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Future comes by itself, progress does not.
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Resumo

Nos últimos anos houve um enorme crescimento na área das bases de dados
distribuídas de grande escala (VLSD), especialmente com o movimento NoSQL.
Estas bases de dados têm como propósito não ter esquema de dados nem ser tão
rígidas como as suas homólogas relacionais no que toca ao modelo de dados, por
forma a atingir uma maior escalabilidade.

A sua API de consultas tem tendêcia a ser bastante reduzida e simples (nor-
malmente uma operação para inserir, uma para ler e outra para remover dados)
e a ter leituras e escritas muito rápidas, tendo no entanto como aspecto negativo
o facto de não ter uma linguagem de consulta stardardizada como o SQL. Assim,
estas propriedades podem ser vistas como uma perda de capacidade tanto em
termos de coerência como de poder de consulta.

Há uma grande quantidade de código bem como um numero elevado de pro-
jectos já em produção que utilização SQL e algumas delas poderiam beneficiar
do uso de uma VLSD como a sua base de dados. No entanto, seria extremamente
complicado de migrar de uma arquitectura para a outra de uma forma transpar-
ente.

Neste contexto, o trabalho apresentado nesta dissertação de mestrado é o re-
sultado da avaliação de como oferecer uma interface SQL para um VLSD que
permita fazer tal migração sem perder as garantias transacionais dadas por sis-
temas relacionais tradicionais. A solução proposta usa o Apache Derby DB, o
Apache Cassandra e o Apache Zookeeper, tendo benefícios e inconvenientes que
foram identificados e analisados.
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Abstract

There has been a enormous growth in the very large scale distributed databases
(VLSD) area in the last few years, especially with the NoSQL movement. These
databases intend to be almost schema-less and not as strict as their relational
counterparts on what concerns the data model, in order to achieve higher scala-
bility.

Their query API tends to be very reduced and simple (mainly a put, a get and
a delete) and has very fast writes and reads, with the downside of not having a
standard querying language as is SQL. Therefore, this properties can be seen as a
capability loss in both consistency and query power.

There is a large code base and number of projects already in production that
where coded in SQL and some of them could benefit from using a VLSD as their
underlying data store. However, it would be extremely hard to seamlessly mi-
grate from one architecture to the other.

In this context, the work presented in this Master’s thesis is the result of eval-
uating how to offer an SQL interface for a VLSD that would allow to do such
a migration without loosing the transactional guarantees given by a traditional
relational system. The proposed solution uses Apache Derby DB, Apache Cas-
sandra and Apache Zookeeper having benefits and drawbacks that were pointed
out and analyzed.
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Chapter 1

Introduction

The capability of searching (querying) on a relational system, was first introduced
by Edgar Codd’s relational model [Cod70] in the 1970s. This model is often re-
ferred to when talking about the Structured Query Language (SQL) model, which
appeared shortly after and was loosely based on it. The SQL model [CB74] has al-
most the same structure of the relational model, with the difference that it added
a querying language, SQL, that has since become a de facto standard.

In the late 1990’s, relational models went from big, monolithic entities to in-
dividual users, this made it necessary for them to be more modular and easier
to set up. In this context, Relational Database Management Systems (RDBMSs)
where at the basis of every dynamic web page available on the Internet.

Since then, and for most of the web sites today, this way of storing data is still
the one with more development and improvement done through the years. How-
ever, a new kind of web sites such as social networks (Facebook1) is appearing,
that are intended to withstand the visit of thousands of clients simultaneously,
making it hard to serve all requests with a relational database without a lot of
tuning performed by experts. These social networks give much greater impor-
tance to the fact the the service is available at all times than to the clients being
able to read the last version of such data, since in this use case most of the data is
not sensible and different clients can see different states of that data without com-
promising the system. This, alongside with an increase in popularity of a new
paradigm called cloud computing which is a way to have easy and on-demand

1www.facebook.com

1

www.facebook.com


2 CHAPTER 1. INTRODUCTION

increase in computational power with little management and configurational ef-
fort, led to the appearance of the Very Large Scale Distributed Databases (VLSDs)
which aim to provide the high scalability and availability storing systems these
new paradigms needed.

VLSDs usually do not use schemas and do not offer complex queries, as joins.
They also attempt to be distributed, horizontal scalable, i.e. as machines are
added the performance improves, have easy replication support, which means
that data will be stored in more than one machine in order to provide availabil-
ity and partition tolerance. This comes at the cost of providing weak consistency
guarantees, because as Eric Brewer’s CAP theorem [Bre00] states, it is impos-
sible for a distributed computer system to simultaneously provide consistency,
availability and partition tolerance. For a distributed system to be consistent all
clients must see consistent data regardless of updates or deletes, for it to provide
availability, all clients will always be able to read and write data, even with node
failures and to be partition tolerant, it must continue to work as expected despite
network or message loss.

A typical RDBMS will focus on availability and consistency, having transac-
tional models that provide what is know as ACID properties, which guarantees
that the integrity and consistency of the data is maintained despite concurrent
accesses and faults. ACID stands for atomicity, consistency, isolation and dura-
bility.

In this context, atomicity means that a jump from the initial state to the result
state will occur without any observable intermediate state, giving all or noth-
ing (commit/abort) semantics that is, when a statement is executed, every up-
date within the transaction must succeed in order to be called successful. To be
consistent in a relational model scenario means that the transaction is a correct
transformation of the state, i.e only consistent data will be written to the database.
Isolation is a property that refers to the fact that no transaction should be able to
interfere with another transaction, the outside observer sees the transactions as if
they execute in some serial order or in other words, if two different transactions
attempt to modify the same data at the same time, then one of them will have
to wait for the other to complete. The final property is durability which states
that once a transaction commits (completes successfully), it will remain so and
that the only way to get rid of what a committed transaction has done is to ex-
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ecute an inverse transaction (which is sometimes impossible) thus, a committed
transaction will be preserved through power losses, crashes and errors.

On the other hand, most VLSDs focus on availability and partition tolerance
(Figure 1.1), relaxing the consistency guarantee, providing eventual consistency [Vog08].

AvailabilityPartition Tolerance

Consistency

Figure 1.1: CAP Theorem

Eventual consistency means that the storage system guarantees that if no new
updates are made to the object, eventually (after the inconsistency window closes)
all accesses will return the last updated value. It is seen by many as impracticable
for sensitive data, since there is no synchronization that guarantees that updated
value will be available at the time of reading. The reality is not so black and
white, and the binary opposition between consistent and non consistent is not
truly reflected in practice, there are instead degrees of consistency such as strong
or causal consistency [Vog08].

So, on one hand there is the VLSD approach, which offers higher scalability,
meaning that it can take advantage of having more machines to be able to main-
tain or even increase its level of performance under bigger loads. On the other
hand, a RDBMS offers more consistency as well as much more powerful query
capabilities, leveraging a lot of knowledge and expertise gained over the years
[Sto10a].
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1.1 Problem Statement

If you want to work with a lot of data and be able to run dynamic ad-
hoc queries on it, you use a relational database with SQL. Using a key
value store doesn’t make any sense for that unless you want to eas-
ily be able to distribute your workload on several machines without
having to go though the hassle of setting up a relational database clus-
ter. If you want to just keep your objects in a persistent state and have
high-performance access to them (e.g. a LOT of web applications), use
a key value store.

in http://buytaert.net/nosql-and-sql, 25/11/2010

This separation happens due to the fact that VLSDs do not provide strong con-
sistency in order to provide partition tolerance and availability, so important in
scalable systems. Their reduced Application Programming Interface (API) makes
it simpler and faster to do operations such as a get or a put. Also, they are pre-
pared from the ground up to replicate data through various machines and even
data warehouses.

However, they also have disadvantages as the lack of a standardized query
language such as SQL, making the code vendor specific which in turn makes it
less portable. Their simple API makes it harder to perform more complex queries
and sometimes even impossible since the data is replicated, which makes it hard
to maintain an update order and to provide a transactional system with ACID
properties.

These, alongside with the dynamic or non existent schema of these databases,
are the main reasons why it is very hard to migrate data and code from a rela-
tional database to a VLSD. This kind of migration would save a lot of time and
money for companies with huge amounts of code and work done upon relational
databases that wish to experience a different type of data storage system.

http://buytaert.net/nosql-and-sql
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1.2 Objectives

Migration of data and code is, therefore, something unwanted by developers and
managers since it will incur into costs for both, of time and money, respectively.

According to a blog post by Michael Stonebraker [Sto10b], 61% of enterprise
users are either ignorant about or uninterested in NoSQL2. This happens mainly
due to three reasons, because it does not provide ACID, it has a low level inter-
face instead of a high-level language as SQL and because there is no standard for
NoSQL interfaces.

There have been some attempts to make database code the less vendor spe-
cific as possible, such as polyglot Object Relational Mappers (ORMs)3 as Ruby’s
DataMapper [DM10], an approach that comes from the fact that even SQL may
differ from RDBMS to RDBMS in certain aspects. This portability, however, car-
ries an overhead since it must translate the code to the specific SQL subset of the
required Database Management System (DBMS).

One problem that ORMs do not solve is migrating legacy SQL code to a dif-
ferent data model, such as to a VLSD. It is exactly this problem that this work
aims to tackle, by building a thin layer between the SQL engine’s interpreter and
processor, and the actual database underneath it, providing a way to run SQL
queries on top of a VLSD.

Alongside with this problem comes another that arise from the limitations of
a VLSD which is the fact that there is no mechanism to encompass transactions
in a VLSD and consequently provide the desired ACID properties, which is a
problem that this work also addresses and proposes to solve.

To summarize, this work aims to:

• Allow legacy SQL code migration to a VLSD, taking advantage of a stan-
dard language to serve as interface

• Provide transactional functionality to the underlying VLSD

2VLSDs are subset of NoSQL, since NoSQL does not enforce databases to be distributed
3An orm that outputs different code, according to the database in use, in spite of receiving the

same input
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1.3 Contributions

This thesis proposes to provide full SQL functionality over VLSD by altering the
RDBMS underlying storage system. The major factor in this implementation is
that it takes advantage of the scalability and replication features from the VLSD,
and allies them with the RDBMS SQL engine. Also, it provides a completely
separate library for transactions in a VLSD.

In detail, we make the following contributions:

• Prototype database system providing full SQL functionality over VLSD
We developed a prototype that allows for SQL queries to be run over a
VLSD. In detail, we ported the Apache Derby’s query engine to use the
Cassandra VLSD as its storage layer.

• Distributed transactions library for a VLSD
We developed a library that allows to create and manage transactional con-
texts enabling to ensure ACID guarantees.

