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It suddenly struck me that that tiny pea, pretty and blue,

was the Earth. I put up my thumb and shut one eye, and my

thumb blotted out the planet Earth. I didn’t feel like a giant.

I felt very, very small.

Neil Armstrong
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Resumo

Motivados pelo cada vez maior número de dispositivos móveis, os serviços ba-
seados na localização estão a tornar-se cada vez mais populares. Estes serviços
utilizam informação acerca da localização física dos utilizadores, normalmente
para fins comerciais ou informativos. Contudo, e particularmente para cenários
de larga escala, este tipo de serviços pode constituir um risco para a privacidade
dos utilizadores. Informação relacionada com localização dos utilizadores pode ser
utilizada de forma direta ou indireta (associada com outra informação) para revelar
informação privada acerca dos mesmos, podendo até ser suficiente para revelar as
suas identidades. Este facto pode levar à rejeição deste tipo de tecnologias.

Existem contudo, maneiras não triviais de guardar informação sem comprome-
ter a privacidade dos utilizadores. Nesta dissertação, apresentamos dois cenários
Bluetooth, onde o problema da privacidade é solucionado através do uso de técnicas
de sumarização estocásticas.

No primeiro cenário, Gate Counting, o objetivo é obter contagens precisas para
o número de avistamentos de dispositivos distintos, tentando em simultâneo reduzir
a quantidade de informação recolhida. Para esse efeito, fazemos uma análise a
várias técnicas de contagem estocásticas que não só fornecem contagens para
o número de dispositivos únicos, com uma precisão adequada, como também
garantias de privacidade, tudo de uma forma eficiente em termos de espaço.

Para o segundo cenário, Causality Tracking, o objetivo é estudar os padrões
de mobilidade humanos, ao mesmo tempo que, também se tenta minimizar a
quantidade de informação recolhida. Com este propósito, desenvolvemos os Filtros
de Precedência, uma nova técnica capaz de fornecer resultados precisos sobre a
popularidade de determinados percursos/caminhos específicos, sem comprometer
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a privacidade individual dos utilizadores.
Com base nestes cenários, esta dissertação demonstra que as técnicas de suma-

rização estocásticas são meios viáveis para a anonimização de informação baseada
na localização.



Abstract

Driven by the pervasiveness of mobile devices, location based services are be-
coming increasingly popular. These services use information about the physical
location of users, usually with commercial or informative purposes. However, and
particularly for large scale scenarios, this type of services may pose a risk to the
privacy of the users. By using location information either directly or indirectly
(associated with other information), it is possible to expose personal information
that users wish to keep private or even to uncover their identities. This may lead to
the rejection of these types of technologies.

There are however, non trivial ways to store information without compromis-
ing the users’ privacy. This dissertation presents two Bluetooth scenarios where
stochastic summarizing techniques are used as a solution to the privacy problem.

In the first scenario, Gate Counting, the goal is to provide accurate counting
for the number of unique devices sighted while trying to minimize the amount
of collected information. For that purpose, we provide an analysis of several
stochastic counting techniques that not only provide a sufficiently accurate count
for the number of unique devices, but offer privacy guarantees as well, all in a
space efficient way.

For the second scenario, Causality Tracking, the objective is to study human
mobility patterns, also while minimizing the quantity of data gathered. For this
purpose, we developed Precedence Filters, a new technique, which is able to provide
accurate results regarding the popularity of specific routes without compromising
the individual privacy of the users.

Based on these scenarios, this dissertation demonstrates that stochastic summa-
rizing techniques are viable means to the anonymization of location information.
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1
Introduction

Propelled by the increasing usage of web enabled, context and location aware
mobile devices, context aware services specially location based services (LBS)
are becoming remarkably popular. The recent developments seen in technologies
like GPS, GSM, Wifi and Bluetooth also worked as a catalyst in this process.
Using these technologies it is possible to obtain information about the location of
users. This type of information can be used both by service providers and users.
Service providers can process this information to obtain a better understanding of
the users behavior (e.g. by analyzing their movement) and improve their current
services, as well as plans for future services and infrastructures. Users, on the
other hand, can use location data to get personalized information according to
their location. However, the continuous monitoring, processing and storage of
location data can create privacy related problems. Location information can expose
sensitive information about users as it constitutes a quasi-identifier1 according to
Bettini et al. [8].

Examples of attacks on privacy using recorded location data are not hard to find.
Using a week-long database, with GPS traces of Detroit drivers whose names were
replaced with pseudonyms, Hoh et al. [32] were able to determine the location of
85% of the drivers’ homes. Hightower et al.’s BeaconPrint algorithm [31] is able to

1Data that by itself does not uniquely identify a user but that in association with other information
might.
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2 CHAPTER 1. INTRODUCTION

accurately recognize the location of a user using only Wifi and GSM information.
Researchers have also shown that, looking at the historic of someone’s location
data, it is possible to predict their future whereabouts [37, 23].

While location based information is very useful, the fact that it can be used
to attack the privacy of the users might be a decisive factor in the popularity and
sustainability of services supported by this type of information. The solution to this
problem consists in the use of privacy preserving approaches capable of ensuring
both the quality of the service and the privacy of its users.

Stochastic summarizing techniques are space efficient, probabilistic mecha-
nisms, capable of producing summaries of the data they receive as input. The size
of the summaries depends only on the number of input elements, not on the size of
the elements. Being non-deterministic, these techniques do not allow the original
item to be recreated from its resulting summary. However they do offer a trade-of
between space and accuracy where one is obtained at the expense of the other.

This dissertation aims to find if stochastic summarizing techniques are suitable
as privacy preserving techniques regarding location data in large scale scenarios.
As a proof of concept, we present two Bluetooth based scenarios, where we make
use of these techniques to ensure the privacy of the users while trying to comply
with the scenarios’ requirements.

Bluetooth technology is a relatively easy and inexpensive way to track large
groups of people. Unlike technologies like GPS, Bluetooth also works well in both
indoors and outdoors scenarios. This allows the tracking of individuals both inside
and outside buildings allowing for more robust tracking solutions. Also, Bluetooth
has a limited detection range (typically between 10 to 100 meters depending on
the number of obstacles) which makes the differentiation between nearby places
possible, thus enabling accurate tracking results. Furthermore, Bluetooth tracking
is a passive tracking process, i.e, it does not require users to change their behavior.
On the other hand, GPS positions are computed in the mobile device and have to
be handed to the tracking entity. All these properties make Bluetooth an arguably
good choice in which to base our tracking scenarios.

As Bluetooth becomes more and more pervasive, there is a growing potential
to leverage on the possibilities offered by Bluetooth scanning as a flexible infras-
tructure for situated interaction and a general purpose platform for massive sensing
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and actuation in physical spaces.

Bluetooth sensing is based on a discovery process through which a device
can inquire about the presence of other nearby devices. If those devices are in
discoverable mode, they will respond with their Bluetooth addresses (48 bit MAC),
and possibly additional information, such as the device name, the device type (e.g.
cellphone or computer) and available services.

A Bluetooth scanner is a device that periodically scans nearby Bluetooth devices.
Each time a device is detected, it registers and timestamps that event. Later, this
information can be used by external services or applications. Multiple Bluetooth
scanners spread all over a physical space could thus serve as collection points for
Bluetooth sightings, providing a major tool for observing, recording, modeling and
analyzing that space, physically, digitally and socially [46].

An infrastructure of this nature can be built from scratch given the increasingly
smaller cost of the technological equipment required. Alternatively, it can be
built upon the large number of Bluetooth scanners already present in some urban
environments. These scanners are owned by many entities and they serve very
diverse purposes, such as proximity marketing, device localization or OBEX-based
interaction. They could be used, without any additional cost, as nodes in a large
scale collaborative sensing infrastructure. Each node would still scan for its own
purposes, but it would also share part of the generated data with a central service
that would then be able to produce aggregate information of mutual interest. Both
strategies make the creation of this type of infrastructure relatively simple and
feasible in the short term.

The challenge, however, is how to enable this type of large scale sensing without
creating an overwhelming privacy threat to the users.

1.1 Structure and Contributions

Structure

This dissertation is organized as follows: Chapter 2 presents some of the related
work in the field of location privacy followed by a brief description of some algo-
rithms/data structures used in our privacy preserving approaches. Chapters 3 and 4
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describe both our Bluetooth tracking scenarios, Collaborative Gate Counting and
Causality Tracking, their requirements and the effectiveness of several stochastic
summarizing techniques in dealing with them. Chapter 5 draws some general
conclusions about our work and presents some future research directions to be
followed.

Contributions

As a result of the work developed in the context of this dissertation, two full
papers were written. The first one [28] was published in the OTM 2011 Workshop
Proceedings. The second paper [27] was published in INFORUM 2012 where it
was awarded the prize for best paper in the Mobile and Ubiquitous Computing
session.

Also a contribution, is the GitHub repository2 with the python code for some
of the algorithms implemented during the context of this dissertation.

