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Resumo

MatLab é uma linguagem de programação amplamente utilizada em computação científica,
sistemas de controle, processamento de sinais, processamento de imagem, engenharia de
sistemas, simulação, etc. É uma linguagem interpretativa e imperativa, que no entanto é
desprovida de mecanismos eficientes de modularidade. Com efeito, durante o ciclo de de-
senvolvimento os programadores podem ter que manter várias versões de seus programas.
Isto é particularmente problemático no contexto da computação embebida, onde diferentes
hardwares/configurações têm de ser consideradas. Programação Orientada aos Aspectos

(POA) é uma metodologia de programação recente, fortemente centrada na separação de
preocupações, que tem o propósito de facultar um poderoso sistema de modelação para
linguagens de programação.

Esta dissertação tem por objectivo definir uma metodologia para construir um Weaver
conforme os princípios da programação estratégica e de forma a enriquecer o MatLab com
características da POA. O processamento de aspectos é a componente do sistema que, dado
um programa (padrão) MatLab e uma especificação de vários aspectos, gera um programa
MatLab que incorpora a acção desses aspectos no seu código. Tal componente do programa
é chamado de Weaver. A abordagem adoptada para construir este interpretador foi funda-
mentada nos princípios de Programação Estratégica, que oferece um controle genérico
e completo para travessias de árvores abstractas. No contexto desta tese, apresentamos a
implementação e desenvolvimento deste Weaver utilizando o paradigma de programação
estratégica.
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Abstract

MatLab is a programming language widely used in scientific computing, control systems,
signal processing, image processing, system engineering, simulation, etc. It is an interpre-
tative and imperative language, that suffers from the lack of modularity. Indeed, during the
development life cycle the programmers may have to maintain multiple versions of their
programs. This is particularly problematic in the context of embedded computing, where
different hardware/configurations have to be considered. Aspect-Oriented Programming

(AOP) is a recent programming methodology that heavily focused on the separation of
concerns, and thus providing a powerful module system for programming languages.

This dissertation aims to define a methodology to create a Strategic-Based Weaver for
an AOP extension to MatLab. The aspect weaving process is the system component that
given a (standard) MatLab program and the specification of several aspects, builds a Mat-
Lab program that embeds such aspects on its code. Such program component is called
weaver. The adopted approach to build this interpreter was based on Strategic Program-

ming principals, which offers a generic and full traversal control for crossing AST. In this
thesis context, we present the implementation of this weaver developed using the strategic
programming paradigm.
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Chapter 1

Introduction

Currently, there are a diversity of programming languages that in their own specific way
offers some implementation features for systems conception. Systems productivity is an
increasing notion on systems development. The lacking of modular techniques in program-
ming languages leads to an improper identification of the software functionalities. Thereby,
the evolution of some modern programming languages, such object-oriented (Java), already
embrace the decomposition of system into its functionalities (e.g. classes).

MatLab [15] is a high-level, interpreted, Domain-Specific Language (DSL), mainly
based on matrix data-types and operations on them. The MatLab environment, the rich-
ness of the language, the existence of domain-oriented packages and the associated soft-
ware tools make the language one of the preferred choices to model and simulate complex
systems [15].

However, this language suffers from the absence of modularity. Enforcing logic bound-
aries into similar components in MatLab projects, makes the code more efficient and less
error-prone. Another major problem dealing with the separation of concerns is that changes
in the original code must be done. This manual code refactoring is a time consuming prac-
tice and the occurrence of code errors increases drastically. Along with this, the devel-
oper must maintain different versions of their program to ensure that none functionality is
lost. All these drawbacks of standard MatLab programs present, a motivation to introduce
Aspect-Oriented features into MatLab.

In the Aspect-Oriented Programming (AOP) paradigm, the transformation program that
processes the aspect-oriented extension is called Weaver. The challenge for this dissertation
is to study how to efficiently implement this Weaver to support aspect features (Aspect-

1



2 CHAPTER 1. INTRODUCTION

MatLab). The automatic composition of aspects with the source code is one of the biggest
advantages of this process. In general, given a MatLab standard module and a specification
of several aspects, the Weaver analyze them and weave the aspects to incorporate a new
MatLab module as a result (see Figure 1).

Language L
(Base Code)

Aspect L

Weaver Language L
(Modified Code)

Figure 1.1: General weaving process.

In this project, the approach to conceive this Weaver heavily relies on Strategic Pro-

gramming (SP). SP is a generic programming technique that defends the use of strategies
for traversal heterogeneous data structures, considering the type-specific behavior of the
program. For this project, it will be used the TOM [8] framework which is a strategy lan-
guage extension in Java that provides powerful control features over data tree structures.

1.1 Motivation

MatLab is not unheard of among the computer engineering community. Many systems use
or incorporate its functionalities in order to efficiently improve it. However, this language is
not perfect, and tasks such as including handlers to watch specific behaviors, among others,
are extremely cumbersome and tedious.

In order to improve the MatLab language, the AMADEUS project proposes an intro-
duction of aspect language to solve many problems associated to its lack of modularity. The
efficiency that such task requires in processing both aspects and MatLab programs, urges
the need of implementing a Weaver. It will be responsibility of this Weaver to incorporate
a set of aspects, as normal program instructions, in the original source code.

Furthermore, this study will reflect efficient techniques to build aspect-oriented com-
pilers and its use in the context of Aspect-MatLab language. In section 2.1, we discuss
in great detail why the Strategic Programming is a competent solution for the Weaver’s
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construction. The generic and concise implementation that this programming paradigm
provides [20, 21, 25, 26], makes it possible to update and maintain the Weaver’s features.

This dissertation presents an approach to build a Strategic-Based Weaver and shows
a possible path that might motivate implementing a similar Weaver for other aspect lan-
guages.

1.2 MatLab

MatLab is an interpretative and imperative language (similar to C) that handles primary
double precision matrix as basic data-types [10]. It is a competent tool in areas such system
engineering, signal an image processing, control systems, etc.

MatLab offers a set of useful features and packages that guarantee a high level system’s
implementation. This high expressiveness is characterized by features like functions poly-
morphism, operator overloading and dynamic type specialization. Function polymorphism
enables the function executions with distinct types and numbers of arguments. Operator
overloading means the possibility of an operation in MatLab be used with different types,
like the operator ‘*’ can have both integer or arrays as arguments. Dynamic type spe-
cialization enables, during runtime, the possibility of the variables representing distinct
data-types.

function printNumbs(startval , inc, endval)

val = startval;

while (val <= endval)

fprintf(1, ’%.2f\n’, val);

val = val + inc;

end

Listing 1.1: MatLab printing function example.

In order to offer some insight over MatLab programming language, Listing 1.1 present
a very elucidative example. The printNumbs function codifies the printing action of all
numbers within the startval and endval variables, according to a specific increment (inc).
For instance, executing this function with this arguments: startval=1, endval=8 and inc=3,
the result will be priting {1,4,7}.
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1.3 Systems Modularization

A large scale of software systems are complex to develop, maintain and update. Thus, such
systems should be decomposed into several smaller and simpler components (solving spe-
cific problems) that are easier to build, sustain and improve. The overall software systems
is then a combination of these components. This approach to software development is an
ancient goal of programmers and researchers [23]. As a consequence, modern program-
ing languages provide mechanisms to structure our programs in a modular way. However,
more recently and powerful techniques to modularize software have been provided, like
aspect-oriented programming.

1.4 Aspect-Oriented Programming Paradigm

Currently, in the software industry the systems modularization is still under studying, but
yet with some weak approaches. Therefore, this brings numerous problems related to the
fact that software implementations are imprecise. Code scattering and code tangling are
some of these issues, which result from the unstructured implementation of the system
functionalities causing its maintenance extremely difficult [13].

Separation of concerns is a concept increasingly in vogue in software engineering.
Aspect-Oriented Programming (AOP) is the paradigm that attempts to deal with this no-
tion. This paradigm advocates a careful organization of the source code, to guarantee the
maintenance of its functionalities and at the same time to set up a competent way to add
new features. There are some important concepts related to AOP and their definitions are
vital to understand this paradigm. The following definitions deserves our attention [4, 14]:

1. Concerns: are characteristics referring to high-level requirements (mostly remote
to non-functional requirements, like the interaction with the users) and to low-level
implementation issues (requirements more related to how the system should be im-
plemented).

2. Crosscutting concerns: most of the concerns related to a program are due to vari-
ous system modules. More precisely, this concept is related to when two (or more)
properties of the program behavior must be coordinated, although they are composed
differently. For instance, let us considered the following example:



1.4. ASPECT-ORIENTED PROGRAMMING PARADIGM 5

public class Test {

public static void main(String[] args) {

Test t = new Test();

t.HelloWorld();

}

void HelloWorld() {

System.out.println("Hello world!");

}

}

Listing 1.2: Class test for crosscutting concerns.

Listing 1.2 contains a very small Java class but we can infer some crosscutting con-
cerns over its implementation like: test if the variable t is initialize or tracing when a
method is invoked.

3. Join points: are precise points in the control flow of a program where some specific
behavior can be attached, working as a reference to a structure of aspects. The list of
the join points present in a program may differ, since the introduction of new aspects
causes the definition of more join points. Considering the Listing 1.2 example we
can apply a join point capture over the class implementation.

pointcut methodCall() : call(void Test.HelloWord());

Listing 1.3: Join point for the class Test (AspectJ syntax).

The verification of when the method HelloWorld() of the class Test is called, is the
main objective of this join point.

4. Advice: is the procedure that represents the behavior to be applied to a given join
point. Advices can be called and executed according to their function. Therefore,
they can run before, after, instead of, or around specific join points. For the join
point specification in Listing 1.3 we can attach the action that must be trigged, when
it occurs .

before() : methodCall() {

System.out.println("Method HelloWorld is about to be called!");

}

Listing 1.4: Join point advice for the class Test (AspectJ syntax).
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By this definition, when the method HelloWorld() is called the warning message, on
the definition above, must be added before the join point matching instruction.

5. Aspects: are the components that define how to implement a concern and where,
when and how to invoke it. Like a concern, an aspect is connected to many parts of
the system and can be distinguished based on the function that it has in the program
(e.g. control, memory). To implement a concern where tracing the calls of the Hel-

loWorld() method, presented in Listing 1.2, is the goal then it is only necessary to
structure the join point and advice previously defined. Next, we present such aspect:

aspect Tracing {

pointcut methodCall() : call(void Foo.HelloWord());

before() : methodCall() {

System.out.println("Method HelloWorld is about to be called!");

}

}

Listing 1.5: Aspect for the class Test (AspectJ syntax).

This paradigm brings new concepts to justify a separation of concerns more efficient
than paradigms such as Object-Oriented (OO), which already have some weak character-
istics for modularization (e.g. methods, classes) [13]. Having all the core functionality of
the system and the aspects definition, it is important to incorporate a process to organize
these two modules.

The general process of computing the aspects of a particular language, that aims to
provide a more efficient code, can be described by the scheme present in Figure 1 that shows
the general execution of aspects. The central theme of this dissertation is the discussion
around the construction of a Weaver for our Aspect-MatLab language.

1.5 Languages

Programming languages area are primordial in software industry because it represents the
only way to define logical computations to be executed. However, a set of syntactic and
semantic rules must be followed, according to the language that is being used.
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1.5.1 Grammars

In this Weaver conception the grammar notion appear as the way to define both MatLab
and Aspect-MatLab syntax languages. Grammars offer a very simple and readable form
to specify languages, contrasting to the definition of using formal languages that cannot
always be specified [1]. Notions like language generator, recognizer and parsing appears
attached to this concept. A grammar is defined by a set of logic rules (recursive and nested
structures) that specify the syntax language. Using systematic processes on these rules it
can be proved if a string is grammatically correct. Some of the methodologies allow the
syntax validation by producing programs for that effect, like tools that generate parsers [1].

In the Aspect-MatLab context the parsing is accomplished by the ANTLR [24] tool.
However, the abstract signature for this language is mandatory and its formal specification
and detailed explanation can be found in section 4.3.2.

1.5.2 Abstract Data-Type

In the context of abstract data-type there is an abstraction of some characteristics that do
not define the core structure of a language. An abstract data-type is an algebraic specifi-
cation that only encodes the logical operations that sustains the desired structure without
considering concrete information, like syntactic sugar.

This formal specification is very clean and effective because it allows a simple definition
for a data structure that recognizes some particular language without the constraints related
to reserved words or another auxiliary information. Additionally, the manipulation for this
type of structures is less complex mainly because the number of conditions to verify is also
lower.

The result of all parsers developed in this project are Abstract Syntax Trees (AST’s).
Such trees are usually modeled by abstract data-types. For the Aspect-MatLab specification
one of the goals is to make this formalism an embedded Domain-Specific Aspect Language

(DSAL) in Java. A more detailed exposure of this characteristic is discussed in chapter 4.

1.5.3 Exposure in the project context

In context of this project, the Weaver is a program that receives as argument a core/standard
MatLab program the aspect definition and produces a different MatLab program. Thus, the
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Weaver can be seen as a program that analysis and transforms MatLab programs. In order
to be able to reason about MatLab programs we need to define a front-end to the aspect
language (ANTLR/TOM).

AMADEUS project is divided into several development teams. Thus, because we have
a front-end for MatLab already constructed in Java environment, justifies the use of TOM
as the strategic framework to conceive this Weaver.

