
Outubro de 2010

Universidade do Minho
Escola de Engenharia

Matheus Barros Almeida

Separation of Concerns in Parallel
Programming using Feature-Oriented
Programming

Outubro de 2010

Universidade do Minho
Escola de Engenharia

Matheus Barros Almeida

Separation of Concerns in Parallel
Programming using Feature-Oriented
Programming

Supervisor :
Doctor João Luís Ferreira Sobral

Master in Informatics

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA DISSERTAÇÃO APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

ii

Acknowledgements

First of all, I would like to express my deep and sincere gratitude to my
supervisor, Professor João Lúıs Sobral for accepting me in his research group.
I want to thank all the hours/days/weeks he spent reviewing my work (in-
cluding this one). The past year was a really great experience and, without
him, this work would never exist.

I want to give a special thanks to all member of the Professor João Lúıs
Sobral research group. Rui Gonçalves for helping me at the beginning with
AspectJ and latter with his expertise in model driven development; Edgar
Sousa for being an incredible all arounder ; Diogo Neves for helping me to
grow in presentations and Jorge Pinho with his solid knowledge about the
JECoLi. Last but not least, I want to thank my friend Rui Sabino for the
tremendous number of hours we spent in the lab and his interest about the
work I was doing.

To my friends Pedro Gomes, Emanuel and Rui Sabino (again) for being
always there. We created great habits(lunch and coffee break) and I’m sure
I’ll miss it. It was a great year. To my roommates Nelson and Ricardo for
their support and help.

To my parents, Manuel and Isabel for being the best parents in the world.
To Ana, for being the love of my life.
Finally, I want to thank the financial support of this project : Parallel

Refinements for Irregular Applications (UTAustin/CA/0056/2008) funded
by Portuguese FCT and European funds.

ii

Abstract

With the mainstream commercialization of parallel processors and current
clusters having hundreds of thousands of computing units, parallel program-
ming is still seen as a complex and expensive solution used mainly by scientific
projects. We address these issues by reinforcing the idea that parallel pro-
grams present, in general, lack of modularity. This dissertation presents the
study of Feature Oriented Programming (FOP) as an alternative to Aspect
Oriented Programming (AOP) in the development of parallel programs to
promote modular and incremental development. In our approach, each par-
allelization feature encompasses a set of modifications to the domain code in
the form of class refinements, i.e., new unit of modularity that encapsulates
a well defined parallelization concern.

We have successfully applied our approach to several case studies includ-
ing a medium-sized Object-Oriented framework of the Biological computa-
tional field. As a result, we managed to enhance the framework’s perfor-
mance by introducing the parallelization in an external compositional step.
This step allows us to bind parallelization features into domain specific code
to match different target parallel platforms. Several benefits arise from our
approach including no impact in the evolution of the framework to cope with
new algorithms as well as the greater modularization of the parallelization
concerns when compared with traditional parallel programming techniques.
The overhead introduced by this loosely coupled development in terms of
performance is minimum as shown by low-level benchmarks and several case
studies.

iv

Resumo

Com a vasta comercialização de processadores paralelos e clusters actu-
ais com centenas de milhares de unidades computacionais, a programação
paralela ainda é vista como uma solução complexa e dispendiosa usada prin-
cipalmente em projectos cient́ıficos. Esta dissertação aborda esses problemas
reforçando a ideia que os programas paralelos apresentam, geralmente, falta
de modularidade. Apresentamos o estudo da Programação Orientada às
Funcionalidades (POF) como uma alternativa à programação Orientada aos
Aspectos (POA) no desenvolvimento de programas paralelos de modo a per-
mitir um desenvolvimento modular e incremental. Na abordagem proposta,
cada funcionalidade de paralelização engloba um conjunto de modificações
ao código do domı́nio na forma de refinamentos de classes, i.e., uma nova
unidade de modularização que encapsula uma funcionalidade de paralelização
bem definida.

Aplicamos com sucesso a nossa abordagem a vários casos de estudo in-
cluindo uma framework orientada aos objectos de tamanho médio perten-
cente ao campo da computação biológica. Como resultado, foi posśıvel me-
lhorar a performance da framework ao introduzir a paralelização num passo
externo de composição. Este passo permite-nos colar as funcionalidades de
paralelização em código espećıfico do domı́nio de modo a utilizar diferentes
plataformas paralelas de execução. Esta abordagem trouxe vários benef́ıcios
entre os quais a melhor compatibilidade com evolução da framework de modo
a acrescentar novos algoritmos e também na modularização das funcionali-
dades paralelas. Com este desenvolvimento desacoplado, a perda em termos
de desempenho é mı́nima como comprovado pela implementação de testes de
baixo-ńıvel e de outros casos de estudo.

vi

List of Figures

3.1 Incremental software design with Object-Oriented Inheritance. 16
3.2 AHEAD source code compilation steps. 22
3.3 Superimposition example. 25

4.1 Class Refinement example. 30
4.2 Inheritance compatibility. 31
4.3 Example of a Class Refinement Model. 32
4.4 Definition of valid combination of features. 33
4.5 Main steps of an Evolutionary Algorithm. 34
4.6 JECoLi’s simplified class diagram. 35
4.7 Typical workflow to use the JECoLi framework. 36
4.8 Layer architecture . 38
4.9 GUIDSL feature composition. 39
4.10 GUIDSL grammar specification. 40
4.11 Parallelization speed-up. 48

5.1 Benchmark code. 59

vii

viii LIST OF FIGURES

List of Tables

4.1 Execution time difference in the Island Model. 49
4.2 Execution time difference in the Parallel Evaluation. 49
4.3 JGF Benchmarks results. Speed-up of the shared memory

parallel version. 52
4.4 JGF Benchmarks results. Speed-up of the distributed memory

parallel version. 52

5.1 Static vs dynamic cross-cutting. Comparison of Approaches. . 54
5.2 Heterogeneous vs homogeneous pointcuts. Comparison of Ap-

proaches. 55
5.3 Class Refinement and Aspect. Both redefine the same method

invoking the previous defined functionality. Besides simple,
both enforces the GluonJ and AspectJ runtime systems to
change the base functionality. 60

5.4 Average results for 10 executions with and without Inline.
Time in seconds. 60

ix

x LIST OF TABLES

List of Programs

1 MD cluster based parallelization. 3
2 Java Thread example. 7
3 OpenMP example. 8
4 OpenMP example with manual loop partition. 9
5 MPI example. 10
6 AOP logging example with AspectJ syntax. 18
7 GenVoca expressions that can express mathematically compo-

sition of features. 20
8 Refinement in AHEAD. Introduction of state (field b and ex-

tension of method method1. 21
9 Example of refinement in Classbox/J. 22
10 GluonJ example of a static refinement. Demonstration of the

override and append mechanisms. 24
11 GluonJ dynamic refinement. Example of the cflow mechanism. 24
12 Class A - Base. 26
13 Cass A - New hierarchy to be superimposed. 26
14 Base code. 42
15 Traditional (tangled) approach. The class ThreadEvalAux is

an inner class used to create a thread object to compute on
a subset of the initial solution set. The method run() only
calls the original evaluate(ISolution) method that is now called
evaluateCore(ISolution). 43

16 Object-Oriented Inheritance approach. 44
17 ThreadEval auxiliary class. 45
18 AOP (AspectJ) approach. 45
19 Class Refinement approach. 46

xi

xii LIST OF PROGRAMS

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation and Objectives . 2

1.3 Thesis’ Outline . 4

2 Parallel Computing 5

2.1 Thread-based parallelism . 6

2.2 OpenMP . 7

2.3 MPI . 9

2.4 Parallel Languages with PGAS 11

3 Separation of Concerns 15

3.1 Aspect Oriented Programming 17

3.1.1 AOP implementations 17

3.1.2 Parallelization using AOP 18

3.2 FOP and Class Refinements 19

3.2.1 AHEAD . 20

3.2.2 Classboxes . 21

3.2.3 GluonJ . 23

3.2.4 FeatureHouse . 25

3.2.5 Comparison . 26

4 Parallelization with Class Refinements 29

4.1 Parallelization Model . 29

4.1.1 Compatibility with Inheritance 30

4.1.2 Parallelization Layers/Features 31

4.1.3 Composition . 32

4.2 Case Studies . 33

4.2.1 JECoLi . 33

4.2.2 Java Grande Forum (JGF) 49

xiii

xiv CONTENTS

5 Comparison of Approaches 53
5.1 Static vs Dynamic Cross-cutting 53
5.2 Heterogeneous vs Homogeneous pointcuts 54
5.3 Reusing . 55
5.4 Composition of Aspects and Refinements 57
5.5 Performance . 57

6 Conclusion 61
6.1 Future Work . 62

Chapter 1

Introduction

1.1 Context

For many years, one of the main characteristic of a Central Processing Unit
(CPU) was its frequency. The major advantage of higher frequencies is to
increase the throughput of instructions and, as a general rule, each new
generation of processors transparently increased application’s performance.
Two main problems arose from this approach [Koc05]:

1. others components have not followed this development (eg.: early 1990s,
the number of required clock cycles to access the main memory was 6
to 8 and by 2005, that number grew 20x, 224 clocks);

2. the increase of power consumption is proportional to the clock fre-
quency and this leads to heating problems.

The solution adopted to those problems is to integrate into a single CPU a
set of independent processing units (cores). With this approach, processor’s
designers no longer need to raise clock frequencies to increase computational
power.

The older variant of parallel computing but still very important today
is related to distributed computing (e.g.: Cluster) where the computation is
spread across a number of nodes connected by a high performance network.
The most important benefits of this approach are:

1. large number of nodes that can be interconnected;

2. the nodes can be composed by commodity hardware making it a low
cost solution.

1

2 CHAPTER 1. INTRODUCTION

Both multi-core and cluster computing require a different programming
style, as programmers need to specify parallel activities within applications.
Thus, the development of parallel applications requires both knowledge of
traditional programming and expertise in parallel execution concerns (e.g.:
data partition, thread/process communication and synchronization). Gen-
erally, these two concerns are mixed because the code that supports the
parallel execution is injected into the base functionality, resulting in tangled
code. Also, the lack of structure of this approach leads to scattered code
since the code to enable parallel execution is spread over different places of
the base code. Program 1 illustrates the problem of invasive modification
and tangling by showing the simplified cluster oriented parallelization of a
molecular dynamics simulation [SBO01]. In black it can be seen the base
code and in red (italic) the parallelization statements.

The problems of tangled code manifests in a variety of forms. Program-
mers may need to adapt or evolve the base code to cope with new requisites
or to improve the base code’s performance. This evolution can be compro-
mised since many parallelization features requires structural changes to the
base code. Isolate the base code from the parallelization concern is most
of the times not a trivial task. The disadvantages of tangled code are not
only at the base code. The parallelization of an algorithm may use differ-
ent approaches/models depending on the domain of the problem and the
algorithm’s codification. Since there is no catalogue with all parallelization
approaches, tangling prevents the use of different parallelization models(e.g.:
Heartbeat, Divide and Conquer). Consequently, it also prevents the exploita-
tion of different parallel platforms since the algorithm’s codification specifies
the mapping to the parallel platform.

1.2 Motivation and Objectives

Previous studies [GS09, Sob06] argue that the separation of the base func-
tionality from the parallelization structure allows :

1. better maintenance and reuse of the core functionality, reducing or
eliminating the problem of code tangling and scattering ;

2. easier understanding of the parallel structure and better reuse of the
parallel code;

3. enhancement of the parallelization structure by promoting incremental
development.

1.2. MOTIVATION AND OBJECTIVES 3

public class MD {
Particle [] one; // Vector with all particles

int mdsize; // Problem size (number of particles)

int movemx; // Number of interactions

//Declare auxiliary variables to MPI parallelization

double [] tmp_xforce;

double [] tmp_yforce;

double [] tmp_zforce;

...

public void runiters throws MPIException {

for (move = 0; move < movemx; move++) { // Main loop

for (i = 0; i < mdsize; i++) {
one[i].domove(side); // move the particles and

} // update velocities

...

MPI.COMM_WORLD.Barrier();

computeForces(MPI.COMM_WORLD.Rank(),MPI.COMM_WORLD.Size());

MPI.COMM_WORLD.Barrier();

for (i = 0; i < mdsize; i++) { //Copy forces to temp vector

tmp_xforce[i] = one[i].xforce; // to use in MPI operation

tmp_yforce[i] = one[i].yforce;

tmp_zforce[i] = one[i].zforce;

}
//Global reduction

MPI.Allreduce(tmp_xforce,0,tmp_xforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

MPI.Allreduce(tmp_yforce,0,tmp_yforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

MPI.Allreduce(tmp_zforce,0,tmp_zforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

//Update forces based in reducted values

//Scale forces and calculate velocity

}

Program 1: MD cluster based parallelization.

Aspect Oriented Programming (AOP) is a programming paradigm that
aims to modularize cross-cutting concerns [KLM+97]. It introduces a new
unit of modularization (aspect) that encompasses code that otherwise would
be scattered among the entities of the problem. It was used successfully
to separate parallelization concerns from the domain code [HG04, GS09].
In this approach, the parallelization features are coded in aspects following
the principles of the join-point model. The AOP weaving mechanism is
responsible to merge the parallelization features and the base code. The
experience gained with the implementation of several case studies [Sob06,
GS09] using AOP was the main motivation for this study. We argue that
only a small subset of AOP was used and that subset can be replaced by a
less complex mechanism based on Object-Orientated programming.

Feature Oriented Programming (FOP) is a programming paradigm that
aims to deal with the lack of software reuse and customizability [Pre97].
It promotes incremental design by defining that programs must be built

4 CHAPTER 1. INTRODUCTION

by choosing different features from a feature repository, i.e., collection of
functionalities that can be applied to any program. Our purpose is to in-
vestigate the use of FOP to build parallel programs by composing paral-
lelization features. As an alternative to the AOP approach, programmers
introduce parallelization features following the same principles of Object-
Oriented inheritance mechanisms with the difference that each feature en-
compasses a set of program increments. We explore an approach where
each increment is implemented with Class Refinements, i.e., class that in-
troduces new sate and behaviour to another class in a rewriting mecha-
nism [DBS03, SB02, DBR04, BDN05, NC08].