2https://github.com/goncalvesnelson/Log-Log-Sketch



2
Literature Review

This chapter exposes some of the works whose content is relevant to the context of
this dissertation. Section 2.1 begins by explaining the concept of location privacy
in pervasive computing and it’s importance. It then follows with the presentation of
some of the approaches already used in the field of pervasive computing that deal
with this topic. Lastly, Section 2.2 provides some background to the algorithms
and classic data structures used in our approach to ensure privacy.

2.1 Location Privacy in Pervasive Computing

As location based services become more popular and compelling, there is an
increasing temptation to give away location data. However, along with this entice-
ment comes an increasing concern about location privacy. Before going into any
further details, it is important to correctly understand what location privacy is.

2.1.1 Definition of Location Privacy

Beresford and Stajano [7] define location privacy as:

“...the ability to prevent other parties from learning one’s current
or past location.”

5
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Their definition implies that a person whose location is being monitored must
be able to control who has access to that information. It also acknowledges that
both past and present information, regarding location, is important. While current
location information might enable an attacker to find out where a person is, past
data can allow him/her to discover who the person is and where does she live/work,
and even predict future locations.

According Duckham and Kulik [15] location privacy is:

“a special type of information privacy which concerns the claim of
individuals to determine for themselves when, how, and to what extent
location information about them is communicated to others.”

Their definition is based upon Westin’s [52] definition of information privacy:

“the claim of individuals, groups or institutions to determine for
themselves when, how and to what extent information about them is
communicated to others.”

Duckham and Kulik’s definition captures several aspects about location information
and the way it can be shared:

• When: A user might have different concerns regarding her present and past
locations. For instance, the user may not care as much about revealing her
past locations as it does about its present location.

• How: A user might be comfortable with manual location requests from her
friends, however she may not want to have her friends alerted automatically
when she enters a casino or a bar.

• Extent: A user might prefer to have her location reported as an ambiguous
region rather than as a precise point.

These different aspects are the topic of many different computational schemes
for protecting the privacy of the users. Examples of such schemes are the use of
pseudonyms instead of actual names, the deliberate addition of noise to the location
data or the use of regions for location reporting instead of specific points.
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2.1.2 Related Work

In the past few years there has been an exponential increase in the number of mobile
devices (smartphones, laptops, tablets). Many of these devices come equipped
with several types of sensors (accelerometer , gyroscope, thermometer, GPS) as
well as communication interfaces (Bluetooth, WiFi). Their pervasiveness associ-
ated with their capabilities make them viable building blocks for urban pervasive
infrastructures [36]. Associated with the increasing number of mobile devices is
the popularity growth of Location-Based Services (LBS)[56]. LBSs determine
the location of the user by using one of several technologies for determining its
position, and then use the location and other information to provide personalized
applications and services [55]. There are however privacy risks that stem from
the use of such services. PleaseRobMe1 was created to raise awareness for the
risks of sharing location information. Combining information from FourSquare2

and Twitter3 it demonstrates how easy it is to infer that someone is not at home.
Despite the existence of reports linking the sharing of location information with
the occurrence of robberies [50, 18], there are several research works which show
that most people put little value on their location privacy [1, 12, 13, 34]. How-
ever, this lack of concern by the users of LBSs is usually a consequence of lack
of awareness. In [34] the author notes that, despite not being worried about the
privacy issues arising from location aware services, most of the users were not
aware they could be located while using those services. On the other hand, the
work in [13] shows that the Greeks demanded a higher price for their location data
when compared with the other EU countries. According to the author, this might
have been a consequence of the eavesdropping scandal involving the wiretap of
Greek politicians that took place 2 months before the survey. This might indicate
that people value their privacy the most when faced with consequences from the
lack of it. Sharing location data at such a large scale like we see today is relatively
new. As a consequence, the effects on user privacy are not fully understood yet
[49].

According to Duckham and Kulik’s survey in [15], there are four commonly

1www.pleaserobme.com
2www.foursquare.com
3www.twitter.com
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used methods for ensuring location privacy:

• Regulatory strategies: comprised by government rules on the use of personal
information.

• Privacy Policies: trust-based mechanisms established between individuals
and whomever is receiving their location data.

• Anonymity: Disassociation between the individual’s personal information
and individual’s actual identity. Usually obtained through the use of pseudonyms,
ambiguity and cloaking.

• Obfuscation: degradation of the quality of the location data.

From these four methods, we will concentrate in the last two because they are
the most relevant in the context of this dissertation.

Anonymity

The use of pseudonyms is perhaps the most obvious way to achieve anonymity.
However, using same pseudonym for a long time makes it is easy for an attacker
to gather enough history on an individual to infer their habits or true identity. To
try to mitigate this issue, Beresford and Stajano in [7] proposed an idea which
relied upon pseudonym exchange. They introduced two new concepts: mix zone

and application zone. A mix zone for a group of people is defined as the maximum
contiguous area where none of the group’s users exchanges information with a
LBS. This prevents the users’ data from being accessed by the LBS providers. By
contrast, an application zone is defined as an area where at least one of the users
exchanges data with a LBS. By switching her pseudonym to a new unused one
when entering a mix zone, the user ensures that there is no way for a LBS provider
to distinguish between her and the other users who were in that zone. This means
that there is no way for attackers to link people going into the mix zone with the
ones that come out of it.

Based on a different concept, k-anonymity (introduced by Samarati and Sweeney
in [48]) Gruteser and Grunwald [29] were the first to investigate anonymity as a
method to attain location privacy. According to them, a subject is considered
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to be k-anonymous with regard to location information, if and only if she is
indistinguishable from at least k − 1 other subjects with respect to a set of quasi-

identifier attributes. Bigger values of k correspond to higher degrees of anonymity.
They proposed a middleware architecture and an algorithm capable of adjusting
location information resolution in spacial and/or temporal dimensions in order to
comply with a specific k-anonymity requirement. When a client requests a service,
their algorithm calculates a cloaking box/region that contains that client along with
at least k−1 other users. That box is then used as the client’s location to request the
service. If that box’s resolution is to coarse for some services, temporal cloaking
can be applied by delaying the user’s service request. When more users come near
the client, a smaller cloaking region can be computed. This concept has since been
explored and improved in other scientific works.

Geddik and Liu’s ClickCloak algorithm [24, 25] allows each user to define her
own minimum acceptable value for k (kmin), as well as the maximum acceptable
values for temporal and spacial resolution. Furthermore, they created an efficient
message perturbation engine capable of performing location anonymization of
users’ requests. This is accomplished by removing the users’ identities from the
requests and with the use of spatiotemporal obfuscation of the location information.

Mokbel et al. in [44] use the k-anonymity concept as well. They presented the
Casper framework which consists of two main components, a location anonymizer
and a privacy-aware query processor. The location anonymizer blurs the location
information about each user according to that user’s defined preferences (minimum
area Amin in which she wants to hide and minimum value for k). The query processor
tunes the functionality of traditional location-based databases to be privacy-aware.
It does so by returning cloaked areas instead of exact points when queried for
location information.

Unlike the previous k-anonymity based approaches that require a centralized
trusted server (Anonymizer) in order to compute the cloaking regions, Ghinita et al.
in [26] use a decentralized peer-to-peer approach. This fixes two issues inherent
to the centralized server approach:

• Fault Tolerance - the anonymizer is a single point of failure and the system
cannot work without it.
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• Security - all requests must go through the anonymizer, so in case it becomes
compromised it would result in a serious security threat.

Their distributed protocol called PRIVÉ supports decentralized query anonymiza-
tion with load balancing and fault tolerance. In PRIVÉ, for a user to be considered
trustworthy and participate in the network, she needs a trust certificate obtained
from a Certification Server. Users in the network trust each other and communicate
using a structured peer-to-peer network. Users are grouped into clusters according
to their location. Each cluster has a leader which is recursively grouped with other
leaders to form other clusters with different leaders, just like a B-Tree structure.
This allows each user to create it’s own cloaking region by using information from
other nearby users. Furthermore, PRIVÉ also ensures reciprocity in the creation of
cloaking regions. A cloaking region with k users satisfies reciprocity only if that
same cloaking region is generated for each of users. This means that an attacker
cannot use minimality attacks [54], i.e., it cannot infer which user is the source of
the request with a probability bigger than 1

k .

Obfuscation

Obfuscation based techniques usually degrade the “quality” of the information in
order to provide privacy protection. Even tough this may seem comparable to what
k-anonymity based techniques do, there is a key difference: obfuscation based tech-
niques allow the actual identity of the user to be revealed (thus making it suitable
for applications that require authentication or offer some sort of personalization
[39]).

Duckam and Kulik [14] were the ones who introduced the idea of obfuscation
for location privacy. They talk about three distinct types of imperfection that can
be present in spacial information:

• Inaccuracy - lack of correspondence between information and reality. E.g.
“Braga is in Spain”

• Imprecision - lack of specificity in the information. E.g. “Braga is in Europe”

• Vagueness - special type of imprecision that concerns the existence of inde-
terminate borderline cases [16]. E.g. “Braga is in western Europe”. This
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is a vague statement since there is no clear definition about the borders of
western Europe.