TOM is a framework that is used to define the abstract behavior of Aspect-MatLab
language. TOM works with abstract rule-based systems, therefore no need to consider
the lexical context that a language encompasses. However, in order to check the aspect
semantics urges the need to build a parser. Such parsing will be implemented in ANTLR
that offers a vast range of options to automatically generate a parser based on the defined
grammar rules.

1.6 Dissertation Content

This document aims to present a detailed overview around the conception of a Weaver
that processes an aspect language extension for MatLab. In order to guide and help the
understandable idea of this project, each section of the dissertation approaches fundamental
concepts to build up this type of interpreters.

Since there is no aspect language recognized by MathWorks Corporation1 we will at-
tempt to introduce one capable of enriching this language with the aspect paradigm charac-
teristics. For that propose, a brief explanation of the basis theoretical concepts, like Aspect
and Strategic (see section 2.1) Paradigms, clarifies the main concerns related to the Weaver
functionalities.

In this context, an explanation of the strengths of Strategic Programming is mandatory
(see chapter 2). An ample source of examples (all developed in AMADEUS project) and
a detailed description of the strategic systems (see chapter 3) will appear as a complemen-
tary source to increase the comprehension of the key concepts that support the Weaver
implementation.

The architecture and design models (see section 4.3) presented are capable of process-
ing a standard MatLab program and embed the correspondent aspect specification (see

1company that reserves all copyrights of MatLab
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section 4.5). However they have limitations, serving the purpose to enforce the researching
in this area, serving this Weaver as the starting point.

Additionally, we suggest some improvements (see chapter 5) that this interpreter should
suffer to improve the processing of aspects definitions and the usability in the user point of
view.
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Chapter 2

Strategic Programming Paradigm

In this project concept, the construction of a Weaver has to ensure a mechanism to pro-
cess MatLab programs and aspect features. Such approach will follow the Strategic Pro-

gramming fundamentals. The main advantage of strategic paradigm resides on the many
techniques that define traversal schemes.

Strategic Programming is a methodology that aims to provide a full traverse control,
i.e., in this programming paradigm programmers get for free functions that traverse abstract
syntax trees using a pre-defined recursion pattern (the strategy). Two key advantages are
implied in this paradigm:

• Firstly, when traversing (possibly) large trees, only a small set of nodes have to be
consider - the ones where work have to be done.

• Secondly, if the tree changes, due to the introduction of new language constructors,
etc, a strategic function may not be affected by such language evolution.

The following sections provide a detailed description of the strategic programming con-
cepts and its main contributions for strategic systems development, which allows the im-
plementation of rule based systems and transformations on them.

2.1 Theoretical Concepts

Strategic Programming is a generic programming technique to processing heterogeneous
data-type (e.g. terms, objects). This strategic approach provides many techniques that

11
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are very useful, particularly to define traversal schemes. By introducing new forms of
abstraction and modularization, strategic programming provides high level of conciseness,
composability, structure-shyness, and traversal control [26].

Strategic programming is a methodology that aims to provide a full traverse control.
Traverse control is the process that performs logic basic actions to the right data-type in
the right order, providing an understanding and control on which (order) data is visited
and under which conditions. In this way, strategic programming allows an apprehension of
reusable generic traversal schemes [19].

One of the issues about the best traversal scheme to use is related with what type of
data we want to collect, especially in heterogeneous data structures. Therefore, sometimes
it has to be applied more than one traversal scheme in order to obtain the desired result.
This represents one of the capabilities of strategic programming that is the possibility to de-
fine new traversals through the composition of strategic schemes that can be reused within
applications.

The methodology around the strategic concept is based on the identification of the prob-
lem specific ingredients, with the recognition of the respective reusable traversal schemes,
and synthesis of the traversal by parameter passing. These ingredients represent the data
processing according to type-specific (or generic) actions with specific branches [19]. The
traversal scheme associated can range from a type-specific problem to a more typical
generic traverse (reusable).

There are many characteristics around the foundations of strategies, which contribute to
clarify and motivate its implementation. These characteristics are the following [26]:

• Genericity: is one of the most important aspects around the concept of strategy,
because its application covers a large heterogeneous data-type.

• Specificity: although most of the strategies are generic, they can be applied to a
specific problem by defining correct operations.

• Composability: refers the possibility to express the conditional, compound and iter-
ated strategy application.

• One-layer traversal: represent the capacity of enabling generic traversals to the
datum of heterogeneous data-structures, and its direct subcomponents.
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• Partiality: it is an important characteristic when the failure of a strategy in a datum
occurs, because it is possible to recover from this situation.

• First-class: this aspect symbolizes the fact that a strategy can be named, passed as
arguments, etc.

Strategic programming can efficiently incarnate into any programming paradigm or lan-
guage based on all of this characteristics. At the same time, these references provide useful
information on reviewing other generic approaches.

In strategic programming environments there are many traversal schemes that can be
applied depending on which result and problem that is being consider. Thus, we have
schemes that make a full traverse of the tree to apply some strategy, while some only have
the concern to find the first datum where the argument strategy succeeds.

In the next sections we will emphasize the range of traversal schemes that this paradigm
covers, more precisely the none-traversal control (section 2.1.2) and the traversal control
(sections 2.1.3, 2.1.4, 2.1.5 and 2.1.6).

2.1.1 Basic Combinators

All the traverse schemes has its definition based on some primitive strategy combinators.
Its main goal is allowing the specification of patterns to more complex tree traverse over
the incoming data. In strategic paradigm such basic combinators are:

Strategic basic combinators

id Identity strategy
fail Failure strategy
seq(s, s) Sequential composition
choice(s, s) Left-biased choice
all(s) All immediate components
one(s) One immediate component
adhoc(s, a) Type-based dispatch

Table 2.1: Strategic basic combinators definition.

The strategy id always succeeds in any datum, thus the returned result is the unchanged
input term. On the opposite side, the fail combinator never succeeds on any datum, reacting
to any input term with failure. The sequential composition (seq) applies its two argument in
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a successively form, the first argument first than the second over the outcome result of the
first . With the same number of arguments, strategy choice attempts to execute firstly its first
argument, and only if it is not succeed is executed the second argument. The combinator
all applies its argument to all input’s immediate sub-terms. Combinator one has a similar
behavior to all, but once only applies the argument to a single immediate sub-term of the
input. The type-based dispatch (adhoc) apply the second argument if matches the type of
the input term, otherwise apply its first argument.

In the following sections we present how the cooperation between these primary com-
binators can define the generic traverse schemes to process heterogeneous data-type.

2.1.2 Non-Traversal Control

The strategy combinators presented in this group do not provide traversal control. The
traversal control is the concept that defines how basic actions are applied in which order,
and what specific conditions must be respected [26]. Thus, the combinators that this group
covers are try and repeat. These combinators are useful in the characterization of traver-
sal schemes. They define the application of actions, which can be repeatedly (repeat(s))
applied or invoked only once (try(s)). Their semantic definitions are:

try(s) = choice(s,id)

repeat = try(seq(s,repeat(s)))

These definitions suggest the way in which these two combinators work. The try com-
binator tries to apply its argument strategy s, but if it fails returns the id. In the repeat case,
apply continuously the argument s until it fails.

2.1.3 Full Top-Down and Bottom-Up

The combinators full_td and full_bu represent the traverse scheme of full top-down and
full bottom-up, respectively. These two models apply the argument strategy to the datum,
and to all immediate or non-immediate components, of a specific data structure. The only
difference between them resides on the first datum that they approach. While top-down
starts applying the strategy at the root of an Abstract Syntax Tree (AST) and its subnodes,
bottom-up approaches firstly the terminals of this tree until reaching the root. For better
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understanding of the functionality of these two models, it we present the definition in terms
of the semantics of the strategy combinators:

full_td(s) = seq(s,all(full_td(s)))

full_bu(s) = seq(all(full_bu(s)),s)

In these two definitions, it is possible to verify that the argument strategy s is applied
to a received datum and it is continuously applied to its sub-components. These models
are very useful when a full application of the argument strategy to all nodes (to a data
structure) is required. Figure 2.1 shows the behavior that the full_td combinator has in the
tree traverse.

Figure 2.1: Full top-down combinator approach.

2.1.4 Once Top-Down and Once Bottom-Up

Any of these modules apply the argument strategy until it finds a component at which
it succeeds. In the same way as full top-down and bottom-up, the once_td and once_bu

have similar behavior. The only difference resides in the fact that both, once top-down and
bottom-up, stop when it’s found the first parameter that respects this argument, contrasting
with the full traversal schemes. The definition of these modules in strategy combinators
semantic is the following:

once_tp(s) = choice(s,one(once_tp(s)))

once_bu(s) = choice(one(once_bu(s)),s)



16 CHAPTER 2. STRATEGIC PROGRAMMING PARADIGM

In these definitions the only highlight property is the restriction of the one combinator
that marks the acceptance of the argument strategy only for the first successful parameter.
This is the main difference to the traversal schemes described above. They represent useful
models when the traverse of a tree only requires the identification of the first component that
respects the argument strategy s. Figure 2.2 illustrates the path that these two combinators
follow in the traverse of a tree.

Figure 2.2: once_tp(left) and once_bu(right) combinators.

2.1.5 Stop Top-Down

The stop_td combinator has a different philosophy than full_td. The stop_td does not per-
form a total traverse of the tree, instead it only applies the argument strategy until one
branch fulfils the restrictions presented in this application. However, like full_td this appli-
cation starts in the root of the tree and proceeds applying the argument to the immediate
components. The only reason that distinguishes these two models is that the stop_td can
finish the traversal before crossing all components. The stop_td can be also expressed in
semantics of the strategy combinators:

stop_td = choice(s, all(stop_td(s)))

This definition is very similar to the full_td, but the semantic choice sets the traverse
stopping when the argument strategy is fulfilled by any branch of the tree. This combinator
provides a powerful tool when a full traverse is unwanted, in contrast of reaching the branch
where an argument strategy has a successful application. In order to show the behavior of
this combinator, Figure 2.3 presents the path executed by stop_td.
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Figure 2.3: Stop top-down approach.

2.1.6 Innermost and Naive-Innermost

These combinators represent the leftmost innermost evaluation strategy. In any of these
strategies, the argument strategy is evaluated from left to right in the traversed tree. Al-
though they implement the same evaluation strategy, the innermost combinator is more
efficient. They can be defined as semantics of the strategy combinators:

innermost(s) = seq(all(innermost(s)),try(seq(s,innermost(s))))

naive_innermost = repeat(once_bu(s))

2.2 The Strategic Paradigm in TOM

ToOne Matching (TOM) [8] is an embed Domain-Specific Language (DSL) in Java, in-
spired in rule based systems like ELAN [9], Stratego [20] and JJTraveler [12]. TOM rep-
resents the incarnation of strategic programming in the object-oriented paradigm.

Like the methodology that generic strategic paradigm defends, TOM provides mecha-
nisms to ensure a full traversal control, by introducing a strategic library capable of pro-
cessing traverse in any data-type. The way that any strategy is applied has the following
generic procedure:

• Chose the correct node (subject) to visit.

• To each visit select the default behavior of the strategy.

• Define the argument strategy action to be performed.
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There are two ways to apply a strategy to term: visitLight and visit. These two meth-
ods are specified in the Visitable interface. Although the visit and visitLight options have
similar behaviors, visitLight is more efficient because it do not take into account the idea
of environment. Environment is the notion that maintains the current position and the next
subnode where the strategy is applied. In cases where these characteristics are needed visit

appear as the efficient method, updating at each step those environment variables.

(Identity)[t] ⇒ t

(Fail)[t] ⇒ failure

(Sequence(s1,s2))[t] ⇒ failure if (s1)[t] fails
(s2)[t’] if (s1)[t]⇒ t’

(Choice(s1,s2))[t] ⇒ t’ if (s1)[t]⇒ t’
(s2)[t] if (s1)[t] fails

(All(s))[f(t1,...,tn)] ⇒ f(t1’,...,tn’) if (s)[t1]⇒ t1’, ..., (s)[tn]⇒ tn’
failure if there exists i such that (s)[ti] fails

(All(s))[cst] ⇒ cst

(One(s))[f(t1,...,tn)] ⇒ f(t1,...,ti’,...,tn) if (s)[ti]⇒ ti’
failure (s)[t1] fails, ..., (s)[tn] fails

(One(s))[cst] ⇒ failure

Table 2.2: TOM Basic Combinators Definition, adapted from [6]

TOM also covers the basic combinators that do not provide any control over the hetero-
geneous data-type. In TOM they are defined in the sl library and they represent the essential
components to define more complex strategies. The basic combinators that TOM supports
are presented in Table 2.2.

