
1

Departamento de Informática

Nuno Miguel da Costa Abreu

On-demand Content Delivery on

Spontaneous Mobile Mesh Networks

Dissertação de Mestrado

Mestrado em Engenharia Informática

Trabalho realizado sob a orientação do

Professor Doutor António Duarte Costa

Outubro de 2011

Acknowledgements

I want to thank to my mentor, Professor António Duarte Costa for all the support provided. His

assistance was crucial to guarantee that this dissertation was going on the right direction. I am very

appreciated for the guidance provided throughout this work.

To my friends I demonstrate here my gratitude for being always available to help on any circum-

stance. In the same way, I want to thank to my family for the constant support that helped me to

maintain focused on this work.

A special thanks to Iolanda, that supported me in good and bad times. I devote this work to you.

i

ii

Abstract

Today there is a vast number of mobile devices. These devices allow people to access services every-

where. Typically a network infrastructure is required to support these services, like a wireless access

point or a 3G connection. Sometimes such infrastructure may not exist or may not be available, mak-

ing services impossible to operate. Ad-hoc networks allow infrastructure-less communication where

each device can communicate with other devices from the network without depending on some infras-

tructure. These networks can be explored in order to provide services. For example, content delivery

in case there is no infrastructure available to support the communication.

The main objective of this work is to take advantage of the potential of ad-hoc networks to provide

some services related with content access. The goal is to achieve a framework that is able to explore

ad-hoc networks to successfully deliver content to every interested user. Besides, it should be able to

work in different devices and operating systems.

In this work, a fully functional framework prototype was implemented, requiring minimal config-

uration. The result is an off-the-shelf application that needs only a Java Virtual Machine (JVM) to

operate. In order to successfully forward content between nodes from the server to the destination, a

new routing model was developed that is exclusively based on content IDs instead of addresses. We

used HTTP as presentation layer of the framework. This way we enable the customization of the

interface by the server. Each user that is already familiarized with HTML pages can easily interact

with our system.

iii

iv

Resumo

Hoje em dia existe um grande número de dispositivos móveis que permitem o acesso a serviços em

qualquer lado. Para suportar esses serviços é necessária uma infra-estrutura de rede, como por ex-

emplo, um ponto de acesso sem fios ou uma ligação 3G. Quando essa infra-estrutura é inexistente ou

não está disponível, os serviços tornam-se inacessíveis. As redes ad-hoc possibilitam a comunicação

independente de qualquer infra-estrutura. Estas redes podem ser exploradas por forma a fornecer

serviços, tais como o acesso a conteúdo, no caso de não existir uma infra-estrutura de comunicação.

O objectivo principal é tirar partido das redes ad-hoc para fornecer serviços de acesso a conteúdo.

Queremos obter uma plataforma capaz de fornecer conteúdos aos utilizadores interessados, explorando

as redes ad-hoc. Para além disso, deve também ser capaz de operar em diferentes dispositivos e

sistemas operativos.

Neste trabalho foi implementado um protótipo da plataforma completamente funcional. O resul-

tado final é uma aplicação pronta a ser utilizada, que necessita apenas de uma Java Virtual Machine

(JVM). Foi desenhado um novo modelo de encaminhamento baseado, exclusivamente, em IDs de con-

teúdo, por forma a encaminhar o tráfego entre servidor e cliente. Utilizamos o HTTP como camada

de apresentação, dessa forma, o servidor pode ‘desenhar’ o interface. A interacção com o sistema é

bastante simples no caso do utilizador estar familiarizado com as páginas HTML.

v

vi

Contents

Acknowledgements i

Abstract iii

Resumo v

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Objectives . 1

1.2 Methodology . 2

1.3 Main Contributions . 3

1.4 Document Structure . 3

2 State of The Art 5

2.1 Wireless Ad-Hoc Networks . 6

2.1.1 Wireless Mesh Networks . 6

2.1.2 Mobile Ad-Hoc Networks . 7

2.2 Routing Protocols . 8

2.2.1 Proactive Routing . 8

2.2.2 Reactive On-demand Routing . 10

2.2.3 Hybrid Routing . 11

2.2.4 Location-aware Routing . 12

vii

viii CONTENTS

2.2.5 Other Routing Protocols . 13

2.3 TCP on Mobile Ad Hoc Networks . 15

2.3.1 TCP-Feedback . 15

2.3.2 ATCP . 16

2.3.3 Explicit Link Failure Notification . 16

2.4 Content-Centric Networking . 17

2.4.1 BitTorrent . 18

2.4.2 Opportunistic Networking . 19

2.4.3 Social-aware Networking . 26

2.5 Conclusion . 27

3 System’s Architecture 29

3.1 Overall Overview . 29

3.2 Solution Requirements . 29

3.3 File Module . 31

3.4 Neighborhood Module . 35

3.5 Route Module . 40

3.6 Transfer Module . 44

3.7 API . 48

3.8 Mini HTTP Server Module . 49

3.9 Log Functionality . 53

4 Testing Results 55

4.1 Testing Scenario . 55

4.2 Application Parameters . 57

4.2.1 Chunk Timeout . 57

4.2.2 Download Wait Time . 58

4.2.3 Part Size and Chunk Size . 58

4.3 Initial Results . 58

4.4 Parameters Analysis . 60

4.4.1 Chunk Timeout . 60

CONTENTS ix

4.4.2 Download Wait Time . 62

4.4.3 Part Size . 62

4.4.4 Chunk Size . 65

4.5 Tests on New Hardware . 66

4.6 UDP Buffer Size . 69

4.7 Real Scenario . 75

5 Conclusions and Future Work 79

5.1 Main Conclusions . 79

5.2 Discussion and Future Work . 81

x

List of Figures

2.1 Some examples of Wireless Ad-Hoc Networks . 7

2.2 Example of routing discovery, A the initiator and E the destination 11

2.3 Routing zone with ρ=2 . 12

2.4 Peer-to-Peer Communication . 17

2.5 Haggle Architecture . 21

2.6 Example synchronization between a target replica, the photo frame, and a source replica,

the laptop . 22

2.7 Example Service Tree . 24

2.8 Konark Prototype . 25

3.1 System’s Architecture . 30

3.2 File part transfer . 32

3.3 Writting file parts . 34

3.4 Receiving HELLO messages . 36

3.5 Receiving UPDATE messages . 37

3.6 Examples of HELLO interactions . 39

3.7 START process . 39

3.8 Requesting Route Example . 42

3.9 Receiving Route Requests . 43

3.10 Transfer process (Client side) . 45

3.11 Transfer process diagram . 46

3.12 Getting page index . 50

3.13 Downloading file . 51

3.14 Accessing file . 52

xi

xii LIST OF FIGURES

4.1 Network Topology . 57

4.2 Routing Results (First Tests) . 59

4.3 Transfer Results (First Tests) . 59

4.4 Routing Results (Chunk Timeout Comparison) . 61

4.5 Transfer Results (Chunk Timeout Comparison) . 61

4.6 Transfer Results (Download Wait Time Comparison) 62

4.7 Transfer Results (Part Size Comparison) . 63

4.8 Transferring 512KB of data using 512KB file parts . 64

4.9 Transferring 512KB of data using 256KB file parts . 64

4.10 Transfer Results (Chunk Size Comparison) . 65

4.11 Transferring a file part . 66

4.12 Hardware Comparison (Chunk Timeout) . 67

4.13 Hardware Comparison (Download Wait Time) . 67

4.14 Hardware Comparison (Part Size) . 68

4.15 Hardware Comparison (Chunk Size) . 68

4.16 Buffer Comparison (Chunk Timeout) . 71

4.17 Buffer Comparison (Download Wait Time) . 72

4.18 Buffer Comparison (Part Size) . 72

4.19 Buffer Comparison (Chunk Size) . 73

4.20 Transfer of a 128KB file part with 32KB of chunk size 74

4.21 Transfer of a 128KB file part with 16KB of chunk size 74

4.22 Real scenario time results . 76

4.23 Real scenario overhead results . 77

5.1 A sending error messages to C,D,E when B moves away 81

5.2 Node A transferring a file from B . 83

5.3 Network Topology Example . 84

5.4 Abstraction layer created by typical routing protocols 84

5.5 Abstraction layer created by our routing module . 85

List of Tables

3.1 Update control codes . 38

3.2 API methods . 48

3.3 6 bits representing which events are logged with Bytes being the most significant bit . 54

xiii

xiv

List of Acronyms

7DS Seven Degrees of Separation

ACK Acknowledgement

ADU Application Data Unit

AJAX Asynchronous Javascript and XML

AODV Ad-Hoc On-Demand Distance Vector

API Application Programming Interface

ASP Active Server Pages

ATCP Ad hoc TCP

BBS Bulletin Board System

CORE Common Open Research Emulator

CPU Central Processing Unit

CSV Comma-Separated Values

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DREAM Distance Routing Effect Algorithm for Mobility

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

ECN Explicit Congestion Notification

ELFN Explicit Link Failure Notification

GPS Global Positioning System

GSM Global System for Mobile communication

HTML HyperText Markup Language

xv

xvi LIST OF ACRONYMS

IARP IntrA-zone Routing Protocol

ICMP Internet Control Message Protocol

IERP IntEr-zone Routing Protocol

iMANET Internet Based Mobile Ad Hoc Network

InVANET Intelligent Vehicular Ad Hoc Network

IP Internet Protocol

JAR Java Archive

KB Kilobyte

LAR Location-Aided Routing

MAC Media Access Control

MANET Mobile Ad Hoc Network

MB Megabyte

MFR Most Forward within Radius

MID Multiple Declaration Interface

MP3 MPEG-1/2 Audio Layer 3

MPR Multipoint Relay

NFP Nearest with Forward Progress

OLSR Optimized Link State Routing

OS Operating System

OSPF-MDR Open Shortest Path First for Mobile Ad Hoc Networks

PDA Personal Digital Assistant

PHP PHP: Hypertext Preprocessor

RFN Route Failure Notification

RRN Route Reestablishment Notification

RTT Round-Trip Time

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TCP-F TCP-Feedback

LIST OF ACRONYMS xvii

TTL Time To Live

UDP User Datagram Protocol

URL Uniform Resource Locator

UUID Universally Unique Identifier

VANET Vehicular Ad Hoc Network

WiMAX Worldwide Interoperability for Microwave Access

WSDL Web Service Definition Language

WWW World Wide Web

XML Extensible Markup Language

ZRP Zone Routing Protocol

xviii

Chapter 1

Introduction

Nowadays we are surrounded by mobile devices. Anywhere and in any circumstance, mobile devices

are present. Today it is more difficult to find someone in the crowd without any mobile device than the

opposite. People are becoming more and more dependent on the information accessible through mobile

devices. Besides, devices are becoming more sophisticated which allows you to perform several different

tasks anywhere. However, these mobile services are very dependent on some network infrastructure.

Many times and in many places, a wireless access point is provided to allow access to all users. When

there is no access point available, users can still access the services using WiMAX or 3G. The problem

is that these technologies imply costs to users. In case we have content to share on a given event

without any network infrastructure available on the event’s location and in case users do not have

a 3G plan or the location is not covered with 3G access, then how can users access the content? If

devices are able to communicate between each other then no infrastructure is needed.

Ad-Hoc networks allow devices to communicate directly between each other. This way, the net-

work relies on each device to route traffic to other devices in order to ensure the communication. We

can share content anytime, anywhere, without depending on nothing more than the network devices.

Events with a content sharing service may become more frequent as they become more easy to im-

plement. There is no time wasted constructing the infrastructure and no costs to acquire or maintain

it. Having an infrastructure-less network, we simply need a mechanism to make the contents avail-

able. We can either choose an existent solution or create a new one to take advantage of the specific

characteristics of the ad-hoc network.

1.1 Objectives

The main objective of this work is to achieve a full functional framework capable of distributing

content between devices over an ad-hoc network. The final solution should run on different devices

with different operating systems. Besides, the framework should require minimal system configuration

or dependencies on additional software. This is important as the framework is designed to deliver

content on a spontaneous mobile mesh network. We can assume that on such a spontaneous network,

the devices may not have all the dependencies installed and correctly configured. Therefore, we

1

2 CHAPTER 1. INTRODUCTION

intend to achieve an off-the-shelf solution in order to successfully work on every single device from the

spontaneous network.

We intend to build a framework centered on content, because the ultimate goal is to deliver content

on the network. That way, we aim to design the application in a way that the entire network cooperates

in order to deliver content between its nodes. This is also known as a content-centric network.

In order to allow users to access the system, a suitable interface should be available. The interface

is the ultimate frontier between user and the application. If this interface is not understood by the

user, ultimately the application is useless as the user is not able to access it. However, some level

of customization should be considered in order to adapt the application to the different needs from

different kinds of events.

To allow the system to be used by other applications, allowing any developer to design its own

interface and fulfill its own needs, the system must be easily accessible by providing a simple API.

1.2 Methodology

To successfully accomplish the objectives described, the first stage consists on studying the existing

applications for ad-hoc networks. In order to understand how the ad-hoc networks work, the different

types of ad-hoc networks are studied. We investigate how general applications designed for other

scenarios, like wired networks or the Internet, operate over an ad-hoc network without any modification

and how the nodes from the network are able to route traffic. TCP is one of the most popular

transport protocols used by the most popular applications [3]. Due to that fact, we also study how

this protocol performs on ad-hoc networks and how it can be improved to achieve better results. Next,

the mechanisms to share content between different nodes on a network are studied. We investigate

how applications are designed to share content on an ad-hoc network.

After evaluating the state of the art, we are in better conditions to make our decisions relative to

the system design. First, we design the system architecture, defining which modules are going to be

implemented and how they interact between each other. For each module, we propose the strategy

that seems the most adequate. Next, the implementation process is initiated. The essential system

modules are implemented in order to achieve the full functional framework. To ensure that we are able

to finish the framework on time, optimizations are delayed in order to have the essential functionalities

from each module implemented.

When a functional prototype is ready, some tests must be done in order to evaluate the global

performance and to adjust the application in order to achieve the best results. To test the application,

a testing scenario must be defined. First some tests are performed with the help of an emulator,

which allow us to understand the application behavior. With this knowledge, we can deduce what

are the causes for the results obtained and come up with new ideas and improvements to the modules

developed in order to increase the global performance. We also need to perform some more tests

to discover if the results from the emulated environment are replicated on a real scenario. These

real scenario tests are fundamental to observe how the prototype will perform on real events. Since

1.3. MAIN CONTRIBUTIONS 3

the main objective is to achieve a functional framework, results from emulated environments are not

enough.

1.3 Main Contributions

The main contribution from our work is a fully functional framework for delivering content on-demand.

The framework is responsible for delivering content identified by an ID when it is requested. Another

contribution is a new routing model based on content that seems best suited to the scenario for

which our framework was developed for. Our routing module is responsible for routing files and not

addresses. Although, the routing module is very versatile and can be adapted to fulfill other scenarios.

We achieved a dynamic interface using HTML produced by a mini HTTP server. The server is able to

write the HTML code that is going to be used to provide access to the contents. Besides, we assume

that any user familiar with the World Wide Web (WWW) is capable of using our system. This

enhances the usability of the system as more users are able to easily use and adapt our application

interface.

From the work developed throughout this dissertation, a poster as been submitted and accepted

on “11a Conferência sobre Redes de Computadores”, a national conference about computer networks.

Conference to be held at the University of Coimbra, Portugal, on November 17-18, 2011.

1.4 Document Structure

The documents starts with an introduction on chapter 1. In order to understand what there is available

for content distribution on ad-hoc networks, on chapter 2 we present the state of the art related with

ad hoc networks. Chapter 3 presents the system architecture and some implementation decisions.

The tests made and the respective results and interpretations are presented on chapter 4. The final

remarks regarding the project achievements, conclusions and future work are presented on chapter 5.

4

Chapter 2

State of The Art

Nowadays, most of our devices already communicate using wireless technology. Therefore, we can

communicate almost anywhere, at any time, provided that we have a device that supports the wireless

technology. It is easy to conclude that this technology is already used by the majority of us, almost

every time. We use it when sending a text message with our cell phone, or making a phone call and

even in our homes, where we access the Internet through a wireless router.

Although there are many different technologies for wireless communications, such as Bluetooth,

Satellite, GSM, among others, this article focuses attention on Wi-Fi (IEEE 802.11). Wireless networks

represent today one of the most common means of communication between devices such as computers.

Due to their flexibility, these networks have become more interesting compared to the traditionally

wired networks. The technology began to be quickly adopted everywhere. When we enter a mall,

usually it already provides access to a wireless connection, and also internet access through it to its

visitors. One wireless access point in every home, enabling internet access to all the family is also a

very common scenario.

Despite its flexibility, there is still a heavy reliance on specific equipment for supporting the com-

munication, such as wireless routers. An infrastructure set up at a specific location, allowing access

to a wireless connection, represents the most common scenario. This represents a limitation regarding

users location, since each user has to position itself within reach of the access point to have connec-

tivity. In addition, if there are multiple users concentrated in one place, they will use the same access

point, and as a consequence, the access point may become overloaded. The network will eventually

become saturated and the quality of communication will degrade. This work focuses on wireless ad-hoc

communication which requires no infrastructure to operate, thus allowing communication to be made

directly between the various network nodes. Changing the paradigm of connecting to an access point

for ad-hoc communication, we can save resources because the infrastructure is no longer needed. The

reach of the network will be expanded and resources will be optimized by passing the responsibility

of network maintenance from the infrastructure to the nodes that form it. With wireless ad-hoc com-

munication, we can resolve problematic scenarios where there is too much people concentrated in one

place, each one wanting to access data that is available in one access point or in another node. The

access point paradigm cannot handle this scenario, because the node will be overwhelmed with content

5

6 CHAPTER 2. STATE OF THE ART

requests, and other nodes will simply be out-of-range, unable to contact the access point.

2.1 Wireless Ad-Hoc Networks

A wireless ad-hoc network is a decentralized wireless network [44]. Ad hoc is a Latin expression meaning

“for this”, usually meaning a specific solution to a given problem. So, it can be assumed that a wireless

ad-hoc network is a special case of a wireless network where there is no network infrastructure. In

these networks, the communication shall be ensured by the nodes that comprise it, instead of using

routers and access points.

2.1.1 Wireless Mesh Networks

A wireless mesh network is a communications network consisting of multiple wireless nodes, organized

in a mesh topology. A mesh topology consists of multiple nodes interconnected, where each node

also acts as a router forwarding traffic between the various nodes. An example of such network is

represented in Figure 2.1(b). In these networks, each node must be able to choose paths between the

various nodes to reach a particular destination. Additionally, it should be able to choose other routes,

in case of one or more nodes get disconnected. Typically these networks have a higher reliability

and provide redundancy, since there is usually more than one path between a source and destination.

In a mesh network, we can have mesh routers which have the job of connecting the various nodes

and communicate with other mesh routers. Usually, the mesh routers have more resources compared

to other network nodes and accordingly may carry more operations that require resources. These

networks, in that point, differ from ad-hoc networks, since some of the nodes have less restrictions in

terms of resources. Wireless mesh networks maintain good signal strength, since long distances are

divided in a number of intermediate hops shorter. The wireless mesh networks can be of various types

[2]:

• Infrastructure Wireless Mesh Networks

• Client Wireless Mesh Networks

• Hybrid Wireless Mesh Networks

An Infrastructure Wireless Mesh Network is very similar to a simple wireless network, where access

is based on an access point. The difference is that there is no access point, but several mesh routers

interconnected, which makes up the infrastructure for mesh clients. In this type of network, almost

all traffic is routed to or from a gateway (router mesh). On the other hand, in Client Wireless Mesh

Networks, the traffic flows between arbitrary pairs of nodes, resembling a simple ad-hoc network. The

Hybrid is the result of combining the two previous approaches.

2.1. WIRELESS AD-HOC NETWORKS 7

(a) Mobile Ad-Hoc Network (b) Mobile Mesh Network (c) Vehicular Ad Hoc Net-

work

Figure 2.1: Some examples of Wireless Ad-Hoc Networks

2.1.2 Mobile Ad-Hoc Networks

A mobile ad hoc network (MANET) is a wireless multi-hop network formed by a set of mobile nodes

in a self-organizing way without relying on any established infrastructure [7]. These networks are

very similar to Wireless Mesh Networks, hence they are also called Mobile Mesh Networks. In these

networks, each device can move freely in any direction and thus will change the connections to other

devices frequently. The major difference from Wireless Mesh Networks, it is the node’s mobility, as

we can see from Figure 2.1(a). To establish communication between different nodes, each one must

forward traffic unrelated to itself, thus functioning as a router. The main challenge on building a

MANET network is to ensure that each device has, continuously, the information needed to correctly

forward traffic. Mobile Ad-Hoc Networks have become increasingly important with the growing number

of laptops and Wi-Fi technology. As today there are more and more devices with Wi-Fi that can

be transported anywhere, such as PDAs and mobile phones, it is relevant to explore this network

architecture because of the potential it represents. Some types of MANETs:

• Vehicular Ad Hoc Networks (VANETs)

• Intelligent Vehicular Ad Hoc Networks (InVANETs)

• Internet Based Mobile Ad Hoc Networks (iMANETs)

The VANETs are used for communication among vehicles and between vehicles and equipment placed

on the road as illustrated in Figure 2.1(c). The InVANETs are also VANET networks, but use artificial

intelligence in vehicles to act wisely, in case of accidents, in cases of driving under the influence of

alcohol, among other situations. iMANET is a MANET network that connects mobile nodes with

gateways with access to the internet. An iMANET is therefore quite similar to a wireless mesh

network, which in turn, is usually architected as an iMANET.

