studies used in this work.

To do this we have based our work with CC in two certifications. However, other examples
of certifications were also occasionally analyzed. During this work we have been involved
in the certification process of a cryptographic core in a software package for digital cer-
tification, CESeCore Project (CESeCore). This is the first case study. The other case is
also related to the certification process of a cryptographic core in a software package for
digital certification, project RSA Keon CA System (Keon CA). These two certifications
are explained in the following sections.

In this chapter we show how we have applied the models presented in Chapter 4. In
that chapter we already have presented some portions of the documentation present in
the CESeCore certification. The two case studies are similar. In order to present the
application on CC documentation we chose CESeCore because it is the project that we are
more acquainted with. Also, we have easy access to the necessary documentation.

During the work in the study cases, we have realized the problem that most of CC docu-
ments do not have a machine-readable form that would allow for their easy interpretation
in cases such as the one as the proposed in this work. To fill this gap we have developed
templates in Extensible Markup Language (XML) and parsers to manage this information.
In this chapter we will present the XML version of the CC documents. To finalize our work
we specify a toolbox to aid in the development of CC documentation.

5.1 RSA Keon CA System

In this section, we examine the RSA Keon CA System (Keon CA)1 CC certification in
detail. Keon CA was certified in 2002 but, late in 2006, it obtained a revalidation of its
EAL4+ certification to match the new version of CC. The certification analyzed here is
from Version 2.3 of the CC with EAL4+ [30]. We will start by presenting the Protection

1
http://www.rsa.com/

65

Profile and the Security Target used to obtained the certification. Afterwards, we will show
the evaluation process.

The Protection Profile that Keon CA follows is the Certificate Issuing and Management
Components Family of Protection Profiles (CIMC), which defines requirements for com-
ponents that issue, revoke, and manage public key certificates, such as X.509 public key
certificates [35]. Actually, in the CIMC, there are four Protection Profiles with different se-
curity levels (1-4). The Keon CA follows security level 3 [30]. The four Protection Profiles
(i.e. security levels) are hierarchical.

The Security Target of Keon CA, RSA Keon CA System version 6.7 Security Target (Keon
ST), the Certificate Manager conforms to the Security Level 3 protection profile. The TOE
meets all the Security Level 3 Functional and Assurance Requirements. Additionally, RSA
has elected to pursue a more rigorous Assurance evaluation and the TOE additionally
conforms to all the Assurance Requirements for an EAL4 product. The resulting assur-
ance level is therefore CIMC Security Level 3 with an overall EAL4, augmented with the
Security Level 3 Assurance Requirement: ALC_FLR.2. The Assurance and other CC re-
quired documentation, specifically this Security Target, conform to the CC for Information
Technology Security Evaluation, Version 2.3 part 2 extended, and to part 3 [23][24].

One of the strongest aspects of the CC certification process is that the mapping between
the requirements is done in a clear and concise way from the Protection Profile to the
Security Target. Bellow, we analyze both, the CIMC protection profile and the Keon ST
security target, to highlight the strict correspondence between the different sections of
these two documents. Before that, let us look closely at Keon CA’s features.

5.1.1 Description of Keon CA

The Keon CA is a signing authority solution for large enterprises and public CAs. The
Keon CA system is responsible for creating and issuing both authority and end-entity
public-key certificates, creating and issuing CRLs, and responding to status requests. In
addition to the basic CA functionalities, the Keon CA system provides:

• Audit recording and backup capabilities;

• Use of a FIPS140-1 or FIPS140-2 Level 3 cryptographic module to protect all private
keys and additionally for key generation.

The RSA Certificate Manager is designed to meet the CIMC Security Level 3 requirements,
which are appropriate where the risks and consequences of data disclosure and loss of data
integrity are moderate [30].

5.1.2 Target of Evaluation

The Keon CA’s TOE includes multiple components. The TOE boundary is indicated in
Figure 5.1 by the darker shaded area. The TOE’s explanation can be found in [30].

66

5.1. RSA Keon CA System

Figure 5.1: The TOE Boundary of Keon CA system

5.1.3 Security Environment

The security environment sets by the Protection Profile and Security Target documents
specify all the security concerns that a software product has to deal with. This includes
threats, organizational security policies and security assumptions.

5.1.4 Security Objectives

After defining the security environment, security objectives are defined to provide state-
ments to address and counter the identified threats and maintain organizational security
policies. The CIMC defines three types of security objectives: security objectives for the
TOE, security objectives for the TOE Environment and for both. The Security Objectives
described in the Keon ST are taken directly from [35].

5.1.5 Security Requirements

The security requirements section is the longest in the Security Target. This is because the
security requirements need to be described clearly, including all the needed details to avoid
any ambiguous interpretations. The requirements in CC are divided into two categories:
SFRs and SARs [23]. In Keon ST’s case, the SFR are divided into two categories: functional
requirements for the TOE Environment and functional requirements for the TOE [30]. In
SAR’s case, all those that are specified in the CIMC Protection Profile for SL 3 are met.
Additionally all the SAR specified in EAL4 are met. This increase is obtained including
the Flaw Reporting Procedures, as required by the [35].

5.1.6 Evaluation Process

The evaluation process analyzes all the aspects presented above in this survey. It’s done
in conformance with all the documentation produced for achieving the certification. The
documentation necessary for this certification can be found in [14]. The Evaluation Team
conducted the evaluation in accordance with the CC v2.3 [22] and the CEM [8]. This

67

evaluation’s report explains the whole process [14]. The testing process is not included in
this dissertation because we believe that it’s outside it’s scope.

In the next section we present a similar certification process for the CESeCore Project.