In the previous section we presented a detailed definition of all the traverse schemes and
with these combinators implemented in TOM it is possible to describe the same definition
in the Java environment. Although TOM is embedded in an object-oriented paradigm, the
modularization of this set of traversal schemes is based on a recursive implementation. The
incarnation in TOM resembles the theoretical definition, however in TOM it was defined
two sets of traversals: one set for Identity default behavior and other for Failure. The
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approach to apply the argument strategy is very similar but the internal definition in this
framework differs in each case. The formal definitions for schemes that are extended to
Identity are:

Try(s) = Choice(s,Identity)
Repeat(s) = µ x.Choice(Sequence(s,x),Identity())
OnceBottomUp(s) = µ x.Choice(One(x),s)
BottomUp(s) = µ x.Sequence(All(x),s)
TopDown(s) = µ x.Sequence(s,All(x))
Innermost(s) = µ x.Sequence(All(x),Try(Sequence(s,x))

Table 2.3: TOM Strategies Definition (Identity), adapted from [6]

With the same pattern and with the goal to implement more efficient strategies, espe-
cially to perform leftmost-innermost normalization, and with identity considered as failure.
The definition of these traversal schemes on this core framework are:

(SequenceId(s1,s2))[t] ⇒ (s2)[t’] if (s1)[t]⇒ t’ with t,t’
t otherwise

(ChoiceId(s1,s2))[t] ⇒ t’ if (s1)[t]⇒ t’ with t,t’
(s2)[t] otherwise

(OneId(s))[f(t1,...,tn)] ⇒ f(t1,...,ti’,...,tn) if (s)[ti]⇒ ti’ with ti,ti’
f(t1,...,tn) otherwise

(OneId(s))[cst] ⇒ cst

TryId(s) = s

RepeatId(s) = µ x.SequenceId(s,x))

OnceBottomUpId(s) = µ x.ChoiceId(OneId(x),s))

OnceTopDownId(s) = µ x.ChoiceId(s,OneId(x)))

InnermostId(s) = µ x.Sequence(All(x),SequenceId(s,x)))

OutermostId(s) = µ x.Sequence(SequenceId(s,x),All(x)))

Table 2.4: TOM Strategies Definition (Failure), adapted from [6]
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TOM covers all possible scenarios for crossing AST’s. The modularization of full or
partial traverse is provided and the user merely raises the most accurate to apply some
strategy. The specification of a strategy in TOM is quite simple and effective. The sample
bellows represents a fairly succinct description of a strategy implementation.

%strategy TransformTerm() extends Identity() {

visit Term {

t() -> {‘newT();}

}

}

Listing 2.1: Generic TOM strategy.

This constructor is seen as an embedded TOM method in Java. The only restrictions
fall within the definition of the term to visit (Term), which the strategy will be applied
(subsequent productions, eg. t()), and the argument strategy definition described after the
’->’ symbol (to each production). This strategy is applied when a match to an element of
type t occurs and this component is converted into another element (newT()) that belongs
to the same visit type (Term) and according to a previously defined abstract signature.

In order to provide a more understandable idea of how this constructor works in TOM,
Table 2.5 presents the grammar that defines its nomenclature.

StrategyConstruct ::= ’%strategy’ StrategyName ’(’ [StrategyArguments] ’)’
extends’ [”’] Term ’{’ StrategyVisitList ’}’

StrategyName ::= Identifier

StrategyArguments ::= SubjectName ’:’ AlgebraicType ( ’,’ SubjectName ’:’
AlgebraicType )*

| AlgebraicType SubjectName ( ’,’ AlgebraicType
SubjectName )*

StrategyVisitList ::= ( StrategyVisit )*

StrategyVisit ::= ’visit’ AlgebraicType ’{’ ( VisitAction )* ’}’

VisitAction ::= [LabelName’:’] PatternList ’->’ (’{’ BlockList ’}’ | Term)

Table 2.5: Strategies Grammar, adapted from [6]

According to the specification presented above it becomes clear a few constraints of
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implementing strategies. The general pattern has the following properties:

• Name of the strategy;

• The strategy can have arguments or not (e.g. collections);

• Set the default behavior of the strategy (Identity() or Fail());

• Define the set of terms to apply the strategy (StrategyVisitList);

• To each term define the execution action (VisitAction);

The incarnation in Java environment of all strategic fundamentals is complete. TOM
provides the generic traverse schemes needed to process any data-type (known as GOM
signature) and tools to delineate the strategy argument to perform any type of action under
the selected terms. In section 3.3 we will discuss with more detail the process of building
up an interpreter.
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Chapter 3

Strategic Systems

Software implementation calls for a set of requirements that defines its functional behavior.
Enabling such concepts, like strategic programing, in a practical environment is crucial to
effectively process program transformations.

Among strategic community there are few systems that offer the demanded strategic
techniques. Some of these systems are embedded in typical programming languages, like
Haskell or Java, allowing express and construct rule-based systems in distinct environ-
ments. The state of art of strategic systems are vast, but some of the existent frameworks
include suitable features for traverse control over AST’s. The widely known and subject of
countless studies are: Strafunski, Stratego/XT and TOM.

Under the conditions that this project is based, the Weaver was developed using TOM
framework. More details about its conception are discussed in chapter 4.

3.1 Stratego/XT

The Stratego/XT framework is designed to develop and support programs transformation
systems [20]. This framework is a Domain-Specific Language (DSL) for strategic program-
ming and presents the interaction between the Stratego language and the XT transformation
tools.

The foundations under the conception of the Stratego language are based on the paradigm
of the rewriting terms under the control of strategies, process know as strategic term rewrit-
ing. The programmable rewriting strategies are extremely useful to control the applications

23
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of basic rules that express basic transformations. To define the concrete syntax that char-
acterizes any language that is intended to implement, is vital the identification of dynamic
rewriting rules that expresses the context-sensitive transformations.

The XT toolset is a well establish infrastructure that provides an efficient parser for
grammars and pretty-printing generators. The reusable attributes for transformations tools
is an asset, mainly because it allows an abstraction over the implementation of traversal
schemes for AST’s, proved by the fact that they are generic and therefore capable of cross-
ing any data-type structure.

Like any other strategic system, Stratego/XT ensures the term traversal by applying
the strategy combinators to the rot term and correspondent sub-terms. These combinators,
as referenced before, are highly generic and they define what and which order rules are
applied. The Stratego/XT offers the following strategy combinators [20, 26]:

• Sequential composition (s1 ; s2)

• Deterministic choice (s1 <+ s2 ; first try s1 , only if that fails s2)

• Non-deterministic choice (s1 + s2; same as <=, but the order of trying is not defined)

• Guarded choice (s1 < s2 + s3; if s1 succeeds then commit to s2 else s3)

• Testing (where(s); ignores the transformation achieved)

• Negation (not(s); succeeds if s fails)

• Recursion (rec x(s)).

However, these combinators are only usefull to apply to the roots of each term, but if the
desired result implies that one strategy must consider the directed sub-terms, Stratego/XT
also provides combinators for term traversal. For example, all(s) applies the argument s to
all direct sub-terms of an term [26].

Stratego/XT can be applied to a wide type of transformations, such as compilation,
generation, analysis, and migration [20]. Besides the fact that Stratego is a very powerul
language, is not a common programming language being completely independent of lan-
guages such Haskell or C. Problems may arise related to its self-learning about the Strat-
ego methodology, contrasting with systems such as Strafunski where the language is pure
Haskell [16]. However, the result of Stratego/XT is presented in C syntax which can miti-
gate this problem.
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In summary, Stratego/XT is an expressive framework that supports an infrastructure for
program transformation to express type-specific languages, where the strategic paradigm is
strongly represented.

3.2 Strafunski

Strafunski is a Haskell-centered software bundle that aims to provide generic programming
and language processing [21]. Strafunski efficiently support programming for systems anal-
yses and transformations over language components. Like Stratego/XT, Strafunki tools can
be applied in various specific areas of software engineering, like program optimization and
software metrics [21, 26].

Strafunski is an Embedded Domain-Specific Language (EDSL) because the program-
ming language is pure Haskell, therefore there is no need to understand new programming
concepts being only necessary follow the functional paradigm characteristics that this pro-
gramming language stands for.

The generic programming that Strafunski attempts to incarnate is the strategic paradigm,
thus the StrategyLib library was augmented to support generic traversal schemes over any
specific data-type based on the notion of functional strategy. Let us considered the follow-
ing example [21]:

full_tdTU s x = (s x) ‘mappend‘ (allTU mappend mempty (full_tdTU s) x)

This is a small example but explanatory enough to understand the way that Strafunski
handles the application of generic strategies. In this case, the strategic argument s is applied
to the x term and recursively to all the immediate sub-terms, using mempty as initial value
and considering all the intermediate results (mappend).

Another major tool that Strafunski offers is the DrIFT: a generative tool for supporting
the use of libraries in a vast range of data-types. For better understanding the architecture
behind Strafunski, Figure 3.1 is very clarifying [26].

It is possible to verify that algebraic data-types can have two different sources: by Syn-

tax Definition Formalism (SDF) or by XML schemas. The dependence of libraries to build
a functional language processor as a quite good illustration in the Figure 3.1. The Strate-

gicLib to apply functional strategies to parse trees, the ATermLib for data interchange (like
SDF data-type to algebraic data-types in Haskell), the DrIFT as the mediator of interchange
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Figure 3.1: Strafunski architecture, adapted from [21].

formats process and many others powerful tools, establish Strafunski as an efficient bundle
for language processing [21].

The parser is an external component for SDF that needs to be integrated in Strafunski.
The SDF corresponds to the grammar specification for the language that is intended to
be implemented. This parsing has a Left to right (LR) character for analyses of the SDF
generic grammar [21].

Strafunski is supplied by powerful packages that enrich the language processing method.
All the generators and augmented libraries around this Haskell-centered bundle maintain
an efficient balance between integration with external components and generic traversals to
incorporate any application to language processors.

3.3 ToOne Matching (TOM)

TOM is a framework for programming rule-based systems and along with a very capable
toolset allows an efficient manipulation of tree structures and XML documents. TOM in-
carnates the strategic paradigm through an extension of Java language. Along with this
extension TOM also provides a pattern matching compiler to look over a specific data-
type [7].

One major advantage of TOM is that the underlying host language is Java, benefiting
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of all extensions and libraries that Java offers [8]. All of this reinforces the notion that any
Java program can become a TOM program [7].

Like others rule based systems TOM provides a very similar form, related to functional
languages to implement this type of programming. Gom [7] is the signature that TOM
offers to describe type-specific structures. The general form of a Gom signature is:

module Rule

abstract syntax

Term = token1

| (...)

| tokenN

| Conc(a:token1 ,..., n:tokenN)

Listing 3.1: Structure of Gom signature.

In this case Rule is the name of the module, Term is the type of the sort and the tokens
represent the constructors that this sort might need. For better understanding this method-
ology, let us considered the following example:

module BinTree

imports int String

abstract syntax

BinT = Node(n:int, left:BinT, right:BinT)

| Leaf(l:int)

| Empty()

Listing 3.2: Binary tree Gom signature.

This Gom signature represents a binary tree. It is possible to verify that BinT sort must
have the Node (and correspondent left and right sub-trees), Leaf and Empty constructs to
specify all the elements that characterize this type of trees. The representation is quite
simple because TOM does not process any syntactic sugar.

The pattern matching in TOM is handled by the %match constructor. Although this
constructor is executed in an imperative context, the semantics and methodology behind its
implementation was based on the functional paradigm [8].

public static String prettyTree(BinT t){

%match(t){

Node(n, left, right) -> {
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return "Tree:" + ‘n + "," + prettyTree(‘left) +

prettyTree(‘right);

}

Leaf(l) -> {return " "+‘l;}

Empty() -> {return "";}

}

}

Listing 3.3: Pretty printer using the %match constructor.

The left-hand side of the rules are Gom productions and the right-hand side can be either
a Java statement or a grammar term. In case that is the term that has to be returned, a formal
anchor (‘) in TOM has to be used, for transpose its definition to an executable statement
in Java. When a match occurs it is returned the instruction present in the right-hand side,
having a similar behavior to the switch/case Java operation [8]. Listings 3.3 expresses the
pretty printer of a binary tree. It is possible to verify the need to transform a term to a Java
statement (e.g. ‘left) in order to present all the tree nodes.

TOM strategy language has three distinct types: elementary strategies, recursive and

parameterized strategies and exploration strategies. The elementary strategies correspond
to the ones having minimal transformation, like Identity that does nothing, Fail that always
fails or a set of rewrite rules that only are applied to a root of a term. The recursive and
parameterized strategies aim to gain more control by combining elementary strategies with
the following basic combinators [8]:

Sequence(s1,s2)[t] ⇒ s2[t’] if s1[t]⇒ t’
failure if s1[t] fails

Choice(s1,s2)[t] ⇒ t’ if s1[t]⇒ t’
s2[t’] if s1[t] fails

All(s)[f(t1,...,tn)] ⇒ f(t’,...,tn’) if s[t1]⇒ t1’,..., s[tn]⇒ tn’
failure if there exists i such that s[ti] fails

One(s)[f(t1,...,tn)] ⇒ f(t1,...,ti’,...,tn) if s[ti]⇒ ti’
failure if for all i, s[ti] fails

Table 3.1: TOM basic combinators.

The definition of strategies for this framework, like top-down or bottom-up, requires
recursive declarations. For instance, the top-down definition in TOM is TopDown(s) =
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µx.Sequence(s,All(x)), where the tree traversal starts at the root of an AST and is recur-
sively applied to the immediate sub-terms. The exploration strategies are needed when the
parameterization of some strategy is necessary, like collect some useful information when
traversal the AST. The following example presents a situation where that is required:

%strategy TreeHeight(Collection c) extends Identity() {

visit BinT{

c@Node(n,_,_)->{c.add(‘n);}

c@Leaf(l)->{c.add(‘l);}

}

}

public static void SumBinTree(BinT bt, HashSet nr){

try{

‘TopDown(Try(TreeHeight(nr))).visit(bt);

}

catch(VisitFailure e){

System.out.println("Strategy TreeHeight failed!");

}

}

Listing 3.4: Strategy tree height.