• Evaluation of the proposed solution
We evaluate the developed solution using standard workloads for RDBMSs
such as the TPC-W [Tra02] and TPC-C benchmarks, analyzing its behavior
under different conditions and configurations comparing its performance
to that of a standard RDBMS.

1.4 Dissertation Outline

This thesis is organized as follows: Chapter 2 describes the main features of most
VLSDs and some of the implementations; Chapter 3 introduces SQL and its main
functionalities; Chapter 4 describes the modifications made to Derby and how
it integrates with Cassandra in our implementation; Chapter 5 introduces the
proposed solution for distributed transactions for VLSDs; Chapter 6 evaluates the
solution implemented using realistic workloads; Chapter 7 describes the related
work; and finally Chapter 8 concludes the thesis, summarizing its contributions
and describing possible future work.



Chapter 2

VLSDs

VLSDs in general provide high availability and elasticity in a distributed environ-
ment composed by a set of commodity hardware. This is a whole new paradigm
that avoids the need to invest in very powerful and expensive servers to host the
database. In addition, these data stores also provide replication, fail-over, load
balancing and data distribution. Also, their data model is more flexible than the
relational one since the cost of maintaining its normalized data model, by the en-
forcement of relations integrity, and the ability to run transactions across all data
in the database make it difficult to scale [VCO10].

Nevertheless, when compared to RDBMSs which have been widely used over
the last 30 years and are therefore much more mature, VLSD databases have
some fundamental limitations that should be taken into account. They provide
high scalability at the expense of a more relaxed data consistency model (usually
eventual consistency [Vog08]) and only provide primitive querying and search-
ing capability that do not comply to a standard as is the case of SQL for RDBMSs.
Thus, data abstraction and consistency becomes responsibility of the application
developers and the code becomes vendor specific.

In this chapter we will introduce some of the most popular VLSDs and detail
Apache’s Cassandra in particular since it was the one we chose to develop our
work upon.

7
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2.1 Project Voldemort

Voldemort is an eventually consistent key-value store [Edl11] written in Java and
is an open source implementation of Amazon’s Dynamo [HJK+07]. As such, each
node is independent of other nodes with no central point of failure or coordina-
tion. It is used at LinkedIn for certain high-scalability storage problems where
simple functional partitioning is not sufficient [vol].

Data Storage

Voldemort has a very simple API and supports pluggable serialization to allow
for rich keys and values to integrate with serialization frameworks like Protocol
Buffers, Thrift, Avro, Java Serialization and JSON.

Also, in order to make the system more resilient to server failure data is repli-
cated through N servers, which means it tolerates up to N-1 failures without
losing data. To mitigate the problems that arise with replication, such as multi-
ple updates on different server or a server not being aware of an update do to
a crash, Voldemort uses data versioning with vector clocks [Fid88] that resolve
inconsistencies at read time.

Voldemort’s cluster may serve multiple stores and each of them has a unique
key space and storage definition, such as serialization method or the storage en-
gine used1.

Clustering and Replication

The request routing in Voldemort is done with consistent hashing2) which assigns
nodes to multiple places on the hash ring providing automatic load balance and
ability to migrate partitions.

Voldemort provides eventual consistency and as such it focuses on the A (avail-

1the underlying storage used by Voldemort can be the BerkeleyDB JE, MySQL or read-only
stores, others may be used, since it is pluggable

2“Consistent hashing is a scheme that provides hash table functionality in a way that the ad-
dition or removal of one slot does not significantly change the mapping of keys to slots. By using
consistent hashing, only K/n keys need to be remapped on average, where K is the number of
keys, and n is the number of slots.” in Wikipedia, 13/12/2010



2.2. RIAK 9

ability) and P (partition tolerance) of the CAP theorem. This trade-off between
consistency and availability can be tuned by the client since each of the data stores
can have a different number of nodes to which data is replicated, the N value or
preference list, and the values R and W for quorum reads and writes, respec-
tively. When reading data, it will read from the first R available replicas in the
preference list, return the latest version and repair the obsolete ones. If causality
can’t be determined, client side reconciliation is allowed. When writing in quo-
rum, the update is done synchronously for W replicas in the preference list and
asynchronously to the others.

This leads to the inequality 2.1 that provides read-your-writes consistency
which is the stronger consistency available.

R + W > N (2.1)

2.2 Riak

Riak is a key-value store [Edl11] written mostly in Erlang and C, developed by
Basho Technologies and is, according to them [Tec11], heavily influenced by the
CAP theorem and Amazon’s Dynamo paper [HJK+07]. It is master-less, i.e. all
nodes in a Riak cluster are equal, each node is fully capable of serving any client
request which means that there is no single point of failure.

Data Storage

Riak structures data using buckets, keys and values, being that the values are
referenced by a unique key and each key value pair is stored in a bucket. Thus,
buckets provide different namespaces making it possible for the keys with the
same name to coexist in a Riak cluster.

Its API uses Representational state transfer (REST) and the storage operations
use Hypertext Transfer Protocol (HTTP) PUTs and POSTs and fetches use HTTP
GETs which are submitted to a predefined Uniform Resource Locator (URL) (de-
fault is “/riak”). In order to take full advantage of this Riak also provides a func-
tionality called links, that are are metadata that establish one-way relationships
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between objects in Riak and can be used to loosely model graph like relationships
between them.

Clustering and Replication

Physical servers, referred to in the cluster as nodes, run a certain number of vir-
tual nodes, or vnodes. Each vnode will claim a partition on the ring and the num-
ber of active vnodes per node is determined by the number of physical nodes in
the a cluster at any given time.

Each node in the cluster is responsible for 1/(total number of physical nodes)
of the ring and the number of vnodes of each node can be determined by calcu-
lating (number of partitions)/(number of nodes). As an example consider a ring
with 32 partitions, composed of four physical nodes, it will have approximately
eight vnodes per node.

Riak’s bucket information is communicated across the cluster through a gos-
sip protocol, this includes the hinted handoff mechanism used to compensate for
failed nodes, in which the failed node neighbors will perform its work, allowing
for the cluster to continue to work.

The number of nodes to which data is replicate, the N value, is defined in a
per bucket basis, but all nodes in the same cluster should agree and use the same
N value. When reading or writing data, Riak allows the client to supply a value,
R and W respectively, that represents the number of nodes which must return
results in order for a read or write to be considered successful.

Since multiple updates can occurs in different nodes, there has to be a way
to reconcile an arrive to a mutual consistent state for the system. To do that,
this system uses vector clocks to keep track of at what version each object is.
More specifically, by looking at two vector clock Riak must determine whether
one object is a direct descendant of the other, the objects are direct descendants
of a common parent or if the objects are unrelated in recent heritage. With this
information it can then proceed to auto-repair data that is out of sync or at least
provide the client with an opportunity to reconcile them in an application specific
manner.

Since it first major release Riak adds the support for Secondary Indexes, al-
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lowing an application to tag a Riak object with one or more field/value pairs.
The object is indexed under these field/value pairs, and the application can later
query the index to retrieve a list of matching keys.

2.3 Apache HBase

HBase is a wide column store [Edl11] modeled after Google’s BigTable [CDG+08]
and is written in Java. It is developed as part of Apache Haddop3 project provid-
ing a fault-tolerant way of storing large quantities of sparse data while providing
strong consistency.

Data Storage

HBase stores its data in tables which are composed of rows and columns, be-
ing that each column must belong to a specific column family. The row keys
are stored in byte-lexicographical order since they are raw byte arrays instead of
strings, furthermore within a row the columns are stored in a sorted order.

Each column is versioned and HBase can store multiple version of every cell
and does so in decreasing order so that the most recent values are found first,
when reading from a store file. This means that when insert or updating a col-
umn, the client must specify its name, value and timestamp.

Clustering and Replication

An HBase cluster is composed by a Master node, responsible for telling the clients
in which region server to look for the data, multiple region servers, that are re-
sponsible for several regions (parts) of the data of the whole cluster. Each region
has a log to whom the changes written to before they are actually pushed to disk,
this log is stored in a distributed file system, Apache’s HDFS, which may be repli-
cated.

This system also depends on running a ZooKeeper cluster that is used to store
membership information, which allows to detect dead servers and to perform

3http://hadoop.apache.org/

http://hadoop.apache.org/
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master election and recovery from failures. For instance the master can be killed
and the cluster will continue to function, by finding a new master.

2.4 Cassandra

Cassandra [Wil10a], that was created on Facebook, first started as an incubation
project at Apache in January of 2009 and is based on Dynamo [HJK+07] and
BigTable [CDG+08]. This system can be defined as an open source, distributed,
decentralized, elastically scalable, highly available, fault-tolerant, tuneably con-
sistent, column-oriented database [Hew10].

Cassandra is distributed, which means that it is capable of running on multi-
ple machines while the users see it as if it was running in only one. More than
that, Cassandra is built and optimized to run in more than one machine. So much
that you cannot take full advantage of all of its features without doing so. In Cas-
sandra, all of the nodes are identical as opposed to BigTable or HBase where there
are nodes responsible for certain organizing operations. Instead, Cassandra fea-
tures a peer-to-peer protocol and uses gossip to maintain and keep in sync a list
of nodes that are alive or dead.

Being decentralized means that there is no single point of failure, because all
the servers are symmetrical. The main advantages of decentralization are that
it is easier to use than master/slave and it helps to avoid suspension in service,
thus supporting high availability.

Scalability is the ability to have little degradation in performance when facing
a greater number of requests. It can be of two types:

Vertical Adding hardware capacity and/or memory

Horizontal Adding more machines with all or some of the data so that all of
it is replicated at least in two machines. The software must keep all the
machines in sync.

Elastic scalability refers to the capability of a cluster to seamlessly accept new
nodes or removing them without any need to change the queries, rebalance data
manually or restart the system.
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Cassandra is highly available in the sense that if a node fails it can be replaced
with no downtime and the data can be replicated through data centers to prevent
that same downtime in the case of one of them experiencing a catastrophe, such
as an earthquake or flood.

Consistency essentially means that a read always return the most recently
written value, which is guaranteed to happen when the state of a write is con-
sistent among all nodes that have that data (the updates have a global order).
Most VLSDs, including Cassandra, focus on availability and partition tolerance,
relaxing the consistency guarantee, providing eventual consistency.

In the particular case of Cassandra consistency can be considered tuneable in
the sense that the number of replicas that will block on an update can be con-
figured on an operation basis by setting the consistency level combined with the
replication factor (Section 2.4.3).

2.4.1 Data Model

Cassandra is a row oriented4 database system, with a rather complex data model [Sar09],
that is described below.