We argue that given the heterogeneity of parallel architectures and the
composition step provided by FOP, more complex parallel programs can be
synthesized as simply as composing feature’s layers. We expect several key
benefits of this approach :

• Ease the migration of programmers because the rules and abstractions
applied are similar as the ones found in Object-Oriented programming;

• Incremental development of parallelization features. More complex fea-
tures can be developed by the composition of simple ones (e.g.: hybrid
models);

• Independent development both of the base code and the parallelization
features.

1.3 Thesis’ Outline

This document is structured as follows. Chapter 2 presents the traditional
methodologies, main libraries and parallel languages used to develop shared
and distributed memory parallel applications. The main focus is to discuss
their ability to allow incremental development and separation of concerns.
Chapter 3 focuses in published research regarding the use of separation of
concerns that can be applied to parallel programming. Aspect Oriented
Programming, Feature Oriented Programming and tools implementing those
concepts will be discussed. We present a parallelization model and its ap-
plication to several case studies in chapter 4. Chapter 5 compares our FOP
based approach against the introduction of parallelization using AOP. The
conclusion of this work and the future lines of research are presented in chap-
ter 6.

Chapter 2

Parallel Computing

Parallel computing is becoming increasingly important for obtaining high
performance from a computer system. The number of processing cores is
expected to double every eighteen months [AL07] and advances in the semi-
conductor industry allows the development of smaller dies1 that allows, for
instance, the reduction of energy consumption in newer generation of proces-
sors. One of the great benefits is the increase number of nodes in computing
clusters2.

Parallelization is the process of decomposing large computations (e.g.:
iteration loops) by several entities so that each entity computes a subset of
the problem concurrently with all others. The main purpose is to reduce
the computing time. It can be implemented in two distinct programming
models. Shared memory parallelization is implemented via thread-level par-
allelism where the communication among threads is done by shared data
structures. Distributed memory parallelization is characterized by process-
level parallelism where a process is an entity with its own physical memory
space and communication is done by message passing. The popularity of
computing clusters composed by multi-core processors motivated the use of
hybrid models that are a mixture of shared with distributed memory model.
This kind of model can better conciliate the advantage of the locality of data
and low-latency communication between cores in a processor with the larger
number of nodes supported in a distributed memory architecture.

The study of fully automatic parallelization using compilers is far from
an efficient technique to introduce parallelization mainly because compilers
have a limited scope. Most of the parallelization is done by modifying the
algorithm’s structure and that kind of parallelism can only be introduced by

1Term used in integrated circuits to refer to blocks of semiconducting material.
2Modern clusters have a few thousand nodes with hundreds of thousands of processing

cores.

5

6 CHAPTER 2. PARALLEL COMPUTING

the programmer. For instance, the solution generated by parallel algorithms
can be at most an approximation comparing with the solution generated by
the sequential algorithm. This happens because some algorithms have par-
allelization blockers, i.e., the algorithm’s codification does not allow parallel
execution. One example is a dependency between iterations in a loop where
the computation of the next iteration depends on the previous. A solution
for such problem can force the relaxation of the algorithm. This is strictly a
programmer’s decision.

In the next subsections we introduce mainstream parallel programming
models, libraries and languages that represent an efficient solution over the
traditional approach by hiding most of the underlying complexity (e.g.: com-
munication issues or thread/process creation) and offering a good set of ab-
stractions for typical problems.

2.1 Thread-based parallelism

A natural way to implement a parallel program is to use the programming
language mechanisms to support, for instance, multi-threading. Thus, thread
creation and synchronization mechanisms are examples of tasks that have to
be explicitly used or implemented. Current specification of the Java language
defines two standard ways to specify a new execution flow (thread) :

• Runnable Interface : this interface only defines one method with
the signature public void run(). Implementations of this method cor-
respond to the code that is executed in the new execution flow;

• Thread extension : Classes extend the class Java.lang.Thread and
override the method public void run(). This class already implements
the interface Runnable. Spawning a thread is made by executing the
method start in the subclass object.

Program 2 illustrates the thread creation mechanism using a Runnable
object. The object t is created using an anonymous Runnable object passed
to a Thread constructor. The method start() defines the start point where
the new thread is launched. There are other more advanced mechanisms to
manipulate thread creation. For instance, in a program that heavily relies
on thread creation and destruction, the use of Executors and Thread Pools
can be a great benefit. A more detailed view can be found at [GP].

Modern programming languages support multi-thread and offer abstrac-
tions to manipulate threads. The traditional approach to parallelization
mixes the previous artefacts that manipulate execution flows with the base

2.2. OPENMP 7

Thread t = new Thread (new Runnable () {
@Override
public void run () {

//method body
}

}) ;

t . s t a r t () ;

Program 2: Java Thread example.

code. Once the domain code is populated with artefacts regarding the par-
allelization concerns, modularity is lost. This doesn’t allow, for instance, to
change the parallelization to match other target platforms (e.g.: Distributed
Memory) or to perform incremental development to enhance the paralleliza-
tion or the domain code. Both codes are glued and dependent on each other.

2.2 OpenMP

Open Multi-Processing (OpenMP)[CDK+01, CJP07] is a standard multi-
platform model for programming multi-threaded applications in a shared
memory architecture in C, C++ and Fortran. It offers an Application Pro-
gramming Interface (API) that consists in a set of compiler directives (anno-
tations) and a supporting library of subroutines. Sections of the source code
are annotated using OpenMP compiler directives.

The abstraction provided by OpenMP hides different levels of complexity
ranging from thread creation, communication and synchronization to the use
of work-sharing constructs. In a more detailed view, program execution starts
with a single thread (master thread) and this behaviour only changes when
the execution flow finds a parallel region. A parallel region is a delimited
block of code that will be executed by a team of threads where each thread
has an unique identification (master-thread has id 0). To divide the work
among threads, OpenMP provides the for work-sharing construct that splits
the computation in a for-loop depending on the schedule policy [CDK+01].
For instance, iterations can be divided equally by all threads (static sched-
ule) or dynamically where iterations are assigned to threads as they request
them 3. Synchronization mechanism are also provided inside parallel regions

3A chunk size parameter can be used to define the minimum number of iterations
each thread computes.

8 CHAPTER 2. PARALLEL COMPUTING

to control the parallel execution. Definition of an ordered execution (omp
ordered) restricts an arbitrary block of code inside a for work-sharing con-
struct to be executed sequentially and ordered based on the id of each thread;
omp single restricts the execution of a block of code to only one thread (any
thread) or only the master thread (omp master). Mutual exclusion and bar-
rier synchronization is achieved by omp critical and omp barrier, respectively.

In Program 3 is shown an OpenMP example for a C program. The
omp parallel creates a parallel region with an arbitrary number of workers
(by default it is the number of cores in a CPU) and the omp for splits
the computation dynamically among all workers. The second parameter
is related to the for scheduling. In this case, the value 2 means that each
thread computes two iterations at a time before requesting more computation
(dynamic schedule).

#pragma omp p a r a l l e l
{

#pragma omp for s chedu le (dynamic , 2)
{
for (int i = 0 ; i < N; i++)
//Some computation . . .

}
}

Program 3: OpenMP example.

The generic solution provided by the for construct is insufficient to solve
all scheduling policies. Sometimes it is necessary to use each thread iden-
tification to access data based in pre-computed indices to specify how loop
iterations are assigned to workers. Program 4 illustrates this problem by
showing an example of the implementation of a sparse matrix-matrix multi-
ply. The arrays base and limit contain, for each index, a start and a finish
position, respectively, that corresponds to indexes in two arrays: row and
col. Each thread executes a subset of the iterations of the for loop based in
the pre-computed indexes that are defined in the arrays base and limit, i.e.,
base[i] and limit[i] contain the start and finish positions for the thread with
id i.

There are attempts to recreate an OpenMP interface for Java. JOMP [BK00]
was the first attempt and it was seen as a source code transformation tool
because in order to use it, standard Java comments are used. Other ap-
proach [KVBP08] extended the previous work and introduced new mecha-
nisms and thus took advantages of Object-Orientation and Java concurrency

2.3. MPI 9

#pragma omp p a r a l l e l
{

int id = omp get thread num () ;
for (int i = base [id] ; i < l im i t [id] ; i++)

y [row [i]] += x [c o l [i]] ∗ va l [i] ;

}

Program 4: OpenMP example with manual loop partition.

libraries. JPPAL [Sou09] is a library that implements the most common
OpenMP mechanisms (e.g.: parallel section and parallel for). It takes ad-
vantage of Java annotations to indicate methods that can be potentially used
to introduce parallelization.

Although OpenMP has been gaining popularization and it is the de-facto
standard [CDK+01] for multi-threaded programming, it does not solve the
problem of separation of concerns in parallel applications [HG04]. Since
OpenMP directives are mixed with the base code, the parallelization feature
created has to be spread over and repeated for different entities of the prob-
lem. An example is the problem presented in program 4 where, instead of
refining the default scheduling policy, OpenMP forces the programmer to use
a different construct. This results in invasive modification of the base code.
This increases the problem of code scattering because changes in data parti-
tion or loop scheduling, for instance, have to be made in all affected entities
of the problem that uses OpenMP directives. For larger problems, with the
need to use class inheritance, for instance, solutions like the JPPAL library
that relies in Java annotations suffer from the disadvantage of derived class
do not inherit the annotations used in classes higher in the class hierarchy.

2.3 MPI

Message Passing Interface (MPI4) is an API for high performance communi-
cation. It is used to express parallelization concerns in distributed memory
environments (e.g.: Cluster) using the Single Process Multiple Data (SPMD)
technique. This programming model is based in the concept of multiple in-
stances of the same program executing in parallel, where each instance is a
process with its own address space and a unique identification. Hence, on
an MPI program, each process manipulates its own data and communication

4See http://www.mpi-forum.org

10 CHAPTER 2. PARALLEL COMPUTING

with other processes (eg.: data exchange or synchronization) is done by in-
terchanging messages (also called two-side communication) that circulates in
high performance networks (e.g.: Myrinet or Infiniband).

Implementations of MPI are available for a different number of computer
languages (e.g.: C, C++, Fortran and Java) despite variations of perfor-
mance [JCSG99]. Program 5 shows an example (C language) of the skeleton
of an MPI program. Lines 1 and 8 define a section that will be executed
by all processes. Each process can obtain its own unique identification and
the computation can be split based on the identification number. This is an
example that illustrates the use of the SPMD technique.

MPI processes communicate by exchanging messages (eg.: MPI Send and
MPI Receive). Messages can be sent directly to other processes based on the
identification number of the destination process or they can be sent to all
processes in an efficient way (e.g.: MPI Broadcast). Processes can be orga-
nized into communication groups (ex.: MPI COMM WORLD) for reducing
the traffic in the network and provide an efficient and clean abstraction.

To help the communication protocol, each message contains a tag and,
for instance, processes can block waiting for a message with a specific tag. In
program 5, line 1 marks the beginning of the MPI program that is executed by
all instances. The process with Id = 0 waits until it receives one message from
every other process (lines 2 to 4; for simplicity, it is assumed any message).
The others processes do some work and when they finish, each one sends a
message to the process with Id = 0 (lines 5 to 7).

1 MPI Init(&argc , &argv) ;
2 i f (myId == 0) {
3 while (cont < numberOfProcesses −1)
4 cont++; MPI Receive (. . .) ; }
5 else {
6 dosomework () ;
7 MPI Send (. . .) } ;
8 MPI Final ize () ;

Program 5: MPI example.

MPI programs are used to solve large scale problems and to take advan-
tage of the great number nodes in computing clusters. Recent MPI imple-
mentation can even use low-latency communication via Operating Systems
(OS) when processes are running in different cores of the same processor.

In terms of separation of concerns, once the code is populated by MPI
instructions, it is hard to reuse or even understand the sequential code be-

2.4. PARALLEL LANGUAGES WITH PGAS 11

cause of the changes that are necessary to cope with the distributed mem-
ory paradigm. For instance, code to express data partition, synchronization
mechanisms and data exchange is mixed with the base code. Moreover,
reusing the parallel feature is also hard because the code is written all-at-
once.

2.4 Parallel Languages with PGAS

Several parallel languages have been developed over the years with differ-
ent purposes. A great number of those languages is used to program in the
SPMD model and offer abstractions over creation of processes and communi-
cation concerns. From these languages, a subset of them is gaining popularity
because they rely on the Partitioned Global Address Space (PGAS) model.
This model, unlike the traditional distributed memory model presented in the
previous subsection, offer a global view of memory to the programmer. This
global address space abstracts the programmer from thinking on distributed
processes computing on local data and communicating with message passing.
The set of languages designated by PGAS languages simplifies the program-
ming task by offering a shared memory abstraction to distributed memory
programming. Access to non-local memory references is dealt transparently
by the compiler by generating all communication code to data exchange
between distributed processes. Some relevant languages implementing this
model are :

Co-Array Fortran (CAF) [NR98]. It was the first PGAS language and
it is current part of the Fortran specification. The solution adopted by
the CAF developers is to give array data structures a new dimension
(i.e.: co-array). This new dimension can be seen as an array where
programmers have the ability to access different copies of the same
data structure (i.e.: different position in the co-array dimension) but
in other distributed processes. Communication code is automatically
generated by the compiler. This is a simple and elegant solution to
abstract over processes’ communication.

Unified Parallel C (UPC) [CDC+99]. It is an explicit parallel extension
to ISO C developed by a consortium of vendors and universities. It
defines two types of memory accesses. Shared memory refers to the
global address space (i.e.: distributed data) and private memory is
local to each thread 5. UPC creates a new semantic to C pointers.

5Note that each thread has a segment of shared memory that is private because it was
allocated by the thread process

12 CHAPTER 2. PARALLEL COMPUTING

Pointers to data structures can be defined shared or private. A shared
pointer can reference memory only in the shared space by a given data-
thread affinity. A private pointer can reference data in the private
memory or in the bounds of shared memory in each thread. UPC also
provides global operations like the upc forall where the computation of
a loop is divided by all the distributed processes. UPC abstracts the
programmer from the communication task (generated by the compiler)
between program instances relying in a disguised but simple shared
memory paradigm.