It can be concluded that wireless ad-hoc networks are quite applicable and cover different scenarios,

where a peer-to-peer communication model is needed and there is no infrastructure available.

8 CHAPTER 2. STATE OF THE ART

2.2 Routing Protocols

Some routing mechanism is needed in order to forward data between peers. To accomplish that, there

must be some routing protocols to enable communication between nodes from the network that are

not in range with each other.

When a node needs to communicate with another node that is not in range, it must forward the

packets between intermediate nodes to reach the destination. To route traffic between the nodes, each

one has to cooperate to support the communication. The network needs to have a mechanism to

find routes between nodes in order to connect sources and destinations. There are too many different

protocols to enable routing in Ad Hoc networks. The majority of the protocols can be divided in two

categories: proactive routing and reactive on-demand routing [10].

2.2.1 Proactive Routing

The proactive routing protocols focus on building information about the network. The main objective

is to maintain an updated table of destinations and respective routes. Due to this fact, this is also

known as Table-Driven routing. The tables are updated distributing the routing tables periodically

between the nodes. Some proactive routing protocols are now presented and explained in order to

understand how the proactive routing protocols work.

Optimized Link State Routing

Optimized Link State Routing (OLSR) protocol is a link-state routing protocol adapted to perform

best in mobile ad hoc networks [21]. To gather information about links, the protocol includes a

Link Sensing module. This module consist on generating and sending periodic HELLO messages. A

Neighbor Detection module is also included that makes use of the Link Sensing module to discover

neighbors. Each node is identified by a “main address”, if the node has only one interface, the “main

address” is the address of that interface. The protocol is designed in order to identify unequivocally

each node. Having more than one interface, the node can be perceived as two different nodes by the

neighbors. The node with multiple interfaces uses Multiple Interface Declaration (MID) messages.

With this information, the neighbors will correctly identify the node.

The key concept of this protocol is the use of multipoint relays (MPRs). MPR Selection and MPR

Signaling modules are responsible of selecting and announce the MPRs. MPRs are responsible for

forwarding control traffic to the entire network. The objective of using MPRs is to enable each node

A to select a subset of neighbors that will be responsible for retransmitting all the broadcast messages

received from A in order to reach all symmetric strict 2-hop neighbors of A.

The protocol includes a Topology Control Message Diffusion module. This module is responsible

for the diffusion of messages that contain information needed to enable each node to perform routing

calculations. These messages are disseminated throughout the network with the help of the MPRs.

With the link-state information from Link Sensing module, the topology information received and

2.2. ROUTING PROTOCOLS 9

the MPR selection, each node stores information about:

• neighbors

• 2-hop neighbors

• MPRs

• MPR selectors

The MPR selectors of A are the nodes that selected A as MPR. With this information, each node

is able to perform route calculation and to route traffic control messages.

Destination-Sequenced Distance Vector

Destination-Sequenced Distance Vector (DSDV) represents a distributed version of the shortest path

problem [35]. Each node maintains a preferred neighbor for each destination. Packet header includes

the destination node identifier. When a node receives a packet, it forwards to the destination’s best

neighbor. The forwarding process continues until it reaches destination.

To enable the packet forwarding, each node maintains a routing table. The table lists the available

destinations and respective hop-number. Each entry includes a sequence number that is generated by

the destination node. Nodes transmit information periodically or immediately in case there is new

significant information. Besides, they broadcast their routing table. The table may vary often, so it

has to be announced frequently.

For each table entry, the destination address, hop-number distance and the sequence number as

defined by the destination are broadcasted. When a node receives a routing table broadcast, it forwards

it again in a new broadcast after incrementing the hop-number. With the routing information received,

each node is able to update its own routing table and identify the best neighbor for each destination.

Routes with bigger sequence numbers are preferred on the forwarding decisions, because they represent

updated routes. In the presence of two different routes to the same destination with the same sequence

number, the one with the lower hop-number is preferred.

A route sequence number is usually generated by the destination. Sometimes the sequence number

is changed by other nodes when a link break is detected. To distinguish sequence numbers generated

by the destination from the ones generated by other nodes, the destination generates even numbers

only while intermediate nodes generate only odd sequence numbers.

When a node A moves to a vicinity of different nodes, it increments the sequence number and

sends update messages to its new neighbors. This is done to update the routing tables of the nodes,

allowing them to access node A.

This protocol grants each node with a next-hop table for each destination. The next-hop is calcu-

lated based on hop-count.

10 CHAPTER 2. STATE OF THE ART

2.2.2 Reactive On-demand Routing

With this type of routing, the route discovery process is issued on-demand. When a node wants to send

a packet to another node on the network and does not have a route for it, it initiates a route discovery

process. On-demand discovery process generates less overhead for maintaining routes compared with

proactive approaches. The overhead generated in order to keep updated routing tables with proactive

approaches in mobile scenarios can be very high. The main idea behind reactive routing is that

routes must be found and maintained only when they are needed. With proactive routing, routes are

discovered and updated constantly even if they are not being used.

Ad-Hoc On-Demand Distance Vector

Ad-Hoc On-Demand Distance Vector (AODV) [34] is an adaptation of DSDV to reduce the number

of route broadcasts by creating routes on-demand.

Although being a reactive version of DSDV, some proactive functions remain in this protocol. In

order to identify direct neighbors, each node broadcasts frequently HELLO messages. When a node A

wants to send a packet to another node that is not its neighbor, it broadcasts a route request message.

Upon receiving a route request, if a node B is the destination it responds with a route reply to A.

Otherwise, B can respond with a route reply if it knows a fresh route to the destination. When B

is not the destination and does not know a route to it, it rebroadcasts the request to its neighbors.

Each request packet includes the source, destination, an unique ID and a lifespan value. The lifespan

value is used to limit the scope of the request. Each time the request is rebroadcasted, the lifespan is

decremented and when it reaches zero, it is discarded. The unique ID is used in order to avoid cycles.

When a node receives a new request with the same ID and the same source from a previous request,

it is discarded.

Similar to DSDV, each route has a sequence number in order to detect the most recent routes.

Besides, each node keeps track of the next-hop for each destination instead of keeping the entire route,

just like in DSDV. AODV uses route error messages when link break is detected. These messages are

used to announce which nodes are now unreachable. The protocol works only on symmetric links.

Dynamic Source Routing

Dynamic Source Routing (DSR) is a protocol for multi-hop wireless ad hoc networks [22]. This protocol

is entirely on-demand. There is no traffic when there is no need for routing packets.

Each packet includes on its header the full path from source to destination, this ensures that the

path is loop-free. Intermediate nodes do not need to have updated routes to deliver packets. Since

the full path is in the packet header, each intermediate node is able to cache the route.

The protocol assumes that each node chooses only one IP address. Although nodes can have more

than one network interface with different addresses, each one has to choose one address to join the

DSR protocol.

2.2. ROUTING PROTOCOLS 11

Figure 2.2: Example of routing discovery, A the initiator and E the destination

The protocol is composed by two fundamental modules:

• Route Discovery

• Route Maintenance

When there is a route to the destination on the route cache, the source node adds the route to the

packet header and sends the message to the next hop. In case there is no route available, route request

messages are broadcasted. The request is identified by a unique request id including information about

the initiator and the target. Each individual route request contains also a list of addresses of the nodes

it passes through. The list is initialized empty by the initiator. When a route request is received, it

is checked if a previous request with the same ID was received. If that is true, the request is simply

discarded. In Figure 2.2 you can see how the routing discovery works.

The destination can respond to the initiator if already has a route for it. Otherwise, it starts a

route discovery to the initiator, but to avoid request cycles, it adds the route reply in the request.

With this approach, DSR can operate in the presence of uni-directional links. Another way of sending

route replies is to reverse the path on the route request.

When there are packets to send to a destination that has no route yet, they are stored in a Send

Buffer. After some time they are discarded.

The route maintenance process is only performed when the source is sending packets. There are

no other mechanism to see if the route remains valid, like in proactive protocols. The node detects

that a route is invalid when it tries to use it.

To detect route errors, acknowledge packets (ACK) are used between intermediate nodes. For

example, node A, sends a packet to E, passing through B,C and D similar to the scenario in Figure 2.2.

If node C sends a message to D and does not receive an ACK, it sends a route error to A. Node A

removes the route from the route cache and uses another route in cache or issues another route

discovery.

2.2.3 Hybrid Routing

In order to take advantage of both proactive and reactive routing, there are some attempts to merge

the two different approaches on a hybrid solution. That is the case of Zone Routing Protocol (ZRP) [5].

In ZRP there is a concept of zones. Each node defines a routing zone being ρ the zone radius in

12 CHAPTER 2. STATE OF THE ART

Figure 2.3: Routing zone with ρ=2

hop number. The nodes are classified as interior or peripheral nodes. The peripheral nodes are at

distance = ρ.

For nodes within the zone, ZRP uses a proactive IntrA-zone Routing Protocol (IARP). For nodes

that do not belong to the zone, it is used a reactive IntEr-zone Routing Protocol (IERP). IERP relies

on IARP to perform route discovery and route maintenance. The two different protocols are not

specified by ZRP, being the IARP a suitable proactive protocol and IERP a reactive one. IERP uses

the information from IARP in order to bordercast the route request. Bordercasting is the term defined

in ZRP to the process of sending requests directly to the zone border, i.e. to the peripheral nodes.

When a node receives a route request, it replies if it knows the destination or bordercasts the request

again. The routing information can be accumulated in the request, like in DSR, or stored as next-hop

addresses like in AODV. How the routing information is stored is not defined.

To better understand the zone concept, you can look at Figure 2.3. You can see the zone of node

S with ρ=2. All nodes except K are within the zone, because they are at least 2-hops away. When S

wants to find a route to K, it will bordercast the route request to nodes G,H,I and J because they are

peripheral nodes.

In order to reduce queries traffic, some query-control mechanisms are needed, like query detection

and early termination.

Neighbor discovery can be achieved by the MAC layer or using HELLO messages.

2.2.4 Location-aware Routing

Proactive and reactive routing protocols are very tied to the topology of the network. The performance

depends on the network topology and due to that fact, as the nodes mobility increases, the worse these

algorithms will perform. A different approach to route traffic is to use physical position of the nodes

as the base to route traffic between the network. These are called location-aware routing protocols

and assume that each node is able of knowing its physical coordinates, using for example a GPS.

2.2. ROUTING PROTOCOLS 13

Distance Routing Effect Algorithm for Mobility (DREAM)

This protocol uses a Location Table to store information about other nodes location [4]. To accomplish

this, each node announces its own location in order to be disseminated throughout the network. This

table also includes for each node, the time of the last position update. “The farther two nodes are

separated, the less often their location table entries need updating”, this is due to the distance effect,

that states that farther nodes appear to move slower than closer nodes. Taking this statement in

consideration, two different types of packets are used. Packets have a life time based on the physical

distance. Short-lived packets are sent more frequently while long-lived packets are sent less frequently

to get farther in the network. The frequency of control messages sent, depends on the nodes mobility.

The main idea of DREAM is the use of the location table in order to calculate the direction where

the destination node is, so the packet will be broadcasted only to the nodes that are in the direction

of the destination.

Location-Aided Routing

Location-Aided Routing (LAR) [24] is a protocol similar to DREAM. LAR defines an expected zone to

the destination. If the source has a previous position of the destination then it uses that information

to calculate an expected zone. If the source does not know a previous destination’s location, it defines

the expected zone as the region that potentially comprises all the ad hoc network. In this case, the

algorithm is equivalent to a basic flooding.

Besides, a request zone including the expected zone is defined. Only nodes inside the request zone

forward the request. This request zone is defined by the source node. Each node uses the information

about the nodes location and expected zone to route the requests only in the direction where the node

is expected to be.

The major difference of LAR compared to DREAM is that DREAM uses directed flooding to deliver

packets, while LAR only uses directed flooding on the route discovery and maintenance process.

2.2.5 Other Routing Protocols

There is a vast number of different routing protocols. Due to that fact, it is not possible to present

all of them, but we have just presented some allowing us to perceive the different approaches to route

traffic. The routing protocols presented cover a vast number of similar routing protocols based on the

same ideas. Although there are some other routing protocols that worth mention.

In section 2.2.4 on page 12 we present some protocols that are based on physical nodes position.

Both DREAM and LAR are protocols that use directed flooding. The principal idea is to flood packets

in the direction of the destination. But there are different approaches in location-aware routing.

There are some protocols that are based on the Greedy Forwarding principle. The main idea is

to forward the packet to the node that is closest to the destination on each step using only local

14 CHAPTER 2. STATE OF THE ART

information. There are some protocols based on this principle like the Most Forward within Radius

(MFR) [42], Nearest with Forward Progress (NFP) [20] and Compass routing [25], each one using a

different notion of progress.

In the Location-aware category there is another type of routing known as Hierarchical Routing.

The location-aware paradigm is used to route packets on long distances while a proactive distance

vector is used when the packet is close to the destination. Grid [27] is an example of hierarchical

routing.

In a large network, a vast number of different devices can be present. Due to the heterogeneity of

the network, some nodes have more computational and communication capabilities [10]. These nodes

are more suitable to support the network functions like routing. Cluster-based routing is based on

this principle and it arranges nodes in overlapping clusters. In a cluster there is a clusterhead that

is responsible of coordinating the cluster. It supports the routing process for the intra-cluster com-

munication. Other nodes of the cluster can communicate directly with the clusterhead and gateways

only. Gateways are the nodes that communicate with 2 or more clusterheads and allow inter-cluster

communication. Only clusterheads and gateways participate in the propagation of control and update

routing messages. This approach reduces the routing overhead and allows the adoption of existing

routing protocols.

A simple algorithm to choose the clusterhead, supposing that each device has a unique ID, consists

on choosing node with the most lower ID. This way, 2 clusterheads never get in contact with each

other.

Every node from a cluster can communicate with the clusterhead, in that way, each node can

communicate with every other node of the network with a maximum of 2-hops.

Since traffic concentrates on the clusterhead, a cluster bottleneck may occur when the clusterhead

is not able to handle the tasks to support the cluster. This can be resolved by adopting a distributed

cluster approach.

When the node’s mobility increases, the formation of new clusters may generate excessive overhead.

There is another category of routing protocols that focus on content instead of routing between

2 specific nodes. This paradigm is known as Content-based routing. When we talk about content-

based routing we are talking about the publish-subscribe paradigm [8]. Typically the content is simply

an event. When a node wants to receive, for example, events regarding the company “Intel” it will

create a predicate like [company = “Intel”]. This subscription must be done on its neighbors or

brokers, registering the intention of receiving content that match the predicate. These nodes are the

subscribers. Each node has to subscribe the content that it wishes to receive before it is produced. The

publishers are the content producers that submit events in the network. When each broker receives a

new event, it already knows where to forward it due to its subscription table. Content-based routing

can be used, for example, on a stock market. Users intend to receive events on-the-fly related with

specific companies and specific stock values. This represents a good approach to disseminate content

when it is constantly being generated.

2.3. TCP ON MOBILE AD HOC NETWORKS 15

Typically, content-based routing protocols are designed for static networks. Furthermore, in [43]

is proposed an adaptation that mixes content-based routing with peer-to-peer networks.

2.3 TCP on Mobile Ad Hoc Networks

TCP was initially designed to operate on wired networks [10]. In order to understand how TCP per-

forms on mobile ad hoc networks, several studies were conducted. In face of multi-hop and mobile

scenarios, TCP throughput decreases drastically. Besides, other problems are discovered. The prob-

lems are due to intrinsic characteristics of the TCP protocol. In [46, 47] three different problems were

identified:

instability problem The TCP connection throughput can be very unstable, even when it is the only

active connection

incompatibility problem In case there are two simultaneous TCP connections, it may happen that

they cannot co-exist. When a connection develops the other shuts down.

one-hop unfairness problem With two simultaneous TCP connections, if one is one-hop and the

other multi-hop, multi-hop connection is disconnected even if it started first.

Furthermore, the unstable throughput on mobile scenarios can be easily explained by the nature of

the TCP protocol. Since the ratio of packets lost in wired networks is very low, TCP interprets packet

loss as an indication of network congestion. In TCP, packet loss is interpreted as packets discarded by

routers due to congestion. TCP triggers the congestion control mechanism, reducing the transmission

windows size and retransmitting the packets. Typically, in ad-hoc networks, the packet loss is due

to route failure. Having nodes changing place constantly leads to route failures that are interpreted

by TCP as congestion. This leads to unnecessary retransmissions during the route reconstruction,

degrading the communication throughput. Besides, the mobility can aggravate the unfairness between

concurrent TCP sessions.

In [15] it is demonstrated that there is an optimal value for the size of the congestion window for

a given topology and traffic pattern. The problem is that TCP operates with a much higher value

resulting in low throughput.

According to [3], less attention has been devoted to UDP applications, due to the fact that the

most popular applications use TCP. Besides, the interaction between 802.11 MAC protocol with TCP

protocol may lead to unexpected phenomena in a multi-hop environment, like severe unfairness prob-

lems in simultaneous TCP flows and in extreme cases, channel capture by few flows. It is stated that

these phenomena do not appear when UDP is used, or appear with less intensity.

2.3.1 TCP-Feedback

TCP-Feedback (TCP-F) is a scheme defined in [9]. This is a scheme that tries to introduce a feedback

system to the TCP. The key idea is to use Route Failure Notification (RFN) messages to alert the

16 CHAPTER 2. STATE OF THE ART

TCP sender when a route fails, preventing the congestion control mechanism from being triggered.

This allows the distinction from route failure and real network congestion.

When a node detects a route disruption due to the mobility of the next-hop, it explicitly sends

a RFN message to the TCP sender. Upon the reception of a RFN message, a intermediate node

invalidates the route, preventing traffic from being forwarded further. If the intermediate node knows

an alternative route, it uses that new route discarding the RFN message. Otherwise the RFN is

propagated toward the source.

As soon as the RFN message arrives to the sender, it goes into a snooze state. The sender stops

completely from sending packets (new or retransmissions). Marks all timers as invalid and freezes

the window of packet sending. Besides, other variables are frozen like windows size or retransmission

timeout. A route failure timer is started with the time for the worst case of route reestablishment.

The sender keeps in snooze state until a Route Reestablishment Notification (RRN) is received.

After a RRN is received the communication is resumed using the same rate used before route

failure. The main idea from this scheme is to freeze the sender, disabling TCP from issuing the

congestion control mechanism.

2.3.2 ATCP

ATCP (ad hoc TCP) [28] is a layer for ad hoc TCP. The authors decided to keep TCP protocol intact

and implement a new layer between IP and TCP. When the network is partitioned, the TCP sender

is put on persist mode, stopping transmitting data, similar to the snooze state from TCP-F. In case

packets are lost due to error, TCP sender retransmits without firing the congestion mechanism. If the

network is in fact congested, TCP sender invokes the congestion control mechanism normally.

ATCP achieves this functionality by listening to network state information. It uses Explicit Con-

gestion Notification (ECN) [37] and ICMP “destination unreachable” to interpret what is happening

in the network and perform the proper actions. When ICMP “destination unreachable” messages are

received, the sender is put in persist mode. The ECN messages are used to invoke the congestion

control mechanism immediately instead of waiting for timeout.

In order to detect if there is a new route already, some probe packets are sent while in persist

mode. When ACKs are received for these probe packets, the sender is put on normal mode.

Being the ATCP layer transparent to TCP, ATCP and non-ATCP nodes can inter-operate. Al-

though the non-ATCP nodes will suffer from the problems of using TCP on mobile ad hoc networks.

2.3.3 Explicit Link Failure Notification

Explicit Link Failure Notification (ELFN) [19] is a mechanism similar to the previous works already

presented. The route error messages from DSR were modified in order to carry a payload similar to

ICMP “destination unreachable” messages. This extra information contains pertinent fields from the

TCP/IP headers of the packet that instigated the notice, including the sender and receiver addresses.

2.4. CONTENT-CENTRIC NETWORKING 17

Figure 2.4: Peer-to-Peer Communication

The process when a ELFN packet is received is similar to the ATCP process when a ICMP “desti-

nation unreachable” is received. The sender enters in a standby mode and disables its retransmissions

timers. To get into a normal state, a probe packet is periodically sent, just like in ATCP.

2.4 Content-Centric Networking

Instead of referring a specific location of the data that we are interested in, maybe it is a better

approach to focus on the data we need. That’s what content-centric networks are all about. We no

longer need to know the specific location of the things we want to access and therefore, the data is

made available without a specific absolute reference. With this approach, the data may be available

in more than one location at a time, creating therefore a whole bunch of new scenarios that can be

explored.

One architecture that fits the content-centric definition is peer-to-peer. Peer-to-peer is an architec-

ture of distributed systems, where each node performs either server and client operations [40]. So the

functions in the network become decentralized, unlike the usual paradigm of client-server, where we

have multiple clients accessing a server. In peer-to-peer networks, we have multiple clients connecting

with each other, i.e. any node can perform the functions of both server and client, in case it is serving

or requesting another node. For example, in Figure 2.4, node B is a client of node C and at the

same time is serving node A, performing server operations. Peer-to-peer makes possible the creation

of larger and more reliable networks than other architectures, since there is no dependence on servers,

avoiding single points of failure and network saturation as the number of users increases.

Nowadays, there are several peer-to-peer networks already, such as Kademlia [29], BitTorrent [12]

among others. Although these systems are widely used today and allow decentralization of communi-

cations, these were designed based on Internet protocols and domain, assuming that there is a direct

end-to-end connection. In turn, in ad-hoc networks, it cannot be assumed such a thing, since it is

not always possible to have a direct connection between two nodes, implying routing of messages by

intermediate nodes.