Any of these types of imperfection can be used to obfuscate an individual’s
location. In this particular case, the authors use imprecision to degrade the quality
of the location information. They adopt a discrete model for space representation
through the use of graphs. Geographic locations are modeled as a set of vertices V ,
and the connectivity or adjacency between them is modeled as a set of Edges E.
A user’s location is represented through a vertex l ∈ V . Obfuscation is provided
through the use of a group of vertices O such that l ∈ O and O ∈ V , where for every
element o ∈ O, o is indiscernible from l. The larger the set O, the less information
is being revealed and therefore, the greater is that individual’s privacy. The set O is
used by their algorithms to negotiate the balance between an individual’s location
privacy and that individual’s need for quality services. The more information
an individual is willing to reveal the higher the quality of information he can be
provided with.

Another example of an obfuscation based approach was shown by Ardagna et
al. in [4] and later improved in [5, 6]. Their obfuscation process allows users to
express their privacy preferences using another concept of theirs called relevance.
Relevance is a value in the range ]0, 1] and it represents the relative accuracy loss
in location measurement. It tends to 0 when the location measurement is highly
inaccurate and it is equal to 1 when the location measurement achieves the best
accuracy allowed by the location technique in use. The higher the relevance the
lower will be the location privacy. Moreover, they define a set of basic obfuscation

operators that are used to modify location measurements. These operators can be
further composed in order to increase robustness against deobfuscation attacks and
are randomly selected and applied to the user’s measured location ensuring that the
selected relevance value holds. This solution allows users to abstract from both the
obfuscation operators and the sensing technology (Bluetooth, Wifi, GPS).

There are other examples of obfuscation approaches that are not only oriented to
location data but to the degradation of data in general [3, 30]. In these approaches,
privacy is obtained through the generalization of the information. This procedure
is done resorting to generalization trees [3] or generalization graphs [30]. These
structures contain the sets of rules to be applied in the generalization process. The
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application of these rules depends on the Life Cycle Policy (LCP). A LCP consists
of the set of transitions between the generalization structures’ branches/vertexes
as well as the events that trigger them. The biggest challenge in this type of
approaches is the difficulty associated with the construction of the sets of rules and
the generalization structures.

2.2 Algorithms and data structures

In our work, we tested how the usage of stochastic summarizing techniques fared as
an approach to some privacy preserving scenarios. These techniques provide both
the concepts we talked about in the previous section, anonymity and obfuscation.
Being non-deterministic summarizing techniques, they degrade the quality of
information in such a way that does not allow the recreation of the original data,
thus the obfuscation property. On the other hand, by relying on hash functions to
create pseudonyms, they afford anonymity.

This section briefly explains the algorithms and data structures that were used in
both the Gate Counting (Chapter 3) and Causality Tracking (Chapter 4) scenarios.

2.2.1 Hash Sketches

Hash Sketches are a simple probabilistic data structure used to obtain the number of
distinct elements in multisets. There are several variants of Hash Sketches. Despite
being different, all the discussed variants have at least one bit array and use some
kind of hash function to map elements from the multiset to positions in the bit
array(s). The main idea is to use an hash function to randomize data and create
what closely resembles to an uniform and independent binary data structure. This
pragmatism is justified by Knuth [35]:

“It is theoretically impossible to define a hash function that creates
random data from non-random data in actual files. But it is not difficult
to produce a pretty good imitation of random data.”

This binary data structure is then used as input to an estimator function that
returns an estimation of the number of distinct elements in the multiset, it does
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not return exact results. The estimator performs some tests on the hashed binary
data comparing the obtained results with the ones that would be expectable using
probabilistic analysis. Finally, it infers an estimate for the number of distinct
elements.

In Hash Sketches, the same element is always mapped to the same position(s)
in the binary array(s). That is the reason why this algorithm is only suitable to
estimate the number of distinct elements, i.e. the cardinality of the support set of a
multiset. The support set is a subset of the multiset with all the distinct elements
(no repetitions).

Due to their probabilistic nature, Hash Sketches also have a smaller memory
footprint than the one that would be needed in a deterministic approach. Hash
Sketches also have the ability to estimate the number of different elements incre-
mentally and in a single pass over the multiset. This enables them to provide
on-the-fly estimates in scenarios where there is a constant flow of data.

It is also worth noting that all the “observables” i.e. bit array(s) used by the
Hash Sketches algorithms below, are duplicate and order insensitive. This means
that, neither the order in which elements are inserted, nor the insertion of repeated
elements affect the output of the estimator functions.

In the Gate Counter Scenario (Chapter 3), we tested several versions of sketches:
LogLog Sketches [17], HyperLogLog Sketches [57], Linear Counting Sketches
[53], Robust-In Network Aggregation Linear Counting Sketches (RIA-LC) [21, 20]
and Robust In-Network Aggregation Dynamic Counting Sketches (RIA-DC) [20].

LogLog Sketches

LogLog Sketches [17] are similar to the Probabilistic Counting with Stochastic
Averaging (PCSA) algorithm presented in [22] since both use several small bit
arrays (called buckets) instead of a single bit array. This concept was introduced in
[22] under the name stochastic averaging and its purpose is to reduce the variance

of the estimates, thus improving their accuracy. The main difference between PCSA
and LogLog Sketches is that the latter consume a lot less memory at the expense
of some accuracy. To create a LogLog sketch, one needs to know the number of
distinct elements it will hold, or at least an upper bound for that number. This
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number and the desired accuracy are the two design parameters for this algorithm.
Having defined those, m buckets are created and initialized to 0. Each bucket has
a size close to log(log(Nmax)) (hence the name LogLog Sketches), being Nmax the
maximum number of distinct elements the sketch can hold. Given the hash code
for element e, hs(e), let Re denote that code without the first k = log2(m) elements
and ρ(x) a function that returns the index (starting at 1) of the leftmost 1 bit in x,
e.g. ρ(1 . . .) = 1, ρ(0001 . . .) = 4. To insert an element e in the Sketch, the first k

bits of the element’s hash code are used to pick one of the buckets, lets assume it
was bucket b1. Its content is updated as follows, b1 = max(b1, ρ(Re)). The values
stored in the various buckets are the ones used by the estimator function to provide
a number for the cardinality of the support set.

HyperLogLog Sketches

HyperLogLog Sketches [57] are an improvement over LogLog Sketches. In both
algorithms, greater accuracy can be obtained at the cost of bigger space require-
ments and lower space requisites can be bought at the expense of reducing the
accuracy. However, when using the same number of bits as in LogLog Sketches,
HyperLogLog Sketches is able to provide more accurate results. According to
the authors, this improvement stems from the use of harmonic means instead of
geometric means in the estimator function. The key concept behind both these
algorithms is that using a good hash function, it is expected that only N/2y distinct
elements have a ρ value equal to y, where N is the number of distinct elements
in the multiset (e.g. ρ(x) = 1 in 50% of the cases, ρ(x) = 2 in 25% of the cases,
ρ(x) = 3 in 12.5% of the cases, . . . ). Figure 2.1 shows the behavior of these
algorithms, but for ease of representation instead of small bit arrays it uses integers
to represent the buckets.

Linear Counting Sketches

Linear Counting (LC) Sketches [53], on the other hand, use a single bit array/sketch
with size m. This sketch is initialized with 0s. When an item i is to be inserted, its
hash value hi, is used to calculate an index within the sketch (mod(hi,m)), which
is then set to 1. To calculate the estimate of the number of different items, the
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hash(ELEM5)="100001110"

hash(ELEM8)="110001011"
hash(ELEM7)="101000111"
hash(ELEM6)="100000000"

Lets assume m = 4,  therefore k = 2

2 3 8 4

hash(ELEM1)="000101111"

hash(ELEM4)="011000001"
hash(ELEM3)="010011011"
hash(ELEM2)="001001001"
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𝜌=4
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𝜌=4

bucket 0 bucket 1 bucket 2 bucket 3

Figure 2.1: Insertion of elements in a (Hyper)LogLog Sketch

algorithm uses the fraction of empty sketch entries (Vn). In order to obtain this
value, it counts the number of empty sketch entries (the number of 0 entries in the
sketch) and divides it by the total size of the sketch. The key concept behind LC
Sketches is that for a uniformly distributed hash function, it is expected for the
fraction of zero bits in the sketch to be inversely proportional to the number of
distinct elements in the multiset. LC Sketches’ name comes from their linear space
complexity O(Nmax) (where Nmax is the maximum number of different elements
that the sketch can hold), i.e. their size grows linearly with the number of distinct
elements that can be hold. Compared to (Hyper)LogLog Sketches, LC Sketches’
space complexity is a drawback, specially for multisets with large numbers of
distinct elements. However, LC Sketches are easier to implement and also provide
better estimates in multisets with a small number of distinct elements. Figure 2.2
shows a LC Sketch with size m = 16, after the insertion of 4 elements, Vn = 0.75.
Notice that “ELEM4” is inserted in index i = 12 because that is the remainder of
the integer division of 44 over 16.