Titanium [YSP+98]. It is an extension to Java that is translated to C
so there are some Java mechanisms not available because of there is
no Java Virtual Machine (JVM). It has a memory model similar to
UPC and offers a large set of global synchronization and computation
operations over partitioned data. One of those mechanisms is the fore-
ach loop that splits the computation among all processing entities (i.e.:
distributed processes) and all the communication code is dealt by the
compiler.

PGAS languages offer an abstraction over communication and data dis-
tribution in a higher level compared with traditional languages. They offer
a shared memory environment to develop large scalable applications in dis-
tributed memory environments. Communication is handled by compilers and
these languages use a model called one-side communication. In simple terms,
implementations like GASnet [Bon02] offer an API to handle communication
where just one entity makes part in the communication operation (i.e.: one-
side). The other entity is passive and memory access in transparently held
by the communication layer.

Although parallel languages are evolving and including new abstractions,
the abstractions they provide do not include separation from the base code
and the parallelization itself. More particularly, parallel languages have an
intrinsic disadvantage. They tend to inhibit programmers that are used to
mainstream languages because the need to learn a new memory model, new
abstractions and generally a new syntax. Moreover, parallel programs are all
about performance and most of the times, tuning a program is a difficult task
without a great knowledge of the language, i.e., how the code is generated
and what are the most efficient constructs. Thus, high level languages suffer
from tangling when the programmer wants to fine-tune performance for his
specific problem. This, when possible, usually implies resorting to low level
mechanisms, introducing tangling as it was shown in the OpenMP example
in program 4. One of the aims of this study is to improve modularity in the

2.4. PARALLEL LANGUAGES WITH PGAS 13

development of parallel programs in a mainstream Object-Oriented language
by moving all performance related concerns into new units of modularity.

14 CHAPTER 2. PARALLEL COMPUTING

Chapter 3

Separation of Concerns

Early works studied the benefits of modularization in software development
[Par72, Dij78, Par79]. Properties like maintainability, reusability and exten-
sion are very important and not always achieved even in modern program-
ming paradigms (e.g.: Object-Oriented Programming (OOP)).

Inheritance in Object-Oriented Programming is a fundamental relation-
ship mechanism to promote reuse of basic entities while encapsulating the
implementation of common functionalities. Classes inherit functionality and
state from a single parent class (Single Inheritance) or multiple parents (Mul-
tiple Inheritance). In the remainder of this dissertation, we refer to inheri-
tance in OOP as the implementation of single inheritance where subclasses
specialize the behavior of the parent class, i.e., subclasses can add or modify
inherited behaviour from parent classes1. This specialization relationship is
static because the relation between parent classes and subclasses is glued in
the subclass definition. This creates a chain or class hierarchy where sub-
classes can refer to their parents by using super. The class hierarchy does not
work in the other way, i.e., parent classes have no information about their
respective subclasses. This mechanism is relatively simple compared with
multiple-inheritance in C++ and other mechanisms like CLOS [BC90] where
classes need to invoke a special function name call-next-method to visit other
classes in the inheritance chain.

Object-Oriented inheritance has been extensively used in OO applications
but it fails to cope with variability of program increments. Each increment
extends a previous entity (parent class) and can define new state and be-
haviour. Thus, program increments are statically defined in a class hierarchy,
i.e., the information about the parent class is hard coded in the subclass defi-
nition. Later, the access of the new behaviour or state defined in the subclass

1This inheritance mechanism is the one implemented in modern Object-Oriented lan-
guages like Java and C#.

15

16 CHAPTER 3. SEPARATION OF CONCERNS

has to be done explicitly by using the name of the subclass for instantiation.
As an example of this problem, figure 3.1 shows the use of OO inheritance to
separate the parallelization concern shown in program 1. Figure 3.1(a) repre-
sents the base class hierarchy where Class MD contains a set of references to
Particles. The class Benchmark is responsible to instantiate the Class MD to
configure the molecular dynamics simulation and to execute the method that
starts the simulation. The use of traditional OO inheritance to encompass
parallel execution in distributed memory (MPI) is shown in figure 3.1(b).
The creation of two subclasses (Class MD MPI and Class Particle MPI) is
needed to introduce the parallelization feature reusing the base functional-
ity [AS10]. In order to use the MPI feature, the class Benchmark needs to
be changed to instantiate the class MD MPI. Clearly, this solution does not
scale if we want to encapsulate several parallelization mechanisms to match
different target platforms (e.g.: Cluster or Multi-core), each in its own mod-
ule (e.g.: subclass) because it is required to make changes to client modules
to compose them.

(a) Base class representation. (b) Extended class representation.

Figure 3.1: Incremental software design with Object-Oriented Inheritance.

This dissertation covers exclusively the study of methodologies and tech-
nologies that introduce modularization improvements in Object-Oriented
programs. More specifically, we focus on the separation of the parallelization
concern from already implemented algorithms. We argue that the code to
enable parallel execution of an algorithm should be encapsulated in its own
module. Ideally, modules encompasses platform specific mappings that can
be composed to create more sophisticated parallelization models that can
take advantages of the heterogeneity of some parallel architectures.

3.1. ASPECT ORIENTED PROGRAMMING 17

In the remainder of this chapter, we present different approaches that
allow modularization improvements in Object-Oriented programs.

3.1 Aspect Oriented Programming

Object-oriented programming is a successful paradigm supported by most of
today’s modern languages. That success came mainly from the fact that the
object model better suits real domain problems[KLM+97].

Aspect Oriented Programming[KLM+97] aims to separate and modular-
ize cross-cutting concerns that are not well captured by the Object-Oriented
(OO) approach. Aspects are units of modularization that encapsulate code
that otherwise would be scattered and tangled with the base code.

Cross-cutting concerns can be either static or dynamic. Static cross-
cutting allows the redefinition of the static structure of a type hierarchy.
For instance, fields of a class can be added or an arbitrary interface can be
implemented. For dynamic cross-cutting, AOP introduces the concepts of
join point and advice. Join point is a well defined place in the base code
where arbitrary behaviour can be attached and advice is the piece of code to
execute when a join point is reached. A set of join points can be defined by
the use of the pointcut designator that allow the use of logical operators to
define set of points in the program flow.

Weaving is the mechanism responsible to compile the aspects. It will
merge both the aspects and the base classes. This process can be done either
in the compilation phase or during class loading.

In program 6 is shown an example of AOP with AspectJ. This aspect
shows the use of dynamic cross-cutting by tracing calls to the method De-
posit defined in Bank class that have one argument of type int (line 3).
This line corresponds to the definition of a poincut. Before method calls to
Bank.Deposit (line 5), a piece of advice is executed. Lines 6 and 7 correspond
to the advice.

3.1.1 AOP implementations

There are many AOP implementations for a large number of programming
languages. We will list only the main AOP implementations2 for the most
common Object-Oriented languages.

2JBoss AOP and Spring AOP are important implementations but its use goes beyond
the scope of this study.
A comparison of AOP implementations can be found at
http://www.ibm.com/developerworks/java/library/j-aopwork1/

18 CHAPTER 3. SEPARATION OF CONCERNS

1 public aspect Logging {
2 int count = 0 ;
3 pointcut depos i t () : ca l l (void Bank . Depos it (int)) ;
4
5 before () : d epo s i t () {
6 Logger . l og (. . .) ;
7 count++;
8 }
9 }

Program 6: AOP logging example with AspectJ syntax.

• AspectJ[KHH+01] is the most mature and the most accepted AOP
implementation.

• CaesarJ[AGMO06] tries to address some of the problems mentioned
earlier that Object-oriented approaches do not suit. It is strongly fo-
cused on reusability but one of the main drawbacks[SM08] is the fact
that CaesarJ does not support Java features introduced after the sec-
ond main revision (Java 2);

• AspectC++ was developed with the aim of create the first aspect ori-
ented extension for languages like C and C++. It was argued[SGSP02]
that most embedded systems were being developed using languages like
C++ because the lack of resources to deal with the overhead created
by the Java runtime system. AspectC++ was based on AspectJ and
shares the most part of the concepts introduced by the last one.

3.1.2 Parallelization using AOP

The main idea behind of the first work published about parallelization us-
ing AOP[HG04] was to use the potential provided by AOP to separate the
mathematical model from scientific applications and the parallelism itself.
That approach was applied to programs presented in the Java Grande Fo-
rum (JGF3) benchmark.

All algorithms requires different amounts of refactoring in the base code.
That need is justified[HG04] from the facts:

1. The design of the application is a fundamental issue for the use of
AOP. For instance, the use of an Object-oriented language does not
mean that the program has a well defined Object-oriented structure;

3See http://www.epcc.ed.ac.uk/javagrande

3.2. FOP AND CLASS REFINEMENTS 19

2. The join point model offered by AspectJ does not support fine grain
(e.g.: instruction level) join points. For instance, it is not possible to
intercept iterations in a loop structure.

The work is also important because it proved that it is possible to separate
the parallelization feature from the base code in scientific applications using
AOP.

Another approach that used AOP with parallel applications defined a
methodology that allow a better modularization of parallel programs and
enables a more incremental application development[Sob06]. It was pos-
tulated that parallelization concerns can be divided into four categories :
function or/and data partition, concurrency, distribution and optimization.
This division allows (un)pluggability of concerns. Given that each concern
is implemented in a separated module, any combination of modules can be
plugged or unplugged or switched by another one.

A library[CSM06] of reusable aspects was also developed to implement
a collection of common concurrency patterns. Examples of those concur-
rency patterns are : one-way, futures, barriers, etc. . . Higher modularity, re-
usability, understandability and (un)pluggability are the key benefits claimed.
This library is an alternative to the development of concurrent applications
without using Java concurrency constructs directly. Adding concurrency as
an incremental feature makes the application more modular and easier to
debug.

Purushotham V. Bangalore presented a work[Ban07] that uses AOP to
parallelize a distributed matrix-matrix multiply algorithm. Unlike the two
previous approaches, the language chosen was C++ and AspectC++ the
AOP language. Communication and synchronization concerns were cross-cut
allowing the algorithm’s core to be isolated from the explicit use of the com-
munication library (MPI). The results showed that there was no significant
loss of performance from the use of AspectC++ compared to a hand-written
solution.

3.2 FOP and Class Refinements

Feature Oriented Programming (FOP) is a programming technique that relies
in program synthesis by composition of features. Conceptually, a feature is
an increment in program functionality, i.e., a new service. Features can
be implemented using several alternatives [Pre97, SB02, DBR04, ALS06,
AKL09].

20 CHAPTER 3. SEPARATION OF CONCERNS

The concept of refinement4 has a broader scope and can be used not
only to refer to the addition of code, i.e., code refinement, but it can also
encompass [DBR04] the addition of documentation, makefiles or any other
entity in a software project. Entities other than refinement of code are out
of the cope of this dissertation.

We refer to Class Refinements as an incremental change to a base
class where new specialized behaviour is introduced without creating a new
entity. It can be seen as a function that map classes-to-classes where new
behaviour is introduced in a rewriting mechanism. In the next subsections
we present and discuss tools that implement class refinements in Object-
Oriented environments.

3.2.1 AHEAD

Algebraic Hierarchical Equations for Application Design (AHEAD) [DBR04]
is an architectural model that allow refinements of both code and non code
artefacts. Refinements are feature additions using a set of equations based in
the GenVoca [BO92] design methodology. Programs are represented by con-
stants and refinements are functions applied to those programs. Program 7
represents this strategy.

b // Program with f e a t u r e b

f (b) // add i t i on o f f e a t u r e f to program b
app = f (b) // Program with f e a t u r e f and b

Program 7: GenVoca expressions that can express mathematically compo-
sition of features.

Refinements in AHEAD can be feature additions in the form of source
code or other representations like makefiles or project documentation (e.g.:
XML or HTML data). The feature composition operator is polymorphic
in the sense that refinements are implemented depending on the source of
the entity, i.e., each refinement type (e.g.: source code) will have an unique
implementation. Thus, it is possible to have an application composed by
source code, makefiles and documentation and be described in the same
GenVoca expression.

AHEAD implements code refinement in the Java language by source code
transformation. It extends the Java language to cope with refinements and

4Refinements can be used in different applications or contexts (e.g.: Refinement Cal-
culus).

3.2. FOP AND CLASS REFINEMENTS 21

other mechanisms that are out of the scope of this study. Jak [BLS98] is
the result of that extension and it is a superset of Java. The Jak language
introduces some keywords to allow the refinement mechanism. To the com-
prehension of the refinement mechanism, we discuss only two :

• refines. This new keyword is used to identify a new feature or re-
finement. Program 8 shows an example of a refinement where the
method1(int) in the base class A is extended;

• super(). The super keyword has the same meaning as in Java or C#.
It is a mechanism to reuse the code defined in the parent class.

ref ines class A {
int b ;

public void method1 (int a) {
super . method1 (b) ;
. . .

}
}

Program 8: Refinement in AHEAD. Introduction of state (field b and ex-
tension of method method1.

The process to compile an AHEAD program is done in three steps:

1. Merge all refinements being applied to each class into new classes still
in the Jak format. This process can be done using one of two available
tools : mixin or jampack;

2. Compile the generated Jak classes into Java classes;

3. Use a Java compiler to generete the corresponding Java bytecode.

This process is presented graphically in figure 3.2.

3.2.2 Classboxes

Classboxes [BDNW05] were introduced to solve problems in Object-Oriented
solutions caused by unanticipated changes to the class hierarchy. For in-
stance, duplicated code in suboptimal class hierarchies.

22 CHAPTER 3. SEPARATION OF CONCERNS

Figure 3.2: AHEAD source code compilation steps.