18 CHAPTER 2. STATE OF THE ART

2.4.1 BitTorrent

BitTorrent is a peer-to-peer file sharing protocol. BitTorrent is one of the most used protocol for

transferring big files and it is estimated to be the protocol that generates more traffic in all Internet

[18]. With BitTorrent, we can distribute files without the need of a single source. Thus, when we want

to distribute a file, we can just join the swarm and eventually the file will be available at all nodes

interested in it. The biggest difference between this protocol and other file transfer protocols, is the

way how data is delivered. In BitTorrent, the data is delivered by passing file parts between peers, as

the number of peers rise, the more bandwidth will be available for the transfer.

For a user to upload a file, first thing to do is to create a torrent descriptor file. After that, the file

must be sent by any conventional means, like web or email, to interested users. Then, the user makes

the file available through a BitTorrent node that will act as a seed. Those who want to grab the file,

just need to give the torrent file to their own BitTorrent nodes which will act as peer or leecher to

download the file by connecting to seeds or other peers. When a peer finishes downloading the file, it

becomes a seed.

The file is divided into segments called “pieces”. When a peer receives a new piece, it becomes a

source of that piece. Thus, a peer can download pieces from seeds or from peers that already have

them. Seeds do not need to send all pieces to all peers, because they will be disseminated between

them. The torrent descriptor file contains a cryptographic hash of every piece to prevent malicious

modifications to pieces passed between peers [13]. With this approach, the distribution of files is

shared by the peers who are interested in them.

The torrent file contains metadata relative to the files being shared. It contains also “tracker”

related metadata. The tracker is the node that will inform about other nodes in the network from

which the peer can download file pieces. So, when a user wants to access a file, first he has to have

access to its torrent and pass it to his BitTorrent client that should contact the tracker to obtain the

list of peers and seeds, connecting to them to download the file.

Although being one of the Internet’s most efficient content distribution protocols, BitTorrent is

not best suited for wireless ad-hoc networks, because of its nature. In a wireless ad-hoc network,

a peer is both router and end-user. For that fact, to enable end-to-end communication, sometimes

we need that intermediate peers act as routers, forwarding the traffic in the network. Beyond that,

TCP performance drops seriously with the number of hops. We can extrapolate that the BitTorrent ’s

overlay, when mapped in a wireless ad-hoc network, it does not produce the best results. Being both

BitTorrent and Wireless Ad-Hoc Networks, based on Peer-to-Peer paradigm, it seems appropriate to

try to combine both concepts. In that sense, there are some investigation in how to change and adapt

BitTorrent to these networks.

BitHoc is an enhanced variant of BitTorrent tuned to ad hoc networks [39]. BitTorrent is topology

unaware by default. The TCP connections to the neighbors in the network, are established inde-

pendently of their location. Thus leading to slow TCP connections due to long multi-hop paths and

routing overhead. The first solution was to limit the scope of the neighborhood conducting to shorter

2.4. CONTENT-CENTRIC NETWORKING 19

download times, but on the other hand, it leads to bad sharing ratios. BitHoc modifies the chocking

algorithm and adds a new piece selection strategy. Now, the lookup process is no longer granted by

a tracker as in the original BitTorrent protocol. In BitHoc, a peer wishing to find other peers in the

network starts by sending HELLO messages with a certain TTL, creating a table of peers based on

the responses. Then, peers are categorized as nearby or far peers, as they are up to 2 hops away or

not. The idea is to concentrate the traffic in nearby peers, for example, the piece update message is

only sent to nearby peers. Furthermore, a peer elects 3 best uploaders and constantly connects with

them to allow a more quickly transfer. One fourth neighbor is chosen in a random way to increase

diversity of pieces in the network. Besides that, there is a configurable parameter q, representing

the ratio between nearby and far neighbors that the peer will serve on that fourth neighbor. When

connecting to far neighbors, the piece selection follows the absent piece stategy, only pieces that are

not in nearby neighbors are accepted. The piece selection in near nodes follows the local rarest first

as the BitTorrent’s standard. Although, BitHoc does not take in consideration users mobility.

In [36] the authors compare two different adaptations of BitTorrent over MANETs: BTI and

BTM. BTI is a straightforward implementation of BitTorrent in MANETs while BTM is a cross-

layer adaptation of BitTorrent for MANETs. In BTI, there are some adaptations made to the original

BitTorrent. Both the tracker and seeds can respond to a torrent seeker with the torrent file. The lookup

is made with the broadcast of TREQ messages and when a TREP is received, the node contacts the

tracker and it gets the node list and connects to all nodes listed. Then, the client connects with server

peers and starts downloading pieces that it does not already have. The unreceived pieces are delivered

in a random way. When a client finishes downloading of π will decide to seed a file with probability

ρπs for a duration tπs . When the download is completed, if the node decides to seed based on ρπs , then

it sends a SEED message to the tracker. When the time tπs is elapsed, the node sends a UNSEED

message to the tracker. One of the major differences is that BTM gathers information on the network,

taking advantage of the routing layer. When a new torrent is created, it is broadcasted to neighbors

that will re-broadcast it with a given probability. Information from broadcasts is stored locally at

every node’s cache. There is no tracker to a given torrent, so each node has to find peers by itself.

If the information about torrents and/or peers is not present in the local cache, then it is used the

same method like in BTI, using TREQ and PREQ messages. These TREQ and PREQ messages are

also used to build a local cache at the nodes that receives them. Another big difference is the use

of proxy seeds. Typically, one torrent starts with one seed and due to the nature of MANETs, the

file may become inaccessible. To fix that problem, during the torrent broadcast phase, nodes which

satisfy a given hash function become proxy seeds. Proxy seeds immediately connect to the initial seed

and download the file, becoming seeds to that file. This ensures that there are many copies of the file

in several sections of the network. At the end, authors conclude that BTM outperforms BTI in terms

of performance.

2.4.2 Opportunistic Networking

In opportunistic networking no assumption is made with regard to the existence of a complete path

between two nodes wishing to communicate [33]. Thus, the paradigm surrounding mobile ad hoc

20 CHAPTER 2. STATE OF THE ART

networks is changed, because we no longer need to concentrate our efforts on building knowledge

about the network topology. The communication is achieved by opportunistically passing data to

nearby nodes as they are within reach.

In this section we present an architecture and some frameworks and middlewares designed for

opportunistic networks. The architecture represents only the concept, the design of a possible system

that can be adopted. A framework is a software that incorporates several functionalities in order

to be used by another software to ease the design process. Various parts of the framework may

be exposed through an API. A middleware is a fully functional software, operating independently,

providing services to people or other applications.

An Architecture

In [41] is presented a network architecture called Haggle, designed around mobile users. Nowadays,

when we want to share a file with a friend or a colleague, even if both have wireless compatible devices,

most often we will just use a USB key flash drive, as pointed out by the authors, representing a Pocket

Switched Networking scenario. Haggle is composed by the following modules as shown in Figure 2.5:

• User Data

• Delivery (Names)

• Protocols

• Resource Management

Now, an application running on top of a Haggle system, does not need to include network protocol

functionality on its implementation. The delivery process is made using user-level names, instead of

protocol specific addresses, like IP addresses. Besides that, a resource management module is included

to calculate cost-benefit for a given task.

User data in Haggle is represented through Application Data Units (ADUs). ADUs are an encap-

sulation for a data item respecting to an application like a music file, a photo, a message, etc. ADUs

are then sent to and from applications and also to and from other Haggle nodes. Normally, some

user data is linked together to form complex data, like for example, a website with embedded images.

Therefore, ADUs can be linked together using a claim attribute.

Haggle stores forwarding state in ADUs, taking advantage of their flexibility to be modified, adding

or removing fields. Forwarding ADUs can contain information like a list of destination names and

addressing hints to each destination, a list of nodes that has passed through, security information and

some other relevant information. ADU’s destinations are expressed using names. For each name it is

checked if there is some protocol available in Protocol module, able to deliver the message. Associated

to a name, there could be several protocols, like Bluetooth, 802.11, among others. Furthermore,

ADUs can contain mappings to addresses, like emails, Bluetooth MAC addresses, telephone numbers,

allowing the use of several different protocols from different applications.

2.4. CONTENT-CENTRIC NETWORKING 21

Figure 2.5: Haggle Architecture

To take advantage of connection opportunities, Haggle must perform neighbor discovery. One

example of that, it is a Bluetooth inquiry resulting in a set of Bluetooth MAC addresses being marked

as “nearby”. When internet access is available through an access point, all internet domains are marked

as “nearby” too. Therefore, forwarding algorithms estimate the “benefit” of transferring a given ADU

(or set of linked ADUs) to decide if the ADU is forwarded in that direction or not.

The resource management module is responsible for controlling all use of resources in Haggle. This

module performs a cost/benefit analysis on “tasks” specified by the other modules to decide what

action to take next.

With Haggle, applications can exploit all types of data transfer without specifying code for each

circumstance. Besides that, network endpoints can be specified by name schemes instead of specific

network addresses. The resources are used efficiently by mobile devices by allowing users to prioritize

their tasks.

Besides this architecture, it is found in the literature some other works that focus attention on the

practical implementation surrounding opportunistic contacts between nodes. That is the case of both

7DS [30] and Cimbiosys [38] frameworks described below.

Frameworks

In [30], authors introduce two new applications to their earlier work, File Sharing and Synchronization

and News Sharing in a Bulletin Board System (BBS). To create these applications, 7DS has a Discovery

Module that is built on top of mDNS protocol. It enables the creation of an IP network automatically.

For that to be possible, Apple Bonjour1 is used. Apple Bonjour enables automatic discovery of

computers, devices and services on IP networks without the need of DHCP, DNS or directory servers.

To take advantage of that system, every information is treated as a service, thus being discovered and

delivered easily.

For a user to share content, it starts by defining a shared directory in which all shared objects

are placed. The version controller scans the directory to find insertions or deletions to register all

1You can get more information online at http://www.apple.com/support/bonjour/

22 CHAPTER 2. STATE OF THE ART

Figure 2.6: Example synchronization between a target replica, the photo frame, and a source replica,

the laptop

modifications. To detect modifications, it is used the JNotify2 library. Afterwards, version controller

multicasts tuples of hash values and modification dates of each file, using the discovery module,

reflecting the changes made. Missing or outdated files are reconciled automatically, the synchronization

is transparent to user, being the synchronization request issued by the file-sync module. For the

synchronization process, it is used 7DSRsync, an adaptation of Rsync to 7DS. Unlike file-sync module,

the BBS module does not exchange data automatically and transparently to the application. Metadata

is exchanged when new mobile users are discovered, based on the category and type of the information,

the user issues a download request.

Cimbiosys [38] is a framework for content-based partial replication. The major difference to 7DS

File Sharing is that now, the content is filtered locally, so the replication is only partial. Partial-

replication implies new challenges compared to total-replication regarding filter consistency among

others. Besides that, some other challenges emerge with this scenario. Authors define 5 key challenges:

effective connectivity ensuring a path between peers for every item

partial synchronization allowing incremental synchronization without wasting bandwidth with du-

plicate items or metadata overhead

item move-outs informing devices of items that no longer applies to their filter due to recent updates

out-of-filter updates dealing with updates that do not match the updating device’s own filter

filter changes allowing a device to change its filter

The system model is designed taking in consideration the challenges presented. Cimbiosys grants

two important system properties: eventual filter consistency and eventual knowledge singularity. The

first one states that “Each device eventually stores precisely those items that would be returned by

running its custom filter query against the full data collection”, that is an important property to ensure

consistency. “The state that is transmitted between devices in synchronization requests and is used to

identify unknown latest versions converges to a size that is proportional to the number of replicas in
2Available at: http://jnotify.sourceforge.net/

2.4. CONTENT-CENTRIC NETWORKING 23

the system rather than the number of stored items.”, the second property grants a more economical

use of bandwidth and system resources. The data replication is based on collections, each collection is

composed by items. Each collection has its own access control policy that defines which operations are

allowed. A replica contains copies of all or some items of a collection and each device can have various

replicas of different collections. A device sharing a collection, keeps its own replica of items. Each

item is composed by a unique id, a version id, a XML and the respective file contents and a deleted

bit. Besides that, it can have additional information to deal with merging conflicts. The version id is

composed with the replica id and the update count number. The XML contains information respecting

to item’s file. When a item is deleted it is marked as deleted using the deleted bit.

Each replica has a filter to determine the contents to be stored locally. To ensure security, versions

are digitally signed by the originator and policies are used to define create/update/delete properties

applied to devices. The synchronization is pull-based. Each device wishing to synchronize its content

contacts other replica to perform the synchronization. To ensure consistency between replicas, each

replica keeps a version vector representing versions that it knows, and this vector represents an element

key in the synchronization process. For a better understanding of the synchronization process, we can

look at Figure 2.6. We can see a synchronization issued from replica B to replica C. In this particular

case, replica B is only interested in items with rating equal to 5. In this synchronization process, item

r is updated since there is a new version C:2, while the version in B is C:1. The s item is added, since

it matches filter of replica B. Item k is removed from B since it is tagged with rating=1 on the newest

version.

The Item Store is where all items are stored. Only the most recent known versions are stored.

Besides the Item Store, each node has a Push-Out Store to keep files that are out-of-filter after an

update. For example, if in a replica that filters only items tagged as “public”, an item A is changed from

“public” to “private”, it must be stored temporarily before being discarded to ensure that the update

is propagated. One of the implementations has been made in C# using Microsoft .NET Framework

running on Windows. Another version was implemented in Mace [23]. Cimbiosys exports an API that

enables an application to create a collection, create a local replica, add, update or delete items, run

queries over items, initiate a synchronization, establish synchronization partnerships, change access

permissions and change local filter. In terms of communication, Cimbiosys offers a variety of transport

protocols.

Middlewares

There are various middlewares specially designed to operate in ad hoc networks. Konark is a middle-

ware designed specifically for discover and delivery of device independent services in ad-hoc networks

[16]. Konark allows the announcement and discovery of services in the network, thus each node can

act as server and client. Konark has two main parts, Service Discovery and Service Delivery. For

this to be possible, each device includes a Konark Application to facilitate the human interaction with

the system and it also includes SDP Managers and Registry that are responsible for maintain service

objects and information about services available in the network. Besides that, a micro-HTTP server is

24 CHAPTER 2. STATE OF THE ART

present to handle service delivery requests. Konark SDP Manager is the layer responsible for finding

services, register and advertise device’s local services. It maintains a tree-based structure as registry, so

services are represented in a tree. An example of such a tree is shown in Figure 2.7. As we move down

from the root to the leaves, services become more specific. Services can be classified as “all”, “generic”

or “specific”, for example, (Path=RootService:Services) means “all” services in the tree. To discover

services, an active pull mechanism is used. On the other hand, to announce services, the mechanism

used is passive push. Konark supports both mechanisms in order to enable servers and clients to

advertise and discover services. To discover a certain service, clients send a message containing two

parameters, the path to the service intended, and a port number. The port number represents the port

where the client listens for server replies by unicast. Announcing a service, implies sending a message

with the parameters Service Name, Path, Type, URL and TTL. When a server offers a service, it needs

to have a descriptor file of the service using a language loosely based on WSDL [11]. After the service

is discovered, a client may want to know more about it and for that the server must have a service

description file containing complete information about the service properties and methods. After this,

the user can now interact with the service by invoking any available function with the proper parame-

ters. The invocation is packaged as a SOAP [31] request and sent to the micro-HTTP server. Konark

was implemented in two different versions of Java, Personal Java 1.2 and J2ME CLDC/MIDP. The

prototype is shown in Figure 2.8.

Another interesting middleware is presented in [17]. The article presents a middleware of mobile

peer-to-peer content distribution. Contents are exchanged opportunistically when nodes are in range.

The middleware exports a publish/subscribe API to applications. The content is organized in feeds,

each feed consisting of a number of entries. Thus, a client can solicit entries from one or more feeds.

A feed is represented by a unique id, a title and a timestamp. Furthermore, each feed’s entry can

optionally have enclosures that are single file attachments, typically an audio, video or text file. To

efficiently deliver enclosures opportunistically, the enclosures are divided into chunks. If a chunk is

only partially received from a peer, it is discarded. Chunks from a enclosure can be downloaded from

different nodes and the download can be resumed in a different node from where the initial transfer

started.

Figure 2.7: Example Service Tree

2.4. CONTENT-CENTRIC NETWORKING 25

Figure 2.8: Konark Prototype

For the discovery process, the discovery module searches for neighbors running the service and

decides which ones are feasible to associate with. The notification for this module, is constituted by

a node-ID and revision. Thus, each node broadcasts hello messages containing node-ID and revision.

The revision is incremented whenever new content is added to the database. This helps peers to

decide if it is beneficial to re-synchronize with a certain node, avoiding contacting neighbors just to

know if there is new content. Synchronization manager is responsible to mediate applications and

API, prioritizing content solicitations ensuring that different applications get a fair share of network

resources.

Transport module implements the request-reply protocol to download and discover node’s available

content. Protocol messages are in XML, being one of these: hello, request, reply and reject. When a

node discovers a new peer, it sends a request message containing a search for a feed or metadata to

discover content availability. The peer sends a reply message, establishing the session and responding

to the query. Processing a request consists only in verifying if the content or metadata is available, and

deliver them. With this approach, each node has full control on the content it downloads. The server

is stateless, so all replies are independent of any other previous requests. The content solicitation

is completely based by the pull model. Session switches between discovery and download states. A

node can have multiple simultaneous sessions, operating as client (while downloading) or server (while

uploading) for each session. A request message contains the bloom, selector, feed, entry and chunks

elements. A bloom filter is populated with feed IDs and entries available in the local node. When

a node receives a request with an empty bloom element, it delivers its own bloom filter in the reply

message. Then, the client tests the IDs of its subscribed feeds or partially downloaded entries against

the filter to discover if there is content of interest in the respective node. If the client does not have

knowledge about the feeds available, or wishes to find more feeds, a selector can be used. When a

node receives a request with a selector as top-level element, it evaluates the selector against its feeds

properties. The feeds for which the selector evaluates to true are sent in a reply message. In the

same way, a selector specified inside a feed will be evaluated against the entries of the feed, returning

the entries that evaluate to true in the reply message. An empty selector will match all feed/entry

elements.

26 CHAPTER 2. STATE OF THE ART

Messages are delivered in a best-effort basis. It is not guaranteed that feed’s entries are delivered

in the same order in all receptors. The implementation was made in Java for the Google Android OS3

platform based on 802.11 in ad-hoc mode.

2.4.3 Social-aware Networking

Socially-related people tend to be co-located quite regularly. This is the characteristic explored in

SocialCast [14]. SocialCast is a publish-subscribe framework that explores predictions based on social

interactions. The key is the assumption that users with common interest tend to meet more frequently

than with other users. Routing in SocialCast is made in 3 phases:

• Interest Dissemination

• Carrier Selection

• Message Dissemination

On the Interest Dissemination phase, each node broadcasts its interests to 1-hop neighbors, along with

the corresponding utility values list of the node. The utility information is stored on the neighbors

routing tables and is the key element on the decisions around message forwarding. After that, in

Carrier Selection, the utility of the local node n is recomputed to all interests i. Then to all interests

i is compared Un,i > Ui + ε, being the Ui the utility value for interest i of the local node, and Un,i

the biggest utility value announced by the neighbors to interest i that belongs to node n. The ε is a

threshold for prevent the message to be bounced from node to node. If in fact Un,i > Ui+ ε is verified,

then the node n is a better carrier to interest i than local node. Next in Message Dissemination, the

buffer content is reevaluated against the new subscriptions and utilities and the messages are forwarded

to interested nodes and/or to the best carrier. Thus, each node interested will get the messages, but

that does not mean that it will store it on its own buffer. The Message Publishing consists in just

storing the published message on the local buffer. The utility is in general a function of multiple

attributes representing the different dimensions of the problem like mobility, collocation, battery level,

etc. The primary utility attribute considered is the probability of a user to be collocated with another

sharing the same interest.

Another similar system is ContentPlace [6]. ContentPlace makes the same assumptions as So-

cialCast, learning and exploiting information about the social behavior of the users to drive the data

dissemination process. ContentPlace does not adopt any specific technology (802.11, Bluetooth), the

connections are made pair-wise between nodes opportunistically, as adopted by SocialCast. Further-

more, the utility is applied to data objects and not to nodes relative to interests like in SocialCast.

When a node contacts another one, it evaluates utility for each data object of the peer. Assuming a

limited buffer, the node will select what are the data objects to be fetched, to maximize the total utility

value of the data on its own buffer. Although the similarities, the authors refer some differences when

compared to SocialCast. According to authors, ContentPlace uses a utility function more complete
3What is Android?: http://developer.android.com/guide/basics/what-is-android.html

2.5. CONCLUSION 27

then the one used in SocialCast. Besides that, authors argue that the mechanism used in SocialCast

is more oriented to traditional forwarding than actual dissemination with respect to ContentPlace.

Furthermore, it is pointed the fact that SocialCast works well when all members from a community

are interested on the same type of content, but is not clear how it works in more general settings.

Apart from the differences cited before, the mechanism is similar in both works. The key idea is

to take advantage of people social behavior to disseminate information in a more efficient way.

2.5 Conclusion

Throughout this chapter, several works around mobile scenarios were presented, showing there is a

vast investigation on this topic.

In order to successfully forward traffic between nodes, there are many routing protocols specially

designed to operate on mobile ad hoc networks. There are different approaches to route traffic on

mobile scenarios. Almost every routing protocol can be classified as proactive or reactive on-demand.

