
Pedro Miguel Ribeiro Martins

A Domain Specific Aspect Language for Matlab
Extending Matlab with Aspects

Tese de Mestrado
Mestrado em Informática
Trabalho efectuado sob a orientação de
Prof. Dr. João Alexandre Saraiva

Novembro 2010



2



Acknowledgements

First, I would like to thank my supervisor, Ph.D João Saraiva due to his amazing skill of
always knowing the right words for every moment. I really hope that I can benefit from
those words for a long time, both as a student and a friend.

Then, of course, I must thank my parents, Isabel and Zeca, for being the two pillars of
myself as a student and as a human being.

My friends also played an important role, namely Helder, Pinto, Mitra, Carlos, Pedrinho
and Mariana. If what Erik Van Wyk told me once is true, that you must sometimes let
your subconscious lead the way, than I must really thank them for providing such a great
environment for that to happen.

I would also like to acknowledge Jácome Cunha and João Paulo Fernandes due to their
great help while receiving me as a new researcher in the laboratory where they already
worked. They made my residence there easier and more comfortable than I could possibly
imagine.

Miguel Monteiro, João Cardoso and João Miguel Fernandes were always available to
review my work and help when I had problems. They always had something important
and interesting to point while answering to my questions, and because of that I am truly
thankful.

I would also like to thank Don Batori for helping me with AspectJ and allowing me to
use his code in some of the examples.

To my brother Luís, which is my best friend, I dedicate this work.

Finally, I would like to thank the AMADEUS project, about Aspects and Compiler Opti-
mizations for Matlab System Development, under FCT contract PTDC/EIA/70271/2006.2008-
2010 for funding and supporting this research.

i



ii



Resume

This MSc thesis’s goal is to develop an aspect-oriented language extension for the Matlab
language, and to experiment different implementation features.

Although Matlab supports some useful features, such as allowing certain variables to
represent different data types during runtime or enabling the same function to be called
with different number of variables and types of arguments, truth is when a user wants to
monitor variables or implement handlers to control certain behaviors, all these options are
tedious, difficult to carry and make errors hard to control and avoid. Furthermore, every
time a user needs to implement these features, he needs to both create new code and make
intrusive changes in the old one.

This project aims to embed aspect oriented features in Matlab, for help modeling and
exploring certain features in a controlled manner, without intrusive code changes.

iii



iv



Resumo

O objectivo deste projecto é desenvolver uma linguagem orientada a aspectos para o pro-
grama Matlab e respectivo ambiente de programação, e experimentar diferentes caracterís-
ticas de implementação da mesma linguagem.

Embora o ambiente de programação Matlab suporte técnicas que permitem a fácil cri-
ação de software neste paradigma, como o facto de determinadas variáveis poderem rep-
resentar diferentes tipos de dados durante a execução de um programa ou permitir que
a mesma função possa ser chamada com um numero diferente de argumentos (que po-
dem, inclusive, ter tipos diferentes), a verdade é que quando é necessário fazer tarefas de
manutenção ao código, como manter um registo da utilização de variáveis ou controlar
o comportamento de ciclos, estas tarefas são obrigatoriamente executadas de forma rudi-
mentar e com alterações intrusivas no código original, que o tornam desorganizado e são
susceptíveis de criar erros de execução e compilação.

O objectivo deste projecto é criar, usando o paradigma de programação orientada a
aspectos, um mecanismo que permita explorar características e comportamentos de pro-
gramas Matlab de forma organizada e estruturada.

v



vi



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Matlab 7
2.1 Introduction to Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Programming in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Polymorphic Functions in Matlab . . . . . . . . . . . . . . . . . . 10

2.2.2 Logging in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Matlab in Embedded Computational Systems . . . . . . . . . . . . 12

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Aspect Oriented Programming (AOP) 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Cross Cutting Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Code Tangling and Code Scattering . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 How code becomes tangled and scattered . . . . . . . . . . . . . . 19

3.3.2 Crosscutting concerns in Matlab . . . . . . . . . . . . . . . . . . . 23

3.4 Aspects Oriented Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Definition of AOP . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Instances/Incarnation of AOP . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 CaesarJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2 AspectJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



viii CONTENTS

3.5.3 LoopsAJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Aspects Oriented Software Development . . . . . . . . . . . . . . . . . . . 29

3.6.1 Using an Aspect Oriented Language . . . . . . . . . . . . . . . . . 29

3.6.2 Aspect Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 AspectJ 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Pointcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Advices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Inter-type declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1 Tracing and Context Exposure . . . . . . . . . . . . . . . . . . . . 41

4.6.2 Two aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.3 Advice to advice . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Domain Specific Aspects Language (DSAL) 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Organization of an Aspect Module . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Join Point Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 The Joint Point Model for Matlab . . . . . . . . . . . . . . . . . . 50

5.3.2 Join Point Capture Primitives . . . . . . . . . . . . . . . . . . . . 52

5.4 Action Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Content Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Aspects calling Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Language in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7.1 Capturing a global variable . . . . . . . . . . . . . . . . . . . . . . 62

5.7.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7.3 Type Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8.1 AMADEUS Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.9 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS ix

6 Related Works 71

7 Conclusion 75
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A AspectJ Examples 79
A.1 Example 1 - Tracing and Context Exposure . . . . . . . . . . . . . . . . . 79

A.1.1 asp.aj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1.2 foo.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1.3 test.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Two Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2.1 asp1.aj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2.2 asp2.aj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2.3 foo.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.2.4 order.aj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.2.5 test.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 Advice to advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3.1 asp1.aj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3.2 asp2.aj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3.3 foo.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3.4 test.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 85



x CONTENTS



List of Figures

1.1 Matlab function with control code . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A simple Matlab script. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sumvals function in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Logging in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Function sumvals with type informations . . . . . . . . . . . . . . . . . . . 13

3.1 Crosscutting concerns in Java . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Example of CCC’s in Java . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Simple Implementation of BookLocator . . . . . . . . . . . . . . . . . . . 21

3.4 Implementation of BookLocator with concurrency . . . . . . . . . . . . . . 22

3.5 An example of crosscutting domain in Matlab . . . . . . . . . . . . . . . . 23

3.6 Example of CCC’s in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Modular versus aspectual decomposition . . . . . . . . . . . . . . . . . . . 26

4.1 Join point’s relation to modules and components . . . . . . . . . . . . . . . 34

4.2 Infinite loops in aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Join point model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Structure of the dynamic join points captured. . . . . . . . . . . . . . . . . 53

5.3 Weaver diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 AMADEUS Toolbox Architecture. . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Generic versus type specialized functions . . . . . . . . . . . . . . . . . . 69

xi



xii LIST OF FIGURES



List of Tables

2.1 Challenges when passing from Matlab to C . . . . . . . . . . . . . . . . . 11

5.1 Primitives for join point capture . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Examples of join point captures . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Primitives to capture content . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Outputs from the aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



xiv LIST OF TABLES



Chapter 1

Introduction

A big effort has been put into programming machines easier, and software technology has
evolved quickly, from a state where humans had to write direct, technical commands to
modern languages, more focused in what the user really wants to do rather then how the
machine will exactly proceed. What all this evolution tries to do is to shorten the distance
between programming languages to the ones we use daily, i.e., the natural languages. Mod-
ern programming languages contain a fair amount of constructors and are built in such a
modular and concise way that makes information transmission easy and clear.

To increase software’s productivity, a number of features had been developed, such as
data type systems, abstraction, high order functions and modularity, which increase the
software developers productivity. And even these features had seen some improvements.
While in the 80’s modularity was all about separating the code into different files, that con-
cept had evolved to Objects Oriented Programming and, more recently, to Aspects Oriented
Programming (AOP).

The popularity of Aspects Oriented Programming is motivated by the state of art pro-
gramming technologies, which although represent a big progress of evolution into building
software as modular as possible, fail to create perfectly sectioned and structured software
because they assume a complete system is made entirely out of hierarchical compositions
of smaller units, forgetting system’s properties. It is possible to roughly separate a system
into two parts: the functional part, that represents the exact functionalities of the system,
and another part that represents important requirements and properties, not directly related
to the main function. Most modularity technologies are related only to the organization of
the functional part, being the rest of the code intermingled in the functional modules. AOP

1



2 CHAPTER 1. INTRODUCTION

aims to clearly modularize this ’secondary’ code.

This lack of a powerful modular system in modern programming languages has moti-
vated the embedding of AOP in different programming languages [SLU05,LDS05,VSS09]
and programming paradigms [RM07, Mar10]. In this thesis, we present an AOP extension
to the Matlab programming language.

Matlab is a numerical computing environmental heavily adopted by both industry and
academia, and used in many areas such as scientific computing, control systems, signal
processing, systems engineering, simulation, etc. Matlab is furnished with a complete
integrated environment to develop projects, which also includes debug features.

There a big number of features available in Matlab, such as operator overloading, func-
tion polymorphism and dynamic type specialization. Operator overload enable the same
operator to be called with different data types. For example, in Matlab one can call the
operator ’+’ either with integers or with arrays. Functions polymorphism allows the same
function to be called with different arguments and data types. And by supporting dynamic
type specialization, variables can represent different data types during execution.

However, despite allowing fast code production, code maintenance and edition is still
very similar to other programming environments and languages. To use Matlab features,
the programmer is forced to explore typical behaviors such as direct code changes, the use
of handlers and other tedious, cumbersome and consequently error-prone tasks.

Next, we present a picture (Fig. 1.1) that shows the addiction of control code to part
of a Matlab function. In this function, we can see lines of code (highlighted) whose only
function is to check if a variable exceed a certain value and warn the user about it. The
problem is that there are so many of this checking code that we can barely see the main
function. This checking pollutes the main, functional part of the code. And this process
gets worse as we grow both the system or the quantity of ’auxiliary’ information, that is
independent from the main function procedures. This problem is not related to Matlab
itself, but rather to a big number of programming paradigms.

To solve this problem, AOP allows us to separate the functional part of the system
to the parts of code that are only there to serve ’auxiliary’ functionalities. If applied to
Matlab, one could create the main functional code in one file and on another file could
create the code related to the second functionalities, and let a simple software, known as
’weaver’, combine the two files and create our final solution. In this paradigm, auxiliary
and supporting functions are isolated from the main program logic. A program is broke



3

...
for j = 1:1:N

if sum >= 10000 warning(’sum too big! %f’,sum);
end

if sum >= 10000 warning(’A(j) too big! %f’,A(j));
end

sum = sum + A(j) * B(j+N);
end
if sum >= 10000 warning(’sum too big! %f’,sum);

end
outa(i) = sum;
...

Figure 1.1: Matlab function with control code, taken from [CDM+10]

into distinct parts (the aspects), through the implementation of cross-cutting expressions
that detect the parts of the main code where auxiliary functions will be inserted to create
the final executable code.

An AOP mechanism would allow the programmer to write (abstract) statements in the
form of:

Find where the ’for’ cycle is
Insert test to ’sum’ (insert test inside the cycle)
Insert test to ’A(j)’ (insert test inside the cycle)

Find where ’out(i)’ is assigned to ’sum’
Insert test to ’sum’ (insert test before the assignment)

If we connect, using a software called ’weaver’, this statement with the following Mat-
lab program (which does not have tests or ’polluting’ code and is composed only by the
important, functional lines):

...
for j = 1:1:N

sum = sum + A(j) * B(j+N);
end



4 CHAPTER 1. INTRODUCTION

outa(i) = sum;
...

we would obtain the program that we see in Fig. 1.1. Through this mechanism, the
programmers can now cleanly and efficiently structure the software without having to create
disorganized and confusing functions.

By using AOP, we can clearly and easily organize the whole system by clearly separat-
ing the main code from secondary code. It is easy to understand how this whole process
helps in creating, editing and maintaining code. Implementation becomes easier because
the creation of code can be independent from the implementation of additional features.
Editing and maintaining the code becomes easier because it is easier now to detect the
implemented code, and to find the pieces we want to edit/maintain.

This paper presents the main concepts of a domain-specific aspect language (DSAL) for
specifying transformations of Matlab programs. By using the proposed aspect extensions,
the programmer is able to specify program transformations and optimizations without hav-
ing to manually edit the original code. Here, we present an expressive language whose aim
is to allow the production of Matlab code to be more easy and elegant.

1.1 Contents

The main body of this report is divided as follows.

• Chap. 2 describes Matlab and explains the main features and characteristics of pro-
gramming in such environment.

• Chap. 3 introduces Aspect Oriented Programming by showing how the whole process
of producing, editing and maintaining code becomes easier when this paradigm is
available

• Chap. 4 studies AspectJ a famous implementation of AOP, and presents some ex-
amples and particularities of this language.

• Chap. 5 represents the main objective of this work, and shows a DSAL that can detect
point cuts in Matlab and perform code alterations.



1.1. CONTENTS 5

• Chap. 6 shows bibliography that is somehow related to this work, either by introduc-
ing AOP or by introducing transformations or more general work around Matlab.

• Chap. 7, summarizes what has been achieved and what could be done next.

You could also use an appendix for listings of AspectJ examples (App. A).



6 CHAPTER 1. INTRODUCTION



Chapter 2

Matlab

"MATLAB is a high-level technical computing language and interactive en-

vironment for algorithm development, data visualization, data analysis, and

numeric computation. Using the MATLAB product, you can solve technical

computing problems faster than with traditional programming languages, such

as C, C++, and Fortran." in 1

In this chapter we introduce the Matlab language and environment, as well as some
exclusive features and programming particularities when developing in Matlab such as
function polymorphism, logging and versioning.

The last section shows some of the main difficulties when translating and using Matlab
in embedded systems.

2.1 Introduction to Matlab

Matlab is a numerical computing language and interactive environment that includes a
large number of pre-built functions that support a wide range of applications [HH05], from
signal and image processing, to communications, control design, test and measurement, fi-
nancial modeling and analysis, and computational biology2. Moreover, there is support to a
number of special purpose functions, called toolboxes, that extend the original environment
to solve particular problems related to the application areas described above.

1http://www.mathworks.com
2http://www.mathworks.com/products/matlab/description1.html

7



8 CHAPTER 2. MATLAB

There is a big focus on the Matlab programming language on mathematical calcu-
lus. Indeed, the pre-programmed mathematical functions, that go from linear algebra and
statistics to Fourier analysis and numerical integration, plus other useful features described
below, justify why it is such a widespread tool, differing from C, C++ and Java, for exam-
ple, where predefined data types and functions only represent real numbers and work only
with real arithmetic.