The basic building block of Cassandra are columns (Figure 2.1) that consist
of a tuple with three elements, a name, a value and a timestamp. The name of
column can be a string but, unlike its relational counterpart, can also be long
integers, UUIDs or any kind of byte array.

Figure 2.1: Cassandra Column

Sets of columns are organized in rows that are referenced by a unique key, the
row key, as demonstrated in Figure 2.2. A row can have any number of columns

4It is frequently referred to as column oriented, but data in Cassandra is actually stored in
rows indexed by a unique key, but each row does not need to have the same columns (number or
type) as the ones in the same column family.
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that are relevant, there is no schema binding it to a predefined structure. Rows
have a very important feature, that is that every operation under a single row
key is atomic per replica, despite the number of columns affected. This is the
only concurrency control mechanism provided by Cassandra.

Row Key :
 Binary

Figure 2.2: Cassandra Row

The maximum level of complexity is achieved with the column families, which
“glue” this whole system together, it is a structure that can keep an infinite5 num-
ber of rows, has a name and a map of keys to rows as shown in Figure 2.3.

Applications can specify the sort order of columns within a column family,
based on their name, and order them by its value in bytes, converted to an integer
or a string, or even as a 16-byte timestamp.

Cassandra also provides another dimension to columns, the SuperColumns
(Figure 2.4), these are also tuples, but only have two elements, the name and the
value. The value has the particularity of being a map of keys to columns (the key
has to be the same as the column’s name).

There is a variation of ColumnFamilies that are SuperColumnFamilies. The
only difference is that where a ColumnFamily has a collection of name/value
pairs, a SuperColumnFamily has subcolumns (named groups of columns). This is
better understood by looking at the path a query takes until reaching the desired
value in both a normal and super column family (Table 2.1).

Normal Rowkey→ Columnname→ Value
Super Rowkey→ Columnname→ Subcolumnname→ Value

Table 2.1: Path to get to value

5Limited by physical storage space
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Row Key :
 Binary

Row Key :
 Binary

Name : Binary

. . .

Figure 2.3: Cassandra ColumnFamily

Multiple column families can coexist in an outer container called keyspace.
The system allows for multiple keyspaces, but most of deployments have only
one.

Partitioners

Partitioners define the way rows are ordered in Cassandra. By default the one
used is the Random partitioner that combines MD5 hashes of the keys with con-
sistent hashing to determine the place where these keys belong in the ring (Sec-
tion 2.4.3). This spreads the keys evenly trough the ring due to its random distri-
bution, but also makes it very inefficient6 to perform a range query.

The other possible kind of partitioner is the Order-Preserving Partitioner in
which the rows are stored by key order, aligning the physical structure of the
data with that order. This partitioners can be Byte-Ordered, UUID-Ordered, and
so on, depending on the encoding of the keys and can be used to perform range
queries. They have the downside of possibly creating hot spots.

6Most of the times it would imply returning the whole set of keys, and filter it.
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Value : Map of columns

Name : Binary

Value : Binary
TimeStamp : 64-bit Int

Key : Binary (same as Column name)

Value : 

Name : Binary

Value : Binary
TimeStamp : 64-bit Int

Key : Binary (same as Column name)

Value : 

. . .

Name : Binary

Figure 2.4: Cassandra SuperColumn

Composite Keys

Composite keys in Cassandra are keys that are composed of multiple values and
allow querying on only some of them, these are very much alike composite or
multi-column index in the relational world. These type of keys were only intro-
duced in version 1.0 and its support is still growing, they are however intend to
be the substitutes of super columns.

This type can be applied either to row or column keys and looks like this7:

Code Sample 2.1: Composite Key example

US:TX:Austin=America/Chicago

This is record has a three component key (US, TX and Austin) and it can be

7taken from http://www.datastax.com/dev/blog/introduction-to-composite-columns-part-1

http://www.datastax.com/dev/blog/introduction-to-composite-columns-part-1
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queried only by prefix, i.e., you can query for every state in the United States
by fetching all record with the first component equal to US or query for all the
states between Texas and Washington. In this case you will need a start and stop
keys in which the first component is equal to US for both and the the second is
greater than TX for the start key and equal to WA for the end key. This query will
work based on the assumption that the keys are ordered by its byte value, you
can however order them as you like.

2.4.2 Querying

Cassandra’s API defines its querying capabilities, and consists of three simple
methods8 [LM09]:

• insert(table, key, rowMutation)

• get(table, key, columnName)

• delete(table, key, columnName)

In the method signatures above, columnName can refer to a specific column in a
column family, a column family, normal or super, or a column in a supercolumn.
The rowMutation specifies the changes to the row in case it was already there,
or the row to be added9, Mutations can also be Deletions that represent deletes
when performing a batch insert.

2.4.3 Consistency

Cassandra allows clients to specify the desired consistency level on reads and
writes, based on the replication factor previously defined in a configuration file,
present in every cluster. Notice that if the inequality 2.1 holds, for R as the num-
ber of nodes to block for on read, and W the ones to block for on write, the most

8The actual client API has more methods that are variations of these or schema related
9Cassandra treats updates as inserts to existent rows, that is the reason there is no update

operation
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consistent behavior will be achieved10. Obviously this affects the performance
and availability, since all update operations must wait for the update to occur in
every node.

Cassandra uses replication to achieve high availability and durability. Each
data item is replicated at N nodes, where N is the afore mentioned replication
factor, assigning each key to a coordinator node (chosen through consistent hash-
ing, that in addition to storing locally each key within his range, replicates these
keys at the N-1 nodes in the consistent hashing ring.

Cassandra system elects a leader amongst its nodes using Zookeeper [JKKR07],
that is contacted by all joining nodes, and tells them for what ranges they are re-
sponsible. The leader also makes an effort for maintaining the invariant that no
node is responsible for more than N-1 ranges in the ring.

In Cassandra every node is aware of every other node in the system and, there-
fore the range they are responsible for.

10Because the replication process only requires a write to reach a single node to propagate, a
write which “fails” to meet consistency requirements will still appear eventually as long as it was
written to at least one node.



Chapter 3

SQL

SQL is the most widely accepted and implemented interface language for rela-
tional database systems, and it was one of the first commercial languages for
Edgar F. Codd’s relational model [Cod70]. Originally based upon relational al-
gebra and tuple relational calculus, its scope includes data insert, query, update
and delete, schema creation and modification, and data access control.

The database world being so integrated boosts the importance of a standard
language that can be used to operate in many different kinds of computer envi-
ronments and on many different DBMSs [Gru00]. A standard language allows
you to learn one set of commands and use it to create, retrieve, alter, and trans-
fer information regardless of whether you are working on a personal computer
or a workstation. It also enables you to write applications that access multiple
databases.

The SQL standard is defined jointly by American National Standards Insti-
tute (ANSI) and International Organization for Standardization (ISO) that have
published a series of SQL standards since 1986, each being a superset of its pre-
decessor. These standards tend to be ahead of the industry by several years, in
the sense that many products today still conform to SQL99.

In a sense, there are three forms of SQL, Interactive, Static and Dynamic. For
the most part they operate the same way, but are used differently.

Interactive SQL Used to operate directly on a database to produce immediate
output for human utilization

19
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Static SQL Consists of SQL statements hard-coded as part of an application. The
most common form of this is Embedded SQL, where the code is infixed into
the source code of a program written in another language. This requires
some extensions to Interactive SQL as the output of the statements must be
“passed of” to variables or parameters usable by the program in which it is
embedded.

Dynamic SQL Also part of an application, but the SQL code is generated at run-
time.

This chapter will further explain the SQL concepts that are necessary in order
to fully understand our work.

3.1 SQL Statements

Statements, or commands, are instructions you give to an SQL database and con-
sist of one or more logically distinct parts called clauses. Clauses generally begin
with a keyword for which they are named and consist of other keywords and
arguments. Examples of a clauses could be FROM TUPLEitem and WHERE i_id
= 1589. Arguments complete or modify the meaning of a clause. In the previous
examples, TUPLEitem is the argument and FROM is the keyword of the FROM
clause. Likewise i_id = 1589 is the argument of the WHERE clause.

3.1.1 Create

In order to create the above mentioned TUPLEitem table you would use the CRE-
ATE TABLE statement, code sample 3.1.

Code Sample 3.1: SQL create table statement

CREATE TABLE TUPLEitem

( i_id int not null ,

i_title varchar (60),
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i_stock int ,

i_isbn char (13),

PRIMARY KEY(i_id));

This statement has the following components:

• CREATE TABLE are the keywords indicating what this statement does

• TUPLEItem is the name given to the table

• The items in parenthesis are a list of the columns in the table. Each column
must have a name and a datatype. It may also have one or more constraints
as not null or primary key

• Optionally, compound primary keys or foreign keys can also be defined

Note that this statement makes some assumptions such as the fact that the
primary key for each row is not defined by default, it must be explicitly declared.
It is, however, highly advised to define one and therefore we shall assume from
this point on that each table has a primary key composed of one or more of its
columns. When it is defined, an index is created for the values used as primary
key which is used when retrieving it. The statement also assumes that a value
can be null.

3.1.2 Insert

The created table does not yet contain data, to insert a row into the table you
would use the statement with the self-explaining name INSERT (code sample
3.2). If there is already a row with the same primary key as the one being inserted,
an error should be raised and no changes made to the database.

Code Sample 3.2: SQL insert statement

INSERT INTO TUPLEItem VALUES
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(100,’Nice title’,10,’0782125387 ’);

This inserts the list of values in parentheses into the TUPLEItem table, with
the particularity that the values are inserted in the same order as the columns
into which they are being inserted and that the text data values are enclosed in
single quotes.

Also note that the table name must have been previously defined in a CRE-
ATE TABLE statement and that each value enumerated in the VALUES clause
must match the datatype of the column into which it is being inserted, with the
exception of NULL values, which are special markers to represent values that you
do not possess information for, and can be inserted into any datatype as long as
the column allows them.

3.1.3 Update

In order to change some or all of the values in an existing row there is the UP-
DATE statement which is composed by two parts, the UPDATE clause that names
the table affected and a SET clause that indicates the change(s) to be made to cer-
tain column(s). For instance, if you want to increment the stock for the item
inserted in Section 3.1.2 you would do the following:

Code Sample 3.3: SQL update statement

UPDATE TUPLEItem

SET i_stock = i_stock + 1

WHERE i_id = 100

It is possible to use value expressions in the SET clause including expressions
that employ the column being modified, as the increment of the stock by one
in the example above. Whenever you refer to an existing column value in this
clause, the value produced will be that of the current row before the UPDATE
makes any changes.
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Also, in order to update only one of the rows instead of all the rows in the
table the WHERE clause is used.