The location-aware bases the routing process on the physical location of the nodes, instead of basing

on the network topology. In order to center the routing process on the content itself, there are some

content-based routing protocols that decouple content consumers from producers. There are several

different approaches to route traffic between nodes. Using one of these approaches or combining

different ideas, we are able to build applications that can communicate with nodes of the network that

are not in range.

Having a routing protocol to forward traffic in the network is not enough if we are interested in

achieving high performance. On section 2.3 it is presented some problems of using TCP on mobile

ad hoc networks. The TCP protocol was initially designed to operate on wired networks. Some

problems arise on mobile, multi-hop scenarios due to TCP intrinsic characteristics. The performance

and adaptation of TCP to this environment are discussed on several different works. UDP does not

suffer from the same problems from TCP, but the last is more studied because the most popular

applications use TCP as the transport protocol [3]. Having this knowledge in mind, we know that

unmodified TCP is not adequate to build our applications. We can choose from adapt TCP or just

use UDP.

Some works focus their efforts in adapting peer-to-peer protocols already available, that were de-

signed to the Internet, like BitTorrent, to the mobile ad-hoc topology. Another work proposes an

ambitious architecture surrounding the mobile scenario, where the addressing is made using conven-

tional names. In Haggle architecture, a destination of a message can be defined using a name, e.g.

John Smith, and then a module is responsible to choose the best protocol from the available to deliver

the message.

Some of the principles presented in the Haggle architecture are also explored in other works.

7DS introduces a file sharing and synchronization module able to share and synchronize content

opportunistically between mobile nodes and presents a way of creating a network automatically without

the need of DHCP or DNS. At this point it is also presented a News Sharing module that uses metadata

28 CHAPTER 2. STATE OF THE ART

to classify content allowing users to choose the news of interest. To allow users to choose content of their

interest, partial-replication is approached in Cimbiosys. Now, each node will have a filter representing

the data that they are interested in. The data is now grouped in collections, and besides that, some

security measures are issued through polices and digital signatures.

In order to allow the creation of new applications specially designed to the mobile scenario, some

middlewares are proposed like Konark and [17]. In [17] the content is grouped into feeds, and files are

divided into chunks, to enable the proliferation of the contents in every opportunistic contact. Chunks

are similar to pieces used on the BitTorrent protocol. The application was built for Android phones.

On the other hand, Konark focuses in services in exchange of data, the services are hierarchically

organized in form of a tree enabling the search for a more generic or specific service going from the

root to the leaves of the tree.

Normally, users with the same interest tend to be in touch more often than with other users.

SocialCast and ContentPlace based their work in that and other assumptions, regarding human social

behavior to opportunistically disseminate content to potential good carriers in order to reach more

interested nodes.

At this point, we can conclude that is still possible to use services that were initially designed to

the wired network, or the Internet, on the mobile ad hoc network. Besides that, a whole bunch of new

scenarios are available to explore, that are becoming more relevant as the devices are becoming more

mobile and more common.

Chapter 3

System’s Architecture

The main objective of our system is to provide content to the final user. To achieve that, we decided

to create a content-centric network. The network itself focuses on content and not on client addresses

or other parameters.

In order to implement a file sharing system fully functional on top of an ad-hoc network, several

modules must be implemented and interconnected. The architecture of the system is presented and

described below.

3.1 Overall Overview

The architecture is composed by different modules represented on Figure 3.1. The Mini HTTP Server

represents the presentation layer. It provides the interface to allow users to interact with the system.

This module interacts with the API module to perform actions issued by the user. Besides, it also

includes a visual setup module interface. That interface is used when the application runs in server

mode to set the files available and the layout used to present the content. The API connects with the

File Module to get and set information about the files available. It also interacts with the Transfer

Module, that is responsible for the file transfer process. The Transfer Module has to interact with

the Neighborhood Module and the Routing Module in order to properly route the transfer requests.

Another auxiliary module was implemented in order to create logs for the application.

The global system was implemented in Java. This enables the interoperability between different

devices and Operating Systems.

3.2 Solution Requirements

Our architecture fits on the definition of peer-to-peer. Each node executes both client and server

functions. Although it is not similar to the BitTorrent architecture. BitTorrent protocol assumes the

existence of a network layer of peers that are all interested on the same content. Besides, it assumes

end-to-end connection between peers. Only the nodes interested on the content, receive and send

29

30 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.1: System’s Architecture

data. The intermediate nodes are not considered, because end-to-end communication is assumed.

This implies that intermediate nodes that are not participating on the BitTorrent protocol, are not

able to cache content. The caching process would allow the node to already have data from the content.

In case the node is now interested on participating on the protocol and access the data, maybe the

content as already passed through it. There are some adaptations to the BitTorrent protocol to operate

on ad hoc networks, like BitHoc, BTI and BTM. Even with these adaptations, the protocol is still

based on TCP connections. Besides, only the nodes that are participating on the transfer, sharing or

downloading the content are considered. The mobility of the ad hoc network is not considered.

The goal is to build an application where the contents are delivered on-demand. Each user is able

to consult the contents that are available and choose individually each ones that it is interested in.

Considering the mobility and the TCP problems, we decided to do not adopt a protocol similar to

BitTorrent. Being the files requested on-demand, opportunistic networking is not enough to suffice

our problems. In opportunistic networking, the communication is based on contacts between direct

nodes to disseminate the content. These contacts are not enough to deliver content on-demand on

our scenario. In our approach, each user explicitly defines the content that it wants to access. In

case we adopt an opportunistic approach, the node has to subscribe the content and wait for another

node having the content to step in the neighborhood. But we want to deliver the content to the

user immediately as requested. Besides, the neighbors may have different interests and so the content

becomes unaccessible, since the communication is based on direct communication. The file may not

be available on the local neighborhood but is available somewhere around the network. Routing data

between peers seems the best approach to deliver on-demand content. Having this in mind, we decided

to exclude opportunistic networking along with the publish-subscribe paradigm from our architecture.

Although, the majority of the architectures for ad hoc networks to deliver content are based on the

3.3. FILE MODULE 31

publish-subscribe paradigm, centering the communication only on direct one-to-one contacts between

nodes, we think that this is not the best approach to deliver content on-demand.

Our system assumes there is IP connectivity. We assume that each node of the network already

has a valid IP address and connectivity to other nodes. Ensuring that each node has valid IP address

and connectivity to other nodes represents a totally different problem that we do not focus on this

work.

Another assumption is that there is only one instance of the system running on each network.

For example, if there is an ad hoc network “Conference XPTO VII”, we assume that there is only

one set of files available to share on this network. A way of enabling more than one instance of the

application running on the same physical location is to create another ad hoc network. Like having,

for example, an ad hoc network “Conference XPTO VII contents” and other “Coffee Break Funny

Videos”. Although the system is designed to support only one instance of the file-system, if someone

attempts to introduce another one on the network, theoretically the system is able to keep working.

The consequence of this action is that different nodes know different files. The set of files that each

node will know depends on the data that is received on the starting process. For example, imagine

that there are 2 different file-systems made available on the network, X and Y. When a node A starts

the application, in the starting process it receives the set of files from a neighbor that listens to the

start messages broadcasted by A. Suppose now that there is a node B knowing the set of files X and

another node C knowing Y, both neighbors of A. If B answers first to A, A will know the set of files

X. Otherwise, if C answers first, A will know Y instead of X. The starting process is explained on

Section 3.4 on page 38. Although nodes know different files, both file-systems are available. The

disadvantage is that each node is not able to choose the set of files it wants to access.

We assume that once an ad hoc network is made available with the server defining the content

available, the contents are not changed over time. We assume static content from the time the system

starts until it ends. Some of the reasons of this choice are further discussed on page 38.

3.3 File Module

To enable the file sharing in the network, a module must be responsible for reading and writing files.

In that sense, this module is responsible for every action related with disk access, both read and write

operations.

In order to enable the transfer of big files over the network, files must be splitted into parts of

smaller size. This is necessary, since all the bytes must be sent over the network. If the file is too big,

there is no chance of sending it without splitting. If we attempt to send a file as a continuous byte

stream, for example, over TCP, some problems arise from this strategy. In case there is a connection

error, file must be retransmitted from the beginning. In order to transfer the complete file with this

approach, both sender and receiver device must have memory available to store the file’s byte array,

while sending and receiving some file. Being the transfer very long, it will imply that file will occupy

the memory for too much time, slowing down the system’s global performance. In case there’s an

32 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.2: File part transfer

error and a retransmission is needed, file must remain in memory, until transfer succeeds. The issues

presented make clear the need to split files into smaller parts.

When a device needs to download some given file, it will not request the file directly, but will

request instead some file part. For example, if there is some file that is divided in 10 parts, the device

requests file part 1, then part 2, etc. until it has all 10 file parts, merging them and saving to disk the

resulting file. Figure 3.2 ilustrates the process of downloading a file, requesting file parts. The transfer

process using file parts is further explained on section 3.6.

On the server’s side, the process is quite simple. There is only one file, and for each part it reads

’X’ bytes of data, shifting ’X*(P-1)’ bytes before reading, being ’X’ the size of each part, and ’P’ the

part number. For example, if X = 1024 bytes and device requests file part 1 (P = 1), then the server

reads 1024 bytes from the file, or less case reaches end of file, shifting 1024*0 bytes. There is no shift

because it is the first part of the file, so it reads 1024 bytes from the file’s beginning. In case the device

wishes then the second part (P = 2), server will read 1024 bytes, but shifting another 1024 bytes first.

Upon receiving a file part, the device has to write to disk the received data. The name of the

output file is composed by the file id and .partX, where X represents the part number. For example,

if the file id is “12345” and the downloaded part is “2”, then the resulting output would be a file

named “12345.part2”. This is done to ensure durability on the parts already transfered and free

memory space to download new file parts. These files are temporary, being merged on a single file

upon transfer completion. This allows us to request and receive parts out of sequence. In order to

reduce the number of file parts written, consecutive parts are aggregated in the same file. This process

does not need extra processing, since the new part is appended to the end of the preceding part file.

3.3. FILE MODULE 33

Assuming that we already have “12345.part2” file and we have just fetched part 3 of file 12345, then

byte array from part 3 is aggregated in “12345.part2” and finally the file is renamed to “12345.part2_3”

as seen on Figure 3.3(a). A file “fileid.partX_Y” contains byte array from all parts between X and Y.

So, when receiving a file part, the first step before writing is to scan for a preceding file part. If we

receive part 4, the first step is to look for “fileid.part3”. In case the part exists then part 4 is aggregated

with “fileid.part3” resulting in a file named “fileid.part3_4”. In case “fileid.part3” is not available, the

next step is search for a file named “fileid.partX_3”, being X any part number prior to 3. Part 4 is

then aggregated with “fileid.partX_3” resulting in a file named “fileid.partX_4”. An example of that

scenario is shown on Figure 3.3(b).

The reverse process does not apply, because it is not efficient. For example, if we have part 5 and

we receive part 4, then if we want to aggregate both, we need to write part 4 to disk and then read

part 5 from the beginning and append to part 4. In that case, a new file part is created as shown

on Figure 3.3(c). More critical scenario would be having, for example, part 5 to 10 aggregated in

file “fileid.part5_10”. The aggregate process here would imply the read of all parts, from 5 to 10, to

aggregate with part 4.

The files are identified by a Universally Unique Identifier (UUID) [26]. When a file is added to

the system, an UUID is generated. This can be easily implemented by using the java.util.UUID

package. Being the identifier generated randomly, it can happen that 2 different files get the same

UUID. To calculate the probability of generating duplicate UUIDs we can use the probability theory

(Birthday Paradox) using the approximation from equation 3.1.

p(n) ≈ 1− e−
n2

2x (3.1)

The UUID is composed by 122 random bits and more 6 bits to identify version and variant. We

can now replace x with 2122. Even when n is a huge number, the probability of duplicate UUIDs is

almost null. So we just assume that each generated UUID is unique.

In order to best organize the files, they are separated in categories. For example, if we have a

video file, it can be put on the “video” category. Similarly, an MP3 file can be put on the “audio”

category. When a file is downloaded, it is saved on a folder according to the file category. With this

approach, each user can navigate to the folder where the files are stored and view them without using

the application interface. This way, the application can be used even without a presentation interface.

Just using the API, the download can be issued and the file will be put on the proper folder.

The filename is equal to the UUID of the file. This is done to easily map files location. For example,

if we started the download of file “funny.mpg” with id “f646dea6-1e18-4d8c-9022-0fb1b83cc565” being

of type “video”, when the download is finished, the file is stored in “videos/f646dea6-1e18-4d8c-9022-

0fb1b83cc565”. The original filename is kept on the file descriptor object.

Besides the type id, each file descriptor includes the number of parts and file size represented in

bytes. Besides, a title and a description can be set.

Having a file module to deal with files to transfer them over the network represents a starting

point to build our application. After we have this module fully functional, we can now start building

34 CHAPTER 3. SYSTEM’S ARCHITECTURE

(a) Writting file part 3 (b) Writting file part 4 first scenario

(c) Writting file part 4 second scenario

Figure 3.3: Writting file parts

3.4. NEIGHBORHOOD MODULE 35

a module that can communicate with other nodes in order to successfully transfer data between each

other.

3.4 Neighborhood Module

In order to gather information about the neighborhood, our application includes a neighborhood

module. This module is responsible of finding other nodes, announce its presence to the neighborhood

and store information about its neighbors. With this module we have a proactive approach, similar

to the proactive routing protocols, presented on Section 2.2.1 on page 8. The difference is that the

proactive part is restricted to the direct neighbors. This approach is also similar to having a ZRP

protocol [5] with ρ = 1. The reactive part is ensured by the route module.

Peer Discovery For peers to know each other, there must be some mechanism to announce them-

selves. In that sense, this module implements an HELLO mechanism, where each node, frequently

broadcasts an HELLO message. These messages are used to build a local list of neighbors. HELLO

messages are composed by a “database id”, “update port” and “transfer port”. “Database id” represents

the sender’s database version. Each time one node transfers or deletes a file, its local database id is

incremented in order to reflect that change to local neighbors. Upon receiving an HELLO message, a

node starts by fetching the address of its sender. In case the address is not already known, it is added

to local neighbor list. The timestamp for the respective neighbor is updated. Then it is checked if

the database id is outdated. When the database id received is greater than the local one, an update

request to that neighbor is issued. That is done to update the list of available files of the neighbor in

question. With this approach, each node knows which files are available at any of its local neighbors.

The process of receiving an HELLO message is described on the diagram represented on Figure 3.4.

The “update port” and “transfer port”, just represent the ports where the node is listening for

update and transfer requests respectively. With this information being broadcasted, each node has all

the information needed to interact with each of its neighbors.

Update process For the update process, each node maintains history of added or deleted files from

local database. The history is maintained up to 2 latest database versions. When a node receives an

update request, it starts by comparing the database version known by the update issuer with its own

database version. In case the difference is only 1, then it just sends the file identifier that was added

or deleted in the new version. When the difference is 2, it replies with the file identifiers that were

added or deleted. If the difference is bigger than 2, it replies with all file list available. This is done

to prevent the overhead of sending the file list, each time the database is updated. In Figure 3.5 is

represented the diagram of the update process on the serving node.

In Figure 3.6(a) an update request is represented, issued after receiving an HELLO message with

a “Database version” bigger than the latest known version for that neighbor. Node with address

10.42.43.2, issues an UPDATE request to 10.42.43.1, because it knows version 1 while node 10.42.43.1

36 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.4: Receiving HELLO messages

3.4. NEIGHBORHOOD MODULE 37

Figure 3.5: Receiving UPDATE messages

38 CHAPTER 3. SYSTEM’S ARCHITECTURE

Code Action

0 update database number only

1 update entire list

2 remove elements

3 add elements

4 add and remove elements

Table 3.1: Update control codes

is announcing version 3. When node 10.42.43.1 receives the request, it responds with the actual

“Database version” and a control code. The control code is used to announce the type of response

that will be sent. The list of control codes is shown on Table 3.1. To confirm the reception of data,

some confirmation messages are used, like “update:ok” and “update_list:ok”, as shown in Figure 3.6(a).

When the update succeeds, each node will continue to broadcast HELLO messages. This scenario is

shown in Figure 3.6(b), where we can see HELLO messages being sent without receiving any response,

because there is no need for an update.

Starting process Before each node starts sending HELLO messages, announcing its presence in the

network, first it broadcasts START messages. START messages are used to initialize the node with

information about the files available on the system. When some node receives a START message, it

replies with the information needed. With this approach, each node will be part of the network only

when it already has all the base information needed. This base information includes available files in

the system and the layout of the webpage. The process is illustrated on Figure 3.7. These messages

are used to initialize each node with the list of files that are available and respective information,

including type and byte size. Another interesting information fetched is the webpage layout. The

layout is only used when the HTTP module is used as the presentation layer. Although the system

can be used with different applications and interfaces, it was designed having the HTTP presentation

layer in mind. The layout defines how the contents are displayed on the webpage. If the system is

used without the HTTP presentation layer, this information is useless.

This process is only issued one time when the application starts. We assume that the contents

are static from the time the event starts until it ends. If the content is changed, the application must

be restarted on all nodes. When a node finishes the starting process, it can now interact with other

nodes. All nodes are treated the same way. We can say that the server node, the one that defines the

layout and the set of files, is just a node having all files. When another node downloads all files, it

can be said that is equivalent to a server. With this approach, when the application starts, there is

no difference between server and client nodes. We just have nodes sharing content. This represents a

simplistic approach to share the content. In order to allow new content to be added later, this process

should be issued more than one time. To allow new content to be added when the application has

already started, a bunch of new problems and questions arise. The first question is: who can submit

new content? The way we designed our system, there is no server and there is no client, we just have

3.4. NEIGHBORHOOD MODULE 39

(a) HELLO with UPDATE sequence

(b) HELLO sequence

Figure 3.6: Examples of HELLO interactions

Figure 3.7: START process

40 CHAPTER 3. SYSTEM’S ARCHITECTURE

nodes sharing the content between each other, this can be seen as a static shared file-system. If we

allow each node to submit content, this can represent a big security issue, as the application has no

control on the content that is being spread across the network. Otherwise, in case we just want to

grant access to the server to submit new content, other problems arise. How to identify the server?

How to avoid normal clients attempting to identify themselves as servers? Using cryptography? Even

if we are able to properly identify the server, how can we guarantee that the new content is known in

the network? Some consistency problems must be dealt. We need a trade-off between availability and

consistency. Another possibility would be having a user database on the server defining each individual

person that can insert new content. This would imply that the server is reachable by the nodes every

time. Some cryptographic mechanisms would be needed, in order to authenticate each user.

Although the simplistic approach we adopted of having a static file-system, the system could be

adapted in order to allow file changes, as modifications, insertions and deletions. This adaptation

implies that the existing modules needs to be changed and new modules need to be created to support

these changes.

With this module, we can now communicate with the local neighborhood. Now we can ‘talk’ with

every neighbor that is in range. This is the starting point in order to download files between each other.

However, this module is not sufficient to communicate with the rest of the network. It only allow us

to communicate with direct neighbors, nodes that are in range. The network can be very large and

include several nodes that are not in range. Although some nodes may be unaccessible directly, maybe

they can be accessed by communicating with intermediate nodes. This is very important, because

the data we need may not be accessible in the nodes that are in range. Concluding, we need some

mechanism to interact with other nodes of the network, not just the ones that are in range.

3.5 Route Module

The file sharing process becomes very simple when all nodes are in range with each other. That may

not be always the case, because the network can be very large. Each node will have only contact with

a small part of the network. When a given node wants to download some file, it verifies if the file is

available on its range, i.e, if there is some neighbor with the intended file. Case the file is available,

the process is very simple. The node connects directly to its neighbor soliciting the respective file.

For example, some device “A” with address “10.42.43.1” wants to download file with id “12345”. There

is a node “B” with address “10.42.43.2” in range having the file. Device “A” makes a connection

to “B” requesting the file and “B” sends the file directly to “A”. When the file is not available in the

neighborhood, there must be some mechanism to find the file from others peers in the network. Besides

finding others peers in the network, we have to discover routes to interact with them. If we find a

node that has the file that we need, that is not enough, because we need to know how to contact with

it.

The route discovery process is issued on-demand. When a node wants to download a file, if it is

not available on the neighborhood, route request messages are spread through its neighbors to discover

3.5. ROUTE MODULE 41

routes to the file intended. The routing approach is similar to the DSR protocol. Although, the route

requests messages are unicasted to each neighbor and not broadcasted. In DSR this cannot be done

because the protocol is totally reactive. Having a neighborhood module, the system is able to identify

direct neighbors and broadcasts are avoided by unicasting requests to the neighbors. Each node knows

the files that are available at the neighborhood. This way, upon receiving a route request, the node

already knows if the file is available on its neighbors or not. So the node that receives a route request, in

case it knows a neighbor having the file, it responds with a route reply without forwarding the request.

Typically, the server node does not receive the route request, because its neighbors respond with route

replies. Another major difference between this routing protocol and the ones presented on section 2.2 on

page 8 is that the protocol searches for routes to access files and not specific addresses. Content-based

routing is another protocol that bases on content and not on addresses. Producers and consumers are

decoupled and the content is disseminated based on subscriptions. In our system, this is not suitable,

because the files are already available and are requested on-demand. That is not the case of content-

based routing. Another evident difference is that there may be more than one destination. We are

looking for files and not nodes, so the route request process may generate different routes to different

destinations. This allows each node to adopt the best route and choose the best destination. This

can be done, for example, choosing routes with smaller hop-number, resulting in closer destinations.