5.2 The CESeCore Project

The CESeCore project aimed to develop a security core with common security functions for
Certification Authority (CA)s and certify this core with a Common Criteria EAL4+ certi-
fication. The Common Criteria certification will make the CESeCore security core publicly
available for integration in numerous security based applications. The CESeCore project
(Apr 2009 - Out 2011) was ranked 15th amongst 111 positively evaluated EUREKA’s
Eurostars Program funded projects.

The CESeCore is a security core, in the form of a common security function Java library,
that will provide a reusable base for third-party trustworthy systems. In order to make the
CESeCore security core publicly available for integration in numerous security based appli-
cations, the CESeCore project aims to undertake a CESeCore Common Criteria EAL4+
certification.

CESeCore integrators will be able to correct, improve and extend their applications at any
time without the need to perform frequent system re-evaluations, nor perform continuous
checks of the security functions implemented by the security core (including features like
digital signature creation/validation, digital certificate and CRLs creation, key manage-
ment and maintenance of a secure audit log).

A consortium of four IT security companies is promoting the CESeCore project: PrimeKey
(main partner, Sweden), MULTICERT (Portugal), E-Imza (Turkey) and Commfides (Nor-
way). As a natural consequence of the project, each partner will integrate CESeCore with
its products, such as PrimeKey’s EJBCA or Multicert’s Timestamp.

5.2.1 Protection Profile and Security Target for CESeCore

In the CESeCore project, as it was undertaking the first CC evaluation of any element
of the consortium, there was no experience in choosing Protection Profiles. The core of
CESeCore has features of a normal CA, but the applications that are intended to run above
it have different purposes. For example, Multicert wants to apply CESeCore in its time
stamping services. The Timestamping service allows a user to be sure about the time at
which each particular document was created, modified, or came into someone’s possession.
This includes some features that are not usually present in a CA. With this in mind, in
the beginning, the creation of a Protection Profile that covered all the needs for CESeCore
Project was considered. This was set aside when they realized the complexity of creating
a new Protection Profile and having it certified.

The process of creating a new Protection Profile is complex, as it is necessary to state the
TOE for the new type of products, develop all the threats, security objectives, assumptions,
OSPs, SFR and also rationales for every one of these items. However, the major problem
associated with the creation of a new Protection Profile is to achieve its certification. Along
with the huge amount of work, a great expense also comes with this. In terms of time,
this will also significantly increase the project’s duration. With this in mind, the idea of

68

5.2. The CESeCore Project

creating a Protection Profile specific to the project was set aside.

After some research about Protection Profiles for CAs, the CIMC Protection Profile [35]
was found. The CIMC is a Protection Profile for CA that already had some products
certified. The CIMC has all the features required for the Project CESeCore and introducing
some changes at the Security Target level is enough to serve all the purposes of every
product suggested by the consortium that will interconnect with the core.

5.2.2 Description of CESeCore

The CESeCore is a software product that provides a security core for the development of
trustworthy systems, gathering common security functions typically found on such systems
into stable, well-defined and self-contained modules. A security vendor willing to develop
a new trustworthy system (i.e., an application) may build its specific functionalities on top
of the CESeCore security functions that are provided out of the box. By using a stable
CC EAL certified core, the integrator is able to continuously extend its system without
the need to perform a re-evaluation of its entirety, specifically the security functions.

Figure 5.2: Integration of CESeCore with other applications

The CESeCore provides its functionalities to external applications by means of APIs and a
combination of configuration parameters. Different applications may use different selected
API methods and customized configurations to implement security functions, as illustrated
in Figure 5.2. The main security functions provided in the CESeCore are:

• Electronic signatures creation;

• Creation of digital certificates and CRLs;

• OCSP support;

• Data integrity protection;

• Secure audit logs;

69

• Authentication and authorization management;

• Token management;

• Key generation and management;

• Backup of system data.

The rest of this document describes the CESeCore TOE that is in the scope of this CC
evaluation and the corresponding Security Target.

5.2.3 Target Of Evaluation

As illustrated by Figure 5.3, the TOE includes: the CESeCore component and configu-
ration artifacts. Excluded from the TOE are: hardware and operating system platform
(abstract machine); application server and execution environment; hardware security mod-
ule (HSM) and the database engine. The rationale for excluding components from the TOE
is explained in the Security Target [37].

Figure 5.3: TheTOE Boundary of CESeCore

The usage of CESeCore relies not only on its implementation, but also on several other
additional components described in the following subsections.

CESeCore The CESeCore component consists of a set of Java classes that provide the
functionalities presented above.

Given CESeCore’s modular structure, in order to provide more advanced functionalities,
the TOE also includes a set of JEE components that can be deployed in any JEE compliant
application server. Additionally, depending on the exact functionalities required by the
client application, CESeCore can be configured to include or exclude certain parts.

70

5.2. The CESeCore Project

Configuration artifacts Configuration artifacts are basic TOE configuration items pro-
vided by the CESeCore dependent application. The configuration artifacts define details
on how the specific instance of the TOE works and consist of key-value pairs, stored in
a configuration file or in a database. Examples of configuration artifacts are PKCS#11
library path for the hardware security module (HSM), key labels for cryptographic keys
and modes for secure audit.

However, in order to run in a CC certified configuration, certain restrictions on the config-
uration artifacts may apply.

Java Virtual Machine CESeCore is developed in the Java programming language and,
as such, runs in a Java Virtual Machine (JVM). Additionally, since the JVM specifications
are public, it can be implemented by independent vendors.

Application server CESeCore can be (optionally) deployed on a JEE 5 compliant ap-
plication server, which provides a number of resources and services to CESeCore, namely:

• Database connectivity services (e.g. object mappings and connection pooling);

• Component creation and management (e.g. session bean pooling and life-cycle man-
agement);

• Communication interfaces (e.g. HTTP and JEE).