The solution proposed is the creation of a unit of modularity (classbox)
with some special properties. In this section, classboxes will be explained
by its implementation, Classbox/J [BDN05] that implements the classbox
mechanism for Java :

1. Inside a classbox, classes can be defined, imported and refined. Classes
can only be defined in a unique classbox but can be refined and im-
ported by others classboxes. Refinement is the property that allows
the addition and modification of classes features;

2. A refinement inside a classbox is only visible to that classbox and
others classboxes that directly or indirectly import the refined class.
This mechanism is possible because the import clauses are transitive
in Classbox/J;

3. Local refinements have precedence over imported refinements.

package RefinementExample ;
import s r c . Example ; //Class t ha t w i l l be r e f i n e d

refine Example{
private St r ing name ; // F i e l d Addi t ion
@Override
public void example () { //new code}

}

Program 9: Example of refinement in Classbox/J.

Program 9 shows an example of refinement. The field name was added
and the method example() overrides the original behaviour. It is possible,
however, to use the behaviour of the method in the base class by using the
reserved keyword original().

3.2. FOP AND CLASS REFINEMENTS 23

Applying the refinements directly to the original class having control of
the scope of change is a powerful mechanism. It is a mechanism that allows
the manipulation of cross-cutting concerns.

Classbox/J is a prototype and thus its implementation shows an incre-
ment in the execution cost (22 times slower) [BDN05]. The problem is related
to exposing the context of a method call in the Java bytecode. Another imple-
mentation [BDW03] showed that the use of classboxes brought little overhead
(about 1.2 times slower) when implemented in the Smalltalk virtual machine.

3.2.3 GluonJ

To address the rapid evolution of software and to minimize the efforts in
software extension, Shigeru Chuba [NC08] developed a tool/mechanism that
extends the Java language allowing a static and dynamic redefinition of an
existing class. These extensions are made in a new unit of modularity, the
class refinement. A class refinement can be seen as a standard Java subclass
where new fields, methods and interfaces can be applied to a parent class.
Methods of the parent class can be also extended or overridden using the
same semantics as Java inheritance except for class methods (static methods)
where, instead of method hiding5, GluonJ implements method overriding.
This is a comprehensible decision because GluonJ introduces modifications
directly to the base class using Javassist [CN03]. Javassist is a tool that
provides high level abstraction to deal with Java bytecode. The Java bytecode
of classes in a base hierarchy are manipulated in load-time by the GluonJ
runtime system depending on the definition of the class refinements.

Class refinements are defined using Java annotations, thus, they can be
compiled like the base classes with a standard Java compiler (e.g.: javac).

Program 10 shows an example of how to create a class refinement and how
to override and append a new method in an existing class. Line 1 corresponds
to the creation of a @Glue class. This class can encompass several class
refinements that can be applied to different classes or the same class. In
the latter case, the order in which the class refinements are written is the
order used by the GluonJ runtime system. Line 2 shows how to define a class
refinement. In this example, Point2 is a class refinement of class PointImp,
i.e., state and behaviour defined in Point2 will be introduced by the GluonJ
runtime system to the class PointImp. Lines 3 to 8 shows the definition of

5Method hiding is a mechanism implemented in Java that allows subclasses to have
class methods with the same signature as methods defined in the parent class. In these
circumstances, casting a subclass instance to the type of the parent class makes that
invocations to these static methods are made in the parent class while overridden methods
are called in the subclass.

24 CHAPTER 3. SEPARATION OF CONCERNS

a method movePoint() that extends the implementation from the PointImp
class by introducing the println instruction before calling the original method.
Another refinement is the introduction of a new method called resetPoint()
(line 9 to 11). To perform calls to new methods introduced by a refinement,
it is required that the target object be casted to the refinement class type
since it is not possible to directly instantiate a class refinement.

1 @Glue class GluonJTest{
2 @Refine public stat ic class Point2 extends PointImp {
3 @Override public void movePoint (int x , int y) {
4 System . out . p r i n t l n (’ ’ Point w i l l move ’ ’ + x
5 + ’ ’ in xcoord inate ’ ’ + y
6 + ’ ’ in ycoord inate ’ ’) ;
7 super . movePoint (int x , int y) ;
8 }
9 public void r e s e tPo in t () {
10 xCoordinate = 0 ; yCoordinate = 0 ;
11 }
12 }
13 }

Program 10: GluonJ example of a static refinement. Demonstration of the
override and append mechanisms.

Another mechanism implemented is called dynamic refinement. With dy-
namic refinements, the behaviour defined in class refinements is only applied
to a base class during specific contexts. For instance, as shown in program 11,
the method resetPoint() is only available during the execution of the control
flow of method clean(), i.e., on calls from the method Point.clean().

@Cflow (” void Point . c l ean () ”)
@Glue class GluonJTest{

@Refine public stat ic class Point2 extends PointImp {
public void r e s e tPo in t () {

xCoordinate = 0 ; yCoordinate = 0 ;
}

}
}

Program 11: GluonJ dynamic refinement. Example of the cflow mecha-
nism.

3.2. FOP AND CLASS REFINEMENTS 25

3.2.4 FeatureHouse

FeatureHouse [AKL09] is a general framework and architecture model that
relies in the concept of superimposition to compose software artifacts. The
superimposition mechanism implemented in FeatureHouse corresponds to the
process of decomposing software artifacts into feature trees and software com-
position is made by merging their corresponding substructures. Figure 3.3
illustrates the superimposition mechanism by showing how two source code
packages are merged. Figure 3.3(b) is superimposed to the base hierarchy
(Figure 3.3(a)). The junction of the two hierarchies is shown in figure 3.3(c).

(a) Base hierarchy (b) Hierarchy to superim-
pose

(c) Superimposed hierarchy

Figure 3.3: Superimposition example.

However, this example also shows that both initial hierarchies have the
same node, i.e., the same class (A). The superimposition mechanism deals
with this particularity at source code level. This can be seen as a rewrit-
ing mechanism where two or more hierarchies can be merged to generate a
final hierarchy that encompasses the modifications introduced by each com-
posed hierarchy. Hence, this superimposition mechanism can be used to
implemented refinements where each new hierarchy introduces an incremen-
tal change. Programs 12 and 13 illustrates superimposition at source code
level with a simple example of parallelization. The superimposition of the
hierarchies creates a parallel version of the method2.

FeatureHouse does not introduce explicitly the notion of base hierarchy
because superimposition generically does not distinguish each feature tree.
However, sometimes it is necessary to stablish order in the superimposition.
The latter example is an example of this case where one of the classes calls
the original method (Program 13). Original is not a language extension

26 CHAPTER 3. SEPARATION OF CONCERNS

but a mechanism to implement order in superimposition by allowing method
extension and refinements.

package s r c ;
public class A{

private void method1 () { . . . }
public void method2 () {

for (int i = 0 ; i < N; i++){
//Computation

}
}

}

Program 12: Class A - Base.

package s r c ;
public class A{

public void method2 () {
Thread [] l i s t = new Thread [NT] ;
for (int i = 0 ; i < NT; i++){

l i s t [i] = new Thread (new Runnable () {
@Override
public void run () {

o r i g i n a l () ;
}

}) . s t a r t () ;
}

}
}

Program 13: Cass A - New hierarchy to be superimposed.

FeatureHouse is open to the integration of new languages based in their
grammar and new software artefacts to implement superimposition opera-
tors. This mechanism makes FeatureHouse an interesting implementation to
superimposition and more detail can be found at [AKL09].

3.2.5 Comparison

All refinement implementations presented earlier try to introduce modular-
ization improvements over Object-Oriented applications. We present a com-

3.2. FOP AND CLASS REFINEMENTS 27

parison using properties that we believe are fundamental to achieve an im-
provement on separation of concerns in Object-Oriented programs. More
particularly, properties that can leverage on the construction of parallel pro-
grams by incrementally adding parallelization features to a sequential base.

Source code transformation. We believe that a tool that relies in ex-
ternal scripts have an intrinsic disadvantage. They do not take advan-
tages of Integrated Development Environment (IDE) that are popular
nowadays. For instance, IDEs can check compile-time errors while the
programmer is coding. GluonJ is the only tool that complies with
the host language (Java) rules (e.g.: inheritance rules or type casts).
The other tools relies on externals program to generate code to be
compiled. This process can be tedious while debugging an application
since changes cannot be made in the generated code to avoid different
versions of the same code (i.e.: code generated being different of the
original code).

Original access : fundamental to build software incrementally. All tools
allow access of the original behaviour. AHEAD and GluonJ use super()
to conform with Java or C# nomenclature and the other use original.
There is virtually no difference in terms of use.

Unit of modularity : all tools create a new unit of modularity. Thus,
changes or increments are well encapsulated. We argue that the nature
of FeatureHouse can be a disadvantage regarding a new unit of modu-
larity because to support incremental changes, the programmer has to
clone the package hierarchy every time he wants to add a new feature
in a cumbersome process.

Composition : extremely important to scale the development of large pro-
grams. It is the base of Feature-Oriented Programming because FOP
relies in the development of programs by feature composition. Thus,
it is specially important in our study because refinements are used to
codify parallel concerns separated from the base code. For instance,
those concerns can be used to match different target platforms (e.g.:
Shared memory or Distributed memory). All tools claim to have been
successfully used in large scale projects. AHEAD is probably the most
known and it is an interesting example because AHEAD was used to
build the tools that implements the AHEAD model [DBR04]. Compo-
sition in AHEAD is achieved using jampack or mixin tools applied to a
set of refinements (section 3.2.1). These tools create a single interface
or class containing all the features applied(jampack) or in the case of

28 CHAPTER 3. SEPARATION OF CONCERNS

mixin, an inheritance/refinements hierarchy. FeatureHouse decomposes
software artifacts into feature structure trees and apply a superimpo-
sition mechanism to merge their corresponding nodes. The level of
granularity can go from packages to classes up to code. In the latter
case, FeatureHouse implements order in composition by the introduc-
tion of a keyword original(). Composition in GluonJ is achieved by
the use of a special @Glue class containing only the inclusion of refer-
ences to previous defined class refinements preceded by the annotation
@Include. This class is then passed to the GluonJ runtime mechanism.

Performance : critical issue in parallel programming. The separation
of concerns overhead has to be minimal. AHEAD and FeatureHouse
claim little overhead since the source code transformation tool tries to
inline method calls in method extensions. The overhead in Classbox/J
is problematic [BDN05] to be used in real-life applications. GluonJ’s
overhead is studied in detail in section 5.5.

Readability : one of the benefits of separation of concerns. This property
comes along with the benefit of locality of changes. It is important to
distinguish where and how refinements affects the base program. All
tools offer good readability but we think that FeatureHouse is worse
than the others because there is no special treatment for the software
increment with the exception of the use of the original keyword in meth-
ods bodies. AHEAD and ClassBox/J introduce the keyword refines
to define an increment/evolution while GluonJ uses Java annotations
(e.g.: @Refines). Methods can also be annotated with @Override and
validated by the IDE or compiler.

From the analysis of the tools presented, we opted to use GluonJ to
implement class refinements. The decision was made in the ability of GluonJ
to implement class refinements by the extension of a popular Object-Oriented
language, Java. Moreover, class refinements are implemented like subclasses,
thus having valid types that can be used to check compile-time errors. This
can be extremely helpful in the development phase because GluonJ can be
integrated on an IDE. This is a great advantage in comparison with the other
approaches that rely in source-code transformation tools. Another advantage
of GluonJ is the little overhead introduced. A detailed study is presented in
section 5.5.

Chapter 4

Parallelization with Class
Refinements

In this chapter we study the use of class refinements and FOP in the develop-
ment of parallel programs in Object-Oriented Programming. More particu-
larly, and by the lack of previous studies on separation of concerns in parallel
programs using class refinements and FOP, we introduce a Parallelization
Model validated by the implementation of several case studies resulting in
enhancements in modularization with little or none base code refactoring. A
Feature Model, typical in FOP, is also introduced to help to build families of
parallel programs that share the same base algorithm but differ, for instance,
in the target platform.

4.1 Parallelization Model

In order to achieve the best performance of a system, parallel programs need
to take full advantage of the underlying execution platform. This implies,
in many cases, that the parallelization feature must be coded and tuned ac-
cording to each target parallel platform (distributed versus shared memory).
We advocate that parallelism related statements must be coded separately
from the application code to better cope with this variability. We also believe
that the separation of the parallelization feature from the domain code is the
best decision regarding modularity1 and how a parallel program should be
developed.

Our parallelization model addresses incremental development by relying
on class refinements. A class refinement is a class extension similar to stan-

1The benefits that comes from good modularity decisions are well understood and
accepted by the community.

29

30 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

dard subclass mechanisms [Bat06] by adding new fields and methods to a
target class as well as extending existing methods (a la method overriding
in class inheritance). Class refinements differs from standard inheritance
in OOP in the sense that a refinement augments the definition of a given
class by adding a new feature and keeping the name of this class. This
transformations are the core of this work. In our approach, parallelization
is the process of mapping application’s functionality into a target platform
by using class refinements to progressively insert code that copes with more
platform-specific details.

Figure 4.1 illustrates a simple example of class refinement. Figure 4.1(a)
defines a base class A. Its refinement (Figure 4.1(b)) encapsulates new state
and behavior that can be added to A. Figure 4.1(c) is the result of compos-
ing this refinement to A. Refinements are transformations. Transformations
avoid scalability problems that arise when using traditional inheritance mech-
anisms of object-oriented (OO) programming in layered designs [SB02]. This
topic was presented with an example in chapter 3 and figure 3.1.

(a) Base class (b) Refinement (c) Final Class

Figure 4.1: Class Refinement example.