In this example the goal is to infer the nodes present in the binary tree to get as a result
the sum of that tree. The traverse scheme that was used in this case was the top-down,
which attempts to execute the argument strategy TreeNode to the bt tree. So, for this case
it is only necessary to know the node and leaf heights present in any sample for this data
type structure.

All the recursive definitions of generic traversal schemes are present in the sl library,
allowing an abstraction of how it is implemented, invoking only the most appropriate one
for AST traverse. After defining the data structure, it is only necessary the application of
strategies to their components. The strategies that sl library supports are: Try(s); Repeat(s);

OnceBottomUp(s); BottomUp(s); TopDown(s); Innermost(s) [8].

Another tool in TOM that deserves to be highlighted is the Gom Antlr Adaptor. Since
TOM only support abstract grammar definition, ANTLR [24] appears as the only connec-
tion technology to TOM that provides the semantic analyzer and parser. However, the AST
that ANTLR produces is not legible in the TOM environment. Thus, we have to apply an
adaptor that converts this AST produced in ANTLR into a Gom tree. This is achieved by
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the Gom Antlr Adaptor. Although this tool takes a Gom signature as input, so additionally
is necessary the definition of the correspondent abstract signature for the concrete grammar
in ANTLR.

In summary, TOM extension language offers pattern matching and rewriting to Java.
This framework covers a vast application filed, providing implementation of rule-based
systems, transformation on XML documents and offers a simple way to describe algebraic
transformations.

3.4 Parsing Tools

In this project context a parser is vital to extend Aspect Oriented features into MatLab
projects. A parser is one of the most important components of the Weaver. Its value relies
on these characteristics:

• Validation of the input to its grammatical structure.

• Identifying the meaning of the input.

• Providing, with precision, the execution of the described action on the input over the
data structure.

To cover the need to insert syntactic analysis over the input of aspect tokens is indis-
pensable the implementation of such parser. The lack of resources in TOM framework in
dealing with this kind of information must be aided with some external parsing generators.
This constraint is where tools like JavaCC and ANTLR are strikingly vital. In next sections
we present some features of these two parsing technologies.

3.4.1 Java Compiler Compiler

Java Compiler Compiler (JavaCC) is a parser generator used worldwide. The modus

operandi of this tool is based on converting a standard grammar specification into a recog-
nizable Java program. This tool provides some useful features to define formal rules of a
specific language.

However, to describe such grammatical rules in JavaCC requires some implementation
conditions. JavaCC has four major steps of building up a syntactic analyzer [18]:
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1. Define the grammar in an Extended Backus-Naur Form (EBNF).

2. Convert the EBNF formalism into JavaCC notation (four specifications blocks).

(a) Options Block: defines the control over the type of input.

(b) Skeletal Class Declaration Block: defines the structure of a valid Java class
within two JavaCC “flags”, PARSER_BEGIN and PARSER_END.

(c) Lexical Specifications Block: specifies the grammar terminals into JavaCC
nomenclature to parser these input’s symbols.

(d) Productions Block: Transposing of each grammar production to JavaCC in-
structions.

3. Generate standard Java code over the JavaCC specification.

4. Incorporate the features present in the generated Java code into a Java project.

JavaCC generates LL(1), with some exceptions, parsers through top-down traverse.
Nevertheless, in the definition of a grammar the left recursion (direct or indirect) is not al-
lowed. There are some algorithms that help to remove this problem, but despite this minor
draw back, this tool offers some useful functions: data tree building processor, supported
by the JJTree features and the creation of documents about the grammar specification (like
Java API).

For all that was exposed JavaCC appears as a very competent tool to implement parsers
in Java context.

3.4.2 ANother Tool for Language Recognition

ANother Tool for Language Recognition (ANTLR) is a framework that offers a wide range
of tools for the manipulation of rule-based systems. It is continuously being updated, in-
creasing the number of useful features for language processing.

Like JavaCC, ANTLR generates parsers by applying a top-down analysis through the
grammar definition. The difference lies in the LL parsing since ANTLR has a LL(*) (no
restricted number of tokens to lookahead) behavior. Still, ANTLR does not allow the spec-
ification of left recursion rules but offers some useful information to rebuild a grammar
within ANTLR parameters [24].
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A formal structure must be followed in order to implement DSL’s in ANTLR. Such
structure is composed by:

grammarType grammar name;
�optionsSpec�
�tokensSpec�
�attributeScopes�
�actions�

start rule :...|...|...;
rule1 :...|...|...;
rule2 :...|...|...;
...

Table 3.2: ANTLR Grammar Structure, adapted from [24]

For example, having the complete specification for a G type grammar, the ANTLR
has some embedded tools that split its structure into the specific functionalities (in Java
context) [24]:

• GLexer.java encapsulating the lexical rules;

• GParser.java containing the parsing specifications;

• G.java containing the tree grammar;

• G.tokens containing all the grammar vocabulary;

The generic parsing process that ANTLR provides has some particular aspects, like the
path present in Figure 3.2. The tree walker feature offers some interesting information,
like actions in the AST . Particularly, it supplies the grammar implementation with good
debugging messages that might appear in some rule definition.

Additionally, for the specification of the grammar rules, ANTLR offers a very capable
GUI editor (ANTLRWorks) that allows the implementation and validation of the grammar.
In order to embed such specification in any Java project there are some pre-build methods
that allows the recognition of that data structure.

In summary, ANTLR supports an extensive range of features for DSL’s implementation,
therefore yielding an effective parser generator tool. But the lack of strategic approach to
build up an interpreter must be filled with some external framework. The next section, we
present a small example describing this relationship with TOM framework.
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Lexer

Parser

Input

Tokens

Tree Walker

AST

Output

Figure 3.2: ANTLR data flow diagram, adapted from [24]

3.5 Regular Expressions Case Study

This section will attempt to show the phases that the conception of this Strategic-Based
Weaver for the Aspect-MatLab must pass. After giving a brief overview about the TOM
framework and its capabilities, it is clear the needing of implementing two main aspects:
concrete and abstract signature for a specific language; and the implementation of the cor-
rect strategies for processing this language. For this case study it will be considered the
implementation of an interpreter that is cable of processing and normalize regular expres-
sions.

Regular Expressions are widely used in the recognition of character patterns and its most
important application lies in the description of basic symbols of a programming language.
First it is required a deep analyses of what are the main characteristics present in this
language. Elementary regular expressions are composed by simple literals (e.g. a). But in
another level these expressions can be composed by:

• Sequence of expressions: ab, a(cd);

• Alternative combinator (boolean or), allows the separation between two expressions:
a|b, (ab)|c;

• Optional combinator, which defines the occurrence of the expression between zero
or one time: a?, a(bc)?;
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• Star combinator defining that there are zero or more occurrences of an expression:
a*, a|b*, a(bc)*;

• Plus combinator defining that there are one or more occurrences of an expression:
a+, ab?(cd)+;

• Terminal symbols that this language covers are: ’(’, ’)’, ’*’, ’+’, ’?’, ’|’ and alphabet-
ical small letters from ’a’ to ’z’;

Having the language analyses careful done the outlines for a grammar that describes this
language are getting down to a full specification. In order to set out the closure between
data types in TOM and data types in Haskell this grammar will be presented at these two
levels, but still with more focus on the TOM environment.

3.5.1 Regular Expressions in Haskell

Haskell [16] allows the specification of user-defined types using the data constructor. This
structure do not contain much implementation restrictions being only necessary the declara-
tion of the main types that represents the regular expression language. After the inspection
of these language characteristics it becomes clear that some of the sorts, like alternative,
demand that this definition must be recursive [2]. Such data type has the following imple-
mentation in Haskell:

data RegExp = Epsilon

| Literal Char

| Opt RegExp

| Alt RegExp RegExp

| Seq RegExp RegExp

| Star RegExp

| Plus RegExp

Listing 3.5: Regular expression data type in Haskell.

This algebraic data type is purely abstract, since there is no reference to symbols like
’?’ or ’|’. The data constructors such Alt or Opt are representative of the recursion. The
declaration above is simply to define the types for Alt :: RegExp -> RegExp -> RegExp

and Opt :: RegExp -> RegExp, and to all similar cases like these. But, using these data
constructors we are able to write regular expressions in Haskell and checking the sentences
syntax. For instance, the regular expression e = a|(bc*) can be written as:
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e = Alt a (Seq b (Star c))

where a = Literal ’a’

b = Literal ’b’

c = Literal ’c’

Listing 3.6: Regular expression example in Haskell.

Building an interpreter for this type of language in pure Haskell without the concrete no-
tation is impractical in the user point of view. Therefore, the representation of the concrete
aspects for the Haskell environment demands a parser construction. However, this task is
very time consuming and the errors associated to standard recursion manipulation do not
sustain the efficiency of assembling an interpreter. As presented in section 3.2 , Strafunski
provides very capable tools to language processing and can model the concrete signature
for regular expressions, therefore allowing the implementation of a strategic interpreter to
this language.

3.5.2 Regular Expressions in TOM

Transposing the same concept ideas to the TOM environment the abstract signature that
describe the regular expression language can be specified. Since this type of grammar does
not consider any syntactic sugar it is only necessary to specify the main productions. The
following Gom signature encompasses the specification for this language:

RegExp = Empty()

| Literal(c:String)

| Star(s:RegExp)

| Plus(p:RegExp)

| Opt(o:RegExp)

| Seq(s1:RegExp, s2:RegExp)

| Alt(a1:RegExp, a2:RegExp)

Listing 3.7: Regular expression data type in Tom.

This specification closely resembles the Haskell representation. Still the concrete no-
tions to implement this interpreter are missing. This problematic was already referred in
section 3.3, so additionally it is necessary the definition of this grammar in ANTLR. This
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is extremely useful because ANTLR provides the specification of all the lexical rules. This
action mitigates the problem of dealing with concrete inputs in TOM, and at the user point
of view the input task is simplified. For instance, a simple concrete input like ab* should
be typed has Seq(Literal(a),Star(b)) in the abstract form. However, the transportation of
the grammar above to ANTLR cannot be done directly because ANTLR does not provide
left-recursion parsing. The constructor Seq for example should be able to have its normal
specification, like regExp: regExp SEQ regExp, but such scenario does not exist because
of that ANTLR restriction. Therefore, the concrete grammar in ANTLR has to suffer some
adjustments in order to implement the regular expression language.

regExp : exp alt;

alt :

| ’|’ exp alt;

exp :

| sglExp exp;

sglExp : LITERAL simb

| ’(’ regExp ’)’ simb;

simb :

|’?’

|’*’

|’+’;

LITERAL : (’a’..’z’);

Listing 3.8: Grammar fo regular expressions in ANTLR.

In this stage another problem arises: the connection between ANTLR and TOM is re-
sponsibility of the Gom Antlr Adaptor. This tool requires that every constructor in ANTLR
must have the correspondent constructor in TOM. However, the concrete and abstract gram-
mars are very distinct, so the solution for this problem passes by the specification of an
auxiliar abstract grammar that literally corresponds to the exact concrete grammar. This
association can be executed with the following auxiliar grammar in TOM:

RegExpAux = RegE(e:Exp, a:Alt)

Alt = AltAntlr(e:Exp, a:Alt)

| NoAlt()
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Exp = ExpAntlr(s:SingleExp , e:Exp)

| NoExp()

SingleExp = SglExp(l:String, s:Symbol)

| Bracket(re:RegExpAux , s:Symbol)

Symbol = OptAntlr()

| StarAntlr()

| PlusAntlr()

| NoSymbol()

Listing 3.9: Regular expression auxiliary data type in TOM.

Finally, it is necessary to rewrite the ANTLR rules to the auxiliar grammar described
above. The way to process that action is presented in the following instructions:

regExp : exp alt -> ^(RegE exp alt) ;

alt : -> ^(NoAlt)

| ’|’ exp alt -> ^(AltAntlr exp alt);

exp : -> ^(NoExp)

| sglExp exp -> ^(ExpAntlr sglExp exp);

sglExp : LITERAL simb -> ^(SglExp LITERAL simb)

| ’(’ regExp ’)’ simb -> ^(Bracket regExp simb);

simb : -> ^(NoSymbol)

|’?’ -> ^(OptAntlr)

|’*’ -> ^(StarAntlr)

|’+’ -> ^(PlusAntlr);

LITERAL : (’a’..’z’);

Listing 3.10: Regular expression association between TOM an ANTLR.

Despite the connection between the TOM and ANTLR is establish, the resulting abstract
grammar does not correspond to the correct one. Thus, it is required to convert the auxiliar
signature into the normal and more accurate grammar. So, the definition of a method in the
TOM environment that treats this rewriting approach is necessary. Such method has the
following implementation:
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public static RegExp evalRegExpAux(RegExpAux reg){

%match(reg) {

RegE(ExpAntlr(s,e1), AltAntlr(e2,a)) -> {

return ‘Alt(Seq(evalSingleExp(s), evalExp(e1)),Alt(evalExp(e2),

evalAlt(a)));

}

RegE(NoExp(), AltAntlr(e,a)) -> {

return ‘Alt(evalExp(e),evalAlt(a));

}

RegE(ExpAntlr(s,e), NoAlt()) -> {

return ‘Seq(evalSingleExp(s), evalExp(e));

}

RegE(NoExp(),NoAlt()) -> {

return ‘Empty();

}

}

throw new RuntimeException("RegExpAux RunTime Error");

}

Listing 3.11: Converting method for the standard TOM grammar.