These resources and services not only make development and maintenance more efficient,
but also enable high performance, scalability and availability.

Database Data persisted by CESeCore is handled by a standard relational database,
where the following information is kept:

• Key pairs and references to key pairs;

• Certificates and CRLs;

• Audit logs of all security relevant operations;

• Authentication data, such as TOE user information;

• Authorization data, such as which TOE user is authorized to which resources.

CESeCore enforces access control and maintains integrity of the data for which it is re-
quired.

Cryptographic module All cryptographic operations performed at the request of the
TOE should take place in FIPS 140-1 (or higher) validated cryptographic modules, either
in software or in a hardware (HSM). The interaction with the cryptographic module is
performed through a standard PKCS#11 library provided by the respective vendor.

71

5.2.4 Security Environment

The security environment set by the Protection Profile and Security documents specifies
all the security concerns that a software product has to deal with. This includes threats,
organizational security policies and security assumptions. The CESeCore Security Target
follows the security environment described in the CIMC. However, the Security Target is
independent to choose its own security environment.

Threats The threats are organized into four categories: authorized users, system, cryp-
tography, and external attacks. We present a example retrieved from the CIMC to the
category authorized users: T.Critical system component fails: Failure of one or more sys-
tem components results in the loss of system critical functionality.

Organizational Security Policies The Organizational Security Policies (OSPs) are
all the procedures defined by the organization deploying the certified product to protect
sensitive data. An example retrieved from the CIMC: P.Authorized use of information:
Information shall be used only for its authorized purpose(s).

Security Assumptions The usage assumptions are organized into three categories: per-
sonnel (assumptions about administrators and users of the system as well as any threat
agents), physical (assumptions about the physical location of the TOE or any attached pe-
ripheral devices), and connectivity (assumptions about other IT systems that are necessary
for the secure operation of the TOE). An example of a security assumption for the Person-
nel category: A.Auditors Review Audit Logs : Audit logs are required for security-relevant
events and must be reviewed by the Auditors.

Security Objectives

Based on the statements defined in the security environment, the security objectives provide
statements to address and counter the identified threats and maintain the OSP. CIMC
divides the security objectives into three types: security objectives for the TOE, security
objectives for the environment, and security objectives for both the TOE and environment.
In the case of the security objectives for the TOE, they are divided into three types as the
threats presented before. The security objectives in the Security Target are retrieved from
the CIMC.

Extended Components Definition

This section doesn’t exist in the CIMC, but it does exist in the Security Target for CESeC-
ore. In this section we present the components created in the CIMC that only exist for
the propose of this Protection Profile. In this section it is also possible to create new
components exclusively for the Security Target. In the case of CESeCore no component is
created. We can see some examples of extended components requirements retrieved from
the CESeCore Security Target in Table 5.1.

72

5.2. The CESeCore Project

Table 5.1: Extended Security Requirements on CESeCore

Extended Security Requirements CIMC Page Reference
FCO_NRO_CIMC.3 49
FCO_NRO_CIMC.4 51
FCS_CKM_CIMC.5 53
FDP_ACF_CIMC.2 52
FDP_ACF_CIMC.3 53

· · · · · ·

5.2.5 Security Requirements

The security requirements section is the one that occupies the largest portion of the Pro-
tection Profile and the Security Target. This happens because security requirements need
to be described clearly, including all the needed details to avoid any ambiguous inter-
pretations. As we have seen throughout this dissertation, security requirements can be
classified in two categories, namely SFRs and SARs. In the case of the CIMC the security
requirements are divided into several chapters: the security functional requirements that
are applicable to the IT environment, the security requirements that are applicable to the
TOE and the TOE assurance requirements. The security requirements are divided into
classes for the SFR and the SAR, that we have presented respectively in Table 2.1 and
Table 2.2. The CIMC has the following SFR classes that are retrieved for the CESeCore
Security Target:

• Security Audit (FAU)

• Security Management (FMT)

• User Data Protection (FDP)

• Identification and Authentication (FIA)

• Communications (FCO)

• Cryptographic Support (FCS)

• Protection of the TSF (FPT)

• Trusted Paths/Channels (FTP)

An example of an SFR that is included in the CESeCore from the CIMC is the FCO_NRO_CIMC.3
that is stated in the CIMC as Enforced proof of origin and verification of origin.

In the case of the assurance components, the CESeCore certification includes all the com-
ponents present in Table 2.4 with the addition of the ALC_FLR.2 component that is used
for Flaw reporting procedures.

In conclusion, the goal of the CESeCore Project is to receive a CC certification EAL4 aug-
mented by ACL_FLR.2, which requires the TOE to be "Methodically Designed, Tested
and Reviewed" (Table 2.3). EAL4 analyzes the TOE using functional specifications, design

73

documentation, as well as all security related documentation. To increase the level of as-
surance, EAL4 looks also to aspects related to the development environment, configuration
management and delivery procedures.

Figure 5.4: Deliverables for the CESeCore Project

We can see all the evidence produced for the certification in Figure 5.4. This evidence
fulfills the assurance requirements that we have presented before for the EAL4 augmented
with ACL_FLR.2.

5.3 Validation of the CESeCore Documentation

In the section above we have introduced the two case studies that we have used in the
context of this work. In this section we will present how we have used the models presented
in Chapter 4 to validate the CESeCore documentation. We have applied the models to both
case studies. However, seeing as they are similar, we only show the CESeCore application
in this work . CESeCore was founded in 2008, and when we developed the models in
Alloy to aid in document production, all CESeCore documents were already completed
and approved by the evaluation lab. As such, we did not contribute to their production.
However, these results are useful contributions for future certifications processes.