Robust In-Network Aggregation Linear Counting Sketches and Robust In-
Network Aggregation Dynamic Counting Sketches

Both Robust In-Network Aggregation Linear Counting Sketches (RIA-LC) [21, 20]
and Robust In-Network Aggregation Dynamic Counting Sketches (RIA-DC) [20]
are based on LC Sketches. RIA-LC sketches are a slightly improved version of
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1 0 00 0 0 1 00 1 0 1 00 00

hash(ELEM1)="000001" = 1
hash(ELEM2)="001001" = 9 

hash(ELEM3)="000111"  = 7
hash(ELEM4)="101100"  = 12 

0 15

m = 16

Vn = (16-4)/16 = 0.75

Figure 2.2: Linear Counting Sketch after the insertion of 4 elements

Linear Counting Sketches. They are very similar in the way they work, however
RIA-LC Sketches are less prone to the overflow problem that occurs in LC Sketches
when all the bits in the sketch are set to 1.

One of the major issues with all of the previous algorithms is the merge opera-
tion. All of them allow the merging of several sketches of the same type to obtain
an aggregate count of the number of distinct elements. However, all the sketches to
be merged must be similar (same size/accuracy). Furthermore, each of them has
to be big enough to hold the aggregate number of distinct elements. For instance,
given two sketches with no overlap between their elements, with 200 and 10000
distinct elements, if we plan on computing their aggregate then each sketch must
be big enough to hold at least 10200 elements. RIA-DC sketches don’t suffer from
this issue. They have the ability to merge sketches of different sizes. However, this
ability comes with a price. RIA-DC Sketches assume that elements belonging to
different sketches do not overlap, meaning that if we merge two different RIA-DC
sketches with elements in common, those elements will be counted twice in the
final aggregate.

2.2.2 Bloom Filters

Bloom Filters (BFs) were created in 1970 [9] by Burton Howard Bloom. They are
a simple and space efficient data structure for set representation where membership
queries are allowed. Bloom Filters allow false positives but do not allow false
negatives, i.e, when querying a Bloom Filter about the existence of an element in a
given set, if the answer is no, then the element is definitely not in the set, but if the
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answer is yes, the element might be in the set.
A Bloom Filter for representing a set of n items S = {x1, x2, x3, ..., xn} is tra-

ditionally implemented using an array of M bits, all initially set to 0. Then, k

independent hash functions are used {h1, h2, ..., hk}, each one mapping the element
of the set into a random number uniformly distributed over the range {1, ...,M}. For
each element x of the set (x ∈ S ) the bits of the positions hi(x) are all set to 1 for
1 ≤ i ≤ k. A location can be set to 1 multiple times. Due to the independence of
the hash functions, nothing prevents collisions in the outputs. In extreme cases it
is possible to have h1(x) = h2(x) = ... = hk(x). To prevent this, we use the variant
of Bloom Filters presented in [10] which partitions the M bits among the k hash
functions, creating k slices of m = M/k bits. This ensures that each item added to
the filter is always described by k bits. Given a Bloom Filter BFS , checking if an
element z ∈ BFS , consists in verifying whether all hi(z) are set to 1. If they aren’t,
then z is definitely not present on the filter. Otherwise, if all the bits are set to 1,
then it is assumed that z belongs to BFS although that assumption might be wrong.
This false positive probability exists because the tested indices might have been set
by the insertion of other elements. Figure 2.3 illustrates such an example.

Bloom Filters 
12 

1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 

{x,y,z} 

Checking if w belongs to the set 

w 

hash_fun2 
hash_fun3 

hash_fun1 

Figure 2.3: Bloom Filter with k = 3, M = 21 and m = 7, containing elements
{x, y, z}. Querying for the presence of element w yields a false positive.

The false positive probability P can be obtained using equation (2.1), where p
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is the ratio between the number of set bits in the slice and the slice size m. The fill
ratio p can be obtained through equation (2.2).

P = (1 − p)k (2.1)

p = 1 −
(
1 −

1
m

)n

(2.2)

Furthermore, given a maximum false positive probability P, and the number
n of distinct elements to store, equations (2.3) and (2.4) can be used to estimate
the optimal number of bits required by a Bloom Filter to store those n elements,
M = m ∗ k.

k = log2

(
1
P

)
(2.3)

m =
n ∗ |lnP|
k ∗ (ln2)2 (2.4)

Counting Bloom Filters

Counting Bloom Filters (CBFs) were presented in [19] although they were only
given this name later in [43]. They were introduced in order to allow the deletion
of elements from the Bloom Filters. Suppose that we have a set that changes over
time, where elements are inserted and deleted. The insertion of elements can be
easily done using a normal Bloom Filter, hash the element k times and set the
bits to 1. Unfortunately the delete operation cannot be accomplished simply by
reversing the process. The resulting positions from the hash functions cannot be
set to 0, because each position may be hashed by some other element from the set.

In a Counting Bloom Filter, each position is a small counter rather than a single
bit. When an item is inserted the corresponding counters are incremented, and
when the item is deleted the same counters are decremented. We just have to
choose sufficiently large counters, in order to avoid counter overflow.
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Scalable Bloom Filters

As we have seen, Bloom Filters provide space-efficient storage of sets at the cost
of a probability of false positives on membership queries. A conservative approach
is usually chosen when filters are created because in case the number of elements
stored surpasses the original number that the filter was supposed to hold, the
false positive probability starts to increase rapidly. That conservative approach
usually leads to filters orders of magnitude larger than needed and consequently
to wasted space. To tackle this issue, Almeida et al. [2] introduced the concept of
Scalable Bloom Filters (SBF), a variant of Bloom Filters that can adapt dynamically
to the number of elements stored while respecting a maximum false positive
probability, which is chosen in the beginning. SBF are a mechanism that adapts
to growth of sets using a series of classic Bloom Filters of increasing sizes and
tighter false positive probabilities. When the filters get full, a new one with
size = previous size ∗ growth rate and tighter false positive probability is made.
To check for the presence of an element, one has to query all filters.

2.2.3 Vector Clocks

Broadly speaking, a distributed system consists in a set of processes connected
through a network. Each of these processes’ internal state can only change through
the occurrence of events. There are 3 kinds of events: message sending, message
reception and state transition events deriving from the normal execution of the
process. In a distributed system, processes can only communicate using message
passing as there is no shared memory. In this context and considering the ordering
of events in an asynchronous model (since no assumptions should be made about
timing), several strategies to cope with this asynchronicity were devised. One of
the most prominent is vector clocks.

In order to better understand how Vector Clocks work, we must first comprehend
the concept of causality. Causality is a relation through which we can connect two
events, a first event (known as the cause) and a second one (the effect).

In the context of Distributed Systems, causality is expressed using the happens-

before relation [38] denoted by the→ symbol. For instance, given 2 events, x→ y,
reads as x happened-before y, and means y might be a consequence of x.
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The happens-before relation has the following properties over any given event:

• ∀a, b, c if a→ b and b→ c, then a→ c (transitivity);

• ∀a, a 9 a(irreflexivity)

• ∀a, b if a→ b then b 9 a (antisymmetry)

Therefore, it is a strict partial order over sets of events.
Vector Clocks were introduced by Colin Fidge [33] and Friedemann Mattern

[41] in 1988 and are a practical implementation of the happens-before concept. In
this algorithm, each process Pi has a vector of integer values VCi[1..n] where n is
the number of processes, maintained by the following set of rules:

1. In the beginning, all the positions from the vector are set to 0

2. Each time the state of a process Pi changes (send, receive or internal event),
it must increment the value VCi[i], i.e, (VCi[i] = VCi[i] + 1).

3. Each time a process Pi sends a message, its vector VCi should be enclosed
in that message.

4. When a process Pi receives a message m, it must update its vector using the
formula: ∀x : VCi[x] = max(VCi[x],m.VC[x]), where m.VC symbolizes the
vector clock attached to m.

Figure 2.4 shows a concrete example of the above rules in a distributed system
with 3 processes.

Vector Clocks are able to accurately represent the causality relation and the
partial order it defines. Given any two distinct events x and y:

∀(x, y) : (x→ y)⇐⇒ (VCx < VCy)

Where VCx < VCy stands for:

(∀k : VCx[k] ≤ VCy[k] ∧ (∃k : VCx[k] < VCy[k]))

An important property of this mechanism is the result by Charron-Bost [11]
proving that Vector Clocks are the most concise characterization of causality among
process events.
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Figure 2.4: Vector Clocks
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3
Collaborative Gate Counting

In this chapter, we tackle one of the most common forms of urban sensing: counting
unique visitors across multiple gate counters to measure the number of people
across the urban setting.

3.1 Motivation and System Model

Bluetooth scanners register the Bluetooth addresses, 48-bit MAC, of the devices
that have been sighted. The Bluetooth device address is a 48-bit MAC format
address that uniquely identifies each Bluetooth device. Some devices are able to
switch between multiple Bluetooth addresses, but for most cases this will be a
reliable and permanent unique identifier for sighted devices and by extension to
the respective owners. A single scan of nearby devices is not in itself much of
a problem. However, a systematic registration of Bluetooth sightings, especially
when done at multiple locations, has the potential to become a large scale tracking
system given the personal nature of most Bluetooth devices. Relatively simple
processes can be put in place to detect the presence, movements and patterns
of individuals. Concerning anonymity, the absence of a public record mapping
Bluetooth addresses to specific individuals is nothing but a fragile barrier. To track
a specific individual, it would suffice to intersect the Bluetooth addresses from
some of the places she has visited. Eventually, all that would have been left is a

23
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single Bluetooth address which could then be used to easily track that person from
that moment on. To prevent cases like this, a privacy preserving approach should
avoid permanent storage and dissemination of Bluetooth addresses or of any other
information that could uniquely identify an individual.

