
November 2009

Universidade do Minho
Escola de Engenharia

Mario Filipe de Melo Medeiros Fernandes Pinhal

An Integrated Environment
for Software Assessments

Master of Science in Informatics Dissertation

Supervisors:

Dr. ir. Joost Visser
The Software Improvement Group
Amsterdam, The Netherlands

Doutor Jose Bernardo Barros
Departamento de Informatica, Universidade do Minho
Braga, Portugal

November 2009

Universidade do Minho
Escola de Engenharia

Mario Filipe de Melo Medeiros Fernandes Pinhal

An Integrated Environment
for Software Assessments

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

Universidade do Minho
Departamento de Informática

Master of Science in Informatics Dissertation

November 6, 2009

An Integrated Environment

for Software Assessments

Mário Filipe de Melo Medeiros Fernandes Pinhal
PG 13957

Supervisors:

Dr. ir. Joost Visser
The Software Improvement Group
Amsterdam, The Netherlands

Doutor José Bernardo Barros
Departamento de Informática, Universidade do Minho
Braga, Portugal

This thesis was written at the Software Improvement Group (Amsterdam, The
Netherlands) with additional economic support of an Erasmus Student Mobility
for Placements1 grant in order to obtain the MSc. Degree in Informatics at Uni-
versidade do Minho.

1see http://ec.europa.eu/education/erasmus/doc894_en.htm

2

http://ec.europa.eu/education/erasmus/doc894_en.htm

Acknowlegments

This dissertation would not have been a real fulfillment without the support and
cooperation of all of those that directly or indirectly contributed to it. I owe
everlasting gratefulness to many people who pleasantly involved themselves in
helping me undertake this dissertation.

I am heartily thankful to my supervisor at SIG, Joost Visser, whose encour-
agement, guidance and support from the beginning to the final stages of my work,
enabled me to keep on the right track and focused on the real issues of this thesis.
My recognition also goes to José Bernardo Barros, from all the inspiration and
clearness of mind, not only during this thesis work, but on all the many classes
attended to the completion of my degree at Universidade do Minho.

In my daily work at Software Improvement Group (SIG), I was lucky to write
my thesis in such an inspiring environment, cultivated by all those individuals from
SIG staff. My words of thankfulness to all of SIG employees that happily engaged
in the discussions, meetings and in the validation experiment, with the ones with
whom I shared nice chats during my daily train trips to and from work or during
lunch preparation at SIG. I couldn’t have made it without all of you. In special:
to Cora’s by her support and laughs, to José Pedro Correia from helping me since
my first days at SIG, always being available to brainstorm and discuss, to Tiago
Alves from his input and revisions on this thesis report, and to Rob van der Leek
and Wander Grevink for the technical support and the patience for sitting down
with me to discuss and address some of the problems that this thesis focuses in.
Also to Leo Makkinje and Gerard Kok, for their patience, availability and mood
with which they always attended to my requests.

My recognition also to the University of Minho and to the Informatics De-
partment, for giving me the best conditions to pursue my studies, to the several
professors that will always remain an inspiration to me, and to the GRI for helping
me in pursuing such path with my studies abroad in the Netherlands.

Beyond Informatics and this thesis, I am most grateful to my parents not only
for supporting me and providing me the means for my education, but also for all
the care and love, during my whole life and academic path. My warm thanks to my
friends Milena Tsvetkova, Antionetta Stefanova and Emma Martinez for hosting
me while moving from place to place, always receiving me with “open warms” and
a smile.

My work would definitely not have been possible without the moral support,
encouragement and care of Aliki Tzatha. She was more than a partner and com-
panion, a true friend, inspiring me in so many ways every day that passes.

3

Finally, I would like to thank everybody else, friends and colleagues, who were
important to the successful realization of this thesis, as well as expressing my
apology that I could not mention personally one by one.

4

Abstract

The SIG is a consultancy firm offering assessments of quality and maintainability
of software to its clients. To execute such assessments, SIG performs static source
code analysis over the software systems of its clients. For this purpose, SIG uses a
set of in-house developed tools to extract facts and metrics, thus obtaining insight
into these software systems.

Due to the company’s fast growth and to the increase of the volume and
complexity of the company’s software, SIG seeks to further professionalise and
streamline the delivery of its services by standardising its software analysis pro-
cess. Rather then simply having a collection of tools, SIG’s aim was to integrate
them into an encompassing system – an Integrated Environment, through the de-
velopment of a Graphical User Interface (GUI). By doing so, the tools can be
aligned more closely with the current Standard Operating Procedures (SOP) fol-
lowed during the software assessments, contributing to the standardisation and
improvement in the coherence, consistency and effectiveness of the analysis pro-
cess.

In this thesis, the tools of SIG and its activities are studied, in order to obtain
knowledge about the system and draw the requirements for our integration task.
Some effort was first spent to automate the whole process of software analysis,
giving particular attention to the configuration phase. A tool was created in order
to assist the inspection of software system archives and classify their contents,
in order to define the scope of the analysis. We automatically detected the used
technologies, separating test code from source code, verifying also the presence
of files which are not relevant for the analysis process (such as generated source
code).

To find a GUI technology to fit our requirements, we defined a list of criteria
and performed a comparative research study over currently available Desktop Ap-
plication and Rich Internet Application GUI technologies. We decided to use the
Apache Wicket framework to build our GUI application.

The research carried out and the introduction of the developed Integrated
Environment, proved to be valuable, automating and fully supporting the software
analysis process and the assessments conducted by SIG. Furthermore, this work
also helped to support the Software Certification service at SIG and the Monitoring
of Open Source Systems project and subsequent related research work.

Keywords Integrated Systems, Tool Automation, Tool Integration, Graphical
User Interfaces, Patterns Detection, Interaction Design, Software Analysis

i

CHAPTER 0. ABSTRACT

ii

Abstracto

A empresa Software Improvement Group (SIG) realiza avaliações à qualidade e
manutenção de sistemas de software dos seus clientes, recorrendo à análise estática
do código fonte desses mesmos sistemas de software. Para tal, a SIG desenvolve
e mantém um conjunto de ferramentas para a extracção de factos e métricas, no
sentido de obter mais detalhe e compreensão nas peças de software analisadas.

Devido ao rápido crescimento da empresa e ao aumento do volume e com-
plexidade do software produzido pela empresa, a SIG procura profissionalizar a
prestação dos seus serviços, normalizando o processo de análise de software. Em
vez de dispor de apenas uma colecção de ferramentas, a SIG pretende integrar
as suas ferramentas num sistema único - um Ambiente Integrado, através do de-
senvolvimento de uma Interface Gráfica com os seus utilizadores. Assim sendo,
as ferramentas são alinhadas com os Procedimentos Operacionais Padrão segui-
dos durante as avaliações de software, contribuindo assim para a normalização e
aumento da coerência, consistência e eficácia do processo de análise.

Nesta dissertação, as ferramentas da SIG e as suas actividades foram estudadas,
para se obter conhecimento acerca do sistema e definir requisitos para a integração
do sistema. Os primeiros esforços foram primeiro gastos em automatizar todo o
processo de análise de software, dando particular atenção à fase de configuração.
Uma ferramenta foi criada para assistir à inspecção de arquivos de sistemas de
software e classificar os seus conteúdos, de forma a definir o alcance e configuração
do processo de análise. Foram automaticamente detectadas as tecnologias usadas,
separando código fonte teste de código fonte de produção, e verificada também a
presença de ficheiros não relevantes (como por exemplo código fonte gerado).

Para encontrar uma tecnologia que cumprisse os nossos requisitos, definimos
uma lista de critérios e realizamos um estudo comparativo sobre tecnologias para
desenvolvimento de Aplicações Desktop e Web. Decidimos usar a framework
Apache Wicket para desenvolver a nossa Interface Gráfica com o utilizador.

A investigação conduzida e a introdução do Ambiente Integrado desenvolvido,
automatizaram e assistiram ao melhoramento do processo de análise de software
conduzido a par das avaliaçoes conduzidas pela SIG. Este trabalho também con-
tribuiu como suporte para um novo serviço de certificação de software assim como
em projectos investigação tais como o de Monitorização de Sistemas Open Source.

Palavras Chave: Integração de Sistemas, Automatização de Ferramentas, Inte-
gração de Ferramentas, Interfaces Gráficos com o Utilizador, Detecção de Padrões,
Design de Interacção, Análise de Software

iii

CHAPTER 0. ABSTRACT

iv

Contents

Abstract i

1 Introduction 1
1.1 The Software Improvement Group 1
1.2 Motivation . 2
1.3 Objectives and Approach . 3
1.4 Structure of this dissertation . 4

2 Elicitation 5
2.1 Elicitation techniques . 5
2.2 Sources . 6
2.3 Services delivered by SIG . 6

2.3.1 Software Risk Assessment 6
2.3.2 Software Monitor and Software Portfolio Monitor 7
2.3.3 Software Product Certification 8

2.4 How does SIG perform Software Analysis 10
2.5 Which tools and assets support SIG service delivery 11

2.5.1 Software Analysis Toolkit (SAT) 11
2.5.2 Software Monitor . 12

2.6 Requirements . 13
2.6.1 Standardisation . 13
2.6.2 Traceability and Repeatability 13
2.6.3 Automation . 13
2.6.4 Consistency . 13
2.6.5 Integration . 14

2.7 Addressing the requirements . 14

3 Related Work 17
3.1 At the Software Improvement Group 17
3.2 Tool Integration and Tool Automation 18
3.3 Workflow and Interaction Design 18
3.4 Rich Internet Applications vs. Desktop Applications 19

4 Scope Configuration 21
4.1 Detection of Technologies . 24
4.2 Generated source code and pattern-based files classification 24
4.3 Scope Definition Generation and Findings Reports 26
4.4 Scope validation . 26

v

CONTENTS

4.5 Conclusions . 28

5 Graphical User Interface 31
5.1 Interaction design . 31
5.2 Technology Selection . 32

5.2.1 Criteria . 32
5.2.2 Technologies . 33
5.2.3 Findings . 33

5.3 Implementation . 35
5.3.1 Wicket Way - Pages, Panels and Components 35
5.3.2 Architecture . 35
5.3.3 Tooling and Setup . 36