To demonstrate our application of the Alloy models we will follow the same structure of
their presentation in Chapter 4. For starters we will look to the Abstract Model application
for a real case study. To fill in the information in the Full Model we use the Sensitive
Information developed for CESeCore. After including all the information present in the
Full Model we can validate it by applying the consistency checking assertions. To finalize,
we apply the validation of the SFR Dependencies present in the CESeCore Security Target
and generate the SFR Tracing for the Functional Specification submitted as CESeCore
evidence.

5.3.1 Abstract Model Application

To begin the presentation of the Alloy models in a real case study, lets look at the Abstract
Model. In this case we have already presented the whole Alloy specification in Section 4.2
and, as we have stated before, the Abstract Model is the most abstract level of our mod-
ulation that is good for all CC certifications. So in this case we have nothing to prove for

74

5.3. Validation of the CESeCore Documentation

CESeCore. However, we present in Figure 5.5 an instance of the Abstract Model where we
can see how the concepts are interrelated in these models.

Figure 5.5: Abstract Model Instance for a Run with 3 of Scope

We can notice that the AA generates atoms for each concept following the rules imposed
by us. For example, we can see that two assets are generated Asset0 and Asset1. This
instance is generated using a show() predicate.

5.3.2 Sensitive Information in the Full Model

The Full Model is the part of the Alloy model where we include information from the
documents. To perform our demonstration we have chosen information from the Sensitive
Information for CESeCore. Sensitive information contains all the concepts present in the
Abstract Model. As such we need to fill in the Full Model with that information. If we run
the show() predicate for the Full Model, the AA will generate an instance of the model as
we can see in the Figure 5.6.

Figure 5.6: Sensitive Information included in the Full Model

75

Figure 5.6 shows part of the Alloy model and the last commands executed in the AA. We
can see that “Predicate is consistent”, so an instance is provided for this execution.

However, if the information introduced does not respect the restrictions imposed by the
Abstract Model, an instance is not founded by the AA. Figure 5.7 shows an example of a
run execution that result in a “Predicate may be inconsistent”. We can see in Alloy that
in the definition of the Asset we have through the sinfg relation that we have two Security
Information Goals, when in the Abstract Model we have stated that each Asset have only
one Security Information Goal.

Figure 5.7: Validation of the Full Model - inconsistent

We use the show() predicate to see if the model is consistent with the restrictions presented
in the Abstract Model. In the next section we will present the consistency checking for
properties that we retrieve from the documentation.

5.3.3 Consistency Checking for the Sensitive Information

Now that we have introduced the information that we want to analyze in the Full Model,
we can perform the validation of the documents included there. The validation is made
through a set of assertions included in the consistency checking part of the Alloy model.

For example, we want to be sure that the Full Model doesn’t have two Assets with the
same Sensitive Information and Security Information Goal. It doesn’t make sense for two
Assets with the same definition to exist. Figure 5.8 shows Alloy defining this assertion.
We also can see the check command executing the assertion.

Figure 5.8 also shows, on the right side, that “No counter example found”. This means that
no counterexample for the assertion exists in the information present in the Full Model.

In case the assertion is not valid, the AA generates an instance of a counterexample. It
is necessary to remember that the AA’s SAT solver only verifies a certain scope given by
the user. This means that if no counterexample is found we can only guarantee that the
assertion is valid for that scope.

Another assertion example is that in an Asset we have Threat Agents associated with two
relations. We have Threat Agents that are related to the Information Risk and to the
Asset through the ta_motivation; and we have Threat Agents associated to the Threat

76

5.3. Validation of the CESeCore Documentation

Figure 5.8: Example of a correct assertion in the model

that are also related to the Asset. Figure 5.9 shows the Alloy for an assertion that tries to
find, in the Full Model’s whole Asset, if there is a case where the Threat Agents associated
with the Information Risk are not associated with the Threat that is related to the Asset.
We must verify that all Threat Agents related to the Information Risk are also related to
the Threat. The contrary, however, is not necessary.

Figure 5.9: Example of a assertion that creates a counterexample

We executed the check TainT command and the result was “Counterexample Found”. In
this case, the AA have found a counterexample for these assertions. This means that
somewhere in the Full Model we have an Asset where the Threat Agents associated to the
Information Risk which is related to an Asset are not all present in the Threat that is
related to that Asset as well.

We can open the counterexample and see that instance. We have different possibilities to

77

analyze the counterexample. We have chosen a way that fits inclusion in this document
better. Figure 5.10 shows a view of the counterexample in the option Tree.

Figure 5.10: Counterexample visualized in the Tree option

That which we can see in the sig full modelA_Access_Rules_Configuration is an Asset.
We have the field ta_motivation and the field threat open. It is easy to see that the Threat
Agents present in the ta_motivation are not all present in the threat.

5.3.4 SFR Dependencies

In Section 4.4.2 we have presented the application of the Alloy models to validate the
SFR dependencies. Here we will present the application on the dependencies present in
the CESeCore Security Target. SFR are a long catalogue with dependencies between
them. For this case we only will consider the dependencies required and analyze if they
are included or not.

Figure 5.11 shows the list of declaration dependencies for two SFRs. We can see that these
SFRs have both dependencies required and dependencies inertly required. We now need to
include the dependencies imposed in the CC standard. Figure 5.12 shows the declaration
of Components that will connect the SFRs present in the Full Model, retrieved from the
Security Target and the list of dependencies present in the CC standard for each SFR. This
also shows the assertion that will verify if all the required dependencies are considered in
the Security Target.