Where

Tables tend to get very large and most of the times you do not wish for your
statements to affect all of the rows in a certain table. This is the reason why
SQL enables you to define criteria to determine which rows to select and this is
achieved using WHERE, which allows you to define a condition that may eval-
uate to TRUE, FALSE or UNKNOWN. All the rows that are being evaluated are
called candidate rows and of those, the ones that make the predicate TRUE are
called selected rows, and obviously are the ones retrieved to the client. In order
to do this, the database manager must go through the entire table one row at a
time and examine it to evaluate if the predicate is true.

There are many operators that can be used in predicates, in the previous ex-
ample we used the = operator but other inequalities as < (less than), > (greater
than) or <> (not equal to) also apply. The standard boolean operators NOT, AND
and OR also apply and can be used to concatenate various predicates or to deny
the result of one in the case of NOT.

This operators differ from most programming languages in the special case of
finding a NULL value in the column being evaluated. As aforementioned SQL
boolean expressions can evaluate to three values instead of the usual two, the
extra value is UNKNOWN, which is used for that special case. If you do not take
this differences into account, it might change the way the statement behaves. The
main differences between two and three-valued logic are illustrated in Table 3.1.

Regarding SQL predicates there are some things of note. Firstly, as just men-
tioned, it allows for NULL values to be stored as a value of any type and therefore
to be evaluated as such, using the three-valued logic. Secondly, with the compo-
sition of inequalities, it allows to do range queries, i.e. queries that encompass all
the rows with id from 1 to 10, for example.
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Predicate Truth Value

NOT UNKNOWN UNKNOWN

TRUE OR UNKNOWN TRUE

FALSE OR UNKNOWN UNKNOWN

TRUE AND UNKNOWN UNKNOWN

FALSE AND UNKNOWN FALSE

Table 3.1: Three-valued logic main differences

3.1.4 Select

A query is a statement you give to the DBMS that tells it to produce certain spec-
ified information [Gru00]. In SQL all queries are constructed from a single state-
ment that can be extended to allow some highly sophisticated evaluating of data.
This statement is SELECT.

In its simplest form, it instructs the database to retrieve the contents of a table.
For instance, you could retrieve all the rows in the TUPLEItem table with the
following statement:

Code Sample 3.4: SQL select statement

SELECT * FROM TUPLEItem;

The statement is pretty much self explaining, with the exception of * which is a
wildcard that expands to all of the columns in the row1. Therefore the statement
selects all the columns in the row from each row of the table TUPLEItem.

If you want to select certain columns instead of all, just switch * for a comma

1As globbing in BASH
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separated list of column names.

This will, however, return what is know in mathematical terms as a multiset
(or bag), i.e. a collection in which member are allowed to appear more than once.
In order to retrieve an actual mathematical set, i.e. a collection of distinct val-
ues, you can use the argument called DISTINCT in conjunction with the SELECT
statement as shown in code sample 3.5.

Code Sample 3.5: SQL select distinct statement

SELECT DISTINCT i_title FROM TUPLEItem;

Querying gains much more expressiveness and power when used together
with clauses such as group by, order by and where using the same syntax as in
the UPDATE, as explained in Section 3.1.3. It also takes implicit advantage of
indexes, since the DBMS will optimize the retrieval of the data and use indexes
in those cases where it believes it is better (faster) to do so.

3.1.5 Delete

Rows can be deleted from a table with the DELETE statement and since only
entire rows can be deleted, no column argument is accepted. Code sample 3.6
will remove all the contents in TUPLEItem.

Code Sample 3.6: SQL delete statement

DELETE FROM TUPLEItem;

As most SQL statements that affect rows, DELETE can be used with WHERE,
in order to delete specific rows instead of all of them.

In order to remove the actual table as well as all the data, the DROP statement
should be used.
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Code Sample 3.7: SQL drop statement

DROP TABLE TUPLEItem;

3.2 Special Operators

Other than the relational and boolean operators SQL also provides a set of special
operators that can be used to produce more sophisticated and powerful predi-
cates.

3.2.1 In

The IN operator explicitly defines a set in which a given value may or may not be
included. It defines the set by naming the members in parentheses separated by
commas, and then tries to match the column value of the row being tested with
any of the values in the set. If it finds one, the predicate is TRUE.

3.2.2 Between

The BETWEEN operator is similar to IN, but rather than enumerating a set it de-
fines a range that values must fall into in order to make the predicate TRUE. The
keyword BETWEEN is followed by the start value, the keyword AND and the end
value, with the particularity that the first value must appear first in alphabetic or
numeric order than the last (unlike IN, where order does not matter).

Also, the range is inclusive by default and SQL does not directly support a
noninclusive BETWEEN.

3.2.3 Like

The LIKE operator is used with text string datatypes only and is used to find
substrings in them, i.e. it searches a text column to see if part of it matches a
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given string. In order to do this, it uses two types of wildcards:

• _ stands for any single character, it corresponds to . in Regex.

• % stands for a sequence of any number of characters, including zero, the
corresponding to .* in Regex

Code Sample 3.8: SQL like operator

SELECT * FROM TUPLEItem

WHERE i_title LIKE ’N__e t%’

In code sample 3.8, the predicate will match any item in the table TUPLEItem
that has a title that starts with the letter N, has two characters and the an e (such
as “Nice” from our example) and has a second word that starts with a t (such
as “title”). Note that it can have other words after the second one, since the %
wildcard will stand for any number of characters until the end of the string.

3.2.4 Is Null

As previously discussed, when a NULL is compared to any value (even another
NULL) the result is UNKNOWN. Therefore, if you need to distinguish between a
FALSE and an UNKNOWN, i.e. rows containing values that fail a predicate con-
dition and those containing NULLs, SQL provides the special operator IS which
is used with the keyword NULL to locate and treat NULL values.

This can be further enhanced by adding the keyword NOT, providing the IS
NOT NULL operator which is the exact opposite of IS NULL.

3.3 Stored Procedures

One of the important extensions provided by SQL is the ability to invoke routines
written in other languages such as C or Java, from SQL. The way it is done is
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by specifying routines as SQL objects that are essentially wrappers for routines
written in other languages, and thus providing an SQL interface to that routine.

These routines can be either functions, procedures or methods and the differ-
ence between them is that functions return a value whereas procedures simply
do something (such as a void method in Java) and methods return a value that is
an actual SQL object2.

In a DBMS, a stored procedure is a set of SQL statements with an assigned
name that’s stored in the database in compiled form so that it can be shared by a
number of programs. It has a great number of optional values at the moment of
creation, the following example (Code sample 3.9) shows how to create a stored
procedure for an external Java method.

Code Sample 3.9: SQL procedure creation

CREATE PROCEDURE ADDTABLESTOLOCK(TABLES VARCHAR (32672))

PARAMETER STYLE JAVA

LANGUAGE JAVA NO SQL

EXTERNAL NAME ’cassandraTrans.

TransactionInitializer.setTablesToLock ’";

The procedure is executed in response to an explicit statement in the pro-
gram on behalf of which it is used, that statement is typically know as call state-
ment [Mel02]. A CALL statement (Code sample 3.10) causes an SQL-invoked pro-
cedure to be invoked and all the information that is transferred to it is passed
through its parameters.

Code Sample 3.10: SQL invoking a procedure

call ADDTABLESTOLOCK(’Lock1 ,Lock2’);

2SQL objects are schemas, data dictionaries, journals, catalogs, tables, aliases, views, indexes,
constraints, triggers, sequences, stored procedures, user-defined functions, user-defined types,
and SQL packages [IBM].
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Chapter 4

SQL over a VLSD

Our work focuses on providing the benefits of having a standard and matured
language as SQL to serve as querying interface for a VLSD. These benefits go
from being able to change the underlying storage of legacy applications without
having to change the code base, to the large amount of tools that have created
throughout the years, as well as an extensive body of knowledge in this area.

First we needed a query engine, which is the primary interface to the storage
engine and uses SQL as query language. Generally a query engine is composed
by two main stages, the compilation and the execution of the query, being that the
first is the one in which most optimizations and the choosing of which algorithms
to use according to the estimate cost of each operation take place. The second
phase is responsible for the actual implementation of algorithms that manipulate
the data of the database, such as the scanning of relations which is essential to
access the tuples of a relation, and it can be of three types:

Table-scan Reads each block holding the tuples of a relation

Index-scan If there is an index on the table it may be used to retrieve the tuples
of a relation

Sort-scan Takes as a parameter the sorting attributes, and produces the result in
the desired order

The implementation of the algorithms is where most of our work lies, provid-
ing a separating layer from the query engine to the underlying storage engine.
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Of these three types of scans, we worked on the first two and left the sort scans
untouched.

As a query engine we chose Apache DerbyDB which is a full fledged open-
source Java RDBMS, that has a very small footprint1. The on-disk database for-
mat used in Derby is portable and platform-independent, meaning that the database
can be moved from machine to machine with no need of modification, and that
the database will work with any derby configuration [Der10b].

A Derby database exists within a system (Figure 4.1), composed by a single
instance of the Derby database engine and the environment in which it runs. It
consists of zero or more databases, a system-wide configuration and an error log,
both contained in the system directory [Der10a].

Derby

derby.system.home
(tells Derby the name of the system 

directory)

file

file

file

derby.log

derby.properties

ExampleDB Example2DB

Figure 4.1: Derby System Structure

Derby’s data model is relational, which implies that data can be accessed and
modified using JDBC and standard SQL. The system has, however, two very dif-
ferent basic deployment options (or frameworks), the simple embedded option
and the Derby Network Server option [Der10b].

Embedded In this mode Derby is started by a single-user Java application, and
runs in the same Java virtual machine (JVM). This makes Derby almost in-

1about 2.6MB of disk-space for the base engine and embedded Java Database Connectivity
(JDBC) driver [ASF10a]
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visible to the user, since it is started and stopped by the application, requir-
ing very little or no administration. This has the particularity that only a
single application can access the database at any one time, and no network
access occurs.

Server (or Server-based) In this mode Derby is started by an application that
provides multi-user connectivity to Derby databases across a network. The
system runs in the JVM that hosts the server, and other JVMs connect to it
to access the database.

To store the data we chose the VLSD Apache Cassandra that was detailed in
section 2.4.

The system architecture is shown in Figure 4.2 and it encompasses an appli-
cation that has an SQL interface with the query engine, in this case Derby, which
then transfers control to our abstraction layer that will randomly choose a Cas-
sandra node from to cluster, connect to it and perform the desired operations.
This Chapter will focus on the abstraction layer and how it translates the requests
into Cassandra’s methods.