5.4 Result . 36

6 Experimental Validation 41
6.1 Experimental Design . 41
6.2 Results . 43
6.3 Discussion . 44

6.3.1 Threats to validity . 44

7 Conclusions 45
7.1 Future Work . 47

Acronyms 49

Bibliography 51

vi

List of Figures

1.1 Approach . 3

2.1 Software Risk Assessment Methodology 7
2.2 Software Monitor - Delivery of reports 8
2.3 Software Monitor - Metrics table page 9
2.4 Software Monitor - Dashboard page (main page) 9
2.5 The SRA process: the maintainability aspect 11
2.6 System properties and quality sub-characteristics 11
2.7 Source code analysis at SIG . 12
2.8 System Integration . 14

4.1 An example of a scope configuration file 22
4.2 The old system overview report . 23
4.3 The generated code report . 25
4.4 The improved system overview report 27
4.5 Scope Generator classification algorithm 28
4.6 Scope Generator tool usage help screen 29

5.1 Interaction Design stages . 32
5.2 GUI elements hierarchy with Wicket 35
5.3 GUI - Start screen . 37
5.4 GUI - Scope Configuration screen 38
5.5 GUI - Scope Configuration screen - inspecting a file 39
5.6 GUI - Analysis screen . 40

vii

LIST OF FIGURES

viii

List of Tables

5.1 Researched technologies comparison 34

6.1 The two objects of our experiment 42
6.2 Results of 1st round: System X . 43
6.3 Results of 2nd round: System Y 43

ix

LIST OF TABLES

x

Chapter 1

Introduction

In this chapter we start by introducing the Software Improvement Group – the
company at which this dissertation was conducted – and its activities (1.1). We
follow on by presenting our motivation (1.2), our objectives and approach (1.3),
and we conclude with a section about the structure of this dissertation (1.4).

1.1 The Software Improvement Group

The Software Improvement Group (SIG) is a consultancy firm which focuses its
business and services on performing assessments of quality and maintainability on
its customers’ software. SIG started as a spin-off of the Centrum voor Wiskunde &
Informatica1 (the Dutch National Research Institute for Mathematics and Com-
puter Science, commonly known as CWI). In the late 1990s, the CWI was conduct-
ing research into how to map out software quality using source code analyses. One
of CWI’s research partners (ABN Amro) was interested in putting the research
results into practice and SIG was then founded.

SIG offers IT management consultancy services to its customers where source
code analysis plays a major role. These services are delivered in two basic forms:
Software Risk Assessment (SRA) and Software Monitor (SM). In an SRA, a single
snapshot of a system is investigated in-depth. In SM, the evolution of the quality
of a software system is tracked through time.

To deliver these services, the consultants of SIG carry out software assess-
ment activities, where information is gathered from multiple sources: source code,
documentation, interviews, history of benchmark repository, among others. This
information is subsequently combined and analysed in order to arrive at quality
appraisals and strategic recommendations which are delivered to the client.

Furthermore, SIG has been working in order to expand its range of services.
During the time this thesis is written, a new service was launched: Software Prod-
uct Certification (SPC) – with the goal of certifying the quality of software systems.
SIG also maintains a benchmark of software quality metrics and appraisals, pro-
viding a frame of reference for evaluating software quality, allowing comparison

1For more information, consult http://www.cwi.nl/

1

http://www.cwi.nl/

CHAPTER 1. INTRODUCTION

with peers in industry, technology and architecture.
On an annual basis, the SIG analyses over 50 software systems for corporate

and institutional clients.

1.2 Motivation

SIG is constantly aiming to further professionalise and streamline the delivery of
its services. We have analysed known bottlenecks and elaborated them into a list
of potential areas for improvement. The list is as follows:

Lack of uniformity in generation of the deliverables The current SAT is
currently composed by several tools. Although there are periodic stable releases
of these tools, the developers – technical consultants – still have to compile and
install them locally. This is labour intensive and error prone, sometimes resulting
in incoherent generation of deliverables and difficult trace of such incoherences.

Lack of Traceability and Repeatability Traceability is difficult to ensure in
what concerns the deliverables of the system. Different technical analysts follow
different procedures, sometimes leading to incomplete or inconsistent deliverables.
This means that although there is a record that a certain deliverable was created
and sent to the client, there is no insurance that the reproduction of its generation
will produce the same exact deliverable.

Lack of data consolidation among deliverables There is no current data
consolidation among deliverables. This happens due to the above mentioned
points, implying problematic validation of SIG’s Quality Model, and also prob-
lematic comparison across systems with the same set of technologies and charac-
teristics of SIG’s Benchmark.

Rework A lot of rework is done at the SIG, mostly in inspecting the code base
of a software system and in the refinement of its scope configuration (see Chapter
4). There is no tool that supports the creation of this scope configuration before
executing the analysis process, and there is also no form to validate such configu-
ration. Most of the time, this implies that the analysis is performed several times
until the desired configuration is obtained. This is a very inefficient procedure,
leading to a considerable waste of time and resources.

Learning effort and cost There is a big learning effort in what concerns the
Software Analysis procedure, its toolkit and the current associated Standard Op-
erating Procedures (SOPs). New employees that arrive at the SIG have access to
documentation about the followed SOPs and about the SAT that is used to run
the analyses, but cannot easily understand the workflow of the whole process and
the use of the diverse tools.

Errors / Incompleteness Due to the lack of support of configuration, the scope
of an analysis is not always correct. Some files that should be excluded aren’t,

2

1.3. OBJECTIVES AND APPROACH

generated code is not identified and so analysed as production code, among other
situations.

SIG is seeking to integrate its various tools it has been developing into an en-
compassing system. Rather then simply having a collection of tools, SIG seeks
to provide its various types of users with an Integrated Environment, in order to
support the software quality and risk assessments conducted by SIG employees
and provide them an easy, clear and intuitive interface to the current functionality
of SIG’s collection of tools.

1.3 Objectives and Approach

Figure 1.1: Approach

The main objective of this project is to reduce the above presented problems
through the creation of an Integrated Assessments Environment. Our approach is
described by figure 1.1.

First, we perform an elicitation research study over SIG activities. We use
several elicitation techniques and we gather the necessary information about SIG
services, how these services are delivered and what tooling supports their delivery.
This allows us to obtain knowledge, context and comprehension, necessary for
analysing the current situation and related problems and bottlenecks reported by
SIG staff.

Additionally, we take also in consideration SIG’s objectives and users prefer-
ences and wishes. We then define a concrete list of requirements and objectives for
the development of our integrated environment. We approach these requirements
and work first on improving tool support, in order to automate the full software
analysis procedure performed at SIG.

Having automated this procedure, we do interaction design and we perform
a comparative research study on currently available GUI technologies in order to

3

CHAPTER 1. INTRODUCTION

select the technology to build our Integrated Environment. Finally, we build a
GUI that integrates the tooling available at SIG, achieving our goal of producing
an Integrated Assessment Environment.

At each stage, several feedback meetings took place as validation from the final
users of the Integrated Environment (IE) .

1.4 Structure of this dissertation

The structure of this thesis goes as follows:

Elicitation (Chapter 2) We present how we acquire and elicit the necessary
information about SIG, its services and activities and we also define the require-
ments for our Integrated Environment (IE).

Related Work (Chapter 3) We present related work on Integrated Environ-
ments and Scientific Workflow areas.

Configuration (Chapter 4) We present a tool that we built in order to auto-
mate the workflow and assist SIG employees in the configuration of an analyses.

Graphical User Interface (Chapter 5) We document the design, the selec-
tion of technology and the architecture of the implemented GUI.

Validation (Chapter 6) In this chapter, we document the design and execution
of a small validation experiment to evaluate the usefulness of the configuration
procedure using the GUI.

Conclusions (Chapter 7) Finally we present our conclusions, a small discus-
sion section and future work directions.

4

Chapter 2

Elicitation

To be able to obtain complete understanding about the system to be integrated,
we conducted a research study on SIG’s activities, provided services and set of
tools and technologies, in order to gather a list of requirements for our IE.

This chapter first describes how the information was acquired, by describing
the techniques (2.1) and used sources (2.2) that we used in our elicitation research.
We follow on presenting and describing SIG services (2.3), the software analysis
performed at SIG (2.4) and the tools that exist to support the delivery (2.5) of
these services. We then formulate a list of requirements that guided us in our work
and research for the rest of this thesis (2.6). Finally we describe how we addressed
these requirements and which solutions we found to fulfil them (2.7).

2.1 Elicitation techniques

To understand what the different services provided by SIG are and how these are
conducted, we used several elicitation techniques. We used the same techniques
as in [12] – interviewing, apprenticing and document archæology. In addition,
we used a Business Process Modelling Notation (BPMN) model to visualise the
SRA process, and we performed Source Code inspection as well, to be able to
understand the direct connection between the diverse tools of the SAT.

In Document Archæology the elicitor tries to get insight in the process on
the basis of existing documentation[12]. In the case of the SIG, these were SOP
documents, project specific documents such as deliverables, notes, findings, and
as well general documents as templates, questionnaires, procedures, etc.

Apprenticing refers to the action of learning the work as it is done by the
expert[12]. The apprentice gets a detailed view of the process by observing it while
it is being done. It is not the purpose of the apprentice to learn the job so one can
execute it, but it offers the most concrete insight in a process. Disadvantages of this
technique are the concrete view of the process and thus the lack of generalisation. It
is hard for the apprentice to judge how representative the project is for all projects
in the organisation. In comparison to other techniques, apprenticing usually takes
more time[12].

5

CHAPTER 2. ELICITATION

Interviews are quick and easy to set up. They provide the elicitor with a good
entry point for the process but it are particularly hard to get a full and profound
insight. Interviewing has also some disadvantages. The interviewee will present
an abstract depiction of the subject to simplify his or her talk. The fact that this
happens in a verbal way, increases the amount of misunderstandings. Furthermore
an interviewee can forget things or can be biassed. Although we used interviews,
we tried to cover these disadvantages of biassed interviewees and abstractions by
asking for examples. Furthermore we used sample documents from earlier projects
to track and check the interviews.

By performing Source Code Inspection we are able to verify the tool con-
nections and to check which data models are used and shared by these tools.
Furthermore, it gives us more insight about how things are actually done, rather
than the more abstract explanation provided by documents or by the explanation
given in interviews.

2.2 Sources

In our elicitation research, we used several sources. We performed several inter-
views and sessions with different SIG’s employees about SIG’s services, the SAT
and the associated SOPs. We attended a session with a client, to get concrete
example and further contextualise the information that was being collected and
elicited.