78

5.3. Validation of the CESeCore Documentation

Figure 5.11: Exemples of SFR Dependencies in Alloy

Figure 5.12: Components declaration and assertion for Dependencies

The assertion will check in all the Components if the present SFR has the dependencies
required by the CC standard. To execute the assertion we have the check checkDependen-
cies command. In this case, no counterexample was found. All SFR dependencies required
in the CC standard are considered in CESeCore’s Security Target.

5.3.5 SFR Tracing

In Section 4.4.3 we present the last considered application for our Alloy models. The SFR
tracing intend to help in the generation of the SFR mapping from the Security Target to
the TSFI that are documented in the Functional Specification document.

Figure 5.13 shows the declaration of the new Interface concept where we declare the several
Interfaces existent in the Functional Specification. For each of them we associate the Asset
and the SFRs related to that Asset. In the figure, we can also see the assertion that will
analyze if all the Interfaces have the correct correspondent SFRs, for all SFRs that exist
in the Security Target.

79

Figure 5.13: SFR Tracing for the Functional Specification

5.4 CC Documentation in XML

In Chapter 4 we have presented an Alloy model that needs to be filled with information
from the CC documents. This raises a problem: usually the CC documents do not exist
in a machine-readable format. They are usually produced in text editors with a bunch
of tables without a standard format. This forced us to consider a better way in which to
represent the CC documentation.

The CC standard is available in Portable Document Format (PDF) and also in XML [33].
Since the standard is already available in XML we realized that the documentation for a
CC certification can also be produced in this format. The first step that we had to take
was to create versions in XML of the documents that we were using as case studies. We
created a Protection Profile and a Security Target for the CESeCore case study presented
in Section 5.3.

After this, which we needed for our work, we realized we could do more and produce
something that people could reuse when pursuing a CC certification. As such, we have also
created a set of templates for Protection Profiles, Security Target and Sensitive Information
in XML. This is also used in the application presented in the next section. Figure 5.14
shows how we utilize XML in this work to provide the CC documents with another use.

We can see in the figure the flow created to use the XML documents. The templates
created serve as guidance for the document’s development, having all the elements that
are recommended in the CC standard. We can then create XML documents containing all
the elements of a normal Protection Profile or Security Target. Afterwards, we are able
to use the XML documents with the models presented in Chapter 4, or in the toolbox
presented in the next section.

The scrips created to parse the XML documents were previously developed in Perl. With
these scrips we intended to generate theAlloy models to perform our analysis, creating
a script for each type of documents. We also have developed Java scripts to be used
standalone to create Alloy documents. The toolbox that we present in the next section

80

5.5. ToolBox for CC Documentation Development

Figure 5.14: CC Documentation in XML

will allow to generate documents in XML and in Alloy.

This work with XML documents for the CC certification process has created new possibil-
ities to work with these same documents. The toolbox that we present in the next section
is an example of how useful this format could be in the context of CC certifications. With
this exploration we where able to define the structure of what the support application
presented in the following section should do.

5.5 ToolBox for CC Documentation Development

This work’s fundamental objective is to aid in the development of documents used as
evidence in the CC certification process. In this section we will present an application to
support our work with Alloy. This is an open source tool, built on top of the Alloy models
presented in Chapter 4.

We haven’t yet completed this application’s implementation. What we will present in this
section is the specification of a desktop application development in Java. We present the
requirements and the design for the toolbox. To finalize this section we will present the
state of the toolbox implementation.

5.5.1 Functional Requirements Specification

This toolbox focuses on the production of Protection Profiles and Security Targets. In this
section we will present the requirements for the toolbox. In Figure 5.15 we show the use
case for the main features of the application. The features are presented below with a brief
description and their requirements.

Create Documents

We can create new documents, Protection Profiles or Security Targets, from an existent
document in XML or a completely new document. In the case of a Security Target we
must associate a Protection Profile to that Security Target.

1. The ToolBox must allow for the creation of a Protection Profile by specifying a name

81

Figure 5.15: Use Case for the Main Features

and CC version.

2. The ToolBox must allow for the creation of a Security Target by specifying a name
and CC version.

3. The ToolBox must allow for the creation of a Protection Profile/Security Target from
a existent XML document.

4. When a Protection Profile/Security Target is created, it must contain the following
predefined main sections: Introduction, Conformance Claim, SPD, Security Objec-
tive, SFR, SAR and Rationale.

5. When a Security Target is created, the system must automatically copy the content
of all SPD, security objectives, SFRs, SARs and the Rationale from the Protection
Profile.

82

5.5. ToolBox for CC Documentation Development

List Documents

We can list all the documents present in the toolbox so as to allow it to select one of them
on which to execute other toolbox features.

1. The user must be able to check out any content.

2. The user must be able to add new content.

3. The user must be able to select any and all content to edit.

4. The user must be able to delete any content.

5. The user must be able to list whether text is missing in any part of a Protection
Profile/Security Target.

Add Contents to the Documents

After creating a document or selecting one from the list, we can add content to the docu-
ment.

1. The user must be able to add the following subsections to the Introduction: PP
reference (only for PP), TOE overview, ST Reference (only for ST), TOE reference
(only for ST) and TOE description (only for ST).

2. The user must be able to add the following subsections to the Conformance Claims:
CC conformance claim, PP Claim, Package claim (only for ST), Conformance ratio-
nale, Conformance statement (only for PP).

3. The user must be able to add multiple threats OSPs and assumptions to the SPD
section.

4. The user must be able to add multiple security objectives for the TOE or Operational
Environment to the Security Objective section.

5. The user must be able to add a component fount in the SFR catalogue to the SFR
section.

6. The user must be able to add a component fount in the SAR catalogue to the SAR
section.

7. The user must be able to create and add extended components.

8. The user must be able to create and add assets and relate them with security objec-
tives and threats.

9. The user must be able to create and add Threat Agents and relate them with Assets.

10. The user must be able to relate Threat Agents with Threats and with Information
Risk.

11. The user must be able to add multiple mapping between security objectives and
SPDs.

12. The user must be able to add multiple mapping between security objectives for the
TOE and SFRs.

83

Alloy related requirements

The requirements of this section describe how we can use the Alloy models in the toolbox.