Our Gate Counting scenario assumes the existence of a large set of hetero-
geneous and autonomous Bluetooth nodes. We use the terms node and scanner

interchangeably throughout this document. Conceptually, a gate is a virtual line
across a street, and gate counting is the process of counting the number of people
crossing that line. Each Bluetooth node is modeled as a gate counter that counts
the number of unique Bluetooth addresses observed during a certain period.

A Bluetooth-based gate counter does not really count all the people passing-
by, but only those who are carrying discoverable Bluetooth devices. Still, this
is enough to make a reasonable correlation, using baseline data to estimate the
overall traffic. A gate counter should recognize subsequent sightings of the same
entity. In a gate counting scenario, repeated sightings of the same device can be
very common because of persistent devices. Instead of scanning through a line,
Bluetooth discovery is actually performed in an area and thus any device in that
area, possibly in nearby buildings, would be repeatedly discovered. Furthermore,
results from empirical studies with known static and transient devices suggest that
a transient device typically appears for up to 90 seconds while it crosses a gate
[46]. A proper gate counting process needs to account for these facts and filter both
the persistent and repeated transient devices. A good way to do this is to count the
number of unique devices.

A gate counter should also be able to answer questions like “how many different
people were seen in a given gate in the last 24 hours?” or “what was the number of
visitors of an amusement park during visitors peak hours?”. To comply with this
requirement, gate counters should be able to distinguish its readings over time.

The main challenge, however, is how to enable collaborative counting between
multiple independent gate counters, while providing appropriate privacy guarantees
as well as low communication costs. To be able to count unique entities, we need to
identify multiple counts of the same entity at different nodes, to make sure that the
same device sighted at two different gates will be counted only once. Imagine, for
example, a city festival with multiple gate counters operating at various locations
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to count the number of visitors to the festival. The simple sum of individual gate
counts would clearly overestimate the number of people since many of them would
be spotted at multiple gates. Thus, we need some technique that works across
multiple gate counters and is able to provide an aggregate count of the unique
devices that have been spotted in the entire set of gate counters. Comparing the
plain addresses observed at different gates would immediately solve this problem,
but as we have seen, it is not suitable for privacy preservation.

3.1.1 Objectives

In this chapter, we explore the use of stochastic summarizing techniques as a
privacy preserving approach to enable Bluetooth-based gate counting of unique
entities across multiple nodes. The objective is to assess the extent to which these
techniques are able to address the specific requirements of this distributed gate
counting model, and inform the design of large scale Bluetooth sensing systems.

Having identified the sensing requirements for this scenario we have established
a number of key criteria for assessing the various alternatives. Using those criteria,
we have conducted an experimental study in which we compared how multiple
types of stochastic summarizing techniques would behave across multiple variants
of our gate counting scenario. The results provide a strong foundation for the
development of these large scale Bluetooth sensing infrastructures, identifying
major trade-offs and the implications of key factors such as cardinality and support
for merge operations.

3.2 Criteria

This section tests some of the techniques mentioned in Section 2.2, namely LogLog
Sketches [17], HyperLogLog Sketches [57], LC Sketches [53], RIA-LC Sketches,
[21, 20], RIA-DC Sketches [20], Bloom Filters [9] and Scalable Bloom Filters [2].

These techniques where picked because they provide an interesting solution to
the gate counting problem. Probabilistic counters are flexible enough for estimating
the overall number of unique sightings with some controllable accuracy, without
ever keeping the plain Bluetooth addresses.
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The requirements identified in section 3.1 boil down to three important criteria:
accuracy, size and aggregation. These criteria were used in the evaluation the
proposed techniques.

Accuracy

With this criterion we want to evaluate the accuracy of the techniques, their ability
to count multiple sightings of the same device only once, and the quality of their
estimators. To do so, we stipulated the maximum standard error for each technique.
In this case after setting it to 5%, we measured for all techniques the relative error
(root mean square error) for a range of cardinalities, whose average of 100 runs is
shown in Fig 3.3.

Size

The size of the techniques is an important factor. The less space the technique
requires, the lower will be both the costs of communication between BT scanners
and their memory requirements.

Regarding this criterion, we have 2 fundamentally different types of techniques:
dynamic techniques which consist of Scalable Bloom Filters and static techniques
comprising the rest. Static size techniques are techniques whose size is set at the
time of creation and cannot be changed afterwards. This means that we must know
the maximum number of unique devices to count before hand, or at least, we must
be able to assume an upper bound for that number. Dynamic techniques on the
other hand don’t have this drawback because they can adjust to withstand arbitrarily
large cardinalities. In practical terms this means that for static size techniques,
once we create an instance with a certain capacity it is not possible to change that
capacity afterwards, while for dynamic techniques there is no such constraint.

To further help us in our analysis, we can look at Figure 3.4. Figure 3.4(a)
depicts the number of bits per unique element that each technique requires along a
range of cardinalities. Figure 3.4(b) shows the total size spent by each technique to
store a given number of distinct elements.
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Aggregation

The ability to merge counts is crucial for scenarios with multiple gates. It is a key
ingredient for obtaining the aggregate number of individuals in a set of gates. The
merge operation (Figure 3.1) consists in either a bitwise OR operation (Bloom
Filters, Linear Counting, RIA-DC and RIA-LC sketches) or in a max operation
(HyperLogLog and LogLog sketches) of structures that make each gate’s counter.
In order to merge several gate counters, there are 2 conditions that must be met: all
counters must be instances of the same technique and every instance must have the
same parameters and capacity (equally sized bit arrays). Meeting these conditions
ensures that the same unique device will mark the same positions in the several
gate counters it crosses. Therefore after merging the counters, it is possible to
obtain the aggregate number of unique elements without counting the same device
repeatedly (Figure 3.2).

2 6 8 5

4 9 3 5

4 9 8 5

max Merge

=

(a) max Merge- used by LogLog and Hyper-
LogLog Sketches

1 0 10 0 0 0 10 0 00

0 1 11 0 0 1 10 1 00

Bitwise OR Merge

=
0 1 11 0 0 1 10 1 00

(b) Bitwise OR Merge - used by Bloom Filters, RIA-
LC, RIA-DC and LC Sketches

Figure 3.1: Different Merge Approaches

With the exception of Scalable Bloom Filters and RIA-DC sketches, all the
techniques presented here have the ability to merge, and therefore will not count the
same device more than once in aggregate counts. Scalable Bloom Filters lack the
ability to merge because their size varies dynamically with the number of unique
elements, therefore we cannot guarantee that the same unique device will set the
same positions for different filters. RIA-DC sketches might not provide accurate
aggregate results since the estimator considers there is no overlap of elements
between the different counters.
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Figure 3.2: Gate Counter Aggregation - repeated devices appear only once

Aggregation is also important as a mean for answering time related questions
like “how many different people were seen in a given gate in the last 24 hours?” or
“what was the number of visitors of an amusement park during visitors peak hours?”.
To answer these types of questions, it must be possible to distinguish/segment
counter readings over time. This can by accomplished by sensor nodes periodically
making a copy of their counters followed by a reset. Those copies will keep the
information about the unique devices sighted during a certain time period. For
example, considering that the rate at which counters are saved and reset is 1 hour,
the former question could be answered by merging the 24 last saved counters. To
answer the latter, we would need to merge the copies made during peak hours at
the various nodes in the park.

To save some space, we can use different time granularities. For instance, we
can merge all unique counters saved during a day and obtain the aggregate count
for the day, merge the counters from the last 7 days and get the aggregate count
for the week, and so forth. We just need to keep in mind that because of the merge
restrictions, the size of the counter that stores the unique number of devices sighted
during an hour has to big enough to fit the number or unique devices seen during
the entire week.

As we can see, both time segmentation and aggregate counting are in fact
variations of the same problem, which can only be solved with techniques that
support merging.
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Figure 3.3: Relative error of the several techniques using various upper bounds.
Average of 100 runs.

3.3 Evaluation

Using the results from our benchmark1 shown in figures 3.3 and 3.4 and having
explained the different criteria we can now analyze each one of the techniques.

Standard and Scalable Bloom Filters

Both techniques provide a good accuracy for all the cardinalities tested, never
surpassing the stipulated relative error. Figure 3.3 confirms both these facts. How-

1Our Benchmark was built in Python, including the implementation of the several algorithms,
with the exception of Bloom Filters where we used Jay Baird’s implementation.
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Figure 3.4: Size benchmarks

ever, looking at Figure 3.4 we can confirm that in regard to space, they are the
most expensive techniques of all. This extra cost in terms of space stems from
their query membership ability. Figure 3.4 also highlights the incremental nature
of Scalable Bloom Filters. Each time the filter gets full, a new Bloom Filter is
created, increasing the size of the technique. This explains the seemingly strange
behavior of the technique. Both these techniques are also the most computationally
expensive of all in terms of insertion complexity.

