
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master’s Thesis
Master in Informatics Engineering

Science Data Vaults
in MonetDB: A Case Study

João Nuno Araújo Sá

Supervisors:
Prof. Dr. José Orlando Pereira
Departamento de Informatica, Universidade do Minho
Prof. Dr. Martin Kersten
Centrum Wiskunde & Informatica, Amsterdam

July 2011

ii

Declaration

Name: João Nuno Araújo Sá

Email: joao.nuno.a.sa@gmail.com

Telephone: +351964508853

ID Card: 13171868

Thesis Title: Science Data Vaults in MonetDB: A case study

Supervisors:
Prof. Dr. José Orlando Pereira
Prof. Dr. Martin Kersten
Dra. Milena Ivanova

Year of Completion: 2011

Designation of Master: Master in Informatics Engineering

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE
A TAL SE COMPROMETE.

University of Minho, 13th July 2011

João Nuno Araújo Sá

ii

Experience is what you get when you didn’t get what you
wanted.

Randy Pausch (The Last Lecture)

iv

Acknowledgments

To Dr. José Orlando Pereira for accepting being my supervisor and for giving me this
possibility to do my master thesis in Amsterdam. Apart from the distance, all the emails
and recommendations were very helpful and I am thankful.

To Dr. Martin Kersten for receiving me in such a recognizable place as CWI and
providing me the opportunity to be responsible for this project.

To Bart Scheers for all the patience talking about astronomical concepts and suggest-
ing ideas to build a robust and solid use case.

A special thanks to Milena Ivanova for all the support, advice, inspiration and friend-
ship. During all the meetings her help was essential, and to all the intensive corrections
on the text I am extremely grateful.

To all the people of CWI, in particular the INS-1 group, for making me feel one of
them through their sympathy and professionalism.

Ao meu pai, José Manuel Araújo Fernandes Sá e à minha mãe, Fernanda da Conceição
Pereira de Araújo Sá, por todo o apoio, compreensão e saudades durante este ano que
estive fora.

A toda a minha família, aos meus velhos amigos de Viana do Castelo e aos amigos
que fiz em Braga.

To all my Amsterdam friends for making this year memorable. I will never forget the
moments we had together.

v

vi

Resumo

Hoje em dia, a quantidade de dados gerada por instrumentos científicos (dados cap-
turados) e por simulações de computador (dados gerados) é muito grande. A quantidade
de dados está a tornar-se cada vez maior, quer por melhorias na precisão dos novos intru-
mentos, quer pelo aumento do número de estações que recolhem os dados. Isto requere
novos métodos científicos que permitam analisar e organizar os dados.

No entanto, não é fácil lidar com estes dados, e com todos os passos pelos quais ne-
cessitam de passar (capturar, organizar, analisar, visualizar e publicar). Muitos são colec-
cionados (captura), mas não são selecionados (organização, análise) ou publicados.

Nesta tese focamo-nos nos dados astronómicos, que são geralmente armazenados em
ficheiros FITS (Flexible Image Transport System). Vamos investigar o acesso a esses da-
dos, e pesquisar informação neles contida, utilizando para isso uma tecnologia de base
de dados. A base de dados alvo é o MonetDB, uma base de dados de armazenamento
por colunas, de código livre, que já demonstrou ter sucesso em aplicações que analisam
a carga de trabalho e aplicações científicas (SkyServer).

Perante os resultados obtidos durante as experiências, a perceptível superioridade
apresentada pelo MonetDB em relação à ferramenta STILTS quando mais computação é
exigida, e por último, pelo sucesso na execução do conjunto de testes apresentado pelo
astronómo que trabalha no CWI, podemos afirmar que o MonetDB é uma alternativa
forte e robusta para manipular e aceder informação contida em ficheiros FITS.

vii

viii

Abstract

Nowadays, the amount of data generated by scientific instruments (data captured) and
computer simulations (data generated) is very large. The data volumes are getting bigger,
due to the improved precision of the new instruments, or due to the increasing number
of collecting stations. This requires new scientific methods to analyse and organize the
data.

However, it is not so easy to deal with this data, and with all the steps that the data
have to get through (capture, organize, analyze, visualize, and publish). A lot of data is
collected (captured), but not curated (organized, analyzed) or published.

In this thesis we focus on the astronomical data, typically they are stored in FITS
files (Flexible Image Transport System). We will investigate the access and querying of
this data by means of database technology. The target database system is MonetDB, an
open-source column-store database with record of successful application to analytical
workloads and scientific applications (SkyServer).

Given the results of the experiments, the perceptible superiority presented by Mon-
etDB over STILTS when more computation is required, and the success obtained during
the execution of the use case proposed by an astronomer working at the CWI, we can
declare that MonetDB is a powerfull and robust alternative to manipulate and access
information contained in FITS files.

ix

x

Contents

1 Introduction 1

1.1 The need to integrate with repositories . 2

1.2 Assumptions . 3

1.3 Contributions . 3

1.4 Approach . 4

1.5 Project Objectives . 4

1.6 Outline of report . 4

2 Background 7

2.1 Introduction to MonetDB . 7

2.2 Introduction to FITS . 8

2.2.1 Applications of the FITS . 9

2.2.2 The structure of a FITS file . 9

3 Contribution to MonetDB 13

3.1 Overview of the vaults . 13

3.2 Architecture of the vault . 14

3.3 Attach a file . 15

3.4 Attach all FITS files in the directory . 16

3.5 Attach all FITS files in the directory, using a pattern 16

3.6 Table loading . 17

3.6.1 Search for the ideal batch size . 21

3.6.2 BAT size representation of Strings in MonetDB 31

3.7 Export a table . 33

xi

xii CONTENTS

4 Case Study 37

4.1 Overview . 37

4.2 Attach a file . 37

4.3 Attach all FITS files in the directory . 38

4.4 Attach all FITS files in the directory, giving a pattern 38

4.5 Load a table . 38

4.6 Export a table . 39

4.7 Cross-matching astronomical surveys . 39

4.7.1 Query 1: Distribution of distances between sources in both surveys 41

4.7.2 Distribution of the distances smaller than 45 arc seconds 44

4.7.3 Normal Distribution of all the data 46

4.7.4 Frequency of the distances smaller than 5 arc seconds 47

4.7.5 Frequency of the r value between sources in both surveys 48

4.7.6 Query 2: extract & compare brightness in different frequencies . . 49

4.7.7 Query 3: extract the spectral index 51

4.7.8 Distribution of the spectal index . 51

4.7.9 Normal distribution of the spectral indexes 52

5 Performance Experiments 55

5.1 Experimental Setting . 55

5.2 Test Files . 56

5.3 Delegation experiments . 58

5.3.1 Selection and Filter delegation for Group number 1 58

5.3.2 Range Delegation for Group number 1 65

5.3.3 Statistics Delegation for Group number 1 69

5.3.4 Selection and Filter Delegation for Group number 2 71

5.3.5 Range delegation for Group number 2 73

5.3.6 MonetDB problem . 77

5.3.7 Projection delegation for Group number 2 80

5.3.8 Statistical Delegation for Group number 2 80

5.3.9 Summary of the tests for the first and second groups 82

CONTENTS xiii

5.3.10 Equi-join delegation for Group number 3 83

5.3.11 Band-join delegation for Group number 3 88

6 Related Work 93

6.1 CFITSIO . 93

6.1.1 Fv . 96

6.2 STIL . 97

6.2.1 TOPCAT . 102

6.2.2 STILTS . 106

6.3 Comparison between tools . 107

6.4 Astronomical data formats . 107

6.4.1 HDF5 Array Database . 107

6.4.2 VOTable . 109

6.4.3 Comparison between file formats . 111

7 Conclusion 113

7.1 Results and Overview . 113

7.2 Future Work . 114

Bibliography 116

xiv CONTENTS

List of Figures

3.1 Three layers of a vault . 14

3.2 Load of all the numerical types . 19

3.3 BAT and File sizes for each one of the numerical types 20

3.4 Batch 1 for the strings with 4 bytes . 22

3.5 Batch 1 for the strings with 8 bytes . 22

3.6 Batch 1 for the strings with 20 bytes . 22

3.7 Batch 10 for the strings with 4 bytes . 23

3.8 Batch 10 for the strings with 8 bytes . 24

3.9 Batch 10 for the strings with 20 bytes . 24

3.10 Batch 20 for the strings with 4 bytes . 25

3.11 Batch 20 for the strings with 8 bytes . 25

3.12 Batch 20 for the strings with 20 bytes . 26

3.13 Batch 50 for the strings with 4 bytes . 27

3.14 Batch 50 for the strings with 8 bytes . 27

3.15 Batch 50 for the strings with 20 bytes . 27

3.16 Batch 100 for the strings with 4 bytes . 28

3.17 Batch 100 for the strings with 8 bytes . 28

3.18 Batch 100 for the strings with 20 bytes . 28

3.19 Batch 1000 for the strings with 4 bytes . 29

3.20 Batch 1000 for the strings with 8 bytes . 29

3.21 Batch 1000 for the strings with 20 bytes . 30

3.22 Loading strings with 4 bytes . 30

3.23 Loading strings with 8 bytes . 30

xv

xvi LIST OF FIGURES

3.24 Loading strings with 20 bytes . 31

3.25 Representation of the space occupied by the strings with the size of 4 bytes 32

3.26 Representation of the space occupied by the strings with the size of 8 bytes 32

3.27 Representation of the space occupied by the strings with the size of 20 bytes 33

3.28 Export the numerical types into a FITS file 35

3.29 Export the strings into a FITS file . 35

4.1 Distribution of distances between sources 45

4.2 Normal Distribution . 47

4.3 Frequency of distances between sources that are less than 5 arc seconds
apart from each other . 47

4.4 Measure of the brightness in different frequencies 50

4.5 Calculation of the spectral index . 51

4.6 Plot of the Normal distribution of the spectral index 53

5.1 Performance of MonetDB and STILTS in Point Query operations with nu-
merical types . 59

5.2 Performance of MonetDB and STILTS in Point Query operations for short
type . 59

5.3 Performance of MonetDB and STILTS in Point Query operations for inte-
ger type . 60

5.4 Performance of MonetDB and STILTS in Point Query operations for long
type . 61

5.5 Performance of MonetDB and STILTS in Point Query operations for float
type . 61

5.6 Performance of MonetDB and STILTS in Point Query operations for dou-
ble type . 62

5.7 Performance of MonetDB and STILTS in Point Query operations with dif-
ferent string sizes . 63

5.8 Performance of MonetDB and STILTS in Point Query operations with sin-
gle 4-byte string column . 64

5.9 Performance of MonetDB and STILTS in Point Query operations with sin-
gle 8-byte string column . 65

LIST OF FIGURES xvii

5.10 Performance of MonetDB and STILTS in Point Query operations with sin-
gle 20-byte string column . 65

5.11 Performance of MonetDB and STILTS in Range operations with numerical
types . 67

5.12 Performance of MonetDB and STILTS in Range operations for short type . 67

5.13 Performance of MonetDB and STILTS in Range operations for integer type 67

5.14 Performance of MonetDB and STILTS in Range operations for long type . 68

5.15 Performance of MonetDB and STILTS in Range operations for float type . 68

5.16 Performance of MonetDB and STILTS in Range operations for double type 68

5.17 Performance of MonetDB and STILTS in statistical operations for short type 69

5.18 Performance of MonetDB and STILTS in statistical operations for short type 69

5.19 Performance of MonetDB and STILTS in statistical operations for integer
type . 70

5.20 Performing of MonetDB and STILTS in statistical operations for long type 70

5.21 Performance of MonetDB and STILTS in statistical operations for float type 70

5.22 Performance of MonetDB and STILTS in statistical operations for double
type . 71

5.23 Performance of Monet and STILTS in Point Query operations 72

5.24 Performance of Monet and STILTS in Point Query operations 72

5.25 Performance of Monet and STILTS in Point Query operations 73

5.26 Performance of Monet and STILTS in Range operations 74

5.27 Performance of Monet and STILTS in Range operations 76

5.28 Problem on Monet with the table of 1G . 77

5.29 Performance of MonetDB and STILTS in Point Query Operations 78

5.30 Performance of MonetDB and STILTS in Range Operations 78

5.31 Performance of MonetDB and STILTS in Range Operations 79

5.32 Performance of Monet and STILTS in Projection operations 80

5.33 Performance of Monet and STILTS in Statistics operations 81

5.34 Performance of Monet and STILTS in Statistics operations 81

5.35 Performance for the different fan-out factors 84

5.36 Percentage of memory consumed . 85

5.37 Performance for the different fan-out factors 87

xviii LIST OF FIGURES

5.38 Percentage of memory consumed . 88

5.39 Performance for the different fan-out factors 89

5.40 Percentage of memory consumed . 90

List of Tables

3.1 First group of FITS files . 18

5.1 Second group of FITS files . 57

5.2 Third group of FITS files . 57

6.1 List of operations performed by the tools 107

6.2 Tasks performed for each one of the file formats 111

xix

xx LIST OF TABLES

Chapter 1

Introduction

In the past, scientific data was collected and stored predominantly in files. Using the
file system is easy and practical but it has a number of disadvantages. First, files have no
metadata, they do not benefit the evolution of data analysis tools, they do not have a high-
level query language and the query methods will not do parallel, associative, temporal,
or spatial search.

One strategy used by scientists to overcome the lack of metadata in files, is to provide
extra information in the file name, allowing for the data of interest to be filtered efficiently.
For example, the file name "January2010Hubble" describes that data was captured in
January, 2010, by the space telescope named Hubble. The disadvantages of this approach
are: limited number of parameters can be encoded in the file name, specific software
needs to be written to understand the names, and we can have very long file names.

However, scientists prefer to use files instead of databases [17]. And when they are
confronted about the reason why do not use databases, there is a huge range of answers
they give:

• They do not benefit with the utilization of them

• The cost of learning the tools is not worth it

• They do not have a good visualization/plotting of the results or because they use
their own programming language

• Because there are incompatible scientific data types such as N-dimensional arrays
and spatial text which are very difficult to support

• Because is to slow (loading takes too long, and sometimes it is not the data they
need)

1

2 CHAPTER 1. INTRODUCTION

• Because once the scientific data is loaded, it cannot be manipulated anymore using
standard applications.

In other words, database systems were not initially built to support science’s core data
types. Therefore, a big evolution is needed before a second look by the scientists. How-
ever, things are different now. The datasets are becoming bigger and bigger (peta-scale),
file-ftp will not work with such a huge amount of data, and scientists need databases for
their data analysis, for non-procedural query analysis, automatic parallelism, and search
tools. Another way to access the data is needed. In the book "The 4th Paradigm" [17], Jim
Gray describes those problems, emphasizing that better tools that support the whole re-
search cycle need to be produced, from data capturing and data curation to data analysis
and visualization. He also affirmed that the science evolution developed in the following
four paradigms:

• It belongs to thousands of years ago, when science was only experimental and em-
pirical.

• When it turned into theoretical science (some hundreds of years ago) with its equa-
tions, laws and models.

• In the last few decades, the theoretical paradigms got so complex and complicated
to solve analytically that some simulation was needed. With this, computational
science was born, resulting in a huge amount of data generated by the simulations.

• Data exploration, where the data is either captured by instruments or generated
by simulations before being processed by software and finally stored in computers.
The scientists only look at the data at the end of this whole process.

1.1 The need to integrate with repositories

It is essential to have good metadata, describing data in standard terms, so people
and programs can understand it. In the scientific community, data must be correctly
documented and must be published in a way that allows easy access and automated
manipulation.

Predominately the reasons why we need to integrate with repositories are as follows.
Firstly, they already have their own metadata. Secondly, they have their own way to
structure the data. Thirdly, they were built with the purpose to supply answers to a
specific community of scientists that already have their own unique demands. Database
integration of the repository will extend functionality with the minimum investment.

1.2. ASSUMPTIONS 3

1.2 Assumptions

The first assumption of this work is that it is limited to a specific scientific community:
astronomy, and to a particular format used in astronomy: FITS.

FITS is the standard astronomical data format endorsed by both NASA (National
Aeronautics and Space Administration) and the IAU (International Astronomical Union).
It also has the data structured in a standard scheme and it is extremely easy to get access
to FITS files. They are available in thousands of websites: [6] and [5] are some examples
of them. There are also some well known surveys that produce data using FITS files as
output: FIRST [26], SDSS [4], and UKIDSS [7] for example.

The last assumption is that we limit ourselves to MonetDB, a powerful column-store
database that is being developed in CWI, Amsterdam. It has the advantage of being
open-source and built for analytical applications. The fact of being open source brings
advantages. The availability of the source code and the right to modify it, enabling the
unlimited tuning and improvement of a software product, as it is referenced in [15], is one
of them. Applied to our case, allowed the creation of a new module and the development
of new functionalities, inside MonetDB code.

1.3 Contributions

Our contributions to this project are a seamless integration of FITS vaults with Mon-
etDB, through the development of a module inside the MonetDB code, that will provide a
set of functionalities and it will provide a powerfull alternative to access and manipulate
FITS files. We support only FITS Tables.

Once the FITS vault is understood, through the analysis of the metadata and the data
model, it can be expressed in a relational database system.

The described alternative is based on a set of experimentations which are handled
using MonetDB. It uses a fully new integration of FITS files with the database world
that is ready to support an intricate set of astronomical questions that only databases can
answer. The databases are enabled to process this data because they are developed and
maintined for this purpose.

The experiments will be undertaken by a set of stress tests using MonetDB.

4 CHAPTER 1. INTRODUCTION

1.4 Approach

We do a bottom-up evaluation of the primitive needs that access and manipulate FITS
files. The context is limited to FITS files, but we must keep others in mind. How could
we work with other formats that are able to store astronomical data, how can we access
their metadata and which properties do we have to understand in order to draw the data
model in the relational database system. Another important factor that must be consid-
ered is what are the differences between them and the FITS format. All this questions
will be answered in the Related Work section, where we compare FITS files with others
astronomical file formats.

1.5 Project Objectives

The main objective of this thesis is to study what extensions of a modern database
architecture are needed, to provide the system with the ability to understand scientific
data in external formats. Such ability will provide the users-scientists with:

• View over repository of data files in FITS standard format. Such a view presents
metadata of the files and allows users to locate data of interest by posting queries
against the metadata;

• Automatic attachment of files and data of interest. Using this feature the user
can avoid manual loading of high volumes of data, which is time- and labour-
consuming. The system automatically ships the data to the database. Furthermore,
only pre-selected data of interest will be touched;

• Declarative SQL queries for analysis;

• Data Integration. The system allows for complex analysis that includes combining,
comparing, correlating data from different FITS files and repositories (through SQL
join queries, missing in FITS tools).

1.6 Outline of report

In Chapter 2 we will provide some knowledge on the background required to under-
stand the thesis work. We will describe some important features of MonetDB and FITS
files. In Chapter 3 we will present our contribution to MonetDB. More precisely, we de-
scribe the FITS vault module that was developed and some important decisions made
during the design & development process. In Chapter 4 we illustrate the functionality

1.6. OUTLINE OF REPORT 5

of the module by conducting an astronomy use case. In Chapter 5 we will conduct ex-
periments, comparing the performance of MonetDB with the existing tools that operate
with FITS files. In Chapter 6 we will enumerate some libraries that provide a set of func-
tionalities to manipulate and access FITS files. We will list some programs that use those
libraries and investigate what they can and cannot do with the respect to our use case. Fi-
nally, in Chapter 7, we will talk about the results and a overview about the entire project.
We will end with some suggestions for future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we introduce the main concepts that underly our project. Here we
will introduce the MonetDB system, focusing on the enhancements that it brings to the
database world and the benefit for the astronomy community, as a database engine de-
signed and prepared to answer routine astronomical queries. Thereafter, a presentation
about the FITS files will be undertaken, exploring their history, their characteristics and
how they are structured.

2.1 Introduction to MonetDB

MonetDB [2] is an open-source column-oriented database management system devel-
oped, since 1993 at CWI, Amsterdam. The column-store idea was born as a depend-
able solution to solve the main bottleneck faced by the majority of database systems: the
main-memory access. Vertical fragmentation is identified as the solution for database
data structures, which leads to optimal memory cache usage [11].

It is implemented by storing each column of a relational table in a separate binary
table, called a Binary Association Table (BAT). A BAT is represented in memory as an
array of fixed-size two-field records [OID,value], or Binary UNits (BUN). Their width
is typically 8 bytes. MonetDB executes a relational algebra called the BAT Algebra that
is programmed with the MonetDB Assembler Language (MAL). With a binary table for
each column of the relational table, the query execution model is also different from main
stream systems, having one operator at a time over entire columns. All these changes in
the database architecture led to a creation of a brand new software stack, innovating all
layers of the Database Management System.

The three layers that compose MonetDB software stack are: the query language parser,
the set of optimizer modules and the back-end (MAL interpreter). The query language

7

8 CHAPTER 2. BACKGROUND

parser it has an optimizer that reduces the amount of data produced by intermediates and
exploits the catalogue on join-indices. The output is a logical plan expressed in MAL. The
optimizer module takes decisions based on cost-based optimizers and runs algorithms.
This module is crucial for the efficiency of the database. The MAL interpreter maintains
properties over the objects accessed to gear the selection of subsequent algorithms. For
example, a Select operator can benefit from sorted-ness.

This provides a simplification of the database kernel, an ability to fully materialize
intermediate results, efficiency in the query processing speed and high performances
when dealing with complex queries on sizable amounts of data.

