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Resumo

MonetDB na Nuvem:

Distribuicao e Replicagao de Dados para um Sistema de Nuvem

O conceito de computacao em nuvem surgiu recentemente como uma forma conve-
niente e flexivel de disponibilizar recursos computacionais. Na nuvem pode-se facil-
mente adquirir e libertar recursos, caracteristica que podera trazer muitos beneficios
mas também introduz novos desafios. Para as bases de dados distribuidas o maior
desafio serd tentar tirar partido desta natureza dinamica e adaptavel da nuvem.
Varias probleméticas podem ser tidas em conta relativamente a este topico, no en-
tanto neste trabalho iremo-nos focar principalmente na distribuicao e redistribuicao
de dados, pretendendo eficiéncia aquando a adigao ou remoc¢ao de maquinas virtuais.

As nuvens sao suportada por sistemas de grandes dimensoes, com compromissos
e responsabilidades para com os clientes. Aqui tudo é pensado de modo a fornecer
um servico resiliente, onde se tenta prevenir eventuais falhas para evitar ao maximo
consequentes interrupcoes do servico. Contudo, mesmo a nuvem nao ¢ infalivel e
as maquinas virtuais aqui alojadas estao igualmente sujeitas a falhas. Caso isto
aconteca estas maquinas serao certamente recuperadas e reinseridas na nuvem, no
entanto nao é garantido que o estado dos seus dados seja preservado. Deste modo,
para além de distribuicao serd também abordada replicagao, de forma a garantir
maior seguranca e disponibilidade dos dados e se necesséario possibilitar um restauro

do sistema.
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Abstract

MonetDB in the Cloud:

Data Distribution and Replication for a Cloud Environment

Cloud computing has recently emerged as a convenient and flexible way to provide
computational resources. In a cloud environment resources can easily be acquired
and let go, which may bring many benefits but also introduces some new challenges.
Here the main challenge for distributed databases is to be able to take advantage
of the dynamic and easily adapting nature of the cloud. Many issues can be ad-
dressed in this topic, however this work mainly focuses on data distribution and
redistribution, aiming at efficiency when adding or removing virtual machines.

Clouds are supported by systems of big dimensions, with commitments and re-
sponsibilities to their customers. Every service provider try to prevent failures at all
costs to avoid consequent outages of the service. However, even the cloud is not bul-
let proof and virtual machines allocated in this environment may fail as well. While
machines certainly will return into the cloud, their data state is not guaranteed to
be preserved over failure. Therefore, this work considers data replication on top of
data distribution, in order to provide improved data reliability and availability and

allow, if necessary, a system restore.
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Chapter 1
Introduction

Databases are used everywhere, providing data storage for a wide variety of busi-
nesses. They are used in supermarkets, hospitals, universities and many other places
holding very different kinds of data. Over time more and more data is stored which
makes the tasks of databases more and more time consuming. To improve the speed
when accessing the data, databases are taking the direction of distribution.

Distributed computing has increasingly become a more important discipline, be-
ing often taken as the way forward when trying to achieve greater computational
power, improved availability and better reliability. Therefore many Database Man-
agement Systems (DBMS) are approaching this paradigm as a mean to share work-
load and obtain better performance. Having distributed databases can be more
difficult to implement and maintain but it enables faster answers to queries, taking
advantage of more computer resources at the same time.

The variety of distributed systems that can be addressed is vast. It can go from
just a couple of connected machines, to a cluster, a grid and more recently a cloud.
Cloud computing shows up as a very trendy distributed system of our days. The
popularity of this concept has resulted in multiple implementations with different
characteristics. The idea of a cloud stands out mainly for its ability to provide a
dynamic service that flexibly adapts to clients needs, making it easy to allocate and
deallocate resources at anytime. With this in mind, an approach to a cloud system
has to take into account this possible volatility of the system, being prepared to
efficiently adapt to new configurations.

In this work we aim to deploy a distributed database in the cloud, considering

more particularly the issue of data distribution.
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1.1 Use Cases

Distributed computing should be applied wisely. A frequent problem is that hav-
ing too many machines may deteriorate performance, but the optimal number of
machines is in the most cases not known in advance or it evolves during time. A sys-
tem able to grow and shrink efficiently would bring much benefits to this paradigm.
Cloud computing is the environment we are considering. It makes possible to pur-
chase computational resources in a flexible way, which can also be very advantageous
in many scenarios involving distributed databases.

In this thesis we approach distributed databases in the cloud, taking particular
interest in distribution and redistribution of the data throughout the various virtual
machines. We believe that faster query processing can be achieved if data is more
distributed, as by using more machines the search scope is reduced. However we are
not going deeper in how the data is going to be queried as we see it as another big
issue in distributed databases.

The types of databases we are addressing in this project are static databases.
Here no updates or transactions are being performed during query time, which
eliminates the need to concern about data consistency issues. This kind of databases
are more common than one might imagine and they represent a very important issue

as there are many cases where the amounts of data are significantly big.

1.1.1 SkyServer

The Skyserver [19, 8] project is a challenging real-life demanding application,
that works over a scientific data warehouse. Skyserver provides public access to the
data collected by the Sloan Digital Sky Survey (SDSS), an astronomic survey that
ambitiously aims to create a digital map of a large part of the universe.

A project of this dimension leads inevitably to large amounts of data that need
efficient data management and high performance for data mining applications, in
order to extract qualitatively rich knowledge. Every night the SkyServer telescope
produces about 200GB. However, this data is not released daily, instead the available
data is only updated once every year. In the meanwhile scientists and enthusiasts
want to be able to query this huge data set in the fastest possible way. This stands as
a motivation to develop new algorithms and techniques addressing data management
challenges in large scale scientific databases. Distribution is one of those challenges,
as it can enable faster query processing.

Imagine we are providing a service that allows the users to efficiently query the
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SkyServer data. It would be natural that this service would be more overloaded in
the days following the release of a new data set than in the rest of the year. During
this period, if our system was deployed in a cloud, we could easily grow to a bigger

system and prevent performance degradation.

1.1.2 Telecommunications Company

Another scenario involving big amounts of data can be found in telecommunica-
tions companies where lots of data is generated each day, regarding all the infor-
mation related to clients operations (calls, video calls, text messages, multimedia
messages). However there is not much interest in examining this data every day to
see what has changed.

For example, typically one wants to know how many calls were made by each
client in the end of each month, in order to calculate every phone bill. If using a
distributed database working over a cloud, more computational resources can easily
be purchased in the beginning of the month, in order for all the bills to be processed
in proper time. After this task has been executed, all the extra machines that were

requested can be removed again, as there is no need to support superfluous expenses.

1.1.3 Sports Statistics Website

Here we are thinking on a website that provides football statistics which is very
likely to be more overloaded before an important football match. Let’s take as ex-
ample a classic match between Real Madrid and Barcelona for the Spanish Cham-
pionship. Millions of people around the world are watching the match and following
all the related news before and after it.

Journalists consult the statistics trying to find interesting historical facts to make
a publication (like who won more times the classic). Many football fans consult the
statistics to be aware of how both teams have been performing over the season.
Bettors look at the statistics in order to try to make the best prognostic.

This kind of queries are going to overload the system probably only few hours
before the match starts. If the system is in the cloud, we can easily request more
virtual machines for this period of time and distribute the whole system through
the added computational resources. This would allow to cope with all the requests
without penalizing much the performance. This situation may apply in various
scenarios where a service suffers specific workload picks caused by an event that can

be seen in advance.
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1.2 Project Objectives

In this work we focus on some aspects that have to be considered when dealing
with a distributed database in the cloud. We focus on the distributed database
design, primarily in what concerns the data distribution and data replication. Since
the cloud is known for its inherent elasticity there is the need to infer about what
should happen to data when virtual machines are turned off or new ones are added
to the system. In these scenarios, we want data to be efficiently distributed over
all the available machines and in the most balanced way possible. In this thesis
we address and compare some algorithms to distribute data in order to understand
what is the best approach and what commitments it implies. The main goals of this

work are:
e Study the efficiency of each different approach to data distribution;

e Implement and evaluate different techniques in order compare and understand

them better;

e Introduce replication to the studied algorithms and infer on the implications.

1.3 Document Structure

In Chapter 2 we will give some insight on the background required to under-
stand the context that surounds the subject being approached. We will briefly talk
about some important topics as Cloud Computing, Virtualization and Distributed
Database. Then in Chapter 3 we will discuss data distribution looking into some
related work that has been done in the field.

In Chapter 4 we will approach some algorithms to distribute data, giving some
insight on their behavior and clarifying what happens to the data in case a machine
is added or removed from the system. In Chapter 5 we will give some details on the
implementation of the presented algorithms in a prototype written in Java. This
program will then be evaluated in order to allow a better comparison between the
efficiency of the different techniques.

Later, in Chapter 6, we bring a discussion on different ways to introduce repli-
cation in a system of such peculiar characteristics, where the distribution of data
have to be ready to adapt to changes in the system.

Finally in Chapter 7 the paper will be concluded with a look on what was done

and achieve. In this chapter we will also suggest some possible future work.



Chapter 2
Background

This chapter intends to give some insight on important concepts that represent
the basis of our work. Here we will give an overview on the characteristics of Cloud
Computing. We will see what has been done in virtualization of machines and what
is the relation with the cloud. Then we will present the MonetDB project and
the paths that are being taken into distributed systems. Finally we will present

distributed databases and some topics around it.

2.1 Cloud Computing

Cloud computing brings up a convenient new way to purchase resources, being
already playing an important role in the technological world of our days. However,
this is not a completely consensual concept, embracing sometimes many different
characteristics depending on who is giving the definition. From the literature there
are some interesting statements that can help an approach to the subject. In [2]
cloud computing is seen as what refers "to both the applications delivered as services
over the Internet and the hardware and systems software in the datacenters that
provide those services”. On the other hand in [20] a cloud is described as ”an elastic
execution environment of resources involving multiple stakeholders and providing a
metered service at multiple granularities for a specified level of quality of service”.

Moreover, taking a look into published studies on the field[2, 20, 15] some other
characteristics can be pointed out as we show in Figure 2.1. An important feauture
that immediately comes to mind is elasticity. In Cloud Computing the illusion is
given that resources are infinite and available on demand, being the client always
able to subscribe and unsubscribe computational power, according to its needs. This

resource elasticity is evidently also allied with economical elasticity, meaning that
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Reliability
Virtualization Elasticity
Features
Cost Reduction \\\ laaS
, loud ~ ™
Benefits— e : Types PaaS
Computing
Ease of use SaaS

Compares To

Service-oriented

Architeture Grid Comptuing

Figure 2.1: Some of the cloud characteristics

the client only pays for what he is using, allowing to comfortably adjust the budget
to what suits him better.

Another relevant property is the no need for an up-front commitment, which can
greatly enable start-up companies, making it easy to power up a new project with
less concerns on how things are going to evolve. If the project is successful and grows,
one can quickly increase the resources used, if it does not succeed the investment
was not as big as if we had bought all the required hardware and software. It can
also be an added value for already established companies which have to deal with
punctual workloads or need to work faster to complete a job before a deadline (e.g.
the price of purchasing 1 server for 1000 hours is the same as purchasing 1000 servers
for 1 hour).

When talking about cloud computing, grid computing often comes to mind as
a previous concept that shares basic similarities like the service oriented approach
and the same target users. However cloud computing brings up two important
differences comparing to what was being done in the grid[15]. While in the grid a
user request could consume large portions of the available resources, in the cloud a
request is often limited to a small fraction of the total pool, with the goal to support
a large number of users. The other main difference concerns the way resources are
put together and administrated. The grid is managed by different administrative
domains while in the cloud there is usually a single administrative authority.

We have seen that cloud computing carries many advantages as flexibility and
utility, however in a world where more and more the companies asset is in the data,

many may be skeptic on going into this kind of environment. A reason frequently
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pointed out is the fact that when working in a cloud, one does not know where the
information is kept and who can have access to it. Also the quality of the Service
Level Agreements (SLA), which have been improving in the last years, may still not
be enough to some more demanding users. This aspects can lead several companies

to opt for a private physical infrastructure, where they can be totally in control.