1. The user must be able to validate all the restrictions imposed by the General Model.

2. The user must be able to validate if all threats are satisfied by a security objective.

3. The user must be able to validate if all security objectives are satisfying a threat.

4. The user must be able to validate if all security objectives are satisfied by an SFR.

5. The user must be able to validate if the all SFRs are satisfying a security objective.

6. The user must be able to validate if the SFR Dependencies are correct in the Pro-
tection Profile/Security Target.

7. The user must be able to validate the generation of an SFR Tracing from a Security
Target for a Functional Specification.

Export Documents to XML and Alloy

At any time that we are working with a document we can export it to XML or to Alloy.
This is useful, for instance, at any moment we are performing analyses with the models
presented in Chapter 4.

1. The user must be able to export a Protection Profile/Security Target to Alloy.

2. The user must be able to export a Protection Profile/Security Target to XML.

Additional features

1. The system must be able to build a CC component catalogue based on an CC XML-
file.

2. The system must provide a list of EALs to relate with any document.

3. The system could offer a search-functionality.

5.5.2 Non-Functional Requirements

To clarify requirements not related to the actual features of the toolbox, requirements to
the project are identified here.

1. The system must be developed as a desktop application.

2. The system must be available in a friendly Graphical User Interface (GUI).

3. The data must be saved in a persistent manner.

84

5.5. ToolBox for CC Documentation Development

5.5.3 Design

The last section we have presented the requirements for our toolbox. This section will
present an overview of how the toolbox will be designed in order to fulfill the requirements.

Three-layer Architecture

The overall architecture used for the toolbox is based on a three-layer architecture: pre-
sentation, business and data. This is based on the client-server pattern:

• The presentation layer creates the GUI with which the user interacts. This layer
works as a client to the business layer.

• The business layer contains the business logic which means that it controls the sys-
tem’s functionality. This layer works as client for the data layer and as server to the
presentation layer.

• The data layer contains all the data. It works as a client for the the business layer.

This design defines how our implementation will be structured.

Logic Model for the ToolBox

To represent all the information present in the CC documents, the toolbox will have a set
of classes for each of the document’s components.

Figure 5.16: Logic Model for the ToolBox

Figure 5.16 shows the classes diagram for the application’s main components.

85

5.5.4 State of Implementation

Here we make a quick overview of the toolbox implementation state at this moment in time.
We present the technologies used to develop the application, how the code is structured
and what we considered to storage the data present in the application.

Technologies

The application was developed with Java in the NetBeans Integrated Development Environment
(IDE). The GUI was developed with Swing. We have also used Java and Perl to develop
the parsers for the application.

Code Structuring

The code is structured as a NetBeans project solution containing three packages:

• A package with the data layer with all the CC concepts and their respective contents.

• A package with the business layer for all CC concepts.

• A package with all the classes that give origin to the application’s GUI.

The code can be found in a free repository at GitHub2.

Storage

As this application was only a proof of concept we have decided against the creation of a
database. We have used a Java persistence mechanism instead, which allows us to save the
state of the objects at a given point and reload back to the same state. This mechanisms
are called ObjectStreams.

At this moment, lacking conclusion, is the Alloy part of the business layer and almost
everything in the presentation part. We hope to conclude this dissertation is presented for
evaluation.

2
https://github.com/bertoluchi07/CCtoolbox

86

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This work presents an overview of CC certification, based mostly on evidence production
and includes a new approach using Alloy to validate the main CC documents. CC is
a well recognized standard to achieve security certification of software products. These
certifications are mostly based on the production of documents as evidence that the product
really does what the vendors claim. CC documentation is something complex to produce
and it can cost the organizations trying to certify their products with it time and money.
The certification process could take months to years depending on the deepness of the EAL
chosen for the certification. The number of documents and their rigor are also based on
the EAL.

In this work we have presented the structure of the main documents used in CC. We have
stated that these documents are properly interrelated between them. Their development
is mostly a systematic process, which makes this a tedious work, leading to mistakes in the
documentation that could delay their acceptance by the evaluators. We have seen that the
evidence submission process is cyclic and that only ends when the evaluators approve the
evidence. This implies a correct development, to cut the cycles necessary to approve some
type of evidence. To assure that the documents used as evidence in a CC certification are
correctly implemented is the main objective for this work.

Certifications with CC give origin to a significant set of documents. However, in the context
of this work we have identified the most important documents to analyze them and provide
tools to help in their development. We have identified the Protection Profile, the Security
Target and the Functional Specification as the main documents for the CC certification.
Another consideration for this work was the the CC’s General Model which is the model
that relates the concepts present in the CC. We have remarked that these documents have
different abstraction levels, given them a hierarchical relation, from the General Model (in
the CC), the Protection Profile, which is an instantiation of the General Model for a type
of software product, to the Security Target, which is a subset oriented to a specific product
of the Protection Profile. Finally, we have also taken into consideration the Functional
Specification where the security specified in the Security Target is oriented towards the
implementation of the product.

For each of the documents selected for analysis we have stated the main consistency con-

87

cerns to validate and also found elements in the documentation, such as the SFR Tracing
and the SFR Dependencies, which are particularly difficult to elaborate. We chose the
Alloy language to elaborate models for the CC documents that we use to validate the
properties and also to help the evaluation of the elements presented before. Alloy is a
powerful yet simple tool, allowing for small models to be built quickly and analyzed with
the AA SAT solver.