This database system has already proved to be an asset for real-life astronomy appli-
cations (SkyServer project) [19], with the goal to provide public access to the Sloan Digital
Sky Survey warehouse for astronomers and the wider public. MonetDB, and the column
store approach, demonstrate that they are promising for the scientific domain. We will
use MonetDB to store the data imported from external file formats, and provide the data
when requests are made.

The MonetDB code can be extended with new functionality. Functions need to be
compiled and brought into the MAL level, so they can be used in the SQL level. This ex-
tensibility is done through a create procedure [21] in the SQL level. This will enable the
user to call the functions and have access to the functionalities provided by the module.

2.2 Introduction to FITS

It was in Holland and in the United States of America that the first high quality images
of the radio sky were produced. The decade was 1970 and the pioneers were the West-
erbork Synthesis Radio Telescope (WSRT) in Westerbork, Holland, and the Very Large
Array (VLA) in New Mexico, United States of America.

Their wish was to combine the data derived from both instruments. The main prob-
lem was that the two groups were observing at different frequencies. As a consequence,
it was complex to exchange information, either because the institutions had their own
way to organize the data (internal storage format), or because there were considerable
differences in the architecture of their machines, using a distinct internal representation
for the same number, for instance.

Lacking a standard format for the transport of images, everytime when an astronomer
needed to take data from an observatory to a home institution, some special software had
to be created, in order to convert (restructure and perform bit manipulations) the data
from the original machine, to the format that was being used by the home institution.

2.2. INTRODUCTION TO FITS 9

With all this setbacks, creating a single interchange format for transporting digital
images between institutions, in order to avoid all this heavy process was needed. The
idea was that each institution would need only two software packages: one that would
translate the transfer format into the internal format, used by the institution and one
that would transform the internal format into the transfer format. The Flexible Image
Transport System (FITS) [13], was created with the intention to provide such a transfer
format.

2.2.1 Applications of the FITS

The inaugural applications of FITS were the Exchange of radio astronomy images be-
tween Westerbork and the VLA and the Exchange of optical image data among Kitt Peak,
VLA and Westerbork. Afterwards, the use of FITS has expanded and it is now being ex-
plored as a data structure in a diversity of NASA-supported projects:

• X-ray data from the Einstein High Energy Astrophysics Observatory (HEAO-2)

• Compton Gamma Ray Observatory

• Roentgen Satellite (ROSAT)

• Ultraviolet and visible from the International Ultraviolet Explored (IUE) and the
Hubble Space Telescope

• Infrared data from the Infrared Astronomical Satellite (IRAS) and the Cosmic Back-
ground Explorer (COBE)

It is being used as a standard for gound-based radio and optical observations, for
organizations such as National Radio Astronomy Observatory (NRAO), National Optical
Astronomy Observatories (NOAO) and European Southern Observatory (ESO)

2.2.2 The structure of a FITS file

A FITS file is composed by a sequence of Header Data Units (HDUs), that can be fol-
lowed by a set of special records. Each HDU is composed by one header and the data
that follows. The header is a sequence of 36 80- byte ASCII card images containing key-
word = value statements. There are three special classes of keywords: required keywords,
reserved keywords and the ones that are defined by the user. The data that follows (also
called data records) is structured as the header specifies and it is binary data. The size of
each logical record is 23040 bits, equivalent to 2880 bytes. Each HDU consists of one or
more logical records. The last record of the header is filled with ASCII blanks so it can fill

10 CHAPTER 2. BACKGROUND

the 23040-bit lenght. The first HDU of a FITS file is called Primary HDU. The HDUs that
follow the Primary HDU are called extensions. When the FITS files contains one or more
extensions, it is most likely that the Primary HDU does not contain any data. When the
FITS file does not contain extensions it is called a Basic FITS, that is a file containing only
the primary header followed by a single primary data array.

The Primary HDU is the first HDU of a FITS file. It is composed of one header (Pri-
mary Header) and the data that follows. If the Primary HDU is alone in the FITS file
(there are no extensions), so it will be called Basic FITS. It is not normal (except for FITS
images) that a Primary HDU contains any data, but if it does, it has to be a matrix of data
values, in binary format that it is called Primary Array.

The Extensions have the same overall organization of all the HDUs (one header and
the data that follows) and they come after the Primary HDU, respecting the structure of
the FITS file. The extensions brought some new functionalities to the FITS files:

• Transfer new types of data structures: Images, ASCII Tables and Binary Tables

• Transfer collections of related data structures

• The data to be transported do not always fit conveniently into an array format

• Transport of auxiliary Information

The Tables are used to store astronomical data that is collected and they contain rows
and columns of data. In the FITS files there are two types of tables: the ASCII Tables
and the Binary Tables. As the name says, the ASCII tables store the data values in an
ASCII representation. The data appear as a character array, in which the rows represent
the lines of a table and the columns represent the characters that make up the tabulated
items. Each member of the array is one character or digit. Each character string or ASCII
representation of a number are in the FORTRAN-77 format. As for the binary tables, they
store the data in a binary representation. The binary tables are more efficient, compact
(about half of the size for the same information content), support more features and the
time spent converting to ASCII tables is eliminated. The display is not as direct as for
ASCII tables. The data types that can be stored in the FITS tables are:

• L: Logical value: 1 byte

• B: Unsigned byte: 1 byte

• I: 16-bit integer: 2 bytes

• J: 32-bit integer: 4 bytes

2.2. INTRODUCTION TO FITS 11

• K: 64-bit integer: 8 bytes

• A: Character: 1 byte

• E: Single precision floating point: 4 bytes

• D: Double precision floating point: 8 bytes

• C: Single precision complex: 8 bytes

• M: Double precision complex: 16 bytes

• P: Array Descriptor (32-bit): 8 bytes

• Q: Array Descriptor (64-bit): 16 bytes

12 CHAPTER 2. BACKGROUND

Chapter 3

Contribution to MonetDB

In this chaper we present our contribution to MonetDB, through the development of a
vault module that provides a set of functionalities concerning to FITS files. We will do a
short overview of the vault concept. Further, we will describe the architecture of a vault.
Finally, we will list a set of procedures and functions that were developed to make the
integration between FITS files and MonetDB possible.

3.1 Overview of the vaults

A vault can be defined as a safety deposit box or as a repository for valuable infor-
mation. By conducting an analogy to computer science terms, a data vault can be seen
as a folder that contain only images. Inside the same data vault, the objects have one
important factor in common: the metadata. It is the metadata that they have in common
that allows a possible distinction between different kinds of vaults, and even the ability
to create a completely new data vault based on similar parameters of the objects.

What distinguishes the objects in the same vault is the data that they carry. For ex-
ample, if the object is an image, we know that it will have pixels, height and width.
However, the values that are assigned to each one of the attributes differ for each image.

Knowing that, we can create a vault based on a directory of files. We just need to un-
derstand their metadata (using appropriate tools that allow us to access it), what meta-
data they have in common and what is their data model. Comprehending the data model,
we can decide how it will be represented in the relational database system.

We will apply the term vault to our case study. Creating a vault directory of FITS files,
that share the same metadata but for which each one contains its own information.

The system needs to understand the external formats that contain the scientific data

13

14 CHAPTER 3. CONTRIBUTION TO MONETDB

(FITS). Once this is understood, there will be a distinction between loading data and
attaching data. The idea of loading high volumes of data will be abandoned as it is time
consuming, and for the most part, it is not what the scientist requires. This concept allows
for the attachment of data (automatic attachment of files to the database), providing the
metadata to the scientists, giving them the opportunity to decide what is relevant. It will
be a selective load, and it will take less time.

3.2 Architecture of the vault

Figure 3.1: Three layers of a vault

In Figure 3.1 we can identify three distinct layers: the metadata wrapper, the data
wrapper and the functionality wrapper. The metadata wrapper reads and understands
the metadata of the vault and decides how the data model can be efficiently represented
in a relational database system. Looking to our FITS vault example, there are three func-
tionalities that support this demand: Attach a file, Attach all the files in the directory
and Attach all the files in the directory, giving a pattern.

The data wrapper loads a fragment of data of interest that was explicitly required into
the database. Once again, analyzing our FITS vault case, there are two procedures that
support this requirement: Load a table and Export a table. This will avoid loading huge
amounts of data at once, restricting the load to small portions that might be of interest
to the user. Once inside the database, the data can be queried, manipulated or even
exported as a completely new FITS file.

The functionality wapper is still future work and includes load on demand and syn-

3.3. ATTACH A FILE 15

chronization when the repository is updated. For the load on demand procedure, the
idea is to enable the user with the ability of typing a query to the system and the func-
tionality wapper will decide which FITS files will be attached and which tables will be
loaded, in order to give the right answer to the user.

In the following sections we will describe each one of the functionalities listed before.
All of them were implemented by building a module inside MonetDB code, that accesses
FITS files and the FITS catalogue, through a library called CFITSIO [16]. The CFITSIO li-
brary is written in C and provides a poweful interface for accessing, reading and writting
FITS files. However, before using this library the user must have a general knowledge
about the structured of a FITS file.

All the requests to the CFITSIO library are made using the C language. If the request
demands some data filtering on the tables, a SQL query needs to be translated into MAL
statements within MonetDB for execution.

3.3 Attach a file

We start with the attachment procedure, that opens a FITS file given its absolute name.
After checking if the file has the FITS format, it scans the metadata that is present in its
HDU and inserts descriptions of the table extensions to an internal FITS catalog. The
catalog is composed out of the following tables:

fits_files

id: Primary key. Unique number that identifies the file

name: absolute path to the attached file

fits_tables

id: Primary key. Unique number that identifies the table

name: name of the table that coincides with the name of the HDU. If the name is
already taken by another table, it creates a new name, concatenating the name of the
file, underscore and the number of the HDU which corresponds to the respective
table

columns: number of columns present in the table

file: id of the file, that can be identified in the table fits_files

hdu: number of the HDU that the table represents in the FITS file (the number
1 is always reserved for the primary HDU)

16 CHAPTER 3. CONTRIBUTION TO MONETDB

date: this information is not always present in the FITS file. However, it stores
the date when the FITS file was created

origin: similar to the date column, is data that is not always present. It stores
the information about the station responsible for the creation of the FITS file

comment: sometimes FITS files have a field reserved for some additional infor-
mation or comments that might be appropriate to supply.

fits_columns

id: Primary key. Unique number that identifies the column

name: name that was given to the column within the table

type: the type of column represented in a FITS format. For instance: 8A repre-
sents a string with 8 characters.

units: extra information about the units of the stored data: meters, kilometers,
etc.

number: number of the column within the table

table_id: id of the table which the column is present. It can be identified in the
table fits_tables

fits_table_properties

gives extra information about a table, such as extension, bitpix, stilvers (version
of the product generating the file) and stilclas

3.4 Attach all FITS files in the directory

This procedure enables the attachment of all FITS files that are present in a specific
directory, that is explicitly given as a parameter. If the directory can not be opened,
a proper error message will be transmitted to the user. This pattern is useful because
it avoids the attachment of the FITS files whithin a directory one by one, that is time
consuming and exhaustive if the directory has thousands of FITS files.

3.5 Attach all FITS files in the directory, using a pattern

This procedure is an extension of the previous one. It adds the possibility of giving a
pattern, in conjunction with the name of the directory, in order to diminish and limit the
number of FITS files that are attached to the database. It works similar by the ls program
used by UNIX. The advantage of this pattern follows the same idea as the previous one.

3.6. TABLE LOADING 17

However, it adds the option to give a pattern that will filter the FITS files attached. For
example, suppose that there is a directory that has two thousand files, from which we are
only interested in one thousand of them. If it is possible to build a pattern that will attach
only those files of interest, we should call this procedure.

3.6 Table loading

Another feature designed was the load procedure, that loads the table with a given
name. It searches the name in the FITS catalog, opens the corresponding file, moves to
the matching HDU, creates an SQL table and loads the data into it. If the table is not
described in the catalog, or it is already loaded, an appropriate error message will be
returned. It calls a function from the CFITSIO library called fits_read_col. This function
reads a column of the table and the data read are moved into an internal binary structure
of MonetDB. This function will be called the same number of times as the number of
columns present in the table.

This is an important and mandatory functionality, because it brings the data into the
database system so it can be queried, processed and manipulated. The data type that
takes more time to be loaded into MonetDB is the string type, due its unique structure
in the database architecture. But more details on that will be studied in the upcoming
chapters. This feature is in fact a bottleneck, when compared to existing tools that already
query, process and manipulate data present in files. To make it work in the database
world, the data needs to be first loaded from the files, so later it can give some answers
to the users.

A fast mechanism to load the data into the database is essential. With this, it would be
possible for a transition from the old and slow software tools world, to the more powerful
and faster database system world.

In the further sections we will analyze the loading of different types of data into Mon-
etDB. We will focus on one type at a time, building a set of FITS files, with only one
column, that will contain the target type.

Each FITS file has only two HDUs: the Primary HDU, that is mandatory in each FITS
file; and one extension, that contains a binary table with the type that we want to study.

With this group of tests, we can have a clear and succinct idea about how each one
of the different types behaves. We will start with the column types that can be used to
represent numbers.

• Short: any number between 0 and 32767 that occupies 2 bytes in MonetDB repre-
sentation

18 CHAPTER 3. CONTRIBUTION TO MONETDB

• Integer: any number between 0 and 15000000 that occupies 4 bytes in MonetDB
representation

• Long: any number between 0 and 2147483647 that occupies 8 bytes in MonetDB
representation

• Float: any floating point number between 0 and 5 that occupies 4 bytes in MonetDB
representation

• Double: any floating point number between 0 and 5 that occupies 8 bytes in Mon-
etDB representation

Finally the column type String. Three different sets of FITS files will be created for
this type: files that contain strings with the size of 4 bytes, files that contain strings with
the size of 8 bytes and files that contain strings with the size of 20 bytes. The idea is to
apply distinct benchmarks, with the same implementation, to the strings with different
sizes.

Knowing the different types that will be studied, it is now time to enumerate the
number of rows that each set of FITS files will contain:

FITS File Number of Rows
1 30000
2 2942000
3 29420000
4 58840000
5 117680000
6 205940000
7 235360000
8 470720000

Table 3.1: First group of FITS files

During the experiments, it was verified that the strings were the ones that took more
time to be loaded into MonetDB and the type Short was the fastest, as we will see in
the further tests. The measurements were done using GDKms() calls, in the FITS load
routine, to measure the times it takes per column.

3.6. TABLE LOADING 19

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Types

Short
Integer

Long
Float

Double

Figure 3.2: Load of all the numerical types

Figure 3.2 shows the time that took to load each one of the types in each one of the
files. It can be noticed that the short type is the fastest and the double is the slowest.
The type short is the fastest because it has the size of 2 bytes in MonetDB representation.
There is a similarity between the loading time behavior of the integers and the loading
time of the floats. This happens because both use 4 bytes in their MonetDB internal
representation. Nevertheless, floating points are more complex to store, leading to a
worse performance in the loading of the tables, when compared to integers. The same
scenario takes place for the doubles and the longs. Both have 8 bytes in their MonetDB
internal representation and both have a similar behavior in their loading time process,
however, the double type is used to store floating point values. Consequently, there is a
little additional time due to their complexity.

In order to understand some future behaviors, and taking advantage of the fact that
the numerical types are already loaded into MonetDB, we can consult their BAT sizes in
MonetDB internal representation and also the sizes of the original FITS files, where the
data were in first place.

20 CHAPTER 3. CONTRIBUTION TO MONETDB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.03 3 29 58 117 205 235 470

S
iz

e
 (

M
B

)

Millions of tuples

BAT and File Sizes

BAT and File sizes short
BAT and File sizes integer

BAT and File sizes long
BAT and File sizes float

BAT and File sizes double

Figure 3.3: BAT and File sizes for each one of the numerical types

Figure 3.3 represents the BAT and file sizes of each one of the numerical types. We
realized that the BAT sizes in the internal representation of MonetDB are the same as the
sizes of the FITS files that contain the original data, for all the types tested. So, instead of
having two bars, representing the BAT size and the file size, for each one of the types, we
draw only one bar, that represents both BAT and file size.

These results can be explained as follows:

• the short type takes 2 bytes in its representation. Multiplying 2 bytes for 470 mil-
lions of tuples (the last file of the test) we get 940 MB, that is precisely the size of
the last file that belongs to the set of files tested to the short type.

• the integer and float types use 4 bytes in their representation. As a consequence,
the sizes of the BATs and the sizes of the files increase to the double (1.8 GB in the
last file), comparing to the type short type.

• the types long and double occupy 8 bytes, that is twice the size of integers and
floats. Fact that can be easily realized if we check the last BAT and file size of the
respective types: (3.7 GB).

The next tests evaluate the loading of strings. We separate strings from numerical
types due to the fact that strings are stored in a different way in MonetDB. In their internal
representation, strings are composed by two different arrays:

• Tail: that contains pointers to the strings (it starts with a 4-byte size pointer)

• Heap: that contains the actual strings

3.6. TABLE LOADING 21

During the experiments we found out that the string type needs longest time to be
loaded. This statement can be proven by checking the loading times of the strings in the
following set of graphs, comparing to the results of any other numerical type represented
in Figure 3.2. Even for the string with 4 bytes, the loading time is worse than the loading
time of the doubles, that are represented with 8 bytes.

To load the numerical and string types from the FITS files into MonetDB internal
structure, two distinct processes need to be done:

• the call of the FITS library;

• the creation of MonetDB temporary BAT (appending time).

In order to improve the time to load the strings, several alternatives were imple-
mented. The first alternative creates a big array with all the strings, the second performs
a single call per string and the third is a middle term between the first and second ap-
proach, reading a vector of strings at a time with a given size, and then load the data.
The best alternative is the third, because it avoids the first case, where a lot of memory is
being used and thus swapping to disk and it also prevents so many calls of the fits load
function, that occurs in the second approach, which leads to a big overhead. For exam-
ple, for a vector with the size 20, 19 fits load calls are avoided comparing to the second
approach.

The following tests aim to find the optimal size of the batch, measuring the time that
it takes to load the strings. Those measurements involve three different components:

• FITS library function calls;

• Append to MonetDB BAT structure;

• Total time to load the strings.

We did not do this tests for the numerical types because the idea here is to optimize
the time needed to load the slowest type, the strings.

3.6.1 Search for the ideal batch size

22 CHAPTER 3. CONTRIBUTION TO MONETDB

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (4 bytes) with batch size of 1

Load
Append

Sum

Figure 3.4: Batch 1 for the strings with 4 bytes

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (8 bytes) with batch size of 1

Load
Append

Sum

Figure 3.5: Batch 1 for the strings with 8 bytes

 50

 100

 150

 200

 250

 300

 350

 400

 450

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (20 bytes) with batch size of 1

Load
Append

Sum

Figure 3.6: Batch 1 for the strings with 20 bytes

3.6. TABLE LOADING 23

We start with the batch size of 1, represented in Figure 3.4, Figure 3.5 and Figure 3.6.
They are in fact the second approach that was mentioned before, performing a single call,
to the fits library, per string. It can be noticed that loading the data, due to the fits library
calls, takes always more time than the actual loading into the MonetDB data structure.
For example, in Figure 3.4, for the last file, with 470 millions of tuples, the loading time
is 143.3 seconds and the appending time is 111.2 seconds. The total time to load the
strings into MonetDB is given as 323.1 seconds, meaning that a lot more computation
is done in the background. As a final remark, the total time needed to load the strings
with 4 bytes in the file with 417 millions of tuples is 323.1 seconds, to load the strings
with 8 bytes is 371.4 seconds and to load the strings with 20 bytes is 458.3 seconds. The
time needed to load through the fits library the strings with 4 bytes in the file with 417
millions of tuples is 143.3 seconds, to load the strings with 8 bytes is 163.9 seconds, and to
load the strings with 20 bytes is 220.7 seconds. And finally, the time needed to load into
MonetDB the strings with 4 bytes in the file with 417 millions of tuples is 111.2 seconds,
to load the strings with 20 bytes is 138.8 seconds and to load the strings with 20 bytes is
168.4 seconds. We can easily perceive that the times are increasing while we augment the
number of bytes that represent the strings.

 20

 40

 60

 80

 100

 120

 140

 160

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (4 bytes) with batch size of 10

Load
Append

Sum

Figure 3.7: Batch 10 for the strings with 4 bytes

24 CHAPTER 3. CONTRIBUTION TO MONETDB

 50

 100

 150

 200

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (8 bytes) with batch size of 10

Load
Append

Sum

Figure 3.8: Batch 10 for the strings with 8 bytes

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (20 bytes) with batch size of 10

Load
Append

Sum

Figure 3.9: Batch 10 for the strings with 20 bytes

For the tests with batch size of 10, represented in Figure 3.7, Figure 3.8 and Figure
3.9 we got better results. This approach is in fact the first using the third alternative
mentioned before, reading a vector of 10 strings at a time. The times are, in fact, faster
than the tests performed in the Figure 3.4, Figure 3.5 and Figure 3.6, that use the batch
size of 1.

In the last file, with 470 millions of tuples, the total time needed to load the strings
with 4 bytes is 167.9 seconds. Much faster than the 323.1 seconds used in Figure 3.4. The
responsible for this decrease in the time is the loading task, performed by the fits library.
In the test with the batch size of 1 (Figure 3.4), it was 143.3 seconds and in the test with
the batch size of 10 (Figure 3.7) it was 53.26 seconds. The appending time algo gets faster,
being 111.2 seconds in Figure 3.4 and 107.7 seconds in Figure 3.7.