4.1.1 Compatibility with Inheritance

Software enhancement/evolution (e.g.: parallelization) and dealing with unan-
ticipated changes are two important factors in software engineering. Extend-
ing a class by means of traditional Object-Oriented inheritance implies alter-
ations in the class hierarchy to take advantage of the new behavior defined
in the subclass. For instance, the subclass has to be instantiated, changing
the original class hierarchy. This problem is noticeable in parallel programs
where parallelization statements may be inserted anywhere in the class hier-
archy. Using class refinements, methods extensions are defined in a new unit
of modularity and propagated in the class hierarchy by applying arbitrary re-
finements at any point of the class hierarchy. Method extension is the ability

4.1. PARALLELIZATION MODEL 31

(a) Original Class Hierarchy (b) Class affected by
refinement

Figure 4.2: Inheritance compatibility.

to redefine a method defined higher in the class hierarchy but using the su-
per() keyword in the method body. This is fundamental to achieve modular
parallel programs since these redefinitions correspond to entry-points where
parallelization can be injected. Making a comparison/connection to AOP
and, in particular, AspectJ, method extension corresponds to the use of be-
fore and after advices. In Figure 4.2(a), it is shown a class hierarchy and a
refinement being applied to the A class. The classes affected by the changes
(shaded) are illustrated in Figure 4.2(b). As an example, method execution
in instances of D keeps the semantics of method-lookup of traditional Object-
Oriented languages. The difference happens when refinements are applied to
classes. In that case, method-lookup will first execute the method extensions
defined in the refinements. Two or more refinements can be applied to the
same class or to different classes of a class hierarchy. Composition of re-
finements is extremely important because it allows to develop more complex
abstraction by the composition of simple ones. Moreover, these abstractions
can be used to provide a base to future refinements.

Keeping intact the class hierarchy and applying refinements as trans-
formations is important to avoid code scattering. Otherwise, there will be
multiple class hierarchies to cope with multiple parallelization models and
their platform mappings.

4.1.2 Parallelization Layers/Features

Incremental development is the ability to build programs by successively
adding more functionalities/features. In our parallelization model, features
are not restricted to be a single class refinement but they are formed by a set

32 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

of class refinements as well as regular classes. As an abstraction, features can
be seen as layers where a new abstraction or implementation is introduced.
Layers provide an atomic view of a feature in the sense that members of a
layer cannot exist by themselves.

Figure 4.3 illustrates this layer mechanism. Feature/Layer 1 is an example
of what can be a parallelization in shared memory (SM). It consists of a
refinement of class 3 and an introduction of a new class R1. Feature/Layer
2 is an example of a parallelization in distributed memory by refining class 2
and 3. In this example, there is no dependency between Layer 1 and Layer 2
but that possibility is valid. In such case, Layer 2, could, for instance, refine
class R1.

Figure 4.3: Example of a Class Refinement Model.

4.1.3 Composition

Since our model supports multiple parallelization layers, it incorporates an
explicit composition step. This step is fundamental to specify which layers
must be applied in which order to the base program. Designing a program
is composing these layers. This step is particularly important in parallel
programs since different parallelization features can be combined to take the
best advantages of each environment. For instance, parallel algorithms are
called hybrid when there is more than one paradigm being applied. This
hybrid solution can be obtained by the composition of both the shared and
distributed memory parallelization layers.

In order to specify valid combination of features, we borrowed the no-
tion of feature model [CE98, Bat05] that is used to describe restrictions in
feature compositions. With a feature model, programmers define the valid

4.2. CASE STUDIES 33

(a) Feature Diagram (b) Feature Grammar

Figure 4.4: Definition of valid combination of features.

combinations of layers that can be applied to a base program. There are
different ways of expressing these combinations and for the remainder of
this document, we use feature diagrams and grammars [Bat05]. Figure 4.4
shows two possible representations of a valid composition of layers presented
in figure 4.3. The feature diagram is a graphical representation of the fea-
ture model (Figure 4.4(a)). A grammar, shown in figure 4.4(b) is another
representation.

4.2 Case Studies

Several case studies from different domains were implemented to validate
our parallelization model. We did not focus only on academic problems
but we tackled the parallelization of a medium-sized framework that has
been developed for the past few years in University of Minho and has been
used in many fields but with particular emphasis in Bioinformatics. Overall
the framework has currently 125 classes and a total of 5600 lines of Java
code. These numbers exclude code for the case studies and libraries that the
framework depends on. The other case studies belong to the Java Grande
Forum (JGF) [SBO01] benchmark suite.

In the next subsections we detail and highlight the implementation of
these case studies.

4.2.1 JECoLi

The Java Evolutionary Computation Library (JECoLi) is a framework cre-
ated to cope with recent advances in the Genetic and Evolutionary Com-
putation (GEC) domain. These domains are being used to solve complex
optimization problems in a wide range of scientific and technological fields.
Optimization problems are the computation of an optimal solution using

34 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

numerical methods given a set of constraints.
JECoLi is designed as a framework to provide out of the box meta-

heuristic algorithms like Evolutionary Algorithms (EAs), Genetic Program-
ming (GP) or Differential Evaluation (DE). Evolutionary Algorithms are
inspired in biological evolution in the sense that it defines abstractions like
population and individuals of populations that interact with each other. That
interaction creates new individuals with characteristics inherited from their
parents (e.g.: reproduction). Figure 4.5 represents the typical main steps of
an Evolutionary Algorithm. The first step is the creation of a new population
or solution set2. The next step is to evaluate each individual of a population
by calculating a fitness value. A fitness value represents the quality of each
individual. A termination criteria is a boolean expression that can be based,
for instance, in the number of iterations or the quality of each solution. Se-
lection is a step where the best individuals are chosen (based in the fitness
value) to participate on the reproduction. Reproduction is represented by
the operators step since it consists in the application of genetic operators,
i.e., mutation or recombination to produce a new population.

Figure 4.5: Main steps of an Evolutionary Algorithm.

Generically, JECoLi users are interested in the computation of optimiza-
tion problems. Using an analogy to biology evolution, this can be seen as

2Population or solution set are terms that can be used interchangeably. The same
happens to individual or solution.

4.2. CASE STUDIES 35

the creation of the strongest population by selecting the best individuals in
each generation to be used in the reproduction process to form stronger next
generations.

Figure 4.6 illustrates a simplified class diagram. We omit the represen-
tation of Interfaces for simplification purposes but each of the classes repre-
sented implements an Interface with the corresponding service it provides.
The AbstractAlgorithm represents the skeleton of an optimization method.
It must be extended by each optimization method implementation to pro-
vide its specific behaviour. Each algorithm encompasses an AlgorithmState
that collects information about the execution of an optimization method like
current solution and previous calculated solutions for statistical purposes.

Figure 4.6: JECoLi’s simplified class diagram.

Figure 4.7 shows how to instantiate the framework to use an Evolution-
ary Algorithm3. First, users must instantiate a Configuration that has all
necessary information to the optimization algorithm :

• Evaluation Function : used to compute the fitness of a solution, i.e.,
value to optimize given an objective;

• Termination Criteria : a criteria to stop the algorithm. For instance,
number of iterations;

• Selection Operator : operator to select how individuals evolve over
iterations.

The created configuration is passed to an instance of an AbstractAlgo-
rithm. In this example we show the use of an EvolutionaryAlgorithm. The
method run() is responsible to prepare the simulation and calling the method

3Note : In this example, we use the Evolutionary Algorithm but the framework has
implemented others (e.g.: Simulated Annealing or Differential Evaluation).

36 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

iteration(). This method is constituted by a loop that iterates until the ter-
mination criteria is met calling the method evaluate(SolutionSet) at each
iteration to evaluate the population.

Evolutionary
Algorithm

Evaluation
Function

evaluate(SolutionSet s)

Main Configuration

new()

setEvaluationFunction()

setTerminationCriteria()

setSelectionOperator()

run()

new(Configuration c)

Until termination criteriaLoop

iteration()

Figure 4.7: Typical workflow to use the JECoLi framework.

Developing a parallel version of the framework requires rewriting classes
AbstractAlgorithm and EvaluationFunction. Using traditional parallel
programming techniques, direct modifications to the base framework would
introduce tangling, since parallelism related code would be mixed with the
code of the base framework. Further, introducing code into the Abstrac-
tAlgorithm class may enforce a particular parallelization model for all op-
timization methods as they usually extend this class. This could limit al-
gorithm’s scalability since it could force a non optimal parallelization for a
given algorithm. Additionally, derived classes could accidentally override the
parallelization code (or could even completely override the default behavior).

A more fundamental problem is the long term maintenance of the frame-
work. Ideally, parallelism-related code should be localized in specific mod-
ules and not scattered across multiple classes, tangled with basic framework
code. Moreover, each optimization method may support a subset of avail-
able parallelization models/target platforms, so these constraints should be
made explicit. This is particularly important for long term evolution, as new
parallelization models, target platforms and optimization methods may be
supported.

4.2. CASE STUDIES 37

JECoLi - Parallelization

There are two well known techniques (that can also be combined to achieve
better performance) to execute evolutionary algorithms in parallel. In this
dissertation we present two :

1. Parallel Evaluation : the evaluation process is done in parallel. So-
lutions are computed in parallel in each iteration. This parallelization
does not scale for distributed memory systems due to the excessive
communication overhead to send and receive solution sets;

2. Island Model : creation of a new abstraction where the solution set is
divided into multiple sets (islands) that evolve in a loosely coupled way.
Island models usually require periodic migration of solutions among
islands.

JECoLi’s parallelization is challenging because there are properties that
must be addressed carefully :

Evolution : The semantics of the framework should not change. Paral-
lelization should not compromise the introduction of new algorithms
as well as the maintenance and evolution of the existing ones;

Adaptability : Parallelization should be adaptable to match different tar-
get platforms. There is no one-parallelization-fits-all as it depends on
the target platform (e.g. cluster vs. multi-core);

Performance : The execution time must decrease in comparison with the
sequential algorithm and it must generate solutions as good as the
sequential implementation. Parallelization should perform better than
a sequential algorithm; otherwise the sequential implementation should
be used instead;

Solutions : This is particularly important for island models as they might
produce a different solution (usually better as they avoid local minima
in the search process).

Figure 4.8 shows a layered view of the parallelization features. At the
bottom of the diagram, we represent the JECoLi framework (base framework
with no parallelization). Features are applied on top of the base framework
or on top of other features.

An Island Model and Parallel Evaluation are the first features that can
be applied to the base framework. These are two different but complemen-
tary functionalities that can be used to enhance the framework. The former

38 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

Figure 4.8: Layer architecture

introduces the island model abstraction where solutions are split by several
islands. The latter introduces the parallel behaviour for the solution’s set
parallel evaluation. The order in which these features are applied to the
base is unimportant as they are mutually exclusive, i.e., they affect different
modules/sections of the base code. They can be both applied to the base to
attain an hybrid parallelization model, i.e., each island evaluates the solution
set in parallel.

The Abstract Migration feature corresponds to the introduction of com-
mon functionalities about migration of solutions among islands that are need
for the Island parallelization model. This represents a dependence since it
requires the Island Model Feature. Alone, this layer does not affect the frame-
works instance execution or behavior. This layer is responsible to provide
rules (an interface) and basic functionalities so that other layers that can be
applied on top of that.

The Island Model and Abstract Migration are parallelization features that
implement the supported parallelization models. They encapsulate common
platform independent behavior. The last (upper) layer encapsulates the map-
ping of these parallelization layers into specific target platforms (multi-core,
cluster and grid). Currently, the Parallel Evaluation is only supported in
multi-core systems, as our case studies do not justify the support for other
target platforms but the flexibility of this model allows us to implement more
platform mappings in the future.

During the parallelization of the JECoLi framework we incrementally
developed the above mentioned features. As the number of features grew, as
well as the identification of constraints among them, it became evident the
need for a tool to explicitly manage composition issues. For this purpose we
use GUIDSL4 to create a graphic interface based on a grammar that specifies
valid combination of features.

4http://userweb.cs.utexas.edu/users/schwartz/ATS.html

4.2. CASE STUDIES 39

Figure 4.9 shows a simple screen of GUIDSL to configure all possible
parallel versions. The leftmost rectangle corresponds to the optimization
method used in the framework instance. In the middle rectangle, the target
architecture is selected. For instance, selecting multi-core and cluster means
an hybrid approach. In the last rectangle (rightmost), the parallelization
model is selected. Note that not all parallelization models can be selected
for every combination of optimization methods and target architectures. For
instance, parallel evaluation is not possible in a sequential architecture nor
it can be used with Simulated Annealing optimization method.

Figure 4.9: GUIDSL feature composition.

GUIDSL uses a grammar to define valid combination of features. Fig-
ure 4.10 shows a simplification of that grammar.

Implementation overview

Parallel evaluation is a technique that performs the evaluation of the set
of individuals or solutions in parallel. Each optimization algorithm in a
framework instance has to provide a method to evaluate the solution at
each iteration step. Program 14 shows the abstract class that belongs to
the framework with the evaluation method. The concrete method evaluate
will iterate over the solution set and call, for each solution, the evaluate
method provided by framework instances. The purpose of this separation is
to introduce flexibility while dealing with different solution representations.
In other words, framework instances have to extend this class and provide a
valid implementation to the abstract method listed in program 14.

40 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

Figure 4.10: GUIDSL grammar specification.

Shared memory parallelization of this algorithm can be decomposed in
the following steps :

1. Extend the method that performs the evaluation in the abstract class
to :

(a) Divide the domain of the problem (solution set). Method di-
videSet(ISolutionSet);

(b) Spawn threads to compute on solutions’ subsets in parallel;

(c) Wait for threads to resume execution with updated values.

To illustration and comparison purposes, we describe the implementation
details of the Parallel Evaluation. It is important to remember that JE-
CoLi is a framework and the ParallelEvaluation is an abstract class of the
framework’s core. Thus, several optimization algorithms use the function-
alities of this class. Given this, the parallelization feature must be inserted
in a way that does not change the semantics of the framework, i.e., it does
not enforce changes in the optimization algorithms. We present the Parallel
Evaluation in four different implementations :

The traditional (tangled) approach in program 15. The class Evaluation-
Function is populated with variables to enable the introduction of the
parallelization feature (array to reference threads and data structure

4.2. CASE STUDIES 41

to support the division of the solution set). The body of the method
evaluate(ISolutionSet) is copied into a new method to support calls
from a Thread object keeping the semantics of the original method,
i.e., receiving a ISolutionSet and performing the evaluation presented
in program 14. The method evaluate(ISolution) is re-written to support
the division of the solution set and threads’ creation.