LogLog and HyperLogLog Sketches

As depicted by Figures 3.3(a) and 3.3(b), these techniques have very low accuracy
for small cardinalities (. 1800). Apart from this issue, they are the best suited
techniques for large cardinalities due to their logarithmic growth in size. As shown
in Figure 3.4(b), for numbers of distinct elements above 10000, these are the most
efficient techniques in terms of space. Between the two, HyperLogLog sketches
have the advantage of being more accurate and of having a smaller variance.
Regarding insertion complexity, these techniques are less expensive than Bloom
Filters, but more expensive than the LC Sketches based ones.
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LC Sketches, RIA-LC Sketches and RIA-DC Sketches

Spending only a little more memory than LogLog Sketches, LC Sketches do not
suffer from poor accuracy in smaller cardinalities, they have an all around good
accuracy just like Bloom Filters. LC Sketches are a good all around technique. Be-
ing based on Linear Counting Sketches, it is no surprise that RIA-DC and RIA-LC
Sketches also have good accuracy results. Furthermore and like their ancestor, they
also achieve good results in the bits per element ratio. These techniques are also
the ones with the smallest complexity in terms of element insertion.

Taking into account all that has been said, there are a few conclusions to be
drawn. For scenarios where we cannot make assumptions on the maximum number
of elements to count, we have to use Scalable Bloom Filters. For scenarios where
there is a big discrepancy between the cardinalities of different counters and where
the existence of repeated elements outside each counter can be neglected, RIA-DC
Sketches are probably the best choice. For scenarios with very large cardinalities
HyperLogLog Sketches are probably the correct choice since they are the most
space efficient technique. Considering the expected most common scenarios, where
we need accurate aggregate counts and where there is the possibility of counters
with low cardinalities, the choice falls either within Linear Counting Sketches or
RIA-LC Sketches. We prefer the latter since it is a slightly simplified version of
the former.

As a final remark, we should emphasize the fact that all the techniques discussed
in this chapter are more efficient in terms of space than storing each unique device’s
48 bit MAC address (check Fig.3.4(a)).

3.4 Summary

Bluetooth devices are pervasive in most societies and the number of unique Blue-
tooth sightings is an adequate proxy for the number of actual individuals present.
The trivial approach of collecting and counting the set of detected Bluetooth MAC
addresses is not adequate, in most settings, both in terms of privacy concerns,
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system scalability and adequacy to devices with limited memory.
In this chapter we described and benchmarked a set of stochastic summarizing

techniques that can be applied to the gate counting problem. By using these
techniques our approach ensures the privacy of the users since Gate Counters don’t
store any extra raw information, i.e., the raw information that they keep at any
given moment is also present in the Bluetooth network.

Furthermore, the analysis of these techniques and their trade-offs should help
to determine the most adequate solutions for a specific gate counting scenario.



4
Causality Tracking

This chapter, addresses the use of Bluetooth sightings as a way to acquire knowl-
edge about the movement patterns of people. To do so, we propose a new technique
with adjustable accuracy capable of representing the causality relation between
visited places.

4.1 Motivation and System Model

The use of hash functions is often suggested as a data sanitation technique in which
a Bluetooth address is replaced by a digest from which it is not be possible to
recreate the original address. However, this is also not suitable for large scale BT
sensing. It would be possible, even with minimal information about someone, to
identify the respective digest, and from that point onward, the digest would again
function as a unique identifier (pseudonym).

There are examples, such as the Netflix case [45], that show how surprisingly
easy it can be to personalize information that was being proposed as anonymous
(quasi-identifier [8]) simply by adding some basic additional knowledge to the
system. This is also visible in other domains [47]. Therefore, the systematic
registration of Bluetooth sightings done at multiple locations constitutes a privacy
threat in that it allows the creation of a surveillance system for people.

The use of Bluetooth as an enabling technology to establish the flows of people

33
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is not a new concept. There are several examples, be it within a city [46], outdoor
festival [51] or shopping mall [42].

The model in which we base our work assumes the existence of a network of
heterogeneous and autonomous nodes that collaborate in the tracking process of
Bluetooth devices. These nodes may have access to various types of information
about the devices: their MAC address, the timestamp of the sighting, the type of
Bluetooth protocols supported by the devices, among others.

Similarly to the Gate Counting scenario in Chapter 3, there is the possibility
of using preexisting resources (nodes). As a consequence, our model does not
impose restrictions on the type of information registered by the scanners. The
nodes will continue to perform the same functions they did before. Our concern is
to the information that might be exchanged by the nodes in the context of collective
tracking, and to the privacy risks that might ensue such as the ability to accurately
follow the movement of a device and therefore of its respective owner.

In their everyday life and depending on their specific needs, people visit several
different places. For instance, a person P1 wants to buy a new laptop. To do so,
she visits store S 1 which does not have the model she wants. She then visits store
S 2 which is out of stock and afterwards store S 3 where the price is a little steep.
She ends up buying the laptop in store S 4. To represent this behavior we introduce
the concept of mobility traces. A mobility trace is simply the representation of
the places visited in the order by which they were visited. In this specific case,
the mobility trace of P1 is MTP1 = {S 1, S 2, S 3, S 4}. Our mechanism, Precedence

Filters, allows the recording of information relative to the individual traces of
people, in a manner compatible with plausible deniability. That information can
later be processed/mined to obtain more accurate data about the habits of the
aggregate of all individuals. For instance, in this example, the order in which the
stores were visited might be an indicator of their reputation/popularity.

A common strategy that seeks to strengthen privacy is the restriction of captured
data to just the essential. In our specific case, the goal is the detection of movement
patterns between nodes. As such, the ability to detect the same device on different
nodes is fundamental. To minimize the amount of information collected, we can
ignore information such as the duration of the sightings, the timestamp in which
they occurred, the device name, supported Bluetooth protocols, among others. We



4.1. MOTIVATION AND SYSTEM MODEL 35

just need the device’s MAC address.

Whenever a device is sensed, the sighting node records that event locally. This
information is then used in the computation of device transitions between the
system’s multiple nodes. The place where that computation occurs depends on
the system’s architecture. Our mechanism can be deployed in either centralized or
decentralized architectures. In a centralized system configuration, the computation
has to be done in the server since only it has enough information to do so. Each
node only shares its local information with the server. On the other hand, with a
decentralized architecture, nodes can do the processing locally. The local infor-
mation each node possesses is shared with the other nodes, thus allowing all the
nodes to have access to the data. Both models have advantages and disadvantages.
For instance, the centralized approach is not fault tolerant, if the server crashes
the tracking system stops working. This does not happen in the decentralized
approach given that the same information is stored in multiple nodes (redundancy).
The system can keep on working even if some of the nodes fail. Compared to the
centralized version, the decentralized model also has greater availability as a result
of the information redundancy. However, as a consequence of the exchange of
information between all the nodes, the decentralized scenario has a bigger burden
on the network when compared to the centralized one.

In order to achieve the goal we set ourselves, and taking into account the
constrains presented by our model, our solution is based upon the following set of
assumptions:

• Even though we cannot make assumptions about how each individual node
will handle the observed Bluetooth addresses, our solution should never
require the Bluetooth address or any other information that could uniquely
identify individuals to ever leave the sensing node.

• No system element should, at any given time, have all the information
necessary to accurately determine the path of a single individual.

• The aggregate result that a node can create about the set of all visiting
devices should be accurate enough to be useful in human mobility observation
scenarios, e.g. most common paths, similarity level between places.
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• There are no communication failures in the system and the exchange of
information between any two nodes is faster than the time it takes for a
person to move between them. This ensures that the order in which the
sightings are recorded is correct, i.e., when a person goes from node A to
node B, node B must already have the information that she was in A.

4.1.1 Objectives

In this chapter, we discuss the use of Bluetooth sightings, captured by a group
of cooperative scanners, with the purpose of obtaining information about the
movement patterns of users. All without compromising their privacy. Particularly,
we wish to explore the application of stochastic summarizing techniques as a
privacy preserving approach to Bluetooth Tracking.

The technique presented in this chapter, Precedence Filters (PFs), gives each
Bluetooth scanner the ability to obtain probabilistic information about the prove-
nance of the detected visitors. This information concerns the nodes that were visited
just prior to the current scanner. Its accuracy can be adjusted to an uncertainty
level compatible with plausible deniability. This means that it must be reasonable
to believe an individual who denies being in a given place even if the stochastic
technique points otherwise. However, when considering the aggregate view of all
the visits, the algorithm is able to provide enough accuracy to be a relevant source
of data for Human mobility studies.