The basic data type in Matlab is a multidimensional array of complex numbers, with
both real and imaginary parts stored in double precision floating point arithmetic conform-
ing to the IEEE standard [IEE85]. When dealing with real numbers the imaginary part is
not stored. Almost all computation is performed in floating point arithmetic, and Matlab
automatically uses complex arithmetic when needed. Variables, both vectors and scalars,
are declared in the same time they are assigned, and the size of arrays is dynamic and
automatically expanded every time a new assignment is made so it makes sense.

Matlab includes a large and user extensible collection of functions, which take zero or
more inputs and return zero or more outputs. However, there is a clear, enforced distinction
between input and output when programming in Matlab: input parameters appear on the
right of the function name, surrounded by parenthesis and the output on the left, surrounded
by square brackets. Furthermore, the number of variables a function supports is not static,
as the same function supports different calls, where the input changes both in number of
variables and their content, and returns different outputs. In fact, for a given function,
the number of variables and type or arguments changes the behavior while keeping the
statement valid. This feature is called method overloading.

A built-in debugger is included, with a tool set that helps isolate and control variables
during runtime. These tools include breakpoints, the program execution controls in the
Debug menu, variable datatips and the Editor Context menu [Fot09].

Matlab supports Object Oriented Programming (OOP), which introduce the concepts
of class, object and inheritance, but apart from architecture and designing, there is no use-
ful new advantages to code control or debugging, which still implies direct changes in the
source code. Garbage collection [Fot09] is not supported, first because of the complexity
associated with managing object lifecycles, and lastly because it makes testing and debug-
ging an application more difficult [Fot09]. For instance, one can stop the workspace and
see all the activities that took place, while a garbage collection engine could destroy steps
that cannot be repeated.



2.2. PROGRAMMING IN MATLAB 9

There are more than 12003 books that, alone, prove the wide usage of Matlab and
associated functions and tools.

2.2 Programming in Matlab

Matlab is a mathematical-oriented programming language that uses high-level operations,
which means that the language does not work with data types as they exist in other program-
ming languages. Operations in Matlab can be made in two ways: with a direct sequence
of instructions called scripts (Fig. 2.1) or by structuring the code in functions (Fig. 2.2).
Recently the language has been extended to support classes. Fig. 2.2 shows the code of
a Matlab script that takes the sum of two numbers and finds if it is bigger than a third
number:

% MATLAB script
a=5;
b=6;
comp = 16;
if(a+b > comp)

disp(’The sum is bigger!’)
else

disp(’The sum is smaller!’)
end

Figure 2.1: A simple Matlab script

There are a few particularities in this Matlab code. The first thing to notice is that
types are not declared. From the assignment to variable ’a’ in the code, one may conclude
that ’a’ can, in this case, be stored as a scalar of integer type. However, internally, the
variable ’a’ will be stored as a single-element array of type double. Array variable shapes
are inferred when the code is executed. Hence, there are the assignments to variables that
expose in runtime the shape of those variables. In a certain point of a Matlab the existence
of ’c=5;’ implies that ’c’ can be a single-element array, while in other point of the code,
the existence of ’c=[1 2 3; 3 4 5; 6 7 8];’ implies that ’c’ refers now to a 3x3 matrix. This
dynamic features of Matlab helps development, but complicates the translation to non-

3http://www.mathworks.com/support/books/index.html



10 CHAPTER 2. MATLAB

dynamic languages, and especially to implementations where the overhead to maintain this
dynamic behavior is not acceptable.

The definition of functions in Matlab is very similar to C. In Fig. 2.2, we present the
Matlab function with name ’sumvals’ taken from [CBHV10]:

function s = sumvals(start, step, stop)
i = start;
s = i;

while i < stop
i = i+step;
s = s + i;

end
end

a = sumvals(1, 1, 10^6);
b = sumvals([1 2], [1.5 3], [20^5 20^5];

Figure 2.2: Sumvals function in Matlab

The function ’sumvals’ is designed to sum numbers within a range of values. There
are a few differences from Matlab and C functions. First, the variable returned by the
function (in this case is ’s’), is declared in the function definition, instead of having a special
primitive to do this, like the ’return()’ in C. In fact, Matlab functions may return more than
one variable. Secondly, functions in Matlabare polymorph, as we see in Sec. 2.2.1.

2.2.1 Polymorphic Functions in Matlab

Functions in Matlab are polymorphic, which means functions can handle values of differ-
ent data types using a uniform interface. The function ’sumvals’ (Fig. 2.2), for example,
can be applied to both scalar and arrays types of values. Specifically, to the variable ’a’
will be assigned the scalar 5*10e11, and to ’b’ will be assigned the value 1.0e12, which
is a 1x2 floating point array. Matlab functions can even be called without passing all the
list of parameters.

This implies that, when translation a specific behavior to C, Matlab introduces a few
new challenges (Table. 2.1).



2.2. PROGRAMMING IN MATLAB 11

Table 2.1: Challenges when passing from Matlab to C
Issue Solution
Function ’sumvals can either accept
scalars or vectors as arguments

The solution is to write two func-
tions in C, where each one accepts
one type of argument

The ’∗’ operator is also polymor-
phic, which means it works with
scalars and vectors as well

C already includes a ’∗’ operator,
but it only works with scalars. The
solution is to re-implement the op-
erator so it can handle vectors

2.2.2 Logging in Matlab

Logging is a specialized method to record a program’s execution information. This is
typically used by programmers to trace and debug a program during the development cycle.
Imagine that, for the function ’sumvals’ described above, is important that the variable
’start’ is never negative. And by the way, we would like to know, for debugging purposes,
the behavior of the variable ’i’ during the program flow. Such changes can be implemented
by introducing logging instructions in the original program, as seen in Fig. 2.3.

function s = sumvals(start, step, stop)

if(start < 0)
display(’Attention, start is negative’);

i = start;
disp(i);
s = i;

while i < stop
i = i+step;
disp(i);
s = s + i;

end
end

Figure 2.3: Logging in Matlab

These alterations are easy to perform manually for small-size programs. But for medium
and large size applications this can be a tedious and error prone task. In addition, the code



12 CHAPTER 2. MATLAB

for logging may not be considered to be included in the final implementation, and in this
case the programmer needs to eliminate that code from the original Matlab code. This is
also a tedious and error prone task.

2.2.3 Matlab in Embedded Computational Systems

With a higher-level of abstraction than, e.g., the C programming language, Matlab allows
the programmer to invest more time on the problem-solving than on implementation issues.
However, such higher abstraction level makes more difficult the job of compilers as to pro-
duce efficient code (such as C) they need now sophisticated analysis and optimizations,
especially for data type and shape inference. Shape and data type inference is not easy and
in many cases it is not feasible to be performed by the compiler. In addition, embedded sys-
tems have multiple target architectures, different embedded processors and co-processors,
which expose the need to generate implementations aware of the specificities of the target
architecture.

One possible avenue to solve the problem of data type and shape resolution and the
generation of different implementations according to the target domain and architecture
is the use of aspect- oriented programming. AOP can be used to extend Matlab programs
with transformation and specialization rules that help the compiler to achieve more efficient
code considering a certain target system.

Let us consider the function ’sumvals’ again. This functions works with either scalars
and arrays, and the values operated on could be either integer, real or complex. Conse-
quently, transforming this code to other programming language can be challenging, since
type information is not explicit. To generate efficient code we not only need type infor-
mation, but also we may need different versions of the function specialized to each of the
possible types.

In Fig. 2.4, we present a redefinition of the function ’sumvals’, where the data types
are explicitly defined by the programmer, which will make the generation of code more
efficient when we are working on an integer domain.



2.3. SUMMARY 13

function s <scalar int> = sumvals(start <scalar int>,
step <scalar int>, stop <scalar int>)

i <scalar int> = start;
s <scalar int> = i;

while i < stop
i = i + step;
s = s + i;

end
end

Figure 2.4: Function sumvals with type information

2.3 Summary

Matlab is a very complete and powerful development environment however, as we have
seen, some of the particularities that make the language practical and easy to use such as
direct variables attributions or the advantage of not having to declare types also makes
translating it to for example C, very difficult because most languages are more focused and
static.

The powerful features of Matlab have the disadvantages of making the language hard
to translate and embedded in other systems, while traditional operations such as logging
and tracing still have to be made the traditional, hard-coding way.



14 CHAPTER 2. MATLAB



Chapter 3

Aspect Oriented Programming (AOP)

Aspects-Oriented Programming was developed to make it possible to clearly express those
programs that OOP (or any of the procedural-based approaches) fails to perfectly support.

3.1 Introduction

Dijkstra [Dij97] suggested separation of concerns as a problem-solving technique, although
he never specified how to achieve it. To support this concept, most approaches to organize
and create software systems use some form of composition or modularity [Par79]. The
solution is to split the original problem into subparts that can be solved in a way more
or less independent from the original, simplifying the solution to programmers, that can
address the subparts rather than have to directly construct the final solution. These parts
can be completely independent between them or have complex inter-relations, but the main
idea is that the composition of all those parts represents the final software system.

There are different programming paradigms that have different mechanisms to support
this idea of modular software units (such as the modular system of the functional languages
ML or Haskell, or the Objects in OOP), with a large number of design practices and nota-
tions. Some of these mechanisms even support the split of those units in sub-units (such
as subclasses, superclasses in Java), coping with the idea of splitting a big problem into
sub-problems and sub-sub-problems, decreasing the complexity by each iteration. In short,
programming technologies had evolved to support abstraction, modularization and reuse of
code.

15



16 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

Objects-Oriented Programming (OOP) is one example of a paradigm designed to aid in
software engineering by creating an object model that provides a more capable way of han-
dling the construction and implementation of software, by better fitting domain problems.
The ambients of Objects-Oriented languages are highly sophisticated and complex, with
a number of technologies such as refactoring, structure views, profiling, code completion,
quick fixes, UML diagram generations, etc that provide tools to create perfectly sectioned
software.

So far, as long as a software system is made entirely out of the hierarchical composition
of smaller units, we are able to create perfectly sectioned software by using the paradigms
and technologies described before. But software systems are more complex than that. They
are not made entirely out of smaller components with inheritance relations. They also
have properties, who can not be sectioned so easily and destroy the programming model
provided by OOP.

But what are these problems, and how do they corrupt the perfectly sectioned software
created in OOP?

3.2 Cross Cutting Concerns

Software systems are full of pieces of code whose aim is to fulfill some requirements, even
if they are not important to the main function of the module they are implemented in. On an
ATM system, for example, a module that is responsible for making deposits on an account
may have pieces of code that keep checking for security and network requirements, even
if they are not related to the main objective of making a deposit. They are not a functional
part of the system, but they are needed nevertheless.

These properties, which can be application specific, such as defining financial products
or configuring network services [CE00], or more general, such as scheduling, resource
allocation or performance optimizations [CBE+00] do not emerge randomly, but appear
during execution, and do not necessarily align with the functional parts of the system. In
the Objects Oriented Paradigm (OOP), for example, these are not objects or classes.

To this properties, that appear in different parts of the system and are required in various
operations but can not be cleanly decomposed in both design and implementation we call
crosscutting concerns (CCC).

Crosscutting concerns are not a modular part of a system in OOP (or most of the other



3.2. CROSS CUTTING CONCERNS 17

programming paradigms), and must be inserted along the system modules. When a devel-
oper implements a module, he must not only implement the program logic, he must also
know all the concerns related to it and implement them as well, instead of single-mindedly
fulfill a particular problem. This incapacity for the Object Oriented Paradigm to address a
separation of concerns was studied before, and was called "tyranny of dominant decompo-
sition" [KLM+97, OT01] due to the fact that OOP provides only a dimension along where
concerns can be separated.

Fig. 3.1 shows an example often used to illustrate the effects of crosscutting concerns in
Java, including on the seminal paper on AspectJ [KHH+01], although this particular exam-
ple was taken from [MJS10]. Here, we see two classes, Point and Line, that comprise an
abstract declaration - FigureElement. In this diagram there is also included an function-
ality to display figure elements in a graphical environment. This graphical representation
must be updated upon any alterations to figure elements or respective subclasses.

getX();
getY();
setX(int);
setY(int);
moveBy(int, int);

Point

getP1();
getP2();
setP1(Point);
setP2(Point);
moveBy(int, int);

Line

moveBy(int,int);

FigureElement

makePoint(..);
makeLine(..);

Figure

2

*

Display

Figure 3.1: Crosscutting concerns in Java, taken from [MJS10].

The problem is that all operations that have an impact on the display of the figures must
undergo invasive changes, which represent references do the class Display.

When we try to decompose the modular units of the system (in this example, the classes
Point and Line) we see that this classes’s structure is not only composed by functions



18 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

public class Point implements FigureElement{
private int _x, _y;
private Display _display;
public Point(int x, int y) {
_x = x;
_y = y;
}
public Point(int x, int y, Display display) {
this(x, y);
setDisplay(display);
}
public void setX(int x) {
_x = x;
_display.update(this);
}
public void setY(int y) {
_y = y;
_display.update(this);
}
public void setDisplay(Display display) {
_display.update(this);
}
public void moveBy(int dx, int dy) {
_x += dx;
_y += dy;
_display.update(this);
}

}

Figure 3.2: Example of CCC’s in Java, taken from [MJS10].

directly related to the class itself, but also to functions with code related to a concern,
which in this case is a graphical representation. Fig. 3.2 show the source code of one of
this classes - Point, with the invasive code highlighted in gray. In this system, although not
represented, there are also invasive code changes in the class Line and in the class Figure.

In Sect. 3.3 we present a more complete example on how the creation of a software
system from source gets more and more complex by the constant addition of CCC’s who
gradually pollute the code and make it more confusing..



3.3. CODE TANGLING AND CODE SCATTERING 19

As requirements are introduced along the code, wherever they are needed, it begins
to be illegible as more and more concerns are implemented into each modular unit. And
poor understandability leads to poor maintainability and makes enhancements harder to
introduce, which is specially true for large systems.

As we have seen, a crosscutting concern is a property of the system that can not be
cleanly encapsulated [KLM+97]. But how extreme can this process be on the final system,
and how, by each production iteration does this situation gets worse?

3.3 Code Tangling and Code Scattering

Tangling and Scattering occur when the interactions between the modules of the system
and the concerns are not well defined (the concern is not well modularized). In this cases,
one of two things may happen:

• A concern can be implemented in various parts of the code. For example, returning
to the ATM system example, all the main modules require network tests before do-
ing the required operation. What happens than is that the same code (in this case,
network testing code) spreads across various parts of the system. If there is a net-
work requirement change, for example, one has to search all the system for all the
places where that code appears and change it accordingly. When the same concern
affects multiple parts of the system and is implemented several times we call it code
scattering.