Object-Oriented Inheritance in program 16. Using Java inheritance,
the parallel feature is coded in a subclass and each thread calls the
original method evaluate of the base class to keep the semantics of
the application. This mechanism was implemented with an auxiliary
class presented in program 17 because it is not possible to use super()
inside a Runnable object or a new Thread. This solution is the only
one that we present that forces framework’s instances to be changed
in order to take advantages of the parallel feature. They must extend
the ParallelEval instead of the EvaluationFunction class. Note that
the abstract method evaluate has to remain abstract because this class
does not represent a framework instance.

AOP (AspectJ) (Program 18). The aspect ParallelEvalAspect introduces
the parallel feature by intercepting calls to the method evaluate in the
class EvaluationFunction. The advice introduces the parallel behav-
ior where is created new instances of the ThreadEval class that are
responsible to call the original method evaluate in a new thread.

Class Refinement. Program 19 shows the implementation using Class Re-
finements (GluonJ’s notation). The class EvaluationFunction is refined
to introduce the new parallel behavior by extending the method eval-
uate. The refined method introduces the parallel behavior where each
thread calls the original method evaluate. This mechanism was imple-
mented exactly like the Java inheritance and the AspectJ examples5.
The great advantage of this approach, unlike the Java inheritance ex-
ample, is that framework instances do not need to change their class
hierarchy to use the parallel evaluation feature.

5We did not used super() for the same reason as Java inheritance, i.e., it is not possible
to call super() inside a Runnable object

42 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

public abstract class<T extends IRepresentat ion>
Evaluat ionFunct ion implements IEvaluat ionFunct ion<T>

{
public void eva luate (I So l u t i onSe t s e t) {

for (i = 0 ; i < s e t . ge tNrSo lut i ons () ; i++){
I So l u t i on s o l = s e t . g e tSo lu t i on (i) ;
L i s t<Double> f i t n e s s = eva luate ((T) s o l u t i o n .

ge tRepre sentat i on ()) ;
s o l . s e tF i tne s sVa lue (f i t n e s s) ;

}
}

public abstract List<Double> eva luate (T
so lu t i onRepr e s en ta t i on) ;

}

Program 14: Base code.

Benchmarks

In this section we measure the performance of the parallelization of two
case studies that belong to the biological computational field. The former
represents an optimization task in fed-batch fermentations [MRFR06] and the
latter the knock-out optimization [RMM+08] problem. The understanding
of the nature of these problems is not fundamental for the remainder of this
section.

For each case study we compare two implementations of the same par-
allelization feature. One based in AspectJ [PRS10] and the other using an
FOP approach using class refinements implemented with GluonJ.

The instrumentation code used to measure the execution time of each
implementation is based on the system call System.currentTimeMillis() that
returns the difference, measured in milliseconds, between the current time
and January 1, 1970. The speed-up is calculated based on the median of
execution time of each parallelization implementation divided by the same
execution time, i.e., the median of the execution time of the base algorithm
with no parallelization. Using this approach, we guarantee the same speed-
up calculation for all implementations. The execution time was calculated
by the median of 5 executions.

4.2. CASE STUDIES 43

public abstract class<T extends IRepresentat ion>
Evaluat ionFunct ion implements IEvaluat ionFunct ion<T>

{
ThreadEvalAux [] workers = new ThreadEvalAux [NRthreads] ;
I So l u t i onSe t [] subL i s t ;

public void eva luate (I So l u t i onSe t s e t) {
subLi s t = d iv id eSe t (s e t) ;
for (int i =0; i < NRthreads ; i++){

workers [i] = new ThreadEvalAux (subLi s t [i]) ;
workers [i] . s t a r t () ;

}

for (int i =0; i < NRthreads ; i++){
try{

workers [i] . j o i n () ;
}catch (Exception e) { . . . }

}
}

public void evaluateCore (ISo l u t i onSe t s e t) {
for (int i =0; i < s e t . ge tNrSo lut i ons () ; i++){

I So l u t i on s o l = s e t . g e tSo lu t i on (i) ;
L i s t<Double> f i t n e s s = eva luate ((T) s o l u t i o n .

ge tRepre sentat i on ()) ;
s o l . s e tF i tne s sVa lue (f i t n e s s) ;

}
}

public abstract List<Double> eva luate (T
so lu t i onRepr e s en ta t i on) ;

class ThreadEvalAux{
I So l u t i onSe t s e t ;
public ThreadEvalAux (ISo l u t i onSe t s e t) { this . s e t = s e t ;}
public void run () { evaluateCore (s e t) ; }

}

}

Program 15: Traditional (tangled) approach. The class ThreadEvalAux is
an inner class used to create a thread object to compute on a subset of the ini-
tial solution set. The method run() only calls the original evaluate(ISolution)
method that is now called evaluateCore(ISolution).

44 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

public abstract class<T extends IRepresentat ion>
EvaluationFunctionParEval extends

EvaluationFunction<T extends IRepresentat ion>
{

ThreadEval [] workers = new ThreadEval [NRthreads] ;
I So l u t i onSe t [] subL i s t ;

@Override
public void eva luate (I So l u t i onSe t s e t) {

subLi s t = d iv id eSe t (s e t) ;
for (int i =0; i < NRthreads ; i++){

workers [i] = new ThreadEval (subLi s t [i] , this) ;
workers [i] . s t a r t () ;

}

for (int i =0; i < NRthreads ; i++){
try{

workers [i] . j o i n () ;
}catch (Exception e) { . . . }

}

}

public abstract List<Double> eva luate (T
so lu t i onRepr e s en ta t i on) ;

}

Program 16: Object-Oriented Inheritance approach.

4.2. CASE STUDIES 45

public class ThreadEval extends Thread{

private Para l l e lEva lua t i on pe ;

public ThreadEval (Pa ra l l e lEva lua t i on pe) {
this . pe = pe ;

}

@Override
public void run () {

pe . eva luate () ;
}

}

Program 17: ThreadEval auxiliary class.

aspect Para l l e lEva lAspec t {
ThreadEval [] workers = new ThreadEval [NRthreads] ;
I So l u t i onSe t [] subL i s t ;

void around (Pa r a l l e lEva l eval , I So l u t i onSe t s e t) :
ca l l (void Evaluat ionFunct ion . eva luate (I So l u t i onSe t)) &&
target (eva l) && args (s e t) &&
!within (Para l l e lEva lAspec t) {

subse t s = d iv id eSe t (s e t) ;
for (int i =0; i < NRthreads ; i++){

workers [i] = new ThreadEval (subLi s t [i] , eva l) ;
workers [i] . s t a r t () ;

}

for (int i =0; i < NRthreads ; i++){
try{

workers [i] . j o i n () ;
}catch (Exception e) { . . . }

}
}

}

Program 18: AOP (AspectJ) approach.

46 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

@Refine public abstract class EvaluationFunctionParEval
extends Evaluat ionFunct ion

{

ThreadEval [] workers = new ThreadEval [NRthreads] ;
I So l u t i onSe t [] subL i s t ;

public void eva luate (I So l u t i onSe t s e t) {
subLi s t = d iv id eSe t (s e t) ;
for (int i =0; i < NRthreads ; i++){

workers [i] = new ThreadEval (subLi s t [i] , this) ;
workers [i] . s t a r t () ;

}

for (int i =0; i < NRthreads ; i++){
try{

workers [i] . j o i n () ;
}catch (Exception e) { . . . }

}

}

}

Program 19: Class Refinement approach.

4.2. CASE STUDIES 47

The specification of the environment (Cluster) is as follows:

• 4 nodes interconnect by myrinet 10Gb;

• Each node is composed by 2 Intel Xeon Processor E5420 (total of 8
cores);

• Java(TM) SE Runtime Environment (build 1.6.0 13-b03).
Java HotSpot(TM) 64-Bit Server VM (build 11.3-b02, mixed mode);

• AspectJ runtime 1.6.9;

• GluonJ 1.5.

The first case study was implemented using the island model paralleliza-
tion. Figures 4.11(a) and 4.11(b) show the gains compared with the the-
oretical maximum. We consider the theoretical maximum the number of
processing units (threads or MPI processes). For instance, using 4 MPI pro-
cesses, we expect a gain of 4x or, in other words, the execution time to
decrease in a fraction of 4. The same holds for the parallelization in shared
memory.

The parallelization gain is almost linear with the number of processing
units up to 8 cores and 8 MPI processes. There is a little decrease in larger
number of islands because of properties of the parallelization model. With the
increase of the number of islands and maintaining the problem’s size, fewer
individuals populates each island. Thus, the overhead of the communication,
i.e., migration of individuals increases.

In a look at the performance of AspectJ and GluonJ implementations,
we measure the percentage of the difference in the execution time. The
difference was calculated for the GluonJ implementation. Positive differences
mean worst execution time. Respectively, negative differences mean better
execution time.

Table 4.1 shows the difference (in percentage) of the execution time for
the first case study using the island model mapped to a multi-core (Shared
memory) and Cluster (Distributed memory). The results for shared memory
migration are not shown for 16 and 24 islands because of the limitation of
keeping the ratio of 1 thread per processor core.

The second case study was implemented using the parallel evaluation
feature. Table 4.2 shows the difference (in percentage) of the execution time.

The two case studies presented showed similar performance between the
two implementations. Given the nature of parallel programs, for instance,
creation and destruction of threads, communication between processes and

48 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

(a) Shared memory speed-up

(b) Distributed memory speed-up

Figure 4.11: Parallelization speed-up.

4.2. CASE STUDIES 49

Islands SM Migration DM Migration
2 −1.68% 0.68%
4 0.47% 1.24%
8 −0.66% 1.65%
16 N/A −1.95%
24 N/A −2.68%

Table 4.1: Execution time difference in the Island Model.

Threads SM
2 −2.28%
4 −1.86%
8 −0.27%

Table 4.2: Execution time difference in the Parallel Evaluation.

parallel I/O file operations, we advocate that the differences between the two
versions are negligible. Both implementations share similar performance and
gains.

4.2.2 Java Grande Forum (JGF)

Java Grande Forum (JGF) is a benchmark suite [SBO01] with several al-
gorithms from different domain areas. These algorithms encompass par-
allelization features in both multi-core processors and MPI (using MPI-
Java [BCF+99]). We tested our parallelization model by implementing some
case studies and comparing them to an AspectJ approach and the JGF tan-
gled version. A brief description is given for each case study :

Successive Over-Relaxation (SOR) : Variant of the Gauss-Seidel model
for solving a linear systems of equations. Sequential version with 2
classes and approximately 170 lines of code (LOC).

Moldyn : Molecular Dynamic (MD) algorithm that simulates the interac-
tion of microscopical particles (e.g.: atoms). Sequential version with 2
classes and approximately 500 LOC;

Ray Tracer : rendering of a scene with 64 spheres in a 3D space. Sequential
version with 12 classes and approximately 1000 LOC;

Since our model relies on extending the base code to introduce paralleliza-
tion features incrementally, the JGF benchmark suite was a good exercise

50 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

to our parallelization model for its diversity in terms of problems and algo-
rithms’ codification. Unlike JECoLi, some algorithms in the JGF are based in
older implementations from scientific languages that are not Object-Oriented
based (e.g.: Fortran). Since programming on an Object-Oriented language
(e.g.: Java) does not mean programming with Object-Orientation, the lack
of modularity was sometimes evident. For instance, the SOR algorithm was
totally implemented in one method. Without software refactoring, the intro-
duction of parallelization features by incrementally evolving the base code
is impossible without using a finer grain decomposition, i.e., refinements on
instruction-level. We believe that this is not the solution to this kind of
problem and we opted to refactor the base code to enhance modularization.
The three kinds of code refactoring used are explained next :

Code movement : The most used refactor was to move a block of code
into a named block, i.e., code movement into new methods. This solu-
tion was needed to create plug-points to allow the introduction of the
parallelization features. This situation happens because methods are
the smallest named blocks of code in Java that can be intercepted by
AspectJ and extended in OO inheritance (GluonJ).

Access modifiers : Java default access modifier for methods and variables
is protected. This access modifier disallows class access or extension
outside the package it is defined. Since the base of GluonJ is OO
inheritance, we opted to add other permission (i.e. public) to methods
and variables to modularize refinements in a different package. This
situation could be resolved using two other alternatives :

• The most simple solution was to use the class refinements in the
same package as the base code;

• GluonJ offers a mechanism that bypasses access modifiers by us-
ing the @privileged annotation. This solution is possible because
GluonJ works by manipulating the Java bytecode.

Data types : The implementation of the RayTracer case study forced us
to change the data type of a variable in the base code. This situation is
due to the current implementation of the mpiJava library that does not
support the long data type. We changed the data type to int without
loss of precision in the case study.

Benchmarks

We measured the speed-up of the 3 versions, i.e., JGF hand-written (HW),
class refinements with GluonJ (CR) and AspectJ (AJ) both with shared and

4.2. CASE STUDIES 51

distributed memory parallelization. We used the median of the execution
time of 10 executions in the same environment as the one presented for the
JECoLi case study. Each case study was executed using the largest input
data to minimize the overhead of the instrumentation code to measure the
execution time. Shared memory results were executed only in one node.

Table 4.3 shows the results for the shared memory parallelization for each
case study. Analysing these results, it is easy to see that the Sor and the
RayTracer case studies show no evidence of overhead introduced by Glu-
onJ and AspectJ. The calculated speed-ups show marginal differences. The
Moldyn case study shows little differences between all versions until 8 cores.
That difference can be explained by the use of a Thread Pool in the GluonJ
and AspectJ approaches.

In the distributed memory benchmarks, we expect slightly larger dif-
ferences compared with the shared memory parallelization because of the
underlying distributed platform, i.e., we rely in the MPI daemon to start the
same program in different nodes of the cluster. Also, messages circulating
in the network introduce larger variation in the execution time compared
with manipulation of shared data in the same processor. For instance, the
load of the switch can introduce variations on the execution time. Adding
the fact that even using the larger input data for the JGF benchmarks, the
parallelization can diminishes the execution time to less than one second,
making the task of analysing the speed-up for 16 and 32 processes harder.
Hence, in that order of magnitude, just-in-time compilation (JIT)6 and the
state of the network can have a great effect in the benchmarks’ results. Given
this, we analyse with a greater detail GluonJ and AspectJ with respect to
performance in section 5.5.