2.1.1 The Different Types of Clouds

Moreover there can be distinguished different types of cloud computation|2, 20].
Depending on the abstraction level provided to the user, we can define three types

of clouds:

e Infrastructure as a Service (IaaS): lowest abstraction level where the
resources provided are measured as physical hardware. The user can purchase

for instances the desired processing power and available memory size.

e Platform as a Service (PaaS): here we can deploy applications built with
a language supported by the cloud as long as it respects the given API. The
price to pay may be defined by the number of hours of computation used,

storage size or data transfers.

e Software as a Service (SaaS): the highest level of abstraction provides
the user implementations of well defined business functions. Here the user is
not so much in touch with the explicit features of a cloud but more with the

application that is working on it.

Nowadays there are many companies providing cloud computing services in all
the different levels of abstraction mentioned above. One of the biggest is Amazon,
with the Elastic Compute Cloud (EC2), an IaaS, which offers low level instances,
available with different OS, being the user able to choose the one that suites him
better. Concerning resources, here there are three main kinds of instances: Standard,
High-Memory and High-CPU. Each of those provides a different configuration, useful
when planing on running a Memory or CPU intensive application. The underlying
virtualization platform used in EC2 is Xen.

In the infrastructure level, other two well known cloud providers are GoGrid and
Rackspace. In the open source world, there is also being developed an application

that makes it possible to create a cloud infrastructure over computer clusters. Its



CHAPTER 2. BACKGROUND 8

name is Eucalyptus and it allows full management of virtual instances, implementing
the Amazon EC2 interface and for now supporting KVM and Xen virtual images.

Going to an intermediate abstraction level we have Azure from Microsoft, a cloud
service that supports applications which use the .NET framework and are compiled
for the Common Language Runtime (CLR). There are currently two available SDK’s
for the Azure Services Platform: Java SDK for .NET Services and the Ruby SDK
for .NET Services.

In the highest end of the abstraction spectrum there are the application domain-
specific platforms. Here we find for instance the Google Docs services. They provide

a specific application that works over a cloud environment.

2.1.2 The Virtualization Role

Virtualization is intrinsically related with Cloud Computing, as it brings very
useful features to a service of such peculiar characteristics. With virtualization
comes flexible management of virtual machines over the hardware resources, making
it possible for the system to quickly scale. It can also be seen as a powerful tool when
dealing with the debug of a large scale distributed-systems, by providing division
and isolation.

On the other side virtualization introduces overhead which is reflected in degra-
dation of the performance. In some cases some isolation issues can also be noticed,
where different virtual machines running on the same resources may interfere with
each other. We have a tradeoff between convenience and performance, where com-
modity is clearly winning as work is continuously being done in order to improve

virtualized systems.

2.2 Virtualization

Virtualization is a technique to provide abstraction over computer resources, al-
lowing the coexistence of more than one operative system (OS) over the same set
of hardware. This way, one can easily increase and decrease the number of running
virtual machines in a cheap and convenient way. Contrarily to what some might
think, this is not a new concept, having been brought up by IBM more than 30
years ago. However, the performance penalties attached, made it only now a viable
solution, due to new implementation techniques and faster underlying hardware.

Although virtualization may somewhat penalize performance, it is the easiest
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way to manage computational resources. The appliance of an abstraction level
allows different tenants to use the same set of hardware for different intents. This
is possible with the use of virtual machines that can be created, destroyed and even
relocated to adapt to load and performance requirements. This flexibility shows up
to be precious in an environment like Cloud Computing, where there are multiple
users, working simultaneously and with varying amount of resources.

There is many virtualization software available, enabled by many different tech-
niques and implementations. When talking about virtualization for cloud comput-
ing, some important characteristics to consider are the possibility to support different
operating systems, the isolation between virtual machines, the overhead introduced
by the virtualization and scalability[3].

We are looking into virtualization for the x86 architecture as it represents a
considerable share of the existing hardware, having big part of virtualization studies
and implementations been focused on it. In this architecture four levels of privileges
are defined, commonly represented as Ring 0,1,2 and 3 as we illustrate in Figure 2.2.
0 represents the most privileged level, nearer the hardware, and 3 the less privileged
one. This way, the operative system runs its instructions on Ring 0, as it needs

direct access to memory and hardware, while applications execute on Ring 3[16, 22].

Device Drivers

Device Drivers

Figure 2.2: x86 Privilege Rings

2.2.1 The Different Types of Virtualization

Concerning virtualization we can distinguish three main different techniques: full
virtualization, paravirtualization and operating system-level virtualization. The first
two types of virtualization rely on a more or less complex layer which is responsible

to intermediate the virtualized OS and the hardware resources. This layer is of-
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ten called the Hypervisor or Virtual Machine Manager (VMM). The privilege rings
where the hypervisor and the guest OS run vary depending on the kind of virtual-
ization and the software in question. The operating system-level virtualization does
not rely on a hypervisor, being the kernel responsible for isolating multiple user-
space instances in the same machine. On Table 2.1 we can find a brief comparison
between this three main types of virtualization.

Full Virtualization[10, 6, 16, 22, 14] provides an abstraction over the resources,
allowing to run the guest OS without any modification, being able to virtualize any
proprietary OS. Here the hypervisor tend to be more complex as it has to provide
for each Virtual Machine all the services of the physical system. However, this is the
easiest way to move and migrate a guest OS as the same instance can run virtualized
or on native hardware. VMware virtualization products, VirtualBox and Parallels
are some examples of software implementing full virtualization.

On the other hand the Paravirtualization|[6, 3, 16, 22, 14] technique implies that
the guest OS is aware of its virtualization, so it can cooperate with the hypervisor
in a faster and more efficient way. In this kind of virtualization the devices are
not emulated. They are accessed by lightweight virtual drivers that offer a better
performance, however this demands for the guest OS kernel to be modified in order
to work with the new system calls for the new services. Xen is a good example
where paravirtualization is available.

The last kind of virtualization is the Operating system-level virtualization[23],
where no hypervisor is used. Instead the kernel of the operating system is modified in
order to be able to isolate multiple user-space instances within one host machine. As
some performance benefits can be achieved from not having the hypervisor overhead,
many drawbacks come along with this kind of virtualization. All the instances share
the same kernel, so in case it fails, everything crashes. Furthermore this is not a very
flexible virtualization technique as every instance has to run the same kernel. These
limitations take out some important virtualization characteristics like flexibility and
independence between different instances.

Recently, a new method for implementing full virtualization was also introduced,
relying on specific virtualization systems calls provided by the hardware. It is named
Hardware-Assisted Virtualization, and supported by the most recent x86 and x86-
64 processors from Intel (Intel VT) and AMD (AMD-V). This is expected to be
the fastest full virtualization implementation and can be achieved with a relatively
simple hypervisor as the main services are provided by the operative system that is

hosting the virtualization. One example of this virtualization technique is Kernel-
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based Virtual Machine (KVM).

The last approach being made on OS virtualization is Hybrid Virtualization[16,
14], which means putting together hardware-assisted full virtualization and paravir-
tualization in order to take the best of each. Hardware-assisted virtualization has
a reduced virtualization overhead, since it uses hardware instructions, but when it
comes to deal with I/O or memory intensive applications the emulated virtual de-
vices are slower than the paravirtualized ones. What is proposed is to combine some
specific paravirtualized drivers, but still use full virtualization for the processor. The
results obtained in [16, 14] are quite encouraging, leading to think this could be the

way to go further.

Full Virtualization | Paravirtualization | OS level Virt.
Multiple OS Yes Yes No
Kernel Modified No Yes Yes
Hypervisor Yes Yes No
Independent crashes Yes Yes No

Table 2.1: Virtualization Characteristics

2.2.2 Virtualization Products

Having been presented the different virtualization techniques available, there is
the need to inspect which software can achieve better results taking into account
some important parameters like different operating system support, performance
overhead and scalability. In Table 2.2 we can see which products address mostly
each kind of virtualization.

First of all looking into OS support, the full virtualization technique is able to
run every OS as there is no need to modify the guest. This way VMware, Virtual
Box, Parallels and KVM can theoretically support all x86 OS. In turn Xen, can
only provide Paravirtualization to OS that are modified to do so, which makes it
impossible to cope with proprietary OS. To overcome this issue, Xen also offers a
full virtualization mechanism based on hardware assistance which allows running
Windows XP or Windows Server instances. Operating system-level virtualization is
not considered further in our study as it can only virtualize all the instances with the
same kernel, not providing flexibility nor independence, characteristics indispensable

in a Cloud environment.
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Full Virtualization | Paravirtualization | OS level Virtualization
VirtualBox Xen LinuxVServer
VMware Server VMware ESX OpenVZ
VMware ESX WPARs
KVM Solaris Zones
Xen

Table 2.2: Virtualization Products

Each software has it own way to approach virtualization, using different tech-
niques and providing different features. There are many comparison studies doc-
umented concerning mostly open source technology like Xen and KVM. Probably
due to license constraints, we found it harder to discover tests involving products
from the VMware family, specially in what concerns the VMware ESX hypervisor.

Searching for comparisons on virtualization we understand that Xen had been
the one more widely explored, maybe for its open source character or for being more
mature. Meanwhile we also have VMware Server that became a free application in
2006, VMware ESX a proprietary product suited for datacenters and KVM which
is part of the linux kernel, only been released in 2007.

Looking into [23], we can see a comparison for High Performance Computing
including Xen and Vmware Server. Here are performed tests addressing network
utilization, SMP performance, filesystem performance and MPI scalability. The
outcome shows that Xen overcomes VMware Server in all the tested points, except
in filesystem performance where it was not possible to test VMware server due to
some disk incompatibilities.

Another performance study([21], this time for the VMware ESX hypervisor and
the Xen hypervisor, dates from 2007, being the only comparison study available
which includes the VMware ESX hypervisor. Besides, this paper was written by
VMware, the constructor of one of the tested applications, and it used as guest OS
the Microsoft Windows Server 2003. Because this is one proprietary OS, Xen will
have to be performing full virtualization using the hardware-assisted mechanism,
which do not achieve as good results as Xen’s paravirtualization, especially when it
comes to network throughput[16, 21]. Even though the benchmark outcomes were
not so dissimilar with the expected exception of the network throughput test, where
Xen was significantly worse than VMware ESX.

Finally in [5], we can see a comparison test between Xen and KVM, where
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isolation, performance and scalability are addressed. Concerning to the overall per-
formance, Xen showed up to be slightly faster than KVM in CPU-intensive testing
and in a kernel compilation, but KVM performed better in writing and reading.
The performance degradation in the virtualized systems comparing to the native
one was not so significant except in the kernel compilation where virtualization was
slower more than 50%. In what touches to isolation Xen behaved well, showing
good isolation for the memory, fork, CPU and disk stress tests. It only pointed
out isolation problems on the network sender and receiver tests. KVM did better,
showing good isolation properties for all the stress tests. Finally scalability was also
tested and Xen proved to be a more mature software scaling linearly as the number
of guests increased. KVM did not scale so well, presenting some guest crashes, not
being able to maintain the performance as the number of guests increased.

In table 2.3 we can see a summary of the most significant aspects:

Software Performance Scalability License
VMware Server bad bad free but not open source
VMware ESX good good proprietary software
KVM fairly good | some problems open source
Xen good good open source

Table 2.3: Virtualization Products Characteristics

All operative systems can be virtualized, if not with paravirtualization, with full
virtualization. To take the most advantage of the resources provided by the virtual
machines we tried to make a personalized instance. We can minimize wastes by
creating and tuning a virtual machine that uses little resources on the operative
system and puts all its power in the principal task we want to perform. This comes
at the cost of investments on how to keep the operating system minimal and yet
operating sufficiently for the application in use. An attempt to reduce an operative

system is shown in Appendix A with a Gentoo distribution.

2.3 Distributed Databases

2.3.1 Distributed Databases Management Systems

As defined in [13] a distributed database (DDB) is a collection of multiple logically

interrelated databases distributed over a computer network. The software that man-
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ages the DDB is named the distributed database management system (DDBMS) and
it provides an access mechanism that makes this distribution transparent to users.

This transparency is taken as one of the main goals in a DDMBS and it can be
achieved at many levels: network, replication, fragmentation. Network transparency
consists on providing an abstraction over the network so that the user is not aware of
the location and quantity of machines that are connected. Replication transparency
is the ability to manage replicas of the data automatically in various places, without
interfering with the normal functioning of the system. Finally fragmentation trans-
parency is about being able to automatically fragment and distribute the data over
the various constituents of the system.