We sat down and apprenticed several details about the software analysis and
about the use of the related SAT tools among other development aspects. Further-
more, we also inspected the source code of the tools that compose the SAT. These
gave us even more insight into the relation between the tools, the data models
behind them, and their specifications and limitations.

Aside from the previous described sources, we used several internal SIG doc-
uments such as project reports, contracts with clients, session templates, SOP
guidelines documents, and also scientific published articles (such as [6], [8] and
[4]).

2.3 Services delivered by SIG

2.3.1 Software Risk Assessment

A Software Risk Assessment is an independent investigation of the technical quality
and risks of a software system, based among others on automated source code
analysis. The main goal is to provide the client with concrete recommendations
to minimise the risks in the maintainability of their system(s).

The overall approach of SIG to the SRA is depicted in Figure 2.1. In addition
to the data derived from the source code analysis (section 2.4), interviews are
conducted with various kinds of stakeholders in the system to obtain technical and
strategic information. This includes business goals, design information, process
information, history, external architecture (relation to other systems), operational
indicators (how many users, transactions, problems), etc.

6

2.3. SERVICES DELIVERED BY SIG

Figure 2.1: Software Risk Assessment Methodology

If reliable documentation is available, a global or more profound review of this
documentation is performed to obtain information about the (intended) archi-
tecture, functional and technical design, etc. Also, data about previous systems
analysed by SIG is collected and recorded in a benchmark repository. This infor-
mation is used to compare the system currently under study to similar systems.

The SRA is finalised in two separate parts. First, a final presentation is given
to the client. In this presentation the findings and conclusions are presented. Dur-
ing this presentation there is room for questions and discussion. After the final
presentation a formal report is sent to the client. In this report the relevant find-
ings, results, interpretation and risks of migration identified will be written down.
In the management summary of the report the most important risks, conclusions
and recommendations are presented.

2.3.2 Software Monitor and Software Portfolio Monitor

The Software Monitor (SM)/Software Portfolio Monitor (SPM) is a service of SIG
that gives insight about the technical quality of a software system code base by
measuring the system’s software quality on a regular basis. This enables organisa-
tions to manage their software development, processes and software maintenance
based on facts: Fact Based ICT Management.

As shown in Figure 2.2, the SM service offers relevant information on different
management levels. The client decides who will receive which reports. The SM is
being implemented in order to attain various objectives. In any case there is the
need for transparency of technical quality in software systems. Below are some of
the situations where SIG’s SM is typically used:

• In the continuous assessment of the performance of (external) software de-

7

CHAPTER 2. ELICITATION

Figure 2.2: Software Monitor - Delivery of reports

velopment teams.
• As part of Service Level Agreements.
• To guarantee quality or mitigate risks of large strategic software development

projects.
• The assessment of a portfolio of software systems.
• As a basis for certification of systems.

The SM enables organisations to monitor technical aspects of their software.
It is possible to monitor size, complexity, architectural issues, coding standards
and technical quality specifications. Generally there are two different categories
of measurements (also called metrics):

• Informative measurements: used to get a clear picture of the system and
track the development of the system over time. An example of such mea-
surement are for instance the number of source code lines and the number
of modified source code lines per week/month.
• Quality measurements: used to obtain detail on the quality of a system and

the parts that compose it. This second category of metrics does have a
maximum or optimal value. For these metrics, SIG might determine desir-
able, optimal or maximum values. Duplication is an example of such quality
measurement.

All measurements are taken using automated source code analyses (section
2.4). The result of the measurements is shown on different abstraction levels (for
example; system level, package level or file level). This is shown in Figure 2.3.

Unique to the SM is that it is possible to follow the features of the application
over time (see figure 2.4). The development of quality aspects during a period of
time provides an overview of where improvements are being made. It also becomes
clear the result of the work that was carried out during a certain period of time.

2.3.3 Software Product Certification

The purpose of a certificate is to give written assurance that the product has been
evaluated by a qualified party in a neutral and repeatable way, and has thereby

8

2.3. SERVICES DELIVERED BY SIG

Figure 2.3: Software Monitor - Metrics table page

Figure 2.4: Software Monitor - Dashboard page (main page)

9

CHAPTER 2. ELICITATION

been shown to meet relevant evaluation criteria. A certificate is an evidence of
quality, gives confidence, and provides an objective basis for agreement and com-
parison. In collaboration with TÜV Informationstechnik (TÜViT), SIG offers the
certification of the maintainability of software products as defined by the interna-
tional standard ISO/IEC 9126.

To determine eligibility for certification, the maintainability of a software prod-
uct is measured by automated source code analysis. The measurement model is
based on ISO/IEC 9126, draws on extensive worldwide scientific research and has
been developed and validated within SIG’s assessment practice (see section 2.4
below).

The evaluation process starts by the submission of the source code of the
software product and a high-level product description to the evaluation laboratory
of SIG. These are evaluated by SIG using automated source code analysis and
document review. Products are rated on a scale of 1 to 5 stars, and only products
with 3 stars or more are eligible for certification. Based on the measurements
and ratings, SIG prepares an evaluation report which is supplied to the TÜViT
certification body. Based on the report, TÜViT awards a certificate to the software
product and assigns the quality mark “TÜViT Trusted Product Maintainability”.

2.4 How does SIG perform Software Analysis

To perform software analysis, all source code files of a system are submitted to
static source code analysis to extract metrics, dependency and duplication infor-
mation, coding standard violations, and other facts. Source code artifacts include
not only the program files but also test code, configuration files, structured docu-
mentation, data models, etc.

For fact collection from system source code and other source artifacts, a SIG
analyst will deploy the SAT for software analysis. If necessary, this toolkit will be
extended or adapted by the developers team.

The software is also checked against common engineering practices, like de-
scribed in the regulations of the Software Engineering Body of Knowledge[Web 23].
Depending on the technology used, SIG can furthermore check coding standards
on a more detailed level.

SIG has developed a model for software product quality, which provides an op-
erationalisation of the ISO/IEC 9126 International Standard for Software Product
Quality [8]. SIG’s software product quality model is not the only instrument
for arriving at quality judgements in the SRA process. The model is intended
to be a semi-structured core of the entire process. It does not cover the entire
process, and it does not intend to discharge the SRA consultant and the SRA
analyst from carrying out a conscientious and creative assessment. Part 1 of the
ISO/IEC 9126 standard contains a model that dissects the notion of software
product quality into six characteristics, which are further subdivided into a total
of 27 sub-characteristics. The SRAs carried out by SIG focus on technical rather
than functional quality of software systems. This means that only a subset of the
software quality sub-characteristics of the ISO model is relevant. Figure 2.5 shows
this breakdown.

10

2.5. WHICH TOOLS AND ASSETS SUPPORT SIG SERVICE DELIVERY

To make the ISO/IEC 9126 quality model operational, a mapping can be es-
tablished from source code observations to system properties, and finally to quality
sub-characteristics. This is shown in Figure 2.6.

Figure 2.5: The SRA process focuses on the technical aspect of the software
product, in particular on its maintainability.

 15/26

© 2009 Software Improvement Group

SIG Evaluation Guideline for Software Product Quality • Version 1.0

DRAFT

Vo
lu

m
e

D
up

lic
at

io
n

U
ni

t s
iz

e

U
ni

t c
om

pl
ex

it
y

U
ni

t i
nt

er
fa

ci
ng

M
od

ul
e

co
up

lin
g

Analyzability ! ! !

Changeability ! ! !
Stability ! !
Testability ! !

Table 1: Mapping of system properties to quality sub-characteristics.

In this table, a cross (!) indicates a major influence of the score of a property on the
score of a quality sub-characteristic.

Technical quality

The technical quality of a software product is determined by its Maintainability as de-
fined by ISO/IEC 9126.

To determine the overall score for technical quality, the average is taken of the score of
the various quality sub-characteristics.

Documentation requirements

The evaluator shall confirm the presence of a description of the system and the high-
level components of the system and its satisfaction of the following minimal properties:

• The description identifies the system boundaries and its overall function.
• The description identifies all top-level components of the system.
• Any software artefact within the evaluation scope belongs to exactly one top-

level component.
• The description identifies the role of each component in the system.
• The number and size of the components is appropriate to facilitate mainte-

nance of the system.

To test whether these properties are satisfied, the evaluator reviews the description
and compares it with the artefacts within the evaluation scope.

Eligibility for certification

As specified in the evaluation criteria [SIG 2009b], to be eligible for certification the
evaluation results for a software product shall satisfy a number of minimal conditions:

• The rating at the level of the main quality characteristics of maintainability is 3
stars or more.

Figure 2.6: Relationship between system properties and a quality
sub-characteristics

2.5 Which tools and assets support SIG service
delivery

2.5.1 Software Analysis Toolkit (SAT)

The Software Analysis Toolkit is the name attributed to set of tools that are
developed, maintained and used by SIG employees for static source code analysis.
Among the SAT there are tools to configure, execute and visualise the analyses

11

CHAPTER 2. ELICITATION

SAT
(Software Analysis Toolkit)

System
Files to be
analysed

Result DB
(Results Database)

SM
(Software Monitor)

Reports

Presentations

SAT
(Software Analysis Toolkit)

Figure 2.7: Source code analysis at SIG

of a system. These tools were developed in Java, having a simple Command line
interface (CLI) for their usage.

Typically, as Figure 2.7 illustrates, a SIG analyst follows the SOP and executes
the required tools in order to obtain the desired deliverable. Such situations are for
instance running the analyses, generate reports or presentations, configure, create
and deploy the SM of a software system. At each step of the chain, the analyst
also checks for errors and warnings that are registered in log files created by the
different tools.

Since these tools are currently and constantly under development, we should
be concerned about how they evolve and what procedures and implications derive
from their evolution.

2.5.2 Software Monitor

The Software Monitor provides access to the facts and metrics collected during the
software analysis process conducted by SIG analysts. It is basically an interface
to the collected data through a website, that is linked with a database where the
metrics and facts were previously stored during the automated source code analysis
procedure.

It is used by the analysts and consultants in order to the visualise the result
of the source code analysis of a system, and as well by the clients of a SM/SPM
project. As shown in Figure 2.7, the analyst recurs to the SAT for its generation
and deployment.