Besides, in case there is more than one destination and in case the routes are disjunctive, i.e. the

intermediate nodes are different, each node can solicit content to different destinations simultaneously.

This approach also allows for an easy implementation of caching mechanisms, because the routes in

cache point to content and not addresses. When an intermediate node receives a transfer request to

be forwarded to the destination, it looks to the route and knows which file is requested. With this

information, each node is able to pro-actively or reactively cache file parts. For example, each time a

node receives a route request for a given file, it can store information about the frequency each file is

requested. With this information, each node can detect which files are more solicited by the network

and based on this information, pro-actively cache the content. Our routing protocol represents a new

approach to route traffic that suits best our system model.

Route requests are re-transmitted upon reception to local neighborhood, unless there is a neighbor

having the file. To avoid network flooding, each message has a TTL parameter that is decremented

before it is broadcasted. When TTL reaches zero, the route request message stops being rebroadcasted.

If there are no responses after sending a request, TTL is incremented and sent again until it finds some

route or TTL reaches its maximum value. In order to avoid cycles, there is a cache of recent requests.

A node that receives a route request, first, it compares it against its local cache. If the request was

already been served, it is discarded. After checking the cache, the node verifies if there is some neighbor

for that file. In case it finds, it creates a route reply and returns it to the client. In order to know

the route to the node and to successfully deliver the route reply, each time a request is rebroadcasted,

the address of the node is added to the request message. For example, suppose that there is a device

“A” with address “10.42.43.1” wishing to download some file with id “12345”. Device “A” has only one

neighbor, device “B” with address “10.42.43.2”. Device “B” does not have the file “12345”. A route

request message from device “A” is then sent to “10.42.43.2”. Upon receiving the request, device “B”

42 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.8: Requesting Route Example

checks if it knows some node having the file. No neighbors have the file, so “B” adds its address to

the message request and sends the message to another neighbor “C” with address “10.42.43.3”. This

time, the device “C” knows a device “D” with address “10.42.43.4” having the file, so it adds its address

and the address of “D” to the message. Then, device “C” responds with a route reply, based on the

message request that already contains the addresses of the nodes it passed. So, device “C” already

knows that it has to send the route reply to “10.42.43.2”. Device “B” receives the reply and it knows

that it has to send it to “10.42.43.1”. Finally, when “A” receives the reply, it knows that the file is

available at “10.42.43.4” passing trough “10.42.43.2” and then “10.42.43.3”. This example is illustrated

in Figure 3.8.

Upon receiving a route reply, each node (final or intermediate) stores the route for the specific file

in a route cache. Each route is stored for a limited time. When some route is used, its timestamp is

updated at every node it passes through. If a route is not used, it gets expired and deleted from route

cache. This cache is used to allow each node to download a file without issuing a new route discovery

process in case there is a route on its cache. Besides, it allows each node to reply to route discovery

requests with a route already discovered before and stored in cache. The time each route remains

in cache is critical and should be correctly parameterized. In order to successfully parameterize this

value, further tests are needed to discover optimal values.

On the route discovery process, if a node has a route for the file on its cache, it responds with that

route. That stops the flooding process and reuses valid and already discovered routes. The process

described above is shown on the diagram in Figure 3.9.

The routing module operates at the application layer, this way our application works without

depending on a routing protocol working at every node. For example, OSPF-MDR [32] enables routing

between nodes on a MANET. To enable routing between the nodes of the network, each one needs to

have this module installed and running. One of the main objectives of our system is to work off-the-

shelf without needing to install or run additional software. We achieve that implementing our own

routing mechanism that does not depend on other software to operate.

At this point, we can deal with files that are the base of our application using the file module. We

can communicate with neighbor nodes using the neighborhood module. With this new module, we

can now communicate with other nodes of the network that cannot be accessed directly because of

3.5. ROUTE MODULE 43

Figure 3.9: Receiving Route Requests

44 CHAPTER 3. SYSTEM’S ARCHITECTURE

being out of range. Having these modules, we can now implement the transfer process.

3.6 Transfer Module

The transfer process, is made using UDP protocol. We decided to use UDP for the transfer process, due

to the problems presented on section 2.3 on page 15. If we choose TCP protocol for the transfer process,

we have to adapt the protocol in order to operate with success on a mobile multi-hop scenario. Another

possibility is to implement a new layer just like the ATCP, between IP and TCP. Both approaches

implies changes to default protocols or implementation of new layers. In order to use unchanged

protocols, due to the problems presented by TCP, we choose UDP for the transport process. Keeping

in mind the objective of working off-the-shef, we already designed a routing module that does not

depend on additional software. Choosing UDP, we do not need to perform protocol changes. To

achieve the objective of having and independent system, UDP seems the best choice. Besides, on

section 2.3 we stated that UDP does not have the problems presented by TCP on mobile multi-hop

scenarios.

A big limitation is imposed with this choice: each packet is limited to a maximum of 64KB of data.

In case we have parts bigger than 64KB, then we have a problem: How to send the part using UDP

protocol? The answer is quite simple: dividing each part in smaller parts, that we call “chunks”.

Upon receiving a file part request, the server node starts by reading the file part using the File

Module and then divides the byte array into chunks. Chunks are sent sequentially to the client node.

On an initial version, ACK packets were used in order to confirm the reception of each individual chunk.

The serving node waits for the ACK packet before sending the next chunk. Later the application was

changed in order to enable application to decide when to wait for ACKs to send the next chunk based

on the “capability” of the next hop. The use of ACKs and the changes performed are further explained

on Section 4.6 on page 69.

An extra chunk is sent, containing only the checksum for the part transferred. The checksum value

is transferred in order to ensure that the file part was received with no errors. In case all chunks

are transferred, then they are merged and the checksum is calculated to compare with the checksum

received. If the two values match, there were no transfer errors and the file part is saved. When some

chunks are missing, or the checksum does not match, a new request is made. For better understanding

about how the transfer operation works, you can look at Figure 3.10 that represents the transfer

process on the client node.

Conceptually, the transfer is made by file parts, not chunks. Chunks are only used to fit a part in

UDP packets.

When a device wants to fetch some file, it starts by consulting the list of neighbors. The list

of neighbors includes the file ids that are available at each one. Suppose that device “A” wants to

download the file with id “12345”. If there is a neighbor “B”, that contains the file “12345”, then “A”

issues a transfer request to “B” for part 1 of file “12345”. After receiving part 1, “A” requests part 2,

and so on, until “A” has all parts of the file.

3.6. TRANSFER MODULE 45

Figure 3.10: Transfer process (Client side)

46 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.11: Transfer process diagram

The process is quite simple if there is some neighbor with the file, but that is not always the case.

Given that the file is not available at the neighborhood, the node has to route the requests through

other nodes in order to receive the file. For that process, the first step consists on consulting the route

cache. If there is a route available for the file, then a request is built with the route appended and

sent to the next hop. For example, if the route reaches node with address “10.42.43.10” passing though

“10.42.43.2”, then the request is sent to “10.42.43.2” because it is the next hop. In case there is no route

available, a route discovery process is issued to gather routes for the file. Upon receiving a file request,

in case the node is not the final destination, it just passes the request to the next hop as stated by the

aggregated route. When the request reaches the final destination, the node replies with the file part

requested just like it is serving a local neighbor. The difference is that the serving node is not serving

the node that actually wants the file, but it is instead serving a local neighbor that forwarded the

request. You can see how the protocol works looking at Figure 3.11 that represents a transfer process

for a file part forwarded between intermediate nodes. Moreover, on each chunk it is aggregated the

route needed to deliver it to the request issuer. For example, if the request is made by node with

address “10.42.43.1” using a route passing through “10.42.43.2” and reaching then “10.42.43.10”, each

chunk from the response has a route appended telling exactly the nodes that the request should pass

through, in this case, “10.42.43.1”, “10.42.43.2” and “10.42.43.10”.

When a download process is started, all file parts are not necessarily fetched from the same node.

Imagine that a node A is downloading a file from node B. B moves away and becomes unreachable

from A. The download process continues because before each file part is requested, the node checks

where the file is available. The process of checking if there is a neighbor available for the file and then

check if there is a route available is performed before each part is requested. That implies that file

parts are not necessarily requested to the same node from the beginning to the end. Being the transfer

based on file parts, soliciting all file parts to the same destination does not make sense. Each part is

solicited to the actual best destination, i.e. the destination with less hop-number.

3.6. TRANSFER MODULE 47

When a file part is requested, the client node cannot wait indefinitely for the part to arrive. Some

file part chunks may be lost and the part must be requested again. When the file part is received,

the next part is immediately requested. When the timeout occurs, the same part is requested again.

Actually this timeout is a static value. In a future version, this time may be dynamic. A way of

having a dynamic value is to store the time the last parts took to arrive. With the information about

the number of hops from the route used to transfer the parts, the download timeout value could be

calculated based on a function that depends on the hop-number value, the average round trip time

(RTT) of the network and the file part size.

Besides the file part timeout value, there is also a transfer timeout. Each time a download process

is started, a timestamp value is recorded stating the time it started. When a file part is received

without errors, this timestamp value is updated. In case no file part is received, or the file parts are

constantly received with errors then a timeout occurs. This cancels the transfer, as no file parts were

received from a certain amount of time. This is also a static value, but unlike the file part timeout, is

not relevant to have a dynamic timeout value. The file part timeout should be dynamic because the

time to download from a direct neighbor and a node at 3-hops is not the same. Besides, there may be

different RTT for each route available. The value of the file part timeout has a direct influence on the

transfer performance. The transfer timeout has no impact on the performance, it is just a variable to

identify files that are not accessible.

The File Module is used to write to disk each downloaded part. Also, it is responsible for merging

file parts on transfer completion. The transfer process is only responsible for fetching the file and store

it to disk. The delivery to the user is a responsibility of other presentation interfaces that use the API

to transfer the file. On the case of our system, the mini HTTP server is the responsible for leveraging

the files to the user.

In short, the file transfer uses the neighborhood module to download files from direct neighbors

and the route module when the file is not available in range. Each route is used to address file requests

across the network and to deliver file part chunks through intermediate nodes till the destination.

With the Transfer Module, we can now successfully transfer files between direct nodes and routing

data between intermediate nodes. But there is some very important feature remaining. We need a

mechanism to enable users to interact with our system. We need an API with all the required methods

to enable the interaction with the application like starting a download process or consulting the state

of a transfer. This will allow other applications to use our system by invoking the methods available in

the API. Besides, this can be our starting point to implement an interface to enable users to interact

with the system.

48 CHAPTER 3. SYSTEM’S ARCHITECTURE

Method Description

void initialize_server(List<AdHocFile> files,

List<String> layout)

initializes the server

void initialize_server(List<AdhocFile> files,

List<String> layout, String ipAddress)

void initialize_client() initializes the client

void initialize_client(String ipAddress)

void start_file_download(UUID fileID) starts the download of the file

boolean downloading_file(UUID fileID) checks if file is being transfered

String show_file_download_status(UUID fileID) shows the transfer status for the given file

String get_file_name(UUID fileID) gets file name from UUID

String get_file_path(UUID fileID) gets the path of a downloaded file

String get_file_folderName(UUID fileID) gets the destination folder of the file

void set_log(string logLevel) sets the log level

List<AdHocFile> get_all_available_file_ids() returns the list of available files on the system

List<AdHocFile>

get_available_files_by_type_id(int typeID)

gets the files available with typeID = typeID

FileTypeManager get_types() gets the types of files available

List<String> get_layout() gets the layout of the homepage

boolean isStarted() checks if the application was already started (it’s started

when it receives the base information on the START pro-

cess)

boolean is_file_available(UUID fileID) checks if the file is available (already downloaded)

Table 3.2: API methods

3.7 API

The methods made available in the API are presented on Table 3.2. With these methods, any appli-

cation is able to use our system. Now we can use these methods as a starting point to implement the

user interface. To enable applications to use our system, they just need to import our project to the

libraries and import the API. It can be imported using the following code:

import API.AdHocP2P

In order to use the custom classes created to deal with files and types, another imports must be done.

You may need to use the following imports:

import files.AdhocFile

import files.FileType

import files.FileTypeManager

3.8. MINI HTTP SERVER MODULE 49

3.8 Mini HTTP Server Module

This is the module responsible for the interaction with the final user. It represents the frontier between

user and the application. The application is accessible through HTTP, using any browser for the effect.

We choose HTTP because it serves a normal HTML page with contents available. With this approach

we do not need to implement a new interface to access our system, we just use HTML. Each user can

access the system by using its preferred browser. Because our contents are presented as a normal html

page, each user that is already familiarized with content access in the World Wide Web (WWW) can

easily access our system without needing to adapt to a new application interface. Besides, each entity

interested in using our application can adapt its own webpage to work on our system. Konark[16] also

uses an HTTP server, although it is used for a totally different purpose. The Konark micro HTTP

server is used to provide services to other nodes. Each node makes its services available through this

server. We use the mini HTTP server for a totally different purpose, the server is used by the node

itself, being unavailable for other nodes as the requests are filtered in order to allow only localhost

requests. The HTTP server on our prototype works as the interface of the application, allowing the

initial server to ‘draw’ its own interface.

Although our application was designed to operate with one single page, it could be adapted to suit

other scenarios. For example, simulate an existing website, with different interconnected pages. One

thing that it is not possible to do is to allow dynamic pages, like ASP or PHP, because each page is

rendered locally at each node. In order to enable the existence of more than one page, implying more

than one layout, the application needs to be changed at other modules, starting on the Neighborhood

Module. This module is responsible for initializing each node with the layout and set of files. To enable

more than one page, the application has to be changed in order to define a list of layouts, not only one

layout that actually is used as the index page. Besides, for each layout a page must be assigned, for

example, assign a layout to “index.html” other to “videos.html”. With this adaptation, it is possible

to simulate any static website.

After the application is running, users wishing to access the network content have to fire up their

browsers and address to http://localhost.

This module includes a mini-HTTP server that responds to a limit of different HTTP requests.

The default request is a GET / (index) method. To respond to this request, the server responds

with the page layout and some javascript methods needed to interact with the server as shown on

Figure 3.12. The layout is a set of html code lines as a typical html page. Some special tags are put

between the normal html code. These tags are used to identify files. When this special tag is found

on the layout, then some special treatment to the code is needed before sending it on the response.

The special tag includes a file id, a file name a type description and size described in bytes. For

example, the tag <!!!! fileid=3e8fc78c-5a0d-49e0-8229-7963eec4198f filename=foto.jpg type=images

size=11293 !!!!> represents the file with id 3e8fc78c-5a0d-49e0-8229-7963eec4198f, that is named

foto.jpg being of type images and size 11293 bytes. The layout page is processed line by line, so

the tag must be on a single line. Each time the tag is found on a line, the module uses the API

to know if the file is already available. Case the file is available, the content is delivered using the

50 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.12: Getting page index

proper html code. For example, if the file is of type images, then the file tag is replaced with <img

src=“/get/fileid/filename” />. Similar is the case when the type is others, the response would be filename (a link to the file). Case the file is not available, another

check is made, this time it is checked if the file is currently being downloaded. If that is the case, the

tag is replaced with the file download status, for example, 23.0%. When the file is not available, and

is not currently being downloaded, the file tag is replaced with a link to start the download process

for that file. This link uses a javascript method to initiate the transfer and continuously update the

download status. When the download status reaches 100%, the file is delivered.

Each tag found on the layout is replaced with special html code, to access the file, to start the

transfer process or simply to show the transfer status. This is done by replacing the tag with a span

class. For example, when the tag <!!!! fileid=3e8fc78c-5a0d-49e0-8229-7963eec4198f filename=foto.jpg

type=images size=11293 !!!!> is found, the first step is to replace it with <span id=“3e8fc78c-5a0d-

49e0-8229-7963eec4198f”>[file html code]. This is done to easily replace the span content

on the various stages. First the [file html code] is the link to start the download process. For the

tag presented, that would be something like: <a href=“javascript:startDownload(‘3e8fc78c-5a0d-49e0-

8229-7963eec4198f’); ”>Download foto.jpg. In the first step, the file tag <!!!! fileid=3e8fc78c-

5a0d-49e0-8229-7963eec4198f filename=foto.jpg type=images size=11293 !!!!> is replaced with:

Download foto.jpg

When the download is started, the [file html code] is replaced with the download status. Supposing
that the current download status is 54%, then the html code would be something like:

54.0%

When the download finishes, the span html is replaced with the file wrapper. That would result
on having the following code:

3.8. MINI HTTP SERVER MODULE 51

Figure 3.13: Downloading file

Initially div classes were used instead of span, but div class does not support inline by default. If

we have on the same line several different div classes, they will not appear inline as intended. This

is because span is an inline element and div is a block element. Block elements cannot be put inside

inline elements. For example, having something like <p>. . .<div>’div content’</div>. . .</p> is not

possible. To enable the user to put the contents inside inline elements, the span was adopted over div.

In order to download a file, upon pressing the link presented on the page, an http get method must

be issued to the server. To achieve that, it is used AJAX that provides a method for exchanging data

asynchronously between browser and server to avoid full page reloads. There is a dedicated handler

to respond to AJAX made requests. The server responds with the current download status or with

“error” case there is an error on the download process, or with the file content as delivered by the

default page. The download status must be updated frequently, so the script responsible for initiating

the download process is also responsible for getting the current download status. In Figure 3.13 you

can see a diagram representing a download process issued by pressing the download link presented on

the page. The AJAX script is able to update the content of the file span using the simple code, being

fileID the id of the file:

document.getElementById(fileID).innerHTML = http.responseText;

The http.responseText variable is the result from the request issued by the script. This variable

includes html code that is updated upon reception. This code varies from the link to start the download

process, the file download status and the file wrapper.

When the server receives the request, it starts the download process using the API. The download

has just started, so the server responds with 0.0%, indicating that the download as started. The script

that started the download, repeats the request every 2 seconds. When the download reaches 100%,

52 CHAPTER 3. SYSTEM’S ARCHITECTURE

Figure 3.14: Accessing file

the server creates the file wrapper and delivers the content to the client. Along with the file wrapper,

a special html comment is also included in order to inform the AJAX script that the download finished

and stop the refresh process. For example, if a file with id 3e8fc78c-5a0d-49e0-8229-7963eec4198f is

currently being downloaded, upon file completion, along with the file wrapper html code, the tag <!–

fileOK:3e8fc78c-5a0d-49e0-8229-7963eec4198f –> is also included. This code does not appear on the

webpage, but can be parsed by the AJAX script that stops the refresh process for the file 3e8fc78c-

5a0d-49e0-8229-7963eec4198f.

The file is not delivered directly, due to some security limitations on the access to local files

on a website imposed by some browsers like Firefox1. For example, the most practical way to ac-

cess a file on the webpage, would be something like putting a reference to the local file, i.e. Click here to open doc.txt. This method is very practical, but would

not work on some browsers. In order to access the local file, the http server listens to get requests on

the form /get/file-id/filename. For example, when the server receives a request /get/3e8fc78c-5a0d-

49e0-8229-7963eec4198f/foto.jpg it starts by parsing the request and then reads file with id 3e8fc78c-

5a0d-49e0-8229-7963eec4198f returning a file named foto.jpg. The Figure 3.14 shows how a file is

accessed by the browser.

Assuming a spontaneous mobile mesh network with devices that do not have the application, a

mechanism for delivering the application could be implemented. Imagine that the server just started

and there are several devices connected using an ad-hoc network. Suppose now that the server is the

only node having the application. Easily we can adapt the mini HTTP server to allow non-localhost

requests only for a specific URL. For example, we can adapt the system to accept requests for the

path /application/. If the server has the address “10.42.43.1” then each node can fire up their own

browsers and address to “http://10.42.43.1/application/”. The mini HTTP server responds now with

a page with some instructions on how to use the application and a download button. This way, all

1You can read more about it here: http://kb.mozillazine.org/Links_to_local_pages_don%27t_work

3.9. LOG FUNCTIONALITY 53

server neighbors are able to download the application. When these neighbors start the application

themselves, their own neighbors can now access the application. For example, node with address

“10.42.43.2” has just downloaded the application from the server. It starts the application and now

its own neighbors can access the application accessing to “http://10.42.43.2/application/”. This is an

easy way to reuse resources from our system to spread itself across the network.

In case the layout has errors, or the user forgets to add the files to the layout, the files may become

unavailable. To overcome this issue, there is a default layout that can be used by users accessing

http://localhost/generic/. This is a default layout that presents content divided by their types. On

the first access to the generic layout, all files are listed. A sidebar menu allows user to navigate through

each category of files.

Another important function is needed, a way to setup the set of files and the layout of the system.

For a normal client node, the http server is already fully functional, but for the server, there must

be a mechanism to set the layout and to add files. When the application runs in server mode, an

interface is presented that allow the user to add a new file to the system and simultaneously write

the layout page code. After a file is added, the user has to classify the file on a set of defined types

presented. After the layout is written and the files added, when ready, user boots up the system.

Besides the mechanisms already explained about this module, all the processing is made through the

API available.

3.9 Log Functionality

The Log functionality was implemented to allows us to gather information about the application

performance. With this functionality we are able to determine how many messages were received and

sent. How many files were downloaded, when a download was started and finished. We also know how

many data was transferred in terms of bytes. This module was developed to help on the application

testing. We need to test how the application performs and to enable that we need to register important

events somewhere so we can evaluate the global performance.

Although the log functionality was developed to help on the testing phase, it can be used by

experienced users to understand what is happening in the application. This allow each user to produce

log files in order to search for problems or just to analyze himself the performance of the application.