This conversion is extremely important to provide the application of strategies to a more
competent grammar by decreasing the number of operations necessary to build up this in-
terpreter, mainly because the number of constructors is minor as well. After implementing
all of these steps, any regular expression can now be normalized. Using strategies for this
effect, the solution in TOM is quite simple:

%strategy Norm() extends Identity(){

visit RegExp{

Plus(p) -> {

return ‘Seq(p,Star(p));

}

Opt(o) -> {

return ‘Alt(Empty(),o);

}

}

}

‘BottomUp(Norm()).visit(rg);

Listing 3.12: Strategy that normalizes a regular expression.
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Bearing in mind that the Plus and Opt are productions of the regular expressions gram-
mar, they might appear at the begging, middle or end of a regular expression definition,
thereby a full traverse approach is recommended. The traverse scheme used in Listing 3.12
was the BottomUp but it could also be applied the TopDown scheme, because they both
provide a full traverse over regular expressions specification.

The case study presented is a very elucidative example about implementing interpreters
in TOM. A detailed description of potential problems, and correspondent solutions, helps
to understand the importance of all stages. The Weaver will pass by some of these stages,
but since this implementation is more complex than regular expressions language more
problems are expected, but the core philosophy remains intact.
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Chapter 4

Aspect-MatLab Weaving

MatLab is a powerful tool, well establish in the computer engineering environment. The
richness and variety of its associated functionalities coupled with its great level of docu-
mentation makes MatLab widely known and used.

The extension of an aspect language to MatLab aims to introduce valuable means to
control certain behaviors as monitoring variables or handler rules. Tasks like these are
very time consuming and hard to manage because changes in the original source code
are demanded as well as the implementation of new one required. In the context of the
AMADEUS project, this Aspect-MatLab language is being developed and the completion
of the correspondent Weaver are the most important phases to extend MatLab to aspect
features.

4.1 Aspect Module

The aspect module for this language is shaped by a set of primitives that define its structure.
Requirements like naming the aspect, defining the join point capture (select) or even specify
the action for that join point (apply) are mandatory.

The select primitive is restricted to three types of MatLab: variables, arrays and func-
tions. For the same aspect definition it is possible to compose join points, using the logical
operators: and (&&), or (||) and negation (!). To call up some join point was established
some capture functions presented in Table 4.1.

In order to trigger some action when a join point succeeds, the definition of the apply

41
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primitive is required. The action is described by a string that is directly inserted on the
original code, according to the execution type: before, around or after. A join point might
involve more than one action, for cases like handling the value before and after of a variable
assignment. For that purpose, this language allows the definition of multiple apply actions.

aspect aspect_name

select: Join Point Capture

apply: Action Description_1 :: execute before|after|around

apply: Action Description_2 :: execute before|after|around

end

aspect aspect_name2

...

end

Listing 4.1: Aspect module structure.

The aspect definition modeled by the structure in Listing 4.1 is restricted within the
aspect and end keywords. The next primitive sections are organized in a common sense
way, because it is contradictory defining the action for a non-defined join point.

There are some similarities with the AspectJ [17] approach. The explanation for that
fact is that we are trying to implement a very simple and easy to mange language. Since
the AspectJ’s semantics is widely known in aspect programming, the philosophy to extend
a similar language to MatLab falls on the same criteria. Considering all these factors, the
construction of the Strategic-Based Weaver will rely on the same principals. Regarding the
study of efficient techniques for implementing aspects, this development will be based on
some characteristics present in abc compiler: an efficient, open-source and easily to reuse
compiler for AspectJ [5].

Explaining with more details of this aspect module is responsibility of another research
group of AMADEUS project. A complete specification, and updates, can be found and
study in the “An Domain Specific Aspect Language for MatLab” [22] dissertation.

4.2 Join Points Functions

The select primitive is responsible for declaring the join points. However, to define what
function should be invoked to capture some MatLab instruction an explanation about the
objective of each join point primitives is imperative.
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Arrays Variables/Constants Functions

add() read() call()
get() write() function()

sizeOf()

Table 4.1: Primitives for join point capture.

It is possible to capture arrays instructions in three ways: when an array is assigned to
some value (add()), when an array is called (get()) or to extract the array size (sizeOf()).

At the same level it is possible to capture variables (or constants) when an assignemt
(write()) occurs or when the value of that varaible is being read (read()).

Finally, if we are looking to capture a function specification, the primitive function()

should be called. But, if we desire to catch when a function is called we must use the call()
primitve.

As mentioned in the previous section, more joint points might be defined and can be
found in [22].The next sections will demonstrate the design and implementation of the
Aspect-MatLab Weaver.

4.3 Weaver: The Design and Architecture

"Weaving is the process of composing core functionality modules with aspects,

thereby yielding a working system" in [14].

In this project concept, the construction of a Weaver has to ensure a mechanism to
process MatLab programs and the Aspect-MatLab [11] features. The approach to build it
will be based on Strategic Programming. The main focus is to efficiently introduce aspects
in MatLab projects without changing the main functionalities, but producing a final base
code better organized and competent.

The AMADEUS project has some complementary tools for weaving, with the purpose
to split these aspect extensions to its implementation needs. The enrichment of MatLab
with the aspects requires the development of the following features:

• A parser for the MatLab language, due to restrictive copyrights that compilers to
MatLab have.
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• An Aspect-MatLab language definition along with a competent parser.

• An unparsing tool that translates a weaved program to MatLab instructions.

For the parsing needs two tools were used: JavaCC and ANTLR. TOM appears as the
core implementation framework to process the weaving functionalities. The architecture
that supports such implementation is based on the following data flow diagram:

MatLab Program Aspect-MatLab

Strategic-Based Weaver

New MatLab Program

Visual 
Representation AST 

TOM
Visual 

Representation

Visual 
Representation

AST 
TOM

AST 
TOM

Antlr ParserJavaCC ParserMatLab 
Grammar

Unparser

Aspect 
Grammar

Figure 4.1: Aspect-MatLab weaving process.

This scenario covers all the necessary steps to build a Strategic-Based Weaver to pro-
cess the Aspect-MatLab features. The final result of this procedure generates a new MatLab
source code more competent, less error-prone and better organized. In the next subsections
it will be presented a detailed description of all the stages that the weaving process encom-
passes.

4.3.1 MatLab Language Parsing

At this level it is used the JavaCC parser generator to process MatLab instructions. The
main concern was to efficiently translate a MatLab program to a TOM data structure. How-
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ever, this task is not easy because of the MatLab polymorphism. MatLab does not require
the variable type definition, and thus, until the execution time this type remains unknown.
For the parsing definition this is a major drawback because it is not clear the instruction
category. For instance, in the Listing 4.2 example the sumvals can be applied to both scalar
or array types of values.

function s = sumvals(start , step , stop)

i = start;

s=i;

while i < stop

i=i+step ;

s=s+i;

end

end

a = sumvals(1, 1, 10^6);

b = sumvals ([1 2] , [1.5 3] , [20^5 20^5];

Listing 4.2: Function sumvals in MatLab.

Additionally, MatLab is continuously being updated and so this parser might not be
capable of processing all instructions of this language.

Regarding the fact that JavaCC does not provide strategic features, the major effort is to
provide a legible data-type in the TOM environment. The aspect execution will be applied
to this type and will be returned according to the TOM signature.

An additional functionality was added to perform analyses over both input and output
MatLab programs. Such feature generates a Graphviz visual representation file, which
later is converted to a pdf format. A concrete example of this is presented at appendix D
according to example in Listing 4.2.

The complete specification of the TOM abstract data-type for MatLab is presented in
appendix A, because of its extension (over 78 different type of nodes) and complexity.

4.3.2 Aspect-MatLab Parsing

The syntactic analyzer used to describe the Aspect-MatLab language is ANTLR. Since this
implementation was developed side by side with its definition, the resulting parser do not
cover all the features that should process, yet.
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The main focus was to establish the most appropriate structure for this language. An
aspect file can have the following specification:

• One ore more aspect definition;

• An aspect can have more than one join point;

• An aspect can have more than one execution type;

As mentioned before, the definitions of both concrete and abstract grammar are in-
dispensable. Considering the formal structure for aspects, the first step is to identify the
main abstract constructors that might need to be implemented. Currently, the definition of
Aspect-MatLab language only requires the following TOM data-type:

LstAspectML = NoAspectML()

| ConsAspectML(a:AspectML, l:LstAspectML)

AspectML = Aspect(name:String, args:LstAspectArg , body:ActionsBody)

LstAspectArg = NoAspectArg()

| ConsAspectArg(arg:AspectArg , l:LstAspectArg)

AspectArg = Arg(a:String)

ActionsBody = Actions(input:Input, sel:LstSelect , ap:LstApply, wh:Where)

LstSelect = NoSelect()

| ConsSelect(s:Select, l:LstSelect)

Select = ReadVar(n:String)

| WriteVar(n:String)

| CallFun(n:String)

| Fun(n:String)

| AddArray(n:String)

| GetArray(n:String)

| SizeArray(n:String)

LstApply = NoApply()

| ConsApply(a:Apply, l:LstApply)

Apply = ExecuteBefore(insert:String)

| ExecuteAfter(insert:String)
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| ExecuteAround(insert:String)

| HeaderExecuteBefore(insert:String)

| HeaderExecuteAfter(insert:String)

| HeaderExecuteAround(insert:String)

| BodyExecuteBefore(insert:String)

| BodyExecuteAfter(insert:String)

| BodyExecuteAround(insert:String)

| HeaderArgsExecuteBefore(insert:String, ag:LstAspectArg)

| HeaderArgsExecuteAfter(insert:String, ag:LstAspectArg)

| HeaderArgsExecuteAround(insert:String, ag:LstAspectArg)

| BodyArgsExecuteBefore(insert:String, ag:LstAspectArg)

| BodyArgsExecuteAfter(insert:String, ag:LstAspectArg)

| BodyArgsExecuteAround(insert:String, ag:LstAspectArg)

Listing 4.3: Aspect abstract grammar.

This Gom signature takes the sort LstAspectML as the first instance of the aspect tree.
This constructor can be either empty (NoAspectML) or contain one or more aspects defi-
nition (ConsAspectML). However, the concrete starting point on aspect definition relies in
the production AspectML. Naming the aspect, defining if there will be arguments, specify-
ing the join points and execution instructions are some characteristics that this constructor
requires (by direct or nested rules).

Additionally, the concrete signature requires another level of detail for the lexical and
parser rules in ANTLR, which has to ensure the similarities to its abstract signature. For
lexical definition we attend to specify all the reserved words (e.g. “aspect”, “select”,

“apply”, etc.) and terminal symbols. Since ANTRL disallows the left recursion, new
parser rules were defined with some distinct behavior than the structure in TOM. Along
with this constraint, the concrete semantics increases the number of possibilities for term
rewriting. For instance, let us reflect on the following code sample extracted from ANTLR
parser:

s e l e c t
: ( . . . )
| WRITE ’ ( ’NAME’ ) ’
| WRITE ’ ( ’NAME’ ) ’ ’&&’
| WRITE ’ ( ’NAME’ ) ’ ’ | | ’
( . . . )

Listing 4.4: Aspect concrete grammar sample
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This sample models the join point that captures a variable assign. Such action can be
trigged in two distinct ways: a simple join point definition (e.g. write(a)); or composition
(logical and/or) between join points (e.g. write(a) || write(b), write(a) && write(b)). Since
a new data-type in TOM is required for ANTLR, this issue is resolved by that approach.

In addiction to all of these, a Graphviz visual representation feature was also implement
to increase the understandability of the idea about this abstract data-type. For example,
considering the following concrete aspect definition:

aspect test

select: read(c)

apply: "disp(’The value of this variable is’ c)"::execute after

end

Listing 4.5: Aspect example

Regarding this specification a dot file is created containing the abstract representation
of the aspect. Such representation has the shape as in Figure 4.2.

Aspect

test Actions NoAspect

ReadVar ExecuteAfter

c NoSelect disp('The value of this variable is' c) NoApply

Figure 4.2: Aspect graphical view.

The differences between abstract and concrete grammar can be analyzed in appendix B,
which contains the ANTLR specification. During the assembly of this parser there were no
issues relevant enough to mitigate its development.
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4.3.3 Embedded DSAL in Java

In the course of developing the data-type in TOM, one goal was to make it as closer as
possible to the syntax keywords of the aspect language specification.

Aspect Syntax TOM data-types

read() ReadVar()
write() WriteVar()
call() CallFun()

function() Fun()
add() AddArray()
get() GetArray()

sizeOf() SizeArray()

Table 4.2: Correspondence between concrete and abstract syntax

In the previous section 4.3.2 we presented the aspect TOM signature, and comparing
with the join point capture present in Table 4.2 it is possible to verify that the algebraic
types in TOM resembles the concrete syntax. For instance, considering the execution of
the following aspect over the sumvals (Listing 4.2) function:

aspect variable_tracing()

select: write(s)

apply: "display(’Tracing value of:’ + s)" :: execute after

end

Listing 4.6: Aspect for sumvals function.