Usually we expect that a DDBMS can provide improved reliability, availability
and performance when compared to a monolithic system. An example of more
reliability and availability can be seen in a scenario where if one component fails,
it does not necessarily mean that the whole system will fail. If there was a data
replication mechanism implemented, everything may still work just fine by relying
on the parts of the system that are still in good health. Also distribution allows
the exploitation of parallelism, which can lead to better performance when doing
operations over the data. Furthermore, because this are systems compound by many
machines, they are easier to expand than a regular DBMS, all we need to do is add

new nodes and redistribute the data.

Implementation Issues

Having talked on what a DDBMS intends to achieve, it is time to present some
of the main issues concerning its implementation: DDB design, query processing,
concurrency control and reliability. Each of those topics can be approached in
different ways with different outcomes to the system performance. This work is
mostly focused on the first issue, where we study how to fragment and distribute
data.

Data distribution is usually desirable because it enables the placement of data
in close proximity to its place of use, thus potentially reducing transmission cost.
However because we are looking into deploying it in a cloud environment this issue
will not be taken into account as in a cloud there is no information about the
localization of each machine. Thus partitioning the data will mostly be used to
allow the exploitation of parallelism and for reducing the size of relations that are

involved in user queries.
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2.3.2 Map/Reduce

Nowadays there are ways to query data that do not require to keep track of each
record’s location. We are talking about an approach that inquire all the nodes in
the system and comes up with a single answer. One technique able to provide this
kind of feature is Map/Reduce [7], a very simple algorithm revived by Google that
allows to distribute the workload throughout all the system.

The Map/Reduce algorithm is compound by two fundamental steps the Map and
the Reduce. The Map consists on having a head machine that receives the requested
operation and distributes it through all the available machines in the system - the
workers. Each worker will calculate its own answer using its data and if necessary
by interchanging of intermediate results with the other workers. The second and
final step, the Reduce, consists on the head node getting all the results from each
worker and calculating the final answer.

In this query technique there is no need to know where each part of the data is
located, as every participant in the system is queried. This allows to look at data

distribution on distributed databases from a whole different perspective.

2.3.3 Data Distribution

One fundamental step into database distribution concerns the way data is spread
among the various nodes, characteristic that will greatly influence the whole behav-
ior and performance of the system. Here some issues pop up: in which way and
how much should data be fragmented, how should it be allocated and how much
information should be kept about its location. Having this in mind and also think-
ing about integration with cloud computing, some algorithms may be addressed in
order not only to allow the distribution of data but also to grant adaptability facing
the introduction of new machines and the removal of existing ones.

When fragmenting a database the chosen unit of partitioning can go from whole
relations to tuples or attributes. However considering an entire relation as the atom
may not be the best option, as relations grow in different ways making it hard to
balance the data. Furthermore it will limit exploitation of the parallelism gained
with the distribution. Thus the partitioning should either be done in a vertical way
by taking the attributes as the distribution unit, horizontally taking the records as
the distribution unit or in a hybrid way where we have both vertical and horizontal

distribution.
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2.4 MonetDB

MonetDB is an open source column-oriented database management system[1] able
to achieve high performances dealing with complex queries on big amounts of data.
There are some important characteristics that distinguish this DBMS from other
existent software. Two important features worth to be referred are the fact that
it uses a column-wise storage organization and implements full materialization of
intermediate results. The core of MonetDB is present in mserver which is responsible
for all the mechanics behind the database operations. There is also a crucial program
called Merovingian, which integrates MonetDB enabling it to perform the two main
following tasks: handle connections from clients and redirect those connections to
the appropriate mserver process; start an mserver process, which may be very useful
in case of a crash.

Resuming into a practical scenario, we can have several different machines, each
running a Merovingian instance which is responsible for 0 or more mservers. A client
can make a request to any database in any machine in the network that Merovin-
gian will take care of guaranteeing that the database in question is reached. Also
if one of the mservers crashes, Merovingian is able to relaunch it. Going deeper
into Merovingian, we can point out some more interesting details. Merovingian uses
UDP connections through the default port 50000, to make the communication be-
tween different instances, periodically broadcasting messages in order to know who
is constituting the network at each time. When a request is made for a database
that is in another machine, Merovingian can proceed in two ways: as a proxy inter-
mediating the communication between the client and the other Merovingian, useful
in networks where the client does not have direct access to every machine; or it
can redirect the client to the correct machine. Merovingian also supports a very
handy feature that enables the tagging of databases. This way we can tag different
databases in different machines with the same name, and then use the command

find when wanting to retrieve them back.

2.4.1 Distributed Computation in MonetDB

As it was mentioned before there are some projects being developed on CWI
that concern MonetDB and distributed systems. For the moment three different

approaches are being taken:

e Octopus: Trying to achieve even greater performance there was the need
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for MonetDB to take advantage of parallelism. Thus, work has been done to
develop a new module called Octopus which intends to implement distributed
query processing, based on some of Merovingian’s capabilities. Here there is
a defined head node responsible for holding all the data that is going to be
processed. It communicates with the client receiving the requests and also
with the other nodes delegating work. The workers are called tentacles and
they start by being inquired about their state and the cost of processing a
specific query in a determined set of data. The cost may be measured in
different ways, according to what is intended to achieve: perform the least
computation; transfer the least data; do it in the shortest time. After the
head of the Octopus have chosen the nodes where the query is going to be
executed, the data is shipped to each node respectively. However there is
a recycler in each node, in charge of keeping some of the data, after a job
has been performed. By doing this, significant improvements in the query
execution can be obtained, as there is the possibility to reuse data and results
that already are in the nodes, avoiding the work intensive task of transferring

and processing it again.

e Cyclotron: Basically consists on having the database distributed by many
computers but stored in their main memory. These sets of data that constitute
the database are passed around from machine to machine through the network.
Whenever a query is fired in a machine, it just has to wait until all the necessary
data passes by. This concept is supported by the idea that networks are getting
faster and faster and that it may be quicker to get data from the network than

from a local hard drive.

e Map/Reduce: This project is an implementation of Google’s Map/Reduce
algorithm, which consists on spreading the computation through all the ma-
chines in the system and after everything has been processed gather all the
different results and make one final answer. Here the data is already spread
among the various machines and the only thing to do is fire the queries to all
of them and in the end build a final result with all the outputs. An example of
this is a query that asks for a maximum value of an attribute, which implies
sending the same query to all the nodes. After each machine has done its
processing, it sends back a result with the value of its maximum. Then, the
head machine of the process, gather all the answers achieved and gives the

user the highest result.



18



Chapter 3

Related Work

To take a distributed database into the cloud, data must adapt to system changes.
Efficient data reorganization is an important topic concerning any distributed sys-
tem, but it becomes even more important when the environment to address is the
cloud. In this chapter we present and discuss some previous work that has been

done on data distribution algorithms.

3.1 Efficiently Extensible Mapping for Balanced
Data Distribution

In their paper [4], Choy, et al. discuss three different ways of addressing buckets
(abstract representation that holds records) to bins (disks or servers): using a Round
Robin assignment; keeping the administration of the mapping buckets-to-bins; and
a new method introduced by this paper called Interval-Round-Robin. They are
considering buckets continuously identified and their study is focusing on how the
system is able to support database growth, i.e., to accommodate the addition of new
bins.

In the Round Robin assignment we are always able to know the position of each
bucket, as the buckets identifiers are continuos. The number of the bin can be calcu-
lated by just diving the bucket id by the total number of bins. With this technique
every time a bin is added to the system all the buckets have to be reshuffled. This
requires a lot of records to be moved upon a reorganization.

The mapping solution consists on maintaining a mapping of every bucket to a
bin. This is better in terms of data reorganization, as if the system changes we are

able to adapt only by moving the minimum data possible. However this implies
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keeping more storage data (metadata).

Finally the new algorithm introduced in this paper is the Interval-Round-Robin.
What they try to achieve with it, is an intermediate algorithm that does not need to
move so much data as the first one and does not need to maintain as much metadata
as the second one. This technique works by keeping track of the changes that occur
in the system. There are blocks of buckets representing each time the system has
changed. It also minimizes the amount of data to be moved in a reorganization.

A comparison between the algorithm’s efficiency is represented in Table 3.1.

Mapping Complexity

Mapping Storage

Records Relocation

Round-Robin

Complete Mapping

Interval-Round-Robin

1
1
O(log m)

1

O(m?)

Large
Minimum

Minimum

Table 3.1: Comparison of efficiency

Concerning the mapping complexity we can see that the Interval-Round-Robin
algorithm is the most complex one. It presents a complexity of O(log m) where m
is the number of changes that occurred in the system. This happens because each
bucket is dependent on the history of the system.

All the algorithms need to maintain some metadata. The Round Robin, keeps
the least, just maintaining the information on the total number of bins in the system.
The Stored-Directory keeps a tag on every bucket in order to map it to the respective
bin. The Interval-Round-Robin keeps track of all the changes that occurred in the
system during time.

The Interval-Round-Robin is also very efficient, being able to relocate the buckets
with minimum cost. The amount of data kept with this algorithm increases as more
changes in the system are being made.

However this new algorithm comes with a big handicap, which is the fact that
it can just cope with a system that only grows. This means it cannot be adapted
to the cloud environment, as there the system is able not only to grow but also to

shrink.

3.2 Linear Hashing

This is a hash-based algorithm able to overcome the main handicap of normal

hashing, adapting when the address space of the hash function changes. Linear
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Hashing performs better when changes occur, only needing to recalculate a specific
set of keys instead of everything. It was introduced in 1980 in the article [11] as an
innovative way to address data, where the address space can dynamically grow and
shrink.

More recently in [12], a generalization of this algorithm for distributed systems
is presented, which is called LH*. It introduces an efficient way to implement Linear
Hashing in a client server model.

The drawback of this algorithm when distributing data is the fact that data is
not balanced at all times, not allowing for an optimal use of the disk space. It also

does not support weighting, so all the buckets have to be treated equally.

3.3 Consistent Hashing

Consistent Hashing [9] introduces a hash based distributed algorithm that can
easily adapt to changes in the address space. Contrary to what happens in LH*
[12], this algorithm does not work linearly and buckets may be added or removed
in an arbitrary order. Furthermore, it is also able to perform without the need for
every client to have a consistent view of the system, which allows to reduce the
number of messages going through the network.

A study on the implementation of this algorithm in a distributed cache over a
network is presented in [9], where sometimes there is the need to scale in order to
overcome higher demands. Hash functions are here constructed concerning three
consistency properties: smoothness, spread and load. The smoothness property
ensures that if a bucket is added or removed, only the necessary records to keep the
system balanced are moved. The second property, the spread, says that over all the
clients views the total number of caches to where an object can be assigned is small.
Finally in the load property we have that over all the clients views the number of

distinct objects assigned to a particular cache is also small.

3.4 Replication Under Scalable Hashing

This [17] is a family of decentralized algorithms allowing to map objects to a
scalable collection of servers or disks. Changes in the system are handled very well
and the data is reorganized just by moving the minimum objects possible.

These algorithms provide a very important feature concerning distributed sys-

tems, data replication. Here they provide an adjustable technique where different
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degrees of replication may be addressed, with the guarantee that replicas of the same
object are not placed in the same machine. The RUSH algorithm is also able to
provide weighting, which means that if we have machines with different resources,
different weights can be assigned to each one of them.

One of the main characteristics of this family of algorithms is the ability to
efficiently reorganize the data. When a system change occurs, they provide optimal
or near optimal solutions that minimizes the number of objects to be moved in order
to keep the data balanced. The algorithms were thought to handle the addition and
removal of a group of buckets instead of individual modifications. This way removing
a bucket is not very efficient comparing to the optimal solution. However if removing
a sub-cluster (group of buckets) the performance is near optimal.

The problem with this algorithm family is that it is not able to calculate the
inverse. This means that is hard to answer the question which objects are stored
on a given disk. For doing this there is the need to iterate through all the object
identifiers, figure out where each key is stored and then return only the objects that

are kept in the questioned disk.

3.5 Controlled Replication Under Scalable Hash-
ing

CRUSH [24] is closely related to the algorithm family RUSH, providing the same
essential characteristics like decentralization, weighting of devices, well balanced
distribution of data and optimal or near optimal reorganization.

The biggest novelty introduced by this algorithm is mainly the improved control
over replicas placement, with the possibility of creating different failure domains.
This feature allows a better control over the replicas locations which improves the
reliability of the system. For example it is possible that three replicas of the same
object are defined to be placed in three different cabinets so they do not share the

same electrical circuit.