These are significant differences, and they are reflected in the other two tests, for the
strings with 8 and 20 bytes (Figure 3.8 and Figure 3.9). Nevertheless, for this last two

3.6. TABLE LOADING 25

tests, an interesting fact occurs.

Note that in the transition from the file with 235 millions of tuples to the file with 470
millions of tuples, represented in Figure 3.8, the appending time starts to be faster than
the loading time. This happens because MonetDB stops looking if there is a duplicate
value in the dictionary of strings when the Heap size, that stores the strings, reaches the
maximum size. The maximum size of the Heap corresponds to size of the main memory
available in the system. When it reaches the maximum size, it just inserts at the end of
the Heap. The insert of values it will be faster, as we can see in the graph, however it will
be worse for the lookup operations, that will not be able to use the dictionary as a help.

As for Figure 3.9, the same happens, however, the Heap gets full earlier.

In this case in the transition from the file with 205 millions of tuples to the file with
235 millions of tuples. This happens because strings grew from 8 to 20 bytes, filling up
the main memory faster.

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (4 bytes) with batch size of 20

Load
Append

Sum

Figure 3.10: Batch 20 for the strings with 4 bytes

 50

 100

 150

 200

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (8 bytes) with batch size of 20

Load
Append

Sum

Figure 3.11: Batch 20 for the strings with 8 bytes

26 CHAPTER 3. CONTRIBUTION TO MONETDB

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (20 bytes) with batch size of 20

Load
Append

Sum

Figure 3.12: Batch 20 for the strings with 20 bytes

The tests with a vector of 20 strings read at a time are represented in Figure 3.10,
Figure 3.11 and Figure 3.12. For the last file, with 470 millions of tuples, the total time
needed to load the strings with 4 bytes is 148.2 seconds. It is an improvement, once the
same test, for the batch size of 10, represented in Figure 3.7, needed 167.9 seconds. It
is also an improvement for the strings with 8 bytes, represented in Figure 3.11. For the
string with 20 bytes, there is a growth of 4 seconds comparing to the test with the batch
size of 10, represented in Figure 3.9.

However, the intersection of the appending time with the loading time observed in
Figure 3.8 does not occur in Figure 3.11. This happens because the loading time through
the fits library gets faster with the batch size of 20 and the appending time into MonetDB
has the same behavior. For example, with the batch size of 10, to load the strings of 8
bytes, in the last file with 470 millions of tuples, 114.9 seconds are needed. On the other
hand, with the batch size of 20, the same test takes only 102.7 seconds. That difference is
enough to avoid the intersection of times.

In Figure 3.12 the intersection happens again due the loading time, that gets once
again slow, being exceeded by the appending time. Nevertheless, it is not enough to be
considered a improvement compared to the same test with the batch size of 10, as we
said before.

3.6. TABLE LOADING 27

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (4 bytes) with batch size of 50

Load
Append

Sum

Figure 3.13: Batch 50 for the strings with 4 bytes

 50

 100

 150

 200

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (8 bytes) with batch size of 50

Load
Append

Sum

Figure 3.14: Batch 50 for the strings with 8 bytes

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (20 bytes) with batch size of 50

Load
Append

Sum

Figure 3.15: Batch 50 for the strings with 20 bytes

In the tests with the batch size of 50, represented in Figure 3.13, Figure 3.14 and Figure

28 CHAPTER 3. CONTRIBUTION TO MONETDB

3.15, the results improved for all the string sizes. In conclusion, we can claim that this are
the best results that we got till now.

 20

 40

 60

 80

 100

 120

 140

 160

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (4 bytes) with batch size of 100

Load
Append

Sum

Figure 3.16: Batch 100 for the strings with 4 bytes

 50

 100

 150

 200

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (8 bytes) with batch size of 100

Load
Append

Sum

Figure 3.17: Batch 100 for the strings with 8 bytes

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (20 bytes) with batch size of 100

Load
Append

Sum

Figure 3.18: Batch 100 for the strings with 20 bytes

3.6. TABLE LOADING 29

For the vector size of 100, represented in Figure 3.16, Figure 3.17 and Figure 3.18, the
results start to get worse because the size of the vector begins to be too large. With an
average of 146 seconds, 218.5 seconds and 323.0 seconds to load the strings of 4, 8 and 20
bytes respectively, with the batch sizes of 20 and 50, as a total time to load the strings for
the file with 470 millions of tuples, this tests with a batch size of 100 give us a total time
of 165.9 seconds, 219.0 seconds and 324.4 seconds to load the strings of 4, 8 and 20 bytes
respectively, in the last test with the file with 470 millions of tuples. As a consequence of
this results, it is considered a bad result and it will not be selected.

 20

 40

 60

 80

 100

 120

 140

 160

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (4 bytes) with batch size of 1000

Load
Append

Sum

Figure 3.19: Batch 1000 for the strings with 4 bytes

 50

 100

 150

 200

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (8 bytes) with batch size of 1000

Load
Append

Sum

Figure 3.20: Batch 1000 for the strings with 8 bytes

30 CHAPTER 3. CONTRIBUTION TO MONETDB

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Load of Strings (20 bytes) with batch size of 1000

Load
Append

Sum

Figure 3.21: Batch 1000 for the strings with 20 bytes

For the last test, with a batch size of 1000, represented in Figure 3.19, Figure 3.20 and
Figure 3.21, there are no remarkable differences in the times, that make us look for bigger
batch sizes, in order to find the perfect one.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.03 3 29 58 117 205 235 470

T
im

e
 (

s
)

Millions of tuples

Overview of all batch sizes for string size of 4

Batch 10
Batch 20
Batch 50

Batch 100
Batch 1000

Figure 3.22: Loading strings with 4 bytes

 0

 50

 100

 150

 200

0.03 3 29 58 117 205 235 470

T
im

e
 (

s
)

Millions of tuples

Overview of all batch sizes for string size of 8

Batch 10
Batch 20
Batch 50

Batch 100
Batch 1000

Figure 3.23: Loading strings with 8 bytes

3.6. TABLE LOADING 31

 0

 50

 100

 150

 200

 250

 300

0.03 3 29 58 117 205 235 470

T
im

e
 (

s
)

Millions of tuples

Overview of all batch sizes for string size of 20

Batch 10
Batch 20
Batch 50

Batch 100
Batch 1000

Figure 3.24: Loading strings with 20 bytes

With this experiments we were trying to find a close-to-optimal batch size. Figure
3.22, Figure 3.23 and Figure 3.24 show that the new approach of different batch sizes
improved the loading times in all cases, but the best batch size seems different for diferent
file sizes. In Figure 3.22, where the strings with 4 bytes were loaded, the batch size of 50
is slightly better than the other batch sizes. As for Figure 3.23 and Figure 3.24, there is no
concrete answer about which batch size is actually better. They are all very close to each
other and all of them describe the same behavior during the tests.

3.6.2 BAT size representation of Strings in MonetDB

As it was done for the numerical types, also a graph that represents the BAT size in the
internal representation of MonetDB it will be done for the string type, with some addi-
tional differences. In the following graphs, some additional information will be given:

• Tail size: Total size occupied by the string pointers

• Heap size: Total size occupied by the strings

• Tail + Heap: Sum of the previous two sizes that represent the actual size used to
store the string

• Memory: Line thats represents the total memory of the system

• File size: the size of the FITS file where the data was originally

32 CHAPTER 3. CONTRIBUTION TO MONETDB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400 450

S
iz

e
 (

M
B

)

#Millions of tuples

File with 4-byte Strings

Tail
Heap

Heap + Tail
Memory
File Size

Figure 3.25: Representation of the space occupied by the strings with the size of 4 bytes

Analysing the Figure 3.25, we can focus in five main occurrences. First, the linear
growth on the FITS file size, obtained by multiplying the number of tuples times the 4
bytes of the string. Second, the transition in the Tail size, when it goes from the file with
235 millions of tuples to the file with 470 millions of tuples. This happens because the
4-bytes used as a pointer to the string are no longer enough. As a consequence, the size
of the pointer needs to grow to 8 bytes. With the 8 bytes, there is space to represent all the
pointers, however, the space needed to store them its bigger. Third, the Heap size also
grows linearly, representing the size used to store the string. It needs 17 bytes to store
each string of 4 bytes. Fourth, the memory line is exceeded, passing from the file with 235
millions of tuples to the file with 470 millions of tuples. This leads to future swapping
operations, that will increase exponentially the time to execute some queries. The last
and fifth fact that needs to be emphasized is the very high overhead of MonetDB for the
short strings with 4 bytes: a FITS file with 2 GB takes 12G internally.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50 100 150 200 250 300 350 400 450

S
iz

e
 (

M
B

)

#Millions of tuples

File with 8-byte Strings

Tail
Heap

Heap + Tail
Memory
File Size

Figure 3.26: Representation of the space occupied by the strings with the size of 8 bytes

3.7. EXPORT A TABLE 33

For the results presented in Figure 3.26, there is one occurrence that must be empha-
sized, when compared to Figure 3.25. The transition in the Tail size that was observed
in Figure 3.25, when going from the file with 235 millions of tuples to the file with 470
millions of tuples, this time happened in the file with 117 millions of tuples to the file
with 205 millions of tuples. This happens because the strings have 8 bytes, instead of 4
bytes like in the previous test, consuming more heap space and also need to increase the
address space for the pointers in the tail. As for the Heap size, it requires 25 bytes to store
each string of 8 bytes. It uses 8 bytes more per string than in Figure 3.25.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 50 100 150 200 250 300 350 400 450

S
iz

e
 (

M
B

)

#Millions of tuples

File with 20-byte Strings

Tail
Heap

Heap + Tail
Memory
File Size

Figure 3.27: Representation of the space occupied by the strings with the size of 20 bytes

In Figure 3.27, the transition in the Tail size occurs in the same interval, as the one
observed in Figure 3.26, however, the bytes used to represent the strings are 20, that
leads to a bigger space needed to store the strings. That fact is reflected in the sizes of
the FITS files, that is bigger than the memory for the file with 470 millions of tuples. The
same happen in the internal representation of MonetDB, that exceeds the memory size in
the transition between the file with 117 millions of tuples and the file with 205 millions
of tuples. As for the Heap size, it requires 34 bytes to store each string of 20 bytes. It uses
9 bytes more per string than in Figure 3.26.

3.7 Export a table

This procedure allows the user to create a completely new FITS file, based on an exist-
ing table that is present inside the database. The file will have the name of the table, with
the proper ".fits" extension. Once this function is called, the system will check if the table
actually exists, giving a proper error message if not.

Assuming that the table exists, once the function is invoked, the properties of the table
will be consulted: number of columns, types of the columns and number of tuples. This

34 CHAPTER 3. CONTRIBUTION TO MONETDB

information is used to create the header of the HDU containing the metadata about the
table. With this information, we then need to collect the BATs that belong to each one of
the columns in the table.

The optimal number of rows to write at once in the FITS file depends on the width of
the table and the data types of the stored values. There is a routine in CFITSIO that will
return the optimal number of rows to write for a given table, when given a FITS file as a
parameter: fits_get_rowsize. We will use that routine to get the value. Each time the block
of rows is full, the fits_write_col routine is called, and the rows that compose the block
are added to the table present in the FITS file. This method of doing the export is much
more efficient than calling the function only one time, which generates a big memory
consumption. With this method we try to avoid the memory consumption problem,
cleaning the block everytime that it is full and repopulating the array with the new data
that needs to be added.

As we did before for the loading procedure, some measurements in the time needed
to export each one of the types will be performed. We will start with the numerical types
and finally we will export to a FITS file the three kinds of strings already studied before.
The idea is to have a perspective about the types that take more time to be exported, so it
can be manageable a proper future comparison with the existing tools that also provide
the same functionality.

The time that will be checked is the one related with the invocation of the fits library
function, fits_write_col.

The tables that will be exported are the same ones that were loaded into MonetDB
in the loading section, with the same number of tuples and with only one column, that
represents the target type that is being studied.

In Figure 3.28 we can realize that this strategy of writting the values with an optimal
size, is in fact very efficient. The fastest type to be exported is the short type, due to the
2 bytes in MonetDB internal representation and the slowest is the double type, due to
the 8 bytes in MonetDB internal representation. Another important point is the linear
grow of the types till they reach the file with 235 millions of tuples. The growth behavior
changes in the last file, with 470 millions of tuples, because it requires more memory and
swapping operations, which leads to a worse result. As a last remark, the behaviour of
the two groups: Integers, Floats and Longs, Doubles. Between them, they have the same
behaviour till they reach the 235 million tuples file. For the file with 470 millions tuples,
the types that require more computation and complexity (Floats and Doubles), need two
or three additional seconds, than the numerical types that share the same number of
bytes (Integers and Longs respectively).

3.7. EXPORT A TABLE 35

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Export of Numerical types

Short
Integer

Long
Float

Double

Figure 3.28: Export the numerical types into a FITS file

 0

 10

 20

 30

 40

 50

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Export Strings with different sizes

Strings with 4 bytes
Strings with 8 bytes

Strings with 20 bytes

Figure 3.29: Export the strings into a FITS file

In Figure 3.29 we export the strings with 4, 8 and 20 bytes. For the strings with 4
bytes, the growth is linear till it reaches the file with 235 millions of tuples. After that, it
grows faster because in MonetDB internal representation, for the file with 470 millions of
tuples, the space needed to store the strings with 4 bytes exceeds the memory capacity,
as we can see in Figure 3.25. As for the strings with 8 and 20 bytes, that change occurs
earlier because to store this strings more space is required, as we can see in Figure 3.26
and Figure 3.27. Consequently, it will also take more time to export this strings.

36 CHAPTER 3. CONTRIBUTION TO MONETDB

Chapter 4

Case Study

In this section we will demonstrate, using a concrete example taken from astronomy,
that the MonetDB-FITS combination works. That will be done through a step by step
tutorial, guiding and explaning in detail to the astronomy user what needs to be done in
order to get everything working and ready to be used.

4.1 Overview

We will present to the astronomer how can a specific FITS file be attached, accessing
its metadata and spreading the information along several tables present in the SQL cat-
alog. We will also exhibit how can the astronomer attach all the FITS files present in the
directory, or even attach all the files present in the directory, giving a specific pattern.
Further, we will explain how to load a specific table present in a FITS file that is already
attached into the SQL catalog. Also how can we export a table present in our SQL catalog
to a brand new FITS file. Finally, once all the astronomical data is present in the database
we want to do something with it. As a suggestion proposed by an astronomer working
at CWI, we will demonstrate how to execute a set of common astronomical queries in
MonetDB. This will be the added value of this section, where we present MonetDB as a
capable database engine that is ready to fulfil a set of astronomical demands.

We assume that the user already has MonetDB installed in the system, with its last
version, downloaded from the Mercurial repository.

4.2 Attach a file

For this initial task, a FITS file must be present in the file system. Lets assume that
the FITS file is called testattach.fit, and its directory is ’/ufs/fits/’. To attach the file into

37

38 CHAPTER 4. CASE STUDY

MonetDB, the user needs to type:

• call fitsattach(’/ufs/fits/testattach.fit’);

If there are no problems (wrong file name, wrong directory or the attachment proce-
dure was already called for the input file), the user can make sure that all the informa-
tion about the FITS file is spread along the tables fits_files, fits_tables, fits_columns and
fits_properties.

4.3 Attach all FITS files in the directory

Let us assume that there is a folder inside the ’/ufs/fits/’ directory called astro that
contains the files testdir1.fit and testdir2.fit. To attach those both files with a single opera-
tion, the user needs to type:

• call fitslist(’/ufs/fits/astro/’);

And the user will see that two lines were add to the table called fits_files, correspond-
ing to the files that were attached with the call of the function.

4.4 Attach all FITS files in the directory, giving a pattern

The directory is once again called ’/ufs/fits/’, and it has the folder astro, that contains
the files testdir1.fit and testdir2.fit. If the user types:

• call fitslistpatt(’/ufs/fits/astro/’,’*1.fit’);

With the given pattern, only the file named testdir1.fit will be attached. The user can
confirm it by checking the table fits_files.

4.5 Load a table

Once we have already attached three files in our FITS catalog: testattach.fit, testdir1.fit
and testdir2.fit, we are now able to load one of the tables present in the files. By typing:

• select * from fits_tables;

4.6. EXPORT A TABLE 39

We can realize that the testdir1.fit has a table called table1. This table can be target of
our loading operation, through the command:

• call fitsload(’table1’);

The table named (’table1’) has become a table of the database, with its metadata,
columns and data ready to be queried.

4.6 Export a table

Assuming that during our querying of the table named table1, some metadata, columns
and data underwent some changes. This led to a creation of a new table called export1.
That same table can be exported, through the command:

• call fitsexport(’export1’);

This will create a new FITS file called export1.fit, with only one table, the one that was
aim of our call.

4.7 Cross-matching astronomical surveys

What we have seen so far is a set of mandatory procedures that must be done, to load
the data into the database for a further manipulation and querying. Our objective in this
section is to continue working with the data that was loaded and use a concrete exam-
ple of an astronomical use case proposed by an astronomer working at CWI. We want to
demonstrate that it is possible to delegate a set of astronomical queries performed by as-
tronomers in their daly activities into MonetDB. The idea is to present an efficient and fast
alternative to the actual existing tools. This is needed because this kind of tests requires
a lot of computation time, deals with big amounts of data and perform sophisticated
algorithms, that only databases are able to provide.

As an example of a complex query we have the cross-matching test, that takes two or
more surveys as input, and searches for astronomical point-sources that respect a spe-
cific set of restrictions, like the distance between sources, calculated using the Cartesian
coordinates (x, y, z), that represents a vector in unit length on unit sphere. The idea is to
combine results and information of the sources that is reported in the different surveys.
With those matching data, information like position and brightness of the sources can be
easily comparable. But we have to be aware that, in most cases, we face a substantial
number of differences in object detections between surveys and between observations

40 CHAPTER 4. CASE STUDY

taken at different times within the same survey or instrument. One difference can be
the sensitivity, that is a measure of the minimum signal that a telescope can distinguish
above the random background noise. The more sensitive a telescope, the more light it
can gather from faint objects. The other distinction than should be considered is the reso-
lution of the survey. The higher the resolution of a telescope, the more details we can see
from the images obtained on it [12]. The ability of a telescope to distinguish between, that
is, resolve, close objects. For the first tests, we start with data captured by two distinct
astronomical radio surveys:

• FIRST [26]: stands for Faint Images of the Radio Sky at Twenty-cm and it works at
the frequency of 1.4 GHz, has a resolution of 5 arc seconds and a sensitivity of 0.15
mJy

• SDSS [4]: stands for Sloan Digital Sky Survey. It is one of the most ambitious and
influential surveys in the history of astronomy and it works at the frequency of
4.866x105 Ghz

As we can see, the different surveys work at distinct frequencies. Cross-matching the
information between them allows us to compare the values of the brightness (light flux)
of the same source, measured at different frequencies. Those values allow the astronomer
to study the behavior of the source on the spectrum and classificaty the stars based on
their spectral characteristics.

To calculate which is the brightness of the same object at different frequencies, we
need to join the two tables derived from FIRST and SDSS, and extract the brightness
of the objects measured at different frequencies. The join condition represents a spatial
match between two astronomical radio surveys.

The FIRST dataset is a subset that has 18 columns and 285 rows. It was extrated from
a vast repository that contains 816331 sources. It was supplied by an astronomer and
it covers the region of (RA: 0.048 to 14.80 degrees, DEC: -0.100 to 0.100 degrees). From
those columns we are only interested in the following ones:

• cx(Double): unit vector of spherical co-ordinates

• cy(Double): unit vector of spherical co-ordinates

• cz(Double): unit vector of spherical co-ordinates

• ra(Double): units: degrees; J2000 Celestial Right Ascension

• ra_error(Double): units: degrees; error associated with the Right Ascension

• dec(Double): units: degrees; error associated with Declination

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 41

• dec_error(Double): units: degrees; J2000 Celestial Declination

• fInt(Double): represents the integrated brightness of the object. Is an alternative to
the peak brightness method, that collects the maximum value of the brightness of
the source. The first method, the integrated brightness, calculates the area around
the peak value. It is expressed in mJy (millijansky). A Jansky is a non-SI unit that
measures electromagnetic flux density and it is equal to 10−26 watts per square
meter per hertz. It catches very weak signals.

As for the SDSS dataset, it has 446 columns and 77104 rows. It is a bigger than the
FIRST catalog. The idea is to make sure that the entire FIRST dataset is covered, trying
to match all the sources of the FIRST catalog with the sources of the STILTS catalog. This
catalog covers the area of the sky equivalent to (RA: 1.69e-05 to 15.00 degrees, DEC: -0100
to 0.100 degrees).cFrom the 446 columns we are interested in the following ones:

• cx(Double): unit vector of spherical co-ordinates

• cy(Double): unit vector of spherical co-ordinates

• cz(Double): unit vector of spherical co-ordinates

• ra(Double): units: degrees; J2000 Celestial Right Ascension

• ra_error(Double): units: degrees; error associated with the Right Ascension

• dec(Double): units: degrees; error associated with Declination

• dec_error(Double): units: degrees; J2000 Celestial Declination

• sky_r(Float): represents the brightness of the object. It is expressed in maggies/arcsec2

and it has to be converted to mJy, dividing the value by 3631000

4.7.1 Query 1: Distribution of distances between sources in both surveys

As an initial query, we will join the two tables of both surveys and get all the possible
combinations of all the sources. Having that, it is possible to get all the distances between
all the sources. Those distances will be given in arcseconds. It is also possible to get
some statistical information (distance average and standard deviation). With those two
values, once can calculate the Normal Distribution of the distances. That will give an
extra information about how the data is distributed.