The goal of this aspect is to introduce the apply action after each assign instruction for
variable s. This aspect can easily be expressed with TOM constructors.

ConsAspectML(

Aspect("variable_tracing",NoAspectArg(),

Actions(ConsSelect(WriteVar("s"),NoSelect()),

ConsApply(ExecuteAfter("disp(’Tracing value of:’ + s)"),NoApply()),

)

),

NoAspectML()

)

Listing 4.7: Aspect for sumvals function in TOM.
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Besides some additional and needed internal rules in TOM (e.g. NoAspectArg()), this
example is quite representative of the potential of the abstract aspect definition. Although
this embedded DSAL allows this aspect specification, for more complex aspects the ten-
dency of occurring syntax errors would drastically increase.

Since the goal is to define simple aspects without considering the concrete components,
this DSAL emerges as an efficient alternative specification method.

4.3.4 Unparsing TOM to MatLab

This tool transforms a weaved MatLab program in TOM into standard MatLab instructions.
The methodology behind its implementation is nothing more than a pretty printer according
to MatLab nomenclature.

This feature is extremely useful because it produces a program that can be recognized
and processed by the MatLab toolbox. The final stage of weaving is reached when aspects
were embedded in the original MatLab program.

4.4 Strategic-Based Weaver

This section addresses the weaving tasks and expresses the strategic approach to embed
aspects into MatLab projects.

Covering all the parsing stages, the implementation of the weaver functionalities can
have its first design. The first approach to start the Weaver delineation is based on the
definition of these primordial concepts:

• What kind of inputs that Weaver should receive.

• What type of traversal scheme to use.

• What kind of result that Weaver must return.

The inputs that such function should receive is the abstract representation of a MatLab
program and Aspect-MatLab specification. The MatLab program works has the target to
execute some described action of the aspect definition. This covers all the needed informa-
tion to perform program transformation on MatLab files.
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The correct traversal scheme for this function relies on the specification of the aspect
join point. For example, if we want to change the assignment to every appearances of the
variable ’x’, a full traversal is recommended, but if we intended to display the result of
the first execution of a specified function it is advisable to approach in a once top-down
manner. The second scenario has no possible behavior on this language proposal. So, since
the traverse of a full MatLab program is required to capture all possible join points, a full
top-down approach appears has the most appropriate scheme.

The weaving result is a new MatLab program, maintaining the same core functionalities,
but with some performed actions described in the aspect module. However, this result is not
legible in the MatLab environment. Its representation still maintains the abstract character.

Having these parameters completely defined, the goal is to implement a weaver func-
tion as generic as possible, capable of dealing with all the join point issues. This generic
characteristic decreases the invasive changes on its definition when this aspect language is
updated. This is also vital in dealing with the restriction that the Weaver development co-
existed with the language specification, so the TOM data-type was continuously suffering
some adjustments. The algorithm that supports such weaving should have the following
behavior:

Input: Abstract signatures of MatLab program and Aspect-MatLab
Output: New MatLab program with embedded aspects
foreach Join Point do

while MatLab and Aspect AST tree != Empty do
Top-DownTraversal(strategy);
if Join Point matches a MatLab instruction then

Execute(applyinstrucion);
end

end
end

Algorithm 1: Weaver function implementation.

This algorithm is extremely generic and do not reflects in any way the actual Weaver
implementation. The only purpose is to give a more understandable idea of the actions that
should be performed.

The Weaver implementation is shaped and focused on three major phases:
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• Collect all the join points from aspect definition.

• Extract the MatLab sub-trees that match a join point.

• Perform the aspect actions on the MatLab program.

This covers all the steps that this implementation passed by. But, in order to present a
detailed explanation of all these stages the next sections will discuss how this actions were
implemented and how the interaction between them is processed.

4.4.1 Join Point Capture

The first action that the weaving process should perform is to gather the join points in
aspect definitions. For that purpose, it is necessary to traverse the aspect AST in TOM and
store the strategy result. Such implementation in TOM can be achieved as the following
instructions:

%strategy JoinPointCatch(Collection jp) extends Identity() {

visit Select{

jp@ReadVar(_)->{jp.add(‘jp);}

jp@WriteVar(_)->{jp.add(‘jp);}

jp@CallFun(_)->{jp.add(‘jp);}

jp@Fun(_)->{jp.add(‘jp);}

jp@AddArray(_)->{jp.add(‘jp);}

jp@GetArray(_)->{jp.add(‘jp);}

jp@SizeArray(_)->{jp.add(‘jp);}

}

}

Listing 4.8: Aspect join point capture strategy.

This strategy was very useful at the beginning of the implementation. However, over the
time some requirements were refined and not only was necessary the join points capture,
but also associate them to the apply instruction. This could be done with a more complex
strategy, but some internal errors related to the traverse schemes definition in TOM do not
return the correct result. The solution passes by using explicit recursion. Such implemen-
tation is as follows:

public static ArrayList joinPoints(LstAspectML ac){

ArrayList jp = new ArrayList();
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ArrayList aux = new ArrayList();

%match(ac){

NoAspectML() -> {return jp;}

ConsAspectML(Aspect(_, _, actions),l) -> {

jp=jpActions(‘actions);

aux=joinPoints(‘l);

return concat(jp,aux);}

}

throw new RuntimeException("Aspect instruction fail in LstAspectML");

}

Listing 4.9: Aspect join point method.

The philosophy is basic the same if a strategy approach was adopted. This method
returns a set with the combined join points and apply instructions (e.g. [WriteVar("s"),
ExecuteAfter("display(’Tracing value of:’ + s)"),...]).

The generic traverse scheme that should be used is the top-down, because the aspect file
can contain more than one aspect definition. Thus, it is required an analyses of the whole
file until reach its end.

The information that the result set carries can be transposed and used to confirm if any
instruction in a MatLab program matches any join point. Since the aspect and MatLab
languages have distinct data-types in TOM, this result set serves as the communication
link between them. Next, we present how this information is used to extract the MatLab
sub-trees.

4.4.2 MatLab Sub-Trees Capture

The purpose for this section is how to infer if an join point match occurs and how to collect
the correspondent tree from the MatLab program.

The target AST that has to be traversed must be consistent to a MatLab program. One
of the arguments that such strategy should receive is the result of the previous join point
capture method. This allows to establish a comparison between a statement in MatLab and
an aspect join point. When a match occurs, is trigged the action related to the join point.
This strategy can be implemented in TOM as follows:

%strategy MatLabJoinPointTree(Collection c, Collection jp, Collection se,

Collection varName) extends Identity(){
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visit StatementSort{

c@Statement(Assign(Expression(Id(Identifier(name,line1))),exp,line2),

line3) -> {

ArrayList <String> aux_se = new ArrayList <String> (se);

String exec = aux_se.get(0);

if((verifyWriteVar(jp,‘name) || verifyAddArray(jp,‘name)) &&

verifyExecuteBefore(jp,exec)){

StatementSort bf = ‘Statement(Expression(Text(exec,line1)),

line3);

c.add(bf);

c.add(‘c);

}(...)

}(...)

}

}

Listing 4.10: MatLab sub-trees capture strategy.

This sample of the MatLabJoinPointTree strategy mentions some of the constructors
of the MatLab grammar, like Statement, Assign, Expression, etc. For more details about
this abstract grammar, as mention in section 4.3.1, has a complete description available in
appendix A.

One of the milestones for this strategy is how to make it as generic as possible. For
instance, the action to assign a variable to a type specific value can be done in several
ways, like a direct assignment to an integer or by combining a result of a function with a
double. In Listing 4.10 the goal is to cover the assignment to variables and arrays. For that
purpose, there is no restriction about the ascribed type attached to those assignments. It is
only used a generic ExpressionSort variable (exp). Since the type of a variable in MatLab
is only known during runtime, the type specification for arrays and variables assignment
have the same principles, thus the same type of statement.

The validation of a join point, coupled with its execution type, is a mandatory require-
ment. Considering that a join point specifies the name of a variable, is only needed traverse
the MatLab AST and verify if any Statement type has the same correspondent name. At the
same time, we have to ensure that the apply action is executed within to its execution type.
In this case, is validated if the apply instruction is executed before the join point match.

The execution type of the apply action constrains the shape of the new MatLab sub-tree.



4.4. STRATEGIC-BASED WEAVER 55

For example, if the apply instruction has to be executed before the join point, the resulting
sub-tree should attach first the apply instruction and then the statement that matches the
join point, on the original MatLab program.

The new MatLab sub-tree is stored in a set with the purpose of being used in other
auxiliary strategies in weaving process.

4.4.3 Weaving MatLab Programs

The final requirement to process aspects over MatLab programs is to merge the result of
the two previous stages and embed the aspects into the original source code. This level is
where all the weaving process comes together.

Having the new sub-tree of a MatLab program, the main objective is understand how to
assemble the weaved program. All MatLab instructions fall within the ConcStatement con-
structor, and the first approach for weaving relies on how to introduce the new instructions
in this rule. Thus, the visit argument of such strategy must be the same as ConcStatement.

%strategy WoveConcStatStrategy(Collection tree) extends Identity(){

visit StatementListSort{

ConcStatement(hLst*,st,tLst*) -> {

(...)

ArrayList <StatementSort > aux = new ArrayList(tree);

if(checkStatementArgs(aux,‘st)){

StatementSort tag = ‘Statement(Expression(Text(

"Execution Around",0)),’t’);

if(!aux.contains(tag)){

StatementSort fst = (StatementSort) aux.get(0);

StatementSort snd = (StatementSort) aux.get(1);

tree.remove(fst);

tree.remove(snd);

return ‘ConcStatement(hLst*,fst,snd,tLst*);

}

else{

StatementSort fst = (StatementSort) aux.get(0);

StatementSort snd = (StatementSort) aux.get(1);

StatementSort thr = (StatementSort) aux.get(2);

tree.remove(fst);

tree.remove(snd);

tree.remove(thr);
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return ‘ConcStatement(hLst*,fst,tLst*);

}

}

}

}

}

Listing 4.11: Strategy for MatLab instructions body update.

As mentioned in the previous section, the argument for this strategy definition is the
returned set from the MatLabJoinPointTree strategy. The join point can have a match in
any instruction of the program. Thus, since ConcStatement invokes a list of statements we
have to assume all possible scenarios:

• A join point can match the first MatLab instruction.

• A join point can have matches over the middle of the source code.

• A join point can match the last instruction.

The WoveConcStatStrategy has to control variables hLst* and tLst*, representing the set of
instructions before and after a join point match, respectively. TOM is capable of inferring
if the hLst* and tLst* variables are empty or not. So, in this way the st variable can cover
all the possible scenarios where join points might appear. That raises the question if it is
really necessary to declare these two control variables. If they were omitted the returned
result would not cover all the initial instructions. For instance, if a join point occurs in the
middle of the program, the weaved program does not contemplate the instructions before
that join point, which disagrees with the idea of keeping the same core functionalities of
the original program.

Firstly, the join point validation has to assure that the statement that is being visited
matched the join point, responsibility of the checkStatementArgs method.

Secondly, updating the MatLab instructions can have two different forms according to
the apply execution type. Considering the execution type is before or after the join point,
is only necessary maintain the original statement attached to the new instruction. If the ex-
ecution is before the match, then the first instruction is the apply action and the second the
statement where the join point arises. On the other hand, if the execution is after the match
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the first and second statements are the join point statement and apply instruction, respec-
tively. But, using the execution type around there is no need of keeping the original join
point MatLab instruction, since that is replaced by the apply action. For this effect, urges
the need of inserting a flag variable that separates this notion from before and after. The
only difference on the returned ConcStatement lies on the apply instruction that replaces
the join point matching statement in the instructions structure.

Since, the new instructions body of the MatLab program is returned, the next step is to
embed this structure into the MatLab main constructor. All the described auxiliary strate-
gies provide the needed transformations to implement the weaving process.

%strategy WeaverStrategy(Collection tree) extends Identity(){

visit StartSort{

Start(FunctionMFile(returnVars , functionIdentifier , args,

concSt, lineN1), lineN2) -> {

ArrayList aux = new ArrayList(tree);

return ‘Start(FunctionMFile(returnVars , functionIdentifier , args,

WoveConcStat(concSt, aux), lineN1), lineN2);

}

Start(ScriptMFile(concSt, lineN1), lineN2) -> {

ArrayList aux = new ArrayList(tree);

return ‘Start(ScriptMFile(WoveConcStat(concSt, aux), lineN1),

lineN2);

}

}

}

Listing 4.12: Weaving Strategy.

Taking into account that operations in MatLab can be made with a direct sequence
of instructions (called scripts) or by including them into functions, we have to split the
weaving process into these two types of files. Since these two types of files have distinct
structures on MatLab grammar, specific MatLab programs should be returned according
to the input file. Listing 4.12 points out this scenario, where is possible to confirm the
low complexity of such strategy. The only action that is performed is crossing a MatLab
program applying the strategy WoveConcStat in a top-down approach.
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A new MatLab program, under aspect restrictions, is returned with the same core func-
tionalities. The objective of automating the process of embedding aspects into MatLab
projects, in a strategic performed way, is completed.