3.6 Distributed Database Management Systems

Data partitioning is implemented in almost all major DDBMS products like Or-
acle, DB2, SQL Server, MySQL and Postgres. By reducing the size of tables, this

feature intends to provide improved performance and simplify data management.
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The types of partitioning usually available in these systems are:
e Range: defining various ranges to which data is assigned;

e Hash: allows to separate data based on a computed hash key that is defined
on one or more table columns, with the end goal being an equal distribution

of values among partitions;

e Key: performs an even distribution of data through a system-generated hash

key;

e List: the data is partitioned by explicitly listing which key values appear in

each partition.

Data partitioning is usually done considering the expected workload, in order
to achieve better performance in query processing. However being the distribution
based on ranges and hash functions, it may not provide a very efficient solution
when the system changes and data needs to be redistributed. This issue can be
quite important if the composition of the system happens to be changing very often,
like in the cloud where users are able to flexibly scale up or down depending on the
current demand.

Many database vendors also offer a cloud-oriented flavor of their products. We
have the examples of SQL Server for Amazon EC2, MySQL Enterprise for Amazon
EC2 and Microsoft Azure SQL. They all claim to be able to scale databases up and
down based on the business needs. However, being them all proprietary products,
no more details are given. There is no further information on how this process is
done or how efficient is it.

One last product with much potential is Greenplum, a database software able to
scale to large distributed systems. It relies on a shared-nothing architecture, trying
to take the most advantage of parallelism. This software distinguishes itself from

others for the fact that it also implements a MapReduce technique.
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Chapter 4

Data Distribution

One fundamental step into database distribution concerns the way data is spread
among the various nodes, a characteristic that will greatly influence the whole be-
havior and performance of the system. Here some questions arise: how and how
much should data be fragmented, how should it be allocated and how much infor-
mation should be kept about its location. Having this in mind and also thinking
about cloud computing, some algorithms are going to be addressed in order not
only to allow the distribution of data but also to grant adaptability facing systems

modifications.

4.1 Introduction

Data distribution is one of the most important issues to consider in a distributed
database. Even more if we are going to deploy it in a distributed environment such
as cloud computing, where the data partitioning has to adapt to system changes.
In this work we aim to take the most advantage of parallelism, balance the data
as equal as possible among the system and minimize the amount of metadata that
need to be maintained.

A database is composed by relations, and a relation is composed by attributes and
records. Taking this into account, what would it be a reasonable unit of partitioning?
A whole relation as partition unit is not a good option for many obvious reasons.
First of all, very often a database only holds few relations, which makes it hard to
distribute them throughout many nodes. Then only having a relation per node does
not allow to exploit much parallelism. Moreover the various relations of a database
can have very different sizes which does not allow a proper data balancing.

We need a more fine-grained approach to fragmentation. Looking inside rela-
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tions we find attributes and records as possible partition units. Here we have three
ways of partitioning the data: vertically (attributes), horizontally (records) and in a
hybrid way (both). Because MonetDB is a column-oriented DBMS, choosing to dis-
tribute the data vertically would seem to be the obvious option. However, relations
are usually composed by few columns and many records, which would eventually
require the introduction of hybrid partitioning in order to get the data balanced.
Partitioning the data horizontally is the better option where data balancing can
easily be achieved. Because of this we are going to consider the last approach and
partition the data horizontally, which involves distributing complete records over
the various nodes.

The distribution of the records can be approached in two different ways: just
dividing the whole data over all the machines and not keeping any knowledge on
the position of each record; or using a distributed data structure so the place where
each record is, can be known via some administration.

Not keeping information on the data location might be easier and faster to do,
but problems come when we want to query the data. If we do not know the position
of each record it is not possible to define a query plan and send it to the correct nodes,
like it is traditionally done in Distributed Database Management Systems. However,
nowadays there are other efficient techniques to query data that do not rely on any
information about its location. An example of such technique is Map/Reduce, that
was recently made popular by Google. It works by just querying every node in the
system in order to achieve the final answer. This way, we are able to consider both
alternatives to perform the data distribution.

In the rest of this chapter we call the places where data is stored, buckets. This
abstraction may allow us to take better advantage of the whole system resources,
as one machine is able to hold multiple buckets. This means that if a machine has
more resources than others, one can just put more buckets on it and make a better
use of the total resources.

We now start by first presenting the typical most simple techniques to distribute
data. Next, we will explore some more flexible algorithms that are better capable

to adapt to the cloud concept.

4.2 Simple Algorithms for Data Distribution

When allocating data in a distributed fashion there are three algorithms that

immediately come to mind. The easiest way is just dividing equally the records over
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the available machines. Another possibility is using a hash function, that requires
a bit more administration, mapping the key of each record to a machine. The last
alternative is to define key ranges and assign them to a machine. In the next section

we discuss these techniques in detail.

4.2.1 Division

4,6,10, 16, 17, 20, 22, 25, 27, 29, 30, 33, 36, 38, 43, 50,
51, 52, 54, 58, 66, 84

s

4,17, 6, 20, 10, 22, 16, 25,
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51, 66 52, 84 54 58

Figure 4.1: Loading data using the division algorithm

We call the first algorithm Division because it just consists of dividing equally the
records over all the buckets present in the system. This is done by only considering
the total number of tuples and it does not take into account any key or content they
might be holding. Here we do not keep any metadata that identifies the location of
each tuple.

In Figure 4.1 we can see how a set of data is distributed among four different
buckets. The data was placed considering a round-robin technique, and we can see
it is perfectly balanced.

When adding a new bucket to the system, we need to redistribute the data so
new node has the same amount as the others, keeping the system balanced. Figure
4.2 illustrates what has to be done. We first divide the total number of records (22)
by the total number of buckets (5). The result is 4 records, which represents the
number of records that the new bucket will have to hold. As we had previously 4
buckets and 22 records, we will have to move one record from each to the new one.

When a bucket is removed the opposite occurs. As we can see in Figure 4.3, here
all the data has to be shipped from the bucket to be removed into all the others.
We want to keep the data as much balanced as possible, but if the division of the

number of records by the numbers of buckets produces rest then the first buckets
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Figure 4.2: Adding a bucket to the system and redistributing the data with the

division algorithm

Figure 4.3: Removing a bucket from the system and redistributing the data with

the division algorithm

(from the left to the right) will hold one more record than the others. This way the
number of records to be moved for each bucket may vary, but at most one record,
which in larger (more realistic) cases is negligible.

For both adding and removing a bucket we always only have to move the least

records possible and the system is keept perfectly balanced.
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4.2.2 Hashing

While the Division algorithm does not care about the content of the data, the
Hashing algorithm works by using the defined key in each row. The hash function
takes as input the identifier of each row and calculates a value in a specific range.
In our case the output of the hash function maps the number of buckets we are
addressing so the value calculated corresponds to the bucket where the record is

going to be stored.
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Figure 4.4: Load a set of data using the hash algorithm

Depending on the primary keys and the hash function it may be possible to have
a more or less balanced system. The fact that we are always able to tell the position
of each record may be very helpful if the system is exposed to many point queries.

However when it comes to adapt to a new system set, this algorithm requires to
move more data than the simple divider. If the address space changes, by adding or
removing a bucket, every single key has to be recalculated by the new hash function.

In Figure 4.4 the distribution of a data set among 4 different buckets is shown.
The data was placed using a hash function which calculated the respective bucket
for each key. The hash function being used is: f(x) = x mod n; where z is the key
and n the total number of buckets available. As we can see the data ends up not
being much balanced as the keys are not a uniform distributed sequence.

If we want to add a bucket to the system, then the address space of the hash
function changes, which leads to a whole reorganization of all the data. This way, the
position of every key has to be recalculated and eventually many records have to be
moved to the new correct locations. This forces, in the most cases, a big percentage
of the data to be moved, causing lots of traffic between all the buckets. We can

see in Figure 4.5 that after adding a new bucket all the data is moved between the
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C:
52,17,

Figure 4.5: Adding a bucket to the system and redistributing the data with the hash
algorithm

existing buckets and also to the new one. For readability the arrows with all the
data exchanges are not shown.

When removing a bucket the same situation happens. The address space changes,
so every key has to be recalculated. This also leads to interchange of records between
all the buckets in order to keep the data in the correct places. Figure 4.6 shows the
removal of one bucket, changing the system from having 4 buckets to 3. The data
is still not well balanced, being bucket A holding 9 records, bucket B holding 8 and
bucket C holding 5.

This algorithm requires a lot of data to be moved every time a change occurs
in the system. However it allows to easily identify the place of each record at any

time.

X

B: D:
17, 25, 27, 43,

Figure 4.6: Removing a bucket from the system and redistributing the data with
the hash algorithm
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4.2.3 Range

The Range algorithm distributes data in consecutive ranges of primary key values.
Here we have two possible approaches to achieve a balanced system, depending
on the denseness of the keys. If we have a dense set of keys, then we can just
mathematically divide the total range in equal parts for the existing machines. Here
we now the ranges upfront so we just have to put each record in the respective place.
On the other side, if the set of keys is sparse, we first have to sort the data and then
make ranges based on the number of rows. Sorting the records and counting them
is the only way to define ranges that balance the data.

This algorithm can be helpful when facing point and range queries, as we always
know the exact position of each record and they are organized by ranges.

In Figure 4.7 we can see the distribution of a set of data using the Range algo-
rithm. Because the set of keys is not dense we have to define the ranges in each
bucket with different sizes in order to have a balanced the system. Bucket 1 is hold-
ing the keys from 4 to 20, bucket 2 from 22 to 33, the bucket 3 from 36 to 51 and
bucket 4 from 52 to 84.

4,6,10, 16, 17, 20, 22, 25, 27, 29, 30, 33, 36, 38, 43, 50,
51, 52, 54, 58, 66, 84

o

4,6, 10, 22,25, 36, 38, 52, 54,

16, 17, 27, 29, 43, 50, 58, 66,
20 30, 33 51 84

Ranges: 4-20 22-33 36 - 51 52 -84

Figure 4.7: Load a set of data using the range algorithm

When adding a new bucket to the system all the ranges have to be redefined,
which implies moving more records than the minimum optimal. We can see in
Figure 4.8 a representation of this operation. Here we see that besides having to
move the records to fill the new bucket, we have also to move records in between
the old buckets.

The opposite procedure is done to remove a bucket. This also implies moving

many records between buckets, in order to keep the system balanced. Besides having
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Ranges: 4-20 22-33 36 - 51 52-84
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Ranges: 4-17 20-29 30-38 43 - 52 54 -84

A: 3 C: D: ="
30, 33, 43, 50, 54, 58,
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20,
22,25,

4,6,10,
16, 17

Figure 4.8: Adding a bucket to the system and redistributing the data with the

range algorithm

to distribute the records from the bucket to be removed we also have to transfer
data between the other buckets.

This algorithm could also have been approached in a different manner, mini-
mizing the amount of data to move whenever a system change occurs. This would
be done by allowing to have more than one range in each bucket bucket and keep-
ing metadata that identifies which bucket have which range. Imagining that a new
bucket is added we would just have to take a portion of the ranges in each existing
bucket and transfer it to the new one, without having to move unnecessary data.
However this approach can become complicated with all the adding and removing

of buckets, getting harder to store and maintain the metadata.

4.3 Revised Algorithms for Data Distribution

We saw that some of the previous algorithms, as Hashing and Range, are not
so efficient when data needs to be reorganized, requiring the movement of much
unnecessary data. Because we want to address an elastic system like the cloud we
need solutions that can reduce the movement of data as much as possible.

We are only going to proceed with algorithms based on division and hash. The
study on algorithms based on range techniques are left out in our work, mostly due
to matters of time. With the decision for Hashing and Division we still have the

contrast between algorithms that distribute the data according to their key value
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and algorithms that do not.

4.3.1 Linear Hashing

Linear Hashing comes mainly to overcome the inflexibility of normal Hashing
when the address space of the hash function changes. This algorithm works in a
more dynamic manner allowing the expansion of the address space without the need
to recalculate all keys. We can address records to a specific number of buckets and
if this number changes only the keys in one bucket need to be recalculated.

Like in the hash algorithm, here all the records are initially loaded using a hash
function that relies on the primary key of each record and the total number buckets
available. The Figures 4.9 and 4.10 illustrate the execution of the algorithm when
a new bucket is added and removed respectively. Here we can see how the variables

n and bucket pointer evolve and how the data is redistributed.