To activate log functionality, the application must be started with an extra parameter. To do

this, each node has to start the application with the parameter “–log:X”, where X is an integer value

between 1 and 63. This value is converted in binary code in order to map which events are going to be

recorded on the log file. The events registered are appended to the file “log.txt”. The file is created in

case it does not exist yet. Case the file is already available, the events are appended to the file, being

the content of the log preserved on later runs.

Table 3.3 represents the meaning of each bit, being Bytes the most significant bit. The Bytes

bit, sets the application to log the amount of bytes received. With Downloads bit, the application

records the events related with downloads, like download start and completion and counts the number

54 CHAPTER 3. SYSTEM’S ARCHITECTURE

Bytes Downloads Chunk Direct Transfer Forwarding Routing

Table 3.3: 6 bits representing which events are logged with Bytes being the most significant bit

of downloads. The Chunk bit is used to log the receiving and sending of chunks, including the

number of chunks received and sent. Direct Transfer logs the download requests from direct neighbors.

Forwarding logs everything related with forward requests, like a file part request or reply forwarded.

The Routing bit sets the application to log route requests and route replies.

If someone intends to log the routing messages only, just needs to start the application with “–

log:1”, because the integer 1 equals 000001 in binary, so only the Routing bit is set. Otherwise, if

someone wants to log Bytes and Chunk the parameter would be “–log:40”, because 40 is 101000 in

binary. To log all events, the parameter is “–log:63”.

This method was used in order to reduce the number of parameters. For example, if each type

of events is associated with a parameter, in order to log all events we would need something like

“–logBytes –logDownloads –logChunk –logDirectTransfer –logForwarding – logRouting” or something

like “–log:Bytes,Downloads,Chunk,DirectTransfer,Forwarding,Routing”. Being the log functionality

developed to be used by advanced users only, this is a simple way to enable it.

Besides, each event is tagged with a timestamp. This enables us to calculate time elapsed between
events, for example, having the time when a download has started and the time the same download
finishes we can estimate the transfer time. One log file will look something like:

[14/07/2011 18:37:57,018] Started Download of file 4972b164(12702823 bytes)

[14/07/2011 18:37:57,023] Transfer Message sent to 10.0.0.3

[14/07/2011 18:37:57,023] Route: using route with 1 hops to request file

[14/07/2011 18:37:57,103] Chunk received from 10.0.0.3

[14/07/2011 18:37:57,165] Chunk received from 10.0.0.3

...

[14/07/2011 18:37:57,652] Downloaded part [1] of file 4972b164 [SUCCESS]

...

[14/07/2011 18:38:11,296] Downloaded part [25] of file 4972b164 [SUCCESS]

[14/07/2011 18:38:11,302] Finished download of file 4972b164(12702823 bytes)

[14/07/2011 18:38:40,672]--Terminated--

[Chunks received: 243] [Chunks sent: 0] [Forward Chunks received: 0]

[Forward Chunks sent: 0] [Forward Requests received: 0]

[Forward Requests sent: 0] [Transfer Requests received: 0]

[Transfer Requests sent: 25] [Route Replies received: 0]

[Route Replies sent: 0] [Route Request received: 0]

[Route Request sent: 0] [Downloads started: 1] [Downloads completed: 1]

[Downloaded parts: 25 [SUCCESS] - 0 [CHECKSUM ERROR] [Download timeouts: 0]

[Total Bytes Received: 12748929]

Chapter 4

Testing Results

In this chapter, the results obtained from a series of tests made in order to validate our prototype are

presented. First the testing scenario is described. Then, the testing topology based on Common Open

Research Emulator (CORE)[1] is presented and it is explained how the tests are made and how the

results are collected. The log functionality of our prototype is used to produce some log files. These

log files are then used to fetch the necessary data for the results presented.

4.1 Testing Scenario

Due to the nature of the application developed, made with the objective of being used in an ad-hoc

network, with possibly a large number of mobile nodes, the tests were made with the help of an

emulator. In order to gather results from a real scenario, many resources would be needed that were

not available at this phase. The emulations were performed using CORE[1] (version 4.1), a tool that

can emulate entire networks (wired or wireless) on one machine. CORE was installed on a single

Ubuntu 11.04 Linux virtual machine running on AMD Opteron 275 at 2,2Ghz with 512MB RAM.

The help of many volunteers would be needed in order to test our application on a real scenario.

Besides, many devices would be necessary to build the testing scenario. Nevertheless, the logistics

necessary to change the topology would be too complex. Due to the complexity and dependence on

external entities for achieving a real test scenario, we choose to perform the first set of tests with the

help of CORE[1] emulator.

In order to collect data relative to the tests done, the application was changed to register important

events in a log file. These events include the reception of a file part, a file part chunk, route request

message, route reply, etc. Each event is tagged with a timestamp to calculate the elapsed time between

events. The log functionality is explained on section 3.9.

The log functionality also records how much messages were received and sent, allowing the calcu-

lation on how much traffic was received in total. It also allows the calculation on how much overhead

is generated for a file download process between 2 peers in the network. With this approach, running

the application in the network produces a log file for each node. When a test finishes, the log files

55

56 CHAPTER 4. TESTING RESULTS

must be collected to interpret the results produced. To collect the essential data from the log files, a

parser was also developed specifically designed to parse the log file structure of our application and test

scenario. The parser is responsible for getting the global information about a download process that

occurred in the network, like download time, total bytes transferred and routing messages sent, etc.

The experiments can be separated according to the distance in terms of number of hops between the

principal involved nodes, client and server. The parser is also responsible for creating CSV files that

can afterwards be easily imported into R script to generate the graphics presented on this chapter.

However, enabling log functionality on the application and implementing a parser to gather the

information from the log files is not enough. There is also a need for an automatic mechanism to run

tests and generate data. This step is very important, because tests done in a manual way would imply

to start the application on every node and wait for the download process to finish. Also, the server and

client nodes would need to be chosen manually. After the download finishes, the application needs to

be stopped at every node and the log files collected one by one. Without automating the tasks, results

would take much longer and would be less exhaustive. Because we want the tests to be somehow

significant, there must be a large number of tests. Besides, there is not much time to exhaustively

perform all the tests. To achieve that automatism on testing, a bash script was written to perform a

series of consecutive tests. The script generates 2 distinct random numbers that will be mapped into

a server and a client node of the network. After that, the script starts the application at every node

of the network. If the node number equals the number of the server or client numbers generated, the

server and client application is booted respectively. The other nodes run the application in idle mode,

i.e. they run as normal client nodes without downloading any file. After that, the script waits for the

application to finish. When the application exits, the script copies all the log files to a new folder and

repeats the process until the loop ends. The script performs 200 consecutive tests. When the bulk of

tests is made, the only manual steps needed are the execution of the parser application that generates

the CSV files, and the execution of the R script that generates the respective graphics.

For all the tests, only one file with 12702823 bytes of size was used. The same file was used across

all the tests, to allow us to compare the results from the different tests made, like download time and

bytes transferred. The network topology is composed by 10 nodes, that are connected as shown on

Figure 4.1. This topology was created to perform the first tests. These tests were performed in order

to verify the functionality of the prototype and to further debug the application. The performance

tests were made using the same topology afterwards. The majority of the tests were made with the

objective of finding the best parameter values.

Parameters like part download timeout may have a huge impact on the performance. It represents

the time that each client waits for the reception of a file part, before considering that an error occurred

with the transfer, issuing a new request for the file part in question. This wait time cannot be an

arbitrary value. If it’s too small, unnecessary new requests would generate unnecessary traffic. If

it’s too big, the download process will slow down proportionally to the excessive timeout value, when

errors in file parts occur.

4.2. APPLICATION PARAMETERS 57

Figure 4.1: Network Topology

4.2 Application Parameters

Several application parameters were defined in order to tune the application behavior. We chose a

subset of the most important ones to be evaluated in the actual test scenario. To demonstrate their

relevance, the selected parameters are explained below.

4.2.1 Chunk Timeout

The chunk timeout variable represents the time that a node waits to deliver a chunk from a file part.

When a client requests a file part from a given node, the part is divided into chunks that are sent

to the requester. After the first chunk is sent the node waits for a confirmation of reception from

its neighbor before delivering the next chunk. Case there is no confirmation, the next chunk is sent

anyway after ’chunk_timeout’ milliseconds. This waiting time is used to ensure that packet loss is

minimal, delaying the delivery to a time when the next node is able to receive data. On the preliminary

tests, we observed that with no waiting time, for example, in a part with 10 chunks, sometimes only

the first two and the last two chunks were received and all intermediate chunks were lost. This chunk

timeout mechanism was implemented due to this mysterious packet loss. The initial idea was to send

all the chunks from a part without waiting for confirmation, but due to the problem exposed, this

mechanism seems essential to ensure the prototype is functional.

When chunk timeout value is too low and packets are lost, chunk packets may always fail on

each request, making the download process impossible. When the value is too high and there is no

confirmation or the confirmation is lost, the download process will slow down a lot. So this is a very

important parameter to the performance and functionality of the prototype. In that sense, tests have

to be made to observe the performance varying the parameter value. This enables the evaluation of

the impact of each value and find optimal values to the present scenario.

58 CHAPTER 4. TESTING RESULTS

4.2.2 Download Wait Time

This variable is similar to the chunk timeout, but this timeout is set on the client node, not on the

serving node. When a node starts a download, it will wait for some time to receive a file part. If the

file part does not arrive, the client cannot wait indefinitely. After the download wait time passes, if the

part was not received, the client assumes that some chunks were lost and it must re-send the request

for the file part in question. Similarly to chunk timeout, case the value is too small, the number of

retransmissions grows, generating more overhead and slowing down the download process. If the value

is too big, upon each part download failure, the download process will hang for the time equivalent to

the download wait time value, slowing down the download.

4.2.3 Part Size and Chunk Size

Other important variables are the part size and chunk size. Although they might seem to be less

important to the download process, tests have been made to evaluate how the network reacts to

different file parts and chunk sizes. At first glance, the impact of part size seems meaningless, because

only chunks are transferred, not file parts. However, it must have some impact on performance because

the processing that is needed to deal with file parts of 512KB, will not be the same as a file part of

50MB, as we believe. Another potential impact that part size can have, is related to retransmissions

and the consequent overhead. If there is an error on a single chunk of a given file part, the whole part

must be retransmitted. In this case, the difference between bigger and smaller file parts has impact

on performance. In case of retransmissions, the latest generates less overhead while the first generates

more. Case network performs well, and there are no errors, smaller parts generate more overhead,

because with smaller file parts there will be more parts for each file implying more checksum traffic to

validate each transferred part.

The case for chunk size is similar. If the size is too small, more chunks are transferred on each

part, increasing the risk of packet loss. If the size is too big there is a bigger risk of corrupted packets.

So, apparently there is no easy choice between a small, medium or big size. Some tests have to be

done to understand how the network responds to different chunk sizes.

4.3 Initial Results

Two principal functions of our prototype, routing and file transfer were initially evaluated on our tests.

For the routing process, the number of routing messages used to find a route was measured. Also it was

measured the time elapsed from the moment a route request is issued until a reply is received. For the

file transfer process, the time until the download finishes was measured, including the routing process

and all data transmission overhead generated on the network. These metrics allow us to evaluate how

the prototype performs. The main focus was on time, but the overhead is also important to see if the

amount of bytes transferred is actually linearly proportional to the number of hops. Besides that, it

is possible to conclude on the number of retransmissions observing the overhead results.

4.3. INITIAL RESULTS 59

(a) Number of Messages vs Hop Number (b) Routing Time vs Hop Number

Figure 4.2: Routing Results (First Tests)

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.3: Transfer Results (First Tests)

60 CHAPTER 4. TESTING RESULTS

The first results were obtained from a bulk of 200 tests using default parameters chosen. The

parameters were chosen somehow arbitrarily, except the chunk size. The chunk size was initially set to

60KB, in order to take advantage of the UDP packet maximum size of 64KB. The remaining variables

were set to values that seamed adequate but without any prove of being the most suited ones. The

download timeout was initially set to 1,5 seconds. The part size was set to 512KB. Finally, the chunk

timeout was set to 300 milliseconds.

The tests were made using the script explained before, that generates 200 experiments choosing a

server and a client randomly. The obtained results are shown on Figure 4.2 and Figure 4.3.

Readings the results, one of the first observations was that more routing messages were used to

4 hop transfers compared to 5 hop transfers. That led us to conclude that the number of messages

depends more on the topology than on the number of hops. The routing time results were expected,

with more time to find routes with bigger hop number. The overhead is linear to the number of

hops. That is an expected result, because if a file is forwarded through other nodes, the file data must

pass through each node. If we have, for example, a file of 5MB of data and it is transferred directly

between two nodes, it is expected that the overhead would be approximately 5MB. On other hand, if

the file must pass through an intermediate node, it is expected that the intermediate node will receive

approximately 5MB that will forward to the destination, generating another 5MB. That applies to a

bigger number of intermediate nodes, it’s expected that a file of 5MB that is transmitted over 3 nodes,

will produce a minimum overhead of 15MB, 5 for each node. Finally, in terms of download time, there

was an initial expectation that the download time would be bigger as the number of hops increases.

In fact, the results show exactly that in Figure 4.3(b).

4.4 Parameters Analysis

The second set of tests were made in order to observe the prototype behavior when changing different

application parameters. Each bulk of tests was made doubling and reducing to half each variable.

4.4.1 Chunk Timeout

Results presented on Figure 4.4 and Figure 4.5 were obtained by changing the “chunk timeout” variable

to 150 and 600.

Looking at the graphics on Figure 4.5, we can see that in terms of overhead, the results are very

similar for the 3 cases. In terms of download time, the results obtained from using 150 and 600 are

both lightly below the 300 results, except for 5 hops of distance. Although the differences, we believe

that they are not significant. The “chunk timeout” is a variable used to prevent the node to wait

indefinitely to send the next chunk, in case the confirmation packet is lost. Due to this fact, we can

say that the timeout is only used on emergency cases, so in an ideal scenario without packet loss, this

values is less important. A value bigger than the round trip time between two nodes seems adequate.

It cannot be much bigger or the download will slow down very much, each time a confirmation packet

4.4. PARAMETERS ANALYSIS 61

(a) Number of Messages vs Hop Number (b) Routing Time vs Hop Number

Figure 4.4: Routing Results (Chunk Timeout Comparison)

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.5: Transfer Results (Chunk Timeout Comparison)

62 CHAPTER 4. TESTING RESULTS

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.6: Transfer Results (Download Wait Time Comparison)

is lost.

In terms of routing time and routing messages, the results are very similar as shown of Figure 4.4.

Along the tests performed afterwards, it was verified that the values were too similar and we concluded

that changing the application parameters announced here has no impact on routing time or number of

messages. From now on, we just compare the results in terms of transfer time and transfer overhead.

4.4.2 Download Wait Time

Download wait time was tested with 750 and 3000 milliseconds. half and double of the default value,

respectively. The results obtained are shown on Figure 4.6.

When the value was shrunk to half (750 milliseconds), no changes were observed for 1 and 2

hops. For 3, 4 and 5 hops, the results are catastrophic compared to the default value used (1500

milliseconds). The transfer time increased a lot so as the total overhead. This means that there were

a lot of retransmissions on the transfer, suggesting that many parts were requested more than once,

if not all of them. This excludes the 750 milliseconds as a suited value for download wait time so as

any below value.

Doubling the value, produced no significant changes. The transfer time was slightly bigger, sug-

gesting that there were some chunks lost for a given file part, resulting on a bigger waiting time before

a new request for the same part is issued.

4.4.3 Part Size

To evaluate part size, tests were made using part sizes of 262144 and 1048576 bytes. Figure 4.7 presents

the results obtained.

4.4. PARAMETERS ANALYSIS 63

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.7: Transfer Results (Part Size Comparison)

For parts with 262144 of size, the total overhead is similar to the default. In terms of transfer

time, the differences are very evident. The time to download a file increases for every hop number.

One explanation to these results that seems adequate is related with tasks that need more CPU to

execute with smaller parts. Smaller parts imply that there will be more file parts to handle on each

node. There are also more checksum packets transmitted and more processing to validate each packet.

Another obvious thing is that there will be more file parts to request. To request a file with 5120KB of

size, 10 file parts have to be requested for a file part of 512KB. If each file part has 256KB of size, 20 file

parts have to be requested. Obviously, requesting a file part of 512KB is faster than requesting 2 file

parts of 256KB. This is true because when we request a file part of 512KB then 512KB of data will be

transmitted consecutively, while requesting 2 file parts of 256KB will imply receiving the first 256KB

of data and the serving node stops sending data, waiting to receive the next file part request. This

delay on each file part, results in slower downloads. Figure 4.8 illustrates this scenario, representing a

transfer of 512KB of data using 512KB. A single file part request is sent and the data is transferred

on a single file part. Now suppose the same transfer is done but using now file parts of 256KB as

shown on Figure 4.9. A first request is sent and the first 256KB of data are forwarded. Then, the

server stops sending and the new request is issued and the server sends the next 256KB of data. The

difference from the two different file part sizes is now obvious.

When using file parts with 1048576 bytes of size, the total overhead is similar for 1, 2 and 3 hops

of distance, but increases very much for 4 and 5 hops. Transfer time was bigger for 5 hops, but smaller

for the other cases. Except for 5 hops, transfer times were generally lower, because bigger parts imply

less checksum traffic, less requests and less file parts to process. That explains the lower values on

transfer times, but how to explain the increase of total bytes transferred with 4 and 5 hops and slower

downloads on 5 hops? Well, when we have file parts of 1048576 bytes of size, we are doubling the

size of the initial part size defined. Surely it takes longer to download 1024KB of data than 512KB,

64 CHAPTER 4. TESTING RESULTS

Figure 4.8: Transferring 512KB of data using 512KB file parts

Figure 4.9: Transferring 512KB of data using 256KB file parts

4.4. PARAMETERS ANALYSIS 65

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.10: Transfer Results (Chunk Size Comparison)

so maybe it is needed more than 1500 milliseconds to download a file part. That suggests that the

download wait time value is closely related with the part size. That is somewhat obvious, because if

we have bigger parts, we need more time to download each part. This also demonstrates that we need

to adapt the download wait time, each time we change the file part size.

4.4.4 Chunk Size

Tests with chunk size were made using chunk sizes of 38400 and 46080 bytes. It was not possible to

double the value due to the UDP packet size limitation. The results are shown on Figure 4.10.

Reducing the chunk size to 46080 produced similar results in terms of total bytes transferred. The

transfer time increased for each hop proportionally. That can be explained with longer CPU tasks,

because there are more chunks to handle for each part. Besides that, more confirmation packets are

needed to confirm the file part chunks. If the number of chunks doubles, the time the serving node

waits for confirmations also doubles. If a confirmation message takes about 50 milliseconds to arrive

after the chunk is sent, case the file part has 10 chunks, the node waits approximately 500 milliseconds

on each file part. Case the file part has 20 chunks, the node waits approximately 1000 milliseconds.

So, what we can conclude from here is that the transfer time is inversely proportional to the chunk

size. That happens because we implemented an acknowledge mechanism to control the flow of chunks.

This mechanism was not initially planned, but it was implemented due to some problems that we

encountered when trying to send the chunks sequentially. These problems are further explained on

section 4.6. So we have a scenario like the one illustrated on Figure 4.11. When we have more chunks,

the waiting time to download a file part increases. We can deduce a formula to describe the overhead

in terms of time, for each file part due to acknowledgements: delay = RTT ∗ (NC − 1) assuming

that RTT between the different nodes is similar, being NC the number of chunks. In the example of

66 CHAPTER 4. TESTING RESULTS

Figure 4.11: Transferring a file part

Figure 4.11 there are 4 chunks, so the delay due to acknowledge mechanism is approximately 3 RTT.

As shown on Figure 4.10(a), the overhead for 5 hops with chunks with 38400 bytes of size is

slightly bigger, suggesting retransmissions. As stated before, on the part size comparison, if the time

to download each part with smaller chunks increases, the overall transfer time increases. This implies

that the download wait time must be adapted too, when reducing the chunk size.

4.5 Tests on New Hardware

During the testing phase and after the first set of tests performed, the testing machine hardware was

upgraded by system admin. The CORE installation migrated from the AMD Opteron 275 at 2,2Ghz

hardware to an Intel Xeon E5335 at 2Ghz with the same 512MB RAM. At first that seemed to be a

problem, because tests with new variables could not be directly compared with previous ones. But

it was also an opportunity to analyze the impact of hardware change. So, as a starting point, we

decided to repeat all the tests done previously with the new machine setting. The goal was to perceive

the impact of different hardware on our prototype’s performance. Some differences were expected,

especially in terms of download time, because if the hardware of the simulator is different, also the

time to run tasks is expected to be different.

Before running the simulations, we have done some modifications to the initial script. Initially,

the server and client node were chosen in a random way. We verified that the number of simulations

with 4 and 5 hops was very low compared to other hop numbers, especially for 5 hops. Some results

for 5 hops were based on only 4 or 5 experiments. We decided to change the simulation script to force

more runs with 4 and 5 hops. With this change, we expect to obtain less difference for 5 hops than

4.5. TESTS ON NEW HARDWARE 67

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.12: Hardware Comparison (Chunk Timeout)

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.13: Hardware Comparison (Download Wait Time)

68 CHAPTER 4. TESTING RESULTS

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.14: Hardware Comparison (Part Size)

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.15: Hardware Comparison (Chunk Size)

4.6. UDP BUFFER SIZE 69

the results obtained so far.