12

2.6. REQUIREMENTS

2.6 Requirements

In this section we present the list of requirements derived during the elicitation
process as described in this chapter. We group these by common properties which
are normally a quality indicator of a software system.

2.6.1 Standardisation

Installation and usage of Tools To prevent human errors and inconsistencies,
the installation and usage of the SAT and its tools should be standardised. Instead
of the local compilation of sources and installation of these, they should be installed
after a release of the SAT, and be made accessible to its users. Previous versions
should as well be available as well to once again, prevent the same problems.

Scope Configuration The configuration of the analyses of a software system
should be assisted and performed in a standard way. On the contrary to the
current situation where the configuration procedure is inefficient and performed
differently by different analysts, our integrated environment should assist all the
steps of this procedure.

Workflow The workflow of the whole analyses process should be standardised,
so that the steps are executed in conformation with the current SOPs. The GUI
should as well provide the user with a clear overview of its overall progress.

2.6.2 Traceability and Repeatability

It should be possible to trace a deliverable (such as for instance a dependency call
graph) till the original source code and analyses set. By achieving traceability of
every deliverable, by its turn, also ensures repeatability, having all the necessary
elements to reproduce the same analyses and generation of the same deliverables.

2.6.3 Automation

All the processes that imply manual workflow and combination of tools should be
automated. Whenever possible, manual work should be eliminated unless there
are reasons for explicitly requiring the attention of the user. The generation of
deliverables should be as easy as possible, no longer having the user the need to
combine tools and adapt its intermediate results in order to achieve the desired
deliverable.

2.6.4 Consistency

The execution of the analyses over a code base of a software system should be
done in a consistent way, as well as the generation of deliverables based on these
analyses. Ensuring standardisation in the installation and usage of the SAT also
contributes to the consistency of the analyses and its associated deliverables. Our

13

CHAPTER 2. ELICITATION

integrated environment should ensure that there are no incorrect combinations of
tools.

2.6.5 Integration

The tools of the SAT should be integrated by our GUI application. Furthermore,
as it can be seen in Figure 2.8, the GUI should also integrate a tool to assist the
configuration. The functionality of the diverse tools of the SAT should be linked
by a backend, and a frontend should provide the access and allow the use of the
diverse tools of the toolkit.

Figure 2.8: System Integration
SAT tools and new configuration generation tool are integrated by the GUI

2.7 Addressing the requirements

Here we briefly describe what actions were taken, in collaboration with the SIG
staff, in order to meet the list of requirements above mentioned.

In what concerns the SAT, we ensured both its correct installation and its
usage. The installation of the tools that compose the SAT is now done in a
standard way. The tools are stored in a shared location where SIG employees
can access to use them. All tools are installed as a bundle, in order to attain the
combination of tools with compatible versions.

With the introduction of the configuration tool (that is described in detail in
section 4), we ensured that the configuration of the analyses is done in a standard

14

2.7. ADDRESSING THE REQUIREMENTS

way in conformation with the related SOP.
For obtaining traceability and repeatability, we now ensure that every analyses

set is now identified with the version of the SAT that was used, that the files of
the software system over which the analyses are run cannot be changed, and we
also keep a timestamp of its creation. The same happens with the deliverables.

We created an Integrated Environment (IE) where we integrate all the tools
that compose it through the development of a GUI to the SAT. The IE guarantees
that the usage of the SAT by SIG employees is tightly coupled with the designated
SOP for source code analysis.

In the remainder of this thesis we focus mainly on satisfying the Integration
requirement. In chapter 4 we focus on the integration of a tool to assist the scope
configuration of the analyses, and at chapter 5 in the integration of the other tools
through the introduction of the GUI as an interface to the SAT.

15

CHAPTER 2. ELICITATION

16

Chapter 3

Related Work

In this chapter, we briefly present the state of the art in the topics that surround
this thesis final purpose of an Integrated Environment for Software Assessments.
We start by presenting previous relevant work at SIG (3.1). We then introduce
the reader to the topics of Tool Automation, Tool Integration and Integrated
Environments within the context of Software Engineering Environments (3.2).
We relate our work with Scientific Workflow Systems (3.3) and end the section
by presenting related work about Graphical User Interfaces (3.4).

3.1 At the Software Improvement Group

In his recent work [12], van Laer – previous master student intern at SIG – fo-
cuses on modelling and improving the SRA conducted at the SIG. He first used
several elicitation techniques to get insight into SIG’s SRA. He created a business
model of the SRA using Business Process Modelling Notation (BPMN). Then,
he assessed SIG’s SRA with a generic audit approach, identifying its weaknesses,
problems and bottlenecks. Furthermore he also performed a research on Rich In-
ternet Application (RIA) technologies and built a GUI application prototype to
support the SRA and optimise its process.

In our work, we used the business model created by van Laer to reduce our
learning time in understanding the SRA. We used this model in interviews, while
inquiring the SAT and as a validation of our findings, as it was when van Laer
was still building it. The identified bottlenecks helped us also in obtaining insight
into which parts of the process needed to be assisted or optimised. These were
good pointers which we used while defining the requirements for our integration
and automation task. While van Laer focus is on modelling and assessing the
SRA, identifying its problems and bottlenecks, our work was focused on finding a
solution for part of these problems and others that we found during our elicitation
research.

In comparison to van Laer’s work, we went deeper on the requirements defini-
tion of our GUI application, since some aspects had not been taken into account
in his research. We will go back to this aspect of van Laer’s work at section 3.4
further in this chapter.

17

CHAPTER 3. RELATED WORK

3.2 Tool Integration and Tool Automation

Tool integration remains a lively research topic, and more appropriate and funda-
mental research questions need to be debated posed and answered by the software
engineering community [17]. In [16], Wicks created an annotated bibliography
about Tool Integration within software engineering environments, presenting a re-
viewed list of relevant literature over the past decades. In [17], Wicks and Dewar
analyse this bibliography to examine the background, context and scope of tool
integration, and propose an empirical manifesto for future research.

Wicks and Dewar define “Tool integration concerns the techniques used to
form coalitions of tools to provide an environment that supports some, or all, of
the activities within a software engineering process”. In the same paper, Wicks
and Dewar identify from their case study that business decisions and goals are an
important driver in the adoption of tool integration solutions. Such is the scope
of our research, as stated in Chapter 1. Wicks and Dewar further summarise
that “the desire to integrate tools within an encompassing software engineering
environment, is driven by the belief that derived benefits will accrue, through
automation, with consequent productivity and quality improvements”.

Among their manifesto, Wicks and Dewar point out the fact that in the liter-
ature “there is little evidence of what problems they are alleged to solve and how
successful they are”. We take these remarks into consideration and try to con-
textualise and provide answers to the posed above questions. We clearly stated
which problems there were in the beginning, and how effectively we solved them
(see Chapter 7). More specifically, we also performed a experimental validation to
assess the developed GUI application (see Chapter 6).

In [14], Wasserman categorises the different types of tool integration. From
these we performed Platform integration, Presentation integration and Process
integration, leaving out Data integration and Control integration.

3.3 Workflow and Interaction Design

Recent years have seen a dramatic increase in research and development of sci-
entific workflow systems [10]. Such systems promise to make scientists more pro-
ductive by automating data-driven and compute intensive analyses such as the
ones performed by SIG. In [10], a desiderata is identified focusing on enabling
scientists to model and design the worflows they wish to automate themselves. In
our work, we also design and automate our workflow, in order to link our analy-
sis software tools with the current SOP followed during the software assessments
at SIG. From these desiderata, we found relevant to our case well-formedness,
predictability, recordability and reportability, that we use as criteria elements to
define our requirements further in Section 2.6 of the of Chapter 2.

18

3.4. RICH INTERNET APPLICATIONS VS. DESKTOP APPLICATIONS

3.4 Rich Internet Applications vs. Desktop Ap-
plications

In [12], van Laer includes a comparison of GUI technologies, and decided to use a
RIA to built his prototype. However, he does not focus on the direct implications
of a choice of a RIA over a Desktop Application, being this worth of investigation.
Also, it was not considered the use of other technologies and libraries to provide
a richer interface. This is an important factor on this research – the usability
and ease of use of the User Interface (UI) components that will compose our GUI
application. We perform a more broad comparative research on GUI technologies,
in order to include as well Desktop GUI technologies and ended up choosing a
different one in order to best satisfy our requirements.

19

CHAPTER 3. RELATED WORK

20

Chapter 4

Scope Configuration

The most relevant bottleneck of the current SOP for the software analysis per-
formed by SIG is the configuration phase. Before executing the SAT over the
source code files of a software system, it is first necessary to configure how the
SAT will process its files.

The task is a rather important one. Software systems can contain thousands
of files written in different programming languages. We need to assure that all
the files of a software system are correctly classified in our configuration, so that
the intended analyses are performed over the intended files. When a produced
configuration for a given software system is incorrect, the analysis process can fail
or generate incorrect and inconsistent results, that may even not be noticeable at
first sight.

It is therefore a challenge to find ways to assist this configuration step, to
automate the classification of the files of a software system and the detection of
ambiguous files. At this chapter we document the creation of a tool to inspect
the contents of a software system source code folder, classifying its contents and
generating a configuration in a completely automatic manner.

Currently, there are two configuration formats at SIG for the definition of
a Scope configuration. The first, using Spring[Web 18], and the latter using a
simple eXtensible Markup Language (XML) file with the support of JAXB[Web 20]
RI[Web 21]. The second configuration format is replacing the first, due to its
conciseness, clearness and simplicity. Therefore we model our tool to use the
latter format. This configuration format is referred to as scope configuration -
since it defines the scope of the analysis.

The scope configuration (see Figure 4.1) is composed by the following informa-
tion:

Software System information: the name of the system, the client name, the
project code, the path where the source code folder is located.

Technologies information: which programming languages compose the soft-
ware system and its associated set of files. Furthermore, there is also the possibility
to define subsets for each programming language. Typically, this occurs dividing
source code files from test code files.