The model developed in this work with Alloy follows the same abstraction philosophy of
the CC documents. We have created an Abstract Model to represent the most abstract
level of the documents, the General Model of the CC standard. On top of this we have a
Full Model that we use to include the information from the documents. Using these two
parts of the model we can analyze the document’s consistency and generate information
useful for the certification process, such as the SFR Tracing that could be used to fulfill
that requirement in the Functional Specification or to validate an already existent SFR
Tracing.

Another way to aid in the production of CC evidence documents that was also considered
in this work was a desktop application in Java to help in the production of Protection
Profiles and Security Targets. At first we considered the problem of loading information
from existent documents. As such, we created XML templates for Protection Profiles,
Security Targets and Sensitive Information. These templates can now be used to develop
documents in a format easily readable by a machine. We have also developed scripts in
Perl and Java to easily parse documents in XML to Alloy documents. All of this work has
contributed to the development of the support application. The toolbox allows us to load
components from existing documents in XML, to edit these documents and to produce
a new version. The main objective for this toolbox is the inclusion of the Alloy models,
making it easy to work with them even if one doesn’t have experience with Alloy.

To apply this work we have studied a lot of CC certifications documents. However, we
have focused on two case studies: the Keon CA and the CESeCore certifications. Both
of these projects have achieved a successful certification. In the case of CESeCore, we
have participated in the project and have also created a document to describe the whole
certification process followed by the CESeCore project. We have chosen CESeCore to show
the model’s application and also where we had the possibility to help in the document’s
development and to contribute with corrections retrieved from these models.

In short, with this work we have developed some solutions for the always tedious work that
is writing CC documents. We also afford the possibility to generate information that will
serve as a solution for parts of the systematic process that exist when we are producing
documentation for CC. Although these last points are quite useful, the main goal of this
work is the introduction of guarantees for Alloy use. We have developed a toolbox that
supports the main CC documents’ whole development. This is absolutely necessary to save
money and to gain time in the certification process.

6.2 Future Work

We think we were able to document the CC certification process and the evidence produc-
tion process to achieve a certificate, mostly in that which concerns the Protection Profile
and the Security Target. The next step would be to study other documents used as evi-
dence for CC certifications and try to understand how we could use Alloy to assure their

88

6.2. Future Work

correct development. In the Protection Profile and Security Target analysis there are also
properties that could be further developed so as to cover more parts of the documents, for
example, a complete analysis of all the rationales present in the documents.

Besides complete completing the development of the application to aid in the production
of documents, we left some improvements that could be made to provide a complete devel-
opment of the documents in the application as future work. Features to implement in the
future are: the possibility to export the documents in several formats, to make a document
deliverable for evaluation directly from the application possible, a database to support the
storage of the several documents’ components, and also the possibility of developing more
types of CC documents. The application also needs its interface improved into a friendlier
look and feel.

89

90

References

[1] J. Almeida, M. Barbosa, J. Sousa Pinto, and B. Vieira. Verifying cryptographic
software correctness with respect to reference implementations. Formal Methods for
Industrial Critical Systems, pages 37–52, 2009.

[2] J.B. Almeida, M. Barbosa, J.S. Pinto, and B. Vieira. Deductive verification of cryp-
tographic software. Innovations in Systems and Software Engineering, pages 1–16,
2010.

[3] S.R. Band. Comparing insider it sabotage and espionage: A model-based analysis.
Technical report, DTIC Document, 2006.

[4] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Schnoebe-
len. Systems and software verification: model-checking techniques and tools. Springer
Publishing Company, Incorporated, 2010.

[5] J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods. Computer,
28(4):56–63, 1995.

[6] K. Caplan and J.L. Sanders. Building an international security standard. IT profes-
sional, 1(2):29–34, 2002.

[7] D.M. Cappelli. Management and education of the risk of insider threat (merit): Miti-
gating the risk of sabotage to employers’ information, systems, or networks. Technical
report, DTIC Document, 2007.

[8] CCRA. Common Methodology for Information Technology Security Evaluation Eval-
uation methodology July 2009 Revision 3 Final Foreword. (July), 2009.

[9] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[10] E. Damiani, C.A. Ardagna, and N. El Ioini. Open source systems security certification.
Springer-Verlag New York Inc, 2008.

[11] P.T. Devanbu and S. Stubblebine. Software engineering for security: a roadmap. In
Proceedings of the conference on The future of Software engineering, pages 227–239.
ACM, 2000.

[12] A.A. El Ghazi and M. Taghdiri. Analyzing alloy constraints using an smt solver: A
case study. AFM10 (Automated Formal Methods), 2010.

[13] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical
systems. Software, IEEE, 11(1):21–28, 1994.

91

[14] Shaun Gilmore. Common Criteria Evaluation and Validation Scheme Validation Re-
port RSA Certificate Manager Ron Bottomly. Engineering, 2006.

[15] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. Discrete Applied
Mathematics, 155(12):1549–1561, 2007.

[16] A. Hall. Seven myths of formal methods. Software, IEEE, 7(5):11–19, 1990.

[17] B. Hashii. Lessons learned using alloy to formally specify mls-pca trusted security
architecture. In Proceedings of the 2004 ACM workshop on Formal methods in security
engineering, pages 86–95. ACM, 2004.

[18] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for formal specification, verification,
and validation of requirements. In Computer Assurance, 1997. COMPASS’97.’Are
We Making Progress Towards Computer Assurance?’. Proceedings of the 12th Annual
Conference on, pages 35–47. IEEE, 2002.

[19] Constance Heitmeyer, Myla Archer, Elizabeth Leonard, and John McLean. Applying
Formal Methods to a Certifiably Secure Software System. IEEE Transactions on
Software Engineering, 34(1):82–98, 2008.