Figures 4.12, 4.13, 4.14 and 4.15 show the new results obtained. The previous results are shown

in gray color to illustrate the differences.

What we observe from these new results is that they are slightly better than the first ones. Besides,

the strange behavior observed for 5 hops on the first tests was not observed in this new version. That

suggests that the strange differences on the results observed for 5 hops previously were related the

number of experiments done for 5 hops. Due to the hardware change, we conclude that this new

hardware performs better than the first one. Besides, if we look at Figure 4.15(b), representing the

comparison of results with different chunk sizes, we can see that latency changes for each chunk size

are in similar proportions to the changes previously observed. That suggests that the time increase

has more to do with the number of times each node waits for confirmation to send the next chunk

than with the processing needed to deal with more chunks. As explained before, smaller chunk sizes,

imply a bigger chunk number and more confirmations for each file part. Another important fact is

that the results were more in a linear form than the previous ones. That reflects our changes done to

the script, generating more 4 and 5 hop scenarios in order to get more significant results.

4.6 UDP Buffer Size

In a later stage of the testing phase, we discovered one of the major explanations to the packet loss

verified before. We discovered that the Linux Operating System default UDP buffer size act as a

limitation. According to [45], there is a limitation imposed by the operating system regarding the

UDP buffer size. So, when we create a datagram socket its buffer size is limited by the operating

system. When CPU is available for the application to receive the UDP packets, the buffer size does

not need to be very large. The problem is that there is more than one application running at a time

and even in the same application there are several different processes racing for CPU time. Authors

in [45] state that UDP receiving buffer serves to match the arrival rate of UDP packets with their

consumption rate by an application program. Upon receiving an UDP packet, in case the buffer is

already full, it is discarded. Our application is build using UDP as the transport protocol. Obviously

the buffer size as impact on the performance of our system. Sending all chunks from a file part without

confirmation will result on chunks being lost due to the buffer size limit.

In order to change the maximum UDP buffer size on Linux operating system, we can use the

following code:

sysctl -w net.core.rmem_max=8388608

Changing the buffer size on other operating systems is explained on [45].

Having this new knowledge in mind, we decided to adapt our application to take the maximum

UDP buffer size of each node in consideration. So we adapted the HELLO messages to include the

maximum buffer size in bytes. With this adaptation, each node knows how many chunks each neighbor

can store, before starting to discard them.

70 CHAPTER 4. TESTING RESULTS

Initially when we perceived the UDP packet loss issue, we decided to perform a very simple test.

We implemented a simple server and respective client. The server was responsible of sending 10 chunks

of 60KB of size, consecutively. The client was just responsible to receive them and count the number

of packets received. Then we ran the test on localhost, in other words, the server and the client were

on the same machine. Surprisingly, the client just counted 1 packet received! The following 9 packets

were lost! We concluded that the network was not the problem, because the tests were performed in

the local machine only. Still, we did not know the cause of this at the time.

When we discovered the cause of this strange packet loss, we decided to incrementally increase

the buffer size within java, without changing any OS parameter. The client was now able to receive

4 packets. Still, that is not enough, 6 packets were lost. At this time, we decided to change the

maximum UDP buffer size imposed by the OS. We changed to a value approximate to 8MB. That is

more than enough to receive the 10 packets of 60KB each. Then, we repeated the test and this time

the client received 10 packets. That was a big victory, because we finally discovered an explanation to

the mysterious packet loss verified before.

Resuming what has been changed, we can just say that now, each node calculates how many chunks

a neighbor can store on its buffer and sends them right away without waiting for confirmation. If the

buffer can receive a total part, then the serving node never waits for confirmations. Imagine that a file

part is composed by ten chunks and the buffer size can receive five chunks. In this case, the serving

node sends the first five and waits for confirmation for the fifth chunk, sending the next five chunks

afterwards.

After these changes, we obtained new performance values. We set the maximum buffer size to

8388608 bytes and repeated the tests. The results obtained are shown on Figures 4.16, 4.17, 4.18

and 4.19.

We can see that for 1 hop distance, the download time drops brutally to approximately 4 seconds.

The download time value was generally much lower for every tested scenario compared to the tests done

before. Although, the global overhead was bigger, suggesting retransmissions. Being the downloads

faster with greater overhead, it can be concluded that the retransmissions were due to checksum errors.

If packet loss occurred, the application should wait for timeout before requesting the same file part

again, implying slower downloads. The amount of parts with errors is bigger in this new version. We

can conclude that these errors occur because there are more data being transferred simultaneously

on the network. There is only one CPU to emulate all 10 nodes from our test topology because we

are using CORE. This new version of the application is much more CPU intensive relative to the

last version. Since each node does not wait for confirmation to send the next chunk, the server and

intermediate nodes are constantly sending data. That can explain why there are more errors and also

the difference in terms of time and overhead. The results on this new version vary much more than

the previous one. In order to understand if the overhead results are due to network congestion or due

to errors induced by the emulator, some tests on a real scenario are needed.

In terms of chunk timeout, we can see that the results for 150 and 300 milliseconds are very similar.

The results for 600 milliseconds are slightly worse. There is more overhead and slower transfers. In

4.6. UDP BUFFER SIZE 71

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.16: Buffer Comparison (Chunk Timeout)

this new version, the application only waits for confirmation of the last chunk. In theory, it should not

have impact if we choose a bigger value. Doubling the time each node waits for confirmation implies

that threads will be alive for more time. This implies that CPU is needed for longer periods on each

node, slowing down the global performance. That seems to be the best explanation for the differences

observed. Although, we can only be sure of this assumption with tests on a real scenario. On a real

scenario we have one CPU for each node available, instead of having one CPU to emulate all nodes as

we did on CORE.

The results of download wait time with 750 and 1500 milliseconds are very similar. Although, the

overhead for 750 milliseconds is bigger suggesting that there are more retransmissions due to timeout.

For 3 seconds, the download time is bigger, suggesting that there were packet loss and the application

waits more time to request a retransmission. Nevertheless, the 3 seconds value generates less overhead

when compared to 750 milliseconds because the timeout occurs less. For this scenario it seems that

the 1500 milliseconds value suits best because the transfers are faster with smaller overhead.

Reducing the part size produced the expected results. We can see from Figure 4.18 that parts

with 256KB of size result on slower transfers. Although being slower, there are less errors and packets

loss because the overhead is minimal. Parts with 1MB of size result on faster downloads, except for 5

hops. In theory, as we concluded before, bigger parts imply faster downloads and less overhead because

there are less file parts to request and there is more data being transferred consecutively compared

to smaller parts. The transfer is generally faster with file parts with 1MB of size, but the overhead

is bigger. In theory, that should not happen, but having bigger file parts implies that each part has

more chunks. The risk of a chunk getting lost or corrupted for each part increases. On section 4.4.3

we concluded that 1MB file parts take more time to transfer compared to 512KB parts. We concluded

that the download wait time value may not be suited for file parts with 1MB. This is still true, but the

time results obtained now are much lower than the ones obtained before for the same 1MB file parts.

72 CHAPTER 4. TESTING RESULTS

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.17: Buffer Comparison (Download Wait Time)

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.18: Buffer Comparison (Part Size)

4.6. UDP BUFFER SIZE 73

(a) Transfered Bytes vs Hop Number (b) Transfer Time vs Hop Number

Figure 4.19: Buffer Comparison (Chunk Size)

We can conclude that now the file parts are transferred faster. This may lead us to conclude that the

there is no retransmissions due to timeout, since the transfer is globally faster. But we can have faster

transfers with more retransmissions. This happens because if we have file parts with 1MB, there is

a bigger chance of chunks being lost. Each time a chunk is lost, a timeout occurs and the part is

requested again. This delays the reception of the respective file part. This delay can be compensated

with successfully transferred file parts. Having file parts of 1MB, each file part takes longer to transfer,

but when a part is transferred with success, it takes less time to transfer than two parts with 512KB

of size. So, we can have faster transfers even in the presence of more retransmissions resulting in

more overhead. There are more chunks being transferred simultaneously, doubling the part size we

are doubling the number of chunks being transferred for each part. The chunks are sent consecutively

between source and destination without waiting for acks, the CPU is needed during more time by

each node when a file part is being transferred. This CPU intensive tasks can be too much for the

emulator, resulting on delays on part delivery. Resuming, the results observed for 1MB of part size can

be explained by CPU performance. The results in terms of transfer time are good, but the overhead

results are unacceptable. We are convicted that the overhead results are due to the problems already

referenced of having one CPU to perform all tasks of all 10 nodes on the topology.

Interesting results are also obtained from varying the chunk size. Each time we reduce the chunk

size, both transfer time and overhead increase. In theory, smaller chunks would produce slightly faster

downloads. As we do not have confirmations for each chunk on this test, the latency for receiving the

first chunk should be smaller, resulting on a file part being transferred faster. To better understand

why smaller chunks should result on slightly faster downloads, we can look at Figure 4.20 representing

a file part transfer with 32KB chunks and Figure 4.21 representing the same file part transfer but with

16KB chunks. We can see that in both cases, the delay of time from the moment the request is sent

to the moment the file part begins to be received is approximately 3 RTT plus the time to transfer

74 CHAPTER 4. TESTING RESULTS

Figure 4.20: Transfer of a 128KB file part with 32KB of chunk size

Figure 4.21: Transfer of a 128KB file part with 16KB of chunk size

4.7. REAL SCENARIO 75

2 chunks between any 2 nodes. But we can see that the data from the transfer with 16KB of chunk

size, starts to being received by “10.42.43.1” a little sooner than the 32KB transfer. The delay time

can be expressed by the following formula: delay = N ∗ (RTT + CT) − CT , being N the number of

hops and CT the time to transfer a chunk between two nodes, assuming that RTT between the nodes

is similar. We can also assume that bigger chunks result on bigger CT values, because bigger chunks

take more time to transfer. We can conclude that, in theory, bigger chunk sizes should imply bigger

file part transfer delays.

We now observe that the results are similar to the previous ones, but the difference is not pro-

portional to the results obtained before. As the chunks are sent sequentially without waiting for

confirmation for each one, having more chunks with smaller size should not result on slower transfers.

But we observe that smaller chunks produce worse results and in theory that should not happen.

Again, the explanation for this fact is related with CPU tasks. Having more chunks for each file part

imply that the CPU is needed more frequently at every node. The nodes now request CPU time more

frequently and concurrently between each other, because there are more chunks and each chunk is

transferred faster. Again we have some results that in theory should not happen. The most logical

explanation is once again, related with CPU performance. We expect that in a real scenario, the

application performs as expected without the CPU problems detected from testing the application

with the help of an emulator.

4.7 Real Scenario

Although the unavailability of time and resources to perform deep tests on a real scenario, we decided

to perform some mini-tests anyway. This is important to prove that the application works on a real

scenario, not just on the emulator. Besides, it may help us to find emulator related issues affecting

the results. We kept the default variables, except the part size that we adopted the 1MB value,

as it produced the best results in terms of time for 1 and 2-hop scenarios. To test the application

on transfers of 1-hop distance we used two machines. We used one Asus Eee PC 1005HA with an

Intel R© AtomTM N280 processor with 1GB DDR2 of RAM and one Toshiba Portégé R830-10R with an

Intel R© CoreTM i7-2620M processor with 4GB DDR3 of RAM. We created a wireless ad-hoc network

connecting the two machines. The IP addresses were set manually at both computers. The Eee PC

acted as server and the Portégé as client. We performed 10 consecutive tests and collected the log files

from both server and client.

In order to perform tests with 2-hop distance, we introduced an extra machine to the configuration.

A Toshiba Satellite U300-130 with an Intel R© CoreTM2 Duo T7500 and 2GB DDR2 of RAM. This

extra machine acted as server, while the Portégé acted as the intermediate node and the Eee PC as

client. We needed to ensure that the server could not interact directly with the client, otherwise we

have 1-hop transfers like the tests already done. Instead of moving away the server from the client until

there is no connectivity and then put the intermediate machine in the middle, we decided to keep the

3 machines in the same room. This represents an easy way to perform the tests, requiring no further

physical space. Besides, another person would be needed to monitor one of the machines during the

76 CHAPTER 4. TESTING RESULTS

Figure 4.22: Real scenario time results

testing process. The human interactions needed to do the tests would be more difficult to perform if

the computers are distant from each other. To have the 3 computers on the same room and perform

the 2-hop distance transfers, we need some way of blocking the communication between the server and

the client. The machines need to be connected to the same network, because the intermediate node

needs to communicate with both server and client. But if we have the machines in the same network, if

they are all in range with each other, they are all able to communicate directly. To simulate the 2-hop

scenario, we decided to change the routing table on each machine. Using the “route add” and “route

del” command, we are able to adapt each machine routing table. The routes were adapted in order

to change the server and the client to be able to communicate only with the intermediate node. The

intermediate machine is the only one that is able to communicate with the 2 other machines. After

we changed the routing table, we executed ping commands to test if the client was able to contact

the server and vice-versa and we got ‘Destination Unreachable’. After that we performed 10 tests like

before and collected log files in order to evaluate the results.

The results obtained from 1-hop and 2-hop tests are presented on Figure 4.22 and 4.23. The values

represent the mean value from the bulk of 10 tests performed. Looking at Figure 4.23 we can see

that the overhead for 2-hop transfer is slightly bigger than the double value from 1-hop results. The

doubled value is expected because the traffic is forwarded on the intermediate node, replicating the

traffic generated by the server. The result is slightly bigger than the doubled value suggesting some

retransmissions. We can easily understand and accept the overhead results.

When we look to the results in terms of time we can see that the differences are not expected.

The results from section 4.6 show that the transfer time for 2-hop transfers is slightly bigger than the

double value from 1-hop transfers. Here we obtained a time more than 4 times bigger as you can see

on Figure 4.22. In CORE we have an homogeneous network, each node is emulated on the same way,

4.7. REAL SCENARIO 77

Figure 4.23: Real scenario overhead results

they are all equivalent nodes. On the real test we have an heterogeneous environment, with different

machines. We conclude that the performance of the system is very dependent on the capabilities of

each node. Although, the difference is huge and is not expected at all. After the results obtained,

we decided to reset the routing tables and perform some pings between the 3 machines. Between Eee

PC and Portégé, the ping time value was constantly ≈ 2ms. The ping time between Portégé and

Sattelite as the ping time between Eee PC and Sattelite varied greatly. Sometimes we have times

<1ms and suddenly we have some results like 50ms, 300ms, even 800ms! Surely there is some problem

on Sattelite or with wireless signals. We were unable to find the cause for these weird results. The

connections to Sattelite seem very unstable, that in turn result on slower transfers.

Other possibility that can explain the results for 2-hop is the fact that the machines are all in

range. We changed routes in order to simulate a 2-hop scenario. The client may be able to listen to

HELLO messages from the server and when it tries to update the list of available contents, it is not

able to do that, because there is no route for it. In this case, each time the client receives an HELLO

message from the server, it adds the server address to the list of neighbors and tries each time to

update the list of content. This scenario represents more CPU processing on the client side that in

turn may result on slower transfers. Although the client may be able to listen to HELLO messages

from the server, we can anyway simulate the 2-hop scenario, because the client is not able to know

which files are available at the server.

Despite the slower transfers, the number of checksum errors was generally low. For 1-hop tests

there were no checksum errors, for 2-hops the number of checksum errors varied from 0 to 2 for each

transfer. The number of retransmissions due to timeout on the client ranged from 1 to 4. But looking

to the overhead we can see that the transfer time as more to do with the time that data takes to reach

the destination, rather than the time due to checksum errors and timeouts. We can conclude that the

78 CHAPTER 4. TESTING RESULTS

difference has more to due with latency of the network and latency of the CPU processing.

Ideally we should repeat the tests done on the previous sections to compare the differences obtained

from the emulator and the real scenario. That was not possible due to limitations of time and resources

but is certainly the next step of our prototype testing.

Chapter 5

Conclusions and Future Work

In this chapter we present the conclusions from the project developed. The main conclusions are

presented on the next section. In section 5.2 we present a thorough discussion about some architecture

and implementation decisions, presenting some ideas that can represent new solutions to be explored

in the future to improve the system developed.

5.1 Main Conclusions

Our final result is a Java application that is able to run on a vast number of different devices and

Operating Systems. The installation is very easy, the node just needs to run the JAR file. After

connecting to the Ad-Hoc network and run the application, the user is now able to access the content.

This is a non-intrusive application that does not change any system configuration.

We designed a content-centric network, that way the network is focused on content and not on

something else. To enable a node to find content available somewhere in the network, we created an

on-demand routing module based on content using a controlled flooding. That seems to us the best

approach to route content, because content is delivered on-demand when the user presses a download

link on the html page of our mini HTTP server.

The system created includes a mini HTTP server. With this interface, we can easily integrate

with our API, allowing users to use their preferred browser. This improves the user experience since

there is no need to learn how to use a new interface. Besides, the initial server that makes the content

available can also ‘draw’ the interface using the well known HTML syntax. This enables the server to

organize the contents on the page as desired. It is also possible to simulate any static html page with

this approach.

The transfer performance using UDP is very dependent on the maximum buffer size limit restricted

by the Operating System. If there were no limits regarding UDP buffer size, the transfers could be

much faster because the buffer would be able to receive more consecutive data. The main objective

of our system is to operate off-the-shelf and work with every different device that supports Java. In

a future version, a module to tweak the Operating System to change the maximum buffer size could

79

80 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

be implemented, allowing the final user to choose from changing kernel properties and achieve higher

performance or work without messing with the system and be satisfied with a medium performance.

The tests already done prove that the prototype really works. But an intensive testing phase is

essential to ensure that the prototype is able to perform on a real scenario with several nodes. This

would allow us to understand if the prototype is able to scale or not. The main objective from the

start of this project was to achieve a functional prototype. We achieved that, but now we need to focus

on a new objective, make it more robust and increase the global performance of the system. On the

design process of the prototype, we tried to make each component on a simple way. Although, some

other functions for the system have been thought, like authentication and cryptographic mechanisms

to allow some nodes to update the contents available. This would imply some new challenges to solve

and due to limitations of time we decided to start it small but achieve a complete working prototype

instead of having optimized modules without having the whole application built and running.

Our routing approach is based on content and not on addresses like the typical protocols presented

on section 2.2. This allows the creation of an abstraction level to the application. This way, there is

no need of address handling. Each node does not have knowledge of the entire network, it just keeps

contact with the direct neighbors and routes to content that are not available on local neighbors. With

this abstraction layer, each node keeps information about the location where the content is available

and not where are the other nodes. Each route is valid for a content and not for an address. For

example, if there is a route pointing to node with address “10.42.43.10” for the file “12345”, the same

route is not valid to file “54321”, even that “10.42.43.10” has the file. The route is associated with a

content id and not an address. To access two different files on the same physical destination, there

must be two different routes.

On the present version of our application, routes get invalidated based on timeouts. When a route

is used to download a file part and a chunk is received, the route timestamp is updated. When the

application tries to use a route and it does not receive chunks, the timestamp is not updated. Soon the

route is deleted from the route cache and an alternative route is used. If there is no alternative route

available, a new route discovery process is issued. The tests performed on section 4 are based on a

static topology. First we tested the system to prove its functionality. After that we tested the impact

of changing some application parameters. Other parameters could not be tested. That is the case of

the route timeout values and the frequency of HELLO messages. Being a static topology, changing

these variables as no impact on the performance of the application. In order to test the impact of

different values for the route timeout and HELLO message frequency, the network as to be mobile.

The way our routing protocol was designed allows us to easily adapt to other scenarios as to

implement new mechanisms, for example, the implementation of Route Errors similar to the DSR

protocol. The versatility of the protocol allows us to perform several optimizations as content caching.

Another possibility is to create routes based on some additional parameters and not based only on

the file id. In theory, our routing module can be optimized to successfully deal with mobility, but to

achieve that more tests are necessary. Both routing module and neighborhood module represent the

starting point to optimize our system.

5.2. DISCUSSION AND FUTURE WORK 81

Figure 5.1: A sending error messages to C,D,E when B moves away

5.2 Discussion and Future Work

The routing is made based on an ID and not on a physical address. This makes possible the adaptation

of our system to identify routes using different IDs. For example, we can change the ID from a UUID

to a String. We can now represent as the ID any string that we want. This way, the application

can easily be adapted to find addresses instead of files. To achieve this, we change the application in

order to each node announce that it has a content with an ID equal to its address. For example, the

node “10.42.43.1” announces that it has the content with id “10.42.43.1”. The route discovery process

generates routes to access content “10.42.43.1”, resulting on routes to access the physical node. As we

can see, the application can easily be adapted to operate with addresses. Besides, it can be adapted

to work with the two types of routing simultaneously. Imagine node “10.42.43.1” having the files

“12345”, “54321” and “12321”. This node announces that it has the content “12345”, “54321”, “12321”

and “10.42.43.1”. This allows the discovery process to find the files on the node and also find it by its

physical address.

Routing protocol is based on IDs, so we can choose whatever we like as the ID. This enables us

to adapt the application easily to fit on other different scenarios. For example, we can change the

application in order to make each node announce some parameters as it was announcing content. Each

node could announce something like, “cpu=1000Mhz”, “ram=512MB” and “file=12345”. Afterwards,

some node can issue a route request for the ID “cpu>500Mhz & ram>300MB & file=12345”. For this

to be possible, we can adapt the application to interpret the ID as an expression and not a static ID.

This would allow each node to find routes for content only to nodes with certain characteristics. With

the above example, the routes found would reach nodes having CPU>500Mhz and RAM>300MB and

the file 12345.