4.1 Abstraction Layer

The implementation of the abstraction layer involved integrating Derby with
Cassandra. This is done by changing the way the algorithms are implemented
in Derby’s storage engine, also by defining the way data will be stored and trans-
lating Derby operations to Cassandra’s API.

4.1.1 Derby

As described above our work prime emphasis is on Derby’s storage engine, there-
fore, before explaining the modifications made there is a need to understand its
basic structure.

The Derby engine is composed by multiple packages from which we will focus
mainly on the one called store, as it is the one responsible for the implementation
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Figure 4.2: Derby over Cassandra system architecture

of the storage engine algorithms, which is the part of the system we are inter-
ested in changing. Within it lies another package, called access, with the specific
implementation of said algorithms for each kind of storage2. As would be ex-
pected, we wrote similar packages within the access that, when the table name

2BTree and Heap are the default ways for interacting with storage in the vanilla Derby
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starts with TUPLE (this is our convention), use Cassandra as storage engine. We
have named these packages tuplestore and tuplestoreindex for, respectively, the op-
erations with regular records and with indexes and additional constraints (for
example foreign keys).

Following Derby’s implementation, each type of action has a responsible class,
such as the TupleStore for the creation and deletion of tables, the TupleStoreCon-
troller for insertion, update or deletion of rows and the TupleStoreScanController
for fetches that need some sort of scanning. The same applies to index, but the
with the suffix Index.

When developing this layer some optimizations were made such as the reuti-
lization of connections, on a first approach we created one physical connection
to the underlying database for each transaction but this can mean a reasonable
overhead when a new transaction is created due to the cost of establishing the
connection. To circumvent this, we then opted to create a pool of connections
and if there is one free it is used, otherwise a new connection is opened, which
will prevent some of the overhead.

4.1.2 Adopted data model

The way the data is organized in Cassandra is a very important feature of this
work and influences the design of the integration with Derby. This was, therefore,
something that had to be carefully thought from the ground up. The various
design decisions and the reasons supporting them will be thoroughly explored
through the rest of this Chapter.

This model is not application specific and as such is optimized to the extent
it can go without losing its generality. Having this in mind, our design uses one
keyspace per relational table, named “TableXXXX” with XXXX being the table’s
conglomerate id3, with each of these keyspaces having one column family, if it is
referring to a table conglomerate it is called BaseColumns_CF and if it refers to an
index conglomerate it is called BaseRowLocation_CF.

The rows in each of the previously mentioned column families have a partic-

3Derby calls tables and indexes conglomerates, and each of them has a unique id, in our case
we use the table id to uniquely identify a keyspace
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ular structure. In the case of BaseColumns_CF, the row key is the primary key and
the row has one column with name “valueX”, where X is the position of the re-
lational column, for each value inserted. In the case of nulls, that are required by
SQL statements, they are simply ignored, as there is no need to create a column
for them since Cassandra has no fixed schema, which means that different rows
may have different columns as opposed to a RDBMS.

The indexes column family deals with two different situations, when it is a
unique secondary index and when it is a non-unique secondary index. In both
cases, all columns except the ones related to the location of the indexed row have
the name “keyX”, which follows the same logic as “valueX”, also the row key is
the indexed value or values4. In one hand, when the index is unique, there is
only one different column which has the name “location” with the location of the
actual record as a value. On the other hand, when it is a non-unique secondary
index, there can be more than one column representing the indexed rows, and
each of them has the location of the indexed row as name and no value (Figure
4.3).

In respect to the format of the keys, we use the byte encoded value of the
inserted key whenever it is possible, however if a multi-column key is provided
we use Cassandra’s composite type (Section 2.4.1) with each component encoded
as bytes.

4.1.3 Wide Row Indexes

One of the most used techniques by the Cassandra commmunity to perform
range queries, and not loosing the distribution of data is known as wide row
indexes. This consists of indexing the unordered keys of a column family as or-
dered columns, which allows to query this index in order to get the keys and then
fetch them from the actual column family.

In order for this to work we need only to create a column family where the
row keys are the names of the column families we wish to index and the column
names are ordered with the same type of the row keys of the indexed column
families.

4rows with secondary indexes can be indexed on multiple values
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Figure 4.3: Cassandra design to integrate with Derby

Obviously this has its costs in writing, since you have to write the normal
record as well as the index, but mostly in reading, because you have to query the
index for the location of the rows and then fetch the rows.

4.1.4 Changes to Derby’s store engine

A record, row or tuple all have the same meaning, they represent a container of
values, typically in fixed number and indexed by names. In this specific context,
they represent a structured data item that is stored in a database table. They are
the assets we intend to maintain durable and consistent.

This means that when an insert or update action is performed one or more
of these records must be created or updated, alongside with their corresponding
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indexes, as explained in section 4.1.5.

The various Derby operations that interact with the underlying data store had
to be rewritten to be compliant with Cassandra. These operations encompass
the creation and deletion of keyspaces, the insertion, replacement, fetching and
deletion of rows, as well as the scans or range queries.

Keyspace operations

Since version 0.7 of Cassandra it is possible to alter keyspaces definitions on run-
time, which allows us to create and delete them5.

Therefore, when an SQL create table statement is issued, a keyspace is created,
with the name defined according to the model and the replication factor and strat-
egy coming from a configuration file. At the moment of creation of a keyspace,
the respective column family is also created, taking into account if it is an index or
not. The deletion is achieved through a call to the provided system_drop_keyspace
method.

While testing the system, we found some problems with these system meth-
ods that allow the alteration of keyspaces. The main problem is that when a new
keyspace is created, the method does not wait for the schema to agree, i.e. all
nodes must agree that the keyspace was created. While this provides better per-
formance since it does not block, it also means that if you try to do a query or an
insert on that keyspace before the agreement of the schema, you will get an error
that the system cannot come back from6.

Row operations

The operations performed to a row are insert, replace, fetch and delete and as in
the keyspaces they differ from indexes to normal records.

The insertion of a row consists on creating a column for each value, following
the data model, and doing a batch update. In order to be able to range query
this data we also need to index the row key in our wide row index. For these

5Keyspaces correspond to the relational tables and indexes, in our implementation
6This problem happened in version 0.7, as of version 1.1.1 and to our knowledge this problem

has been mitigated
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operations the differences between indexes and normal records are not many,
and are defined in section 4.1.2.

The replacement of a row only makes sense on normal records, since the in-
dexes are managed internally. There are two main types of row replacements,
when the primary key is going to change and when it is not. If the primary key
changes and has a secondary or unique index, it is deleted and the new row is
inserted (which will update the indexes), if it is not the new columns are applied
in a batch. Since this does not alter the primary key, there is no need to update
the indexes. In the first case, if the new row is not complete, the missing values
must be fetched in order to complete it.

When fetching a row Derby gets that row for its index from which it extracts
the location of the actual record and then does a second fetch, this time to the
location pointed by the index. In figure 4.4, for example, Derby would fetch the
row for index x and get the location j, from which it would get the info from row
j in the records table.

This is fine for unique and secondary indexes, but as explained in the previous
section, in the case of primary indexes there is no need for the creation of a specific
row for the index, thus making this two fetches mechanism redundant. Since this
redundancy meant an unnecessary access to the database, which could incur in a
large overhead, this matter had to be addressed.

The way this was solved was by storing in memory the whole row fetched in
first place (through the index) and passing it on alongside with the actual record
location. This allows for the tuple controller that is doing the fetch to use the
information in memory, when it is available.

For the other types of indexes the location of the actual record must be fetched
as well. In the case of unique indexes the column with name “location” is fetched
and in the case of non-unique secondary indexes the remaining columns have the
multiple locations as their name. These locations are then added to the previously
constructed rows that are then validated and returned.

In those cases where we haven’t the necessary values in memory, what hap-
pens is that the necessary values (it is not mandatory to query for the entire row)
are fetched and a Derby row is created and passed on.

Rows are deleted with Cassandra’s method remove, which marks them as deleted
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Figure 4.4: Derby Indexes

for a certain time7. The reason a row is not deleted immediately is because of the
fact that the remove is actually performing a distributed delete, which means that
some of the replicas may not receive the delete operation. In that case, if the data
was to be deleted at once, when one of those replicas became available again it
would treat the replicas that received the delete as having missed a write update,
and repair them. That is why deleted data is replaced with a special Cassandra
value called tombstone, that can later be propagated to the replicas that missed
the initial remove request.

The reason for this tombstones to be available for a pre defined amount of time
is that in a distributed system without a coordinator, it is impossible to know the
moment when all the replicas are aware of the delete and it is safe to remove the
tombstone. By default Cassandra waits ten days before removing them.

4.1.5 Indexing

Indexing is a way of sorting records on multiple fields. Creating an index on a
field in a table creates another data structure with the field value, and a pointer
to the primary record.

7This amount of time is called GCGraceSeconds and is defined in cassandra’s configuration file
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The downside to indexing is that these indexes require additional space on
the disk and processing time when inserting, updating or removing new data
but operations like fetching and scanning are much faster.

Derby Indexes

Along with the actual record handling classes, there are the ones responsible for
the indexes, which can be of one of three types:

Primary Refers to primary keys. There can only be one per table and it must
unambiguously match one, and only one, record.

Secondary Secondary or Ordinary indexes are used to accelerate the process of
finding a requested row’s location by a given value in those cases where
this value is not the primary key.

Unique A sub type of secondary indexes, except they prevent duplicates from
being added.

The creation of an index in our version of Derby depends on its type.

When it is a primary index, Derby is informed about it (through a flag), and
only the wide row index record is created in Cassandra. Since in Cassandra it is
mandatory for each row to have a key, in this case it will be the primary key, and
the rows are automatically indexed by that same key (Figure 4.4).

On the rest of the cases, an index is created according to the model defined in
Section 4.1.2.

When fetching information that is indexed, Derby (as most RDBMSs) first es-
timates the cost of fetching using the index or not, based on the number and size
of the rows, and acts accordingly.

Indexing in Cassandra

Secondary indexes where introduced to Cassandra in version 0.7, they allow
querying by value and can be built in the background automatically without
blocking reads or writes.
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We have not used this, however, because there are still several limitations such
as not being recommended for attributes with high cardinality, i.e. attributes that
have a lot of unique values, and with these indexes only equality queries can be
done, not range queries [Gho11].

In the cases where these limitations cannot be tolerated (such as ours) the
documentation recommends using a separate column family and implement our
own secondary index [Doc11].

4.1.6 Scans

A scan or range query, is the action triggered when the submitted query has in-
equality operators8 or uses the BETWEEN or LIKE operators.