21

CHAPTER 4. SCOPE CONFIGURATION

Listing 4.1: Scope.xml

1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>
2 <system projectCode="test" name="test"
3 xsi:noNamespaceSchemaLocation="http:// intern.sig.nl/software -

improvers/schemas/scope.xsd"
4 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance">
5 <scope srcDir="/tmp/test1" baseDir="/tmp">
6 <modules/>
7 <language name="C">
8 <source overrideDefaultFilters="false"/>
9 </language >

10 <language name="Cpp">
11 <source overrideDefaultFilters="false"/>
12 </language >
13 <language name="Java">
14 <source overrideDefaultFilters="false"/>
15 <test overrideDefaultFilters="false"/>
16 </language >
17 </scope >
18 </system >

Figure 4.1: An example of a scope configuration file

Modules information: which modules compose the system, the name of each
module, which files are included or excluded in each module (also using boundaries
information).

For customizing which files are associated with each technology or module, and
which files are exception to general rule, there are also elements to serve this
purpose:

Boundaries: defines a list of inclusions and/or exclusions and exceptions in
order to compound the desired set of files.

Exclusions: defines which files are excluded from the analysis process. An ex-
ample of its use is for instance to svn information files, that stay aside the source
code, but have no relevance to the system itself.

Although the creation of the configuration became easier with the scope config-
uration, it is still necessary to manually inspect the system files, checking which
technologies compose the software system.

To assist this task, SIG had already developed a tool to inspect a software sys-
tem folder and produce a textual report containing the total number of files, total
lines of text. This report grouping also listed total number of files per extension
and distribution of files per folder. An example of such a report is listed in Figure
4.2.

22

Listing 4.2: system report.txt

1 Text: 17 files with 7 extensions
2 java = 8
3 mak = 2
4 h = 2
5 cxx = 2
6 list = 1
7 c = 1
8 ’no extension ’ = 1
9

10 Total Lines: 7160
11 cxx = 5469
12 mak = 903
13 java = 496
14 h = 108
15 ’no extension ’ = 97
16 c = 86
17 list = 1
18

19 Files per directory:
20 gtk
21 mak = 2
22 h = 2
23 cxx = 2
24 list = 1
25 c = 1
26 ’no extension ’ = 1
27 scope
28 java = 8
29

30 -------------------
31 Executables: 0 files with 0 extensions
32

33 -------------------
34 Binaries: 1 files with 1 extensions
35 dtp = 1
36

37 Files per directory:
38 gtk
39 dtp = 1
40

41 -------------------
42 [The following files are not included in the above statistics]
43 Empty files
44 gtk/main
45

46 Unclassified
47 gtk/instructions.pdf [pdf document , version 1.4]
48

49 Unreadable (check permissions)
50 /tmp/test1/gtk/preferences.ini

Figure 4.2: The old system overview report

23

CHAPTER 4. SCOPE CONFIGURATION

4.1 Detection of Technologies

In order to avoid the manual work of checking which are the available technologies
present in a set of files, and which of these should be associated with which technol-
ogy it was necessary to find a method to detect which and distinguish which files
belong to each technology. We found several alternatives to perform technology
detection on a set of files:

Extension based detection: Perhaps the most easy way to associate files with
a specific context, is through their file extension. The original purpose of file
extensions is to categorise files by different categories.

Semantic analysis classification: Investigating the structure and semantics
of the textual contents of files.

File utility detection: using the unix File[Web 19] utility.

Filter-based detection: Using composed filters per technology that define rules
for the classification of a file towards each technology.

Machine Learning Techniques: Using algorithms such as for example arti-
ficial neural networks, Bayesian networks, Decision trees, support vector machines.

For the detection of technologies, we opted by Filter-based detection. We
created default group of filters per technology, and so we could use these groups
of filters to detect the relation of each file with the technologies that the SAT can
analyse. These groups of filters can be composed of several filters. For instance
filters that mimic the disjunction of conjunction of other rules or filters that check
for the extension of the filename. This allows SIG employees to use simple logic
and to composite rules to obtain the desired set of files associated with a certain
context.

4.2 Generated source code and pattern-based files
classification

Some software systems are also composed by files that are created by source code
generator tools. Source code generation is the act of generating source code basing
on an ontological model such as a template and is accomplished with programming
tools such as a template processor or an Integrated Development Environment
(IDE). It is the SOP to separate files developed by the client’s development team
from source code generated files, in order not to obfuscate the data derived from
the files, grouping their metrics separately.

To perform this classification task, SIG analysts normally perform manual
inspection of files, relying on tools such as grep, find and bash scripts in order
to locate source code generated files. To automate this task and make it easier to
find such cases, we checked for patterns using regular expressions in the contents
of each file. Here’s a list of the some of regular expressions we used for identifying
generated source code in the contents of the files:

24

4.2. GENERATED SOURCE CODE AND PATTERN-BASED FILES
CLASSIFICATION

Listing 4.3: GeneratedCodeReport.txt

1 <!-- *** Context for unique occurrence -->
2 <!-- Regular Expression: ’((machine|automatically)[]+ generated)’ -->
3 <!-- Match: ’/* DO NOT EDIT - FILE AUTOMATICALLY GENERATED FROM THE .syn

FILE *’ -->
4 <!-- Line: 2 -->
5 <exclude pattern=".*/ shader/arbprogram_syn.h"/>
6 <exclude pattern=".*/ shader/slang/library/slang_pp_directives_syn.h"/>
7 <exclude pattern=".*/ shader/slang/library/slang_pp_expression_syn.h"/>
8 <exclude pattern=".*/ shader/slang/library/slang_pp_version_syn.h"/>
9 <exclude pattern=".*/ shader/slang/library/slang_shader_syn.h"/>

10

11 <!-- *** Context for unique occurrence -->
12 <!-- Regular Expression: ’(generated[]+(by|using|automatically))’ -->
13 <!-- Match: ’/* DO NOT EDIT - This file generated automatically by gl_table

.py (from Mesa) script *’ -->
14 <!-- Line: 1 -->
15 <exclude pattern=".*/mesa -7.2/ src/mesa/glapi/dispatch.h"/>
16 <exclude pattern=".*/mesa -7.2/ src/mesa/glapi/glapitable.h"/>
17 <exclude pattern=".*/xorg -server -1.5.3/ dispatch.h"/>
18 <exclude pattern=".*/xorg -server -1.5.3/ glapitable.h"/>
19 <exclude pattern=".*/xorg -server -1.6.0/ dispatch.h"/>
20 <exclude pattern=".*/xorg -server -1.6.0/ glapitable.h"/>
21

22 <!-- *** Context for several occurrences -->
23 <!-- Regular Expression: ’(generated[]+(by|using|automatically))’ -->
24 <!-- Match: ’printf ("/* Automatically generated by vtable_layout_x86.cpp

*/\n")’ -->
25 <!-- Line: 57 -->
26 <!-- Regular Expression: ’(generated[]+(by|using|automatically))’ -->
27 <!-- Match: ’// Try to determine the vtable layout generated by G+’ -->
28 <!-- Line: 5 -->
29 <exclude pattern=".*/ src/libs/xpcom18a4/xpcom/reflect/xptcall/src/md/unix

/vtable_layout_x86.cpp"/>
30

31 <!-- *** Context for several occurrences -->
32 <!-- Regular Expression: ’\#line’ -->
33 <!-- Match: ’#line 56 "parser.y’ -->
34 <!-- Line: 73 -->
35 <!-- Regular Expression: ’\#line’ -->
36 <!-- Match: ’#line 92 "parser.h’ -->
37 <!-- Line: 91 -->
38 <exclude pattern=".*/ x11/x11include/xorg -server -1.5.3/ parser.h"/>
39 <exclude pattern=".*/ x11/x11include/xorg -server -1.6.0/ parser.h"/>

Figure 4.3: The generated code report

25

CHAPTER 4. SCOPE CONFIGURATION

• "(generated[]+(by|using|automatically))"

• "((machine|automatically)[]+generated)"

• "// Generated stubs for lazy dynamic linking"

• "// Generated headers for lazy dynamic linking"

• "// Generated Header File. Do not edit by hand."

• "// Microsoft Developer Studio generated include file."

• "Unicode mapping table generated from"

• "generated from the DocBook documentation."

• "\\#line"

This detection is quite error-prone. It ensures that most of source code gener-
ated files are found, but also false positives – files that are manually created but
are matched by at least one from the above regular regular expressions.

To report the found occurrences/matches, we grouped files by their character-
istics concerning which regular expression was used, what was the matched ex-
pression and in which absolute location in each file (line number). This is shown
in Figure 4.3. This allowed analysts to easily verify the list of possible generated
source code files, identifying groups of files that are most probably generated in
the same way. Equally, it allows fast detection of probable false positives.

4.3 Scope Definition Generation and Findings Re-
ports

In Figure 4.4 it is shown the improved system overview report that we generate
with our tool. We report found technologies, its related subsets and a summary
of the number of files per extension associated with each subset.

The tool performs a general classification that follows the algorithm shown in
Listing 4.5. It first detects which files in a software system folder are source code
files. For these files then checks for generated code and other exclusion patterns.
If a file is associated with more than one technology, it reports it as an ambiguous
file.

To generate the scope configuration file, the tool first builds the data objects
and then recurs to the JAXB RI API to marshall these, generating the final XML
representation of the configuration.

4.4 Scope validation

After a first generation, the scope configuration is usually refined by SIG employ-
ees. Because of this fact, we created an option in the tool so that it can be used
to validate a refined scope. Instead of detecting which files are associated with the
available technologies at the SAT, it simply performs the general classification in
order to produce the new system overview report. This way, a SIG analyst can val-
idate the scope configuration of a software system without having to perform the
analyses. He refines and validates the scope configuration until it is as expected.