The routing protocol includes a route cache and its routes expire after some time. The intermediate

nodes also cache routes and each node proactively maintains a list of neighbors. When a node detects

that a neighbor is not available anymore, it can proactively invalidate each route that passes through

that neighbor. Besides, it could alert its neighbors about the route failure. This notification could be

similar to Route Errors from DSR. For example, in Figure 5.1 node A detects that B moved away and

is now unreachable and sends errors messages to neighbors C, D and E. The error messages could be

identified with the route ID or the node ID. If we choose the route ID, some other routes on neighbors

that use the node will not be invalidated. The Route Error should include the ID from the node that

is not available. When neighbors receive this information, they start by invalidating the routes that

use the node ID from the Route Error. After that we can choose from rebroadcast the route errors

82 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

or not. If we decide to not rebroadcast the message, upon receiving a file request using the route

that is no longer in cache because it was invalidated, a route error can be forwarded to the source,

invalidating the route on the intermediate nodes. When the index of network mobility is very high,

the overhead of broadcasting Route Errors can be very high, so instead of using Route Errors, we can

keep the application unchanged, using only timeouts to invalidate routes.

To evaluate the performance of our system on mobile scenarios, some more test should be done.

These tests were not made due to restrictions of time. The problem is that we need more than some

minor tests. The tests in mobile scenario would imply much more time than the ones that we have

already done. After getting the first results from the performance in a mobile scenario, we need

to scrutinize the results obtained to interpret them successfully. After that, we need to change the

application to use Route Errors to compare with the previous results. Besides, we need to infer a

relationship between RTT and number of hops of each route to obtain a function that defines how

much time each route should be considered valid.

The performance of the system on a mobile scenario depends mostly on the performance of the

neighborhood and routing module. The performance depends on the time that modules detect network

changes, as neighbors becoming out of range. To find the best parameter values for these modules,

the tests on mobile scenarios are very important. We believe that the first results may not be the

best, because we do not know what are the best parameter values. We should perform similar tests to

the ones performed on the previous chapter. We could change the HELLO interval and evaluate the

results. Similarly we can change the route timeout and compare the results allowing us to understand

which values produce the best results. In theory, the transfer module operates on the same way on

static or mobile scenarios. The network is abstracted by the neighborhood and routing modules. The

performance depends directly on how these modules react to mobility. If we assume that neighborhood

and routing modules have fresh information about neighbors and routes to content, the application is

capable of achieving performance similar to static networks. We believe that tests on mobile scenarios

will allow us to infer the best parameters or even deduce a function to be used to calculate the time

that each route is considered valid and the time that each neighbor should be considered valid. A more

mobile network, will imply more frequent HELLO broadcasts and smaller timeout values compared

to less mobile networks. To determine if the network is more mobile or not, some history based

mechanisms should be implemented to deduce the mobility index that can be used to calculate the

best application parameter values. Currently, we have all the application parameters as fixed values.

That was done in order to simplify the implementation process, as using dynamic values would imply

mechanisms to infer them. Although the system uses static parameters, we have conscience that is

not the best option. The parameters should be calculated dynamically to adapt to the conditions of

the network.

In order to maintain updated routes during a transfer, the application should be adapted to perform

route discovery constantly while the transfer takes place. This way, by the time a route becomes invalid,

new routes are already available. Besides, if the content becomes available at a smaller hop number,

the new route could be used to request the remaining file parts. Looking at Figure 5.2 we can see

node A communicating with node B. Suppose that node A is transferring a file X from B. Node A has

5.2. DISCUSSION AND FUTURE WORK 83

Figure 5.2: Node A transferring a file from B

already transferred 56% of the file and node C just got closer and it already has file X. Node C is closer

to A than B, so node A can now request the file to C instead. For this to be possible, the application

needs to be changed in order to forward the route request messages, even if there is a route in cache

available. This is necessary to find more recent routes. For example, we can change the application in

order to respond with a route reply in case there is a route in cache and forward the request anyway.

One of the major advantages of our protocol is that routes are based on an ID and not based on

addresses. Each ID may be available at more than one physical location at a time, thus increasing

the file availability. In a protocol based on addresses, when the destination moves out of range, the

system as to deal with this failure at the application level. The application needs to find where is the

content available now, and choose one destination to interact with. Besides, the information about

the entire network must be dealt by each node. On our approach we do not need to keep information

about the entire network, but only on the ones that really matter. The application does not know

the entire network, it just knows content. The addresses to reach the content are abstracted by our

routing protocol.

Globally, the routing protocols are based on addresses. This is done to allow applications that

assume end-to-end communication between the network nodes to continue to operate. Typically,

applications that were designed to operate on wired networks or on the Internet. The routing protocols

try to abstract the network to the application. The packets generated by the application are the same,

being responsibility of the routing protocol to forward correctly the packets in order to reach the

destination. In fact, this seems the best approach to adapt existing applications to operate on a multi-

hop mobile network. For applications that are being designed from scratch to operate specifically on ad

hoc networks, the routing approach based on addresses may not be the most adequate. The traditional

routing protocols abstract the ad hoc network to the application that in turn interprets that all nodes

are available in the same way. With this abstraction layer, each node treats all other nodes as neighbors

implying that each one has to deal with the information related with all of them. For example, if we

look at Figure 5.3 we can see a sample topology represented. The same network is interpreted by node

with address “10.42.43.1” as illustrated in Figure 5.4. With this level of abstraction, node “10.42.43.1”

treats other nodes in the same way. Suppose now that we are running a peer-to-peer system like the

BitTorrent and “10.42.43.1” chooses node “10.42.43.6” and “10.42.43.11” to transfer some data. The

application does not know that the communication with “10.42.43.11” is supported by “10.42.43.6”.

This can lead to bad choices from the application, since the topology is abstracted by the routing

protocol.

84 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Figure 5.3: Network Topology Example

Figure 5.4: Abstraction layer created by typical routing protocols

5.2. DISCUSSION AND FUTURE WORK 85

Figure 5.5: Abstraction layer created by our routing module

Our routing module creates an abstraction layer at a higher level. The application does not see

other nodes, it sees instead links to content like represented on Figure 5.5. The module deals with the

routing process and sees the network as shown on Figure 5.3, this enables the possibility of performing

cache between intermediate nodes that could not be made if we worked at the application layer using

a typical routing protocol. The caching process could be achieved on several different ways. When a

node receives a transfer request, it could start sending file parts to neighbors without being requested

making the content available closer to the destination. Each intermediate node could also cache some

file parts to serve other nodes later. Another possibility is the use of some heuristics to calculate where

and when the content should be cached. In section 2.4.3 we talk about social-aware networking and

some works are presented. These works use some heuristics to calculate where the content should be

sent to, in order to successfully spread the content to interested users. Some similar heuristics could be

used to calculate when and which nodes should cache content. For example, each node could maintain

a history of requests and based on that decide if it should cache content or not. Suppose that some

node X received recently several requests from different neighbors, for the same file that is available

elsewhere. In this case, node X could proactively or reactively start caching the content to deliver to

the nodes interested. That is a mechanism difficult to implement when a generic routing protocol is

used, due to the abstraction layer created (see Figure 5.4). Caching is an important feature that was

not implemented on our system but makes part of our plans for the future. In order to take advantage

of our content -centric system, file parts could be cached across the nodes to increase file availability

and speed up the transfer process. With part caching, a node that solicits a file part to a distant

neighbor, any node in the middle would be able to respond with the file part if already has it.

The routing module could be optimized to achieve better results. Besides the optimizations already

discussed, we could also adapt the application to make use of more than one route simultaneously.

When there is more than one route available to a given file, in case they are disjunctive, the client

could make parallel requests. Suppose that a client node starts a download process for a given file,

having 2 disjunctive routes on its cache. In case the both routes are similar in terms of hop-number,

the client could request the first file part using one route and the second file part using the other. The

application could then be adapted to follow this algorithm and after some testing, we could decide if

it represents a good improvement or not.

However our protocol seems the best suited to applications designed for ad hoc networks with the

86 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

objective of sharing content, there are some limitations. If we need to adapt an existing application

to operate on ad hoc networks, our routing protocol is not able to do that. The routing process is

made at the application layer, packets are not really forwarded at the transport protocol. The code

of our routing protocol must be embedded in the application. The routing is based on content, so any

application designed to operate with addresses directly cannot use our routing protocol.

At first glance, our routing protocol only scales to the number of contents available. Each route is

valid for one file only, so if we have a thousand files then a thousand routes are needed to download all

files. However, our application was designed to deliver files on-demand. When the application starts,

the files are not automatically downloaded, no routes are created or used. Only when the user intends

to download a file, it issues a transfer request that in turn may generate a new route for it. Typically,

each user accesses a file only one time. The route is used and if no other neighbors intend to download

the same file, the route is deleted from route cache. Each user issues transfer requests sequentially,

so it is possible to download, for example, one hundred files having only half a dozen routes in cache

simultaneously. Considering that each route is generally used only one time by each node, there is no

need to pro-actively maintain routes in cache for the files available. Besides, the user mobility would

invalidate constantly the routes created. Resuming, our routing protocol was designed to be reactive

on-demand, because each route is typically only used one time and some others are never used, a

user may be just interested, for example, on 10% of the files that are available. That makes clear our

decision of implementing an on-demand routing protocol based on content. Ultimately, the decisions

made were based on the approach of allowing each user to select individually which files it wants to

access. The system philosophy is: "I want to access this specific file and I want it now!".

As an alternative approach to the transfer protocol, we could use a sliding window mechanism.

Recovering Figure 4.9 from section 4.4 on page 64, we can see that there is a delay from downloading

a file by parts. We could change the application in order to make the server send more consecutive

parts, waiting for confirmations from the client to adjust the windows size or retransmit unconfirmed

parts. But with this mechanism, we are assuming that each client solicits the whole file to the same

destination. This is incompatible with the mechanism of using different routes simultaneously or

starting downloading the file from a closer destination. In the present version of the application, each

serving node is stateless, it treats all requests independently. If we decide to adopt a sliding window

mechanism, the server as to keep information about the transfer, track if the client sent confirmation

messages and calculate if there are packets lost and retransmit them automatically. This would increase

the CPU load at the nodes. We think that adopting a stateless approach and requesting different file

parts using different routes and changing routes on the middle of the transfer would produce better

results on a mobile scenario. This is because the content may be available on different destinations at

different hop distance during the transfer process. Obviously, if we assume a static network and only

one destination available during a transfer process, the sliding window approach would produce better

results. That is the scenario that we used to test our application in both cases, using CORE and

the real scenario tests. We believe that the sliding window mechanism would produce better results

on that specific scenario only. When we have a mobile network, during a single transfer, the serving

node may become unreachable and the source may become available elsewhere. If we download the file

5.2. DISCUSSION AND FUTURE WORK 87

using parts, we can start requesting the next file parts to other destinations and we can even request

different file parts using different routes simultaneously.

The tests performed were based on a simple topology with a maximum of 5-hop distance. We

think that is sufficient to understand how our application performs and how would perform on a real

scenario. Although, we need to test with different topologies in the future to ensure that the system’s

behavior is similar.

88

Bibliography

[1] J. Ahrenholz, C. Danilov, T. Henderson, and J. H. Kim. Core: A real-time network emulator.

Proceedings of IEEE MILCOM Conference, 2008.

[2] I. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey. Computer Networks,

47(4):445–487, March 2005.

[3] G. Anastasi, M. Conti, and E. Gregori. IEEE 802.11 Ad Hoc Networks: Protocols, Performance

and Open Issues. IEEE Press and John Wiley&Sons, New York, NY, 2003.

[4] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A distance

routing effect algorithm for mobility (dream). In Proceedings of the 4th annual ACM/IEEE

international conference on Mobile computing and networking, MobiCom ’98, pages 76–84, New

York, NY, USA, 1998. ACM.

[5] N. Beijar. Zone routing protocol (zrp). Ad Hoc Networking, Licentiate course on Telecommuni-

cations Technology, 2002.

[6] Chiara Boldrini, Marco Conti, and Andrea Passarella. Design and performance evaluation of

contentplace, a social-aware data dissemination system for opportunistic networks. Computer

Networks, 54(4):589 – 604, 2010. Advances in Wireless and Mobile Networks.

[7] Levente Buttyán and Jean-Pierre Hubaux. Stimulating cooperation in self-organizing mobile ad

hoc networks. Mob. Netw. Appl., 8:579–592, October 2003.

[8] A. Carzaniga and A. L Wolf. Content-based networking: A new communication infrastructure.

In NSF Workshop on an Infrastructure for Mobile and Wireless Systems (NSF-IMWS), number

2538 in Lecture Notes in Computer Science, pages 59–68, Scottsdale, AZ, USA, 2001.

[9] K. Chandran, S. Ragbunathan, S. Venkatesan, and R. Prakash. A feedback based scheme for

improving tcp performance in ad-hoc wireless networks. In Distributed Computing Systems, 1998.

Proceedings. 18th International Conference on, pages 472 –479, may 1998.

[10] Imrich Chlamtac, Marco Conti, and Jennifer J.-N. Liu. Mobile ad hoc networking: imperatives

and challenges. Ad Hoc Networks, 1(1):13 – 64, 2003.

[11] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Service

Definition Language (WSDL). Technical report, March 2001.

89

90 BIBLIOGRAPHY

[12] Bram Cohen. Incentives build robustness in bittorrent. Technical report, bittorrent.org, 2003.

[13] Bram Cohen. The BitTorrent Protocol Specification, Version 11031.

http://www.bittorrent.org/beps/bep_0003.html, January 2008.

[14] P. Costa, C. Mascolo, M. Musolesi, and G.P. Picco. Socially-aware routing for publish-subscribe

in delay-tolerant mobile ad hoc networks. Selected Areas in Communications, IEEE Journal on,

26(5):748 –760, 2008.

[15] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The impact of multihop wireless channel

on tcp throughput and loss. In INFOCOM 2003. Twenty-Second Annual Joint Conference of

the IEEE Computer and Communications. IEEE Societies, volume 3, pages 1744 – 1753 vol.3,

march-3 april 2003.

[16] S. Helal, N. Desai, V. Verma, and Choonhwa Lee. Konark - a service discovery and delivery

protocol for ad-hoc networks. In Wireless Communications and Networking, 2003. WCNC 2003.

2003 IEEE, volume 3, pages 2107 –2113 vol.3, 2003.

[17] Ólafur R. Helgason, Emre A. Yavuz, Sylvia T. Kouyoumdjieva, Ljubica Pajevic, and Gunnar

Karlsson. A mobile peer-to-peer system for opportunistic content-centric networking. In Pro-

ceedings of the second ACM SIGCOMM workshop on Networking, systems, and applications on

mobile handhelds, MobiHeld ’10, pages 21–26, New York, NY, USA, 2010. ACM.

[18] Klaus Mochalski Hendrik Schulze. Internet Study 2008/2009.

www.ipoque.com/resources/internet-studies, 2009.

[19] Gavin Holland and Nitin Vaidya. Analysis of TCP performance over mobile ad hoc networks.

Wireless Networks, 8(2/3):275–288, 2002.

[20] Ting-Chao Hou and Victor Li. Transmission range control in multihop packet radio networks.

Communications, IEEE Transactions on, 34(1):38 – 44, jan 1986.

[21] Philippe Jacquet, Paul MÃ1
4hlethaler, Thomas Clausen, Anis Laouiti, Amir Qayyum, and Laurent

Viennot. Optimized link state routing protocol. In IEEE INMIC’01, 28-30 December 2001,

Lahore, Pakistan, pages 62–68. IEEE, IEEE, December 2001.

[22] David B. Johnson, David A. Maltz, and Josh Broch. Ad hoc networking. chapter DSR: the

dynamic source routing protocol for multihop wireless ad hoc networks, pages 139–172. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[23] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M. Vahdat.

Mace: language support for building distributed systems. SIGPLAN Not., 42:179–188, June 2007.

[24] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks.

Wirel. Netw., 6:307–321, July 2000.

[25] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric networks.

In IN PROC. 11 TH CANADIAN CONFERENCE ON COMPUTATIONAL GEOMETRY, pages

51–54, 1999.

BIBLIOGRAPHY 91

[26] P. Leach, M. Mealling, and R. Salz. Rfc 4122: A universally unique identifier (uuid) urn names-

pace, 2005.

[27] Wen-Hwa Liao, Jang-Ping Sheu, and Yu-Chee Tseng. Grid: A fully location-aware routing pro-

tocol for mobile ad hoc networks. Telecommunication Systems, pages 37–60, 2001.

[28] J. Liu and S. Singh. Atcp: Tcp for mobile ad hoc networks. Selected Areas in Communications,

IEEE Journal on, 19(7):1300 –1315, jul 2001.

[29] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system based

on the xor metric. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors, Peer-to-

Peer Systems, volume 2429 of Lecture Notes in Computer Science, pages 53–65. Springer Berlin

/ Heidelberg, 2002. 10.1007/3-540-45748-8_5.

[30] Arezu Moghadam, Suman Srinivasan, and Henning Schulzrinne. 7ds - a modular platform to

develop mobile disruption-tolerant applications. In Next Generation Mobile Applications, Services

and Technologies, 2008. NGMAST ’08. The Second International Conference on, pages 177 –183,

2008.

[31] Henrik F. Nielsen, Noah Mendelsohn, Jean J. Moreau, Martin Gudgin, and Marc Hadley. SOAP

version 1.2 part 1: Messaging framework. W3C recommendation, W3C, June 2003.

[32] R. Ogier and P. Spagnolo. Mobile Ad Hoc Network (MANET) Extension of OSPF Using Con-

nected Dominating Set (CDS) Flooding. Technical report, 2009.

[33] L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data forwarding in disconnected

mobile ad hoc networks. Communications Magazine, IEEE, 44(11):134 –141, 2006.

[34] C. Perkins, E. Royer, and S. Das. RFC 3561 Ad hoc On-Demand Distance Vector (AODV)

Routing. Technical report, 2003.

[35] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-vector

routing (dsdv) for mobile computers. pages 234–244, 1994.

[36] S. Rajagpalan and Chien-Chung Shen. A cross-layer decentralized bittorrent for mobile ad hoc

networks. Mobile and Ubiquitous Systems, Annual International Conference on, 0:1–10, 2006.

[37] K. Ramakrishnan and S. Floyd. RFC 2481 A Proposal to add Explicit Congestion Notification

(ECN) to IP. Technical report, 1999.

[38] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B. Terry, Meg Walraed-Sullivan,

Ted Wobber, Catherine C. Marshall, and Amin Vahdat. Cimbiosys: a platform for content-based

partial replication. In Proceedings of the 6th USENIX symposium on Networked systems design

and implementation, pages 261–276, Berkeley, CA, USA, 2009. USENIX Association.

[39] Mohamed Karim Sbai, Chadi Barakat, Jaeyoung Choi, Anwar Al Hamra, and Thierry Turletti.

Bithoc: Bittorrent for wireless ad hoc networks. 2007.

92 BIBLIOGRAPHY

[40] R. Schollmeier. A definition of peer-to-peer networking for the classification of peer-to-peer ar-

chitectures and applications. In Peer-to-Peer Computing, 2001. Proceedings. First International

Conference on, pages 101 –102, August 2001.

[41] James Scott, Jon Crowcroft, Pan Hui, and Christophe Diot. Haggle: a networking architecture

designed around mobile users. In Proceedings of the Third Annual Conference on Wireless On-

demand Network Systems and Services, pages 86, 78, 2006.

[42] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed packet radio

terminals. Communications, IEEE Transactions on, 32(3):246 – 257, mar 1984.

[43] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejandro P. Buchmann.

A peer-to-peer approach to content-based publish/subscribe. In Proceedings of the 2nd interna-

tional workshop on Distributed event-based systems, DEBS ’03, pages 1–8, New York, NY, USA,

2003. ACM.

[44] C. K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice Hall PTR,

December 2001.

[45] R. Valzah, T. Montgomery, and E. Bowden. Topics in High-Performance Messaging. 29West,

Inc., 2009.

[46] S. Xu and T. Saadawi. Does the ieee 802.11 mac protocol work well in multihop wireless ad hoc

networks? Communications Magazine, IEEE, 39(6):130 –137, jun 2001.

[47] Shugong Xu and Tarek Saadawi. Revealing the problems with 802.11 medium access control

protocol in multi-hop wireless ad hoc networks. Comput. Netw., 38:531–548, March 2002.

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Objectives
	Methodology
	Main Contributions
	Document Structure

	State of The Art
	Wireless Ad-Hoc Networks
	Wireless Mesh Networks
	Mobile Ad-Hoc Networks

	Routing Protocols
	Proactive Routing
	Reactive On-demand Routing
	Hybrid Routing
	Location-aware Routing
	Other Routing Protocols

	TCP on Mobile Ad Hoc Networks
	TCP-Feedback
	ATCP
	Explicit Link Failure Notification

	Content-Centric Networking
	BitTorrent
	Opportunistic Networking
	Social-aware Networking

	Conclusion

	System's Architecture
	Overall Overview
	Solution Requirements
	File Module
	Neighborhood Module
	Route Module
	Transfer Module
	API
	Mini HTTP Server Module
	Log Functionality

	Testing Results
	Testing Scenario
	Application Parameters
	Chunk Timeout
	Download Wait Time
	Part Size and Chunk Size

	Initial Results
	Parameters Analysis
	Chunk Timeout
	Download Wait Time
	Part Size
	Chunk Size

	Tests on New Hardware
	UDP Buffer Size
	Real Scenario

	Conclusions and Future Work
	Main Conclusions
	Discussion and Future Work