In Derby, the range to which the query applies is passed on to the scan con-
troller through a start and a stop key and a flag that defines if the range is inclu-
sive or exclusive in either end. With these parameters, the controller fetches the
needed rows to memory, validates each one and returns those which are valid,
taking into account other filters on other fields not indexed by the current index.

As can be perceived from Figure 4.5, there are two assumptions that must be
met in order for all scans, and in particular a LIKE query to function properly

1. The keys must be ordered by their byte value, so that strings as well as
integers and any other type of data are logically ordered9.

2. The encoding of the data types must be coherent throughout the application

The first assumption was met through having a wide row index with the col-
umn names ordered by its byte value, as was explained in Section 4.1.2. The
second one meant having classes to encode each type of data that Derby accepts
(Integer, Float, String, DateTime, etc. . . ), as well as altering the way padding is
applied to the strings that are received through a LIKE query so that it becomes
compliant with the way Cassandra stores its data. This has to be done because

8<, >, <= and >=
9If they were ordered by their UTF-8 value, for example, the number 10 would be between

1 and 2, which means that a query for all records which have a value between 8 and 10, would
return 2 records (8 and 9) instead of the expected 3 (8, 9 and 10)
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Figure 4.5: Querying with LIKE

Cassandra does not allow for range queries on string prefixes. Take the example
in Figure 4.5, for instance, the values in the range in step one have to be padded
so that they have at least the same length as the value we are looking for, in this
case UNION.

Both with normal records and indexes the primary method is fetchNext, which
returns the next row in the range. In the case of records this consists in getting
the next row from the iterator and encoding the values to create a Derby row.

Scanning with indexes

Performing a scan that involves fetching a row through an index is a bit more
complex since the indexes can be of three types, which means doing things a
little different for each of the types.

When performing a scan that involves fetching a row through an index, Derby
fetches row by row according to the mechanism in Section 4.1.4.

When performing scans in Cassandra there is one other detail to take in ac-
count, that is the fact that a column (or row) is only deleted after a certain amount
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of time, which means that some tombstones10 may be returned, these are known
as range ghosts. Cassandra had a range query method that eliminated tomb-
stones from the result set, but has been deprecated due to performance issues,
therefore when iterating over the rows it is necessary to be aware that a row com-
ing from a range query can have no columns at all if it has been deleted and is
now a tombstone or just some of the columns have actual valid values.

Compound keys have a special syntax in Cassandra which allows us to per-
form scans based on prefix, as long as we construct the keys accordingly.

10Special markers for columns that have been deleted



Chapter 5

Fully Distributed Transactional
Model

With these changes to Derby we have gained scalability, fault and partition toler-
ance and kept durability. This of course came with the cost of loosing atomicity1,
isolation and consistency (we have eventual consistency). Both these gains and
costs come directly from the fact that we are now using Cassandra for storage.

In practical terms this means that transactions are not possible with this sys-
tem. To overcome these limitations we built a distributed transaction system
that takes advantage of Cassandra’s peer to peer architecture and integrates with
Derby. From the start we assume that one of the main features we want in our
library is that it provides serializability.

5.1 Caching

In order to overcome the fact that Cassandra does not provide Multiversion con-
currency control (MVCC) we opted for locking (Section 5.3) the data needed so
that it cannot change for any other reason than the operations in the transaction,
as data cannot have multiple versions and when it is written there is no way of
rolling back. Alongside with this, all the data changes made by the transaction

1Cassandra provides atomicity at the row level, which is fine when doing separate inserts at a
time, but is not good enough when performing batch inserts or transaction that affects multiple
rows

45
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itself must be cached and taken in account at every statement.

5.1.1 Read-your-own-writes consistency

One possible eventual consistency property is read-your-own-writes consistency,
meaning a process is guaranteed to see the writes it has made when it does reads.
Since puts and deletes are not committed until the end of the transaction, when
performing a get (read) it must take in account those values that are in memory
but not yet committed and merge them with the values it gets from the VLSD.
This will provide the read-your-own-writes property which is crucial to maintain
the consistency of the system.

5.1.2 Merging data from disk and memory

As stated earlier our API provides three different types of get methods. One for
reading a single column, one for reading an entire row or a slice (certain columns)
of a row and one to read a range of rows that can possibly be sliced. Each of these
methods uses the cache in a different ways, in order to retrieve the intended data.

The first one is trivial, since only one column is asked for, if it is in memory
then it is the newer value and it is returned. If it is not in memory, then it must
be fetched from disk and then returned.

The second one consists in fetching the row from disk and merge those values
with the ones cached, with the following restrictions:

• If there has been a deletion that affects the column2 which has occurred
after the insertion of said column (temporal order is achieved through the
columns’ timestamps), then the column is not valid and must not be re-
trieved

• A cached column’s value always prevails to the ones coming from disk.
This is true since we have made sure, through locking, that the values on
disk do not change during the transaction

2This deletion can be of an entire column family, a row or simply that column
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The last method for reading data interacts with the cache by first getting the
range of rows from disk, performing the same range query to the cached data
and merge them according to the same principles explained above.

There is one other step that is common to all the methods and must be per-
formed before fetching actual data from disk, which is the recovery from failure
of a row as later described by the Algorithm 2.

5.2 Algorithm

The adopted algorithm (Algorithm 1) combines a mechanism of locks and a write
ahead log with Cassandra’s provided atomicity and idempotent operations.

Algorithm 1: Transactional Model for Cassandra - Run without failures
Require: Lock(RA,RB)
// RA and RB are rows

1 Ai ← Read(RA)
2 Bi ← Read(RB)
3 TID ← getUniqueID()
4 Write(TID, RA)
5 Write(TID, RB)
6 (A f , B f )← compute(Ai, Bi)

7 Write((A f , B f ), T) // T represents the row with id TID
8 Write(A f , RA)

9 Write(B f , RB)
Ensure: Unlock(RA,RB)

Take in account that Ai, A f , Bi and B f are rows with random columns, that
the compute function represents all the operations in the transaction and that the
operation in line 7 is atomic due to the guarantees given by Cassandra. Note that
the Write function takes two arguments, the row to be written and the where it
should be written.

The write in line 7 defines the no return point, i.e. after this moment the
changes are committed and will persist through failure, prior to this moment
if the node fails for any reason, all the updates will be lost and the transaction
will have to be replayed.
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5.2.1 API

The basic Cassandra operations (get, put and delete) were redefined as being part
of the Transaction object and all interactions with the cluster during transactions
must pass through the transactional system. This is of major importance since all
operations that would alter the data must wait until the commit for the updates to
be pushed to disk, or else the consistency property will be broken. For instance,
if a transaction writes to a column X before entering the commit stage, the next
transaction to read from X will read an inconsistent value and will have no way
of reverting it to the previous consistent state.

To summarize, the behavior of these operations is defined as follows:

get(keyspace, columnFamily, rowKey, columnName, consistencyLevel) Will first
apply the recover mechanism (Section 5.4) to the row and then get the de-
sired data from the data store

put(keyspace, columnFamily, rowKey, columnName, value) Will write the new
value to memory in the form of a Cassandra Column, and wait until commit
to see the changes pushed to disk

delete(keyspace, columnFamily, rowKey, columnName, timestamp) Works as the
put operation, but always writes the same special value (__delete__)

We also provide some extra methods that derive from this, such as the get_range
and get_slice methods that allow to get more that one value with only one request
to the datastore, in order to optimize range queries. For simplicity, a put can re-
ceive a Column object, instead of a column name and value which also allows for
the timestamp to be created by the application.

Deletes

Deleting is a special operation because if a delete occurs previous updates must
not be preserved. There are three kinds of deletions contemplated by our system,
of a column, a row or a keyspace and each of them must be treated in a different
way.
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Delete column This is the simpler and behaves as explained before, by doing an
update with a special value

Delete row The mechanism is similar to that of deleting a column, but the special
value (__delete__) is written to the column’s name and not its value so when
committing everything with a timestamp previous to the one of the column
will be deleted

Delete keyspace There is no actual method for deleting a keyspace through our
system, you must use Cassandra’s API for that, what the system does is
check if the keyspace exists before performing the updates on a commit, and
if it does it is aborted. If for some reason the transaction does not commit
nor abort (fails), there might be columns left with no pointer to them (ghost
columns) that can be cleaned with a Garbage Collector set to act at a specific
time. This is a similar mechanism to the one implemented by Cassandra.

5.3 Locks

Before the transaction can start, it must acquire the locks for the rows or entire
tables (in read only mode or not) it is going to use. We use a readers-writer lock
mechanism, that provides two kinds of locks, read and write. This mechanism
allows concurrent access to multiple threads for reading but restricts access to a
single thread for writes to the resource.

The actual lock mechanism works firstly by asking for a lock on the table for
any_or_all, when attempting to lock the entire table for writing this is a write lock,
otherwise it is a read lock. In the second case there is a second step of asking for
locks on the rows we need, since there can be many concurrent transactions with
read locks on the same table at the same time. This means that all transactions
can pass on to ask for locks on the rows, unless there is another waiting to lock
the whole table.

A lock is represented by a Path class, that encapsulates the path to the lock
and provides the necessary primitives to work with it.

Still this mechanism is not enough because it does not prevent deadlocks3. In

3If two threads want locks A and B, and one of them gets A and the other B, they will both be
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order to do this, there has to be a globally accorded way of ordering the paths
of the locks, for this we first compare the nesting of the path (table locks are less
nested and therefore are sorted first), then we compare the actual name of the
table4 and at last, in the case of rows of the same table, we compare the name
of the row. This comparison in done with a Comparator class, which provides a
way to change how paths are compared without changing the code of the actual
system.

In order to perform locking we use a Java library called Cages together with
Zookeeper, both being explained below.

5.3.1 Zookeeper

ZooKeeper is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services [ASF10b].
We use the naming services of Zookeeper to maintain our locks, since it allows
distributed processes to coordinate with each other through a shared hierarchal
namespace which is organized similarly to a standard (unix) file system (Fig. 5.1).

Figure 5.1: ZooKeeper’s Hierarchical Namespace

Other than the ease of use, Zookeeper is intended to be replicated and pro-
vides total order of updates in the cluster [ASF10c] which are properties we need

waiting on the other
4using Java strings default compareTo method
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to implement the locks [ASF08]. Also, it supports the concept of watches, that are
callbacks registered by the client for when certain events take place, for example
when a node is deleted. This is a useful feature when implementing locks so that
clients do not have to busy wait5.

5.3.2 Cages

According to the creator’s blog [Wil10b], Cages is a Java library that provides
distributed synchronization functionality by using the services of a ZooKeeper
server or cluster.