[20] Constance L. Heitmeyer. On the Role of Formal Methods in Software Certification:
An Experience Report. Electronic Notes in Theoretical Computer Science, 238(4):3–9,
September 2009.

[21] W. Hisao Higaki. Successful Common Criteria Evaluations: A Practical Guide For
Vendors. CreateSpace, 2010.

[22] ISO/IEC15408-1. Information technology security techniques evaluation criteria for
it security part 1: Introduction and general model. 2009.

[23] ISO/IEC15408-2. Information technology security techniques evaluation criteria for
it security part 2: Security functional requirements. 2009.

[24] ISO/IEC15408-3. Information technology security techniques evaluation criteria for
it security part 3: Security assurance requirements. 2009.

[25] D. Jackson. Automating first-order relational logic. ACM SIGSOFT Software Engi-
neering Notes, 25(6):130–139, 2000.

[26] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[27] D. Jackson. Software Abstractions: logic, language and analysis. The MIT Press,
2006.

[28] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. ACM
SIGSOFT Software Engineering Notes, 26(5):62–73, 2001.

[29] C.B. Jones. Systematic software development using VDM, volume 103. Citeseer, 1990.

[30] RSA Keon. RSA Keon CA system Security Target. Security, 2006.

[31] B. Kitchenham and SL Pfleeger. Software quality: the elusive target . Software, IEEE,
13(1):12–21, 2002.

92

REFERENCES

[32] A.H. Lin. Automated analysis of security APIs. PhD thesis, Citeseer, 2005.

[33] J. Loughry. Use of xml in the design and specification of a new high assurance
controlled interface. 2004.

[34] D Mellado, E Fernandezmedina, and M Piattini. A common criteria based security
requirements engineering process for the development of secure information systems.
Computer Standards & Interfaces, 29(2):244–253, February 2007.

[35] NIST. Certificate Issuing and Management Components Family of Protection Profiles.
Management, 2001.

[36] J. Park and J.Y. Choi. Security policy modeling using z notation for common cri-
teria version 3.1. In Advanced Communication Technology, 2009. ICACT 2009. 11th
International Conference on, volume 1, pages 137–142. IEEE, 2009.

[37] CESeCore Project. Security Target for CESeCore. Security, 2010.

[38] R. Richards, D. Greve, M. Wilding, and W.M. Vanfleet. The common criteria, formal
methods and ACL2. In ACL2 Workshop. Citeseer, 2004.

[39] T. Rottke, D. Hatebur, M. Heisel, and M. Heiner. A problem-oriented approach to
common criteria certification. Computer Safety, Reliability and Security, pages 213–
229, 2002.

[40] John Rushby. Formal Methods and their Role in the Certification of Critical Systems.
Aviation, (March), 1995.

[41] M. Singh and M.S. Patterh. Formal specification of common criteria based access
control policy model. International Journal of Network Security, 10(3):232–241, 2010.

[42] Richard E. Smith. Cost profile of a highly assured, secure operating system. ACM
Transactions on Information and System Security, 4:2001, 2001.

[43] J.M. Spivey. Understanding Z: a specification language and its formal semantics,
volume 3. Cambridge Univ Pr, 1988.

[44] M. Taghdiri and D. Jackson. A lightweight formal analysis of a multicast key man-
agement scheme. Formal Techniques for Networked and Distributed Systems-FORTE
2003, pages 240–256, 2003.

[45] S.M.C. Téri. Using b method to formalize the java card runtime security policy for a
common criteria evaluation.

93

	Introduction
	Motivation
	Objectives
	Contributions
	Dissertation Outline

	The Common Criteria Standard
	Brief History
	Common Criteria Goals
	The Common Criteria Framework
	CC Part 1: Introduction and General Model
	CC Part 2: Security Functional Components
	CC Part 3: Security Assurance Components
	Common Evaluation Methodology

	Evaluation Assurance Levels
	Common Criteria Process
	General Model
	Sufficiency of the Countermeasures
	Correctness of the TOE
	Correctness of the Operational Environment
	Common Criteria Evaluation

	Formal Methods in Common Criteria
	Other applications of Formal Methods in CC Certifications

	Common Criteria Documentation
	CC Documentation Structure
	Restrictions Imposed in the General Model
	Protection Profile
	Contents of a Protection Profile
	Choice of Protection Profile
	Consistency Concerns for the Protection Profile

	Security Target
	Contents of a Security Target
	Using a Security Target
	Sensitive Information
	Consistency Concerns for the Security Target
	SFR Dependencies
	Generation of Information from the Security Target

	Functional Specification
	Contents of a Functional Specification for EAL4
	Generate Information for Functional Specification

	CC Documentation Modeling and Validation in Alloy
	Modeling with Alloy
	Relational Logic
	Alloy Models

	Abstract Model
	Full Model
	Checking Consistency and Validation of Documents
	Checking Consistency
	SFR Dependencies
	SFR Tracing

	Case Studies
	RSA Keon CA System
	Description of Keon CA
	Target of Evaluation
	Security Environment
	Security Objectives
	Security Requirements
	Evaluation Process

	The CESeCore Project
	Protection Profile and Security Target for CESeCore
	Description of CESeCore
	Target Of Evaluation
	Security Environment
	Security Requirements

	Validation of the CESeCore Documentation
	Abstract Model Application
	Sensitive Information in the Full Model
	Consistency Checking for the Sensitive Information
	SFR Dependencies
	SFR Tracing

	CC Documentation in XML
	ToolBox for CC Documentation Development
	Functional Requirements Specification
	Non-Functional Requirements
	Design
	State of Implementation

	Conclusions and Future Work
	Conclusion
	Future Work

	References