• The same module may require several concerns implemented. Sometimes the same
software module may have different concerns, related to network requirements, re-
search allocation or concurrency, for example. This requires higher abstraction from
the programmer that has to know very well all the concerns when he is implementing
the module. Then the same system modules needs several concerns implemented to
correctly work, we call code tangling.

3.3.1 How code becomes tangled and scattered

Next, we present an illustrative example (Fig. 3.3) in order to show how the tangling and
scattering process appears, how it evolves and how it ends up increasing the efforts to



20 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

maintain and edit the code. This example shows a small program to manage the location of
books within different spaces in a company. It is composed by two methods: (i) register, to
insert new books in the system and associate them with a locale, and (ii) locate, where we
provide a key string which is matched with the information in the system and shows the first
successful result. In addition to these basic functionality, the system must also be accessed
through a network and process requests concurrently. This example, which is represented
in Fig. 3.3 was adapted from [Lop97], is presented in Java and shows a complete definition
of the classes and methods required, although it is not ready to deployment yet.

This system’s specification also implies that BookLocator should perform several re-
quests concurrently. Since the methods register and locate use and update the same in-
stance objects, additional code is necessary in order to avoid inconsistencies. Therefore,
concurrency can be applied by temporarily blocking all "write" accesses anytime a "read"
is executed within the system (various "reads" can be performed at the same time), while
all "write" accesses to the system must completely block all other services. In this case, to
avoid inconsistencies various instances of locate can be performed at the same time, while
blocking all register methods, and each register method must be performed alone.

Fig. 3.4 shows an implementation of BookLocator with concurrency, where all the new
code necessary to avoid inconsistencies is highlighted in grey. Only the class BookLocator
is shown since the other two classes remain unchanged. A few steps are needed in order to
avoid multiple conflicting accesses, which imply inserting peaces of code in specific points
of the original code: 1) define extra variables; 2) insert a number of checks at the beginning
of each entering method to ensure exclusive access to the target object and 3) alter all exit
points of the methods to change the state of the target object. These peaces of code inserted
into the methods could be structures calls, using modularity to avoid code repetition, as we
present below:

protected synchronized void after_write()
--activeWriters; notifyAll();

This way some of the alterations could be simpler to introduce and the final program
would result in less lines of code. The methods that return objects are particularly danger-
ous since the return expression may affect the state of the object and should be taken in
consideration (see the method locate). The complexity of the final program has increased
with this alterations, as it consists now of many more different and connected parts, dilut-
ing the code. Two original concerns: maintain a books database and ensure concurrency



3.3. CODE TANGLING AND CODE SCATTERING 21

public class Book {
// possible implementation of Books
String title, author;
int isbn;
Project owner;
OCRImage firstpage;
public Book (String t, String a, int n) {

title = t; author = a; isbn = n;
}
public String get_title() {

return title;
}
public String get_author() {

return author;
}
public int get_isbn() {
return isbn;

}
}
public class Location {
//possible implementation of Locations
public int building, room;

public Location (int bn, int rn) {
building = bn; room = rn;

}
}

public class BookLocator
{
//One possible implementation
//books[i] is in locations[i]
private Book books[];
private Location locations[];
private int nbooks = 0;
public BookLocator (int dbsize) {

books = new Book[dbsize];
locations = new Location[dbsize];

}
public void register (Book b, Location l)
throws LocatorFull {
if (nbooks > books.length)
{ throw new LocatorFull(); }

else {
// Just put it at the end
books[nbooks] = b;
locations[nbooks++] = l;

}
}
public Location locate (String str)
throws BookNotFound {
Book abook = books[0];
int i = 0;
boolean found = false;
while (i < nbooks && found == false) {
if(abook.get_title().compareTo(str)==0 ||
abook.get_author().compareTo(str)==0)
{
found = true;

}
else { abook = books[++i]; }

}
if (found == false)
{ throw new BookNotFound (str);}

return locations[i];
}

}

Figure 3.3: Simple Implementation of BookLocator.

between processes resulted in an unique block of code that became harder to understand.
And we have not yet applied all the desired features, since the last piece of specification
implied the system would be available through a network.

Unlike the coordination issue, there is not a common understanding of what is the best



22 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

public class BookLocator
{
// One possible implementation
// books[i] is in locations[i]
private Book books[];
private Location locations[];
private int nbooks = 0;
protected int active_readers = 0;

protected int active_writers = 0;
public BookLocator (int dbsize) {
books = new Book[dbsize];
locations = new Location[dbsize];

}
public void register (Book b, Location l)
throws LocatorFull{
while (active_readers > 0

|| active_writers > 0)

{

try { wait(); }

catch (InterruptedException e) {}

}

++active_writers;
if (nbooks > books.length)
{

--activeWriters;

notifyAll();
throw new LocatorFull();

}
else {
// Just put it at the end
books[nbooks] = b;
locations[nbooks++] = l;

}
--activeWriters;

notifyAll();
}

// Continuation of class BookLocator
public Location locate (String str)
throws BookNotFound {
Book abook = books[0];
int i = 0;
boolean found = false;
location l;

synchronized (this) {
while (active_writers > 0)
{
try { wait(); }
catch (InterruptedException e) {}

} ++active_readers;

}
while (i < nbooks && found == false) {
if (abook.get_title().compareTo(str)==0
|| abook.get_author().compareTo(str)==0)
{
found = true;

}
else { abook = books[++i]; }

}
if (found == false)
{

synchronized (this)

{

--active_readers; notifyAll();

}
throw new BookNotFound (str);
}
l = locations[i];

synchronized (this);

{

--active_readers; notifyAll();

}
return l;
}

}

Figure 3.4: Implementation of BookLocator with concurrency.



3.3. CODE TANGLING AND CODE SCATTERING 23

way to insert the network features [Lop97], but similarly to the concurrency implementa-
tion, inserting network capabilities in the system would increase the code dilution and the
amount of information on a single block of code. As we can see, OOP can not keep the
code organized by requirement - even with its modulation, abstraction and reuse capabili-
ties the final result is a sequence of instructions as the language provides only a dimension
along which concerns can be implemented.

Ideally, the separation and decomposition of concerns should create a structure that
perfectly matches the whole system. However, this structure must be composed to create
the final system, and such composition must be supported by the tools used. Consequently,
failing to do so makes separation unpractical, leading to unorganized and confusing code
since these aspects can not be modularized with traditional mechanisms.

3.3.2 Crosscutting concerns in Matlab

The presence and description CCCs in Matlab was provided by [CDM+10]. Because
Matlab has a procedural nature, the decomposition units are typically functions or groups
of functions, which are a much more limited mechanism for modularizing concerns than
classes. Concerns are not as well organized in Matlab as in other programming systems,
but they exist nonetheless.

function z = expo(x,n)
y = 1;
for i = 1:n

y = y + x^i/factorial(i);
end
z=y;

function z = expo(x,n ,p )

P(1) = 1; Y(1) = 1;
for i = 1:n

P(i+1) = P(i) + 1;

Y(i+1) = Y(i) + x^i/factorial(i);
end
z = Y(n+1);

if (p) plot(P,Y)

end

Figure 3.5: An example of crosscutting domain in Matlab.

Figure 3.5 show an example of CCCs in Matlab, taken from [MJS10]. The extra code



24 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

presented on the right side of the image has the function of building a graphical representa-
tion. Note that in real-world examples usually this implementation is even more polluting
to the code, since the programmers usually define extra parameters to the ’plot’, such as
legends and a title.

What is usually different from this example to the previous examples of CCC’s in Java is
that in this example we are not only in the presence of additional code intermixed with the
original, functional code. In Matlab it is very frequent that a concern has a direct impact
in the original code, creating different, modified code. In the example of Fig. 3.5, the code
on the right (with the concerns implemented) no longer uses simple, scalar types in his
computation, but rather uses vectors to produce the data that feeds ’plot’. The alterations
required for such transformation are highlighted.

In their work, Monteiro et al. [MJS10] identified a potential list of CCC categories in
Matlab:

• Messages and monitoring: messages to the user, warnings, errors, graphics visual-
ization, monitoring, etc.;

• I/O data: reading data from file, writing data to file, saving an image, loading an
image, etc.;

• Verification of function arguments and return values: default shapes and values for
the arguments that may not be passed in certain function calls;

• Data type verification and specialization: check whether a variable is of certain type,
configuring the assignment of data types to variables, etc.

• System: code that verifies certain system environment properties, to pause execution,
etc.

• Memory allocation/deallocation: The use of the ’zeros’ function is most of times
used to allocate a specific array size. This avoids the reallocation for each new item
to be stored in an array. Use of the ’clear’ instruction that appears in some Matlab
functions is another example.

• Parallelization: use of parallel primitives such as ’parfor’;



3.3. CODE TANGLING AND CODE SCATTERING 25

• Design space exploration: code to explore different specializations, different algo-
rithms to solve the same problem, to find the number of iterations needed (e.g., to be
above a certain precision).

• Dynamic properties: constructing inline function objects (inline), executing a string
containing Matlab expressions (’eval’), etc.

function EO = gaborconvolve(im, nscale, norient, minWaveLength,
mult, sigmaOnf, dThetaOnSigma, feedback )

if nargin == 7
feedback = 0;
end
... original code removed
if ~isa(im,’double’)

im = double(im);
end
... original code removed
clear x; clear y; clear theta; % save a little memory

... original code removed
for o = 1:norient, % for each iteration

if feedback
fprintf(’Processing orientation %d ’, o );

end
... original code removed
end
if feedback, fprintf(’ ’);
end

Figure 3.6: Examples of CCC’s in Matlab, taken from [MJS10].

The illustrative example of Fig. 3.6, from the same authors, show some examples of
potential CCC’s that are in some of the categories described. In this example we can see:
messages to the user (’fprintf’), argument verification (’nargin’), freeing memory (’clear’)
and class verification (’isa’). In this particular example, the code highlighted in gray indi-
cates code which has the potential to be extracted into aspects.



26 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

3.4 Aspects Oriented Paradigm

By selecting an appropriate group of domain-related concerns to a problem, AOP achieves a
good balance between the localization and management of relevant issues, complexity and
redundancy. Aspect Oriented Programming gives to crosscutting concerns what OOP has
given to objects: encapsulation and inheritance, language mechanisms that clearly capture
the software structure [KHH+01].

3.4.1 Aspects

In the Aspects Oriented Paradigm, cross-cutting concerns are called aspects, which do not
usually belong to the system’s functional decomposition, but are properties that affect the
performance or requirements of the various components. Aspects are, similarly to classes
in Java, a unit of modularity, encapsulation and abstraction [CCHW04] although unlike
classes, aspects can be used to implement crosscutting concerns.

Aspects are independent from the other modular units of the system. If we are talking
of a system in Java for example, an aspect can be presented in part of a class, in all the
methods of a class or in various classes of the whole system, as seen in Fig. 3.7.

Figure 3.7: Modular versus aspectual decomposition, taken from [CE00].

3.4.2 Definition of AOP

With the terms explained above it is now possible to clearly define the goal of AOP: sup-
port the clean separation of components and aspects in the code. In AOP [KLM+97], by



3.4. ASPECTS ORIENTED PARADIGM 27

selecting an appropriate group of domain-related concerns to a problem, a good balance
between the localization and management of relevant issues, complexity and redundancy is
achieved. Aspect Oriented Programming gives to crosscutting concerns what generalized
procedure languages had given to components: encapsulation and inheritance, language
mechanisms that clearly capture the software structure [KHH+01] and compose them to
produce the overall system.

In AOP it is possible create instructions such as: "Realize a specific concern is needed
and perform the necessary alterations to do it". In the BookLocator example on Fig. 3.3, a
possible statement would be: "Whenever a method writes information in BookLocator, lock
all other writes". This new approach is completely different from traditional programming
paradigms because it breaks with the local demands, and programs organization can now be
made in the most appropriate form for maintenance and edition instead of a single block.
What’s more, the original code does not need flags to mark these new instructions - the
AOP language is self-capable of localize and perform the alterations.

"AOP can be understood as the desire to make quantified statements about the

behavior of programs, and to have these quantifications hold over programs

written by oblivious programmers." in [FF00]

Statements in the form of [FF00]:

In programs P, whenever condition C arises, perform action A.

are now available to the programmers, where P is a traditional coded program. The
introduction of this new statement introduces three new concerns to programmers and de-
signers: i) which conditions C can we specify, and if they are static or dynamic (happen at
run-time), ii) how do the action A interacts with the original program and iii) how is this
new statement and the original program P intermixed (this is called the weaving process,
performed by a "Weaver").

AOP not only contributes to the organization of the code, it can also contribute to it’s
safety since aspects hide not only how something is done, but also when. Error handling in
a Graphical user interface (GUI) [CCHW04] for example, has some critical implementation
differences using aspects or OOP. The control flow of an user interface must handle errors
in a manner that if they are originated by the user, they should be flagged to a dialog box.
On the other hand, internal errors should only be kept in a log. Aspects not only make



28 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

this simple to implement, but their absence during programming means that everywhere an
error might occur function calls must be made to handle it and error controlling policy is
leaked. This is specially critic in other systems, such as security or banking systems.

3.5 Instances/Incarnation of AOP

3.5.1 CaesarJ

"CaesarJ is an aspect-oriented language which unifies aspects, classes and

packages in a single powerful construct that helps to solve a set of differ-

ent problems of both aspect-oriented and component-oriented programming."

[AGMO06]

CaesarJ [AGMO06] represents a new aspect-oriented programming language based on
abstraction, information hiding and minimization of dependencies. In CaesarJ, aspects are
designed as components, which improves abstraction and reuse, rather than on the physical
separation that appears on other AOP implementations. CaesarJ compiles to conventional
java bytecode, so it can be used everywhere java can, and can be used to improve the
seeding of existing Java projects or in the development of new ones.

Modularization in CaesarJ is made through the use of multiple collaborating classes.
After the definition of collaboration interfaces, the developer implements the component
using the pre-defined collaboration interface. The binding of the component to the applica-
tion is made in a different module. Information hiding is achieved because the application
specific concepts do not know the component implementation (it is abstract), while the
component implementation is hidden by the collaboration interface.

On the other hand, the developer can define base class collaborations and improve them
with new features in its sub collaborations with the use of virtual classes.

Features from different developers can be easily merged by applying mix-in composi-
tion on the sub collaborations.



3.6. ASPECTS ORIENTED SOFTWARE DEVELOPMENT 29

3.5.2 AspectJ

AspectJ was the first well known implementation of AOP and is considered a quasi stan-
dard language for Aspects Oriented Programming. Due to it’s relevance we will introduce
it in detail in the next chapter and explain it’s main characteristics.