4.5 Weaver in Practice

After providing a complete description of the Aspect-MatLab language adopted and a pro-
totyped Weaver implementation, we can exhibit some examples adopted from [10].

The actions that an aspect module represents can be related to some types of code han-
dling, like logging and tracing variables. Manage code by logging requires controlling the
behavior of certain variables. For example, if we want to attest that none of the variables
exceeds a specific value we must insert the adequate MatLab control code. Consider the
example in Listing 4.13:

...

for j = 1:1:N

sum = sum + A(j) * B(j+N);

end

outa(i) = sum;

...

Listing 4.13: MatLab script.

Shaping the aspect definition according to the Weaver’s input must follow these speci-
fications:

aspect logVar

select: write(sum)

apply: "if sum>=10000 warning (’sum too big! %f’,sum);end"

::execute before

end

Listing 4.14: Aspect logging.

From this aspect definition it is possible to verify that the join point definition does not
cover all the the target variables in Listing 4.13. Despite the aspect grammar accepting
multi-aspect definition, the current version of the Weaver only computes one join point,
because of the complexity of the method to associate several join points to several apply

instructions. In order to implement all these control instructions, we need to define one
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aspect to each variable present on the script. The execution type is always before, since
these instructions appear before the match instruction. The final MatLab code based on the
aspect action is as follows:

...

for j = 1:1:N

if sum>=10000 warning (’sum too big! %f’,sum);

end

sum = sum + A(j) * B(j+N);

end

outa(i) = sum;

...

Listing 4.15: MatLab logging weaved script.

Tracing the value of a variable is another convenient action to watch the behavior
throughout the code (very used for debugging issues). The only difference to logging action
is that it does not repress the values that a variable assumes. Displaying the value in each
stage of the program is the goal. Such aspect should have the following structure:

aspect logVar

select: write(sum)

apply: "dis(’Tracing variable sum:’,sum);"::execute before

end

Listing 4.16: Aspect tracing.

Like in Listing 4.14, if we intend to trace more that one variable or even trace the value
before and after the join point, we must define more aspect modules. Applying this aspect
to the MatLab script, the following structure of instructions is returned:

...

for j = 1:1:N

dis(’Tracing variable sum:’,sum);

sum = sum + A(j) * B(j+N);

end

outa(i) = sum;

...

Listing 4.17: MatLab tracing weaved script.

Embedding aspects into MatLab source code is a quite simple process using the Weaver.
Although some of its limitations do not allow a full specification of the intended action, if
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we split the target variables into distinct aspect files, the Weaver is capable of processing
them. Needless to say, we have to reuse the result of an action in order to outcome a final
program with all the needed instructions.

Like Figure 4.3 suggests, the process of separating the core functionalities of the pro-
gram from the auxiliary aspect actions can be easily described. This methodology helps
in editing and maintaining the original source code. The main objective here is keep the
distance among aspects computing and the functional module of the system, accomplished
by the Weaver intervention.

...
for j = 1:1:N
       sum = sum + A(j) * B(j+N);
outa(i) = sum;
...

MATLAB code Code with smaller features
if sum>=10000 warning ('sum too big! 
%f',sum);end

if sum>=10000 warning ('A(j) too big! 
%f',A(j));end

if sum>=10000 warning ('sum too big! 
%f',sum);end

...
for j = 1:1:N
if sum>=10000 warning ('sum 
too big! %f',sum);end
if sum>=10000 warning ('A(j) too 
big! %f',A(j));end
       sum = sum + A(j) * B(j+N);
if sum>=10000 warning ('sum 
too big! %f',sum);end
outa(i) = sum;
...

MATLAB code with 
features implemented

Weaver

Figure 4.3: Weaving process example.

Summarizing, the automated code insertion in pre-defined join points by the Weaver
features allows a fast code insertion at MatLab’s input program.
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4.6 Weaver in numbers

In order to present some insight about the complex implementation of the Weaver, we
present some numbers related to all the developed tools: concrete and abstract aspect gram-
mars, size of the weaver file and numerous generated files.

The concrete grammar for our Aspect-MatLab language has 126 lines of specification.
Since this concrete representation demands an auxiliary abstract grammar in TOM, the
complete abstract implementation, also considering the embedded DSAL presented in sec-
tion 4.3.3, has 101 lines of code. The main file that imports all the TOM data-types and
executes transformations on them has around 1400 lines of code. However, this complex-
ity is minimized by the strategic approach because if this implementation was developed
using explicit Java recursion the number of lines and the complexity of the methods would
drastically increase.

Besides the large amount of code lines of all files, ANTLR and TOM also generates
countless auxiliary files. They provide methods and features that complements the imple-
mented weaving functionalities.

Additionally, considering all the tools developed in the AMADEUS projects, like the
front-end for MatLab, emphasis even more the complexity of enriching the MatLab lan-
guage with aspects features.

4.7 How to use the Weaver toolset

To use the Weaver some aspects has to be mentioned to explain how to input a standard
MatLab program and an aspect specification.

To input a set of MatLab instruction (scripts or function) an external file named Mat-

Lab.m has to be edited. The instructions that this file contains are parsed by the MatLab
front-end and only after is executed the action decribed in aspect definition.

To insert the aspect specification in Weaver the approach was similar, editing the asp.txt

file is mandatory. This file is parsed by ANTLR and converted to TOM abstract data-type.

After and during the weaving process, some visual Graphviz files (aspMatLab.dot, Mat-

Lab.dot and WeavedMatLab.dot) are generated to complement the understanding about the
abstract representation of a MatLab program and aspect file.
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Finally, after weaved the original MatLab program a WeavedMatLab.ir file is generated
containing the abstract representation of the new program that will be unparsed to standard
MatLab instructions.

4.8 The Weaver compilation process

The Weaver is composed by many files and has several dependencies between them. The
compiling of all these files is executed by specific steps, like the following:

1. Set up the TOM environment, needed for the recognition of TOM commands:

export TOM_HOME="tom-2.7/"

export PATH=${PATH}:${TOM_HOME}/bin

export CLASSPATH=${TOM_HOME}/lib/tom-runtime-full.jar:${CLASSPATH}

Listing 4.18: Commands to set up TOM environment.

2. Parsing the aspects to TOM environment using the Gom Antlr Adaptor:

gomantlradaptor --grammar AspectGram --package parser

parser/AspectRule.gom

gom --package parser parser/AspectRule.gom

tom --output parser/AspectGram.g parser/AspectGram.g.t

java org.antlr.Tool parser/AspectGram.g

Listing 4.19: Gom Antlr Adaptor commands.

3. Compilation Weaver main file and all the complement files, and input the aspect file:

tom parser/Weaver.t

javac parser/*.java

java parser/Weaver < parser/asp.txt

Listing 4.20: Compilation of the main file.

4. Converting the Graphviz files into pdf format:

dot -Tpdf -o aspMatLab.pdf aspMatLab.dot

dot -Tpdf -o MatLab.pdf MatLab.dot

dot -Tpdf -o WeavedMatLab.pdf WeavedMatLab.dot

Listing 4.21: Conversion Graphviz to pdf.
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All these instruction are described in the compile.sh file. Thus, is not necessary call all
of this instructions in future compile actions, being only necessary execute the ./compile.sh

command on the computer’s terminal.
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Chapter 5

Conclusions

This thesis embraces the main steps of building a Strategic-Based Weaver. We present the
motivation that lead to an extension of aspect-oriented features to MatLab. An extended
overview about the strengths of strategic programming also provides the ideas that sustains
such type of Weaver.

The Aspect-Oriented paradigm introduces new concepts that advocate a stronger separa-
tion of concerns, therefore increasing modularization in MatLab based systems. Traversal
programming in the strategic approach is a solid example of the purpose of AOP tech-
niques. The independence of data structure, the support for reusing basic programmer-
definable computations and the abstraction of programming language make the strategic
programming an efficient idiom to build a Weaver for Aspect-MatLab features.

The entire mechanism of weaving has many associated concerns. We must ensure that
the correct aspects definitions have their safe application in a standard MatLab program.
For the first instance approach was studied the best solution to structure the weaving fea-
tures, which was based in breaking the weaving needs into several parts, focusing on each
features that had to be performed.

Splitting the traverse actions of both aspect and MatLab data-type was recommended
since they are modeled by distinct structures. This is a crucial step in establishing a connec-
tion among these two TOM abstract signatures. For these languages updating, the generic
traverse allows an implementation free of adjustments, since they are capable of processing
any data-type.

Establishing a separation on the weaving model by its features was the most appropriate
approach. Centering the attention on the action itself allows a functionality oriented imple-

65
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mentation. This property increases the efficiency of the strategy. Accounting to the Weaver
limitations, some of these strategies have an ideal and complete behavior. For instance, the
strategy that collects all the join points is capable of storing one simple join point or com-
posed join points (e.g. write(a)&&read(b)), covering all the possible scenarios. However,
if some changes on the join point capture method arise it is only necessary to improve this
strategy for the new needs, having no concern about the other auxiliary strategies.

Assembling all the strategies result into the main weaving process was relatively simple.
The final MatLab program corresponds to the initial ideas of enriching this language with
aspect features. The only information about the aspect execution over the input program
lies on the apply instruction. In each point where a match occurs, is possible to confirm the
presence of the new instruction (before, after or around) on the woven program.

For all that was presented we believe that this Weaver is extremely functional and offers
some useful functions, like abolishing the manual code re-factoring on MatLab programs.
This final version encloses all primary needs for embedding aspect into MatLab. For full
weaving process we present a detailed overview about future interventions on this Weaver
in section 5.3.

5.1 Weaver Limitations

Throughout the implementation of the Weaver, we were faced with some problems that
could not be solved in time. The complexity of MatLab language and the manipulation of
two distinct data-types were the biggest problems encountered.

Parsing such rich language is not an easy task, specially when dealing with its poly-
morphism attribute. The parser developed in the context of AMADEUS is very reliable,
however it could not compute all MatLab scripts1. In fact, developing parsers to support
the full MatLab language is a complex and time consuming task. This is the first limitation
of this Weaver, but somehow understandable due to number of features that this language
offers. Other limitation resides in function join point primitive, because the current MatLab
parsing do not process more that one MatLab function.

Attending now the limitation on aspects definition, the major issues reside on handling
the two data-types. For instance, the apply instruction should have a more complex behav-

1A similar limitation occurs in the MatLab parser developed by others research groups like McGill Uni-
versity [3]



5.2. CONTRIBUTIONS 67

ior if the instructions on them were analyzed in MatLab data-type environment. But such
action would demand an alteration on aspect grammar, an efficient function that converts
the apply instruction into MatLab statements and an evaluation method that verifies the
instruction logic.

Regarding that aspect parsing and abstract grammar are both capable of processing any
aspect definition, the Weaver is not at the same level. The Weaver is not capable of process
multi aspect definitions, complex join point capture (e.g. write(a)&&(get(B)||get(C))) and
more than one apply instruction. We can overcome these limitations by defining a set
of aspects that execute all the intended actions, using in each aspect input the previous
returned program.

Although there is some work to be done on aspects definition, the actual structure al-
ready embraces the major characteristics that an aspect language stands for.

5.2 Contributions

Model an aspect-oriented programming for MatLab evolves identifying the issues and con-
cerns that are not well treated by its traditional programming methodologies. This project
was centered in some of these constrains, widen MatLab with valuable means for such type
of programming. The contributions for the AMADEUS project are:

• Improvements that the abstract grammar that translates the MatLab instructions into
TOM data-type should suffer.

• Implementation of a robust Aspect-MatLab language parser in ANTLR, allowing the
definition of aspect’s concrete signature.

• Implementation of the abstract signature to Aspect-MatLab for further strategies im-
plementation.

• Definition of the Weaver’s architecture that sustains the aspect processing over Mat-
Lab programs.

• Development of the strategic approach for the weaving process.

– Collect join points from aspect definition.

– Extract all the MatLab sub-trees that matches a join point.
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– Update the MatLab original program instructions.

• Specification of the linking method between the MatLab parser/unparser and Weaver
tools.

• Implementation of the visual representation to any TOM data-type.

The number of presented features are very competent for these thesis objectives. Embed-
ding aspects into MatLab is now an automated procedure, improving the code editing and
maintaining.

5.3 Future Work

Future work around this Weaver includes studying more efficient techniques (and tools)
that allows the implementation of a full aspects extension to MatLab.

Processing MatLab instructions, like ifs or loops, on the apply instruction should im-
prove the range of options to execute its action. Improving the association method between
join point and the apply instruction is another to do refinement for using complex join point
capture. That also implies updating the strategy that upgrades the MatLab statements set,
since the information of the join points will be passed in a distinct way. At the same level,
to decrease the number of aspects definitions needed to process complex join points, the
Weaver should also be capable of recognizing multiple aspects definitions in the same file.

It is complex to define a complete parser for MatLab, so to enhance its parsing needs a
more exhaustive research is mandatory, with more concluded examples and tests. However
this effort might be unfair since new features could be added to MatLab by MathWorks and
make this parser obsolete again.