4.2 Precedence Filters

By applying some of the previously mentioned (Subsection 2.2.3) general con-
structs of distributed systems to the mobility sensing scenario, Bluetooth scanners
can be treated as processes and device sightings as state transition events. Prece-
dence Filters are based upon this idea and provide accurate mobility information,
at a macroscopic level, without neglecting individual privacy. Precedence Filters
can be seen as a vector clock [33, 41] implementation, whose difference is the use
of Counting Bloom Filters [19, 43] (one for each node in the system) by the PFs
instead of integers (one per process) used by vector clocks.
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Figure 4.1: Diagram of relevant entities and data structures

In the decentralized model each Bluetooth node has its own PF and the nodes
communicate with each other upon sighting events in order to keep their filters
updated. On the other hand, in the centralized approach, each node possesses a
simple CBF, whose updates can only be made through communication with the
centralized server. The centralized server maintains an up to date copy of each
node’s CBF, i.e., a Precedence Filter.

Our work is based in the decentralized approach. Both our implementation and
the tests we ran are based upon it. So, from now on, we will be referring to the
decentralized version only, although it is not hard to draw conclusions that apply
to the centralized scenario as well. With that in mind, Precedence Filters work as
follows: supposing we have a set of Bluetooth scanners (nodes) S , each node n ∈ S

has a Precedence Filter PFn. That PF is in turn composed of a map of Counting

Bloom Filters, one for each node z ∈ S . We use notation PFz
n to refer to the CBF

for scanner z belonging to PFn, as depicted in Figure 4.1.

All CBFs are initially set to 0, use the same set of hash functions K and have
the same size M = m ∗ k (k is calculated with equation 2.3 and m is calculated with



38 CHAPTER 4. CAUSALITY TRACKING

equation 2.4). This ensures that the same device is correctly identified across the
several nodes (upon detection it will be mapped to the same indices). Precedence
Filters can also be seen as a matrix where the number of rows is equal to the number
of nodes in the system and the number of columns is equal to M.

Each time a node n detects a device d, its Precedence Filter PFn is updated
according to the following set of rules:

1. Using the set of hash functions K, the node n calculates the set of indices
Id. Id consists on the output from the K hash functions regarding device d,
Id =

⋃
f∈K f (d).

2. Node n sends the set of indices Id to all other nodes in S .

3. Each one of the z nodes belonging to Z (Z = S \{n}) replies with a set
of tuples RId

z . Rz contains the previously required Id along with the set of
values that each of the CBFs belonging to FPz had stored in those indices,
RId

z = {(i, PFz
z[i]) | ∀i ∈ Id}.

4. Upon the reception of the replies from the other nodes, n updates its own
indices Id on the CBFs relative to the other nodes with the maximum value
received, PFz

n[i] = max(RId
z [i]),∀z ∈ Z,∀i ∈ Id, where RId

z [i] = v → (i, v) ∈
RId

z .

5. Lastly, n updates the indices Id on its own CBF (PFn
n). For each index

i ∈ Id, PFn
n[i] = max(PF s

n[i]) + 1,∀s ∈ S . By adding 1 to the maximum
value stored in the other nodes, the current node “dominates” them in the
operation that returns the causality between the visited places. In other words,
this is the key to obtaining the order in which the places were visited.

This set of rules allows the precedence filters to record information about the
precedence of the locals visited by a device. Given a set of indices Id for device d

and any pair of scanners x and y, we say that the sighting of d in x precedes the
one in y, x y if:

x y⇐⇒ PFx[Id] < PFy[Id]

Where PFx[Id] < PFy[Id] stands for:
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∀i ∈ Id : PF x
x[i] < PFy

y[i]

It is easy to see the similarities with the vector clock description from Subsection
2.2.3.

Mobility traces, used in our model to describe the behavior of individuals,
characterize a total order between the places visited. This means that it is always
possible to establish an order between any two places in the mobility trace. How-
ever, being based upon the happens-before relation [38], Precedence Filters can
only represent partial orders. In this particular case, for each of the nodes/locations,
they can only “remember” the last time each device was sighted in a given place.
For instance, given the mobility trace MTP = {S 1, S 2, S 1, S 3, S 2, S 4, S 1} where
scanners S 1 and S 2 are visited more than once, in the best case scenario PFs can
obtain CTP = {S 3, S 2, S 4, S 1}, which we will refer as a causality trace. This is a
consequence of the irreflexivity and antisymmetry properties from the happens-
before relation. However, we can look at this as a feature of Precedence Filters,
a sort of automatic data degradation. It ensures that the length of the record of
sightings for any given device has an upper bound equal to the number of Bluetooth
scanners in the tracking system.

The level of privacy offered by Precedence Filters can be further customized by
adjusting the CBFs’ false positive ratio (Equation 2.1). The higher the ratio, the
greater the inaccuracy of the PFs. The occurrence of false positives in the CBFs
results in the appearance of fictitious transitions, i.e., the causal trace obtained
from querying the filters, contains transitions which are non-existent in the original
trace.

Both these properties are what allow individual users to plausibly deny the
fidelity of the data extracted from the Precedence Filters.

4.3 Metrics and Data Sets

To assess the performance of Precedence Filters we compared the set of transitions
obtained from querying the Precedence Filters with the set of transitions obtained
from the causality traces, which were themselves obtained from mobility traces.
For instance, given the mobility trace MTP = {S 1, S 2, S 2, S 1, S 3}, we calculate its



40 CHAPTER 4. CAUSALITY TRACKING

causality trace according to the happens-before relation (that only contains last
sighting in each place), CTP = {S 2, S 1, S 3}. Then we extract the set of transitions,
denoted as T , from that causality trace, T (CTp) = {(S 2, S 1), (S 2, S 3), (S 1, S 3)}.
Each transition is a two location tuple where the first location causally precedes
the second. In our scenario, that means the device was seen in the first location
before being sighted at the second location. This set of transitions is then finally
compared to a similar set of transitions obtained from the PFs.

Metrics

The performance of Precedence Filters is measured according to two different
metrics.

The individual metric which measures the false probability of statements like
the following - “ individual X visited location S 1 before visiting location S 2”. For
each user u, this is done by calculating the cardinality of the mutually exclusive set
between the transitions belonging to the causality trace (T (CTu)) and the transitions
extracted from the Precedence Filter (T (PFu)), according to Equation 4.1.

#((T (CTu)
⋃
T (PFu)) \ (T (CTu)

⋂
T (PFu)))

#(T (PFu))
(4.1)

Figure 4.2, which is the Venn diagram representation of Equation 4.1, shows that
the individual metric calculates the relative amount of incorrect information (in-
formation that is on the CTs and not on the PFs and vice-versa) returned by the
Precedence Filters. However, given the assumption that the exchange of informa-
tion between nodes is faster than people, our system never forgets information, i.e.,
T (CT ) ⊆ T (PF). Therefore, Equation 4.1 can be simplified, resulting in Equation
4.2 as depicted in Figure 4.3.

#(T (PFu) \ T (CTu))
#(T (PFu))

(4.2)

The global metric quantifies the inaccuracy of information regarding the relative
weight of specific transitions. This enables us to establish the relative importance
of each type of transition, i.e., to know the inherent error in statements like - “2%
of the transitions are from Restaurant Y to Cafe Z”. Assuming that, U represents
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Figure 4.2: Venn diagram representation of Equation 4.1
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Figure 4.3: Venn diagram representation of Equation 4.2
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the universe of all users, APF =
⊎

u∈U T (PFu) and ACT =
⊎

u∈U T (CTu) are
respectively the multiset union of all transitions in the Precedence Filters and in the
Causality Traces and thatA[t] is multiset composed only of the t transitions inA,
the global metric for each transition t ∈ A is calculated according to equation 4.3.
For each transition, we calculate the absolute difference between its relative weight
in the Precedence Filter and its relative weight in the actual Causality Traces. Then
we divide that number by its weight on the Precedence Filters. This gives us the
relative error of the relative weight of the transition.∣∣∣∣ #APF [t]

#APF
−

#ACT [t]
#ACT

∣∣∣∣
#APF[t]

(4.3)

Real Data set

To evaluate the PFs’ performance we used a real data set with information about
Bluetooth sightings by static nodes. This data set was taken from Leguay et al.’s
work [40]. To collect this information, the authors handed out a set of Bluetooth
enabled devices called iMotes to a group of users who carried them in their day-to-
day. Additionally, the authors installed Bluetooth scanners in several places with
the purpose of registering the sightings of iMotes. The dataset contains 18 static
nodes and 9244 distinct device IDs, 6439 of which have been sighted only once and
were therefore removed. This leaves us with 2805 devices, whose average mobility
trace size is approximately 4 and maximum size is 11. Figure 4.4(a) shows the
distribution of total and distinct sightings for all scanners. As expected, not all
places have the same popularity, some are more visited than others, thus the bigger
number of Bluetooth sightings.

Synthetic Data Set

Still in the context of evaluating the PF’s performance, we built a synthetic trace
generator. Our motivation came from the need to simulate scenarios with arbitrary
number of locations and users.