To calculate the distance between two sources we use the Euclidean distance for the
three-dimensional space. Assuming that the point a and the point b have the following
coordinates: a = (x1, y1, z1) and b = (x2, y2, z2). The distance between them is given by:

42 CHAPTER 4. CASE STUDY

d(a, b) =
√
(x1− x2)2 + (y1− y2)2 + (z1− z2)2

However, we want the superficial distance, and the formula to calculate it is:

sin 1
2 θ = 1

2 d(a, b)

That can be simplified to:

θ = 2arcsin(1
2 d(a, b))

The problem is that the value of θ is given in radians and we want arc seconds. We
know that π radians correspond to 180 degrees, so the transition to degrees is easy. To get
the value in arc seconds, that is a unit of angular measurement, we need to first calculate
the value in arc minutes, that is equal to one sixtieth (1

60) of one degree. Knowing that,
we just multiply by 60, because 1 arc minute is equal to 60 arc seconds.

Once we have all the distances available, we can calculate the Normal Distribution of
the distances between the objects. The formula for the Normal Distribution is:

f (x) = 1√
2πσ2 e−

(x−µ)2

2σ2

Where the parameter µ is the mean (location of the peak) and σ2 is the variance. The
mean is the sum of the values divided by the number of values. The variance is used
as a measure of how far a set of numbers are spread out from each other and it can be
calculated using the formula:

σ =

√√√√ n

∑
k=1

(xk − µ)2

n

Where µ is the average and n is the number of values. Information like distance
between objects and measurement of the brightness will be required in the further SQL
queries. In order to accomplish that goal and give a faster answer to the queries, a SQL
table that provides all those parameters will be built:

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 43

• CREATE TABLE distances (

htmid_first BIGINT,

cx_first FLOAT(51),

cy_first FLOAT(51),

cz_first FLOAT(51),

brightness_first FLOAT(51),

htmid_sdss BIGINT,

cx_sdss FLOAT(51),

cy_sdss FLOAT(51),

cz_sdss FLOAT(51),

brightness_sdss FLOAT(51),

distance FLOAT(51)

);

Once the table is created, we need to insert all the data of interest, that is spread along
both tables and require some calculation and computation.

INSERT INTO distances (

htmid_first, cx_first, cy_first, cz_first, brightness_first,

htmid_sdss, cx_sdss, cy_sdss, cz_sdss, brightness_sdss,

distance

)

SELECT

tbl1.htmid, tbl1.cx, tbl1.cy, tbl1.cz,

tbl1.FInt,

tbl2.htmid, tbl2.cx, tbl2.cy, tbl2.cz,

(tbl2.sky_r/3631000),

2*asin(0.5 * sqrt(

((tbl1.cx-tbl2.cx)^2) +

((tbl1.cy-tbl2.cy)^2) +

((tbl1.cz-tbl2.cz)^2)

)*180*3600/pi())

FROM first_2 as tbl1, sdss_2 as tbl2;

44 CHAPTER 4. CASE STUDY

With this query, that took only 34.9 seconds, all the information needed for the further
queries is already computed. As a consequence, the answers will be much faster and
require less memory.

4.7.2 Distribution of the distances smaller than 45 arc seconds

As a first filter on possible candidates, we will calculate the distribution of distances
smaller than 45 arc seconds between the sources of FIRST and SDSS. It is unlikely that
two sources are associated, but with this first test we just want to have a general idea
about the distribution of the distances between the objects. To keep in mind that the
resolution of the survey is an important factor and will impact the number of sources. If
the resolution is lower, the number of sources that fulfill the distance will be larger.

The idea is to create a histogram, plotting the number of sources against the dis-
tance region in which the sources are apart from each other. For example, the number of
sources that are separated from each other with a bin width of 5 arc seconds. To achieve
this goal, we will first create and populate a table with the necessary bins to our test:

CREATE TABLE bins (min_value INT, max_value INT);

INSERT INTO bins values (0,5);

INSERT INTO bins values (5,10);

INSERT INTO bins values (10,15);

INSERT INTO bins values (15,20);

INSERT INTO bins values (20,25);

INSERT INTO bins values (25,30);

INSERT INTO bins values (30,35);

INSERT INTO bins values (35,40);

INSERT INTO bins values (40,45);

Having the table with the bins and the table with the distances available, we can easily
create an histogram of the distances, using the following SQL query in MonetDB:

SELECT bins.min_value, count(*) as total

FROM bins left outer join distances

ON distances.distance BETWEEN bins.min_value and bins.max_value

GROUP BY bins.min_value;

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 45

+-----------+-------+

| min_value | total |

+===========+=======+

| 0 | 110 |

| 5 | 0 |

| 10 | 0 |

| 15 | 0 |

| 20 | 0 |

| 25 | 0 |

| 30 | 0 |

| 35 | 0 |

| 40 | 0 |

+-----------+-------+

Having this information, the histogram containing the bins and the total number of
sources can be plotted.

 0

 20

 40

 60

 80

 100

 120

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

Distance between two objects (arc sec)

Distribution of distances between sources (FIRST and SDSS)

number of sources

Figure 4.1: Distribution of distances between sources

In Figure 4.1 we can see the histogram that plots the distribution of the distances be-
tween sources. It starts by searching for sources that are apart from each other with a
distance between 0 and 5 arc seconds and it finishes by calculating the number of sources
that are apart from each other with a distance between 40 and 45. With this information,
we have a well-formed idea about how the distances are dispersed. We can easily re-
alize that the distances between the sources are concentrated in the interval 0 and 5 arc
seconds.

46 CHAPTER 4. CASE STUDY

4.7.3 Normal Distribution of all the data

To obtain the Normal Distribution of the distances between the sources, three steps
need to be made: calculate the average of the distances (µ), calculate the total number of
distances (n) and the standard deviation (σ2). To calculate the average in MonetDB we
use the following SQL query:

• SELECT avg(distance) FROM distances WHERE distance <45;

+------------------------+

| average (arc seconds) |

+========================+

| 0.71174942511540928 |

+------------------------+

To calculate the total number of sources that are at a distance smaller then 45, the SQL
query in MonetDB is:

• SELECT count(*) as total FROM distances WHERE distance <45;

+----------+

| total |

+==========+

| 110 |

+----------+

Finally, we need to calculate the standard deviation, with the following SQL query:

SELECT

sqrt(sum((distance-0.71174942511540928)^2) / 110) as stdev

FROM distances

WHERE distance < 45;

+------------------------+

| stdev |

+========================+

| 0.57459821453517357 |

+------------------------+

Having all the values available is now possible to plot the Normal Distribution for
the distances.

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 47

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

P
ro

b
a

b
ili

ty

Distances between objects (arc seconds)

Normal distribution

Normal

Figure 4.2: Normal Distribution

Now that we have a general idea about the data set we can refine our query for smaller
distances. The next section will modify the restriction to 5 arc seconds in the distance
between the sources, instead of 45 arc seconds.

4.7.4 Frequency of the distances smaller than 5 arc seconds

The idea is to do the same as we did with the previous data set, but changing the
restriction to 5 arc seconds in the distance between the sources. We also need to change
the values of the bin width to 0.5, starting in 0 and ending in 5.

 0

 10

 20

 30

 40

 50

 60

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

Distance between two objects (arc sec)

Frequency of distances between sources (FIRST and SDSS)

number of sources

Figure 4.3: Frequency of distances between sources that are less than 5 arc seconds apart
from each other

48 CHAPTER 4. CASE STUDY

4.7.5 Frequency of the r value between sources in both surveys

On his PhD thesis [22], Bart Scheers presents his idea about source association. He
defends that it can be measured through the right ascention (RA) and declination (DEC),
taking into account their respective errors. This values are to the sky what longitude
and latitude are to the surface of the Earth. RA corresponds to east/west direction (like
longitude), while DEC measures north/south directions, like latitude. Their values and
the respective errors are measured in degrees. The RA varies between 0 and 360 degrees.
On the other hand, the DEC varies between -90 and +90 degrees. There are 60 arcmin in
a degree, and 60 arcsec in an arcmin. The formula that Bart uses in this thesis is:

ri,j =

√
(4α)2

i,j

σ2
4α,i,j

+
(4δ)2

i,j

σ2
4δ,i,j

Where α represents the RA, δ the DEC and σ2 their respective errors. In order to store
the values of interest, we will create a table only with the fields that we are interested in:

• CREATE TABLE rvalues (

htmid_first BIGINT,

ra_first FLOAT(51),

dec_first FLOAT(51),

ra_error_first FLOAT(51),

dec_error_first FLOAT(51),

htmid_sdss BIGINT,

ra_sdss FLOAT(51),

dec_sdss FLOAT(51),

ra_error_sdss FLOAT(51),

dec_error_sdss FLOAT(51),

rvalue FLOAT(51)

);

Once we have the table, we can populate it with values.

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 49

INSERT INTO rvalues (

htmid_first,

ra_first,

dec_first,

ra_error_first,

dec_error_first,

htmid_sdss,

ra_sdss,

dec_sdss,

ra_error_sdss,

dec_error_sdss,

rvalue

)

SELECT

tbl1.htmid, tbl1.ra, tbl1."dec", tbl1.ra_error, tbl1.dec_error,

tbl2.htmid, tbl2.ra, tbl2."dec", tbl2.ra_error, tbl2.dec_error,

sqrt(

(((tbl1.ra-tbl2.ra)^2) / (tbl1.ra_error^2 + tbl1.dec_error^2))+

(((tbl1."dec"-tbl2."dec")^2) / (tbl2.ra_error^2 + tbl2.dec_error^2))

)

FROM first_2 as tbl1, sdss_2 as tbl2;

This query only took 23.8 seconds. Once again, all the information needed for further
queries is already computed. We will not proceed with further tests. We only want to
demonstrate how to compute this values, so they can be used in the future, avoiding
extra and unnecessary computation.

4.7.6 Query 2: extract & compare brightness in different frequencies

In the introduction section we talked about the brightness and how it changes with the
different frequencies. In this section we will join the two tables from the FIRST survey
and the SDSS survey and extract their brightness measurements.

The SQL query that is used by MonetDB, once the table is loaded into the Database
Management System is:

50 CHAPTER 4. CASE STUDY

SELECT

brightness_first as brightness1, log10(brightness_first) as log1,

(brightness_sdss) as brightness2, log10(brightness_sdss) as log2

FROM distances

WHERE distance < 1;

Where brightness1 and brightness2 represent the brightness measurement in each
one of the surveys and the values of log1 and log2 are the logarithm of brightness1
and brightness2 and they are calculated in order to provide both scales in the graphic
representation. The distance between the sources was changed for 1 arc second because
with this value it is more likely that the object is the same and also the number of lines in
the graph is less, making it understandable and readable.

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

B
ri
g
h
tn

e
s
s
 (

lo
g
 o

f
m

J
y
)

B
ri
g
h
tn

e
s
s
 (

m
J
y
)

Frequency (Mhz)

Brightness of Objects from FIRST and SDSS

Brightness (mJy)
Brightness (log of mJy)

Figure 4.4: Measure of the brightness in different frequencies

Figure 4.4 represents the brightness of each one of the objects, that are separated from
each other by 1 arc second, measured at different frequencies. We can easily realize that
the brightness of the objects is higher for the frequencies of 1.4 GHz and lower for the
frequencies of 4.866x105 GHz.

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 51

4.7.7 Query 3: extract the spectral index

Having the values of the brightness of each object, measured at different frequencies,
it is now possible to calculate the spectral index. In astronomy, the spectral index of
a source is a measure of the dependence of radiative flux density on frequency. Given
frequency ν and radiative flux S , the spectral index α can be calculated as:

α = − log(Sf - Ss)
log(ν f−νs)

Where Sf and Ss represent the brightness of the sources in the FIRST and SDSS sur-
veys respectively and ν f and ν s the frequencies. As we did for the distances and the
brightness, the same procedure of creating a table that calculates the spectral index will
be created.

CREATE TABLE spectal_indexes (spectal_index FLOAT(51), distance FLOAT(51));

Once the table is created, we will insert the values of the spectral index and the dis-
tance between the objects into the table.

• INSERT INTO spectal_indexes (spectal_index, distance)

SELECT -(

(log10(brightness_first)/(log10(brightness_sdss))) /

(log10(1400)/(log10(486281359)))),

distance

FROM distances where distance <1;

4.7.8 Distribution of the spectal index

 0

 5

 10

 15

 20

 25

-0.02/0.05 0.05/0.12 0.12/0.19 0.19/0.26 0.26/0.33 0.33/0.40 0.40/0.47 0.47/0.54 0.54/0.61 0.61/0.68

N
u
m

b
e
r

o
f
o
b
je

c
ts

Spectral Index

Distribution of the spectral index

number of sources

Figure 4.5: Calculation of the spectral index

52 CHAPTER 4. CASE STUDY

Figure 4.5 represents the frequency of spectral indexes calculated. The same proce-
dure was used as for the frequency of the distances, in order to build a histogram. The
minimum value of the spectral index is -0.016980525624847961 and the maximum value
is 0.66733249647620008. Knowing this two values, the histogram can be created. It will
have 10 intervals, adding 0.07 units in each iteration. We can notice that, for this experi-
ment, the most frequent spectral index rounds the values -0.02 and 0.19.

4.7.9 Normal distribution of the spectral indexes

As a next step, we will calculate the Normal Distribution of the spectral index. As
in the previous sections, we need the average of the spectral index and how much the
objects deviate from it. For that, first we need a SQL query that calculates the average:

SELECT avg(spectal_index) as average FROM spectal_indexes WHERE distance < 1;

+------------------------+

| average |

+========================+

| 0.13056802784870311 |

+------------------------+

Knowing the average is now possible to calculate the standard deviation and the total
number of tuples. That is done through the following SQL queries:

SELECT count(*) as total FROM spectral_indexes WHERE distance < 1;

+------+

| total|

+======+

| 83 |

+------+

SELECT

sqrt(sum((spectral_index-0.71174942511540928)^2) / 83) as stdev

FROM spectral_indexes

WHERE distance < 1;

4.7. CROSS-MATCHING ASTRONOMICAL SURVEYS 53

+------------------------+

| stdev |

+========================+

| 0.57459821453517357 |

+------------------------+

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-1.5 -1 -0.5 0 0.5 1 1.5 2

P
ro

b
a
b
ili

ty

Spectral index

Normal distribution

Normal

Figure 4.6: Plot of the Normal distribution of the spectral index

54 CHAPTER 4. CASE STUDY

Chapter 5

Performance Experiments

For this section of performance experiments, a stress test was done in MonetDB and
STILTS to check the performance of both systems when accessing data present in FITS
files. STILTS stands for Starlink Tables Infrastructure Library Tool Set [24] and it is a
set of command-line tools for table manipulation. More details about this program will
be further explored in the Related Work section. For now, we will only present the tool
and explore in more detail when appropriated.

5.1 Experimental Setting

The tests were done on a machine with 8GB of memory, 4 CPU 2.83 GHz and 300 GB
of free disk space. For each one of the tests, the performance of the tools is checked in
hot and cold memory. Hot memory means that data are already loaded in memory. Cold
memory means that the memory is clean and all data need first to be brought from disk
to memory to provide the final result.

Some relational algebra expressions are applied on the tables present in the FITS files.
It consists of a set of operations that take one or two tables as input and produce a new
table as output. As some example of those operations we can have:

• The select operation: selects tuples that satisfy a given predicate or condition. In
STILTS, they are identified by filtering operations

• The project operation: returns only the columns of interest

• The cartesian product operation: allows combining information from two tables

• The natural join operation: it is a binary operation and a combination of certain
selections and a cartesian product into one operation

55

56 CHAPTER 5. PERFORMANCE EXPERIMENTS

• The aggregation operation: in SQL is called group by and include five aggregate
functions: Sum, Count, Average, Maximum and Minimum

• The Sorting operation: in SQL is called order by and has the goal to sort the tuples
of a input column

STILTS is a powerful tool, that can be used to manipulate and access astronomical
data present in a variety of different formats. In this chapter we are only interested in
the FITS format and how efficient this tool is with FITS files. In STILTS, for the filtering
operations, the table data is streamed through the pipeline, using the command tpipe.
One row at a time is checked, either using a sequential mode or a random mode. They can be
explicitly set in the command line. We tested both modes and the results were similar,
either for small and big files, so we just choose the default mode to run the tests. Using
only one method (check a row at a time) for this kind of operations, we expect similar
results for STILTS in each one of the tests.

As for MonetDB, the purpose of this tests is to load the tables with data, present in
the FITS files and perform some main relation algebra operations with them. MonetDB
needs to invest time to load FITS data into its internal data structures. This operation is
done only once, and the time that it takes will appear only in the graphs that measure the
cold memory operations, because it involves all the loading of the data to main memory.
For the hot memory tests, MonetDB already has the data present into its tables and the
processing times will be amortized. The methods that MonetDB uses to perform the rela-
tional algebra select operations vary between sequential scan and hash table structures.

For that, four different times were measured:

• the time for MonetDB to load the table

• the time for MonetDB to execute the Query

• the sum of both times (Query + Load)

• the time for STILTS to access the data and execute the Query

5.2 Test Files

Experiments are divided in three groups. The first group was already presented and
it is described in Table 3.1. We reuse this set of FITS files because we want to study the
behavior of an individual specific type. For the types that represent numerical values,
the tests that will be performed are: Point Query, Range Selection of data and Statistical
information (average, minimum and maximum) tests. For the String type, only the Point

5.2. TEST FILES 57

Query test will be performed, since the range and statistical tests cannot be performed in
strings.

The second group of tests is based on the creation of a large file, that contains a table
with all the column types described in the first group. The set of FITS files that is created
is based on the number of rows used in the first group, resulting in the following sizes:

Megabytes Number of Rows
1 30000
100 2942000
1000 29420000
2000 58840000
4000 117680000
7000 205940000
8000 235360000
16000 470720000

Table 5.1: Second group of FITS files

For this large file, represented in Table 5.1, the tests that will be performed are: Point
Query, Range Selection, Projection of a specific column and Statistics Information (aver-
age, minimum and maximum) of each column.

For the third and last group, comparison of join features of STILTS and MonetDB will
be performed. For that, the size and the number of rows of each file is described in the
following table:

Megabytes Number of Rows
1 30000
10 300000
30 900000
50 1500000

Table 5.2: Third group of FITS files

In Table 5.2 the files are smaller than the files used in group one and two because a
lot more computation is needed for join operations and also because it is just impossible
to perform such queries in STILTS when the files reach a particular size. Another change
comparatively to the previous two groups, is that only hot memory tests were considered.
The reason for that is because the files are relatively small, and the time to bring them to
memory does not result in a subtantial difference between hot and cold memory.

STILTS comes with a set of routines (tmatch1, tmatch2, tmatchn) for various join op-
erations over tables. The routines are parameterized with the type of the join condition,
so called matcher, and can be grouped in the following categories:

58 CHAPTER 5. PERFORMANCE EXPERIMENTS

• exact matcher: corresponds to the equi-join in DB terms.

• isotropic (1d, 2d) and anisotropic (2d) matcher: considers two rows as matching if the
difference between the values of their keys is less than a given error. It corresponds
to the more general theta-join.

• sky and skyerr matchers: apply join conditions customized for the astronomical spa-
tial searches.

In STILTS documentation, joins are mentioned as crossmatching operations, where
the goal is to identify different rows, which may be in the same or different tables, that
refer to the same item. A crossmatching is performed in three steps. First, define what
is the condition that must be satisfied for two rows to be considered matching. The
condition can be one of the matches presented before. Second, decide what happens
if, for a given row, more than one match can be found. The user can choose between Best
Match Only and All matches. And third, decide what to do with the matching rows. The
user can count them, present them as an output table or create a new FITS file with the
produced table.

Matching can in general be a computationally intensive process. The algorithm used
by the tmatch* tasks in STILTS, scales as O(N log(N)) (loglinear complexity), where N
is the total number of rows in all the tables being matched. No preparation (such as
sorting) is required on the tables prior to invoking the matching operation. It is quite fast
for small tables. The same scenario do not occur for bigger tables, where can easily run
out of memory.

5.3 Delegation experiments

In this section we illustrate the effect of delegation some of the operations that can be
done by some existing tools that work with FITS files into MonetDB.

We will start with selection, filter and statistical delegation, that will be performed by
the first and second group of FITS files and then we will move to a theta and equi join
delegation, performed by the third group of FITS files.

5.3.1 Selection and Filter delegation for Group number 1

For the first group, the first test is the Point Query. Starting with the types that are used
to represent numbers, the general structure of the SQL query in MonetDB is:

• select count(*) from binary_table where Value=Number;

5.3. DELEGATION EXPERIMENTS 59

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select Value==Number’ omode=count

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query in Hot memory

STILTS mean
Monet mean

Figure 5.1: Performance of MonetDB and STILTS in Point Query operations with numer-
ical types

Figure 5.1 represents the Point Query test of the numerical types, in hot memory, for
MonetDB and STILTS. We grouped all types together, calculating the average behavior
of STILTS and MonetDB. We did it because the times needed by the tools to perform
the tests were very similar along the different types. Both tools have a linear behavior
during the tests. Although, we have to highlight the performance of MonetDB, that is
always better than STILTS, reaching the query time of one second only in the last test. As
for STILTS, it takes an average of 64 seconds to perform the last test.