The results for the distributed memory parallelization are shown in ta-
ble 4.4. The analysis of these results confirm the larger variation among all
the approaches compared with the shared memory parallelization. However,
the results are very close among all approaches. In the RayTracer case study,
it can be noted that the AspectJ has a decrease in performance compared
with the other approaches.

6Just-in-time compilation is a technique used to improve the performance of interpreted
languages like Java. Basically, this technique allows code to be compiled in runtime to
reduce the execution time in interpreting a set of instruction. This technique can introduce
a great performance boost in some programs but its effect in execution time is noted in
smaller applications or applications with little execution time.

52 CHAPTER 4. PARALLELIZATION WITH CLASS REFINEMENTS

2 cores 4 cores 8 cores
Application HW CR AJ HW CR AJ HW CR AJ

Sor 1.84 1.87 1.87 3.36 3.37 3.37 3.82 3.83 3.83
Moldyn 1.90 1.87 1.92 3.27 3.20 3.21 5.21 4.1 3.97

RayTracer 1.95 1.96 1.94 3.57 3.57 3.56 6.52 6.52 6.50

Table 4.3: JGF Benchmarks results. Speed-up of the shared memory parallel
version.

P4 P16 P32
Application HW CR AJ HW CR AJ HW CR AJ

Sor 3.36 3.32 3.24 7.01 6.92 6.97 6.03 6.00 5.83
Moldyn 3.86 3.64 3.67 12.89 12.24 12.26 16.38 15.62 15.37

RayTracer 3.95 3.91 3.94 10.74 11.40 9.35 15.33 16.66 12.01

Table 4.4: JGF Benchmarks results. Speed-up of the distributed memory
parallel version.

Chapter 5

Comparison of Approaches

We make a comparison with AspectJ, i.e., the only other approach published
in the literature that enables separation on concerns in parallel applications.
The main purpose of this comparison is to show that, by the experience gath-
ered in implementing several case studies, the most used AOP mechanisms
may be replaced by an approach that is based on Object-Oriented Program-
ming and shares almost the same concepts of OOP inheritance. We also
show that FOP with Class Refinements can have solid advantages compared
with AspectJ besides its simpler model. Thus, we believe that the FOP ap-
proach can leverage the migration of scientist and programmers to a model
that introduces little concepts compared to the AOP.

5.1 Static vs Dynamic Cross-cutting

Aspect Oriented Programming is generally introduced as a programming
model that deals with cross-cutting concerns that can be either static or
dynamic. Static cross-cutting refers to the static structure of a program, i.e.,
AOP allows the redefinition of the class hierarchy as well as a finer grain
redefinition at class level where new sate can be added to classes (e.g.: class’
variables). Dynamic cross-cutting is the ability to modify the behaviour of
methods following the join-point model explained in section 3.1.

Table 5.1 shows the use of both static and dynamic cross-cutting in all
of the case studies implemented in this study. Analysing the results, there is
only one case study that takes advantage of static cross-cutting. The JECoLi
parallelization takes advantage of this characteristic of the AOP model to
introduce state (variables) to another class. Access to these introductions
are completely handled by another aspect. The other use was regarding
the distributed memory parallelization where a class of the framework was

53

54 CHAPTER 5. COMPARISON OF APPROACHES

changed to implement the serializable Java interface in order to be used as an
Object capable of circulating in the network between program’s instances. All
case studies used dynamic cross-cutting as the main technique to introduce
parallelization features.

Static Cross− cutting Dynamic Cross− cutting
Sor No Y es

Moldyn No Y es
Ray Tracer No Y es

SparseMMM No Y es
JECoLi Y es Y es

Table 5.1: Static vs dynamic cross-cutting. Comparison of Approaches.

Feature Oriented Programming (FOP) also handles static and dynamic
cross-cutting. Static cross-cutting corresponds to the definition of state in
the class refinement (i.e. class extension). Redefinition of the class hierarchy
is not handled by all FOP implementations but, for instance, GluonJ im-
plements that mechanism with the same expressivity as inheritance in Java.
Dynamic cross-cutting is implemented as method overriding or method ex-
tension in OO programs. It follows the same semantics where a feature’s
implementation (e.g.: class refinement) can modify the behaviour of meth-
ods entirely (i.e. overriding) or modifying but using the behaviour defined in
the base class (i.e. extension).

5.2 Heterogeneous vs Homogeneous pointcuts

The definition of homogeneous and heterogeneous pointcuts is rather simple.
An homogeneous pointcut defines the same behaviour, i.e., advice, to more
than one join-point. One example is the use of no unbounded quantification
(e.g.: using wildcards) regarding the name of a method or the number its
arguments. An heterogeneous pointcut is the opposite, i.e., it defines exactly
one join-point.

The use of homogeneous or heterogeneous pointcuts depends on the na-
ture of the problem. The most well known problem that takes advantages of
the use of homogeneous pointcuts is Logging. Some authors argue that the
use of homogeneous pointcuts can destroy the evolution of application since
the addition of new classes or new aspects can be affected by these pointcuts.

A conditional pointcut is a mid-term case of both homogeneous and het-
erogeneous pointcut. It can be defined with or without (un)bounded quan-

5.3. REUSING 55

tification and it is evaluated at runtime given a conditional expression. For
instance, an arbitrary advice is executed only if a boolean expression is true.

Table 5.2 shows the use of homogeneous, conditional and heterogeneous
pointcuts in our case studies. We found no use for homogeneous pointcuts.
As a matter of fact, we believe that the use of that kind of pointcuts is limited
and there are few applications that can benefit from their use. Conditional
pointcuts were used on the distributed memory parallelization to prevent all
instances of the program to start the instrumentation code for time mea-
surement, i.e., only allow one instance (e.g.: MPI ID 0) to start and stop the
internal clock. All other related parallelization features were introduced by
heterogeneous pointcuts.

The implementation of homogeneous pointcuts using FOP tools is possi-
ble. The majority of FOP tools are based in code transformation, thus, it
is simple to define a pointcut language similar to AspectJ, i.e., a syntax to
allow unbounded quantification in feature’s implementations. For instance,
the tool we used to implement class refinements is based in bytecode trans-
formation and allows unbounded quantification. As we found no use for ho-
mogeneous pointcuts, we did not explore that facet. Conditional pointcuts
can be easily translated to heterogeneous ones. Hence, excluding the case of
conditional pointcuts, we could find a relation between one pointcut/advice
to one method extension.

The results of this comparison is extremely important since it reflects one
of the assumptions of this dissertation, i.e., for the case studies implemented,
we could substitute AOP by FOP.

Homogeneous Conditional Heterogeneous
Sor No Y es Y es

Moldyn No Y es Y es
Ray Tracer No Y es Y es

SparseMMM No Y es Y es
JECoLi No No Y es

Table 5.2: Heterogeneous vs homogeneous pointcuts. Comparison of Ap-
proaches.

5.3 Reusing

Reusing is an important property that we tried to achieve by enhancing mod-
ularization of applications. We had successfully achieved reusing of the base

56 CHAPTER 5. COMPARISON OF APPROACHES

code since our parallelization features are well confined on an external mod-
ule, i.e., class refinement. Our ultimate goal was to achieve reusing of the
parallelization features as well, for instance, not to apply them to a single
base program but on multiple distinct base programs. Given the different na-
ture of each parallelization algorithm, we found difficult reusing the parallel
features using the current parallelization model. More particularly, the tool
used (GluonJ) keeps the semantics of Java inheritance, thus the parent class
must be known at the time of the definition of the subclass. The other facet
is the name of the method to refine, i.e., where to append the parallelization
features. Both of these two problems could be overcome using a solution
based in reflection, i.e., discovering classes at runtime that implement a spe-
cific interface, for instance, OneWayInterface. With this approach, the name
of the classes and the methods could be discovered and the refinements could
be applied over that class or classes. A simple case study was developed using
this approach but, as expected, the performance gain was heavily penalised
by the use of reflection.

AspectJ, on the other hand, allows some forms of reusing :

Abstract aspects and pointcuts : the use of this approach was the core
of the work of the first AOP concurrency library, Conclib [CSM06].
Conclib implements common concurrency mechanism like one-way in-
vocations and barriers. The mechanisms are implemented in abstract
aspects defining abstract pointcuts. These aspects must be extended
by the users of the library to specify the concrete implementation of
each abstract pointcut.

Pointcuts over Interfaces : AspectJ allows the introduction of pointcuts
over methods defined in Interfaces. Hence, all classes that implements
the methods of the Interface are intercepted by the pointcut. This
approach is being explored in the parallelization of the JECoLi frame-
work to allow reusing of the parallelization feature to cope with the
introduction of new algorithms.

In terms of reusing, the AOP approach with AspectJ is currently more
mature than our approach with class refinements. However, reusing in AOP
and in particular with AspectJ is not a trivial task. Some authors claim that
reusing with AspectJ is not always achieved because it is a mechanism that is
tightly bounded with the base code because of the join-point model [MO04]
and software design should be adapted to aspects [DFS04].

5.4. COMPOSITION OF ASPECTS AND REFINEMENTS 57

5.4 Composition of Aspects and Refinements

Composition is the ability to use multiple aspects or features (in this study
implemented with class refinements) to build more complex solutions. As-
pectJ allows multiple aspects to be applied to an application. Since different
aspects can intercept the same join-point, it introduces a mechanism named
declare precedence to define the order of which aspects are applied. Given
the nature of the join-point mechanism, aspects can intercept events on other
aspects. This is called the aspect-interaction problem and it is one one of the
main sources of bugs in AspectJ if no special techniques are applied [Tan10].

Composition is the base mechanism in FOP since it promotes incremental
development by decomposing a solution of a problem in features. Features
are then composed to create different versions of a program to meet different
requisites. This idea is the core of product lines research where different com-
bination of features lead to different programs. The order in which features
or class refinements are applied dictates the semantics of the application1.
Feature models are crucial to define the valid members of a product line
and their constraints, thus it can be used to define the valid compositions of
features in our case studies.

Feature Models represent an important mechanism to cope with the evo-
lution of an application where new features may be developed. The JECoLi
case study is the most representative since it supports several optimization
methods with two different parallelization models that can be used together
with different combinations of target architecture mappings.

5.5 Performance

In this section we present a set of benchmarks developed to compare the over-
head of both tools used to implement separation of concerns in our study, i.e.,
AspectJ and GluonJ. Both allow static and dynamic redefinition of classes
but, in these particular benchmarks, we are interested to measure the im-
pact introduced by dynamic redefinition (e.g.: method overriding) since it
was largely the main functionality used in our case studies. To situate the
overhead of the tools, we also compare to Java Inheritance.

The execution environment and instrumentation code is the same as the
one presented in the other benchmarks of this study.

Figure 5.1 shows the two classes created for this benchmark. Note that
the classes are very simple because the main purpose is to isolate the over-

1Note that the order can dictate also the validity of the solution, i.e., it can lead to
infinite recursion.

58 CHAPTER 5. COMPARISON OF APPROACHES

head of each tool. The class Count has only one method that increments
a long variable. The Bench class instantiates a Count object and calls the
method incCounter() in a loop. To minimize the possible overhead of the
instrumentation code, the total number of iterations of the loop is large in
the order of 109.

The aspect and the class refinement created for this benchmark are shown
in table 5.3. Both are very simple and do nothing but redefining the method
incCounter(). A third approach (not shown) is simply a class extension where
the method incCounter() is overridden by inheritance. The base approach is
the one presented in figure 5.1.

Table 5.4 shows the results using inline2 enabled and disabled. The de-
cision to disable method-inlining was to create the worst scenario, thus ab-
stracting over the simplicity of this benchmark since the methods could be
easily inlined by the JVM. With inline enabled, there is no overhead intro-
duced by GluonJ and the Inheritance approach. However, it is interesting to
point that the version with AspectJ introduced little overhead. Comparing
with the time for executing each iteration of the cycle, all the approaches
with except of AspectJ, spent an average of 8 nanoseconds per iteration3.
The AspectJ version spent 11 nanoseconds per iteration.

Analysing the results for the version with inline disabled, it is interest-
ing to see that again the AspectJ approach is the one that introduces more
overhead. The result that we were not expecting was that the Inheritance
approach did not introduce overhead. In this simple example, even with in-
line disabled, the bytecode was optimized to reduce the call from a subclass
to its parent class. On the other hand, the GluonJ runtime system, as ex-
pected, implemented the refined method as a new method created at load
time. The super() instruction in the method body corresponded to a call to
the original method.

These low-level benchmarks were made to confirm our suspects of little
overhead introduced by the tools of this study. Using standard optimization
techniques, the code introduced by the tools can even be inlined to reduce
the method-call overhead. However, it is important to assert that we are not
saying that all functionalities of AspectJ share the same results. For instance,
the use of context information on an aspect using thisJoinPoint or similar
constructs can introduce great overhead because they rely on reflective mech-
anisms. Since those kind of constructs were not used in the implementation

2Inline is a mechanism that can replace method-calls by the body of the method to
avoid the overhead of calling functions or methods.

3We simply divided the time spent by each approach by the number of iterations. This
measure would be incorrect to calculate the time for each method call since we are not
considering the code of the loop structure.

5.5. PERFORMANCE 59

of our case studies, we did not study the actual overhead they introduce.

public class Count {
long counter ;

public void incCounter () {
counter++;

}
}

public class Bench {

public void work () {
Count c = new Count () ;
Instrumentor . addTimer (”LowLevelBench : Computation”) ;

for (long i ; i < LARGE N; i++)
c . incCounter () ;

Instrumentor . stopTimer (”LowLevelBench : Computation”) ;
}

}

Figure 5.1: Benchmark code.