Cages offers three types of locking, ZkReadLock, ZkWriteLock and ZkMulti-
Lock. As can be inferred by the names, these represent a read lock and write lock,
and the multi lock is an attempt to provide a primitive for acquiring multiple
locks at the same time. This primitive proved to be ineffective as it is not atomic,
it is the equivalent to try to acquire multiple locks one at a time and therefore is
useless for our implementation since it can lead to deadlocks.

The locks are represented by a string in the form used by ZooKeeper (Fig. 5.1).
An example of how to acquire a write lock is shown in code sample 5.1.

Code Sample 5.1: Acquiring a lock with Cages

void methodX () {

ZkWriteLock lock = new ZkWriteLock("/path/to/lock");

lock.acquire ();

try {

// The code

} finally {

lock.release ();

}

}

5When busy waiting a client thread will always be polling the server in order to know if the
event has occured
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Note that the path for the lock has no restrictions as long as it is followed
through the whole application. Also, if a node fails and has a lock Cages will
make sure it releases that lock after a certain amount of time of inactivity.

Since this locking systems stores nothing but meta data, i.e. the names of the
locks that someone holds, and not the locks themselves, it is important that it is
highly available and consistent or else the system itself may become inconsistent.

If Zookeeper becomes a bottleneck there are two solutions, the one presented
by Cages’s author that is to run more than one ZooKeeper cluster and simply
hash the locks’ paths to particular clusters, and to use a feature introduced in
Zookeeper 3.3, the Observers.

ZooKeeper Observers

Normal Zookeeper nodes connect to the cluster as voting members, meaning that
they participate in the consensus, making it hard to scale out to a big number of
clients. This happens because a write operation needs (in general) the agreement
of at least half the voting nodes, increasing the cost of voting as nodes are added.

To address this problem, a new type of node is introduced, the observers. This
nodes are members of the cluster that are not allowed to vote nor are aware of the
voting algorithm, they only receive the results of the voting, other than this they
function like normal nodes.

Clients can connect and send read and write requests to them, which they redi-
rect to the Leader and wait for the result of the vote. This allows many Observers
to be added without harming the performance of the voting algorithm.

Other advantage of Observers is that as they are not critical to the function of
the system, they can fail or be disconnected without harming the overall avail-
ability. This also means that these type of nodes can be on different data centers,
providing faster (local) reads and diminishing the number of messages transmit-
ted through the network in a write.

To sum up, the system uses a Zookeeper cluster alongside with the Cages
library in order to provide table and/or row locking.
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5.4 Recovery from failure

The presented algorithm (Alg. 1) only contemplates the case of a successful run,
but it would be unrealistic to think that would always be the case. Therefore
there is also a mechanism to recover from failures that is provided by a Write-
ahead Log (WAL) technique.

5.4.1 Write-ahead Log

The WAL technique used is represented by a super column family called Trans-
actions_WALog that holds rows with the unique ids of the transactions as the row
id.

In a system using WAL, all modifications are written to a log before they are
applied which is a way of providing atomicity and durability.

Unlike relational databases where this is used in a checkpointing system, where
if at some point there is a need for redoing operations all the logs in the WAL file
are applied, in our system the logs are used on a need basis. What this means is
that if there are some records in a transaction that could not be updated because
of a failure, the update is redone at the time of the next read to that record’s row.

One part of this technique is saving the data of the updates to the WAL column
family (line 7, Algorithm 1), the rest only takes place when something goes wrong
and this data needs to be used. Lines 4 and 5 of the same algorithm are important
because that TID in each row is what allows the application to know when an
error occurred and triggers the recovery algorithm (line 1, Algorithm 2).

Algorithm 2: Transactional Model for Cassandra - Recover row after failure
Input: Path
// Path is a string in the form keyspace__columnFamily__rowKey

1 if lost-T 6= NULL then
2 TID ← getVal(lost-T)
3 Ru ← getWA_LogRow(Path, TID, Transaction_WALog)
4 Write(Ru, Path)
5 Write(NULL, lost-T)
6 end
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Algorithm 2 is responsible for ensuring that if an update has been written to
the log, then all subsequent reads to that record will reflect the update (isolation).
The lost-T column exists in every row and has either nothing or the TID of the
transaction it is in. This allows the system to know if there was an error in the
middle of a transaction involving a given row, since the only way for an operation
in a transaction other than its own to read that column is due to a previous error.

It then gets a TID from the lost-T column and uses it to get the updates, which
are in a super column with the name given in Path from the Transaction_WALog
column family and the row with that TID as id. In the algorithm above, this is
represented by the functions getVal and getWA_LogRow, which get the value of a
given column and the entire row information stored in the log for the row given
by the Path, respectively.

The updated values are then written to the Path, updating the actual row that
holds the data. To conclude it cleans the lost-T column, which means the row is
in a consistent state.

5.5 Connecting client to server

Thus far we have a datastore with an SQL interface to the client and a transac-
tional system with a Java interface, since the transactional system must be told
by the client which tables to lock and that the main purpose of this work is to
provide an SQL interface to a VLSD, we needed to provide an SQL interface for
him to do that. We have done that using a stored procedure (Section 3.3) that calls
a specific method in the system’s jar.



Chapter 6

Results and Performance Analysis

In order to evaluate the impact of having Cassandra as a datastore for SQL queries
as opposed to running them on Derby we ran two different types of tests, the
TPC-W benchmark and the TPC-C benchmark. This chapter details those exper-
iments and consequent results.

6.1 Experimental Setting

The experiments for TPC-W were ran on machines with an Intel Core2 CPU 6400
at 2.13GHz, 2 Gigabytes of RAM and a local 7200 RPM SATA disk.

The experiments for TPC-C were ran on machines with an Intel i3 CPU at
3.1GHz, 4 Gigabytes of RAM and a local 7200 RPM SATA disk.

The multiple machines are connected by LAN to a 1GB/s switch and run a
Linux operating system, more specifically an Ubuntu Server, 2.6.31-1 kernel and
an ext4 filesystem. All the experiments were run using between 2 and 8 of these
machines according to the specific needs of each test.

For the transactional system, we used a Zookeeper cluster with three nodes,
which is enough for most workloads[ASF10d], and it is not desirable to scale
ZooKeeper clusters beyond this number of nodes. The reason for this is that while
adding nodes scales up read performance, write performance actually starts de-
grading because of the need to synchronize write operations across all members,
and therefore clustering really offers availability rather than performance.
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6.2 Workloads

The TPC-W benchmark specifies an e-commerce workload that simulates cus-
tomers browsing, ordering and buying products from a website. The proposed
solution for this benchmark is a number of servers (Web Servers and Database
Server) working in concert to provide an e-commerce solution that is very simi-
lar to how an actual website performing this kind of business would operate.

This benchmark tests various system components that are associated with
such an environment, such as [Tra02]:

• The simultaneous execution of multiple transaction types that span a breadth
of complexity

• Databases consisting of many tables with a wide variety of sizes, attributes,
and relationships

• Transaction integrity (ACID properties)

• Contention on data access and update

The transactions in TPC-W can be divided into two main sets, the write oper-
ations such as adding a product to the shopping cart or ordering a product and
the read operations that simulate the search of products by title, author or subject
or to ask for the more recent items or the ones that have sold the most. The first
set of operations is called order and the second browse.

The variation of percentage of each of these sets defines three different mixes
for the benchmark:

Browsing 95% Browse and 5% Order

Shopping 80% Browse and 20% Order

Ordering 50% Browse and 50% Order

We chose the Browsing mix to perform our experiments because we wanted to
test two different scenarios, this being mostly reads and the TPC-C being update
heavy.
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The configurable parameters are the numbers of Emulated Browsers (EBs)
which represent the number of clients, and the number of items in the system,
all the other parameters such as the number of customer, addresses, authors or
orders, are relative to these ones.

In order to compare our implementation with and without the transactional
guarantees with the standard Derby Client/Server configuration, we used one
machine to serve as Client, Database Server and Web Server for all three cases.
For our implementation we also used one machine as a Cassandra node and an-
other one as a Zookeeper node for the transactional system. We tested the system
with 1000 items and a varying number of clients, ranging from 10 to 100 with the
results for throughput and latency show in figure 6.1(a) and 6.1(b), respectively.
When experimenting with a number of clients greater than 100, we re-populated
the system with 10000 items, as specified by TPC-W.

We also run an industry standard on-line transaction processing SQL bench-
mark, TPC-C. It mimics a whole-sale supplier with a number of geographically
distributed sales districts and associated warehouses. The warehouses are hotspots
of the system, and the benchmark defines ten clients per warehouse.

TPC-C specifies five transactions:

NewOrder with 44% of the occurrences

Payment with 44% of the occurrences

OrderStatus with 4% of the occurrences

Delivery with 4% of the occurrences

StockLevel with 4% of the occurrences

The NewOrder, Payment and Delivery are update transactions, while the oth-
ers are read-only. The traffic is a mixture of 8% read-only and 92% update trans-
actions, therefore it is a write intensive benchmark.

We have used an SQL-based implementation, BenchmarkSQL1, without mod-
ifications.

1http://sourceforge.net/projects/benchmarksql/

http://sourceforge.net/projects/benchmarksql/
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The TPC-C database was populated with 10 warehouses resulting in a database
with 6.4GB per Cassandra node with a replication factor of 3 and with 1.4GB in
the Derby server, and the number of client threads varied from 1 to 50.

6.3 Results Analysis

We tested our system against two different standard workloads for RDBMSs, in
order to evaluate its performance on these two different scenarios.

We started by testing both the system with no transactions, i.e. just with the
abstraction layer we created, and the same system but with our transactional
library, against a regular setup of Derby using the TPC-W browsing mix which
has some inserts, but it is mostly fetches.

The results of this experience are portrayed in Figure 6.1. They show that from
50 clients onward, the transactional system performance starts to drop, this is due
to fact that our locks have a much bigger granularity than Derby’s which makes
more clients having to wait on others to finish their transactions, resulting in the
big increase in latency.

Up until 100 clients, Derby and the non-transactional system have very sim-
ilar performance and the later even has less latency since it has no locks. We
don’t show the continuation of this graphic because both systems with Cassan-
dra swamp the machines, taking the CPU and IO usage to 90+%, while Derby is
able to run until about 300 clients.

From this we concluded that the transactional system cannot handle a big
amount of inserts, as the latency increases enormously even with a workload
that is not write intensive.

On a second experience, we tested the non-transactional system with Cassan-
dra against Derby under the TPC-C workload, which is write intensive instead
of read intensive as TPC-W.

The results are shown in Figure 6.2. Here we can see that the difference be-
tween the system with Cassandra and Derby is much bigger, this is caused by the
very large amount of updates in some of TPC-C’s transactions.