N=4
Bucket Pointer = A

6,10,
22, 30,
38, 50,

D:

27,43, ey,

Bucket

20, 36, 52, 84
N=4
Bucket Pointer =B

New

Bucket

} .

N=4
Bucket Pointer =C

A:
4,16

?

Figure 4.9: Adding a bucket to the system and redistributing the data with the

linear hashing algorithm

The hash function used is the same as previously: f(x) = x mod n; where z is
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the key and n the total number of buckets available. Looking to Figure 4.9, we
find that adding a new bucket requires the recalculation of all the keys present only
in the bucket being pointed (A). In normal Hashing if a bucket is added, the hash
functions changes and all the keys need to be rehashed. In Linear Hashing this does
not happen because the algorithm evolves with two different hash functions. All the
buckets before the bucket pointer and after n have their records mapped according
to a different function than the buckets that are in between. In the example the
buckets before the bucket pointer and after n are mapped by f(x) = x mod 8, and
the ones in between still use f(x) = x mod 4.

In the figure we can see that in the first iteration of adding a bucket, only the
keys on bucket A were recalculated, and 4 of them were passed to the new bucket
E. After this the bucket pointer is moved to B. If we add another bucket the same
happens, being the keys in B recalculated and if necessary moved to the new bucket
(F). In this case, only one key is moved. After this move, the bucket pointer points
to C. This goes on for the addition of two more buckets, until the bucket pointer
exceeds n. When this happens the algorithm is reseted (pointing again to A) and
the variable n is doubled (becoming in this case 8).

To remove a bucket, the reverse process has to be performed. This algorithm
works in a linear way, so when new bucket is added it has to be put in the end of
the sequence and when removing a bucket it has also to be taken from the end. To
better understand how this works consider the example in Figure 4.10. To remove
bucket D first the bucket pointer has to be decremented. However, the pointer is
already pointing to the first bucket. Hence, n needs to take half of its value, in this
example 2, and the bucket pointer will point also to the bucket correspondent to n,
in this case B. Then all the records in D are moved to B. Removing another bucket
is similar. First the bucket pointer is decremented to A and then all the records are
moved from bucket C to bucket A.

In Linear Hashing only the last bucket can be removed. However this might not
be a problem if we are addressing a distributed system like cloud computing. The
abstraction provided by the cloud allows us to purchase virtual machines without
really knowing the physical structure that is behind. To the clients eyes the virtual
machines available for purchasing may all have the same specifications and can
be acquired as many as needed. They are physically maintained by the service
provider, transparently to the client. This way, because we are able to play in a
virtually homogenous system, using a linear algorithm just able to remove the last

bucket is as good as using any other algorithm able to remove any bucket.
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Bucket Pointer = A

N=2
Bucket Pointer =B
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Bucket Pointer = A

Figure 4.10: Removing a bucket from the system and redistributing the data with

the linear hashing algorithm

4.3.2 Linear Division

The Linear Division algorithm is based on splitting in half and merging complete
buckets. Initially all the records are loaded by dividing the data according to the
total number of records and the number of buckets. Figure 4.11 and 4.12 show
how this algorithm proceeds when a bucket is added and removed respectively. The
system starts with the data loaded as with the Division method.

When adding a new bucket half of the keys in the bucket currently being pointed
to, have to be moved to the new bucket. The bucket pointer is incremented by one
afterwards. This repeats till the pointer reaches n where it comes back to A and n
doubles its value. In Figure 4.11 this scenario is displayed. A new bucket is being
added so the first half of the data in A is passed to the new bucket E. Then the

bucket pointer is moved from A to B. Adding another bucket produces an identical
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Figure 4.11: Adding a bucket to the system and redistributing the data with the

linear division algorithm

effect. Half of the data is moved from B to the new bucket F and the bucket pointer
goes to C. This continues until the bucket pointer reaches n (D is the fourth bucket
in our case). Here n is doubled, becoming 8, and the bucket pointer returns to A.

To remove a bucket from the system we have to do the reverse process. The
Figure 4.12 illustrates the removal of two buckets. For removing the bucket D we
first have to decrement the bucket pointer. However in this example the pointer
starts in the first bucket. This way n have to become half of its value, 2 in this
case, and the bucket pointer now points to the 2nd bucket in the sequence, B in
this case. Then all the records in D are moved to B and D is finally eliminated.
To remove another bucket we just have to do the same thing. First decrement the
bucket pointer, now to A, and then move all the records from bucket C to bucket
A.

In this algorithm, like in Linear Hash, only the last bucket can be removed.

However, as we saw in the previous section, considering the characteristics of the
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Figure 4.12: Removing a bucket from the system and redistributing the data with

the linear division algorithm

cloud this restriction does not stand as a problem.

4.3.3 Consistent Hashing

Consistent Hashing is presented as a hash-based distributed algorithm able to
efficiently cope with address space changes. The big advantage of addressing data
with this algorithm is that whenever the system grows or shrinks we only need to
move the optimal minimum number of records to keep the system balanced. Unlike
Linear Hashing, here every bucket can be removed with the same cost and the system
is kept balanced at all time.

To demonstrate how this algorithm works, let’s imagine a ring representing the
whole range of keys. This range has to be known in advance and cannot change

during execution. To each bucket is assigned a defined number of bucket points that
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are randomly distributed in the ring.

The records are stored in the bucket holding the bucket point correspondent to
its key, if there is none the record is stored in the bucket holding the next bucket
point in the ring. The only administration that needs to be kept is the position of
the bucket points in the ring.

4,6,10, 16, 17, 20, 22, 25, 27, 29, 30, 33, 36, 38, 43, 50,
51, 52, 54, 58, 66, 84

84 4 A

B->74

A ->56

Figure 4.13: Loading data using the consistent hash algorithm

One factor that can influence the data balancing is the number of bucket points
present in the algorithm. This should not be a complete mapping of all keys in the
ring, in order not to store much metadata. However, intuition says that the less
bucket points we have per bucket the more chances for data to be unbalanced. We
want the number of bucket points to be large enough so each bucket is assigned to
a reasonable number of different points in the ring. This should be considerably big
comparing to the initial number of buckets, so even if the system grows, each bucket
should still be assigned to a significant number of points. When choosing the total
number of bucket points one should make an educated guess concerning the system
we are addressing.

Figure 4.13 represents a system with two b buckets (A and B), each of those with
four bucket points randomly distributed in the ring. We want to load the 22 keys
ranging from 4 to 84 that are shown on the top. The final distribution of the keys
is shown in the two buckets on the right side of the picture. The bucket points 27,
40 and 48 all belong to bucket A and are assigned consecutively in the ring. This
way, it would be enough to only represent the point 48, as all the keys from 15 to
48 are going to bucket A. However we represented them all to make explicit that to

each bucket, four bucket points were assigned.
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4,6,10, 16, 17, 20, 22, 25, 27, 29, 30, 33, 36, 38, 43, 50,
51, 52, 54, 58, 66, 84 A:
16,17,
20, 22,
co7s 844 25,27,
43

4,6, 10,
50, 51,
52, 54,
58, 66,

A->27

A ->56

C:

B->54 29, 30,

33, 36,
38

A->48 C->40

Figure 4.14: Adding a bucket to the system and redistributing the data with the

consistent hashing algorithm

In Figure 4.14 we can see a possible resultant distribution from adding a bucket
to the system of Figure 4.13. The algorithm randomly takes a bucket point from
each bucket giving it to the new bucket C. Then all the data associated to those
bucket points has to be moved to bucket E. In the end bucket A and B hold 3 bucket
points and C only 2 because the total number of bucket points in the system is only
8. The amount of data moved was only the necessary to fill the new bucket.

To remove a bucket the algorithms does the opposite. It uniformly assigns all
the bucket points from the bucket being removed to the remaining buckets and the

necessary data is moved.

4.4 General Overview

In this section we discuss and compare some of the most important characteristics
of the previously presented algorithms. In Table 6.1 we can see a brief comparison
in terms of data moved when adjusting the system and the achieved data balancing.

All the algorithms here discussed can present a perfectly balanced system. How-
ever, this is sometimes dependent on some factors, as the keys being addressed, the
hash function chosen or the execution state of the algorithm.

The Division and the Range algorithms are able to do it at all time, independent
of those factors. The Division because it simply distributes the data evenly over
all the machines. A Range algorithm, if we do not define equal ranges depending

on the total range of keys, but variable ranges depending on the distribution of the
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Algorithms Data Balancing | Records Relocation
Division Perfect Minimum
Hashing Variable Large

Range Perfect Large
Linear Hashing Variable Variable
Linear Division Variable Small

Consistent Hashing Variable Variable

Table 4.1: Data distribution algorithms comparison

keys.

The hash-based algorithms, like Hashing and Linear Hashing, have their data
balancing dependent on the hash function being used and on the keys being ad-
dressed. If the hash function is adequate to the keys, we may achieve good results,
otherwise we might end up with a very unevenly loaded system.

For linear algorithms, like Linear Hashing or Linear Division, the system can be
more or less balanced depending on the state of execution of the algorithm. This
means that if we start with 4 machines and we have a system that is growing, it is
only perfectly balanced again when it reaches the double of the initial number of
nodes, 8 machines in this case.

In Consistent Hashing we consider the whole range of keys as a ring, where data
balancing depends on the distribution of the bucket points and on the keys being
addressed.

Another important characteristic differentiating the previous algorithms is the
amounts of data that have to be moved when readjusting the system. The Division
algorithm is the only one to readjust moving always just the minimum amount of
data to keep the system balanced. On the other hand, techniques like Hashing and
Ranges imply moving large amounts of data. In these algorithms, besides having to
move data from/to a bucket that is being removed/added, we also have to relocate
data between all the other buckets.

The Linear Hashing can move a variable number of records, it depends on how
they were distributed by the hash function when loading. In turn Linear Division
starts perfectly balanced so it moves a constant amount of data till the number of
buckets reaches double or half. This can actually be useful if we are only adding and
then removing some buckets without reaching the double. Here the system is not

perfectly balanced but we still add distribution, which may also improve the queries



CHAPTER 4. DATA DISTRIBUTION 41

performance.

Consistent Hashing moves a variable amount of records when readjusting the
system depending on how data was loaded initially and on which bucket points are
having their bucket assignment changed. Linear Hashing and Consistent Hashing
differ from simple Hashing in the fact that when the system setting changes they
only need to move records to fill/empty one bucket. No extra data is moved between
the other buckets to readjust the algorithm.

All the algorithms here presented are very light in terms of administration, there
is just the need to keep the information on the total number of buckets, total number
of records and sometimes a pointer or two. The only exception is the Consistent
Hashing algorithm that requires to store a mapping between all the buckets and
respective bucket points.

Concerning the ways distributed data can be queried we are aware of two possible
approaches. One is the traditional implementation of a DDBMS, where information
is stored on the exact location of each record, so the queries can be prepared to
address the right parts of the system. On the other hand we also have algorithms
like the revived Map/Reduce, which provide an easy way to distribute the workload
through the whole system, querying data without needing to know where each spe-
cific record is. Only data distributed with Division and Linear Division cannot be

queried using the first approach.
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Chapter 5
Prototype

In this chapter we present a prototype application that implements the behavior
of some described algorithms when facing systems changes. After implementing the
algorithms we perform some evaluations in order to compare the efficiency of each

when distributing and redistributing data.

5.1 Implementation

5.1.1 Data Set

To proceed with further research on data distribution we have chosen a data set
to play with. The data represents a real world scenario, but at the same time has a
relatively simple schema so we can focus more on the distribution issues. This is the
“ontime” data set [18] that contains the information about all airplane flights in the
USA from 1987 until 2010. In Appendix B we can find the SQL code that creates the
schema, which is only composed by one relation that holds 94 attributes. The total
size of the data rounds approximately 50GB. However it can also be downloaded in
smaller chunks, which comes in very handy for the purposes of our project.

The two small drawbacks of this data are the inexistent primary key and the
existence of some duplicate records. Therefore we defined ourselves a primary key
constituted by three attributes: date, flight number and origin of the flight. We also

removed the duplicate records from the data set.
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5.1.2 Technological Choices

The prototype is written in Java and the chosen underlying database system
is MonetDB. Each bucket is represented by a different database and operations
involving data are performed through JDBC. The different databases are managed
through Merovingian[?], a useful daemon that comes as part of MonetDB.