60 CHAPTER 5. COMPARISON OF APPROACHES

a) Refinement b) Aspect
@Refine

public stat ic class RC
extends Count{

@Override
public void incCounter ()
{

super . incCounter () ;
}

}

public aspect Bench {

pointcut i n c () :
ca l l (void Test . incCounter ()) ;

void around () : i nc () {
proceed () ;
}

}

Table 5.3: Class Refinement and Aspect. Both redefine the same method
invoking the previous defined functionality. Besides simple, both enforces
the GluonJ and AspectJ runtime systems to change the base functionality.

Inline No Inline
Implementation Avg. Std. deviation Avg. Std. deviation

Base 8.040 0.007 39.093 0.062
GluonJ 8.043 0.012 76.411 0.118
AspectJ 10.916 0.012 112.535 0.123

Inheritance 8.038 0.003 39.028 0.017

Table 5.4: Average results for 10 executions with and without Inline. Time
in seconds.

Chapter 6

Conclusion

This dissertation addressed the study of separation of concerns in the devel-
opment of parallel applications. From the experience with Aspect Oriented
Programming (AOP) and parallel programming, we developed a paralleliza-
tion model based in Feature Oriented Programming (FOP) to be similar to
AOP, easier to use, maintaining the same degree of separation of concerns. In
our model, parallelization concerns are introduced as features. Each feature
encapsulates several extensions to the base program in the form of : a) class
refinements, i.e., class extensions where new behaviour is attached to the
base program in a rewriting mechanism; b) new classes. Features can refine
other features by refining class refinements or new classes. Our model relies
in a feature composition step to specify which features must be applied in
which order to the base program. To cope with this composition mechanism
where features can depend on other features, we explored two alternatives
equally valuable : Feature Diagrams and Feature grammars.

Several case studies were implemented to validate our model. We high-
light the parallelization of the Java Evolutionary Computation Library(JECoLi)
framework because it is a medium-sized framework (approximately 120 classes
and 5000 LOC) used in the Biological computation field and is currently used
in production. Since features encompass parallelization concerns and are de-
veloped apart from the base code, they can be developed independently.
Equally important was the layered architecture where some features are only
services providers (e.g.: Abstract Migration) to other features and some oth-
ers map the parallelization model to a specific and optimized target execution
platform.

The implementation of the case studies leveraged a downside of our cur-
rent FOP model. Reusing is currently the Achilles’ heel. Separating the base
code from the parallelization feature enables reusing the base code but we
found hard to create a parallelization feature that can be reused by other

61

62 CHAPTER 6. CONCLUSION

case studies. One of the reasons is that parallelization features are specific
to the domain of the problem and the other reason is that our approach
refines a class by means of Object-Oriented inheritance extending the be-
haviour of specific methods. To cope with Object-Oriented rules for inher-
itance, we need to know the name of the class to extend. We implemented
a proof-of-concept tool that uses reflective technology but we found that the
performance overhead was to high to be discarded.

A comparison of our approach with the implementation of the same case
studies using AOP was also presented. We found extremely important to
understand what AOP features were being used and if those features could
be replaced by the simpler FOP model. We found that, from the implemen-
tation of the case studies, with the exception of AOP allowing pointcuts over
Interfaces, all other AOP mechanisms were based in heterogeneous pointcuts,
thus easily implemented in FOP. In terms of performance, we showed by the
implementation of several case studies and low-level benchmarks, that the
overhead is minimum compared with code developed with no extension or
modularity in mind.

6.1 Future Work

In terms of future work, we are deeply interested to see how our parallelization
model copes with the evolution of the JECoLi framework. More particularly,
we are interested to see not only the introduction of the new algorithms but
also the the maintenance and evolution of the parallelization features. For
instance, we are developing GRID mappings to the island model to use the
potential provided by GRIDs.

The development of new case studies is equally important to evolve our
parallelization model. We are studying the use of FOP to introduce not only
parallelization features but we are also interested in the design of algorithms
and data structures based on composition of features. For instance, molecu-
lar dynamics (MD) algorithms are a great source of interest by the parallel
community because there are several known parallel algorithms depending
on how particles are represented, i.e., depending on the data structures used
to represent the particles. Each representation can have a performance ad-
vantage over the others depending on the parallel architecture (e.g.: GPU or
shared memory). Using FOP to cope with this variability is one of the next
steps.

As pointed out, reusing parallel features is currently the downside of our
approach comparing with AOP. The investigation of a new evolution of our
model is one of the next steps to cope with re-usability of parallelization

6.1. FUTURE WORK 63

features.
The integration of all the steps in our parallelization model is another

future step of this research. We would like to have a tool or environment
that encompasses parallelization layers and composition. This mechanism
could integrate other tools to check valid composition of features to create
the concept of product line.

64 CHAPTER 6. CONCLUSION

Bibliography

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Oster-
mann. An overview of caesarj. Lecture Notes in Computer Sci-
ence : Transactions on Aspect-Oriented Software Development I,
pages 135–173, 2006.

[AKL09] S. Apel, C. Kastner, and C. Lengauer. FeatureHouse: Language-
independent, automated software composition. In Proceedings of
the 2009 IEEE 31st International Conference on Software Engi-
neering, pages 221–231. IEEE Computer Society, 2009.

[AL07] A. Agarwal and M. Levy. The kill rule for multicore. In Design
Automation Conference, 2007. DAC’07. 44th ACM/IEEE, pages
750–753. IEEE, 2007.

[ALS06] Sven Apel, Thomas Leich, and Gunter Saake. Aspectual mixin
layers: aspects and features in concert. In ICSE ’06: Proceed-
ing of the 28th international conference on Software engineering,
pages 122–131, New York, NY, USA, 2006. ACM Press.

[AS10] M. Almeida and João L. Sobral. Separation of Concerns in Par-
allel Applications with Class Refinement. In INFORUM 2010 :
Proceedings of the 2th symposium on Informatics, 2010.

[Ban07] Purushotham V. Bangalore. Generating parallel applications
for distributed memory systems using aspects, components, and
patterns. In ACP4IS ’07: Proceedings of the 6th workshop on
Aspects, components, and patterns for infrastructure software,
page 3, New York, NY, USA, 2007. ACM.

[Bat05] D. Batory. Feature models, grammars, and propositional formu-
las. Software Product Lines, pages 7–20, 2005.

65

66 BIBLIOGRAPHY

[Bat06] D. Batory. A tutorial on feature oriented programming and the
ahead tool suite. Generative and Transformational Techniques
in Software Engineering, pages 3–35, 2006.

[BC90] G. Bracha and W. Cook. Mixin-based inheritance. In Proceed-
ings of the European conference on object-oriented programming
on Object-oriented programming systems, languages, and appli-
cations, pages 303–311. ACM, 1990.

[BCF+99] M. Baker, B. Carpenter, G. Fox, S. Hoon Ko, and S. Lim. mpi-
Java: An object-oriented Java interface to MPI. Parallel and
Distributed Processing, pages 748–762, 1999.

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz.
Classbox/j: controlling the scope of change in java. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and appli-
cations, pages 177–189, New York, NY, USA, 2005. ACM.

[BDNW05] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes:
controlling visibility of class extension. Computer Languages,
Systems & Structures, 31(3-4):107–126, October 2005.

[BDW03] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Class-
boxes: A minimal module model supporting local rebinding.
pages 122–131. 2003.

[BK00] J. M. Bull and M. E. Kambites. Jomp—an openmp-like interface
for java. In JAVA ’00: Proceedings of the ACM 2000 conference
on Java Grande, pages 44–53, New York, NY, USA, 2000. ACM.

[BLS98] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for im-
plementing domain-specific languages. In 5th International Con-
ference on Software Reuse. Citeseer, 1998.

[BO92] D. Batory and S. O’malley. The design and implementa-
tion of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 1(4):355–398, 1992.

[Bon02] D. Bonachea. GASNet Specification, v1. 1. 2002.

[CDC+99] W.W. Carlson, J.M. Draper, D.E. Culler, K. Yelick, E. Brooks,
and K. Warren. Introduction to UPC and language specification.
Citeseer, 1999.

BIBLIOGRAPHY 67

[CDK+01] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan,
Jeff McDonald, and Ramesh Menon. Parallel programming in
OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

[CE98] K. Czarnecki and U. Eisenecker. Generative programming: Prin-
ciples and techniques of software engineering based on automated
configuration and fragment-based component models. Depart-
ment of Computer Science and Automation, 1998.

[CJP07] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using
OpenMP: Portable Shared Memory Parallel Programming (Sci-
entific and Engineering Computation). The MIT Press, 2007.

[CN03] S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient
Java bytecode translators. In Proceedings of the 2nd international
conference on Generative programming and component engineer-
ing, pages 364–376. Springer-Verlag New York, Inc., 2003.

[CSM06] Carlos A. Cunha, João L. Sobral, and Miguel P. Monteiro.
Reusable aspect-oriented implementations of concurrency pat-
terns and mechanisms. In AOSD ’06: Proceedings of the 5th in-
ternational conference on Aspect-oriented software development,
pages 134–145, New York, NY, USA, 2006. ACM.

[DBR04] Jacob Neal Sarvela Don Batory and Axel Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software Engineer-
ing, 30(6):355–371, 2004.

[DBS03] Jia Liu Don Batory and Jacob Neal Sarvela. Refinements and
multi-dimensional separation of concerns. In SESSION: Require-
ments engineering and design, pages 48 – 57, 2003.

[DFS04] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and
interaction analysis of stateful aspects. In Proceedings of the
3rd international conference on Aspect-oriented software devel-
opment, page 150. ACM, 2004.

[Dij78] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1978.

[GP] B. Goetz and T. Peierls. Java concurrency in practice. Pearson
Education India.

68 BIBLIOGRAPHY

[GS09] Rui C. Gonçalves and João L. Sobral. Pluggable parallelisation.
In HPDC ’09: Proceedings of the 18th ACM international sym-
posium on High performance distributed computing, pages 11–20,
New York, NY, USA, 2009. ACM.

[HG04] Bruno Harbulot and John R. Gurd. Using aspectj to separate
concerns in parallel scientific java code. In AOSD 2004 Confer-
ence, 2004.

[JCSG99] Glenn Judd, Mark Clement, Quinn Snell, and Vladimir Getov.
Design issues for efficient implementation of mpi in java. In JAVA
’99: Proceedings of the ACM 1999 conference on Java Grande,
pages 58–65, New York, NY, USA, 1999. ACM.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William Griswold. Getting started with aspectj.
Commun. ACM, 44(10):59–65, 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In ECOOP’97 - Object-Oriented Programming - 11th European
Conference, volume 1241, pages 220–242, June 1997.

[Koc05] Geoff Koch. Discovering multi-core : Extending the benefits of
moore’s law. Technology@Intel Magazine, 2005.

[KVBP08] Michael Klemm, Ronald Veldema, Matthias Bezold, and Michael
Philippsen. A proposal for openmp for java. pages 409–421. 2008.

[MO04] M. Mezini and K. Ostermann. Variability management with
feature-oriented programming and aspects. In Proceedings of the
12th ACM SIGSOFT twelfth international symposium on Foun-
dations of software engineering, pages 127–136. ACM, 2004.

[MRFR06] R. Mendes, I. Rocha, E.C. Ferreira, and M. Rocha. A comparison
of algorithms for the optimization of fermentation processes. In
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on,
pages 2018–2025. IEEE, 2006.

[NC08] Muga Nishizawa and Shigeru Chiba. A small extension to java
for class refinement. In SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 160–165, New York, NY,
USA, 2008. ACM.

BIBLIOGRAPHY 69

[NR98] R.W. Numrich and J. Reid. Co-Array Fortran for parallel pro-
gramming. In ACM Sigplan Fortran Forum, volume 17, pages
1–31. ACM, 1998.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Commun. ACM, 15(12):1053–1058, 1972.

[Par79] D. L. Parnas. Designing software for ease of extension and
contraction. Software Engineering, IEEE Transactions on, SE-
5(2):128–138, 1979.

[Pre97] C. Prehofer. Feature-oriented programming: A fresh look at
objects. ECOOP’97 - Object-Oriented Programming, pages 419–
443, 1997.

[PRS10] Jorge Pinho, Miguel Rocha, and João L. Sobral. Pluggable
Parallelization of Evolutionary Algorithms Applied to the Op-
timization of Biological Processes. In 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-based Processing,
pages 395–402. IEEE, 2010.

[RMM+08] M. Rocha, P. Maia, R. Mendes, J.P. Pinto, E.C. Ferreira,
J. Nielsen, K.R. Patil, and I. Rocha. Natural computation meta-
heuristics for the in silico optimization of microbial strains. BMC
bioinformatics, 9(1):499, 2008.

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: An
object-oriented implementation technique for refinements and
collaboration-based designs. ACM Transactions on Software En-
gineering and Methodology, 11(2):215–255, 2002.

[SBO01] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande
benchmark suite. In Supercomputing ’01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROM), pages 8–
8, New York, NY, USA, 2001. ACM.

[SGSP02] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat.
Aspectc++: an aspect-oriented extension to the c++ program-
ming language. In CRPIT ’02: Proceedings of the Fortieth Inter-
national Conference on Tools Pacific, pages 53–60, Darlinghurst,
Australia, Australia, 2002. Australian Computer Society, Inc.

70 BIBLIOGRAPHY

[SM08] Edgar Sousa and Miguel P. Monteiro. Implementing design pat-
terns in caesarj: an exploratory study. In SPLAT ’08: Pro-
ceedings of the 2008 AOSD workshop on Software engineering
properties of languages and aspect technologies, pages 1–6, New
York, NY, USA, 2008. ACM.

[Sob06] J.L. Sobral. Incrementally developing parallel applications with
aspectj. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, pages 10 pp.–, April 2006.

[Sou09] Edgar M. Sousa. Incrementally gridifying scientific applications.
Master’s thesis, Universidade do Minho, 2009.

[Tan10] É. Tanter. Execution levels for aspect-oriented programming. In
Proceedings of the Eighth International Conference on Aspect-
Oriented Software Development, pages 37–48. ACM, 2010.

[YSP+98] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Kr-
ishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, et al.
Titanium: A high-performance Java dialect. Concurrency: Prac-
tice and Experience, 10(11-13):825–836, 1998.

	Página 1
	Página 2
	Página 3