As for the cold memory tests, we assign a graph to each one of the types, because
it involves loading of the tables and MonetDB behaves differently for each one of the
numerical types. The first type is the Short.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type short (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.2: Performance of MonetDB and STILTS in Point Query operations for short type

60 CHAPTER 5. PERFORMANCE EXPERIMENTS

Figure 5.2 represents the Point Query test of the type short, cold memory, for Mon-
etDB and STILTS. Both tools have a linear behavior during the tests. MonetDB is superior
in all the tests, even when the loading time is added to the query time. As for the second
type that can be used to represent numbers, we will use Integers.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type integers (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.3: Performance of MonetDB and STILTS in Point Query operations for integer
type

Analysing Figure 5.3, two main points can be identified: the increased loading time
when compared to the type short; and the behavior in the performance of MonetDB
Query when it deals with the interval of files starting in the one that has 29 millions of
tuples and ending in the one that has 205 millions of tuples.

The increment of the loading time is expected, once the size of the data increases from
2 bytes, in the short type, to 4 bytes, in the integer type. As for the behavior of MonetDB
query, a trace was done to check which algorithms were being used. It happens that most
of the time is going to the uselect statement. The uselect statement is the one responsible
for building the hash table. Once the hash table is created, the queries will be much
faster, because the result is already in memory structures as a hash table. Knowing that,
and observing the times in Figure 5.3, we can deduce that in the interval of files starting
in the one that has 29 millions of tuples and ending in the one that has 205 millions of
tuples what happen is that MonetDB tries to build the hash table and it fails, it tries again
and it fails. It fails three or four times. We say this because the results are 4-5 times
bigger than the expected. As for the other files, it builds the hash table in the first try. The
reason for this failure still need some more debugging into MonetDB code. For now is
still unclear.

5.3. DELEGATION EXPERIMENTS 61

The third type chosen to represent numerical numbers is the type Long.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type long (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.4: Performance of MonetDB and STILTS in Point Query operations for long type

Figure 5.4 represents the Point Query test for the type long, in cold memory. The same
problem that was found for the integer type, described in Figure 5.3, also occurs for the
long type tests. The peak on the computation time is even more accentuated in this test
and the loading time of the table is also bigger, due to the 8 bytes size that the long type
requires. The combination of both factors leads to a total time spend by MonetDB (load
plus SQL query) worse than the computation time needed by STILTS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type float (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.5: Performance of MonetDB and STILTS in Point Query operations for float type

62 CHAPTER 5. PERFORMANCE EXPERIMENTS

The Float type is used to represent floating point numbers and it occupies 4 bytes.
Figure 5.5 shows the performance of MonetDB and STILTS in the Point Query test for
the type float, in cold memory. There is a similarity between the loading time behavior
of the integers, described in Figure 5.3, and the loading time of the floats, described
in Figure 5.5. This happens because both types use 4 bytes in their MonetDB internal
representation. Nevertheless, the floating points are more complex to store, leading to
worse performance in the loading of the tables when compared to integers.

As a consequence, adding the loading time to the query time, the performance of
MonetDB is worse than the performance of STILTS for the last test, with the 470 million
tuples file. For the other files, the performance of MonetDB is always better than STILTS.
The last Point Query test takes the type double as an input.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type double (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.6: Performance of MonetDB and STILTS in Point Query operations for double
type

As mentioned before, the similarity between the loading times behavior of the floats
and the integers happens because both have a MonetDB internal representation of 4
bytes. Therefore, the same happens for doubles and longs. Both have 8 bytes in their
MonetDB internal representation and both have a similar behavior in their loading time
process, however, the double type is used to store floating point values. Consequently,
there is a little additional time with doubles due to their complexity.

Finished with the numerical types, we will now proceed to the string type. Once
again, all the information will be gathered in one graph, for the hot memory tests. This
makes it simpler and comparable along the different string sizes. As for the cold memory
tests, we will maintain one graph for each of the string sizes. The general structure of the

5.3. DELEGATION EXPERIMENTS 63

SQL query in MonetDB is:

• select count(*) from binary_table where A=’string’;

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select A=="string"’ omode=count

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query in Hot memory

STILTS 4-byte strings
Monet 4-byte strings

STILTS 8-byte strings
Monet 8-byte strings

STILTS 20-byte strings
Monet 20-byte strings

Figure 5.7: Performance of MonetDB and STILTS in Point Query operations with different
string sizes

Figure 5.7 represents the Point Query test of the strings with different sizes, in hot
memory, for MonetDB and STILTS. For the tests with the 4-byte strings, we conclude that
MonetDB is always faster than STILTS, for all the file sizes tests. The behavior of STILTS
during the tests is linear. However, the time in MonetDB gets exponentially bigger mov-
ing from the 235 million tuples file to the 470 million tuples file. This happens because
the system runs out of memory and needs to perform swapping operations.

Another possible explanation for the occurrence can be seen in Figure 3.25, where a
representation of the BAT size in MonetDB of the strings with 4 bytes is displayed. We can
see that for the last file, with 470 million tuples, the total size to represent the strings ex-
ceed the memory capacity and the system needs to execute swapping operations, which
makes the time of the query grow.

As for the tests with the 8-byte strings, we can easily realize that MonetDB also runs
out of memory in the last file. However, the performance of STILTS is similar. This hap-
pens because once again, the BAT size of the strings in MonetDB, for the last file, exceed

64 CHAPTER 5. PERFORMANCE EXPERIMENTS

the memory capacity (Figure 3.26). As for STILTS, it takes as input the file present in the
file system, that is smaller than the memory capacity. This leads to a worse performance
of MonetDB in the last test, comparing to the behavior of STILTS.

Finally, the test with the 20-byte strings. As we can see in the BAT size representation
of the strings with the size of 20 bytes, Figure 3.27, memory capacity is exceeded in the
interval of the files with 205 and 235 millions of tuples. It is precisely in that interval that
the time grows exponentially.

Completed the tests in hot memory, we will now proceed for the string tests in cold
memory.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type string 4 bytes (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.8: Performance of MonetDB and STILTS in Point Query operations with single
4-byte string column

Figure 5.8 represents the Point Query test for the strings with the size of 4 bytes, in
cold memory for MonetDB and STILTS. We conclude that MonetDB is always better than
STILTS, even when the loading time of the table is added to the query time. Nevertheless,
due to the exponential increase of query time in the last test, already observed in the hot
memory test for the 470 million tuples file, added to the loading time of the table, the
total time of MonetDB gets worse than STILTS. The next Point Query test it will involve
strings with the size of 8 bytes. Figure 5.9 depicts the Point Query test in cold memory
for the 8-byte size string. The performance of STILTS is linear and similar to the previous
tests. As for the performance of MonetDB, it is worse comparing to Figure 5.9 because
both loading and query times increased, leading to a bigger total time, and, consequently,
a worse result comparing to STILTS. The same for the tests with the string size of 20 bytes,
represented in Figure 5.10.

5.3. DELEGATION EXPERIMENTS 65

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type string 8 bytes (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.9: Performance of MonetDB and STILTS in Point Query operations with single
8-byte string column

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type string 20 bytes (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.10: Performance of MonetDB and STILTS in Point Query operations with single
20-byte string column

5.3.2 Range Delegation for Group number 1

For the range delegation, only the types that represent numerical values will be target
of the Range test. They are the Short, Integer, Long, Float and Double types. For each
table, the query collects 5% of all the data. For example, the numbers that represent the
short type vary between 0 and 32760. If we apply a range that collects numbers between

66 CHAPTER 5. PERFORMANCE EXPERIMENTS

0 and 1638, approximately 5% of all data is gathered. The queries differ according to the
type. The SQL query used in MonetDB for the type Short is:

• select count(*) from binary_table where i>=0 and i<=1638;

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select (i>=0); select (i<=1638);’ omode=count

For the type long, the SQL query is:

• select count(*) from binary_table where j>=0 and i<=750000;

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select (j>=0); select (i<=750000);’ omode=count

For the Long type, the SQL expression in MonetDB is:

• select count(*) from binary_table where k>=0 and k<=107374182;

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select (k>=0); select (k<=107374182);’ omode=count

For the Float type, the SQL expression in MonetDB is:

• select count(*) from binary_table where e>=0 and e<=0.25;

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select (e>=0); select (e<=0.25);’ omode=count

The last type to be tested is the Double. The SQL expression in MonetDB is:

• select count(*) from binary_table where d>=0 and d<=0.25;

and in STILTS:

• ./stilts tpipe in=binary_table.fit cmd=’select (d>=0); select (d<=0.25);’ omode=count

5.3. DELEGATION EXPERIMENTS 67

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Range in Hot memory

STILTS mean
Monet mean

Figure 5.11: Performance of MonetDB and STILTS in Range operations with numerical
types

Figure 5.11 represents the Range test for the numerical types, in hot memory, for
MonetDB and STILTS. Once again, we grouped all types together for the same reason as
we did in Figure 5.1. Both tools have a linear behavior during the tests and STILTS takes
an average of 128 seconds to perform the last test. As for MonetDB, it reaches one second
in the last test.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Range 5% type short (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.12: Performance of MonetDB and STILTS in Range operations for short type

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Range 5% type integers (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.13: Performance of MonetDB and STILTS in Range operations for integer type

68 CHAPTER 5. PERFORMANCE EXPERIMENTS

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Range 5% type longs (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.14: Performance of MonetDB and STILTS in Range operations for long type

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Range 5% type float (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.15: Performance of MonetDB and STILTS in Range operations for float type

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Range 5% type double (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.16: Performance of MonetDB and STILTS in Range operations for double type

As for the cold memory tests, we assign a graph to each one of the types. They are
represented in Figure 5.12, Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16. For all
of them the performance of MonetDB is always better, even when the loading time of the
table is added to the total time.

5.3. DELEGATION EXPERIMENTS 69

5.3.3 Statistics Delegation for Group number 1

For the statistical tests, the generic SQL Query in MonetDB is:

• select min(J),max(J),avg(J) from binary_table;

As for STILTS:

• ./stilts tpipe binary_table.fit omode=stats;

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Statistics in Hot memory

STILTS shorts, integers and floats
Monet mean

STILTS longs and doubles

Figure 5.17: Performance of MonetDB and STILTS in statistical operations for short type

Figure 5.17 presents the statistical tests in hot memory, for MonetDB and STILTS.
We observe that STILTS has two different behaviors. The first one is when dealing with
shorts, integers and floats. It is the fastest one, reaching 26 seconds in the file with 470
millions of tuples. The second one is when dealing with longs and doubles. It is the
slowest one, taking an average of 46.5 seconds in the last test, with 470 millions of tuples.
As for MonetDB, it has only one behavior, applied for all the numerical types. It is linear
and it needs 2 seconds to answer the last query.

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Statistics type short (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.18: Performance of MonetDB and STILTS in statistical operations for short type

70 CHAPTER 5. PERFORMANCE EXPERIMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Statistics type integers (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.19: Performance of MonetDB and STILTS in statistical operations for integer
type

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Statistics type longs (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.20: Performing of MonetDB and STILTS in statistical operations for long type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Statistics type float (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.21: Performance of MonetDB and STILTS in statistical operations for float type

5.3. DELEGATION EXPERIMENTS 71

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s
)

#Millions of tuples

Point Query type double (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.22: Performance of MonetDB and STILTS in statistical operations for double
type

As for the cold memory tests, represented in Figure 5.18, Figure 5.19, Figure 5.20,
Figure 5.21 and Figure 5.22, the results of MonetDB get worse, due to the computation
required in statistical operations and due to the loading time that needs to be added to
the total time to execute the query.

5.3.4 Selection and Filter Delegation for Group number 2

Finished the tests for the first group of FITS files, we will now perform the tests for the
second group of FITS files. They are represented in Table 5.1 and the first test is Point
Query with hot memory. In MonetDB, it can be represented as:

• select count(*) from binary_table where I=4;

and in STILTS:

• ./stilts tpipe binary_table.fit cmd=’select (I==4)’ omode=count

This test filters data, taking a table as input, and returning the number of rows that
satisty the boolean expression. Figure 5.23 shows that MonetDB is faster than STILTS in
all tests. STILTS behavior is linear, growing in average 1.7 times in each iteration, until
it reaches the 7GB file, where the time starts to grow exponentially in the files with 8GB
and 16GB. This happens because the system is running out of memory. As mentioned
above, STILTS perform a row at a time scan.

72 CHAPTER 5. PERFORMANCE EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the files in MB

Point Query (Hot)

STILTS
Monet

Figure 5.23: Performance of Monet and STILTS in Point Query operations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the file in MB

Point Query (Hot) Zoom

STILTS
Monet

Figure 5.24: Performance of Monet and STILTS in Point Query operations

Figure 5.24 shows a zoom into MonetDB performance to better understand its be-
haviour. It is also linear, growing in average 2 times in each iteration. It does not have
the same problem as STILTS, growing linearly instead. After running the mserver with
the algorithms option, we noticed that MonetDB builds a hash table in memory, taking
less than one second in all the Point Query operations.

For the cold memory tests, represented in Figure 5.25, the time for MonetDB and
STILTS to execute the query is worse, when compared to the hot memory tests. For
STILTS, this happens until it reaches the 8GB file, after that, the time is the same as in hot
memory tests, because the system runs out of memory and it has to perform swap oper-
ations. The time for MonetDB to execute the query is more or less the same as STILTS for
all the tests, except for the 16GB file, where the time of MonetDB is better. The problem is,
mentioned above, when the loading time is added to the total time of MonetDB. STILTS
gets, in fact, a much better performance.

5.3. DELEGATION EXPERIMENTS 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the files in MB

Point Query (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.25: Performance of Monet and STILTS in Point Query operations

5.3.5 Range delegation for Group number 2

In the sequence of tests that follows we will explore different kinds of ranges of data
selected from the tables, more precisely 1%, 5%, 50%, 99% and 100%. When the files are
created, a random number is generated between 0 and 32767, for the column named I.
Knowing that, it is easy to choose what range of data it will be selected.

For the first test, 1% of the data is collected. The SQL expression for MonetDB is:

• select count(*) from table where I>=0 and I<=327;

And the expression for STILTS is:

• ./stilts tpipe table.fit cmd=’select (I>=0); select ’I<=327’) omode=count

For the second test, 5% of the data is collected. The SQL expression used in MonetDB
is:

• select count(*) from table where I>=0 and I<=1638;

And the expression in STILTS is:

• ./stilts tpipe table.fit cmd=’select (I>=0); select ’I<=1638’) omode=count

The third test collects 50% of the data. The following SQL expression is used for
MonetDB:

74 CHAPTER 5. PERFORMANCE EXPERIMENTS

• select count(*) from table where I>=0 and I<=16380;

And the expression for STILTS is:

• ./stilts tpipe table.fit cmd=’select (I>=0); select ’I<=16380’) omode=count

The forth test collects 99% of the data. The SQL expression used in MonetDB is:

• select count(*) from table where I>=0 and I<=32439;

And the expression in STILTS is:

• ./stilts tpipe table.fit cmd=’select (I>=0); select ’I<=32439’) omode=count

The fifth test collects 100% of the data. The SQL expression used in MonetDB is:

• select count(*) from table where I>=0 and I<=32767;

And the expression in STILTS is:

• ./stilts tpipe table.fit cmd=’select (I>=0); select ’I<=32767’) omode=count

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the files in MB

Ranges (Hot)

STILTS
Monet 1% and 5%

Monet 50% and 99%
Monet 100%

Figure 5.26: Performance of Monet and STILTS in Range operations

Figure 5.26 represents all the range tests in hot memory for MonetDB and STILTS. The
behaviour of STILTS is similar to the Point Query test in hot memory, for all the range
tests. This happens because, as it was said before, STILTS checks one row at a time for all
the filtering operations.

5.3. DELEGATION EXPERIMENTS 75

As for MonetDB, there are some variations on the behaviour of the system during the
different range tests.

For the ranges of 1% and 5%, the results differ from the Point Query tests in hot
memory. This happens because a range operation requires more computation than a
Simple Query operation and instead of using the hash table structure, MonetDB uses a
sequential scan (leading to a worse result), although still better than STILTS. For the first
time MonetDB exceeded one second in a hot memory operation.

While performing a trace in the ranges of 1% and 5% of the data, we verified that
MonetDB takes most of the time in uselect and leftjoin operations.

As for the selections of 50% and 99% of the data, the values on the graphic diverge
from the observations in the previous tests. The time that MonetDB took in the file with
1G was 20.0 seconds, in the file with 2G 62 seconds and in the file with 4G 1267 seconds.
Those are really high values, once MonetDB only needed a few milliseconds to perform
the previous tests. We encountered a problem with MonetDB performance. An analysis
between execution traces of Range 5% selection and Range 50% selection showed that
both have the same plan. However, Range 50% selection takes much more time executing
uselect and leftjoin operations. This happens due to a combination of several factors:

• the count operator is executed on the first column in the table of type string

• mitosis optimizer splits it into chunks

• operations over chunks lead to copying the string heaps instead of using the origi-
nal copying, that makes it slow

For the last test, that collects 100% of the data, an interesting fact happened. In the
previous tests with hot memory, the time of MonetDB and STILTS, for the Range opera-
tions, was more or less the same in the 16G file. That is not what happen in the test with
a Range of 100% of the data. The performance of MonetDB is incredibly faster than the
other tests. The reason for that is that MonetDB returns the number of tuples (count(*))
without touching them.

For the next row of tests, the same sequences of experiments will be performed, but
this time with cold memory.

76 CHAPTER 5. PERFORMANCE EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the files in MB

Ranges (Cold)

STILTS
Monet 1% and 5%

Monet 50% and 99%
Monet 100%

Figure 5.27: Performance of Monet and STILTS in Range operations

Figure 5.27 represents all the range tests in cold memory for MonetDB and STILTS.
Comparing to the Point Query test in cold memory, the performance of STILTS is quite
the same and it behaves the same for all the range tests, due to the row at a time check
for all the filtering operations.

As for MonetDB, it will be inspected the performance of the system for each one of
the range tests.

For the ranges of 1% and 5%, the performance of MonetDB is worse comparing to the
Point Query test in cold memory. First, the time that MonetDB takes to execute the query
in the 7G and 8G files is actually bigger than STILTS. Second, although MonetDB gets
again faster than STILTS for the 16G file, that difference is not so accentuated like in the
Point Query test in cold memory. And the loading time of the tables, that is the same for
all the tests in cold memory, also need to be added to the total time of MonetDB to return
the result. Summarizing, the performance of STILTS is better than MonetDB for the 1%
and 5% Ranges test in cold memory.

For the range of 50% and 99%, the same problem, that was reported for the tests with
hot memory, remains for the tests in cold memory, with a even more accentuated curve
due to the load of the data.

As for the test that collects 100% of data, the same fact that occurred in the test with
hot memory it happens in this test. In the previous tests with cold memory, it was obvious
that the time that MonetDB took to perform the tests was more or less the same. That is
not what happen in the test with a Range of 100% of the data. The reason for the fact was
already explained in the test with hot memory.

5.3. DELEGATION EXPERIMENTS 77

5.3.6 MonetDB problem

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

T
im

e
 (

s
)

#Selected %

Monet Problem

Monet
Monet without mitosis optimizer

Monet without touching the string column

Figure 5.28: Problem on Monet with the table of 1G

Figure 5.28 shows the problem of range selection performance for the table of size 1G.
Different ranges of data that were collected for the table with 1G, and the respective times
of each operations. When the range of data changes from 12% to 13%, the times grows to
20-22 seconds.

This problem can be solved with two alternatives. The first is to produce an alterna-
tive query, that could be:

• select count(I) from feb1g_2 where I>=0 and I<=16380;

When this query is executed, instead of picking the column with the string type, a
column with the short type is selected. And the result is in fact faster, taking only a few
milliseconds, as we can see in Figure 5.28, in the line Monet without touching the string
column.

Another way to solve this bug is by disabling the mitosis optimizer. Doing that, the
performance of the system changes, taking also a few milliseconds to execute the query,
as we can see in Figure 5.28, in the line Monet without mitosis optimizer.

We can notice that the first alternative, that selects without touching the string col-
umn, is more efficient than the second alternative, that disables the mitosis optimizer.
This happens because in the first case MonetDB takes advantage of all the optimizers
that are available in order to execute the query, and in the second case one of them is
disable, leading to a worse performance. Knowing that, and being the Point Query and

78 CHAPTER 5. PERFORMANCE EXPERIMENTS

Range tests the ones that have the problem with the string column, we will repeat those
tests with a count(I) instead of a count(*), making sure that the string column is not
touched.

For the Point Query test in hot memory the performance of MonetDB is the same with
count(I) and count(*). As explained before, MonetDB builds a hash table in memory,
taking less than one second in all the Point Query operations.

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Range M

Point Query (Cold)

STILTS
Monet count(*)
Monet count(I)

Figure 5.29: Performance of MonetDB and STILTS in Point Query Operations

For the Point Query test with cold memory, performing a count(I) is much more effi-
cient than a count(*), as we can see in Figure 5.29. Analysing the trace of each one of the
alternatives, we realized that the two operations that take more computation time in both
queries are an uselect and a leftjoin. The time of uselect is the same for both count(I)
and count(*). As for the leftjoin operation, it takes significantly more time in the count(*)
query, because it is choosing the string column to perform the join, instead of the integer
column picked in the count(I) query, that is faster and easier to operate.