Merovingian enables the creation and maintenance of databases located in differ-
ent places of the same network and can also be controlled from a Java program. For
example when adding a new bucket the Java program communicates with Merovin-
gian requesting the creation and initialization of a new database. The inverse hap-
pens when removing a bucket, the Java application asks Merovingian to stop and
destroy the chosen database. This allows the entire experiment to be performed

from the Java application.

5.1.3 Algorithms

The implemented algorithms are some of those discussed before in Chapter 4:
Division, Linear Hashing, Linear Division and Consistent Hashing. We chose these
ones as they seemed to be the ones that can give a better answer when having to

redistribute the data due to a system change.

e Division: This algorithm loads data in a round robin fashion, providing a
perfect balancing. For doing this we just keep a pointer that goes around in

the sequence of buckets indicating to where should the next record go.

To add a new bucket we first calculate how many records should each bucket
have in the new setting, diving the total number of records by the total number
of buckets. Then we take the necessary records from each bucket (the ones
before the pointer have one more record than the others) and we move them
to the new bucket.

To remove a bucket we take all the records from that bucket and we redis-

tribute, following a round robin algorithm.

e Linear Hashing: To perform this algorithm the data is first loaded according
to a hash function. Here the place where each record has to be stored is the
rest of the division of the record id by the number of buckets in the system.
The algorithms evolves depending on a bucket pointer that is initialized at the

first bucket in the sequence of buckets.
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Adding a new bucket we have to have recalculate all keys of the records in
the bucket being pointed. Their position is now the rest of the division of the
record id by the double of the initial number of buckets. This only can have to
outcomes, either the record stays in the same bucket or is moved to the new

one just added. In the end the bucket pointer is incremented.

To remove a bucket the bucket pointer is decremented and all the records in

the last bucket are moved to the bucket being pointed.

e Linear Division: In the Linear Division we load the records with a round

robin algorithm like we did in the Division.

To add a new bucket we proceed as in Linear Hashing, but this time we do
not calculate the keys of the records that have to be moved, we just move half

of the records in the bucket being pointed.

To remove a bucket is the same as previously, the bucket pointer is decremented

and all the records in the last bucket are moved to the bucket being pointed.

e Consistent Hashing: This algorithm is initialized by first identifying the
range of ids of the whole set of records, in order to create a ring of keys.
Then a defined number of bucket points is assigned to each bucket and spread
randomly all over the ring. To load the data, we take each record’s key and
we look for its match in the ring. If there is none it goes to the bucket holding

the next bucket point.

The number of bucket points assigned in the beginning of the algorithm does
not change during execution. When adding a new bucket we divide the total
number of bucket points in the system by the number of buckets, to know
how many bucket points each bucket should have. Then we randomly take
the necessary bucket points from every bucket and we assign them to the
new bucket. Finally, we go through all the records in each bucket, to see
which records have to be moved to the new bucket in order to follow the ring

distribution.

To remove a bucket we do the inverse process. First we calculate how many
bucket points each bucket has to have. Then we take the bucket points from
the bucket being removed and we randomly assign them evenly to the other
buckets. Finally we go through all the records in the bucket to delete and we

move them to the new correct place according to the ring.
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5.2 Evaluation

In order to evaluate the behavior of the different algorithms presented, three
important scenarios where the data has to be distributed are tested: loading the
data; adding a bucket; removing a bucket.

In the operations of adding and removing a bucket we have considered two dif-
ferent measures of comparison: the number of records moved and the time elapsed.
All tests were performed only in one machine, where each bucket is represented by
a different database. Here it is not possible to see the time that would be spent
if different machines would have to communicate over a network. However we are
also comparing the different times elapsed, as we interest in seeing how much the
performance variates with this conditions.

Moreover we know that the cost of redistributing data is mostly related to the
amount of data that have to be shipped between buckets. This way and because we
are aiming for efficiency managing the distribution of data, the number of records

moved in each case seems to be a good term of comparison.

5.2.1 Loading the Data

To load data, we consider three different algorithms: Division, Hashing and Con-
sistent Hashing. In this section we present four graphics in Figure 5.1 where different
numbers of buckets and different amounts of records are experimented. This allows
to understand the effects in performance caused by the modification of this param-
eters, being the time elapsed to load the data measured in the y-axis.

Going from 4 to 32 buckets we see that with 1000 tuples there are no visible
differences between the two algorithms, but as the amount of data grows they even-
tually diverge. Using 100000 tuples we see that the Hashing performs slower.

We can see that both Division and Consistent Hashing take less time than the
Hashing algorithm in all tests. One might find it odd that being Consistent Hashing
a hash-based algorithm, how come it is performing as well as Division. This result
from the fact that what is slowing down the Hashing is not the calculation of each
record’s key, but the lack of data balancing that overloads some buckets.

The hash loading takes more time than the consistent hashing because it is
uneven for our set of keys. In the consistent hash the data balancing is mostly
defined by the disposition of the bucket points in the ring. This is done in between

a specific range of keys by an uniform distribution.
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Figure 5.1: Load operation
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5.2.2 Adding a bucket

In this section we compare the redistribution of the data made by the different
algorithms when a new bucket is added. The comparison measures are time con-
sumption and number of records moved, represented in the graphics of Figures 5.2
and 5.3 respectively.

The amount of data being used is 100000 records which is not so huge making the
evaluation take ages but big enough to see the differences between the algorithms.
We are doing the tests starting with 4 buckets and then successively adding a new
one until we have 16 buckets.

Analyzing the graphics we see that the first one follows the second, i.e., the time
elapsed adding a bucket is mostly influenced by the amount of data moved. As the
number of buckets increase, the amounts of data being moved decrease, which makes
it faster to readjust the system.

In the Linear Hashing algorithm we noticed that with the keys present in our
data set, the system started up very unbalanced. The 1st bucket was holding 72515
records, the 2nd 6022, the 3rd 15460 and the 4th 6003. This way the execution
of this algorithm was not very uniform, with places where much time was wasted
moving lots of data (4,8,12). However, because of this, the rest of the execution was
faster comparing to the others.

The execution of the Division algorithm should be taken as a reference, because
it is the one always keeping the data balanced, only moving the least records possible
and doing the least calculations. However we can see that Consistent Hash actually
performs very similarly, with a good data balancing, where the amounts of records
moved are decreasing almost at the same pace as in the Division. This happens
because the data balancing in the Consistent Hashing algorithm is mostly defined
by the random function that distributes the bucket points over the ring and not so
much by the record’s keys.

Finally, Linear Division performed as expected, moving constant data at con-
stant time for the same iteration of the algorithm. This can be useful if we just
want for instances two add more 2 buckets for little time and then go back to the
initial 4 buckets setting. Here we would have moved less records, introduced more
distribution and probably gained performance in query processing at the cost of

having the system not perfectly balanced.
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Figure 5.3: Records moved adding a bucket
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5.2.3 Removing a bucket

To compare the different algorithms when removing a bucket we also used a data
set of 100000 records. The graphics in Figures 5.4 and 5.5 show the obtained results,
comparing time elapsed in the first and number of records moved in the second.

Removing a bucket proved to be a much faster operation than adding a bucket.
This is mostly related to the fact that when removing a bucket we are reading the
data just from one place but the writing, which the heaviest procedure, is done
in several databases at the same time. On the other hand, to add a bucket, we
are reading data from many places but just overloading one database with writing.
Moreover MonetDB does not support concurrent writes, so the data has to be sent
sequentially.

Again, as expected, every algorithm’s performance follows the number of records
being moved. The less buckets there are, the more data we need to move in order
to readjust the system, therefore more time is used to perform each operation.

Linear Hashing and Linear Division performed as expected, with the big varia-
tions of elapsed time being justified in the variations of data balancing in the system.

Consistent Hashing proved again to be a good competitor for Division an almost

linear decrease number of records being moved and elapsed time.
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Chapter 6
Data Replication

Looking at distributed systems, in particular distributed databases, reliability
and availability stand out as two very important topics. In a distributed system
composed by many machines, there is always a chance that a machine may fail.
What we want to provide is a system that can cope with the failure of one machine
at a time, being able to fully restore all the lost records. The only way to offer these

characteristics is by introducing replication of data.

6.1 Introduction

In this work we study data replication to allow the system to overcome fail over
scenarios where we consider a crash-recovery fault model. A cloud does not fail
permanently but some of its parts may fail temporarily. If we purchase many virtual
machines in the cloud, it is possible that some might fail while the system is being
used. This way we are going to address replication techniques that allow the system
to continue available in case one node fails and also allow to restore the failing node
once it is up again.

For the system to stay available when a node fails all the queries have to be
redirected to the replicated data in the other machine(s), until the respective node
is recovered. The machine(s) holding the replica are also responsible for restoring
the data in the recovered node, so the more distributed the replica is the less cost
for each machine. However we must not forget that we are working in a dynamic
system where data can frequently be relocated, a fact that may add some interesting
challenges when dealing with replicated data.

In this Chapter we research how to add replication to the distribution algorithms

from Chapter 5. For ease of understanding we refer to one set of data as the original
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data and to the other as replicated data. This intends to provide an easier and
clearer explanation of the algorithms. There is no difference between the two sets
of data and they may both be available to answer queries if there is any advantage
in that.

When dealing with replication in a distributed system some important questions
must be addressed. How fragmented should the replicas be? Should they be dis-
tributed for how many machines? Should all the original data and the replicas be
placed in different machines? If we want to use the same machines to hold both the
replicas and the original data, where should each replica be placed? This are some
topics that must be considered in order to obtain a good replication model.

We try to achieve the following characteristics:
e There is one replica of every record in the system;

e The replicated record is on a different machine than the original one (otherwise

in case of a failure it would be impossible to recover the data);
e The data should be distributed as evenly as possible through all machines;

e Aim for the most efficient way to do adapt the data to system changes - move

the least data possible;

6.2 Two buckets: original and replica

The most trivial replica system is to simply have a replica of each bucket in the
system. For the positioning of these replicas we can use an n+1 approach, where
there is a sequence of machines and each replica would be put in the next machine.
In this simple approach, each machine would just have two buckets, one with the
original data and another with the replica of the previous machine. This may be
considered naive but it would allow to easily find and maintain all the replicated
data.

However there is not much distribution introduced by this technique, as each
replica of one machine is completely kept in another machine. In the process of
removing and adding nodes, the workload of dealing with the replicas is mostly put
on the shoulders of two machines. Furthermore this technique implies moving more
data than the optimal minimum to keep the system balanced. This happens because
every time the system changes, it is necessary to move full blocks of replicas in order

to keep the n+1 assignment correct.
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6.2.1 Adding a machine

When a new machine is added, it will always be placed at the end of the sequence
of machines. This way, in order to keep the n+1 characteristic correct, the replica
in the first machine has to be moved to the new (last) machine. Then, data from
all machines has to be moved to the new machine according to the distribution
algorithm. Then the respective replicas need to be updated to match the deletion
of data from their originals. Finally the data that was moved to the added machine
has also to be replicated, which is done on the first machine.

This happens because the first machine is always responsible for storing the
replica from the last. Therefore this operation always stresses the first machine,
which is not desirable since we try to balance the work between all the participants

as much as possible.

Machine A Machine B Machine C
Before:
Machine A Machine B Machine C Machine D

-BEES

Figure 6.1: Adding a machine using the n+1 approach for the replicas

In Figure 6.1 we can see the state of each machine before and after one machine
has been added. First bucket 4 is created with data moved from buckets 1, 2 and 3.
As this data is moved to bucket 4 their replicas have also to be deleted in buckets
1r, 2r and 3r. Then 3r has to be moved to Machine D in order to keep the n+1
locations correct. Finally bucket 4r is created in Machine A with a replica of all the

data present in bucket 4.

6.2.2 Removing a machine

To remove a machine from the system, we start by removing its replica from the
next machine. Then we move the replica stored in the machine we are removing

to the next machine. Finally the original data has to be distributed among the



CHAPTER 6. DATA REPLICATION 56

remaining machines, being created at the same time the replicas of each record in

the respective n+1 machine.

6.2.3 Considerations

Two things can be done in order to overcome the issue of overloading always the
first machine: we can keep a pointer, going around sequentially, allowing to insert
the new machines always in different places of the sequence; or we can keep and index
that maps the original data to each machine where its replica is stored, allowing for
the replicas to be kept in any place. This two approaches would grant that the work
of moving replicas would not always be addressed to the same machine, however it
would still mostly overload only two machines during each redistribution.