26

4.4. SCOPE VALIDATION

Listing 4.4: ScopeGenerationReport.txt

1 System Analysis Toolkit v. 1.41
2 Copyright Software Improvement Group
3 -------------------------------
4 Found Technologies:
5 -------------------------------
6 C:
7 contexts:
8 source: 5
9 extensions:

10 h:2 cxx:2 c:1
11 Cpp:
12 contexts:
13 source: 5
14 extensions:
15 h:2 cxx:2 c:1
16 Java:
17 contexts:
18 source: 8
19 extensions:
20 java:8
21

22 -------------------------------
23 Files Categorization Statistics:
24 -------------------------------
25 TOTAL Files: 32
26 java:8 svn -base:8 (without extension):5 mak:2
27 h:2 cxx:2 list:1 dtp:1 c:1 pdf:1 ini:1
28

29 Matched Files (Source and Test contexts): 8
30 java:8
31 Ambiguous Files: 5
32 h:2 cxx:2 c:1
33 Unmatched Files: 19
34 svn -base:8 (without extension):5 mak:2 list:1
35 dtp:1 pdf:1 ini:1
36 Detected Possible Trash Files: 0
37 Scope Excluded Files (by Pattern): 0
38 Generated Code Files (Generated context): 0
39 Generated Code Files (global patterns detection): 0
40

41 -------------------------------
42 Generated Code:
43 -------------------------------

Figure 4.4: The new Scope Generation Report: an improved version of the
System Overview Report

27

CHAPTER 4. SCOPE CONFIGURATION

Input: Files
Output: FileInfo
foreach file do

if is recognized by any technology detector then
if is recognized by more than one technology detector then

FileInfo ← AMBIGUOUS;
else

if recognized by generated code technology detector then
FileInfo ← GENERATED CODE SUBTYPE;

else
FileInfo ← MATCHED;

if is recognized by any trash detector then
FileInfo ← TRASH;

if is recognized as generated code then
FileInfo ← GENERATED CODE;

else
FileInfo ← UNMATCHED;

end

Figure 4.5: Scope Generator classification algorithm

4.5 Conclusions

With the created tool is now possible to generate a scope configuration in a fully
automated way. SIG analysts don’t need to create a new configuration based in
an older one, and can now validate a scope configuration without having to run
the analyses on a software system. The introduced tool saves time to the analysts
and further streamlines the workflow process of software analyses. SIG analysts
still need to validate the results, but have already a formed valid configuration.
The tool also provides analysts with a clearer overview of a system through its
reports and its automatically generated scope configuration.

The created tool (Figure 4.6) is already in use at SIG it is used in more than
90% of the cases.

28

4.5. CONCLUSIONS

Figure 4.6: Scope Generator tool usage help screen

29

CHAPTER 4. SCOPE CONFIGURATION

30

Chapter 5

Graphical User Interface

In this chapter we present the development of the GUI of our integrated environ-
ment. We decided to focus the development of the GUI in the scoping task, since
its the only part of the process that requires manual intervention and the use of
external tools and also due to the lack of available time. Although we defined
concrete objectives for our integrated environment and GUI, these objectives can
be achieved through the combination of different sorts of interactions and UI ele-
ments. Because of this, we perform Interaction Design in order to obtain a design
that achieves the expected usability and experience of our GUI.

To select the technology to build the GUI of the SAT, we decided to perform
a comparative research study, defining a criteria that takes into account the built
UI design and the previously elicited general objectives and requirements for our
integrated environment.

We conclude by briefly documenting the implementation of the GUI in the
selected technology, presenting the architecture of our application. We end by
presenting the final result achieved.

5.1 Interaction design

Interaction design defines the behavior (the ”interaction”) of an artifact or system
in response to its users. In Figure 5.1 we show the different resources used in our
interaction design. We used different methods to obtain feedback from the future
users of our tool.

We started by using pen and paper to gather the first generic ideas about how
the interaction should occur. After the first ideas surface, we mockup these into
images composed of UI elements, simulating the appearance of the UI. In order to
simulate the behaviour of the UI, we used Microsoft Powerpoint to simulate the
different interactions with the tool and the changes caused in the UI.

When consensus is achieved, we selected the technology to build our GUI,
and we start implementing the individual components that will compose the final
product. Finally we put them together in place and connect them in order to
achieved the desired interaction, creating a working version of our GUI.

31

CHAPTER 5. GRAPHICAL USER INTERFACE

Pen and Paper

Mockup implementation

Working implementation

Mockup images

Powerpoint presentation

Validation experiment

Feedback
Sessions

Figure 5.1: Interaction Design stages

5.2 Technology Selection

5.2.1 Criteria

To find and compare technologies, we define the following criteria.

Integration with SIG’s tools How well and how easy is the integration with
the SAT, specifically with the current technologies that compose it and with its
development methodology, testing and release.

Available Libraries, technology support and documentation

UI Possibilities The availability of a good set of basic GUI elements: buttons,
text fields, positioning and layout capabilities, ready-to-use widgets and more com-
plex elements such as drop-boxes, tree-lists, etc.

Maintainability If there is expertise and knowledge about the technology in
SIG and the source code maintainability of the technology. Also, if there is good
separation of concerns, with the separation of the business layer and the presen-
tation layer.

Testability The support of unit testing, the availability of frameworks to sup-
port it.

Debugging Which possibilities of debugging exist and how reliable it is, i.e.,
how verbose it is, performance penalty, etc.

Toolkit Support Which tools support the technology, which IDEs support it
and to what extent the tool supports the technology.

Community Support The existence of mailing lists, forums, the size of the
community and its latest activity.

Maturity For how long does the technology exist, how it has evolved and its
current stability and maintainability state.

32

5.2. TECHNOLOGY SELECTION

License and price If the license allows SIG to use the tool, if the license is
paid, how affordable it is, etc.

5.2.2 Technologies

These was the final set of technologies that were subject of our comparative study:

Adobe Flex[Web 11] Adobe Flex is a software development kit for the devel-
opment and deployment of cross-platform rich internet applications based on the
Adobe Flash platform.

Java Swing[Web 09] Swing is a widget toolkit for Java. It is part of Sun Microsys-
tems’ Java Foundation Classes (JFC) - an Application Programming Interface
(API) for providing a GUI for Java programs.

JavaFX[Web 10] JavaFX is a software platform for creating and delivering rich
Internet applications that can run across a wide variety of connected devices.

Google Web Toolkit[Web 08] Google Web Toolkit is an open source set of tools
that allows developers to create and maintain complex Javascript front-end web
applications in Java.

Struts[Web 07] Apache Struts is a open-source framework for creating Java web
applications. It uses and extends the Java Servlet API to encourage developers
to adopt a Model-View-Controller (MVC) architecture. Its main design goal is to
cleanly separate the model (application logic that interacts with a database) from
the view (HTML pages presented to the client) and the controller (instance that
passes information between view and model).

Apache Wicket framework[Web 03] “Wicket bridges the mismatch between
the web’s stateless protocol and Java’s OO model. The Component Based Wicket
Frameworks shields you from the HTTP under a web app so you can concentrate
on business problems instad of the plumbing code. In Wicket you use logic-free
Hyper Text Markup Language (HTML) templates for layout and standard Java
for an application’s behaviour”[5].

5.2.3 Findings

Table 5.1 summarises our comparison between the different technologies. All tech-
nologies accomplish the criteria mentioned above. Among this criteria, the ones we
gave more importance were the integration with the SAT (Java, Maven2[Web 12]),
the maintenance and testability, the toolkit support (plugin for Eclipse is ideal)
and the UI possibilities.

From the set of researched technologies, Swing is the most mature. Struts has
been evolving for some years now, having merged from two precedent frameworks
(Struts[Web 06] and WebWork[Web 05]). The remainder technologies have just
emerged in the past couple of years.

About toolkit support, the development in all technologies can be performed
through Eclipse with support of edition, compilation, testing and debugging. Flex

33

CHAPTER 5. GRAPHICAL USER INTERFACE

Flex GWT JavaFX Swing Struts2 Wicket
Integration o ++ ++ ++ + ++
Libraries + ++ + ++ ++ ++
UI elements + + + + + ++
Maintainability o o - + o +
Testability + + o o + ++
Toolkit Support ++ + o + + +
Debugging + + ++ ++ o ++
Community Support ++ + - - + ++
Maturity + o - ++ + +
License and price o ++ ++ ++ ++ ++
Experimentation o + + + o +
Overall + + o + o ++

Table 5.1: Researched Technologies Comparison.
The scale is the following: –,-,o,+,++

and JavaFX require their own plugins for Eclipse. The others rely on common plu-
gins for Java SE/EE such as the Java Development Tools (JDT) plugin[Web 13].
About the Testability criteria, all of them offer frameworks for the purpose of Unit
Testing, but some more comprehensive than others. From this criteria, Wicket is
the technology that offers most flexibility, being also possible to perform integra-
tion tests mimicking UI events and state evolution through the WicketTester
classes in conjugation with the JUnit Testing Framework[Web 14].

All technologies were free to use by SIG, and provided good IDEs for the
development of the application. Just Adobe Flex would require the purchase of
a license of the Adobe Flex Builder Pro as plugin for Eclipse or NetBeans. All
the others with the exception of Swing develop and maintain their own plugins for
Eclipse.

After analysing the results of our investigation, we were mainly in doubt for
GWT and Apache Wicket. Maintenance was the most discriminating factor. Flex’s
integration with SIG’s SAT would be the most complex, The poor toolkit support
in Eclipse of Swing, the difficult integration with Adobe Flex (using for instance
BlazeDS[Web 15] or the LiveCycle Enterprise Suite[Web 16] as for Java remoting
and web messaging technology), the poor separation of concerns in JavaFX and
and Struts2 heavy MVC architecture were the main reasons for exclusion. As final
discriminating factor, we excluded GWT due to the lack of maturity, taking in
consideration the uncertain path of Google’s project. We found the most suitable
technology for the development of our GUI to be the Apache Wicket framework.
The concise community support and resources, the good separation of concerns,
the offered UI possibilities and the testing capabilities seemed to meet our main
requirements.

34

5.3. IMPLEMENTATION

5.3 Implementation

5.3.1 Wicket Way - Pages, Panels and Components

All that concern the management of state, sessions with the users, and HTML re-
quests, is handled transparently by Wicket. This allows developers to concentrate
on solving business problems rather than writing plumbing code.

Conceptually, the Application object is the top-level container that bundles
all components, markup and properties files, and configuration. With Wicket we
program our components and pages using regular Java constructs. You create
components using the new keyword, create hierarchies by adding child components
to parents, and use the extend keyword to inherit the functionality of other
components. The presentation part the web application is defined in HTML tem-
plates. Any Wicket component that requires view markup in the form of HTML
needs to be side-by-side with the Java file.

5.3.2 Architecture

html

Footer

html

SIGWebPage

html

Header

html

Workflow
Menu

html

html

FolderSelector

Start Page

html

ModalWindow

folder css

common css

ModalWindow css

Figure 5.2: GUI elements hierarchy with Wicket

Our architecture is simply defined by an abstract skeleton, a set of pages that
implement our desired hierarchy of components. Figure 5.2 presents the main
components that form the basic architecture of our application. We do not include
the predefined Application, that just points to StartPage, as well our extended
Session that keeps track of the data inputted by the user.