The study of defining an domain specific aspect language to MatLab is continuously
being update, and so the Weaver could not follow its evolution. Therefore, more restrictions
and characteristics about this language were defined in [22]. Since the approach to conceive
this Weaver was extremely generic, by applying the strategic principals, all the new aspect
characteristics can be easily incorporated in future Weaver functionalities.
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MatLab Abstract Grammar

module parser.MatLabRule

imports String int double char

abstract syntax

StartSort = Start(fileType: FileTypesSort , lineNumber: int)

FileTypesSort =

ScriptMFile(statementList: StatementListSort , lineNumber: int)

| FunctionMFile(returnVars: IdentifierListSort ,

functionIdentifier: IdentifierSort , args: IdentifierListSort ,

statementList: StatementListSort , lineNumber: int)

| EmptyFile(dummy: int)

StatementListSort = ConcStatement(StatementSort*)

StatementSort = Statement(statementType: StatementTypeSort ,

delimiter: char)

StatementTypeSort =

CommandForm(identifier: IdentifierSort ,

textList: ExpressionListSort , lineNumber: int)

| Expression(expression: ExpressionSort)

| Assign(assignee: StatementTypeSort , assigned: ExpressionSort ,

lineNumber: int)

| AssigneeMatrix(referenceList: ExpressionListSort , lineNumber: int)

| AssigneeCellArray(referenceList: ExpressionListSort ,

lineNumber: int)
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| ForCommand(assignment: StatementTypeSort ,

statementList: StatementListSort , lineNumber: int)

| ParforCommand(assignment: StatementTypeSort ,

statementList: StatementListSort , lineNumber: int)

| If(condition: ExpressionSort , statementList: StatementListSort ,

else: ElseSort, lineNumber: int)

| GlobalCommand(identifierList: IdentifierListSort , lineNumber: int)

| PersistentCommand(identifierList: IdentifierListSort ,

lineNumber: int)

| WhileCommand(condition: ExpressionSort ,

statementList: StatementListSort , lineNumber: int)

| Return(lineNumber: int)

| Break(lineNumber: int)

| Continue(lineNumber: int)

| Switch(expression: ExpressionSort , caseList: CaseListSort ,

otherwise: StatementListSort , lineNumber: int)

| TryCatchCommand(try: StatementListSort , catch: CatchSort ,

lineNumber: int)

| ClassDefCommand(className: IdentifierSort ,

superClassName: IdentifierSort ,

statementList: StatementListSort ,

lineNumber: int)

| Pragma(pragma: String, lineNumber: int)

ElseSort =

Else(statementList: StatementListSort , lineNumber: int)

| ElseIf(condition: ExpressionSort , statementList: StatementListSort ,

else: ElseSort, lineNumber: int)

| EmptyElse(dummy: int)

CaseListSort = ConcCase(CaseSort*)

CaseSort =

Case(expression: ExpressionSort , statementList: StatementListSort ,

lineNumber: int)

CatchSort =

Catch(identifier: IdentifierSort , statementList: StatementListSort ,

lineNumber: int)
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ExpressionListSort = ConcExpression(ExpressionSort*)

ExpressionSort =

ShortCircuitOr(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| ShortCircuitAnd(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| ElementWiseOr(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| ElementWiseAnd(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| LowerThan(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| LowerThanOrEqual(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| GreaterThen(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| GreaterThenOrEqual(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| Equal(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Unequal(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Colon(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Plus(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Minus(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Times(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Slash(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Backslash(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| ElementWiseTimes(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| ElementWiseDivision(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| ElementWiseLeftDivision(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)
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| Note(expression: ExpressionSort , lineNumber: int, type: int,

dims:DimSort)

| UnaryPlus(expression: ExpressionSort , lineNumber: int,

type: int, dims:DimSort)

| UnaryMinus(expression: ExpressionSort , lineNumber: int,

type: int, dims:DimSort)

| ElementWisePower(expressionList: ExpressionListSort ,

lineNumber: int, type: int, dims:DimSort)

| Power(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Transpose(expression: ExpressionSort , lineNumber: int,

type: int, dims:DimSort)

| ComplexTranspose(expression: ExpressionSort , lineNumber: int,

type: int, dims:DimSort)

| ObjectPointerOp(identifierList: IdentifierListSort ,

lineNumber: int)

| FunctionCall(identifier: IdentifierSort , args: ExpressionListSort ,

lineNumber: int)

| CellArrayAccess(identifier: IdentifierSort ,

args: ExpressionListSort , lineNumber: int)

| HandlerWithDef(args: ExpressionListSort , statement: StatementSort ,

lineNumber: int)

| Handler(identifier: IdentifierSort , lineNumber: int)

| Matrix(rowList: ExpressionListSort , lineNumber: int, type: int,

dims:DimSort)

| CellArray(rowList: ExpressionListSort , lineNumber: int)

| Row(expressionList: ExpressionListSort , lineNumber: int,

type: int, dims:DimSort)

| Text(text: String, lineNumber: int)

| End(lineNumber: int)

| Integer(intValue: int, lineNumber: int)

| Double(doubleValue: double, lineNumber: int)

| Imaginary(doubleValue: double, lineNumber: int)

| Id(identifier: IdentifierSort)

DimSort = ConcDim(int*)

TypeList = ConcType(int*)

IdentifierListSort = ConcIdentifier(IdentifierSort*)
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IdentifierSort =

Identifier(identifierName: String, lineNumber: int)

| EmptyIdentifier(dummy: int)

Listing A.1: MatLab abstract grammar
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Appendix B

ANTLR Grammar

grammar AspectGram;

options {

output=AST;

ASTLabelType=Tree;

}

tokens {

%include { aspectrule/AspectGramAspectRuleTokenList.txt }

}

@header { package parser; }

@lexer::header { package parser; }

start : lstAspect;

lstAspect

: -> ^(NoAspANTLR)

| aspect lstAspect -> ^(ConsAspANTLR aspect lstAspect);

aspect

: ASPECT NAME ’(’ lstArg ’)’ actionBody END ->

^(AspANTLR NAME lstArg actionBody);

lstArg

: -> ^(NoAspArg)

|argAsp lstArg -> ^(ConsArgANTLR argAsp lstArg);
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argAsp : NAME -> ^(ArgANTLR NAME);

actionBody

: input SELECT’:’lstSelect lstApply where ->

^(ActANTLR input lstSelect lstApply where);

input

: -> ^(NoInputANTLR)

| INPUT’:’ NAME -> ^(InputBodyANTLR NAME);

where

: -> ^(NoWhereANTLR)

| WHERE’:’ NAME -> ^(WhereBodyANTLR NAME);

lstSelect

: ->^(NoSelectANTLR)

| select lstSelect -> ^(ConsSelANTLR select lstSelect)

| ’(’lstSelect’)’ symbolSelect lstSelect ->

^(BracketSelect lstSelect symbolSelect lstSelect);

select

: ADD ’(’NAME’)’ -> ^(AddArrayANTLR NAME)

| ADD ’(’NAME’)’ ’&&’ -> ^(AddArrayANTLR NAME)

| ADD ’(’NAME’)’ ’||’ -> ^(AddArrayANTLR NAME)

| GET ’(’NAME’)’ -> ^(GetArrayANTLR NAME)

| GET ’(’NAME’)’ ’&&’ -> ^(GetArrayANTLR NAME)

| GET ’(’NAME’)’ ’||’ -> ^(GetArrayANTLR NAME)

| SIZE ’(’NAME’)’ -> ^(SizeArrayANTLR NAME)

| SIZE ’(’NAME’)’ ’&&’ -> ^(SizeArrayANTLR NAME)

| SIZE ’(’NAME’)’ ’||’ -> ^(SizeArrayANTLR NAME)

| READ ’(’NAME’)’ -> ^(ReadVarANTLR NAME)

| READ ’(’NAME’)’ ’&&’ -> ^(ReadVarANTLR NAME)

| READ ’(’NAME’)’ ’||’ -> ^(ReadVarANTLR NAME)

| WRITE ’(’NAME’)’ -> ^(WriteVarANTLR NAME)

| WRITE ’(’NAME’)’ ’&&’ -> ^(WriteVarANTLR NAME)

| WRITE ’(’NAME’)’ ’||’ -> ^(WriteVarANTLR NAME)

| CALL ’(’NAME’)’ -> ^(CallFunANTLR NAME)

| CALL ’(’NAME’)’ ’&&’ -> ^(CallFunANTLR NAME)

| CALL ’(’NAME’)’ ’||’ -> ^(CallFunANTLR NAME)

| FUNCTION ’(’NAME’)’ -> ^(FunANTLR NAME)

| FUNCTION ’(’NAME’)’ ’&&’ -> ^(FunANTLR NAME)
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| FUNCTION ’(’NAME’)’ ’||’ -> ^(FunANTLR NAME);

symbolSelect

: -> ^(NoSymbolSelect)

| ’&&’ -> ^(AndSel)

| ’||’ -> ^(OrSel);

lstApply

: -> ^(NoApplyANTLR)

| apply lstApply -> ^(ConsAppANTLR apply lstApply);

apply

: APPLY ’:’ STRINGLITERAL ’::’ execute ->

^(NormApply STRINGLITERAL execute)

| APPLY ’<’HEADER’>’’:’STRINGLITERAL ’::’ execute ->

^(HeaderApply STRINGLITERAL execute)

| APPLY ’<’HEADER’>’’(’ lstArg ’)’’:’ STRINGLITERAL ’::’ execute ->

^(HeaderArgsApply STRINGLITERAL NAME execute)

| APPLY ’<’BODY’>’’:’STRINGLITERAL ’::’ execute ->

^(BodyApply STRINGLITERAL execute)

| APPLY ’<’BODY’>’’(’ lstArg ’)’’:’ STRINGLITERAL ’::’ execute ->

^(BodyArgsApply STRINGLITERAL NAME execute);

execute

: EXECUTE BEFORE -> ^(Before)

| EXECUTE AFTER -> ^(After)

| EXECUTE AROUND -> ^(Around);

ASPECT :’aspect’;

END :’end’;

SELECT :’select’;

APPLY :’apply’;

INPUT :’input’;

WHERE :’where’;

ADD :’add’;

GET :’get’;

SIZE :’sizeOf’;

READ :’read’;

WRITE :’write’;

CALL :’call’;

HEADER :’header’;
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BODY :’body’;

FUNCTION:’function’;

EXECUTE :’execute’;

BEFORE :’before’;

AFTER :’after’;

AROUND :’around’;

DISP :’disp’;

IF :’if’;

ELSE :’else’;

WHILE :’while’;

FOR :’for’;

RETURN :’return’;

STRINGLITERAL : ’"’ ( StringEscapeSeq | ~( ’\\’ | ’"’ | ’\r’ |

’\n’ ) )* ’"’ ;

fragment StringEscapeSeq : ’\\’ ( ’t’ | ’n’ | ’r’ | ’"’ | ’\\’ | ’$’ |

(’0’..’9’)) ;

NAME : (((’a’..’z’)|(’A’..’Z’))(’0’..’9’)*(’_’((’a’..’z’)|(’A’..’Z’))|

’.’((’a’..’z’)|(’A’..’Z’)))*)+;

INT : (’0’..’9’)+;

PLUS :’+’;

MINUS :’-’;

MULT :’*’;

DIV :’/’;

MOD :’%’;

WS : (’ ’|’\t’|’\n’)+ { $channel=HIDDEN; } ;

SLCOMMENT : ’//’ (~(’\n’|’\r’))* (’\n’|’\r’(’\n’)?)?

{ $channel=HIDDEN; } ;

Listing B.1: ANTLR aspect grammar
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TOM Abstract Grammar for ANTLR

LstAspANTLR = NoAspANTLR()

| ConsAspANTLR(a:AspectANTLR , l:LstAspANTLR)

AspectANTLR = AspANTLR(name:String, arg:LstArgANTLR , b:ActionsANTLR)

LstArgANTLR = NoAspArg()

| ConsArgANTLR(arg:AspArg, l:LstArgANTLR)

AspArg = ArgANTLR(name:String)

ActionsANTLR = ActANTLR(input:InputANTLR , sel:LstSelANTLR ,

ap:LstAppANTLR , wh: WhereANTLR)

InputANTLR = InputBodyANTLR(name:String)

| NoInputANTLR()

WhereANTLR = WhereBodyANTLR(name: String)

| NoWhereANTLR()

LstSelANTLR = NoSelectANTLR()

| ConsSelANTLR(s:SelectANTLR , l:LstSelANTLR)

| BracketSelect(s1:LstSelANTLR , sy:SymbolSelect ,

s2:LstSelANTLR)

SelectANTLR = ReadVarANTLR(n:String)

| WriteVarANTLR(n:String)

| CallFunANTLR(n:String)
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| FunANTLR(n:String)

| AddArrayANTLR(n:String)

| GetArrayANTLR(n:String)

| SizeArrayANTLR(n:String)

SymbolSelect = AndSel()

| OrSel()

| NoSymbolSelect()

LstAppANTLR = NoApplyANTLR()

| ConsAppANTLR(a:ApplyANTLR , l:LstAppANTLR)

ApplyANTLR = NormApply(i:String, ex: Execute)

| HeaderApply(i:String, ex: Execute)

| HeaderArgsApply(n:String, arg:LstArgANTLR , ex: Execute)

| BodyApply(i:String, ex: Execute)

| BodyArgsApply(n:String, arg:LstArgANTLR , ex: Execute)

Execute = Before()

| After()

| Around()

Listing C.1: TOM abstract grammar for ANTLR
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