3.5.3 LoopsAJ

LoopsAJ [HG06] is not another language implementation based in AOP. LoopsAJ is an
improvement to the AspectJ’s capacity to capture pieces of a program control flow.

Loops are natural places to improve performance, yet, AspectJ does not have a join
point for loops capture, and even if it is sometimes possible [HG06], the method resorts
to refactoring of the base-code. To eliminate this inconvenience, LoopsAJ allows direct
parallelization of loops without the need to use refactoring.

Based on a bytecode representation that recognizes the behavior, not the way the code is
written, this new join point can expose data related to the data processed and the iterations.
Iterator, the integer bounds, collections and arrays can be passed to the arguments if they
exist and if it is possible to do so.

Since loops have no names, loop selection can not be based on the name, although, this
selection is made according to a type pattern matching the data processed.

3.6 Aspects Oriented Software Development

Because AOP is not an independent paradigm, independent of any other, but rather a
paradigm that aims at extending the features (mainly the modularity) of other paradigms,
we have the problem of how to implement AOP on an already existing software system
(e.g. legacy system). Because of this, we have the problem of dissecting programs in order
to find where to cross cut the implementation. This problem, of course, does not exist when
we are starting the construction of a new system.



30 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)

3.6.1 Using an Aspect Oriented Language

The normal way to use AOP in the software development cycle. On this project, the cross
cutting concerns were previously identified and characterized, and the programmers have
a perfect idea of which part of the code should be implemented in the functional part of
the system, and which pieces of code should be implemented in the form of aspects, on a
different modular container.

3.6.2 Aspect Mining

When we try to apply the Aspects Oriented Paradigm to existing software, the big prob-
lem is to find which parts of the system should be dissected and transformed into as-
pects. To do so, there is a technique called Aspect Mining that aims at finding cross
cutting concerns in the already written code. There are a big number of techniques to do
so [Cc07, KMT07, CHJvdB10], but their main objective is always to find where code tan-
gling and code scattering appear more in the code and how it can be modularized in the
form of aspects.

After the identification of promising candidates to be extracted into aspects, one of the
ideas is to use a refactoring process that can automatically extract code and transform it in
modular units that represent aspects [MF06].

Aspect Mining in Matlab

To our knowledge, there is only one project that tries to automatically identify and charac-
terize cross cutting concerns in Matlab [MJS10]. In this project, the authors use a ’token-
based’ detection technique to perform a tokenization of the source code and then use the
tokens as a base to clone detection. The idea of this tool is to decompose Matlab code,
by reading a number of *.m files (*.m is the Matlab source files extension) and compute a
number of metrics, such as:

• Number of times a given function name appears in a given Matlab file

• Number of different function names appearing in a given Matlab file

The early results of applying this technique to a big number of Matlab files (a total of
19 repositories with 209 Matlab files) gave some interesting results. This results included



3.7. SUMMARY 31

the usage of specific functions, such as the function ’size’, with 15% of the global uses of
the functions identifying aspects candidates, followed by ’error’ (11.4%), ’zeros’ (9.5%)
and ’nargin’ (6.9%). A more interesting result is that, if we measure the "pollution" of
Matlab code by the number of lines of code that use all the functions captured, around
16.64% of code is a potential candidate to be modularized as an aspect.

This aspects-mining technique enabled the identification of a promising number of can-
didates to be extracted into aspects and, although this is not the aim of this thesis, it clearly
shows Matlab has a good potential and there is a necessity to use the aspects oriented
algorithm in this ambience.

3.7 Summary

Although traditional programming styles allow the modularizations of system’s methods,
the programmer is obliged to introduced system’s properties by hard-coding in the main
block of code. This leads to code tangling which results in increasing efforts to understand,
edit and maintain the software. AOP introduces to the programming paradigms the avail-
ability to make quantified statements. This way, system’s components and properties can
be separated into two dimensions and code organization becomes more flexible.

While in this examples AOP is applied to OOP, it is an independent paradigm capable
of being used in other programming styles.



32 CHAPTER 3. ASPECT ORIENTED PROGRAMMING (AOP)



Chapter 4

AspectJ

In recent years, Aspect Oriented Programming (AOP) has been a very active research
field. AOP has been proposed in different programming paradigms (objects oriented,
imperative, attribute grammars, etc), and we can find several aspect oriented program-
ming languages and several extensions to existing programming languages in the litera-
ture [KHH+01, AGMO06, SLU05, LDS05, VSS09].

There are various instances of the Aspect Oriented Programming, being AspectJ the
widely-used fe-facto incarnation of AOP, which supports the modularization of cross cut-
ting concerns, in the form of aspects.

In this section, we present a brief introduction to AspectJ.

4.1 Introduction

AspectJ is a general purpose, aspect-oriented extension for the Java programming lan-
guage, developed at Xerox PARC, which introduces the new concept of join point.

A join point is a well defined point in the program flow. Every time a method is used
within a program flow, whether it is a constructor, a simple print or any other method
represents events that occur during a function runtime and are, consequently, join points.
Direct access to read and alter variables, however, is not a possible join point in AspectJ
and must be done through a method.

A join point appears in any code and is used in AspectJ to specify the position where
a certain aspect is to be implemented. These join points create interceptions between the

33



34 CHAPTER 4. ASPECTJ

Figure 4.1: The same aspect can be in more than a component (A4), and a component can
have more than one aspect (C3). Each of this interceptions represents a join point, taken
from [CBE+00].

components of the original program (since we are talking about Java, this components
represent mainly classes) and the aspects. These interceptions can happen in multiple ways,
since an aspect can be part of a class or part of various classes and a class can have more
than one aspect (Fig. 4.1).

AspectJ adds two new primitives: one to detect join points, called pointcut, and another
to make alterations in the original program in the position marked by a pointcut, called
advices.

4.2 Pointcuts

A pointcut detects and picks out certain join points and values at those points, acting as a
filter that catches parts of the original program that match a certain criteria and blocks all
the other. The pointcut call(int increase()), for example, matches all the methods called
increase() that take no arguments and return an integer.

A pointcut can be anonymous or can be named (which is always preferred, expect on the
simplest examples). Naming pointcuts not only makes the code clearer and easier to read,
but also provides abstraction, encapsulation and reuse. It provides abstraction because you
can call the pointcut by name rather than by the related expression, which you can even
be unaware of (encapsulation). It provides reuse because we can call the same pointcut in
other pointcuts.

A pointcut is generally declared as follows [CCHW04]:

[visibility-modifier] pointcut name (ParameterList) : PointcutExpr ;

where PointcutExpr is the joint point defined to this pointcut. The parameter list is used



4.2. POINTCUTS 35

to publish information important for the action associated with the join point captured (we
will see examples of this process in the next section).

A pointcut can be composed by other pointcuts by the use of logic operators, as shown
in the next example:

pointcut arraychanges() :
call(void add(int)) ||
call(void remove(int));

This pointcut is composed by two smaller pointcuts, call(void add(int)) and call(void
remove(int)), connected by the use of the logic operator ‖. In this example, a call to
the pointcut arraychanges() is the same as calling the composing pointcuts individually.
AspectJ supports the use of more logic operators, such as and/conjunction and negation.

A pointcut can be based on the explicit enumeration of a set of methods, but AspectJ
allows this specification to be property-based, either by the use of wildcards or of special
primitives.

The pointcuts:

call (public * account.*(..));

cflow (arraychanges ());

are both property-based. The first one, call (public * account.*(..)) catches all the
calls to the class account’s public methods, independent of their return type (first ’*’), of
their name (second ’*’) or their arguments (represented by the ’..’ between the arguments
brackets). The second pointcut picks all the join points that occur in the dynamic context
of the join point arraychanges(), which means it picks out each join points that occurs
between when an arraychanges() method is called and when it returns (either normally or
by throwing an exception).

There are three possible pointcut categories in AspectJ. The first and most important is
based on the type of joint point, whatever it is a method call, the execution of an exception
handler, the initialization of a class, and so on. The second category filters join points based
on their scope. These pointcuts can detect if the code is within a certain package or if it
occurred during the control flow of a given operation. A third category matches join points



36 CHAPTER 4. ASPECTJ

based on the context information of the join point itself. For example: is the currently
executing object an instance of a given type?

4.3 Advices

A pointcut is an important primitive that allows us to detect join points within a program
flow. But what to do after that join point is detected? That is the function of the advice
primitive.

Each piece of advice is associated with a pointcut (named or anonymous) and specifies
the behavior to be implemented in that join point. To support this, an advice declaration
may contain parameters, whose references are in the body of the advice, although all pa-
rameters values must be provided by the related pointcut. For example if the advice for the
pointcut arraychanges() from Sect. 4.2 had to insert the name of the array in a warning
message, that information needs to be declared in the pointcut (we will give examples of
this process later).

The implicit declaration of an advice determines how it interacts with the joint point.
AspectJ separates advices into those who are executed before the join point, those who are
executed after the join point and those who are executed in place of (or "around") the join
point. Using such advices, the pointcut pointcut call(void add(int)) could insert a warning
message before the call, after the call or could change that call to something different, such
as a warning message to a log.

The flags after and before cannot change contextual information like, for example, re-
turn values, arguments, etc, they can only read it. The around advice is not only able to
read contextual information, but also to change it. Since it runs in place of the join point it
operates over and is allowed to return a value, it must be declared with a return type, like a
method.

The declaration of advices generally follows one of the following examples [CCHW04]:

before (ParameterList) : PointcutExpr { ... };
after (ParameterList) : returning PointcutExpr { ... };
after (ParameterList) : throwing PointcutExpr{ ... };
Type around (ParameterList) : PointcutExpr{ ... };

The first thing to notice is that since advices are implicitly related to a pointcut, there is



4.3. ADVICES 37

no need to name them and there are no visibility modifiers for advices.

Secondly, before the list of parameters the advice needs, which must also be declared in
the pointcut (this list can be empty, as we will see) always comes the flag who determines
if the advice is to be inserted after, before or around the pointcut.

After the list of parameters comes the PointcutExpr, which is the name of the pointcut
the advice is advising. This is necessary because the advice does not need to be declared
immediately after the pointcut on the AspectJ’s source code (except on the pointcuts that
do not have a name) and because there can be various advices to one pointcut. Since Java
programs can leave a join point ’normally’ or by throwing an exception, the after advice
can be of one of three types: after returning, after throwing, and plain after (which runs
after returning or throwing, like Java’s ’finally’).

In the end of an advice declaration, always comes an expression which represents the
actual piece of code who is to be inserted into the original program.

An example might clear it out 1:

pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe) && args(x, y);

after(FigureElement fe, int x, int y) returning: setXY(fe, x, y) {
System.out.println(fe + " moved to (" + x + ", " + y + ")."); }

The pointcut is defined as seen in Sect. 4.2, only this time it takes arguments and two
new flags: target and args are introduced. These flags (there is one more: this) are used to
tell that pointcut which values to publish, so they can be used by the advice. This pointcut
publishes three arguments, the object fe and two integers, x and y.

In this example the advising is made after the join point, takes the arguments FigureEle-
ment fe, int x and int y published by the pointcut setXY and, after the return on the join
point, prints where fe was moved to.

It is important to notice that in the definition of a pointcut and advice the flags target,
args and this are not mandatory, and the advice does not need to take arguments. By using
the pointcut arraychanges() defined in Sect. 4.2, we can make a simple advice:

1Example taken from: http://dev.eclipse.org/viewcvs/indextech.cgi/aspectj-home/doc/progguide/starting-
aspectj.html



38 CHAPTER 4. ASPECTJ

after() returning: arraychanges()
{ System.out.println("Array was changed"); }

AspectJ supports the declaration of the pointcut inside the advice, so the following
code:

after() returning:
call(void add(int))
|| call(void remove(int)); {

System.out.println("Array was changed"); }

is also correct.

4.4 Inter-type declarations

AspectJ also supports inter-type declarations, that allow the modification of classes and
their relations. While advices are declarations written in an aspect, that change certain
behaviors within a join point, inter-type declarations are statements that an aspect takes
complete control and responsibility from certain characteristics on behalf of other types.
Inter-type declarations cut across classes and their declaration, and may alter a system’s
classes and their inheritance relationships. These alterations are, unlike advices, always
operated statically, at compile time.

In Java, when a capability is shared by some existing classes that already extend a class
(have inheritance relations), the solution is to create an interface that adds to all the affected
classes a method that extends this interface. AspectJ can express this concern using an
inter-type declaration, on one place only. One only needs to declare the methods and fields
necessary to express the concern and AspectJ alters the methods and fields of the classes
accordingly.

Suppose we want a Librarian class to observe changes on Book objects, and both are
existing classes. One way to implement this in AspectJ is by writing an aspect declaring
that the object Book has an instance field, librarians, that tracks the Librarian objects that
are observing Books.

We first start the inter-type declaration by defining the needed variables (in this case, an
Arraylist):



4.4. INTER-TYPE DECLARATIONS 39

Aspect BookTracking {
private Arraylist Book.librarians = new Arraylist();
...

}

Secondly, we had the new methods. In this case, the methods addLibrarian() and
removeLibrarian() are needed because only BookTracking can see this new field, li-
brarians, since it is private, and therefore we need to declare methods to add and remove
information from it:

Aspect BookTracking {
private Arraylist Book.librarians = new Arraylist();

public static void addLibrarian(Book b, Librarian l) {
b.librarians.add(l); }

public static void removeLibrarian(Book b, Librarian l) {
b.librarians.remove(l); }
...

}

The next step is to create a pointcut rents that catches the join point that represents the
execution of a rent, and an advice to define what we want to do after the join point, which
in this case is to notify the librarians.

Aspect BookTracking {
private Arraylist Book.librarians = new Arraylist();

public static void addLibrarian(Book b, Librarian l) {
b.librarians.add(l); }

public static void removeLibrarian(Book b, Librarian l) {
b.librarians.remove(l); }

pointcut rents(Book p): target(p) && call(void Book.rent());



40 CHAPTER 4. ASPECTJ

after(Book b): changes(b) {
Iterator iter = b.librarians.iterator();
while ( iter.hasNext() )
{ updateObserver(b,(Librarian)iter.next()); } }

}

Note that in this process we do not have to change the code from none of the classes
implied to extend this functionality.

4.5 Aspects

AspectJ introduces a new modular unit: aspect. An aspect is defined very much like a class
in Java, and can have methods, fields and initializers in addition to pointcuts, advices and
inter-type declarations. In AspectJ, these primitives can only be included in the modular
unit of an aspect, so their declaration is localized.

Aspects may be instantiated, just like normal classes, but AspectJ limits this instantia-
tion so one can not use Java’s ’new’ form to build new aspect instances. Because typically
each aspect is a singleton, one aspect instance is created which means that advices can use
non-static fields of the aspect (as seen on the aspect BookTracking from Sect. 4.4).