The abstract class SIGWebPage holds itself several Panels forming a skele-
ton/template for any other class that implements it.

To achieve easy customisation and reuse of components, we started by defining
an Hierarchy for components. Also in Figure 5.2, we present an example of such
customization: StartPage implements the skeleton class SIGWebpage, and through
this, it will be composed of the Workflow Menu, Header and Footer.

35

CHAPTER 5. GRAPHICAL USER INTERFACE

5.3.3 Tooling and Setup

For the development our GUI we used the Eclipse IDE[Web 02] (version 3.3.2),
with the usual plugins that support the development of Java Systems. For the
deployment and dependencies management we used Maven 2[Web 12]. For de-
bugging we used another Eclipse Java debugging capabilities with the Run Jetty
Run[Web 22] plugin, that more than just allowing debugging, it allows hot de-
ploy, the ability of updating some parts of the implementation of java methods or
classes, as long as the structure is not changed.

5.4 Result

In Figures 5.3 to 5.6 we present some screenshots of our developed GUI application.
In Figure 5.4 we show how the interface displays which files were matched by
technologies detectors, which files weren’t and which files were excluded from the
analysis. On the right there is a file browser that allows users to visualise the files
associated with a context from the left, by filtering by extension and folder. This
allows the user to personalise the list of files and to easily inspect the files (Figure
5.5).

Furthermore the user can refine the configuration at different levels. He can
assign extensions, folders or files to a certain technology, or discard them as in-
tended. This is performed by selecting the drop-boxes available at each level of the
file browser. The scope configuration is then refined and the user does not need
to edit the XML scope configuration file, being able to run the analyses when he
completes the scope configuration.

36

5.4. RESULT

Figure 5.3: GUI - Start screen
37

CHAPTER 5. GRAPHICAL USER INTERFACE

Figure 5.4: GUI - Scope Configuration screen
38

5.4. RESULT

Figure 5.5: GUI - Scope Configuration screen - inspecting a file
39

CHAPTER 5. GRAPHICAL USER INTERFACE

Figure 5.6: GUI - Analysis screen
40

Chapter 6

Experimental Validation

To evaluate the created GUI, we decided to perform a validation experiment. The
purpose of this experiment is a first quantitative evaluation of the usefulness of the
created integrated environment for the purpose of creating a scope configuration.
Similar to [2] we assess the usefulness of the new tools, maintaining a distinction
between time spent and correctness.

Although our integrated environment addresses other aspects of the general
software analysis procedure, by standardising and improving its consistency, we
focus the experiment in the analysts task of creating a scope configuration. This
is due to the fact that its the only part of the process that requires manual in-
tervention and the alternative use of external tools, that can actually be assessed
and measured in terms of time and correctness.

6.1 Experimental Design

In this section we present a detailed description of the design of our experiment.

Research Questions

• Is it faster to create a scope configuration with the new set of tools in com-
parison to the previous set of tools?

• Does the new Integrated Assessment contributes for the correctness of con-
figurations?

To answer this questions, we shall measure time and analyse the scope config-
urations produced by our subjects for correctness.

Objects We decided to use two systems as objects of our experiences. In Table
6.1 are shown their details. For anonymity reasons we use anonymous names. The
criteria for the selection of these two systems, were the following:

41

CHAPTER 6. EXPERIMENTAL VALIDATION

• They are representative of typical software systems to be analysed by SIG
employees. Both systems contain an average amount of technologies, and
contain generated code and configuration files.
• Both systems were analysed before at SIG, so their scope configuration was

done earlier by another analyst, and approved by the client.
• The systems are unknown to the subjects of this experience.
• The systems contain the same key characteristics: same key technology,

total number of lines of text representative of usual systems analysed at
SIG, contain source code generated files and have about the some amount
of number of extensions in the whole set of files.

System X System Y
main technology Java Java
other technologies JSP, Javascript Html, XML
lines of code 35.000 100.000
files included 320 1500
total files 1250 1800

Table 6.1: The two systems objects of our experiment

Task design With respect to the tasks to be tackled during the experiment, we
maintain two important criteria:

• It should be representative of real analysis contexts at SIG.
• It should be a well known task for the subjects.
• It should not be biased towards our tool or the traditional procedure.

The task is to create a configuration as the SOP describes. More details in this
procedure can be found in Chapter 4.

Subjects The subjects in this experiment were 4 SIG analysts. All of them
participate on a voluntary basis and can therefore be assumed to be properly
motivated. All of them have prior experience in creating scope configurations,
performing this task on a regular basis. We consider the letters A, B, C and D to
represent each subject during our experiment.

Experimental procedure We created two groups, “AB” and “CD”, the first
composed by subjects A and B and the latter by subjects C and D. Subjects
perform the task individually. The experiment is done in 2 rounds. In the first
round, each subject from group AB performs the task with the support of the
GUI tool, while the subjects from group CD perform the task with the old set
of tools. In the second round, the positions are inverted and the group that
performed before with the support of the GUI tool, performs now with the old set
of tools and vice versa. The sessions are conducted on workstations with equal
characteristics, i.e., all of them with the same characteristics in what concerns:

42

6.2. RESULTS

processing power, amount of RAM and screen resolution. At the beginning of
each round each subject is given a sheet (1 page) with detailed instructions, and
for the group that performs the task with the support of the GUI tool, there is
also a small demo of how the tool works. Subjects have a limit of 45 minutes,
which is the average time necessary to perform a scope configuration. To gather
feedback about our tool, we wrote a questionnaire to be answered in the end
of the procedure. The questionnaire contains questions about its functionality
and usability, where the user is invited to rate these in common rating scales of
Agreement and Importance[Web 17].

6.2 Results

The results of the two rounds are presented at Tables 6.2 and 6.3.

Setup Subject Valid XML Technologies Generated Code Time
With Tool A yes yes yes 32 m.

B yes yes yes 45 m.
Without tool C yes yes no 45 m.

D yes yes yes 45 m.

Table 6.2: Results of 1st round: System X

Setup Subject Valid XML Technologies Generated Code Time
With Tool C yes yes yes 45 m.

D yes yes yes 38 m.
Without tool A yes no (2/3) yes 40 m.

B yes yes yes 45 m.

Table 6.3: Results of 2nd round: System Y

Time results All the subjects were able to perform the task in time. Most of
subjects needed the total available time with the GUI tool and without it, with
the exception of subject A, that performed both tasks in shorter amount of time.
Both subjects A and D performed the task with the support of the tool in less
amount of time.

Correctness results All the subjects performed correct scope configurations
with the support of the tool. Subject C did not find the generated source code at
round 1, and Subject A did not include a technology of the system to the scope
configuration.

43

CHAPTER 6. EXPERIMENTAL VALIDATION

6.3 Discussion

From the analysis of the results, we verify that the experience revealed that our
built GUI answers both research questions positively. Although we don’t have sig-
nificant statistical data to validate the results, two of the four subjects performed
faster with the support of the new set of tools in comparison to the previous set
of tools, and the remainder two took the same time. Regarding correctness, two
of the subjects obtained an incorrect scope configuration when performing the
task without the new set of tools, and all of the subjects obtained a correct scope
configuration using the new set of tools.

6.3.1 Threats to validity

After the experiment was done, analysing the design and the notes we took mean-
while the experience was performed, we recognise the following threats to validity:

Atmosphere and Interference One aspect that was not considered in our
design, was the atmosphere around the subjects while these performed the expe-
rience. The subjects performed the experience at their usual working place, and
we observed that there was noise and discussions involving other SIG analysts
and consultants going at the same room where the subjects were performing the
experiment. Some of the subjects were even interrupted several times, and this
might have affected their concentration and performance.

Experience with the new tool Although a demonstration of the tool was given
before the subjects performed the experiment, most of the subjects had difficulty
on understanding some interaction details of the GUI. Because we introduced a
new paradigm on performing a configuration, we should have considered that it is
also important that the users are familiar with the tool. This might have lead to a
significant increase of performance, and so although the results answer positively
to our research questions, we could have achieved more significant numbers.

Statistical Significance As mentioned above, the statistical significance of this
validation experiment is reduced, due to the small number of subjects. Despite
this fact, the number of subject is a considerable percentage of SIG’s analysts
(around 30%).

44

Chapter 7

Conclusions

We successfully built an Integrated Environment for Software Assessments. We
used several techniques in order to elicit the required information so that we
could understand the services offered by SIG, the followed Standard Operating
Procedures (SOP) and the tools that support the source code analysis performed
by SIG. Then, we defined the necessary requirements for the development of
our integrated environment in order to address the challenges reported by SIG’s
employees.

Through the path of standardisation, automation and integration we were able
to achieve consistency, and also to avoid rework and prevent errors related to the
source code analysis performed at SIG. More specifically, we standardised the
installation of tools and its usage, we automated the configuration procedure for
the analysis of software systems, and we integrated the diverse tools of the SAT
in our developed IE. This brought consistency to the software analysis procedure,
diminishing the related amount of rework and errors, supporting the assessments
conducted by SIG.

In order to automate the full source code analysis procedure, we concentrated
our efforts in its most relevant bottleneck: the definition of the scope configuration,
that defines which specific analyses will be performed over which files. For this
purpose, we created a tool that inspects the files of a software system, classifying
these and generating a configuration in an automated manner. Instead of SIG
analysts having to inspect a software system and having to create a configuration
from scratch, the tool generates the most probable configuration based on solid
assumptions and analysts need only to validate it and refine it only if necessary.

For the file classification we used filter based classification, having filters de-
fined for the recognition of each technology. This allowed to easily define multiple
criteria for inclusion or exclusion of files in a single composed filter. Still in the
context of the tool, we also included the detection of generated source code files,
that was one task that SIG analysts would have to perform recurring to other
common command line tools and scripts. To further optimise this subtask of the
configuration procedure the tool also generates a report listing possible generated
source code files grouped by the same characteristics (used regular expression,
matched expression, absolute location), facilitating the processing and categorisa-

45

CHAPTER 7. CONCLUSIONS

tion of such files. This tool was successfully integrated into the SOP of software
analysis. The procedure is now executed with fewer manual work and errors,
standardising and automating the whole source code analysis procedure.

To standardise the use of the SAT, we integrated the several tools that compose
it by developing a GUI. We performed a comparative research study and we
selected the Apache Wicket framework for the development of our GUI. The GUI
interface tightly tied the SAT with the SOP, ensuring the correct use of tools by
providing a consistent workflow to their users.