In particular, we found that the Delivery transaction, being the one with more



updates, was the one with the biggest impact in performance. So, we also tested
both systems without the 4% of Deliveries which were transferred to New Orders.
What we saw was that even though with 1 client the performance was about the
same, when the number of clients increased the system’s performance increased
greatly, even surpassing Derby’s.

6.3.1 Summary

So, the transactional system with Cassandra when under stress will collapse due
to a huge increases in latency and the non-transactional system for mostly read-
only transactions is able to compete with Derby, but loses under write intensive
workloads.
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Figure 6.1: Results of running TPC-W with different number of clients
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Chapter 7

Related Work

Our work spans over several areas such as coupling the SQL processor of a
RDBMS with a VLSD and there is also some work on high level interfaces for
VLSDs that try to offer some of the SQL processing capabilities atop of those
VLSDs.

7.1 SQL over Memory

The idea of modifiing Derby so that the data is stored in a different way than nor-
mal is not entirely new and was firstly introduced by Knut Magne Solem [Sol07].
In his approach all the tables whose name began with MEM were stored in mem-
ory, as opposed to our approach which stores in Cassandra all the tables whose
name starts with TUPLE. This implies mapping the data model and APIs of Cas-
sandra to the storage engine interface of Derby.

7.2 Distributed Transactions

Transactions become difficult under heavy load. When you first attempt to hori-
zontally scale a relational database, making it distributed, you must now account
for distributed transactions, where the transaction isn’t simply operating inside a
single table or a single database, but is spread across multiple machines. In order
to continue to enforce the ACID properties of transactions, you need a transaction
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manager to orchestrate across the multiple nodes.

There are many leader election algorithms but they all have the same input
and output. At the beginning there is a set of nodes in a network, unaware of
which of them is the leader, after the protocol they all recognize a particular,
unique node as the leader.

Assuming that the leader is already elected, a simple way to complete a dis-
tributed transaction in an atomic manner is for the coordinator to communicate
the commit or abort request to all of the participants in the transaction and keep
repeating the request until all of them have acknowledged that they have car-
ried it out. This is called one-phase commit protocol [CDK01] and is inadequate
because it does not allow a server to make a unilateral decision to abort a trans-
action.

Two-phase commit protocol

The two-phase commit protocol is designed to allow any participant to abort its
part of a transaction which, by the atomicity requirement, means the whole trans-
action must be aborted.

In the first phase of the protocol the coordinator asks all of the participants
if they are prepared to commit and in the second it tells them to commit/abort
the transaction. Once a participant has voted to commit a transaction it is not
allowed to abort it, therefore a participant must make sure it will be able to carry
out its part of the protocol, before committing to it.

Using the operations defined in Table 7.1, a successful run of the protocol with
one coordinator and one participant is as shown by Figure 7.1.

The greatest disadvantage of the two-phase commit protocol is that it is a
blocking protocol. If the coordinator fails permanently, some participants will
never resolve their transactions: After a participant has sent an agreement mes-
sage to the coordinator, it will block until a commit or rollback is received.
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Operation Description

canCommit?(trans)→ Yes/No Coordinator asks if it can commit a transac-
tion. Participant replies with vote.

doCommit(trans) Coordinator tells participant to commit its
part.

doAbort(trans) Coordinator tells participant to abort its
part.

haveCommited(trans,participant) Participant tells the coordinator it has com-
mited.

getDecision(trans)→ Yes/No Participant asks for decision after it has
voted. Used to recover from server crashes
or delayed messages.

Table 7.1: Operations for two-phase commit protocol (based on [CDK01])

Coordinator
step status

1 prepared to commit
(waiting for votes)

3 commited

done

Participant
step status

2 prepared to commit
(uncertain)

4 commited

canCommit?
Yes

doCommit

haveCommited

Figure 7.1: Two-phase commit successful run[CDK01]

Three-phase commit protocol

Due to the fact that the two-phase commit is a blocking protocol which can lead
to a blockage of the whole system, a non-blocking adaptation of this protocol was
designed, it is called three-phase commit.

This protocol introduces a preCommit phase as well as timeouts in each of the
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phases, so that a participant will never be blocked forever.

Apart from the extra messages traded, the main disadvantage with three-
phase commit is that it assumes a fail-stop model, which means it is not tolerant
to network partitions or asynchronous communication.

7.2.1 CloudTPS

One particular implementation of distributed transactions, i.e. offers transac-
tional guarantees over a VLSD, is CloudTPS [ZPC11] which chooses to provide
strong consistency at the cost of the possibility of becoming unavailable when
facing network partition. In order to provide full transactional guarantees it in-
troduces the concept of Local Transaction Managers (LTMs) which are various
parts of a transaction manager called transaction processing system, each of them
is responsible for a part of the data and for processing certain parts of the trans-
action.

Since a transactional system must maintain the consistency even in the case
of server failures, the data items and transactions state are replicated to multiple
LTMs and consistent data snapshots are periodically checkpointed to the cloud
storage system in order to guarantee the durability of each transaction.

The client can submit a transaction to any LTM that is responsible for one of
the accessed item, which then acts as the coordinator of the transaction across
all LTMs responsible for the data items needed by the transaction, which is im-
plemented using the two-phase commit protocol where the other LTMs are the
participants.

This is obviously not suited for what we proposed to achieve since it does
not tolerate network partition, which is a feature we wish to maintain in our
Cassandra cluster.

7.3 High Level Interfaces for a VLSD

VLSDs’ query interfaces are in general very low level and do not conform to any
type of standard which, as has been pointed out, leads to many problems in-
cluding portability of code. There have been several projects that have proposed
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different high level interfaces for the VLSDs in order to mitigate this problem.

7.3.1 Object Mapper

Using object mapping tools in order to allow to bypass the lower level interfaces
of Cassandra is one the possible approaches, and is the one taken by the Cassan-
dra Object Mapper [GPO11].

In this project the user has at its disposal generic object interfaces like JPA and
JDO that allow him to use the underlying database in an almost transparent way,
which greatly simplifies the reading and writing of data. This transparency also
brings the advantage of aiding in the migration of existent solutions and allowing
the mix of different types of data stores under the same code base.

The underlying store can be a Cassandra cluster which will, therefore, be avail-
able to the user through one of those interfaces with all their expressiveness and
features, such as JDO class annotations.

One of the downsides of this solution is that it offer no transactional guaran-
tees and therefore some of features that would be expected in this kind of the tool
are thereby unavailable to the user.

7.3.2 Hive

Hive [TSJ+09] was initially developed at Facebook and is now an Apache project.
It is built on top of Apache Hadoop and facilitates querying and managing of
large datasets in distributed storage by providing a mechanism to impose struc-
ture on a variety of data formats and access to files stored directly in Apache
HDFS or in other storage systems.

It defines a simple SQL-like query language, called HiveQL, whose queries
are executed via MapReduce with the particularity that there is no specific data
format, it works on Thrift and allows for the creation of specialized data formats.
Also, it enables users to plug in custom map-reduce scripts into queries.

Hive is not designed for online transaction processing and it is best used for
batch jobs over large sets of append-only data since what it values most is scala-
bility, extensibility, fault-tolerance and a loose coupling between it and its input
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formats.

7.3.3 Cassandra Querying Language

The Cassandra Querying Language (CQL) [Eva10a] development was started by
Eric Evans and has since been integrated into the core of Cassandra. His idea
was to develop a SQL like query language on top of Cassandra, bypassing an
SQL interpreter altogether at the expense of not being compatible with actual
SQL code. Still, this would allow for much faster adaptation to Cassandra, for
people with relational background.

CQL has been released with Cassandra version 0.8, and a select query will
look somewhat like this [Eva10b]:

SELECT (FROM)? <CF> [USING CONSISTENCY.<LVL>] WHERE

<EXPRESSION> [ROWLIMIT X] [COLLIMIT Y] [ASC|DESC]

And would be replacing a lot of old methods for retrieving data as get(), get_slice(),
get_range_slices(), and so on.

At the time of writing there are still some features to be implemented [Eva11],
such as ALTER and prepared statements and some SQL features that will not be
implemented at all, as joins and update1.

1Since cassandra 0.7 the updates are viewed as a special case of insert
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Conclusions

Very Large Scale Databases have recently been a thriving field of study and in-
terest due to their scalability and high availability. However, these alluring char-
acteristics hinge on relaxed data consistency and simple access interfaces. As a
result, VLSDs fall short when replacing or even complementing traditional Rela-
tional Database Management Systems.

The migration of existing applications from RDBMSs to VLSDs is often a dif-
ficult task given the lack of transactional guarantees and querying processing.

In this thesis we aimed at assessing the feasibility of integrating an SQL engine
providing serializability guarantees in Cassandra, a popular and widely used
VLSDs. To this end, we have (1) adapted an existing RDBMS query engine by
changing its underlying storage system (Chapter 4), (2) developed a query en-
gine agnostic distributed transactional library (Chapter 5), and (3) evaluated the
system under standard RDBMS workloads.

While, on one hand, our work attests the feasibility of the general approach by
providing a prototype that enables the execution of ANSI SQL queries on top of
Cassandra while providing extreme transaction isolation guarantees, on the other
hand, it also clearly shows the high performance impact such strong guarantees
and a feature lacking storage system can impose.

For a non-intrusive transaction management mechanism (any changes to the
underlying VLSDs would defeat the purpose of our study) we opted for a strict-
locking policy where a transaction requests all required locks upfront and atom-
ically. While this a very strong assumption on the initial knowledge of a trans-
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action, it prevents transaction aborts due to deadlocks allowing us to assess the
impact of ensuring transaction serializability in terms of system contention. In
other words, the results of the experiments depicted in Chapter 6 reflect a worst
case scenario.

With respect to Cassandra the main problem stems from the lack of efficient
scan operations. In Cassandra, scans are only possible when using an Order Pre-
serving Data Partitioner. However, because such a distribution is prone to create
data hotspots when subject to the benchmarks we had to use a Random Data Par-
titioner. This prevents us to use native table scans leading to the need to create
index by row keys for each table and “externally” perform the scan by reading
the index and then individually fetching each row. This way any scan in our
system has the overhead of a scan through a secondary index.

8.1 Future Work

There are many ways in which we could continue the experiments detailed through-
out this dissertation, such as implementing a deadlock detector or a deadlock
breaking system based on timeouts for the transactional library which would al-
low it to ask for locks only when they are needed and not all at once. We could
not disregard the fact that this could not break serializability, obviously.

Also, this system is built specifically for the case of Derby and Cassandra and
the transactional system is specially linked with Cassandra. An area to be ex-
plored would be building such a system for other VLSDs and if possible build a
generic transactional system for most, if not all, VLSDs.
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