Next, we present an example of an aspect:

aspect ArrayAccess {
int n_accesses = 0;

before(): add() && remove() && edit() {
n_accesses++;
System.out.println("Array accessed

by the" + n_accesses + "time.");
}

}

Notice here that the advice uses the local variable, n_accesses to maintain important
information to advise the join point (int this case, the number of accesses to an array).



4.6. EXAMPLES 41

4.6 Examples

Having introduced the AspectJ language, let us see now how we can use it in real examples.

Next, we present some examples of AspectJ and the output they produce, as well as
some particular features from the language.

4.6.1 Tracing and Context Exposure

Let’s look at the following aspect:

aspect asp {

pointcut mypc(foo c, Object o, int i) :
args(i) && call( void foo.bar(int) ) && target(c) && this(o);

before(foo c, Object o, int i) : mypc(c,o,i) {
System.out.println( "calling " + c.name + "(" + i + ") from "

+ o.getClass().getName());
System.out.println("Entering: " + thisJoinPoint);

}
}

This aspect does a few things. First, it declares a pointcut: mypc. This pointcut’s join
point is quite simple: it not only detects calls to the method bar from the object foo, but
also captures information important to the advice, such as the arguments, the objects and
the classes related to the join point. In AspectJ, context exposure must be declared in the
pointcut and in the advice.

The advice acts before the join point, and captures all the information published by the
pointcut and prints it into the screen. The output, when we run the class test, in the package
teste, the object’s name is first and is being called with the argument 1, is the following:

Entering: call(void teste.foo.bar(int))
calling first(1) from teste.test
bar called with 1



42 CHAPTER 4. ASPECTJ

The first line, "Entering: call(void teste.foo.bar(int))", is produced using a special prim-
itive from AspectJ: thisJoinPoint. In all advice bodies this variable is bound to an object
that describes the current join point.

The complete code to this example is in App. A.1.

4.6.2 Two aspects

It is possible to have two aspects capturing the same join point and giving the same advice.
In this example, the pointcut is the same in both aspects:

pointcut mycut() : within(foo) && execution(* * (..));

This pointcut captures, within an object foo, all the execution of methods, no matter
what their name, their arguments or their returns are. In this example we have two aspects,
asp1 and asp2, with exactly the same source code, apart from the name of the aspect.

Although these two aspects work on the same program on the same time, we can control
which one acts first. There is a special command in AspectJ, called precedence, where we
can define which aspect is executed first.

So, the line:

declare precedence : asp1, asp2;

is actually defining that asp1 is to be executed before asp2.

The output is the following:

before asp1
around1 asp1
before asp2
around1 asp2
bar called
after asp2
around1 asp2
after asp1
around1 asp1



4.6. EXAMPLES 43

And if we change the precedence order:

before asp2
around1 asp2
before asp1
around1 asp1
bar called
after asp1
around1 asp1
after asp2
around1 asp2

The complete code to this example is in App. A.2.

4.6.3 Advice to advice

Is it possible to give an advice to another advice? Sure, but a few precautions must be
taken.

Imagine an aspect whose join point are calls to the function "bar" and has the following
advice:

pointcut barcut(foo c) : call(void foo.bar()) && target(c);

before(foo c) : barcut {
c.bar(); }

This aspect captures calls to the method bar() from the class foo and calls the same
method from the same class before the join point. This aspect, however, cannot be execute
because it generates a Stack Overflow. This is because the advice generates a join point
that the pointcut barcut is programmed to capture (Fig. 4.2).

For this aspect to work, we have to tell the pointcut to capture all the calls to the method
bar() except the ones generated by his own advice. This is made using the within() primi-
tive from AspectJ:



44 CHAPTER 4. ASPECTJ

Figure 4.2: Infinite loops in aspects.

public aspect asp2 {

pointcut barcut(foo c) :
call(void foo.bar()) && target(c)
&& !within(asp2) ;

before(foo c) : barcut {
c.bar(); }

}

This aspect now correctly captures only the calls of the method bar() made within the
object foo.

It is now possible to define an aspect:

pointcut barcut() : call(void foo.bar());

before () : barcut() {
System.out.println( "advice by asp1"); }

That captures all the join points that represent a call to the method bar(), independently
of the origin of those calls, that can be the object foo or the aspect asp2.

When we run these two aspects, the output is:

advice by asp1
advice by asp1
bar called
bar called



4.7. SUMMARY 45

Notice that the the first call to the method bar() was not from the object foo but from the
aspect asp2 and then, consequently, the first advice (which comes from asp1) is advising
other advice (which comes from asp2).

The complete code to this example is in App. A.3.

4.7 Summary

AspectJ presents three new primitives: pointcuts, advices an inter-type declarations to
modularize cross-cutting concerns. Pointcuts are used to detect join points and publish im-
portant information from those join points. Advices are used to write the actual alterations
in the original code, which can be inserted after, before or around a join point. Inter-type
declarations allow the modification of classes and their relations. AspectJ introduces a
modular unit, aspects, to modularize the implementation of this three primitives.



46 CHAPTER 4. ASPECTJ



Chapter 5

Domain Specific Aspects Language
(DSAL)

In previous works [CDM+10], aspect-oriented features were proposed to support triggering
conditions and monitoring variable values, as well as a draft of an Aspect-Language to
support these features. In this chapter, we describe our aspect language specification with
mechanisms to detect join points and perform transformations in Matlab source code.

5.1 Introduction

"Aspect-oriented programming provides powerful ways to augment programs

with information out of the scope of the base language while avoiding harm-

ing code readability and thus portability. Matlab is a popular modeling/pro-

gramming language that will strongly benefit of aspect-oriented programming

features. For instance, Matlab programmers could use aspects to provide in-

formation such as restrictions on allowed data types and/or values, monitor-

ing specific aspects of the execution such as the effective dataset sizes or if a

given variable ever assumes a specific value, without "polluting" the code with

"check code"." [CDM+10]

As seen before, the flexibility of the interpretative language of Matlab also hinders per-
formance, forcing programmers to develop reference versions of the program functionality

47



48 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

in languages such as C and C++. What is more, when it comes to evaluate specific fea-
tures, such as logging (Section 2.2.2), exploiting non-uniform fixed-point representations
or including handlers to watch certain behaviors, the programmer is overwhelmed by cum-
bersome, error-prone and tedious tasks, which imply invasive code in the original Matlab
sources.

The original base program is free of language enhancements and sources remain legal
Matlab. The proposed DSAL enables programmers to retain the obvious advantages of a
single source program representation while allowing the implementations to explore a wide
range of specific solutions at reduced programming and maintenance costs.

This language is the basis for an empirical study of AOP. By creating this language,
the respective weaver and an online tool, we expect to understand what happens when
a community of users uses aspects extensions in Matlab. More concretely, we want to
know:

• What kind of aspects do they write?

• Are these aspects domain-specific (do different communities that work in different
domains have different requirements about each concerns are important to capture)?

• What kind of patterns do they create and what kind of style guidelines emerge?

• Can the the community understand each others aspects?

• Can the aspects be reused by different parts of the community?

• But above all: is it possible to create code that is more modular, more reusable, easier
to implement and to understand?

The creation of this domain specific language is actually just part of the big goal of
the AMADEUS project: to understand if the Matlab community can really utilize aspect
oriented concepts while programming in Matlab.

5.2 Organization of an Aspect Module

Our language treats an aspect as an independent modular unit. An aspect module can
only represent one instruction (remember, or join point capture mechanism is ’Instruction



5.2. ORGANIZATION OF AN ASPECT MODULE 49

Based’), although it can have more than one action to be executed in that instruction. It is
started by the constructor aspect, followed by the name of the aspect, and ended by end

(similarly to Matlab). Inside the aspect we define the join point and the actions necessary,
as shown next:

aspect aspect_name
capture join_point
action to join_point
action to join_point
...

end

The aspects are organized in source files, that may contain more than one aspect. Each
source file from our DSAL must have, in the beginning, a strategy for applying the aspects.
This strategy is mandatory and represents the sequence in which the programmer wants
the aspects to be implemented. This strategy is composed by the disjunctions (&&) and
conjunctions (‖) (disjunctions have priority).

So, at the beginning of each DSAL source file, it is mandatory to right a strategy before
the aspects, as shown next (strategy is highlighted):

a1 && a2 && a4 || a3

aspect a1
aspect a2
aspect a4
aspect a4

In this particular example, the aspects ’a1’, ’a2’ and ’a4’ run sequentially and, if any of
them can not be executed, than the aspect ’a3’ is executed. It is possible to use parentheses
and create very powerful strategies. If no Aspect Combinator is defined, the Weaver applies
the aspects in the order they are defined in the file. Using the disjunction (&&), if the any of
the aspect fails, the others can not be applied, whereas using the conjunction (‖) the failing
of an aspect does not interrupt the sequence.

It is important to notice that it is possible for two aspects to advise the same join point or,
more important, for an aspect to advise another. One aspect might, for example, introduce



50 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

a new variable ’a’, and another aspect search for the declaration of the same variable. For
this to happen, it is important that the strategy is constructed in a manner that the second
aspect runs after the first one.

With such a powerful mechanism, finding the correct and appropriate strategy is an
interesting research topic by itself, although in this work the focus in on the programming
support for aspects.

5.3 Join Point Capture

5.3.1 The Joint Point Model for Matlab

When designing an AOP language, the join point model is a critical element. This model is
the basis of the mechanism that allows the perfect coordination between the original source
code and the aspects.

There are many different kinds of joint point model, such as primitive application nodes
in a dataflow graph [ILG+97,Lop97,MMK+97,OT01] and method bodies [OT01,OKH+95].
In this language, we have created a join point model that defines a precise instruction in the
original program.

To clearly define a joint point in Matlab we have separated the context in which join
point appears into three groups: declarations, assignments and functions. Anything cap-
tured by out language is within one of these three groups, which are unitary and can not
be divided. For example, if the programmer wants to catch an assignment to a variable ’a’,
such as in: ’a = errors[5];’, he cannot separate the line into two parts. In practice, what
this means is that when a programmer catches a join point, and executes an action on that
join point (wether it appears after, before or around), the whole line must be advised1, and
not only part of the assignment. We say our join point capture is ’Instruction Based’, and
what it means is that the advising on the join point must be something like: "introduce the
whole instruction, but with a scalar as an alternative to an array" instead of "introduce a
scalar in the right side of the assignment".

Next, we present an example of correct and incorrect advising:

1In some of the explanations we use AspectJ-related expressions, such as advice. Although this language
is quite different, such expressions are used to clearly explain to the reader a concept or an idea. Later on we
will see that such expressions disappear when we start introducing our own primitives.



5.3. JOIN POINT CAPTURE 51

Capture the writing to ’a’
a = array[5];

Advice: change the whole line to a = 10;
instead of

Advice: change right of the assignment to 10;

In this example we have, highlighted in gray, the actual join point we want to capture,
which is an assignment to the variable ’a’. What is important to notice is that, the correct
advice is to rewrite the whole assignment, instead of only the part that we want to change.
Out language is not capable of extracting or dealing with a smaller amount of information
than these groups, as shown in the next figure.

Script

FunctionDeclaration Assignment

Header Body

Contexts a join point can appear in

The smallest amount of information 
that can be extracted

Figure 5.1: Join point model.

Fig. 5.1 shows all the contexts a join point can appear in. Declarations, assignments the
header of a function follow the ’Instruction Based’ idea, and represent the smallest granular
unit our aspect language can deal with. It is also possible to write a Matlab program in the
form of a script, but all the lines within a script are typically or assignments or declarations2.

Functions, however, are a different context for join points. This happens because, in
Matlab, functions are the modular unit of the language, and so programs are usually orga-
nized in groups of functions. As so, this is the only context a join point can appear in that
can be separated between his body or his header. On the particular case of functions, we
can specify if the join point is the header of the function, or if it appears in it’s body. If we
want to capture the head of a function, this particular join point is also ’Instruction Based’,

2We also have loops, which are very important on mathematical calculus, but are not extracted by our
language. See Chap. 7.1



52 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

and must be advised entirely. The body of the function is not exactly a join point, but rather
a ’context’ the join point can appear in, as we explain in the next section.

5.3.2 Join Point Capture Primitives

In any Aspects Oriented language, an important part of the system is the mechanism that
crosscut the modular structure of the host language. For example, when AOP was applied
to the Objects Oriented Paradigm, constructors had to be created to cross the hierarchical
modularity of OO programs. And the same is to true to the block mechanisms of procedural
languages [FF00, CKF00].

In Matlab we do not have access to the complex modular mechanisms of, for example,
OO. A Matlab program is typically composed or by a script or by a function or a group of
functions. Because this composition represents a poor mechanism to modularize concerns,
we might expect that concerns do not appear as well organized in Matlab as they do in
other programming environments.

The limited composition of programs in Matlab is directly related to the dynamic join
point we want our language to capture. We no longer have to worry with inheritances or
subclasses of code, for example. Instead, the important information to ’capture’ is the one
related to mathematical calculus, such as variables attributions, declarations, operations
related to arrays and, of course, functions.

In this DSAL, the primitive for capture dynamic join points is select. This primitive is
just an indication that we want to capture information on the source code, and is followed
by the specific part of the code we want to ’capture’, as shown next:

select: " any time the variable ’a’ is read ";
or

select: " any call to the function ’matrices_sum’ ";

To specify the exact dynamic join point we want to capture, we have created a set
of primitives that represent a big number of potential concerns we want to capture. It is
not possible to say these primitives capture all the potential concerns in Matlab, or the
most important, but they surely capture the most common3 We have separated the potential

3It is hard to clearly define all the important join points on Matlab code, and to our knowledge, no work
has ever developed a systematic and complete capture of Matlab crosscut concerns. This might represent an
excellent research (more on future work).



5.3. JOIN POINT CAPTURE 53

concerns into three groups, each with potential join points.

As we see in Fig. 5.2, we have separated Matlab code into three major groups: vari-
ables, arrays and functions. It might seem strange why variables and constants are on the
same group but we will get to that later.

Crosscutting 
Concerns

Arrays Variables/
Constants Functions

Add information
Read information
Size
Declaration

Declaration
Read
Write

Call
Head
Body

Figure 5.2: Structure of the dynamic join points captured.