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the files in MB

Ranges (Hot)

STILTS
Monet 1%, 5%

Monet 50%
Monet 99%

Monet 100%

Figure 5.30: Performance of MonetDB and STILTS in Range Operations

5.3. DELEGATION EXPERIMENTS 79

Figure 5.30 shows the performance of MonetDB and STILTS for the range operations
with hot memory. However, this time the query is count(I) instead of count(*). Com-
paring to the performance of MonetDB in Figure 5.26, we can easily conclude that the
count(I) is much more efficient, once again due to the string column. For the tests that
collect 1% and 5% of the data, MonetDB only took 0.5 seconds for the 16g file. For the
count(*) test, the same test took 280 seconds. The same scenario is reflected in the fol-
lowing range tests. For the range of 50%, MonetDB takes 6 seconds for the 16g file, and
this values are getting bigger and bigger as the range that is collected also increases, till
it reaches the test that collects 99% of the data, where it takes 26 seconds for the 16g file.
For the 100% range test, MonetDB realizes that all the data is being collected and it takes
less time, as it was explained before.

Observing the traces of both queries, count(I) and count(*), we realized that the most
expensive one are the uselects and leftjoins. The computation time of uselect is the same
in both queries. This happens because they take only the integer column and perform
the select operation on it. As for the computation times of leftjoin operations, they are
the responsible for the worse time in the count(*), because, as it was explained before,
the string column is taken in order to perform the join and it takes more time than the
integer column that is picked in the count(I) query.

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Size of the files in MB

Ranges (Cold)

STILTS
Monet 1% and 5%

Monet 50%
Monet 99%

Monet 100%

Figure 5.31: Performance of MonetDB and STILTS in Range Operations

Figure 5.31 shows the performance of MonetDB in all the range tests in cold memory.
As in Figure 5.30, it was used the count(I) instead of count(*). We can notice that the
difference between the tests with count(*) represented in Figure 5.27 is substantial. The
count(I) takes considerable less time to compute the final result. As an example of that
difference: in the count(*) tests, perform a range of 1% and 5% in the 16g file take 288
seconds and the same queries, but with count(I) take 12.3 seconds. The same happens
for the other range tests, taking more time as the amount of data that is collected. The

80 CHAPTER 5. PERFORMANCE EXPERIMENTS

time is growing till the 99% range test, where it needs 47.4 seconds, for the 16g file. After
that, for the 100% range test, MonetDB realizes that is collecting all the data of the table,
and takes less time to compute the final result.

Like in Figure 5.30, it was done a trace between the count(*) and count(I) queries, and
it happens that, once again, the lefjoin operations are the ones that take more time, due
to the string column, as explained before.

5.3.7 Projection delegation for Group number 2

For the projection operations, with the group number two, the following SQL expression
is used in MonetDB:

• select count(A) from binary_table;

And for STILTS:

• ./stilts tpipe feb1g.fit cmd=’keepcols "A"’ omode=count

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Range M

Projection of one column

STILTS Hot
Monet Hot

STILTS Cold
Monet Cold

Figure 5.32: Performance of Monet and STILTS in Projection operations

Figure 5.32 shows the performance of both tools with hot and cold memory, in pro-
jection operations. Projection is a very efficient operation for column-store MonetDB and
STILTS.

5.3.8 Statistical Delegation for Group number 2

For the Statistics tests, the following SQL expressions are used in MonetDB:

5.3. DELEGATION EXPERIMENTS 81

• SELECT

min(I), max(I), avg(I),

min(J), max(J), avg(J),

min(K), max(K), avg(K),

min(E), max(E), avg(E),

min(D), max(D), avg(D)

FROM binary_table;

For STILTS:

• ./stilts tpipe binary_table.fit omode=stats;

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Range M

Statistics (avg, min, max) (Hot)

STILTS
Monet

Figure 5.33: Performance of Monet and STILTS in Statistics operations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

s
)

#Range M

Statistics (avg, min, max) (Cold)

STILTS
Monet Query

Load table
Load + Query

Figure 5.34: Performance of Monet and STILTS in Statistics operations

82 CHAPTER 5. PERFORMANCE EXPERIMENTS

Figure 5.33 shows the first time that MonetDB was actually worse than STILTS in the
hot memory tests, however, that fact happens only for the 16GB file. The behavior of
STILTS is the same as the previous tests because, as said before, it executes a row at a
time. As for MonetDB, a trace was done to check which algorithms were being used. It
happens that MonetDB uses a scan select and performs a lot of intermediate calculations
(for example: aggr.sum, aggr.count, aggr.max and aggr.min), to give as result the min,
the max and the mean of each column. Examining the trace of MonetDB, a total number
of 591 operations are performed for the 16GB file and 449 for the 8GB file. In the previous
tests, Point Query and Range operations, the trace took only a few lines.

At this point, something can be done to improve the performance of MonetDB in
statistic operations:

• add statistical information to the metadata of each column

• scan and save potential statistic results of the column (min, max, count, aggregate
and average) instead of looking for the entire column every time that an statistical
operation request is done

As expected, STILTS is better than MonetDB in the statistics tests with cold memory,
as it can be seen in the Figure 5.34. It is a reflection about what was explained before for
the hot memory tests.

5.3.9 Summary of the tests for the first and second groups

In all the tests performed so far, can be evidenced that MonetDB is better than STILTS
in the hot memory tests (with the exception of the Range 50% and Range 99% tests due to
the bug of MonetDB already explained and also for the statistics tests, for the 16GB file).
The scenario changes when the tests with cold memory are executed. Because MonetDB
not only needs the time to execute the query (that is more or less the same as STILTS), but
also the time to load the table into the database system. When this second time is added
to the total time of MonetDB, the performace is, in fact, worse for MonetDB in these tests.

After discovering the problem with MonetDB we decided to perform the Point Query
and Range tests one more time. This time without touching the string column, doing a
count(I) instead of a count(*). It was obvious that the performance of MonetDB increased
significantly with the count(I) query, being always better than STILTS, for all the hot and
cold memory tests.

We can also notice that STILTS always performs a sequential scan over all the data
for this filtering operations, leading to a linear behavior in all the tests, because all the

5.3. DELEGATION EXPERIMENTS 83

data has to be touched and all the tests have to perform the queries through the same
sequence of files.

As for MonetDB, either a hash table structure can be built, or a sequential scan is
performed all over the columns of the table. Participating in the query, for the first case,
we have the Point Query tests and for the second case, there are the Range tests and
the Statistics tests (which also need some extra computation time besides the sequential
scan).

The following tests concern to the third group os FITS files. We will study the equi-
and theta joins.

5.3.10 Equi-join delegation for Group number 3

We performed two sets of equi-join experiments to study the effect of file sizes and join
fan-out factors on the performance.

First, we created a basic set of files, setting a column K to be the primary key. The
values of K start from 1 and end in the respective number of rows. It could have been a
generation of a random number, but in that case we would lose the control of the fan-out
factor that is produced as a final result. Those files are used as a left-hand join operand.

In order to control the join operations and the expected number of rows affected, a
fan-out factor of 1, 3, 5 and 10 was attributed to each one of the files.

In the first set of experiments we vary both the fan-out factor and the operand and re-
sult size. For each file of size S and fan-out factor f we created a right-hand join operand
file of size f ∗ S such that each row in the left-hand operand file matches exactly f tuples
in the right-hand one. For fan-out factor of 1 we perform a self-join on the unique col-
umn. Note, that along with the fan-out factor this way of file construction increases the
size of both the right-hand operand and the result set.

The test involves two tables, and in MonetDB can be represented as:

• select count(*)

from mar1mjoin1, mar1mjoin2

where mar1mjoin1.K=mar1mjoin2.K;

Where mar1mjoin1 is the left table with 1MB and mar1mjoin2 is the right table with
3MB. The resulting table is of size 3MB.

And in STILTS:

84 CHAPTER 5. PERFORMANCE EXPERIMENTS

• ./stilts tmatch2 matcher=exact in1=table1.fit in2=table2.fit values1=K values2=K
progress=none find=all omode=count

Figure 5.35 and Figure 5.36 present the performance and the memory consumption
of the equi-join tests, with different fan-out factors, in each one of the tools.

 10 20 30 40 50 0

 2

 4

 6

 8

 10

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Time (s)

Equi Join
STILTS fan out 1

Monet fan out 1
STILTS fan out 3

Monet fan out 3
STILTS fan out 5

Monet fan out 5
STILTS fan out 10

Monet fan out 10

#Left Operand Size in M

Fan-out factor

Time (s)

Figure 5.35: Performance for the different fan-out factors

It can be observed, in Figure 5.35, that for the fan-out factor of 1 MonetDB is 2 or-
ders of magnitude faster than STILTS. Even the biggest value of MonetDB, for the 50MB
file, is smaller than the smallest value of STILTS, for the 1MB file. As for the memory
consumption, in Figure 5.36, we can clearly notice that MonetDB uses less memory than
STILTS. In the worst case, STILTS uses 16.0% of the memory and MonetDB uses 0.4% (the
fewer that STILTS can get). This happens because the data has to be accessed and a join
algorithm has to be applied, by both tools. The join algorithm performed in MonetDB
was the hash join, that only builds an hash table, consuming much less memory than the
one used by STILTS.

5.3. DELEGATION EXPERIMENTS 85

 10 20 30 40 50 0

 2

 4

 6

 8

 10

 0

 20

 40

 60

 80

 100

Percentage

Memory Consumption

STILTS fan out 1
Monet fan out 1

STILTS fan out 3
Monet fan out 3

STILTS fan out 5
Monet fan out 5

STILTS fan out 10
Monet fan out 10

#Left Operand Size in M

Fan-out factor

Percentage

Figure 5.36: Percentage of memory consumed

For STILTS, as said before, the complexity of the join operations is O(N log(N)), where
N is the total number of rows in all the tables being matched. The algorithms that have
this complexity are called loglinear and their purpose is the sorting of an array. Follow-
ing, we have some examples of algorithms with this complexity:

• heapsort: begins by building a heap out of the data set, and then removing the
largest item and placing it at the end of the partially sorted array. After removing
the largest item, it reconstructs the heap, removes the largest remaining item, and
places it in the next open position from the end of the partially sorted array. This
is repeated until there are no items left in the heap and the sorted array is full.
Elementary implementations require two arrays - one to hold the heap and the
other to hold the sorted elements.

• quicksort: sorts by employing a divide and conquer strategy to divide a list into
two sub-lists. The steps are:

- pick an element, called a pivot, from the list.

- reorder the list so that all elements with values less than the pivot come before
the pivot, while all elements with values greater than the pivot come after it (equal

86 CHAPTER 5. PERFORMANCE EXPERIMENTS

values can go either way). After this partitioning, the pivot is in its final position.
This is called the partition operation.

- recursively sort the sub-list of lesser elements and the sub-list of greater ele-
ments.

• mergesort: It is also a divide and conquer algorithm and the steps are:

- divide the unsorted list into two sublists of about half the size

- sort each sublist recursively by re-applying the merge sort

- merge the two sublists back into one sorted list

For the fan-out factor of 3, both tools take more time and consume more memory
than in the tests with fan-out factor of 1. This should be expected because the size of the
right table gets 3 times bigger, as the final result. The join algorithm applied by MonetDB
is, once again, hash join. And, once again, we can notice that, in Figure 5.36, the biggest
value of MonetDB is smaller than the smallest value of STILTS.

For the fan-out factor of 5, the memory consumption gets even more bigger, reaching
67% in the worst case for STILTS. In the last tests, the memory consumption for STILTS
in the worst case was 16% for the fan-out factor of 1 and 41.7% for the fan-out factor of 3.

The last test is with the fan-out factor of 10. It can be noticed that the performace of
STILTS starts getting worse when it has to deal with bigger files. The last test of the fan-
out 1:10 involves a file with 50MB on the left and a file with 500MB on the right, creating
a new table with 500MB. It can be noted that for STILTS, the last test does not describe
the same line, as for the previous fan-outs of 1,3 and 5. On the other hand, the behavior
of MonetDB is more or less the same in all the tests involving different fan-outs, and the
performance is always better than STILTS.

The fan-out 10 is the one that demands more computation by the tools. As it can be
seen in Figure 5.36, STILTS starts to work really bad with the 30MB and 50MB files, that
are joined with 300MB and 500MB files, producing tables of 300MB and 500MB respec-
tively. In the last test, STILTS consumes 95.6% of the memory. It is the maximum that it
can take because the memory is been used by other processes.

In the second set of experiments we fix the size of the right hand join operand and
the result set to be equal to the size of the left-hand operand, and vary only the fan-out
factor.

For each file of size S and fan-out factor f we created a right-hand join operand file of
size S such that every 1

f row in the left-hand operand file matches exactly f tuples in the
right-hand one.

5.3. DELEGATION EXPERIMENTS 87

The results for 1:1 are the same as above, because we are dealing with the same files,
so they are skipped.

We can notice that there is no substantial differences between the fan-out factors rep-
resented in Figure 5.37. Both systems have the same behavior in all the fan-outs. This
happens because the table on the right side and the result table have the same size as the
table on the left.

Hence, the processing time is affected more substantially by the sizes of the operands,
and not so much by the fan-out variation of files with the same size.

As expected, also the memory consumption is similar in the fan-out experiences, rep-
resented in Figure 5.38, with STILTS being always the tool that consumes more memory.

 10 20 30 40 50 0

 2

 4

 6

 8

 10

 0.001

 0.01

 0.1

 1

 10

Time (s)

Equi Join

STILTS fan out 3
Monet fan out 3

STILTS fan out 5
Monet fan out 5

STILTS fan out 10
Monet fan out 10

#Left Operand Size in M

Fan-out factor

Time (s)

Figure 5.37: Performance for the different fan-out factors

88 CHAPTER 5. PERFORMANCE EXPERIMENTS

 10 20 30 40 50 0

 2

 4

 6

 8

 10

 0

 5

 10

 15

 20

Percentage

Memory Consumption

STILTS fan out 3
Monet fan out 3

STILTS fan out 5
Monet fan out 5

STILTS fan out 10
Monet fan out 10

#Left Operand Size in M

Fan-out factor

Percentage

Figure 5.38: Percentage of memory consumed

5.3.11 Band-join delegation for Group number 3

We reuse the set of basic files from Section 5.3.10. We perform a self-join on the unique
column with varying error bound which also determines the fan-out factor. An error of 1
gives fan-out of 3, an error of 2 gives an fan-out of 5 and an error of 4 gives an fan-out of 9.
In this band-join tests, the join is performed between files with the same size, producing
a result 3 times bigger in the case of the fan-out factor of 3, 5 times bigger in the case of
the fan-out factor of 5 and 10 times bigger in the case of the fan-out factor of 10.

We will start with the fan-out factors that increase the file size. The first test is the
fan-out factor of 3, with an error of 1. The SQL expression in MonetDB is:

• select count(*) from tst as t1, tst as t2

where t1.id between t2.id-1 and t2.id+1;

And in STILTS, the expression is:

• ./stilts tmatch2 matcher=1d in1=mar1mjoin1.fit in2=mar1mjoin1.fit values1=K val-
ues2=K params=1 progress=none find=all omode=count

5.3. DELEGATION EXPERIMENTS 89

The second test is the fan-out factor of 5, with an error of 2. The SQL expression in
MonetDB is:

• select count(*) from tst as t1, tst as t2

where t1.id between t2.id-2 and t2.id+2;

And in STILTS, the expression is:

• ./stilts tmatch2 matcher=1d in1=mar1mjoin1.fit in2=mar1mjoin1.fit values1=K val-
ues2=K params=2 progress=none find=all omode=count

The third and last test is the fan-out factor of 9, with an error of 4. The SQL expression
in MonetDB is:

• select count(*) from tst as t1, tst as t2

where t1.id between t2.id-4 and t2.id+4;

And in STILTS, the expression is:

• ./stilts tmatch2 matcher=1d in1=mar1mjoin1.fit in2=mar1mjoin1.fit values1=K val-
ues2=K params=4 progress=none find=all omode=count

 10 20 30 40 50 0

 2

 4

 6

 8

 10

 0.001

 0.01

 0.1

 1

 10

 100

Time (s)

Band Join

STILTS fan out 3
Monet fan out 3

STILTS fan out 5
Monet fan out 5

STILTS fan out 10
Monet fan out 10

#Left Operand Size in M

Fan-out factor

Time (s)

Figure 5.39: Performance for the different fan-out factors

90 CHAPTER 5. PERFORMANCE EXPERIMENTS

 10 20 30 40 50 0

 2

 4

 6

 8

 10

 0

 20

 40

 60

 80

 100

Percentage

Memory Consumption for the Band-Join
STILTS fan out 3

Monet fan out 3
STILTS fan out 5

Monet fan out 5
STILTS fan out 10

Monet fan out 10

#Left Operand Size in M

Fan-out factor

Percentage

Figure 5.40: Percentage of memory consumed

Figure 5.39 and Figure 5.40 represent the performance and the memory consumption
of the band-join tests, with different fan-out factors, in each one of the tools.

For the fan-out factor of 3 and 5, Figure 5.39 shows that the band-join is simpler
than the Equi-Join. Actually, all the results in all the experiments (both MonetDB and
STILTS) for the fan-out factor of 3 take less time in the Figure 5.39, comparing to the tests
in the Figure 5.35. Also for the memory consumption, the band-join tests consume less
memory than the equi-join tests. The main reason for occurrence is the size of the files. As
it explained before, the band-joins perform always a self-join, varying the fan-out with
the error factor, producing a bigger file. The equi-joins work with a smaller file in the
left-hand, a bigger file in the right-hand, and produce a file with the same size as the
right-hand file used for the join operation.

Apart from that, MonetDB is always better than STILTS, both in the performance tests
and in the percentage of memory consumed.

The same that happened for the fan-out factor of 10 in the Equi-Join tests, also occur
in the tests of Figure 5.39. The performace of STILTS starts getting worse when it has to
deal with bigger files and for the last test, the same line that appeared in the Figure 5.35,
also occurs in this test. The same for the memory consumption. STILTS consumes 95.6%
of the memory.

5.3. DELEGATION EXPERIMENTS 91

For the second row of experiments, with files with the same size, but with different
fan-outs we will not perform the experiments, because we already conclude that the pro-
cessing time is affected more substantially by the sizes of the operator.

92 CHAPTER 5. PERFORMANCE EXPERIMENTS

Chapter 6

Related Work

There are several tools that can access and manipulate FITS files. In this chapter we
present them and attempt to answer a set of questions in order to analyse their strengths
and weaknesses. The questions will be the following: Do they have a functional com-
pleteness with respect to the use case? What is the programming model? What is the
maturity and the user community? What is the vitality of the product-team? What is the
positioning with respect to the database technology? What is the ability to scale to the
requirements posed? It is possible the multiple access to the same FITS file? How many
FITS files can be simultaneously opened? What is the maximum FITS file size supported?
Can it read and output FITS files in UNIX compress format? And , finally, which library
do the tools use?

We will also investigate the alternatives of storing astronomical data which compete
with the FITS format. By building a user matrix that determines a set of tasks, we were
able to present the similarties and differences between the alternatives, demonstrating
which formats are better for storing astronomical data.

6.1 CFITSIO

CFITSIO [16] is a library of routines, written in C language, for reading and writing
data files in the FITS data format. It was initially developed by the HEASARC (High
Energy Astrophysics Science Archive Research Center) with the purpose of converting
astronomical data sets into FITS format. With all the contributions given by the Integral
Science Data Center in Switzerland, and the XMM/ESTEC project in The Netherlands,
a second version of the package was created. That version is available on the Nasa’s
software website [3]. It is machine-independent and it runs on most commonly used
computers and workstations. CFITSIO will probably run on most Unix platforms. Cray

93

94 CHAPTER 6. RELATED WORK

supercomputers are currently not supported.

The small example bellow demonstrates CFITSIO routines:

#include <string.h>

#include <stdio.h>

#include "fitsio.h>

int main(int argc, char *argv[])

{

fitsfile *fptr;

char card[FLEN_CARD];

int status = 0, nkeys, i;

fits_open_file(&fptr, argv[1], READONLY, &status);

fits_get_hdrspace(fptr, &nkeys, NULL, &status);

for (i=0; i <= nkeys; i++) {

fits_read_record(fptr, i, card, &status); /* read keyword */

printf("%s\n", card);

}

printf("END\n\n"); /* terminate listing with END */

fits_close_file(fptr, &status);

if(status) /* print any error messages */

fits_report_error(stderr, status);

return(status);

}

CFITSIO is the result of many years of development, providing 100% complete sup-
port for the FITS Standard. Namely, CFITSIO supports simultaneous read and write
access to multiple HDUs in the same FITS file. Thus, one can open the same FITS file
twice within a single program and move to 2 different HDUs in the file, and then read
and write data or keywords to the 2 extensions just as if one were accessing 2 completely
separate FITS files.

The maximum number of FITS files that may be simultaneously opened by CFITSIO
is set by NMAXFILES as defined in fitsio2.h. It is currently set = 300 by default. On some
systems it has been found that gcc supports a maximum of 255 opened files.

6.1. CFITSIO 95

The current maximum FITS file size supported by CFITSIO is about 6 terabytes (con-
taining 231 FITS blocks, each 2880 bytes in size). Currently, support for large files in
CFITSIO has been tested on the Linux, Solaris, and IBM AIX operating systems.