In a first approach, we tried fitting the statistic distribution of the real data set
using a negative exponential distribution. This would have allowed us to choose
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Figure 4.4: Number of total and distinct device sightings across the scanners

an arbitrary number of sensors, users and trace length. However, after evaluation
with Pearson’s Chi-Square test, it turned out to be a bad fitting. This might be
solvable by switching to a more complex distribution function. Instead we chose
to work with the empiric distribution. On this second approach, it was decided to
use the same number of sensors as the real data set, i.e. 18. This allowed us to
simulate the popularity of each sensor/place using the number of sightings from the
real data set as weights. The larger the number of sightings at a sensor, the bigger
its weight is, and the more likely it is to be chosen. Each node is defined by two
parameters, unique sightings and total sightings. We only made use of the latter.
The use of replication1 enabled us to create a simpler and less error prone simulator,
capable of producing as many users as we want, as well as mobility traces with
arbitrary length. The downside of not using the unique number of sightings is that
we are assuming that even though places have different weights, they are the same
for everyone, i.e. everyone has the same probability of choosing a given place,
everyone is an “average” person.

Figure 4.4(b) shows the synthetic distribution obtained using the approach
mentioned above. As expected the results are very similar but not a perfect match.
There is a correlation between the number of total and unique sightings which stems
from the use of the “average” person model. Also, the curve from the synthetic

1In statistics, replication is the repetition of an experiment or observation in the same or similar
conditions.
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data set is smoother, it does not suffer from the “noise” inherent to raw real data.

4.4 Evaluation

Using the metrics and data sets previously mentioned, we tested the Precedence
Filter’s inaccuracy across several scenarios, varying both the number of devices
and the length of the mobility traces. Furthermore, each of the scenarios was tested
with multiple different settings for the Counting Bloom Filter’s maximum false
positive probability (see Equation 2.1). A good performance is reflected through
high inaccuracy values for individual information together with low values for
global inaccuracy.

As can be seen in Figures 4.5, 4.6, 4.7 and 4.8, by increasing the false positive
probability of CBFs, inaccuracy increases as well. Inaccuracy is manifested via the
occurrence of fake (visible on PFs only) transitions, i.e., fictitious transitions. As
the false probability increases, so does the percentage of fake transitions. This is
easily explainable. In Bloom Filters, false positives denote elements wrongfully
considered as belonging to the set. Given that in PFs Bloom Filters are used to
record device sightings, the occurrence of false positives generates fake device
sightings, which in turn give origin to fictitious transitions.

As previously explained, both data sets use 18 scanning nodes, what differs is
the number of devices and the length of the mobility traces. To describe the parame-
ters of each scenario, the following notation is used in the captions: Synthetic/Real-
[number of devices]-[maximum trace length]-[average trace length].
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Figure 4.5: Comparison between real and synthetic data set, with same parameters
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Figure 4.5 shows the comparison between a synthetic data set and the real
data set. This synthetic data set will serve as the baseline for all tests because it
simulates both the number of devices and trace length found in the real data set.
Our technique performs better with data from the synthetic data set (Figure 4.5(a))
than it does with data from the real one (Figure 4.5(b)). This is a consequence of
the average person simplification we did for the synthetic data sets. Figure 4.4
shows that while the number of total sightings is approximately equal in both data
sets, the number of unique sightings is usually bigger in synthetic data set. This
means that the real data set has a greater number of repeated sightings by user,
which in turn means that the average length of the causality traces is smaller, i.e.,
even if both data sets have the same number of users and similar sized mobility
traces, the causality traces in the real data set are smaller, explaining the worse
performance of our technique.

For both these data sets, there is a point where the individual accuracy is greater
than the global one, however, when the individual inaccuracy is approximately
50%, the global inaccuracy is higher than what is desirable. This is a result of
the low number of individuals and small mobility trace sizes of both data sets, as
supported by Figures 4.6, 4.7 and 4.8.
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Figure 4.6: Synthetic data sets with increasing number of devices

Maintaining the length of mobility traces constant, Figure 4.6 shows that
Precedence Filter’s global inaccuracy drops by increasing the number of devices to
10 000, and then again, although little, by increasing that number to 100 000. In
both scenarios, for a false positive probability of 0.8, PFs provide global inaccuracy
below 20% while ensuring that in average, 50% of the information about any given
individual is incorrect.
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Figure 4.7: Synthetic data sets with increasing trace sizes

Keeping the same number of devices, while increasing the length of the mobility
traces also improves the Precedence Filter’s global accuracy, as depicted in Figure
4.7. For instance, Figure 4.7(c) shows that by increasing the average and maximum
values for mobility traces respectively to 30 and 100, our technique offers a global
error of about 15%, while providing 50% of inaccuracy for individual information.
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Figure 4.8: Synthetic data sets with increasing number of devices and trace sizes

Increasing both the number of devices and the length of the mobility traces
yields the better results, which is not surprising given both the previous results.

In a scenario with 100 000 users whose maximum and average mobility trace
sizes are respectively 100 and 30, depicted in Figure b4.8(c), our technique has a
global inaccuracy a little higher than 10% while providing an individual inaccuracy
of 50%. This means that, on average, half of the information about individual
transitions is wrong, which we consider to be a value compatible with plausible
deniability. Recapitulating, our technique registers information user transitions.
Each user has a set of transitions, and the individual metric measures, in average, the
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percentage of those which are fictitious/false. The global metric, on the other hand,
returns the average error regarding the information about the popularity of specific
transitions/paths. Increasing the false positive probability of CBFs increases the
total number of occurrences of transitions, which is why the individual accuracy
drops; yet the relative weight of each transition (ratio) remains more stable, thus
the behavior of the global inaccuracy lines.

4.5 Summary

Information about the flows of people at a macroscopic level can be used as
a decision support tool in several scenarios as it allows, to a certain level, the
understanding of people’s behavior as a whole. It is therefore a very useful type
of information. However, to acquire this type of macroscopic information, one
must collect individual information (which in terms of privacy can be dangerous)
about each person. In light of these facts, we introduced and benchmarked an
new technique called Precedence Filters which provides accurate information
at a macroscopic level without risking the individual privacy of each user. It
accomplishes this by ensuring that the information regarding individuals can be
plausibly denied.

Being based upon Vector Clocks and Counting Bloom Filters, this technique is
a compelling argument in proving that stochastic summarizing techniques can be a
viable building tool for privacy preserving scenarios.
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5
Conclusion

In this dissertation, we presented two Bluetooth tracking scenarios where the use
of stochastic summarizing techniques ensures the privacy of the users.

In the first scenario, we explored the use of both Hash Sketches and Bloom
Filters as privacy preserving solutions for gate counting scenarios. It was shown
that, as a result of their ability to ignore repeated sightings and to merge different
counters, these techniques are able to provide accurate values for the number
of unique sightings across one or several gate counters. Moreover, we analyzed
the performance of each technique regarding their size, accuracy and aggregation
capabilities and had a little discussion about some gate counting scenarios where
each technique might be a good fit. Altogether, these techniques proved to be a
good solution for gate counting scenarios, preserving the privacy of the users (no
need to store unique identifiers). All while being much more efficient (one order of
magnitude in some cases) in terms of space than the naive approach (plain storage
of MAC addresses).

For the second scenario, we introduced a new technique, Precedence Filters.
This technique allowed us to gather accurate information about the visiting patterns
of groups of users all while ensuring that the information kept about individuals
has a level of uncertainty compatible with plausible deniability. This affirmation is
confirmed by the results obtained from our tests as they show that depending on
the number of users and places visited (trace size) it is possible to have individual
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information uncertainty of around 50% while maintaining a good enough accuracy
< 15% for aggregate information regarding the visiting patterns of all users as a
whole.

Even though both our scenarios are Bluetooth based, it must be noted that the
algorithms and data structures presented in this dissertation can also be applied
with other technologies, provided they have unique identifiers, are embedded in
personal devices and discoverable by nearby scanners.

It must also be noted that there are many other scenarios, using location based
information, that have different requirements. For those scenarios there might
be more suitable stochastic techniques than the ones we have presented. Our
Bluetooth scenarios can be seen simply as “proofs of concept”, which demonstrate
that stochastic summarizing techniques are suitable for large scale sensing scenarios
where privacy is paramount and must be preserved. Nevertheless, what we must
emphasize is that, there is no “silver bullet” regarding privacy preserving techniques.
Privacy is always obtained by sacrificing some information, as shown by the
techniques discussed in this dissertation.

Future Work

Concerning Precedence Filters, there are two main issues that should be addressed.
The first is related to the assumption stating there are no communication failures

in the system. This is a strong a requirement, hard to fulfill specially in large scale
distributed scenarios. In order to loosen our requirements, we could implement a
new benchmark which is able to test the occurrence of network partitions. This
would allow us to test how Precedence Filters cope with such scenarios. Given
that PFs are based upon Vector Clocks, it should be possible to leverage their
capabilities to detect the occurrence of conflicts (deriving from the partition), and
then the simplest solution would be to discard all the related information.

The other issue pertains the data sets. All the test we ran were based upon a
single data set, so it would be useful to test PFs using other data sets taken from
real world scenarios. Also, it would helpful to find a statistical distribution that fits
the data set we already have, thus allowing the synthetic creation of scenarios with
an arbitrary number of scanning nodes.
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