For any of these groups, we have selected the properties that have more potential to
be important join points on a program. So, for arrays for example, we found the most
important concerns related with this data structure are:

• Anytime information is written to an array

• Anytime information is written to an array

• The size of the array (useful, for example, to boundaries control)

• When the array is declared

The variables and constants are in the same group because, anytime we have an expres-
sion like: ’a = 6;’, we actually have two join points here: one that is the writing on the
variable ’a’, and the other which is the reading of a scalar, in this case, ’6’. So one can
capture this line of code as: "the writing of ’a’" or "the reading of ’6’".

The functions that capture join points are in the Table. 5.1. For each kind of structure
- arrays, variables/constants and functions there are a number of primitives that help in
capturing information. These primitives are directly related to the structure of potential



54 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

parts we want to capture, which is present in Fig. 5.2. All these primitives ’Instruction
Based’, which means they extract the whole instruction they appear in. This is not true
only for the primitive within, as we explain after the table.

It is possible to use logic operators, such as conjunctions (‖), disjunctions (&&) and
negation (!) to construct more complex join joints.

Table 5.1: Primitives for join point capture
Arrays Variables/Constants Functions
add() read() call()
get() write() header()
size() declare_var() within()

declare_array()

For arrays, we have four primitives - add(), get(), size() and declare_array(), which
capture the addition of information to an array and the reading of information from an
array, the size of an array and his declaration, respectively. Similarly to some Matlab
functions, the primitives add() and get() are polymorphic, because some of them can take
one or two arguments. The primitives related with arrays can have two arguments. For
example, can be used as ’add(a)’, which represents the addition of information to an array,
or can be used as ’add(a,5)’, which represents the addition of information to the array ’a’,
on the index ’5’. The same is true for get().

For variables, we have only three primitives that capture the reading and the writing of
information to a variable and his declaration. The primitive read can receive as an argument
an integer, which symbolizes the attribution of a constant to a variable.

For functions, things are a bit different, because functions constitute the modular units
in Matlab. So, we have primitives to capture when a function is called, and to capture the
head of the function. Sometimes, it is useful to understand if a join point occurs inside a
specific function, and that is what the primitive within() is for. Using it, we can define join
points such as:

select: anytime variable ’a’ is read inside function ’sumvals’;

Using these primitives, we can now clearly express the join points defined earlier using
only the primitive select and primitives from Table. 5.1. Next, we present how some join
points can be captured using such mechanism:



5.3. JOIN POINT CAPTURE 55

select: " any time the variable ’a’ is read " ;
becomes

select: read(a) ;

select: " any call to the function ’matrices_sum’ " ;
becomes

select: call(matrices_sum) ;

select: anytime variable ’a’ is read inside function ’sumvals’ ;
becomes

select: read(a); && within(sumvals) ;

These primitives represent a huge potential and a big number of join points, either by
used alone or together with logical connectors. Table 5.2 shows some examples of how
certain join points can be captured from Matlab source code using this mechanism.

Sometimes, the same line of code can be captured by different forms, because there are
more than one join point present there. For example, in the line from the second column:
’a[i]=z[x];’, we can capture information related to:

• The addition of information to ’a’

• The addition of information to ’a’ on the index ’i’

• The reading of information from ’z’

• The reading of information from the index ’x’ on the array ’z’

• Any combination of the previous join points

It is important to remember that although these are different join points, an assignment
is a granular unit our ’Instruction Based’ capture mechanism can not divide. So all of these
join points capture exactly the same thing: the instruction ’a[i]=z[x];’.

It is important to remember that, even if any of this Matlab statements have various join
points, the overall amount of information captured by select is the same: the primitives for
capture join points are ’Line based’, which mean they catch all the statement the join point
appears in.

Using the logical operators, we can have very complex, user-defined select’s, such as:



56 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

Table 5.2: Examples of join point captures
Join Points a[i]=z[x]; a[i]=d; c=z[i]; d=soma(x,y); x=5;

select: get(z); add(a); write( c); write(d); write(x);
select: get(z,x); add(a,i); get(z); call(soma); read(5);

write(d) write(x)select: add(a,i); read(d); get(z,i);
&& call(soma); && read(5);

add(a) add(a)select:
&& read(d); && get(z);

select: (read (a) && within(sumvals)) || (!add(z) && within(sumvals_arrays);

What this example does is: or captures any read of the variable ’a’ on the function
’sumvals’ or makes sure the array ’z’ is not edited inside the function ’sumvals_arrays’.
Such mechanisms represent a big potential for content capture and crosscut concerns by
our DSAL.

We are convinced that these powerful mechanism can be used in most cases to cap-
ture code logging, tracing or control, for example. Although, as any AOP language, it is
very hard to clearly define the exact characteristics we want to modularize, since it de-
pends of factors such as the host programming paradigm, the host language or even the
domain the programmers are working in. We will get back to this issue in the conclusions
(Chap. 7). However, it is very important to notice that this language, and the associated
weaver (Sect. 5.8) are constructed in a way that they can be quickly adapted to support new
primitives and join points. Once again, we will get back to this on Sect. 5.8.

5.4 Action Description

The action description, which in this language is represented by the primitive apply is a
method-like mechanism that is used to declare that a certain amount of information should
appear in the content extracted by the select. The apply primitive is directly associated with
three flags: after, around and before, which have the same functions as the equal flags of
AspectJ: to declare if the information in inserted after, before or around (substituting) the
content captured by the aspect.

The argument of the primitive apply is a string with the exact information we want to
put in the source code. This string is directly inserted in the final file, followed by the



5.4. ACTION DESCRIPTION 57

primitive execute, that takes as argument a flag indicating the position where it will be
inserted, related to the join point (after, before and around).

A join point can have more than one action. It makes perfect sense to support more
than one action per aspect becouse it is very common that a programmer wants to do two
or more operations per concern crosscutted. The programmer might want, for example, to
change the value of a variable and keep a log of all the alterations to the same variable.

Below we see an example of a very simple aspect (it could take even more apply’s):

aspect log_a
select: write(a)
apply: display(’Variable will be written.’); :: execute before
apply: display(’Variable was written.’); :: execute after
...

end

The part of the action description immediately after apply:, in this case ’display(’Variable
will be written.’)’ and ’display(’Variable was written.’)’ is directly inserted in the joint
point.

If the original source had the line of code ’a = 5;’, and we applied the previous aspect,
we would get the following result:

... % some Matlab code
display(’Variable will be written.’);
a = 5;
display(’Variable was written.’);
... % some Matlab code

The fact that the argument of the primitive apply is an exact instruction in Matlab
makes it very easy to implement an aspect: any Matlab programmer can easily implement
an action because he knows the exact line of code he wants to be present in the original
code, and no abstraction is needed. These arguments are direct Matlab instructions.

If an aspect has lots of apply’s, all on the same aspect, and all are supposed to be
performed before the join point, the alterations in the source code appear in the exact same
order they appear in the aspect. For example, the aspect:



58 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

aspect log_a
select: write(a);
apply: display(’1’); :: execute before
apply: display(’2’); :: execute before
apply: display(’3’); :: execute before

end

Creates the following output:

... % some Matlab code
display(’1’);
display(’2’);
display(’3’);
a = 2;
... % some Matlab code

The same is also true for the after flag, and any aspect can only have an ’around’ appli-
cation, otherwise it generates an error.

The function-related primitives head() and within() are an exception to these semantic
rules. The primitive head() must always be advised only once, and that advising is manda-
torily ’around’ the captured content. The primitive within() must never be declared alone,
and works only with conjunction with other join point capture primitives. So, the following
aspects:

aspect big_mistake
select: within(sumvals);
...

end

aspect big_mistake_2
select: head(sumvals)
apply: disp(’first ups’); :: execute before
apply: disp(’second ups’); :: execute after

end



5.5. CONTENT EXPOSURE 59

are both incorrect. The first one (’big_mistake’) is incorrect because the primitive
within() can never be used alone, independent of the apply’s of the aspect. The second
one (’big_mistake_2’) is incorrect for two reason: first, the apply of the primitive head()

must be necessarily ’around’ the content captured (which is the head of the function), and
secondly because this primitive can only have one apply.

5.5 Content Exposure

Sometimes, it is very useful to pass information from the execution context of the join point
to the action the aspect will perform. An advanced aspect for logging, for example, might
want to save the information of the value that was assigned to a variable, rather than simply
saving the information that the variable was written.

Our DSAL provides a mechanism that makes it possible for the join point capture to see
a set of values in the execution context of the apply. We call this content exposure.

Content exposure uses a form of binding similar to the one in [LDS05] to expose the
content of the join point. For each information from the join point capture functions, there
are primitives that capture content from that join point. These primitives are described in
table 5.3.

Table 5.3: Primitives to capture content
Arrays Variables/Constants

size value
index

value(index)

These primitives represent dynamic content that might be necessary for the action re-
lated to the captured content (all the static content, such as variables names, is known by
the programmer and needed for programming the join point capture). So, for arrays, we
have access to the values of his size, his value on a given index and the index the array is
when the join point was captured. For the dynamic context of variables, we have access to
his value.

On the primitive apply, the argument (which is always a string) can be composed on
the aspect. For example, writing: ’’apply: display(’The value is 9’);’’ is exactly the same
(assuming ’a=9’ and the select captured ’a’) as writing: ’’display(’The is ++ a.value ++



60 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

’);’’.

Functions do not need content exposure because, with the exception of the primitive
call, because their primitives do not really catch a join point (except call()), they are
rather used or to control a domain of execution (within) or for very specific content capture
(header).

This ’content exposure’ might seem complicated, so let us see if a small example can
clear things out. How do we create an aspect that keeps a log, on the screen, of all the
insertions in the array ’a’?

Easy. First, we initialize the aspect and declare the join point capture (which is the
insertion of an element in a):

aspect array_a_tracing
select: add(a)
...

...

Next, we declare the action and, since we want to print in the screen the array name and
the element being inserted, this context is passed as arguments in the apply:

aspect array_a_tracing
select: add(a)
apply: display([’The value ++ a.value ++

will be inserted into a’])
:: execute before

end

The string is composed and inserted in the final code, and this aspect prints outputs
similar to the ones on table 5.4.

Table 5.4: Outputs from the aspect
Action Result

a[34] = 23; The value 23 will be inserted into a
a[2] = soma(x,y); The value soma(x,y) will be inserted into a

a[4] = z[5]; The value z[5] will be inserted into a



5.6. ASPECTS CALLING ASPECTS 61

It is important to notice, in the Table. 5.4, that the capture description never does any
calculation. For example, if one asks an aspect for the value that is being assigned to the
variable ’a’ in the following line of code: ’a = sum(b,c);’, the output is ’sum(b,c);’. This
is important so the programmer can keep the exact tracking of what is happening within
the code. But, and if the programmer really wants to know the value assigned to ’a’? It is
quite easily actually, we just delegate that calculation to Matlab. The following aspect:

aspect log_a
select: write(a)
apply: int aux = sum(b,c); :: execute before
apply: display(aux); :: execute before
apply: a = aux; :: execute around

end

creates the fllowing Matlab code:

... % some Matlab code
int aux = sum(b,c);
disp(aux);
a = aux;
... % some Matlab code

that prints to the screen the actual value that will be written to ’a’, without changes in
the behavior of the original function Such mechanism makes it very easy to know both the
behavior of the Matlab function, how it was implemented and the exact values that are
being used within it.

5.6 Aspects calling Aspects

It is possible, in our DSAL, to have an aspect calling another one. Such mechanism is very
useful when we want, for example, to capture a join point in a piece of code limited by
another join point. We might want, for example, that ’aspect_2’ is only executed after the
joint point ’jp1’. To do so, we can declare the ’aspect_2’ as the action to be executed after
the capture of ’jp1’, as shown next:



62 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

aspect first
select: jp1
apply: aspect_2 :: execute after

end

aspect aspect_2
... some instructions

end

When we have a set of aspects in a source file, an aspect can call another one, indepen-
dently of the strategy defined. For example, in the following file:

a1 && a3 && a4

aspect a1
select: some join point
apply: a3

end
aspect a3

select: some join point
apply: a2

end
aspect a2
aspect a4

we see a number of correct ways of interrelate aspects. We can have a chain of aspects
advising other aspects (’a2’ advises ’a3’ which advises ’a2+1’), and we can have aspects
that are only used in the context of another aspect (such as ’a2’). A practical example of an
aspect calling another one is in Subsection. 5.7.1



5.7. LANGUAGE IN PRACTICE 63

5.7 Language in Practice

5.7.1 Capturing a global variable

Imagine the simple example of capturing the value of a variable, but only after a call to
a function. This example is purely academic and works only to show the potential of our
content capture mechanism. We have a Matlab source file such as shown next:

... % some Matlab functions
function sum_matrices()

... %some Matlab instructions
c = 0;
... % some Matlab instructions
res = sum_ints(a,b);
... %some Matlab instructions

end
... % more Matlab functions

What we want to do is to know the value of the variable ’c’ after the call of the function
’sum_ints()’. To do so, we need to define two aspects: one that captures the value of
the variable ’c’, and another one that captures the call to the function ’sum_ints()’. One
possible solution is shown next:

aspect catch_sumints
select: call(sum_ints)
apply: value_c :: execute after

end

aspect value_c
select: read(c) || write(c)
apply: disp(’Value of c: ’); disp(c); :: execute before

end

These aspects have some particularities, that show the expressive power of our language.
The first aspect (’catch_sumints’) is quite simple, and only finds the call to the function



64 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

’sum_ints’ and applies the aspect ’value_c’ after. The aspect ’value_c’ is more interesting.
First, his join point is: anytime the variable ’c’ is accessed or written. Because we don’t
exactly know where this variable appears, a good method to discover it’s value is to find the
first time it is used. Secondly, the apply is constituted by two Matlab instructions. Such
is possible because, between the primitive apply and the primitive execute, everything is
directly inserted into the original Matlab file. The ’apply’ of the aspect ’value_c’ is exactly
the same as writing:

apply: disp(’Value of c: ’); :: execute before
apply: disp(c); :: execute before

After the aspects and the original code are combined, we obtain the following valid
Matlab code:

... % some Matlab functions
function sum_matrices()

... %some Matlab instructions
c = 0;
... % some Matlab instructions
res = sum_ints(a,b);
disp(’Value of c: ’); disp(c);
... %some Matlab instructions

end
... % more Matlab functions

Note that the Matlab primitives ’disp’ appear in the same line because this was the result
of weaving the code with the aspect that has only one ’apply’. If we applied the aspect with
the two ’apply’, we would obtain a slight different result, where the ’disp’ primitives were
in different lines. Despite this small layout difference, the final code would perform exactly
the same.

Aspects are automatically combined to the original code in order to create a new, valid
Matlab program. This means the alterations performed by the programmer are easy to
perform and after using them, he can always revert to the original Matlab function since
it was untouched during the whole process. More information about the weaving process
and the program that implements this transformation is presented in Section 5.8.