This algorithm allows to easily recover from a machine failure. When this hap-
pens we just have to copy back the replica located in the next machine and replicate
again the original data in the previous one.

Another good thing about this replication technique, besides simplicity and ease
of maintenance, is the fact that it can also easily provide a solution to improve
performance of the distributed database. Instead of each machine storing the two
buckets (original and replicated data), we can separate them into different machines.
Looking into the previous picture 6.1, we could use four machines to store bucket 1, 2,
3, 4 and another four machines to store the replicas 1r, 2r, 3r, 4r. The correspondence
between originals and replicas works the same way but this system can use the

replicated data to give a performance boost in querying processing.

6.3 Three buckets: original, replica and replica

fragment

With the previous algorithm the workload was not so distributed, being only two
machines responsible for most of the work. Hence, we looked for an implementation
where the workload regarding replication could be more distributed over the whole
system. In this approach we also try to move less replicas around whenever the
system changes.

In Figure 6.2 we show a representation of an algorithm where each machine is
holding three buckets: one with the original data (blue); one with a complete replica
of the data from another machine (green); one with a fraction of a replica (grey).

The first step is to load the data where there are two possible outcomes. If the
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number of machines is even then all the machines only have two buckets with data
(blue and green). If the number of machines is odd then all odd machines have
their replicas in the next machine and all even machines have their replicas in the
previous machine. The last machine, which is obviously odd, has its replica spread

among all the other machines (grey bucket).

6.3.1 Adding a machine

Machine A Machine B

Machine A | Machine B Machine C

Machine A Machine B Machine C

Figure 6.2: Adding a machine with replication using the three buckets per machine

approach

In the process of adding a new machine to the system this technique would proceed
in the following way. As we can see in Figure 6.2 each machine is divided in three
compartments. This schema shows how the distribution of the data evolves as new
machines are added. We start with a system of two machines and we want to grow
the system to three machines. This way original data from buckets 1 and 2 has to
be copied to Machine C in order to create bucket 3. This same data is also moved
locally in each machine originating the replica of bucket 3 in two fragments. Finally
the previous replicas of the data moved have to be updated in bucket 1r and 2r. In
picture 6.2 the black thicker arrows represent the data moved to create bucket 3 and
replicas 3r and the thiner red arrows represent the messages sent to the previous

replicas to update their data.
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Adding a 4th machine would imply as before moving original data from every
machine to the new one and updating the corresponding replicas. Then the fragment
replicas 3r would be moved into the new Machine D and the replicas of bucket 4
would be stored in Machine C.

We observed that when going from an even number of machines to an odd number
we only need to move few data, just a portion of each machine’s original to form the
new one. However we pay the price when we go from an odd number of machines
to an even number. Here we start by also moving a fragment of all the originals to
form the new one. Then we have to move an entire replica to the new machine that
also comes from all the other machines. Finally we need to replicate the original
data that was moved to the new machine.

Overall we see that the amount of data moved in the worst case is 1 original and
two replicas, the same as in the n+1 algorithm. However this is done here in a much

more distributed manner.

6.3.2 Removing a machine

Machine A Machine B Machine C

e LD v e
<7

Machine A Machine B

i

Figure 6.3: Removing a machine with replication using three buckets per machine

in a setting with an odd number of machines

This algorithm works linearly, which means that it only allows to remove and add
the last machine in the sequence. Like we mentioned in the beginning of the Chapter
the fault model adopted is crash-recovery, where any machine can temporally fail,
but it eventually returns and is reintegrated in the system. When recovering from a
fail, even without keeping any administration, we can easily know where is the replica

of each machine and which data has to be replicated again. The only exception
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occurs if the system had an odd number of machines and one machine, that not the
last, fails. In this case we would have the added work to replicate and fragment the
original data from the last machine to all the others again, because we cannot know
which specific fragment was erased.

The easiest way to remove a machine is by removing the last one in the sequence
of machines. When doing this we may consider two situations depending if the
number of machines is odd or even.

Looking at Figure 6.3 we see the algorithm removing a machine from an odd
setting. First each fragment of replica on corresponding to the original being re-
moved are locally merged with the original data of all the remaining machines. The
fragments that were moved locally have also to be copied to other machine in order
to create the respective replicas. Finally the last machine and respective replica
fragments can be removed.

The procedure for an even number of machines is a bit different. It works by
first evenly distributing the original data present in the last machine among all
the others and also creating the respective replicas. Then the replica stored in the
last machine is also distributed over the others (except to the one that has the
corresponding originals, that is the previous machine). Finally the replica of the

machine being removed is deleted and the machine is decoupled.

6.3.3 Fault Tolerance

To think about fault tolerance we have again to consider two different scenarios:
odd and even number of nodes. We can see that the original and replicas end up
stored in couples, so we can easily locate and restore a failed node. We now that
the 1st machine has its replica in the 2nd and the 2nd machine has its replicas in
the 1st. This goes on for the whole system, the 3rd machine has its replicas in the
4th and the 4th machine has it replicas in the 3rd.

The one exception is when we have a setting with an odd number of machines
and the last one fails. In this case we just need to retrieve the original data from
the replicas spread over all the other machines. Also for an odd setting, the failure
of any other machine forces the originals in the last node to be replicated again over
all the others.
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6.4 Completely Distributed

We have discussed a simple technique to replicate data, the n+1 algorithm, and

a more distributed and complex technique using three buckets per machine. Now

we are going to discuss a way to have all the machines involved in the replication of
the original data in each machine.

In this technique the system is perfectly balanced, having all the machines always

the same amount of data. Moreover every time a change occurs in the system, only

the necessary data to fill the new machine is moved, corresponding to the least data
1

possible to achieve a balanced system. When adding a new machine, - records will
be moved from every existent machine into the new one. When removing a machine,
all its data is distributed among the every remaining machine. Replication is handled
in a much more distributed manner comparing to the solutions previously presented.
Here when readapting the system all the machines have to participate in the process
contrasting with the previous approaches where most of the times only two or three
machines would be involved.

We have seen that using algorithms that do not care about the content of the
data allow a very efficient work when readapting to a new system configuration.
However not having any knowledge on the specific records held by each bucket causes
trouble when dealing with replication. We need to guarantee that two fundamental
requirements are being fulfilled: first not having the original data and its replica in
the same machine; and second in case of a machine failure it should be possible to
identify where the duplicates of the data are. It is necessary to identify at least to
which original correspond each replica fragment.

The algorithm we present is illustrated in Figure 6.4 where we have a system
composed by two machines each one with two buckets. The original data in bucket
1 of Machine A is replicated in the bucket 1r of Machine B and the original data
from bucket 2 in Machine B is replicated in bucket 2r of Machine A. If we add a new
machine to the system 1/3 of the original and replicated data from each machine
has to be moved to the new one in order to keep the system balanced. If we remove

one node all the data from that machine has to be distributed to the others.

6.4.1 Adding a machine

In Figure 6.4 we can see how the data distribution evolves when the system grows.
Here we have a set of keys from 1 to 12 and we start with them distributed and

replicated over two machines. Now we want to grow the system to three machines.



CHAPTER 6. DATA REPLICATION 61

Machine A Machine B
1,2,3,4,5,6 7,8,9,10, 11,12
7,8,9,10, 11,12 1,2,3,4,5,6
Machine A Machine B Machine C
1,2,8,4 7,8,9,10 5,6, 11,12
7,8 5,6 1,2 11,12 3,4 9,10
Machine A Machine B Machine C Machine D
1,2,3 7,8,9 5,6, 11 4,10,12
7 5 4 1 11 10 3 9 12 2 8 6

Figure 6.4: Adding a machine with replication using a completely distributed ap-

proach

First we have to take % keys from the original data in each machine, ship it to the
new machine and update the respective replicas. In this case we have to take one
third of the original data in Machine A and B, copy it to Machine C and update
the replicas in A and B. This fragments of data that were copied are then moved
locally to another bucket creating the replicas of C. Finally we equally distribute the
records between each replica fragment. In this case we have to move two keys from
the replica of Machine A (keys 3 and 4) and two keys from the replica of Machine B
(keys 9 and 10), to the new Machine C. We do not care about which data is in each
replica fragment, however each replica fragment must be identified to which original
it corresponds.

Adding another machine repeats the process. First we take one fourth of the
original data in Machine A, B and C and copy it to Machine D, updating the
respective replicas in A, B and C. The data fragments that were copied are then
moved locally to another bucket creating the replicas of D. Finally we balance the
replica fragments corresponding to each machine. Here we have to move the keys 2,
8 and 6 to the new Machine D.

6.4.2 Removing a machine

To remove a machine we just have to do the opposite we did to add one. Figure 6.5

shows the removal of Machine B. We start by merging locally each replica fragment
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Machine A Machine B Machine C Machine D
1,2,3 7,8,9 5,6, 11 4,10,12
7 5 4 1 1 10 3 9 12 2 8 6
Machine A Machine C Machine D
1,2,3,7 5,6,11,9 4,10,12, 8
5,11 4,10 3,1 12,8 2,7 6,9
Machine A Machine D
1,2,8,7,5 11 4,10,12,8,6,9
4,10,12,86,9 2,7,3,1,5 11

Figure 6.5: Removing a machine with replication using a completely distributed

approach

of the data being removed, with the original data in each machine. In the figure we
move locally to the originals the keys 7, 9 and 8. After doing this we also copy the
keys that were moved to the respective replicas of each machine. Finally we take all
the replica fragments in Machine B and we move them to the other machines in the

system, making sure that the replica’s fragments end up all balanced.

6.4.3 Fault Tolerance

We saw that in this technique when adding and removing machines from the system,
we avoid putting original data and the respective replica in the same machines
without knowing the exact data that is being moved. This is possible if we update
the replicas of the original data moved before redistributing the replicas. Every time
there is a change in the system we transfer the least amount of data possible to keep
the system balanced.

However in case one machine fails the scenario becomes more complicated. Look-
ing again to the top of Figure 6.5, let’s suppose that Machine B fails. In this case we
are able to precisely recover the originals that are gone just by putting together all
the respective replica fragments. However we have no clue on which data was in the
replica fragments of the failed machine. The system would easily be up and running
with the correct originals, but it would require the whole data to be replicated again

over all machines.
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An easy solution to overcome this problem, implies keeping some more admin-
istration. It consists on fragmenting the replicas by ranges and keeping a mapping
between each range and the machine storing it. This way when a machine fails, the
system can easily only copy the fragments of replicas missing in order to restore the
machine that is down. With this solution we just need to move the minimum data

possible to restore the system.

6.5 Original data and replicas in different ma-

chines

Finally one last way to go, would be using different machines for holding the
original data and the replicas. This would create two systems that could easily grow
and shrink independently. This can lead to a more efficient process of adding and
removing machines from the system, but at the same time can also mean waste of
computer resources as the machines with the replicated data would just be storing
data.

In this approach it is possible to add only new machines for holding the original
data, being the replicas handled in different ones. The replicas can even be only
handled in the same machine just being moved locally to a different bucket, in order
to allow a faster redistribution. Imagine that the user wants to add some more
machines in the cloud just to speed up the computation of some hard work queries
and afterwords return to the initial set up. This way the data is still kept replicated

and the distribution of the original data is done faster and more efficiently.

Algorithms Workload Distribution | Replicas Relocation
Two Buckets Bad Large
Three Buckets Medium Medium
Completely Distributed Good Minimum
Independent Systems Good Minimum

Table 6.1: Replication comparison in data distribution algorithm

Two important characteristics that differentiates this from the previous algo-
rithms are the simplicity of implementation and independency between original data
and replicas. Here we can also think about using different kinds of machines for the
original data and for the replicas, being the ones that hold the replicas oriented

for storage and aiming primarily for big capacity and fast data access. Moreover
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there is also the possibility of using the machines holding the replicas to query data.
This may be taken into account in some special cases for examples when queries in
the original data are taking too long and the replicas are used as additional query
machines.

In Table 6.1 we have a comparison between the algorithms just presented, con-
cerning the distribution of workload and the amount of replicas relocated when the
system is modified. We see that the two last algorithms hold the best characteristics
where more distribution can be introduced in the replicas and just the minimum

amount of data need to be moved when changing the system setting.



Chapter 7
Conclusion

In this thesis we have explored the possibilities of distribution in a database
system regarding a cloud setting. Cloud computing has been gaining more and
more popularity along the way, providing flexibility, ease of use and low costs to the
purchase of computational resources. This service can greatly enable many fields of
computer science, going towards a world where all wastes are minimized: computer
resources, time, money. However, deploying a distributed database in a distributed
system as dynamic as this is not an easy task. We focused on the study of data
distribution, finding that it comes with lots of data shipping, which can become

complex depending on the distribution algorithm approached.