FITS files can be read and written in shared memory. This can potentially achieve
better data I/O performance compared to reading and writing the same FITS files on
magnetic disk.

Compressed FITS files in gzip or Unix compress format can be directly read. Output
FITS files can be written directly in compressed gzip format, thus saving disk space.

The I/O speed depends of course on the type of computer system that the CFITSIO
library is running on. The average of the workstations can achieve speeds of 2-10 MB/s
when reading or writing FITS tables. The speed can go even faster if the FITS file is in
main memory (30MB/s or more)

For small transfers of data, CFITSIO maintains a set of internal Input-Output (IO)
buffers in main memory, each one containing a FITS block (2880 bytes) of data. When
data on the FITS files needs to be accessed, CFITSIO first transfers the FITS block con-
taining the bytes into one of the IO buffers in memory and the next time that needs to
access the data it can use the fast IO buffer rather than using a slower disk access. The
number of available IO buffers is determined by the NIOBUF parameter (in fitsio2.h) and
is currently set to 40 by default. Knowing that, there are two aspects that must be con-
sidered: First, whenever CFITSIO reads or writes data it first checks to see if the block
is already loaded into one of the IO buffers. If not, and if there is an empty IO buffer
available, then it will load that block into the IO buffer (when reading a FITS file) or will
initialize a new block (when writing to a FITS file). Second, when all the IO buffers are
being used, the system must decide which one is going to reuse (normally is the one that
has been accessed least recently).

For big transfers of data, CFITSIO simply avoids all this IO buffers process and straight-
forwardly reads or writes the bytes of interest directly to disk through a read or write
routine. The minimum threshold for the number of bytes to read or write this way is set
by the MINDIRECT parameter and is currently set to 3 FITS blocks = 8640 bytes. Using
this strategy, transfer rates of 5-10MB/s or greater can be achieved. Note that this fast di-
rect IO process is not applicable when accessing columns of data in a FITS table because
the bytes are generally not contiguous since they are interleaved by the other columns
of data in the table. This explains why the speed for accessing FITS tables is generally
slower than accessing FITS images.

Summarizing, the first strategy is used when dealing with FITS tables and the second
strategy is used when dealing with FITS images.

Reading or writting small chunks of data via the IO buffers is in fact less efficient

96 CHAPTER 6. RELATED WORK

because it requires an extra copy operation and bookkeeping steps. Conventionally, it
is more efficient to read or write as large array as possible. Nevertheless, if the array
becomes so large that the operating system cannot store it all in RAM memory, swapping
operations need to be done, degrading the performance.

As said and explained before, The IO buffers strategy is used to read and write FITS
tables. In order to make it efficient, a single pass through the FITS file is required. An
example of a poor program plan is to read a large, 4-column table by sequentially read-
ing the entire first column, then the second, the third and finally the forth column. This
design of the program requires 4 passes through the file which could quadruple the ex-
ecution time of an IO limited program. The tactic used by the CFITSIO library consists
in reading or writting as many rows of the table as possible into the available IO buffers
and then proceed to the next range of rows. The optimal number of rows to read or write
at one time in a given table depends on the width of the table row and on the number
of IO buffers that have been allocated in CFITSIO. There is a routine in CFITSIO that
will return the optimal number of rows for a given table given a FITS file as an input:
fits_get_rowsize. Using a very small value however can also lead to poor performance
because of the overhead from the larger number of subroutine calls.

6.1.1 Fv

Fv [18] is a tool that is built under the CFITSIO library. It is a graphical program, easy
to use and focus on viewing and editing FITS images and tables.

After reading the Fv documentation and experimenting the tool we realized that it is
a powerful program but there are some functionalities missing. It provides a good vi-
sualization of the data present in the tables and allows the user to click in a particular
element of the table and edit it right away. The same edition can be done to an entire
column, selecting the name of the column that we want to modify and enter the expres-
sion that will apply the changes to all the elements of the column. An entirely new table
column can also be created based on an expression. Insertion procedures and deletion by
selecting the rows or columns that we want to delete is also possible. The delete feature
can also be done through an expression. Sort in ascending or descending orders are also
permitted. The entire table can also be copied to a plain ASCII format file. The ASCII file
can then be printed or edited with an ordinary text editor program. As for the statistical
and projection operations, it is equally well presented and easy to obtain the information,
choosing which column we want to either project or know statistical information about
it (number of values, minimum value, maximum value, mean and standard deviation).
Finally, the most recent functionality provided by Fv is the histogram tool, where the in-
formation about how the values in the column are distributed can be checked and also

6.2. STIL 97

which bin size we want to apply.

However, this tool is still missing some features which do not allow a functional com-
pleteness with respect to our use case. It does point query filtering and range selection
operations but only highlights the rows within the table that fulfill the criteria, instead
of creating a complete new table with the rows that match the parameter. If the table is
small then we can assimilate the rows efficiently. However, if the tables are too large and
the rows that match are only a portion of the table, then it becomes unreadable and too
complex to analyse the results.

Finally, join cannot be undertaken, because this tool only operates with a single table,
performing all the operations that we described before.

6.2 STIL

Similar to CFITSIO, STIL [23], that stands for Starlink Tables Infrastructure Library,
is also a library which allows the input, manipulation and output of tabular data and
metadata. It is written in Java and it has been developed for use in astronomy. Besides
the FITS, it also supports many others tabular formats: VOTable, text-based and SQL
databases. All of them can be received as input and exported as output. If the user has a
table format which is unsupported by STIL, a new input handler and a new output han-
dler can be written. The user just have to follow the instructions on the documentation.
It works only with tables and it can provide to the user information about:

• table metadata: all the information related the table name, the location, the number
of columns, the number of rows, the description and some more additional com-
ments

• column metadata: provide information about each column, such as name, type of
the values, units of the values and a small description of the column

• table cell data: multi-dimensional array data of numerical, string or other types

STIL uses two different methods to access the data in their tables: random-access and
sequential access. The sequential access starts with the first row and reads a row at the
time, until the last one.

Here is an example of how to sum the values in one of the numeric columns of a table.
Since only one value is required from each row, getCell is used:

98 CHAPTER 6. RELATED WORK

double sumColumn(StarTable table, int icol) throws IOException {

// Check that the column contains values that can be cast to Number.

ColumnInfo colInfo = table.getColumnInfo(icol);

Class colClass = colInfo.getContentClass();

if (! Number.class.isAssignableFrom(colClass)) {

throw new IllegalArgumentException("Column not numeric");

}

// Iterate over rows accumulating the total.

double sum = 0.0;

RowSequence rseq = table.getRowSequence();

while (rseq.next()) {

Number value = (Number) rseq.getCell(icol);

sum += value.doubleValue();

}

rseq.close();

return sum;

}

In the random access it is possible to access the cells of a table in any order. Once the
random access methods are called, the user needs to make sure that the table is a random
table. In more detail, STIL supports the following input formats:

• FITS: As we described in the Background section, FITS tables can be divided into
Binary and ASCII tables. Both are supported by the library. If only a single ex-
tension is required, this is indicated by giving the extension number after a # at the
end of the table location. For example, astro.fits#3 refers to the third extension (forth
HDU) in the file astro.fits.

• VOTable: VOTable is an XML-based format for tabular data. It can read tables in
which the cell data are included in-line as XML elements (VOTable/TABLEDATA
format), or included/referenced as a FITS table (VOTable/FITS) or included/refer-
enced as a raw binary stream (VOTable/BINARY).

• ASCII text file: In many cases tables are stored in some sort of unstructured plain
text format, with cells separated by spaces or some other delimiters. There is a
wide variety of such formats depending on what delimiters are used, how columns
are identified, whether blank values are permitted and so on. It is impossible to
cope with them all, but STIL attempts to make a good guess about how to interpret

6.2. STIL 99

a given ASCII file as a table, which in many cases is successful. CVS (Comma-
separated value), TST (Tab-Separated Table), IPAC [1] (Infrared Processing and
Analysis Center) and WDC [8] (World Data Center) are some of the examples that
the STIL library supports.

As for the output, STIL supports the following formats:

• FITS: When saving in FITS format a new file is written consisting of N+1 HDUs
(Header+Data Units) for N tables: the primary HDU (required by the FITS standard
that has no interesting content), and subsequent ones (the extensions) are of type
BINTABLE, one for each output table.

• VOTable: When a table is saved to VOTable format, it will write a well-formed
VOTable document with a single resource element holding one or more table ele-
ments.

• ASCII text file: Tables can be written using a format which is compatible with the
ASCII input format. It writes as plainly as possible, so should stand a good chance
of being comprehensible to other programs which require some sort of plain text
rendition of a table. Some more examples of output formats can be: CSV, TST,
Human-readable text, HTML, LaTeX and Mirage (a powerful standalone Java tool
for analysis of multidimensional data).

With a proper configuration, STIL can read and write tables from a relational database.
The result of a SQL query on a database table can be handled by STIL. Also a new table
can be properly stored into an existing database. Note that this does not allow you to
work on the database live. The classes that control these operations are contained in
the jdbc package. In short, what the user needs to do is define the "jdbc.drivers" system
property to include the names of the JDBC drivers which the user wishes to use. For
instance to enable use of MySQL with the Connector/J database the user might start up
java with a command line like this:

java -classpath /my/jars/mysql-connector-java-3.0.8-stable-bin.jar:myapp.jar

-Djdbc.drivers=com.mysql.jdbc.Driver

my.path.MyApplication

STIL supports the following RDBMSs and drivers:

• MySQL: has been tested on Linux with the Connector/J driver; tested versions are
server 3.23.55 with driver 3.0.8 and server 4.1.20 with driver 5.0.4

100 CHAPTER 6. RELATED WORK

• PostgreSQL: the version 7.4.1 works with its own JDBC driver. Note the perfor-
mance of this driver appears to be rather poor, at least for writing tables

• Oracle: uses the JDBC driver

• SQL server: There is more than one JDBC driver known to work with SQL Server,
including jTDS and the Microsoft JDBC driver. Some evidence suggests that jTDS
may be the better choice

• Sybase ASE: There has been a successful use of Sybase 12.5.2 and jConnect (jconn3.jar)
using a JDBC

To read a result of an SQL query on a relational database as a table, the query string
is as follows:

jdbc:<driver-specific-url>#<sql-query>

Here is an example for a MySQL database:

jdbc:mysql://localhost/astro?user=mb#SELECT ra, dec FROM swa WHERE vmag<18

To write a new table in an SQL RDBMS, the general form of the string which specifies
the destination of the table being written is:

jdbc:<driver-specific-url>#<new-table-name>

Here is an example for a MySQL database using Connector/J:

jdbc:mysql://localhost/astro?user=mbt#table1

This query will write a new table called table1 in the MySQL database astro.

When a document is accessed for the first time, the data present in the file is parsed
and stored to STIL internal structures so it can avoid parsing operations later. The ob-
vious thing to do is to store such data in object arrays or lists in memory. However, if
the tables get very large this is no longer appropriate because memory will fill up, and
the application will fail with an OutOfMemoryError. So sometimes it would be better to
store the data in a temporary disk file. There may be other decisions to make as well, for
instance if the data will be stored per row or per column. Those decisions are based on a
set of policies, that will be listed:

• PREFER_MEMORY: Stores table data in memory. Currently implemented using an
ArrayList of Object[] arrays

6.2. STIL 101

• PREFER_DISK: Generally attempts to store data in a temporary disk file, using
row-oriented storage (elements of each row are mostly contiguous on disk)

• ADAPTIVE: Stores table data in memory for relatively small tables, and in a tem-
porary disk file for larger ones. Storage is row-oriented

• SIDEWAYS: Stores data in temporary disk files using column-oriented storage (el-
ements of each column are contiguous on disk). This may be more efficient for
certain access patterns for tables which are very large and, in particular, very wide.
It’s generally more expensive on system resources than PREFER_DISK however,
(it writes and maps one file per column) so it is only the best choice in rather spe-
cialised circumstances.

• DISCARD: Metadata is stored but the rows are thrown away.

The default policy is not specified explicitly, so each time STILS needs to know the
policy that needs to use, it calls the method StoragePolicy.getDefaultPolicy().

In the next paragraphs we will be analysing the strategies used by STIL for table
processing. In the manual they advice to not read the sections related with the table
processing if we are only interested in read tables in or write them out. But in order to
have a clear idea how the library work, we will present here the strategies and decisions
made by the tool. The first one is called Writable Table and writes all the data present in
the table into memory. It is ideal if the data fit all in memory. The second is called Wrap It
Up and makes solid use of the "pull-model" processing, in which the work of turning one
table to another is not done at the time such a transformation is specified, but only when
the transformed table data are actually required, for instance write in disk as a new FITS
or display the information in a Graphical User Interface component. One big advantage
of this approach is that calculations which are never used never need to be done. The
second advantage is that we can process big large tables without allocating big amounts
of memory. The concept here is to build a "wrapper" on the table, that will decide which
portions of the table should be touched and brought to main memory. Working with
wrappers can often be more efficient than, for instance, doing a calculation which goes
through all the rows of a table calculating new values and storing them in a new table.
STIL library provides a set of wrapper classes:

• ColumnPermutedStarTable: views the table with the columns in a different order

• RowPermutedStarTable: views the table with the rows in a different order

• RowSubsetStarTable: views the table with only some of the rows showing

• JoinStarTable: stick a number of tables together side-by-side

102 CHAPTER 6. RELATED WORK

• ConcatStarTable: stick a number of tables together top-to-bottom

The wrapper classes can be also used and adapted to perform useful table processing.
If the user follows a set of steps proposed by the STIL documentation, the following
features are examples of what can be achieved: sort a table, turn a set of arrays into a
new table (useful for gathering information spread along different tables), add a new
column that will contain the sum of all the numeric cells in that row.

6.2.1 TOPCAT

Stands for Tool for Operations on Catalogues and Tables (TOPCAT) [25] is an inter-
active graphical viewer and editor for tabular data, based on the STIL library.

In the main menu it has a list of tables that were brought into the program. Those
tables can be accessed (by visualization of the data present in the table), edited and rows
can be added or deleted. New tables can be created based on existing ones. When a
table in the list is selected, general information about the table is displayed and some
action can be taken. The changes that are made do not directly modify the tables on disk.
However, if the user wants to save the changes, the modified table can be written to a
new location on disk. Since TOPCAT is built based on the STIL Java library, the user
has full access to the table cell data, the table metadata and the columns metadata. Also
for the table input and output formats, it supports the same file extensions as the STIL
library. Some additional functionalities are also provided by this tool:

• Row Subset: reduces the number of displayed rows of the table. It can be done
through three distinct methods: define a new row subset containing all selected
rows, define a new row subset containing all the unselected rows or define an al-
gebraic expression. All this subsets can be viewed as independent tables. It is an
advantage comparing to the Fv tool, that do not allow this.

• Row order: sorts the table rows according to ascending or descending value of the
contents of the column. Only available if some kind of order (e.g. numeric or
alphabetic) can sensibly be applied to the column

Column Set: during the lifetime of the table within TOPCAT, the list of columns can
be changed by adding new columns, hiding existing columns, and changing their
order. The current state of the columns present and visible and what order they are
in is collectively known as the Column Set, and affects the display of the table. The
current Column Set is always reflected in the order in which columns are displayed.

• Statistics: display statistics of each column: mean, standard deviation, minimim
value, maximum value and the number of non-blanks cells

6.2. STIL 103

• Histogram: information about the distribution of the data, allowing the possibility
to choose the bin size

• Display of data: The data can be displayed on a two-dimensional table, a three-
dimensional, or even a spherical polar. This last one gives a pleasant and friendly
idea how about the sources are spread along the land surface of the earth.

In contrast with Fv, this tool allows the user to join two or more tables together, in
order to produce a new one. The join can be done top-to-bottom and side-by-side. A top-
to-bottom join, also known as concatenation just requires that the user decides which
columns in one table correspond to which columns in the other (in database terms it
is called a union). A side-by-side join needs some sort of matching between rows in
different tables. It can be Pair match, Triple match or Quadruple Join. For each one, it uses
two, three and four tables respectively. It will return a new table with the tuples that
match in the two, three or four tables. The result will depend on the algorithm that is
chosen to perform the match criteria. The algorithms available were already presented
in the Performance Experiments section. If the chosen algorithm is Exact Value, then it
is similar to the equi-join used in database terms. In the other hand, if the algorithm is
1-d Cartesian, then it is similar to band join. Conceptually, it is done by looking at each
row in the first table and identify which rows in the second table "refer to the same thing"
and put a new row in the joined table which consists of all the fields of the first table,
followed by all the fields of the matched row in the second table.

The complication here is to define what is meant by "refer to the same thing". This may
not be straightforward. There is also the problem of actually identifying these matches in
a relatively efficient way (without explicitly comparing each row in one table with each
row in the other, which would be far too slow for large tables).

Subsequently we will present an example given by the TOPCAT documentation that is
interesting for a comparison with our use case. Supose we have the following catalogues:

Xpos Ypos Vmag

---- ---- ----

1134.822 599.247 13.8

659.68 1046.874 17.2

909.613 543.293 9.3

and

104 CHAPTER 6. RELATED WORK

x y Bmag

- - ----

909.523 543.800 10.1

1832.114 409.567 12.3

1135.201 600.100 14.6

702.622 1004.972 19.0

and we wish to combine them to create one new catalogue with a row for each object
that appears in both tables. To do this, you have to specify what counts as a match. In
this case let us say that a row in one table matches (refers to the same object as) a row
in the other if the distance between the positions indicated by their X and Y coordinates
matches to within one unit (sqrt((Xpos − x)2 + (Ypos − y)2)<=1)). Then the catalogue
we will end up with is:

Xpos Ypos Vmag x y Bmag

---- ---- ---- - - ----

1134.822 599.247 13.8 1135.201 600.100 14.6

909.613 543.293 9.3 909.523 543.800 10.1

There are a number of variations on this. However, the match criteria of TOPCAT
might involve sky coordinates instead of Cartesian ones (or not be physical coordinates
at all). The match window of TOPCAT allows the user to specify which tables will be
matched, what is the criteria for the matching rows and what rows will be included in
the output table.

Here comes one of the main limitations of TOPCAT. It can only compare and match
sources in their celestial coordinates (right ascension and declination). As a consequence,
the use case studied in the Functionality section cannot be directly undertaken by this
tool. However, there are two alternatives that can be followed in order to accomplish that
goal. First, convert the spatial coordinates (x,y,z) into celestial coordinates (ra,dec) and
then invoke the sky match join. The second alternative is to join the two tables with a
cartesian join. This will give us all the possible combinations between the two tables and
also access to all the columns present in the joined table. With this ability we can apply
a filter to the joined table, calculating the distance between the two sources and filter out
the rows that do not fulfill the condition. This alternative can be heavy to the system and
might require a big memory consumption.

The basic algorithm for matching is based on dividing up the space of possibly-
matching rows into an (indeterminate) number of bins. These bins will typically cor-
respond to disjoint cells of a physical or notional coordinate space, but need not do so. In
the first step, each row of each table is assessed to determine which bins might contain

6.2. STIL 105

matches to it - this will generally be the bin that it falls into and any "adjacent" bins within
a distance corresponding to the matching tolerance. A reference to the row is associated
with each such bin. In the second step, each bin is examined, and if two or more rows
are associated with it every possible pair of rows in the associated set is assessed to see
whether it does in fact consitute a matched pair. This will identify all and only those row
pairs which are related according to the selected match criteria. During this process a
number of optimisations may be applied depending on the details of the data and the
requested match.

This means that the matching algorithm is precisely an O(N log(N)) process, where
N is the total number of rows in all the tables participating in a match. It has loglinear
complexity, which is the case of quicksort and merge sort algorithms. This is good news,
since the naive interpretation would be O(N2) (quadratic complexity). This can break
down however if the matching tolerance is such that the number of rows associated with
some or most bins gets large, in which case an O(M2) component can come to dominate,
where M is the number of rows per bin. The average number of rows per bin is reported
in the logging while a match is proceeding, so you can keep an eye on this.

TOPCAT is capable of dealing with large datasets. In fact, it does not read entire files
into memory in order to do its work, so it is not mandatory to use files which fit into
the Java virtual machine heap memory or into the physical memory of the machine. The
program works with tables that contain millions of rows at a reasonable speed. However,
the way the user invokes the program will affect how well it can cope with large tables.
Sometimes the user can get the message OutOfMemoryError and for that, there are several
things the user can do. Increase the Java heap memory is one alternative. When a Java
program runs, it has a fixed maximum amount of memory that it will use. The default
maximum is typically 64Mb. The -Xmx flag can be invoked in this case. For example,
topcat -Xmx256M means that the size of the memory grow up to 256 megabytes. It is
convenient that the user do not specify a heap size larger than the physical memory of the
machine that is TOPCAT. The second alternative is the use of FITS files, as a consequence
of the way they are organized and compressed. As well as speeding things up, using FITS
files will also reduce the need to use -disk or -Xmx flags. The third alternative is the use
of the -disk flag. The way TOPCAT stores table data is configurable. The default storage
policy is adaptive and it means that the data for relatively small tables is stored in memory,
and for larger ones in temporary disk files. This usually works fairly well, but the user
can save some memory by encouraging it to store all table data on disk, by specifying
the -disk flag on the command line. The forth alternative is to run in 64-bit mode. If the
user is working with a file or files whose total size approaches or exceeds about 2 Gbyte,
a 64-bit version of Java should be used. This means that a 64-bit operating system is
required, and also a 64-bit version of the Java Virtual Machine. And the last and fifth

106 CHAPTER 6. RELATED WORK

alternative is the use of a column-oriented storage. For really large tables storing them
in the colfits output format can significantly improve performance. This stores all the
elements of a single column contiguously on disk, which means that scanning through
all the values in one or a few columns can proceed with much less unnecessary I/O than
in normal (row-oriented) FITS format. It will make most difference when the table is
larger than the amount of physical memory available, and the table has many columns.
Be aware however that operations which require all the cells in all the rows (for instance,
calculating row statistics) may be somewhat slower using this format.