5.7. LANGUAGE IN PRACTICE 65

5.7.2 Logging

In Chap. 2 (Fig. 2.3) we have manually changed the original ’sumvals’ function in order
to perform logging instructions. This process implied manually insert intrusive pieces of
information on the original function to be able to log parts of the function execution. Next,
we present how to concisely specify such program using our DSAL.

First, we define an aspect with name ’variable_tracing’ that is responsible for tracing
a variable received as argument. The join point ’write’ detects when a value is written to
the argument variable. The execute primitive introduces the invasive code before the join
point.

aspect variable_tracing
select: ( write(i) || read(i) ) && within(sumvals)
apply(variable.name): display( i ); :: execute before

end

Next, we present an aspect that not only traces a variable, but also does a test. This
aspect reuses the aspect ’variable_tracing’ described before.

aspect sumvals_logging
select: within(sumvals) && read(star)
apply: if(start < 0)

display(’Attention, start is negative’);
end :: execute before

apply: variable_tracing :: execute after
end

In this aspect, we select the definition of the function ’sumvals’ and we perform two
transformations: First, we introduce a condition to test if ’start’ is ever negative. Second,
we apply the aspect ’variable_tracing’ to the body of the selected function. After both the
aspects and the original Matlab program are ’weaved’, we obtain the code on Fig. 2.3.

5.7.3 Type Specialization

In Matlab types are not mandatory. Thus, variables and functions can be defined and used
without specifying their types. When compiling Matlab into an embedded system, how-



66 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

ever, type information is crucial in order to produce efficient code. Transforming generic
function definitions to type-specific functions is easily done with our aspect oriented lan-
guage for Matlab. Next, we present an aspect that performs type specialization.

aspect sumvals_types
select: header(sumvals)
apply: function s <scalar int> = sumvals(start <scalar int>,

step <scalar int>, stop <scalar int>)
:: execute around

end

aspect change_types_i
select: declare_var(i)
apply: i <scalar int> = start; :: execute around

end

aspect change_types_s
select: declare_var(s)
apply: s <scalar int> = i; :: execute around

end

These aspects are all quite simple. The first one uses the special primitive ’header’,
that receives as argument the name of a function and allows us to edit his header. This is a
special aspect in the sense that it can uses a primitive (’header’) that can only be used with
one ’apply’ and this apply must perform alterations that substitute (’around’) the original
content. The second and the third aspects are quite simple, they detect the declaration of a
variable and change that declaration (in these cases, the transformation is to force the type
(’scalar int’) on the variables).

By weaving this aspect to the original Matlab program included in Fig. 2.2, we auto-
matically obtain the Matlab program in Fig. 2.4.



5.8. IMPLEMENTATION 67

5.8 Implementation

After the aspect program is written, it needs to be connected to the original source in order
to generate aspects-extended code. This process is called Weaving and is done using a
compiler which connects the two pieces.

This Weaver is being done in parallel to the language development, by other members
of this project [Mac10].

The weaver uses strategic programming, which includes a fair amount of transversal
schemes which allows to perform basic actions to the right data type in the right order to
obtain the expected result.

A parsing technology that is worth mentioning and that is used is the ToOne Matching
(TOM)4 framework that helps in controlling data structures. TOM includes generic traverse
schemes for crossing Abstract Syntax Trees (AST).

ANTLR5 will be the responsible for semantics check, and then the AST tree produced
is converted, using a special TOM tool called Gom Antlr Adapter, to a a Gom tree which
TOM can manipulate.

Figure 5.3: Weaver diagram.

Figure 5.3 shows the weaving process. It can be split in three main stages. The first two

4http://tom.loria.fr/
5http://www.antlr.org/



68 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

refer to the compilation and parsing of both the original Matlab source and of the aspects
language to generate the respective AST trees. The third step is the most important, and is
related to the weaving of the trees. Embedding the aspects into the original code is done by
applying the correct strategies.

5.8.1 AMADEUS Toolbox

In the context of the AMADEUS project we have constructed a set of libraries and tools to
process Matlab and the aspect extension. The overall architecture of our toolbox is shown
in Figure 5.4.

MatLab Program Aspect-MatLab

Strategic-Based Weaver

New MatLab Program

Visual 
Representation AST 

TOM
Visual 

Representation

Visual 
Representation

AST 
TOM

AST 
TOM

Antlr ParserJavaCC ParserMatLab 
Grammar

Unparser

Aspect 
Grammar

Figure 5.4: AMADEUS Toolbox Architecture.

The toolbox includes the following components developed in this project:

• A context-free grammar defining the Matlab language, a parser and an unparser. The
parser is built using the JavaCC parser generator, which builds an abstract syntax tree
as a TOM tree.



5.9. BENCHMARKS 69

• A context-free grammar defining our aspect language and its parser built by the
ANTLR [Par07] parser generator. Like for the Matlab parser, we use TOM trees
to model ASTs.

• A strategic-based weaver implemented as explained in Section 5.8.

• An online version of our tool, that provides all the functionalities described above6.

5.9 Benchmarks

In previous section we have presented several versions of Matlab programs, namely with
our without logging instructions and by explicitly define types in Matlab functions. In this
section we present a set of benchmarks of running different versions of type specialized
programs. We consider four different Matlab programs: the original ’sumvals’ program
(as presented in [CBHV10]), a variation of the ’sumvals’ program (called cycles), Euclid’s
GCD Algorithm, and a primality test (naive) algorithm. The function of each program is
not relevant to this case. What is important is that, for each of these programs we consider
it’s generic, untyped definition, and the type specialized version obtained after weaving.

Figure 5.5: Generic versus type specialized functions (transformed to C and compiled by
gcc).

Moreover, we consider the C version of each of the programs, obtained by manually
translating the Matlab code into C, but bearing in mind a possible automatic translation
stage. Figure 5.5 includes the runtime (in seconds) of the executable programs produced

6The online version of our tool is available at http://amadeus.di.uminho.pt/.



70 CHAPTER 5. DOMAIN SPECIFIC ASPECTS LANGUAGE (DSAL)

by gcc (version i686-apple-darwin10-gcc-4.2.1). The times were obtained in a Intel Core
2 Duo, 2.2 GHz, running MacOS X (version 10.6.3).

As the results clearly show, the type specialized programs are more efficient in terms
of execution time than the generic ones: the speedup we obtain ranges from 1.2 (program
isPrime) to 9 (program sumvals). In average, the specialized programs run 5 times faster
than the generic ones. The gains obtained are mainly due to the box and unbox of values
in a C implementation of a generic Matlab function. As expected, for a type specialized
Matlab function, the C program does not need to perform such operations.

To get such improvements in an Matlab program, one has to manually perform type
optimizations in the source, and backtrack those alterations when they are not needed.
Using our DSAL, this process is not only easier and faster, but it is also very simple to
alter the optimizations according to the environment the program will run in. Our language
provides a very simple and easy mechanism but that might produce enormous speedups.



Chapter 6

Related Works

There are numerous projects based on AOP, both to implement this paradigm in other
paradigms to to improve already existing AOP paradigms.

The most famous implementation of AOP, which was described on Chap. 4, is AspectJ,
which aims at the Objects Oriented Paradigm, more concretely to Java. Although this
project is usually a reference, and the considered the stat of the art AOP implementation,
there are some projects whose aim is to extend AspectJ with additional features. LoopsAJ
[HG06] is an example of a try to improve AspectJ, by defining a method to capture loops
in Java and the related content exposure.

Other AOP related projects include the study of the addition of aspects to other paradigms.
In AspectC++ [SLU05], the authors try to integrate AOP concepts with the philosophy
of the language, which is very different to Java. Other project [LDS05] studies the im-
pact of AOP in COBOL, and tries to identify potential crosscutting concerns, join points
and advices in such paradigm. There is also a project that aims at extending AOP to
Haskell [VSS09], through the use Attribute Grammars (AG). In this project the authors
present a typed embedding of Attribute Grammars in Haskell, that relies on extensive poly-
morphic records and expresses AG conditions as type-level predicates.

On the context of attribute grammars, aspects are an important feature whose sup-
port is shown in AspectLISA [RM07]. AspectLISA is a tool that uses incremental and
reusable aspect oriented attribute grammar extensions to automatically generate compilers,
interpreters and other language related tools. This project is an example of how attribute
grammars, domain specific aspect languages and aspect oriented specifications can work
together. In fact, some research projects [Mar10] study the implementations of various

71



72 CHAPTER 6. RELATED WORKS

extensions, aspects included, to attribute grammar specifications.

Sometimes, AOP is not studied with the main objective of improving modularization
in different paradigms, but also to study if well known techniques can be refactored into
aspects. One example of such project is [ADMTH09], where the authors try to understand
how the concerns and patterns managed by conditional compilation can be express in the
form of aspects.

In the context of Matlab optimizations, there are numerous works on this subject, which
work either by source level transformations [JB03, MP99] or by the use of compiler tech-
niques [DeR96, AP02].

To the best of our knowledge, [CFM06] was the first approach considering aspect ori-
ented programming extensions to MatlabṪhey have shown how aspect rules can be used to
separate concerns such as monitoring, logging, handling, function configuration, and type
specialization from the Matlab source code.

The work presented in [CDM+10] addresses a DSAL language for transforming Matlab
source code. Although the work in this paper has clear roots in the ideas presented in
[CDM+10], it advances that work by considering a number of extensions to the DSAL
and by presenting an implementation of the weaver. Furthermore, we show in this paper
the importance of aspects to specialize and obtain more efficient C implementations, an
important issue when targeting embedded systems.

Translation from Matlab to C code is also an important goal in the AMADEUS project.
Recent work is presented in [RN10], where type declarations are used to assist and make
more effective and efficient a Matlab to C translation process.

Recently, there has been another effort, called AspectMatlab, to extend Matlab with
aspects [ADDH10a]. AspectMatlab is geared towards scientific codes using aspect mod-
ules that define patterns-actions that support constructs such as loops, loop bodies, array
accesses, and function calls. the AspectMatlab approach mainly focuses on monitoring
aspects and does not consider embedded systems features.

However, the approaches followed in [ADDH10a] are quite different. A big difference
in (lets call it AspectMatlab) is the language used. AspectMatlab defines a new language
with new constructors to detect and insert information on join points. This language needs
a compiler (called amc) to compile and woven the aspects source code to the Matlab code.



73

This compiler is currently in production and there is a beta version available1. Because
Matlab supports some exclusive mathematical characteristics in the source code, compil-
ing presents new challenges, different from less focus languages such as Java. One example
is the check of the expression test(i), which can be either a function call with the argument
i, or a get to the i’th element of the array test. What is more, simple weaving on Matlab
requires lots of checks to detect expressions matches, as rules to look up for names differs
in functions, inner functions and scripts [ADDH10b].

The language in AspectMatlab is very similar in design to AspectJ, although the syntax
was developed in order to be similar to classes in Matlab. There was an effort in order
to detect join points in loops, crosscut Matlab array accesses and to bind the context in-
formation from the join point in the action declaration. Currently this language supports
features such as tracking array sparsity, measuring floating point operations and adding
units to computations, however their patterns support much more possibilities.

1http://www.sable.mcgill.ca/mclab/aspectmatlab/index.html



74 CHAPTER 6. RELATED WORKS



Chapter 7

Conclusion

This document presents a language to add aspect oriented mechanism to Matlab, which
helps programmers in implementing and experimenting strategies to program in program-
ming environments. We believe this technology will, ultimately, help in creating better
structured and modular Matlab code, through the addition of aspect software modules.

After reading the Aspects Oriented Programming bibliography cited in this paper, we
are convinced that this language greatly improves the programmer performance. We have
seen that AOP improves the creation of code by better modularizing all the system, and
finding and organizing parts of code becomes so easier that editing and maintaining the
code is now faster and simpler.

We have also seen how source code transformations in Matlab programs might bring
such a great improvement in productivity, sometimes creating upgraded and specialized
versions up to nine times faster than the original ones. We only show a few examples of
this optimizations, but the bibliography is full of them, creating an enormous necessity for
a mechanics such as ours, that allows those implementations to very easy to be used when
necessary and discarded when not necessary. This tests quantified the overall performance
gains by performing transformations on the source code, transformations supported by our
system.

With our language, we not only gain in performance and running time, we also gain
in modularity and organization. We have seen with very expressive examples how simple
is to implement crosscut concerns in Matlab and how the aspects implementation is well
organized, with simple primitives and code organization that allow for the fast use of this
technology when creating numerical programs.

75



76 CHAPTER 7. CONCLUSION

The simplicity of our language hides, however, the powerful mechanism and strategies
we support. From aspects strategies to aspects calling aspects, our language allows for
complex programming strategies that provide complex applications using our system.

Finally, we have presented an embedding of the aspect language in Java via the TOM
strategic programming system, and create an online tool so the community can use our
system and experience different techniques and programming strategies.

7.1 Future Work

Being this a recent project, there has not been a study of the full improvements made by
this system, either in the creation of new Matlab systems, either in the management or
edition of such code. Such study would constitute an excellent future project and would
quantify the true gains of our domain specific language.

As we have shown, it is very hard to clearly define concerns in Matlab because, due to
it’s simplicity in code modularization, one can not find concerns as well organized as they
are found, for example, in other programming algorithms, such as OO. What is more, it is
an empirical work only that allows us to predict the parts of code that are really important
to crosscut - such information would only be obtained with a study of how the community
that uses Matlab in different domains requires the code to be organized and partitioned.

Our language captures a fair amount of information and allows us, as we have seen, to
perform important transformations - it already has that explicit power. However, there are
more potential upgrades, fine-tuning and studies possible this language:

• The aspects could take parameters. This way, instead of having an aspect that cap-
tures, for example, all reads to the variable ’a’, we could have an aspect that captured
all reads to any variable, being this variable a parameter. The aspects could even be
polymorphic, in the sense that they could take an argument (the variable, for exam-
ple), or zero arguments, and this last option would capture any read to any variable.
Such feature would make the code on our language more reusable.

• Cycles are an important part of any mathematical calculus, however our language
does not have a primitive to capture them. Study potential ways of captures any kind
of cycles and the related exposure content would constitute a good case study and an
important upgrade to this DSAL.



7.1. FUTURE WORK 77

• Another potential upgrade is the introduction of condition within aspects. We have
already created an exposure content mechanism that allows us to dynamically check
values that occur in the context of the joint point, but the aspects could only be
performed if certain conditions within that dynamic context would occur, such as
variables being negative or cycles never achieving a certain value.