7.1 Results and Overview

We started this work by investigating further the concept of cloud, also going
deeper into virtualization, the technique that makes it possible. We wanted to know
what takes to efficiently deploy a database in the cloud. Here, one of the most
important issues is how to distribute the data and how to efficiently redistribute it
in order to follow possible modifications in the system.

Concerning data distribution we have looked into previous related work that ad-
dresses the issue of efficiency and data balancing when readapting the system. While
some of them presented plausible solutions for data distribution, none appeared to
be designed for the elastic characteristics of a Cloud. The intermittent growth and
shrinkage of the cloud size challenges most algorithms in their efficiency regarding
data movement.

Some of the database products available in the market also claim the ability to

adapt the database to the clients needs in the cloud. However not much is said
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further on this topic and the available ways to do table partitioning let us thinking
that the data distribution is based on some kind of hash.

Our approach to distribution focused on techniques to redistribute data effi-
ciently in case changes occur in the system setting, aiming at a balanced system.
The various algorithms we investigated presented different solutions in terms of data
balancing, amount of records that need to be relocated and administration size and
complexity. We have chosen to implement the solutions that would readjust the
system with less data shipping.

The implementation of four algorithms have put us closer to the issues and results
one can find dealing with data distribution. The two most interesting algorithms
end up being Division and Consistent Hashing where we achieved a fairly balanced
system, with good performance, just by moving the minimum or almost minimum
data possible. Two aspects that clearly stand out during our study were: the less
data being moved the faster the algorithm performs; the disregard for the location
of each records does not add that much of performance. These observation do not
come as a surprise, however, for the database system to perform maximally, a well
balanced distribution of the data is vital. Avoiding any unnecessary move of data
here, means a win in performance of the actual grow or shrink operation.

Introducing replication on top of data distribution showed to be a complicated
action when applied as alternative of having replicas at the bucket level. We have
looked into four different ways to address replication over distributed data, trying
to distribute the workload and move the least records possible. The solutions we
presented enabled the system to keep working with a failure of one machine and

eventually restore the data.

7.2 Future work

Inserting a database in a cloud environment is a complex subject where many
issues have to be addressed. We studied the problematic of data distribution, but

even here space is still open for further work and research.

Cluster of Buckets One improvement that can be made approaching data dis-
tribution is to consider the addition and removal of clusters instead of single
buckets. This would perhaps be a more realistic approach, enabling the system
to expand and shrink in a more effective and significative way. Some adapta-

tions to the algorithms would be required in order to minimize the data moved
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in each operation.

Minimize Down Time When the system is growing or shrinking and data is being
moved, the clients are not able to query the database. One other topic to
address would be how to minimize the down time for clients, whenever the

system setting changes. Making use of the replicas could be a wise approach.

Cloud Experiments It would be interesting to set up a cloud environment and de-
ploy various instances of MonetDB to simulate a distributed database. Then,
with an application, manage the data and perform changes in the system set-

ting to see what are the real costs of shipping data inside the cloud.

Querying Compare the performance of querying data using map reduce and a tra-
ditional DDBMS. See if query performance would be lost using a distribution

technique like Division that does not keep the location of each record.

Updatable Database In this study we considered a static database where data
was not being updated while we were working. If we consider a database
where data is being updated, can we still use the same algorithms? What
are the changes that have to be made? Which consistency issues have to be

addressed?
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Appendix A

Gentoo Configuration

The Gentoo operative system was built following the documentation in the respective
website and the components chose to be installed were: stage, portage, genkernel,
system logger, dhcp client and grub. Before compiling the kernel it was set the

following flags:
/etc/locale.gen: en_US ISO-8859-1 en US.UTF-8 UTF-8
/etc/make.conf: USE="-nls -alsa unicode -fortran -X -qt -gtk -doc -ssl”

The kernel was compiled using genkernel by running the command #genkernel
—menuconfig which allowed to select what would it have support for. With the OS
set it was also installed MonetDB. At this point the system was occupying 2.0GB
of disk space and we still wanted it slimmer. So, it was made an inventory of all the
main directories and their corresponding sizes which allowed us to see that most of
the space was being taken by the directory /usr (1.8GB), more precisely in /usr/lib
(226MB), /usr/portage (662MB), /usr/share (145MB) and /usr/src (691MB). The
content of /usr/lib is indispensable for the well functioning of the system and Mon-
etDB, so it cannot be removed. On the other hand, in /usr/portage is kept the
Portage tree which could be erased and easily reconstructed at any time only be
doing emerge —sync. We also had the /usr/share folder where some important files
for applications are kept, not allowing to remove it completely. At last in /usr/src
there is the source code for compiling the kernel, which could be deleted, and even
if it necessary in the future it is always possible to get it back using portage. Having
this said, the idea was to reduce the OS size, putting it in a state that could easily

be updated and maintained.
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To see all the applications integrating the system it was installed the gentoolkit.
This way, by doing #equery list -1 all the installed packages were shown. Than, after
analyzing that list it was possible to sort out some applications that are not going
to be needed and which absence will not hurt system. The following components

were erased using the command #emerge -C':

app-misc/mime-types-8 (mail)
sys-apps/man-1.6f-r3 (manuals)
sys-apps/man-pages-3.22
sys-apps/man-pages-posix-2003a
sys-devel /gcc-4.3.4

sys-kernel /genkernel-3.4.10.906
sys-kernel /gentoo-sources-2.6.31-r6

sys-libs /timezone-data-2009s

Before removing gcc, it was created a package with it by doing #quicpkg gcc.
This will allow to easily recover gece at any time. Unfortunately there was still much
space being used and as portage was not going to be needed anymore, the content
of /usr/portage was completely removed. In /usr/source the kernel tree was still
there taking 267MB. This tree would only be necessary for installing programs that
compile against it. As we do not intend to do this it can also be removed. The next
target was to inspect /usr/share and see what could be disposed. It was deleted the

content of the following directories:

9M /usr/share/il8n
11M /usr/share/gtk-doc
16M /usr/share/doc
12M /usr/share/man
3.5M /usr/share/locale

Finally the temporary folders /tmp and /usr/tmp were emptied. The resulting
OS with MonetDB installed has the size 454MB. Perhaps a smaller system can yet

be obtained with a better kernel configuration.
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Data Schema

CREATE TABLE "ontime” (
"Year” smallint DEFAULT NULL,
”Quarter” tinyint DEFAULT NULL,
"Month” tinyint DEFAULT NULL,
"DayofMonth” tinyint DEFAULT NULL,
" DayOfWeek” tinyint DEFAULT NULL,
"FlightDate” date DEFAULT NULL,
”UniqueCarrier” char(7) DEFAULT NULL,
” AirlineID” decimal(8,2) DEFAULT NULL,
”Carrier” char(2) DEFAULT NULL,
”TailNum” varchar(50) DEFAULT NULL,
”FlightNum” varchar(10) DEFAULT NULL,
”Origin” char(5) DEFAULT NULL,
”OriginCityName” varchar(100) DEFAULT NULL,
”OriginState” char(2) DEFAULT NULL,
”OriginStateFips” varchar(10) DEFAULT NULL,
”OriginStateName” varchar(100) DEFAULT NULL,
" OriginWac” decimal(8,2) DEFAULT NULL,
"Dest” char(5) DEFAULT NULL,
”DestCityName” varchar(100) DEFAULT NULL,
"DestState” char(2) DEFAULT NULL,
”DestStateFips” varchar(10) DEFAULT NULL,
”DestStateName” varchar(100) DEFAULT NULL,
"DestWac” decimal(8,2) DEFAULT NULL,
”"CRSDepTime” decimal(8,2) DEFAULT NULL,
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"DepTime” decimal(8,2) DEFAULT NULL,
"DepDelay” decimal(8,2) DEFAULT NULL,
”DepDelayMinutes” decimal(8,2) DEFAULT NULL,
”DepDell5” decimal(8,2) DEFAULT NULL,
”DepartureDelayGroups” decimal(8,2) DEFAULT NULL,
"DepTimeBIlk” varchar(20) DEFAULT NULL,
?TaxiOut” decimal(8,2) DEFAULT NULL,
”WheelsOff” decimal(8,2) DEFAULT NULL,
”WheelsOn” decimal(8,2) DEFAULT NULL,
?Taxiln” decimal(8,2) DEFAULT NULL,
?"CRSArrTime” decimal(8,2) DEFAULT NULL,
7ArrTime” decimal(8,2) DEFAULT NULL,
”ArrDelay” decimal(8,2) DEFAULT NULL,

” ArrDelayMinutes” decimal(8,2) DEFAULT NULL,

” ArrDel15” decimal(8,2) DEFAULT NULL,

” ArrivalDelayGroups” decimal(8,2) DEFAULT NULL,
7 ArrTimeBlk” varchar(20) DEFAULT NULL,
”Cancelled” tinyint DEFAULT NULL,
”CancellationCode” char(1) DEFAULT NULL,
"Diverted” tinyint DEFAULT NULL,
”CRSElapsedTime” decimal(8,2) DEFAULT NULL,
” ActualElapsedTime” decimal(8,2) DEFAULT NULL,
”AirTime” decimal(8,2) DEFAULT NULL,

"Flights” decimal(8,2) DEFAULT NULL,

"Distance” decimal(8,2) DEFAULT NULL,
"DistanceGroup” tinyint DEFAULT NULL,
”CarrierDelay” decimal(8,2) DEFAULT NULL,
”WeatherDelay” decimal(8,2) DEFAULT NULL,
"NASDelay” decimal(8,2) DEFAULT NULL,
”SecurityDelay” decimal(8,2) DEFAULT NULL,
”LateAircraftDelay” decimal(8,2) DEFAULT NULL,
"FirstDepTime” varchar(10) DEFAULT NULL,
"Total AddGTime” varchar(10) DEFAULT NULL,
”LongestAddGTime” varchar(10) DEFAULT NULL,
”DivAirportLandings” varchar(10) DEFAULT NULL,
”DivReachedDest” varchar(10) DEFAULT NULL,
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”DivActualElapsedTime” varchar(10) DEFAULT NULL,
"DivArrDelay” varchar(10) DEFAULT NULL,
”DivDistance” varchar(10) DEFAULT NULL,
"Div1Airport” varchar(10) DEFAULT NULL,
”DivlWheelsOn” varchar(10) DEFAULT NULL,
”DivlTotalGTime” varchar(10) DEFAULT NULL,
”DivlLongestGTime” varchar(10) DEFAULT NULL,
”DivlWheelsOff” varchar(10) DEFAULT NULL,
”Div1TailNum” varchar(10) DEFAULT NULL,
”Div2Airport” varchar(10) DEFAULT NULL,
”Div2WheelsOn” varchar(10) DEFAULT NULL,
”Div2TotalGTime” varchar(10) DEFAULT NULL,
”Div2LongestGTime” varchar(10) DEFAULT NULL,
"Div2WheelsOff” varchar(10) DEFAULT NULL,
"Div2TailNum” varchar(10) DEFAULT NULL,
"Div3Airport” varchar(10) DEFAULT NULL,
”Div3WheelsOn” varchar(10) DEFAULT NULL,
”Div3TotalGTime” varchar(10) DEFAULT NULL,
”Div3LongestGTime” varchar(10) DEFAULT NULL,
"Div3WheelsOff” varchar(10) DEFAULT NULL,
”Div3TailNum” varchar(10) DEFAULT NULL,
”Div4Airport” varchar(10) DEFAULT NULL,
"DivdWheelsOn” varchar(10) DEFAULT NULL,
”Div4TotalGTime” varchar(10) DEFAULT NULL,
”Div4LongestGTime” varchar(10) DEFAULT NULL,
”Div4WheelsOff” varchar(10) DEFAULT NULL,
"Div4TailNum” varchar(10) DEFAULT NULL,
"DivbAirport” varchar(10) DEFAULT NULL,
"DivbWheelsOn” varchar(10) DEFAULT NULL,
”Div5TotalGTime” varchar(10) DEFAULT NULL,
”Div5LongestGTime” varchar(10) DEFAULT NULL,
”DivbWheelsOff” varchar(10) DEFAULT NULL,
"Div5TailNum” varchar(10) DEFAULT NULL

)i
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