To conclude, the memory size of the machine will make the difference. If the size
of the dataset fits into unused physical memory then everything will run very quickly,
because the operating system can cache the data in memory. In the other hand, if the
dataset is larger than the memory, the data has to keep being re-read from disk and most
operations will be much slower.

6.2.2 STILTS

The STILTS tool [24] was already introduced in the Performance Experiments section,
where some stress tests were done in order to compare the performance against Mon-
etDB.

It stands for Starlink Tables Infrastructure Library Tool Set and it is a set of command-
line tools for table manipulation. Like TOPCAT, it is built based on the STIL java library,
so the user will have full access to the table cell data, the table metadata and the columns
metadata. Also for the table input and output formats, it supports the same file exten-
sions as the STIL library.

Most of the functionalities of STILTS were already explored during the tests. So, in
this section, we will rather go into a comparison with TOPCAT and also explore the lim-
itations of this tool. It is better to use STILTS instead of TOPCAT when the user only
wants to examine the metadata, a few rows, or even a statistical summary of the table
without having to load the whole thing into TOPCAT or some other table viewer appli-
cation. Another advantage of STILTS is if the user wants to perform a conversion from
one file format to another, it is better to do it with a streaming application that executes
the job easily and efficiently on the fly. STILTS provides that opportunity. That is done by
explicitly describe in the command line what is the input table and in which format it is,
and what is the output table and in which format it is. The formats can be any one of the
available formats described in the STIL library. One case where TOPCAT is better than
STILTS is plotting, because it was built with that purpose. It gives a friendly interface to
the user so the data can be easily viewed in a variety of ways. STILTS only provides plot
in 2d, 3d and the histogram. However, STILTS allows plots to be made from datasets of

6.3. COMPARISON BETWEEN TOOLS 107

unlimited size. While TOPCAT has an effective limit of a few million rows, STILTS can
stream data from tables to do its plotting, so a plot can be made representing an unlimited
number of rows without large memory requirements.

The same limitation studied in the TOPCAT tool, when trying to undertake the use
case studied in the Functionality test, is also applied to STILTS, with the same reasons
and the same alternatives.

STILTS also allows the user to change the heap memory size (by default is 64MB),
provide the -disk flag (by default, the storage policy is adaptive) and run in in 64-bit mode.

6.3 Comparison between tools

Tool Selection Projection Join Union Difference Sort Group by
Fv X X - - - X -
TOPCAT X X X X - X -
STILTS X X X - - X -

Table 6.1: List of operations performed by the tools

In Table 6.1 we can analyze what the three different tools that we studied before can
and cannot accomplish. All of them were analyzed in detail in the previous sections. As a
consequence, this table only tries to provide a better and general idea about the maturity
of the tools.

MonetDB, as a powerful and robust database, can afford all this operations and rein-
forces our belief that this project brings innovation and it can be seen with credibility, as
a future alternative to access and manipulate astronomical data.

6.4 Astronomical data formats

In this section we will do a brief introduction about the other existing formats that deal
with astronomical data. We will also build a user matrix, listing a set of tasks that can be
undertaken or not by the different formats.

6.4.1 HDF5 Array Database

HDF5 [9], and [14] can be seen as a data model, a library or a file format, and its main goal
is to store and manage scientific data. HDF5 can store two primary objects:

• datasets: multidimensional array of data elements that can store almost any kind

108 CHAPTER 6. RELATED WORK

of scientific data structure, such as images, arrays of vectors and structured and
unstructured grids. The array variables and the respective elements of the multidi-
mensional array can be stored and organized in two different ways:

Contiguous: as a single sequence in the HDF5 array database

Chunked: as a collection of fixed-size regular sub-arrays

• Groups: allows the data to be organized in a tree-like structure, where the root is the
group "/" which serves as an entry or reference point

An application that uses the HDF5 format for analysing, managing, manipulating and
viewing data, desires flexibility and efficiency when the subject is I/O and the wish is the
ability to store high-volumes of data, supporting an unlimited variety of datatypes. An
application, a tool, or an high-level API interact with an HDF5 array database through the
HDF5 library API, that allows the access and management of items within the HDF5 array
database, called HDF5 array variables. As some applications of the HDF5 file format:

• NeXus: data format for neutron, x-ray and muon science

• HDF: data format used by NASA’s Earth Observing System (EOS) that gathers en-
vironmental data for a future reserach on global climate change. EOF program will
contain more then 15 petabytes of data in 2015

• JPSS: stands for Joint Polar Satellite System. Is the sucessor of the EOS program and
it will be used for climate and weather predictions, space weather observations and
search and rescue detection

• LOFAR: stands for Low Frequency array. Is a multi-propose sensor array and its
main application is astronomy at low frequencies (10-250 MHz)

HDF5 is the recommended standard format for storing earth science data. After a talk
with K.Anderson, an astronomer that works in Science Park, Amsterdam and one of the
authors of the document LOFAR: Data Format Representation [10], some of the differences
between HDF5 and FITS were clarified. Firstly, FITS has been used for decades and it is
the most used standard for the astronomical data. HDF5 is a new format, still being de-
veloped for some applications (for example, LOFAR). For other applications, outside the
astronomical field, there is a standard and HDF5 is already being used. Secondly, FITS
is a strong and robust standard with a vast number of libraries that can access and ma-
nipulate the data. The libraries of HDF5 are still being implemented. As a third and last
statement, FITS has the limitation of scability, because all the data has to be aggregated

6.4. ASTRONOMICAL DATA FORMATS 109

in one file. That is unacceptable when the size of the images or tables is hundreads of ter-
abytes. HDF5 has the concept of groups, enabling the data to be spread along different
nodes, instead of being stored in one single file.

6.4.2 VOTable

The second format that we will study is the VOTable [20]. VO stands for Virtual Obser-
vatory, that is a collection of archives containing astronomical data and software tools,
that work together to form a scientific research environment, allowing astronomical re-
search programs to be developed. The VOTable format is an XML standard for the inter-
change of data represented as a set of tables. A table can be seen as set of rows. Each row
has a uniform structure, that is specified in the table description (the metadata). Each row
in a table is a sequence of table cells. Each of those cells contains either a primitive data
type, or an array containing a collection of such primitives. The main goal of this format
is to provide a flexible storage and a interoperability of astronomical data, encouraged
by the vast number of applications using XML. The data in a VOTable can be represented
using one of three different formats: TABLEDATA, FITS and BINARY. The most common
is the TABLEDATA.

The TABLEDATA is a pure XML format and has the advantage that XML tools can
manipulate and present the table data directly. The metadata and the elements of the
table are all reported in the XML document.

The VOTable/FITS format makes a VOTable compatible with the FITS Binary Table for-
mat. Given a FITS file that represents a binary table, the header of the FITS file, that
contains the metadata, is converted into a VOTable. Each one of the FITS keywords is
converted to a PARAM keyword, and the data itself is remotely stored and gzipped at an
FTP site. The access is done by streaming. The VOTable specification does not define the
behavior when the parser has to read the metadata twice. The parser can either ignore
the FITS metadata or compare it with the VOTable metadata for consistency:

<RESOURCE>

<PARAM name="EPOCH" datatype="float" value="1999.987">

<DESCRIPTION> Original Epoch of the coordinates</DESCRIPTION>

</PARAM>

<PARAM name="TELESCOP" datatype="char" arraysize="*" value="VTel" />

<INFO name="HISTORY">

The very first Virtual Telescope observation made in 2002

</INFO>

<TABLE>

110 CHAPTER 6. RELATED WORK

<FIELD (insert field metadata here) />

<DATA>

<FITS extnum="2">

<STREAM encoding="gzip" href="ftp://archive.cacr.caltech.edu/myfile.fit.gz"/>

</FITS>

</DATA>

</TABLE>

</RESOURCE>

The third and last format is the BINARY. It is a sequence of bytes with the lenght
specified in the FIELD elements in the metadata. The encoding attribute is a string that
should indicate to the parser how to undo the encoding that has been applied:

<DATA>

<BINARY>

<STREAM encoding=’base64’>

AAAAA00zMUAlAQYk3S8bQESiDEm6XjUAAAADTTU3QHG0DEm6XjVAQIQ5WBBiTgAA

AANNODJAYpgYk3S8akBRa7ZFocrB

</STREAM>

</BINARY>

</DATA>

All the VOTable files are written in XML, that makes them readable by any text ed-
itor. However, the data itself can only be visualized and read by humans if the format
is TABLEDATA. For the other two formats (FITS and BINARY) an application needs to
be called in order to read the data and present it to the user. The disadvantage of the
TABLEDATA format is that is built to handle with small tables and it is not very efficient.

6.4. ASTRONOMICAL DATA FORMATS 111

6.4.3 Comparison between file formats

Task FITS VOTable HDF5
Metadata and data stored separately - X -
Easy to stream - X -
Specification of the number of rows in the table X - -
Uses XML - X -
See data in a text editor yes for ASCII X -
Array can be stored as a table cell X X X
Binary X X -
Astronomical data X X X
Quality check - X -
Easy to detect a broken table X - -

Table 6.2: Tasks performed for each one of the file formats

Store the data and the metadata separately is clearly more efficient, because if we are
able to read the metadata first, the applications will be able to "get ready" for the input
data and to organize some sort of parallel transfers of the data.

In the Grid scenario, work with large tables and perform data streaming between
processors, with flows being filtered, joined, selected, etc, it would be very difficult if the
number of rows of the table were required in the header (like in FITS files). In those cases,
the whole table has to be streamed to cache, the number of rows have to be computed and
afterwards streamed again for a further computation. This obstacle, makes the stream of
FITS files a difficult task: it is a blocking operation for pipelined execution.

In contrast, for other operations it may be preferable to know the size in advance. For
instance when loading data the application can allocate memory more efficiently if the
size is known.

FITS files and HDF5 files do not use XML and an application needs to be called in
order to read the data and present it to the user.

Multidimensional arrays are one of the most complex structures that can be stored in
a table cell, and they are supported by all the three file formats.

As for the binary format, it is not supported by the HDF5. The binary format is the
most efficient to process, store, access and transmit large amounts of data and additional
libraries are not required. In the BINARY format of the VOTables, no FITS library is
required, and the streaming paradigm is supported.

FITS and VOTable were built to deal with astronomical data. The VOTables with as-
tronomical tables more precisely. The FITS files with astronomical tables and also with
astronomical images. The complex semantics and the large number of conventions that
FITS has, makes it able to cope with the increasing complexity of astronomical instru-

112 CHAPTER 6. RELATED WORK

mentation. The same scenario is not seen with VOTables.

Chapter 7

Conclusion

In this thesis we have been exploring the possibilities of an integration between astro-
nomical data and databases. Astronomical data is present in our lives for many years, it
is used by a whole community of scientists, in different formats with distinct purposes.
However, a complete integration with the database world is not easy, because of the ob-
vious complexity that it brings. It also requires a deep research, trying to understand
how can the data present in the astronomical files can be described and brought into the
relational database world. We focused on the study of that integration, finding the ad-
vantages and the disadvantages of it, and also which are the consequences of some of the
decisions made.

7.1 Results and Overview

We started this project by exploring deeper into the structure of the FITS vaults, investi-
gating which functionalities a database module should have to make the integration pos-
sible. We wanted to know what it takes to efficiently integrate a FITS file in MonetDB. In
order to achieve a successful integration it is important to understand the following ques-
tions: Firstly, What is a FITS vault? Secondly, what metadata do the files inside the same
vault have in common? And finally, how can the data model be efficiently expressed
in a relational database system? All these questions were satisfied, and the concept of
the FITS vault in conjunction with how they can be represented in the SQL catalog was
acquired.

After a successful integration of the FITS files with MonetDB through the develop-
ment of a module inside MonetDB code that provides a set of functionalities concerning
to that integration, we started to think further. We performed an in depth comparison
between the performance of a well known tool called STILTS and the performance of

113

114 CHAPTER 7. CONCLUSION

MonetDB. The idea was to demonstrate that a delegation of work is possible and when
and why MonetDB is faster and slower than STILTS.

The delegation of work was proved, showing how the same result can be obtained
thought STILTS and also thought MonetDB. Point Query, Range operations, Projection,
Statistics and Join operations are some examples of that delegation of work.

The results of the experiments were helpful, enabling us to discover some bugs in
MonetDB, to give some architectural suggestions and to realize that STILTS and Mon-
etDB compete side by side in the simple query tests, when the memory is empty and
the data needs to be loaded (scenario that does not occur when the data is loaded and
in main memory, being MonetDB much faster than STILTS). As for the complex queries
(Join operations), the performance of MonetDB is outstanding comparing to the perfor-
mance of STILTS. While MonetDB only needs a few milliseconds, STILTS takes thousands
of seconds. These tests were proof that databases are in fact more powerful in answer-
ing complex queries that need more computation time and wise decisions about which
algorithms should be executed.

As a final task, we took a set of tasks proposed by an astronomer working at CWI.
Our aim was to demonstrate that these proposals could be undertaken using MonetDB.
We accomplished this by building a tutorial with all the steps that an astronomer should
do in order to get his results and made suggestions allowing for faster computation. As
an example, we suggested that an auxillary table should be created, containing all the
distances and brightnesses of all the objects. This allows for further filtering of results
making the process faster, avoiding the need to calculate every time the query is posted.

7.2 Future Work

Integrating a vault into a database system is a complex topic where many problems
must be noted. We studied that integration, but space is still open for further work and
research.

Encapsulating functionality of external libraries During the tests we realized that
STILTS is in fact a powerful tool that manipulates and accesses data present in the FITS
files. This fact is proven on the Statistical tests for the second group of FITS files, where
STILTS is actually faster than MonetDB in both hot and cold memory tests, for the last file
with 470 million tuples. We made some suggestions in order to improve the performance
of MonetDB. However, there is another viable alternative. Encapsulate functionality of
external libraries, like the one used by STILTS in the Statistical tests. This requires a deep
understanding of the STIL java library, that is the base of STILTS.

7.2. FUTURE WORK 115

Load on demand It would be interesting if the user could write a query to the sys-
tem and the system itself had the ability to automatically decide which tables should be
loaded in order to give the answer to the user. This functionality is helpful for the cases
where we have thousands of attached files and we do not know which tables we should
load in order to answer our question. However, it is a feature that requires a deep study.
Concepts like logic and artificial inteligence need to be brought to discussion, in order
to let the system decide by itself what tables should be loaded. If the user is looking for
information about the planet Earth, the system and the database must have present the
concept of planets, solar system and so on.

Synchronization when repository is updated Sometimes we add, delete and rename
the files in our directory. It would be appealing if whenever a change on the directory is
applied, the system recognises it and performs that change also inside the SQL catalog.
For this task, a repository with all the information about the files needs to be added to
the system. It will store the current name of the file, the directory and also a flag, that is
activated everytime when a change occurs in a file. That change will be reflected in the
SQL catalog.

Creation of a new FITS file based on the result of a SQL query Instead of creating a
new table and insert on it the results of a particular query, the idea is to export the result
of the query to a completly new FITS file, which will contain the primary HDU and an
extension. The extension will be the table that resulted from the query. For this exercise,
we need to bring the results of the query into the code, in the form of BAT structures.
Afterwards, this BATs can be accessed, and the data can be taken out, in order to create a
new FITS file.

116

Bibliography

[1] Infrared Processing and Analysis Center. http://www.ipac.caltech.edu/. [Online,
accessed 2010-10-07].

[2] MonetDB. http://monetDB.cwi.nl/. [Online, accessed 2010-10-07].

[3] NASA’s HEASARC: Software. http://heasarc.gsfc.nasa.gov/fitsio/. [Online, ac-
cessed 2010-10-07].

[4] SDSS. http://www.sdss.org/. [Online, accessed 2010-10-07].

[5] SkyServer SDSS. http://cas.sdss.org/astro/en/tools/search/IQS.asp. [Online, ac-
cessed 2011-07-05].

[6] SpaceGuarduk. http://www.spaceguarduk.com/download-fits. [Online, accessed
2011-07-05].

[7] UKIDSS. http://www.ukidss.org/surveys/surveys.html. [Online, accessed 2010-
10-07].

[8] World Data Center System. http://www.ngdc.noaa.gov/wdc/wdcmain.html. [On-
line, accessed 2010-10-07].

[9] HDF5 User’s Guide, 1.8.7 edition, May 2011.

[10] L. Bahren, K. Alexov, A. Anderson, and J. Griemeier. LOFAR Data Format ICD: Rep-
resentations of World Coordinates, 2.05.05 edition, May 2011.

[11] P. Boncz, S. Manegold, and M. Kersen. Database Architecture Optimized for the
new Bottleneck: Memory Access. In Proc. of the 25th VLDB Conference, Edinburgh,
Scotland, 1999.

[12] CSIRO. Resolution and Sensitivity
. http://outreach.atnf.csiro.au/education/senior/astrophysics/resolution_sensitivity.html.
[Online, accessed 2010-10-07].

117

118 BIBLIOGRAPHY

[13] FITS Working Group. Definition of the Flexible Image Transport System (FITS), 3.0 edi-
tion, November 2010.

[14] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An Overview of the
HDF5 Technology Suite and its Applications. Uppsala, Sweden, March 2011.

[15] J. M. Gonzalez. Free Software / Open Source: Information Society Opportunities for Eu-
rope?, 1.2 edition, April 2000.

[16] HEASARC. CFITSIO User’s Reference Guide, 3.2 edition, December 2010.

[17] T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-Intensive Scientific Discov-
ery. Microsoft Research, 2009.

[18] B. Irby. Fv: The Interactive FITS File Editor, 5.3 edition, July 2009.

[19] M. Ivanova, N. Nes, R. Goncalves, and M. Kersen. MonetDB/SQL Meets SkyServer:
the Challenges of a Scientific Database. In Proc. of the 19th International Conference on
Scientific and Statistical Database Management (SSDBM), 2007.

[20] F. Ochsenbein, R. Williams, C. Davenhall, D. Durand, P. Fernique, D. Giaretta,
R. Hanisch, T. McGlynn, A. Szalay, M. Taylor, and A. Wicenec. VOTable Format
Definition, 1.2 edition, November 2009.

[21] B. Pribyl, S. Feuerstein, and C. Dawes. Oracle PL/SQL Language Pocket Reference.
O’Reilly Media, 1999.

[22] B. Scheers. Transient and Variable Radio Sources in the LOFAR sky. PhD thesis, Univer-
siteit van Amsterdam, 2011.

[23] M. Taylor. STIL - Starlink Tables Infrastructure Library, 3.0-2 edition, June 2011.

[24] M. Taylor. STILTS - Starlink Tables Infrastructure Library Tool Set, 2.3-1 edition, June
2011.

[25] M. Taylor. TOPCAT - Tool for OPerations on Catalogues and Tables, May 2011.

[26] R. L. White. FIRST. http://sundog.stsci.edu/. [Online, accessed 2010-10-07].

	Introduction
	The need to integrate with repositories
	Assumptions
	Contributions
	Approach
	Project Objectives
	Outline of report

	Background
	Introduction to MonetDB
	Introduction to FITS
	Applications of the FITS
	The structure of a FITS file

	Contribution to MonetDB
	Overview of the vaults
	Architecture of the vault
	Attach a file
	Attach all FITS files in the directory
	Attach all FITS files in the directory, using a pattern
	Table loading
	Search for the ideal batch size
	BAT size representation of Strings in MonetDB

	Export a table

	Case Study
	Overview
	Attach a file
	Attach all FITS files in the directory
	Attach all FITS files in the directory, giving a pattern
	Load a table
	Export a table
	Cross-matching astronomical surveys
	Query 1: Distribution of distances between sources in both surveys
	Distribution of the distances smaller than 45 arc seconds
	Normal Distribution of all the data
	Frequency of the distances smaller than 5 arc seconds
	Frequency of the r value between sources in both surveys
	Query 2: extract & compare brightness in different frequencies
	Query 3: extract the spectral index
	Distribution of the spectal index
	Normal distribution of the spectral indexes

	Performance Experiments
	Experimental Setting
	Test Files
	Delegation experiments
	Selection and Filter delegation for Group number 1
	Range Delegation for Group number 1
	Statistics Delegation for Group number 1
	Selection and Filter Delegation for Group number 2
	Range delegation for Group number 2
	MonetDB problem
	Projection delegation for Group number 2
	Statistical Delegation for Group number 2
	Summary of the tests for the first and second groups
	Equi-join delegation for Group number 3
	Band-join delegation for Group number 3

	Related Work
	CFITSIO
	Fv

	STIL
	TOPCAT
	STILTS

	Comparison between tools
	Astronomical data formats
	HDF5 Array Database
	VOTable
	Comparison between file formats

	Conclusion
	Results and Overview
	Future Work

	Bibliography