• This DSAL supports a very powerful mechanism of strategies within aspects, sup-
ported by the reuse of aspects by another aspects and by the strategies presented in
any DSAL source code. The study of such a complex mechanism by itself would
constitute a good case study. Which concerns can be crosscut? Which parts of code
can be modularized? And which complex transformations does this system support?

Based on our experience programming with the proposed DSAL for Matlab, we believe
that the productivity of programmers improve. However, to confirm this improvement, we
would like to perform a detailed empirical study to evaluate the impact on the productivity
of Matlab programming when using our AOP extension. We have seen that AOP eases the
production of software when applied to other paradigms, but his implications on an numer-
ical programming environment are, to our known, a subject never studied and therefore a
good research topic.

There have been some evolution on Matlab in order to support OO mechanisms when
producing programs. Although such support is not widely used in current Matlab soft-
ware production and OO also suffers from the "tyranny of dominant composition", failing
to clearly structure the software, a study on how our language can be used under such
mechanisms or, if it can not, how it needs to be adapted constitutes interesting future work.

All this potential upgrades constitute good studies on their impact in the overall lan-
guage and on what needs to change to support them but above all what were the implica-
tions of such additions to create Matlab programs.



78 CHAPTER 7. CONCLUSION



Appendix A

AspectJ Examples

This Appendice contains AspectJ code. Here we can find the examples with compilable
code and testing environments.

A.1 Example 1 - Tracing and Context Exposure

A.1.1 asp.aj

package teste;

aspect asp {

pointcut mypc(foo c, Object o, int i) :

args(i) && call( void foo.bar(int) ) && target(c) && this(o);

before(foo c, Object o, int i) : mypc(c,o,i) {

System.out.println("Entering: " + thisJoinPoint);

System.out.println( "calling " + c.name + "(" + i + ") from "

+ o.getClass().getName());

}

}

A.1.2 foo.java

package teste;

79



80 APPENDIX A. ASPECTJ EXAMPLES

public class foo {

String name;

public foo( String name ) { this.name = name; }

public void bar(int i) {

System.out.println("bar called with " + i);

}

public static void main(String args[]) {

}

}

A.1.3 test.java

package teste;

public class test {

public static void main( String args[] ) {

test t = new test();

t.doit();

}

public void doit() {

foo f1 = new foo("first");

f1.bar(1);

foo f2 = new foo("second");

f2.bar(2);

}

}

A.2 Two Aspects

A.2.1 asp1.aj

package teste;



A.2. TWO ASPECTS 81

public class test {

package e8;

public aspect asp1 {

pointcut mycut() : within(foo) && execution(* * (..));

after () : mycut() {

out( "after asp1");

}

before () : mycut() {

out( "before asp1");

}

void around () : mycut() {

out( "around1 asp1" );

proceed();

out( "around1 asp1" );

}

void out( String x ) { System.out.println( x ); };

} }

A.2.2 asp2.aj

package e8;

public aspect asp2 {

pointcut mycut() : within(foo) && execution(* * (..));

after () : mycut() {

out( "after asp2");

}

before () : mycut() {

out( "before asp2");

}

void around () : mycut() {



82 APPENDIX A. ASPECTJ EXAMPLES

out( "around1 asp2" );

proceed();

out( "around1 asp2" );

}

void out( String x ) { System.out.println( x ); };

}

A.2.3 foo.java

package e8;

public class foo {

public static void main(){}

void bar() { System.out.println("bar called"); }

void baz() { System.out.println("baz called"); }

}

A.2.4 order.aj

package e8;

public aspect order {

declare precedence : asp2, asp1;

}

A.2.5 test.java

package e8;

public class test {

public static void main( String args[] ) {

foo f = new foo();

f.bar();

}



A.3. ADVICE TO ADVICE 83

}

A.3 Advice to advice

A.3.1 asp1.aj

package e20;

public aspect asp1 {

pointcut barcut() : call(void foo.bar());

before () : barcut() {

out( "advice by asp1");

}

void out( String x ) { System.out.println( x ); };

}

A.3.2 asp2.aj

package e20;

public aspect asp2 {

pointcut barcut(foo c) : !within(asp2) &&

call(void foo.bar()) && target(c);

before(foo c) : barcut(c) {

c.bar();

}

}

A.3.3 foo.java

package e20;

public class foo {



84 APPENDIX A. ASPECTJ EXAMPLES

public static void main(){}

void bar() { System.out.println("bar called"); }

}

A.3.4 test.java

package e20;

public class test {

public static void main( String args[] ) {

foo f = new foo();

f.bar();

}

}



Bibliography

[ADDH10a] Toheed Aslam, Jesse Doherty, Anton Dubrau, and Laurie Hendren. Aspect-
matlab: an aspect-oriented scientific programming language. In AOSD ’10:

Proceedings of the 9th International Conference on Aspect-Oriented Soft-

ware Development, pages 181–192, New York, NY, USA, 2010. ACM.

[ADDH10b] Toheed Aslam, Jesse Doherty, Anton Dubrau, and Laurie Hendren. Aspect-
matlab: an aspect-oriented scientific programming language. In AOSD ’10:

Proceedings of the 9th International Conference on Aspect-Oriented Soft-

ware Development, pages 181–192, New York, NY, USA, 2010. ACM.

[ADMTH09] Bram Adams, Wolfgang De Meuter, Herman Tromp, and Ahmed E. Has-
san. Can we refactor conditional compilation into aspects? In AOSD ’09:

Proceedings of the 8th ACM international conference on Aspect-oriented

software development, pages 243–254, New York, NY, USA, 2009. ACM.

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An

Overview of CaesarJ. http://caesarj.org/, 2006.

[AP02] George Almási and David Padua. Majic: compiling matlab for speed and
responsiveness. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002

Conference on Programming language design and implementation, pages
294–303, New York, NY, USA, 2002. ACM.

[CBE+00] Constantinos A. Constantinides, Atef Bader, Tzilla H. Elrad, P. Netinant, and
Mohamed E. Fayad. Designing an aspect-oriented framework in an object-
oriented environment. ACM Comput. Surv., page 41, 2000.

[CBHV10] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Op-
timizing matlab through just-in-time specialization. In Rajiv Gupta, edi-

85



86 BIBLIOGRAPHY

tor, CC, volume 6011 of Lecture Notes in Computer Science, pages 46–65.
Springer, 2010.

[Cc07] Grigoreta Sofia Cojocar and Gabriela Şerban. On some criteria for compar-
ing aspect mining techniques. In LATE ’07: Proceedings of the 3rd work-

shop on Linking aspect technology and evolution, page 7, New York, NY,
USA, 2007. ACM.

[CCHW04] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster.
Eclipse aspectj: aspect-oriented programming with aspectj and the eclipse

aspectj development tools. Addison-Wesley Professional, 2004.

[CDM+10] João Cardoso, Pedro Diniz, Miguel P. Monteiro, João M. Fernandes, and
João Saraiva. A domain-specific aspect language for transforming MATLAB
programs. In Fifth Workshop on Domain-Specific Aspect Languages, March
2010.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming:

methods, tools, and applications. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000.

[CFM06] João Cardoso, João Fernandes, and Miguel Monteiro. Adding aspect-
oriented features to matlab. In workshop on Software Engineering Properties

of Languages and Aspect Technologies (SPLAT! 2006), March 2006.

[CHJvdB10] José M. Conejero, Juan Hernández, Elena Jurado, and Klaas van den Berg.
Mining early aspects based on syntactical and dependency analyses. Sci.

Comput. Program., 75(11):1113–1141, 2010.

[CKF00] Y Coady, Gregor Kiczales, and M. Feeley. Exploring an aspect-oriented ap-
proach to operating system code. In OOPSLA ’00: Position paper for the

Advanced Separation of Concerns Workshop at the conference on Object-

oriented programming, systems, languages, and applications, page 163,
New York, NY, USA, 2000. ACM.

[DeR96] Luiz A. DeRose. Compiler techniques for matlab programs. Technical
report, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1996.



BIBLIOGRAPHY 87

[Dij97] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is
quantification and obliviousness. Technical report, 2000.

[Fot09] Dave Foti. Matlab digest. Technical report, Mathworks, 2009.

[HG06] Bruno Harbulot and John R. Gurd. A join point for loops in aspectj. In AOSD

’06: Proceedings of the 5th international conference on Aspect-oriented

software development, pages 63–74, New York, NY, USA, 2006. ACM.

[HH05] Desmond J. Higham and Nicholas J. Higham. Matlab Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005.

[IEE85] IEEE. Ieee standard for binary floating-point arithmetic. Technical report,
IEEE, 1985.

[ILG+97] John Irwin, Jean-Marc Loingtier, John R. Gilbert, Gregor Kiczales, John
Lamping, Anurag Mendhekar, and Tatiana Shpeisman. Aspect-oriented pro-
gramming of sparse matrix code. In ISCOPE ’97: Proceedings of the Scien-

tific Computing in Object-Oriented Parallel Environments, pages 249–256,
London, UK, 1997. Springer-Verlag.

[JB03] Pramod G. Joisha and Prithviraj Banerjee. Static array storage optimization
in matlab. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference

on Programming language design and implementation, pages 258–268, New
York, NY, USA, 2003. ACM.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In ECOOP ’01: Pro-

ceedings of the 15th European Conference on Object-Oriented Program-

ming, pages 327–353, London, UK, 2001. Springer-Verlag.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220–242, 1997.

[KMT07] Andy Kellens, Kim Mens, and Paolo Tonella. Transactions on aspect-
oriented software development iv. pages 143–162, 2007.



88 BIBLIOGRAPHY

[LDS05] Ralf Lämmel and Kris De Schutter. What does aspect-oriented program-
ming mean to cobol? In AOSD ’05: Proceedings of the 4th international

conference on Aspect-oriented software development, pages 99–110, New
York, NY, USA, 2005. ACM.

[Lop97] Cristina Isabel Videira Lopes. D: A language framework for distributed
programming, 1997.

[Mac10] Helder Nuno Ribeiro Macedo. A strategic-based weaver for aspect-matlab,
2010.

[Mar10] Pedro Martins. Zipper-based embedding of modern attribute grammar ex-
tensions. In Doctoral Symposium of the 3rd International Conference on

Software Language Engineering (SLE10), October 2010.

[MF06] M. Monteiro and J.M. Fernandes. Towards a catalogue of refactorings and
code smells for aspectj. In Transactions on Aspect-Oriented Software De-

velopment (TAOSD), Springer LNCS vol. 3880/2006, p. 214 - 258, March
2006.

[MJS10] Monteiro M.P., Cardoso J., and Posea S. Identification and characterization
of crosscutting concerns in matlab systems. In Conference on Compilers,

Programming Languages, Related Technologies and Applications (CoRTA

2010), September 2010.

[MMK+97] Anurag Mendhekar, Anurag Mendhekar, Gregor Kiczales, Gregor Kiczales,
John Lamping, and John Lamping. Rg: A case-study for aspectoriented
programming. Technical report, 1997.

[MP99] Vijay Menon and Keshav Pingali. A case for source-level transformations in
matlab. In PLAN ’99: Proceedings of the 2nd conference on Domain-specific

languages, pages 53–65, New York, NY, USA, 1999. ACM.

[OKH+95] Harold Ossher, Matthew Kaplan, William Harrison, Alexander Katz, and
Vincent Kruskal. Subject-oriented composition rules. SIGPLAN Not.,
30(10):235–250, 1995.



BIBLIOGRAPHY 89

[OT01] Harold Ossher and Petri Tarr. Hyper/j: multi-dimensional separation of con-
cerns for java. In ICSE ’01: Proceedings of the 23rd International Con-

ference on Software Engineering, pages 821–822, Washington, DC, USA,
2001. IEEE Computer Society.

[Par79] D. L. Parnas. On the criteria to be used in decomposing systems into mod-

ules, pages 139–150. Yourdon Press, Upper Saddle River, NJ, USA, 1979.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific

Languages. Pragmatic Programmers. Pragmatic Bookshelf, first edition,
May 2007.

[RM07] Damijan Rebernak and Marjan Mernik. A tool for compiler construction
based on aspect-oriented specifications. In COMPSAC ’07: Proceedings of

the 31st Annual International Computer Software and Applications Confer-

ence, pages 11–16, Washington, DC, USA, 2007. IEEE Computer Society.

[RN10] Pedro C. Diniz Ricardo Nobre, João M.P. Cardoso. Leveraging type knowl-
edge for efficient matlab to c translation. In 15th Workshop on Compilers

for Parallel Computing, Vienna University of Technology, Vienna, Austria

(to appear), 2010.

[SLU05] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. Advances in aop
with aspectc++. In Proceeding of the 2005 conference on New Trends in

Software Methodologies, Tools and Techniques, pages 33–53, Amsterdam,
The Netherlands, The Netherlands, 2005. IOS Press.

[VSS09] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute gram-
mars fly first-class: how to do aspect oriented programming in haskell. In
ICFP ’09: Proceedings of the 14th ACM SIGPLAN international conference

on Functional programming, pages 245–256, New York, NY, USA, 2009.
ACM.


	Contents
	List of Figures
	List of Tables
	Introduction
	Contents

	Matlab
	Introduction to Matlab
	Programming in Matlab
	Polymorphic Functions in Matlab
	Logging in Matlab
	Matlab in Embedded Computational Systems

	Summary

	Aspect Oriented Programming (AOP)
	Introduction
	Cross Cutting Concerns
	Code Tangling and Code Scattering
	How code becomes tangled and scattered
	Crosscutting concerns in Matlab

	Aspects Oriented Paradigm
	Aspects
	Definition of AOP

	Instances/Incarnation of AOP
	CaesarJ
	AspectJ
	LoopsAJ

	Aspects Oriented Software Development
	Using an Aspect Oriented Language
	Aspect Mining

	Summary

	AspectJ
	Introduction
	Pointcuts
	Advices
	Inter-type declarations
	Aspects
	Examples
	Tracing and Context Exposure
	Two aspects
	Advice to advice

	Summary

	Domain Specific Aspects Language (DSAL)
	Introduction
	Organization of an Aspect Module
	Join Point Capture
	The Joint Point Model for Matlab
	Join Point Capture Primitives

	Action Description
	Content Exposure
	Aspects calling Aspects
	Language in Practice
	Capturing a global variable
	Logging
	Type Specialization

	Implementation
	AMADEUS Toolbox

	Benchmarks

	Related Works
	Conclusion
	Future Work

	AspectJ Examples
	Example 1 - Tracing and Context Exposure
	asp.aj
	foo.java
	test.java

	Two Aspects
	asp1.aj
	asp2.aj
	foo.java
	order.aj
	test.java

	Advice to advice
	asp1.aj
	asp2.aj
	foo.java
	test.java


	References