With the availability of UI elements we decided to further optimise the config-
uration procedure. We performed interaction design and we built an interactive
UI to the configuration tool previously created. In a short amount of time we were
able to create a working UI that allowed SIG analysts to inspect a system from
different points of view, in a dynamic but standard way.

We also performed a small validation experiment in order to evaluate the build
tool in the task of configuring the scope of the analyses. The results achieved
showed that the new IE can contribute for saving time and for making the analysts
tasks easier.

46

7.1. FUTURE WORK

7.1 Future Work

The scope configuration tool should be improved with a second round of recogni-
tion in order to detect ambiguous files – files that are currently associated with
more than one technology by the tool. This is due to the simple detection method
used by SIG, that relies on the file extension for the association. This second
round of recognition could be performed using machine learning techniques, or
other simpler techniques such as content keywords matching.

The current scope model, brought standardisation to the configuration proce-
dure at SIG. The automatic generation of a scope configuration, in addition to
the conciseness of its format, makes it easier and simpler for SIG analysts to val-
idate it, and refine it as necessary. Despite this fact and although the new scope
configuration format and procedure was successfully introduced in the standard
procedure (is already in use by more than 90% of times), there are situations where
an analyst still needs to manually create an old Spring configuration. In order to
further standardise the procedure, it should be considered to extend the current
scope model to replace the old configuration, as to avoid the maintenance of the
two formats and related derived problems.

Further work can also be done in the GUI. By providing an interactive GUI, we
were able to simplify the analysts task of performing a configuration and running
the analyses for a given software system. Still, the GUI is still not completely reli-
able. The questionnaires collected in the validation experiment gave us feedback on
what were the main problems that users, giving us good pointers for improvement.
Concretely, related to the scope configuration GUI, the tool could also classify well
known sets of non source code files, in order to facilitate the refinement and valida-
tion of the automatically generated scope. It also lacks the ability to validate the
detected possible generated source code files, and the support for the definition
of modules of a system. Using the developed browsing technique, the tool could
allow the user to define the modules of the system interactively. Furthermore, the
tool lacks the ability to allow analysts to inspect generated source code groups
(see 4.2), providing the necessary interaction for discarding false positives.

The ability to dynamically compose and shuffle the order of the file browsing
filter components could serve better the purpose of inspecting different kinds of
systems. For instance, instead of browsing through a set of files by filtering ex-
tensions, folders and files (in this order), the analyst could opt to filter first by
folder and then by extension. Further investigation on filtering components could
reveal other filtering mechanisms over sets of files, that could further assist the
inspection of a software system. Some components could be based on filtering
mechanisms as for instance: file name patterns, repeated file names (could detect
ambiguities in the received source code of a software system), or keyword detection
(file contents).

One important aspect that should also be considered in the near future is the
connection between the implemented GUI and all project resources and informa-
tion about the performed analyses and generated deliverables (and IDs). This was
not in the scope of our research, but such integration could ensure the automatic
and correct storage of deliverables and analyses unique identifiers, further stan-
dardising the analysis process, and also diminish or even end the manual work
that analysts follow in order to ensure the traceability of deliverables.

47

CHAPTER 7. CONCLUSIONS

48

Acronyms

The Software Improvement Group related acronyms:

SIG Software Improvement Group . 3

SAT Software Analysis Toolkit . v

SRA Software Risk Assessment . 1

SM Software Monitor . 1

SPM Software Portfolio Monitor . 7

SPC Software Product Certification . 1

Other acronyms:

API Application Programming Interface . 33

BPMN Business Process Modelling Notation . 5

CLI Command line interface . 12

HTML Hyper Text Markup Language . 33

IDE Integrated Development Environment . 24

IE Integrated Environment . 4

GUI Graphical User Interface . i

MVC Model-View-Controller . 33

RIA Rich Internet Application . 17

SOP Standard Operating Procedure . 2

UI User Interface. .19

XML eXtensible Markup Language . 21

49

CHAPTER 7. CONCLUSIONS

50

Bibliography

[1] Coiera, E. (2002). Interaction design.

[2] Cornelissen, B., Zaidman, A., Rompaey, B. V., and van Deursen, A. (2009).
Trace visualization for program comprehension: A controlled experiment. pages
100–109.

[3] Correia, J. and Visser, J. (2008a). Benchmarking technical quality of software
products. pages 297–300.

[4] Correia, J. and Visser, J. (2008b). Certification of technical quality of software
products.

[5] Dashorst, M. and Hillenius, E. (2008). Wicket in Action.

[6] Heitlager, I., Kuipers, T., and Visser, J. (2007). A practical model for measur-
ing maintainability. Quality of Information and Communications Technology,
International Conference on the, 0:30–39.

[7] Herrington, J. and Kim, E. (2008). Getting started with flexTM 3. pages 1–148.

[8] ISO (2001). Iso/iec 9126-1: Software engineering - product quality - part 1:
Quality model.

[9] Kuipers, T. and Visser, J. (2004). A tool-based methodology for software
portfolio monitoring. pages 118–128.

[10] Mcphillips, T., Bowers, S., Zinn, D., and Ludäscher, B. (2009). Scien-
tific workflow design for mere mortals. Future Generation Computer Systems,
25(5):541–551.

[11] Resources, A. L. (2008). Blazeds developer guide. pages 1–217.

[12] van Laer, T. (2008). Modelling, improving and executing a software risk
assessment process.

[13] Vigder, M., Vinson, N. G., Singer, J., Stewart, D., and Mews, K. (2008).
Supporting the everyday work of scientists: Automating scientific workflows.
pages 1–15.

[14] Wasserman, A. (1990). Tool integration in software engineering environments.
Software Engineering Environments, pages 137–149.

51

BIBLIOGRAPHY

[15] Wicks, M. (2004). Tool integration in software engineering: The state of the
art in 2004.

[16] Wicks, M. (2006). Tool integration within software engineering environments:
An annotated bibliography. Technical report.

[17] Wicks, M. and Dewar, R. (2007). A new research agenda for tool integration.
Journal of Systems and Software, 80(9):1569 – 1585.

52

Web References

[Web 01] The Software Improvement Group
http://www.sig.eu/

[Web 02] Eclipse Studio
http://www.eclipse.org/

[Web 03] Apache Wicket Framework
http://wicket.apache.org/

[Web 04] Wicket In Action - examples
http://code.google.com/p/wicketinaction/

[Web 05] WebWork Java web-application development framework
http://www.opensymphony.com/webwork/

[Web 06] Struts Java web-application development framework
http://struts.apache.org/1.x/

[Web 07] Struts2 Java web-application development framework
http://struts.apache.org/

[Web 08] Google Web Toolkit platform
http://code.google.com/webtoolkit/

[Web 09] Swing widget toolkit for Java
http://java.sun.com/javase/technologies/desktop/

[Web 10] JavaFX development platform
http://www.javafx.com

[Web 11] Adobe Flex is a software development kit
http://www.adobe.com/products/flex/

[Web 12] Apache Maven software project management and comprehension tool
http://maven.apache.org/

[Web 13] Java Development tools (JDT) Eclipse plugin
http://www.eclipse.org/jdt/

[Web 14] JUnit Java Testing Framework
http://www.junit.org/

53

http://www.sig.eu/
http://www.eclipse.org/
http://wicket.apache.org/
http://code.google.com/p/wicketinaction/
http://www.opensymphony.com/webwork/
http://struts.apache.org/1.x/
http://struts.apache.org/
http://code.google.com/webtoolkit/
http://java.sun.com/javase/technologies/desktop/
http://www.javafx.com
http://www.adobe.com/products/flex/
http://maven.apache.org/
http://www.eclipse.org/jdt/
http://www.junit.org/

WEB REFERENCES

[Web 15] BlazeDS server-based Java remoting and web messaging technology.
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/

[Web 16] Adobe LiveCycle Enterprise Suite 2
http://www.adobe.com/products/livecycle/

[Web 17] Common Rating Scales, Vovici
http://blog.vovici.com/blog/bid/18261/Common-Rating-Scales-to-Use-when-Writing-Questions

[Web 18] Spring application framework
http://www.springsource.org/

[Web 19] File utility man pages
http://linux.die.net/man/1/file

[Web 20] Java Architecture for XML Binding (JAXB)
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/

[Web 21] JAXB Reference Implementation
https://jaxb.dev.java.net/

[Web 22] Run-Jetty-Run Eclipse plugin
http://code.google.com/p/run-jetty-run/

[Web 23] Software Engineering Body of Knowledge (SWEBOK)
http://www.computer.org/portal/web/swebok

54

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://www.adobe.com/products/livecycle/
http://blog.vovici.com/blog/bid/18261/Common-Rating-Scales-to-Use-when-Writing-Questions
http://www.springsource.org/
http://linux.die.net/man/1/file
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
https://jaxb.dev.java.net/
http://code.google.com/p/run-jetty-run/
http://www.computer.org/portal/web/swebok

	Abstract
	Introduction
	The Software Improvement Group
	Motivation
	Objectives and Approach
	Structure of this dissertation

	Elicitation
	Elicitation techniques
	Sources
	Services delivered by SIG
	Software Risk Assessment
	Software Monitor and Software Portfolio Monitor
	Software Product Certification

	How does SIG perform Software Analysis
	Which tools and assets support SIG service delivery
	Software Analysis Toolkit (SAT)
	Software Monitor

	Requirements
	Standardisation
	Traceability and Repeatability
	Automation
	Consistency
	Integration

	Addressing the requirements

	Related Work
	At the Software Improvement Group
	Tool Integration and Tool Automation
	Workflow and Interaction Design
	Rich Internet Applications vs. Desktop Applications

	Scope Configuration
	Detection of Technologies
	Generated source code and pattern-based files classification
	Scope Definition Generation and Findings Reports
	Scope validation
	Conclusions

	Graphical User Interface
	Interaction design
	Technology Selection
	Criteria
	Technologies
	Findings

	Implementation
	Wicket Way - Pages, Panels and Components
	Architecture
	Tooling and Setup

	Result

	Experimental Validation
	Experimental Design
	Results
	Discussion
	Threats to validity

	Conclusions
	Future Work

	Acronyms
	Bibliography
	Mario Filipe de Melo Medeiros Fernandes Pinhal.pdf
	Página 1
	Página 2
	Página 3

