
Comparison of Software Development

Methodologies based on the SWEBOK

by Eĺısio Maciel Simão

Supervisor

PhD. João Miguel Fernandes

October 27, 2011

Contents

List of Figures iii

List of Tables v

Acronyms viii

1 Introduction 1

1.1 Context . 1

1.2 Goals . 2

1.3 Structure of the Document . 2

1.4 Terms Elucidation . 3

2 State of Art 5

2.1 Software Engineering . 5

2.2 Brief History of SDM . 6

2.3 Software Qualities . 7

2.3.1 Correctness . 8

2.3.2 Reliability . 9

2.3.3 Robustness . 10

2.3.4 Performance . 10

2.3.5 User Friendliness/Usability 11

2.3.6 Verifiability . 12

2.3.7 Maintainability . 12

2.3.8 Re-usability . 13

2.3.9 Interoperability . 13

2.3.10 Productivity . 14

2.4 Knowledge Areas in Software Engineering 14

2.4.1 Software Requirements . 15

2.4.2 Software Design . 18

2.4.3 Software Construction . 22

2.4.4 Software Testing . 23

i

2.4.5 Software Maintenance . 27

2.4.6 Software Configuration Management (SCM) 30

2.4.7 Software Engineering Management 32

2.4.8 Software Engineering Process 34

2.4.9 Software Engineering Tools and Methods 35

2.4.10 Software Quality . 36

3 SDM Descriptions 38

3.1 Software Development Methodologies 38

3.2 Traditional Development Methodologies 39

3.2.1 Waterfall Methodologies 39

3.2.2 Transformation Methodologies 44

3.3 Evolutionary Methodologies . 45

3.3.1 The Win-Win Approach 45

3.3.2 Spiral Methodologies . 48

3.4 Rapid Application Development 51

3.4.1 Changing Plans . 51

3.4.2 RAD . 51

3.5 Agile Development Methodologies 56

3.5.1 Agile Manifesto . 56

3.5.2 Scrum . 58

3.5.3 eXtreme Programming . 64

4 Results 70

4.1 Method . 70

4.2 Waterfall . 71

4.3 Spiral . 75

4.4 Rapid Application Development 79

4.5 Scrum . 83

4.6 eXtreme Programming . 87

5 Conclusions and further work 92

5.1 Conclusions . 92

5.2 Further Work . 94

Bibliography 99

ii

List of Figures

3.1 The waterfall model . 40

3.2 Spiral Model, Boehm,1988 (CC) 49

3.3 Rapid Application Development 54

3.4 The Scrum Sprint [1] . 62

3.5 The Scrum Life Cycle [1] . 63

3.6 The Extreme Programming Life Cycle [1] 69

4.1 Waterfall: Software KA satisfaction bar chart 75

4.2 Spiral: Software KA satisfaction bar chart 79

4.3 RAD: Software KA satisfaction bar chart 83

4.4 Scrum: Software KA satisfaction bar chart 87

4.5 XP: Software KA satisfaction bar chart 91

iii

List of Tables

3.1 Top-Down and Bottom-Up Strategies 49

3.2 Risk in software projects . 49

3.3 Agile Manifesto . 56

3.4 The Twelve principles behind the Agile Manifesto 57

3.5 Pig and Chicken roles: the joke 59

4.1 Waterfall: Software Requirements, Software Design and Software

Construction KA . 72

4.2 Waterfall: Software Testing, Software Maintenance and Software

Configuration Management KA 73

4.3 Waterfall: Software Engineering Management, Software Engi-

neering Process and Software Quality KA 74

4.4 Spiral: Software Requirements, Software Design and Software

Construction KA . 76

4.5 Spiral: Software Testing, Software Maintenance and Software

Configuration Management KA 77

4.6 Spiral: Software Engineering Management, Software Engineering

Process and Software Quality KA 78

4.7 RAD: Software Requirements, Software Design and Software Con-

struction KA . 80

4.8 RAD: Software Testing, Software Maintenance and Software Con-

figuration Management KA . 81

4.9 RAD: Software Engineering Management, Software Engineering

Process and Software Quality KA 82

4.10 Scrum: Software Requirements, Software Design and Software

Construction KA . 84

4.11 Scrum: Software Testing, Software Maintenance and Software

Configuration Management KA 85

4.12 Scrum: Software Engineering Management, Software Engineering

Process and Software Quality KA 86

iv

4.13 XP: Software Requirements, Software Design and Software Con-

struction KA . 88

4.14 XP: Software Testing, Software Maintenance and Software Con-

figuration Management KA . 89

4.15 XP: Software Engineering Management, Software Engineering

Process and Software Quality KA 90

v

Agradecimentos

Gostaria de agradecer ao meu orientador o Prof. Doutor João Miguel Fernandes

pela paciência e cŕıtica construtiva dada durante a execução deste documento

realizado em simultâneo com uma actividade profissional intensa o que aumen-

tou ainda mais o desafio para mim e para ele.

Gostaria também de agradecer à minha famı́lia (Mãe, Pai e Irmão) pelo apoio

incondicional dado que reflecte o verdadeiro conceito de famı́lia e que promove

o que de melhor há em mim.

Finalmente à Liliana, por ser uma companheira de vida, e por estar sempre pre-

sente nos bons e maus momentos tanto para criticar quer para motivar, quando

é preciso.

Obrigado!

vi

Abstract

We are facing a period where software projects have a huge dimension involving

small resources, high risk and a wide range of available approaches. In this

scenario the Software Development Methodologies (SDMs) can prove to be a

useful ally, but very dangerous and even fatal if misused. The big issue around

this matter is how to choose the appropriated SDM that fits a specific project.

In the given scope, this dissertation describes a framework for comparing SDMs

delivering a set of procedures that should be followed when the choice of an

SDM is made. The dissertation approaches the framework by applying it to a

group of SDMs that were selected by their popularity and significance. This

exercise is done to prove the concept of the framework and to provide a base

comparison, with each chosen SDM, that can, and should, be extended by those

who choose to use the framework.

The classification is achieved by defining a scale that goes from total satisfaction

to no satisfaction, with an intermediate level of partial satisfaction, that is ap-

plied to a set of keys. These keys are based in SWEBOK (Software Engineering

Body Of Knowledge) that describes and explains the different Knowledge Areas

(KA) stating their common issues and best practices. To explain the frame-

work, the dissertation analyzes each KA and evaluates the selected SDMs by

assessing how their approach complies with SWEBOK’s knowledge areas, using

the previous stated scale.

The framework delivered can be enriched by its user who should provide weights

to each KA regarding the project in which the SDM will be used and previous

experiences.

vii

Resumo

Actualmente atravessamos um peŕıodo em que os projectos de software têm uma

grande dimensão, envolvendo baixos recursos, alto risco e com um variado leque

de abordagens a escolher. Nestes casos as Metodologias de Desenvolvimento de

Software (MDS) pode ser um bom aliado, contudo se mal escolhido pode ser

extremamente perigoso ou até fatal. A questão que se levanta então é, qual a

metodologia a escolher.

Neste contexto, este documento descreve um conjunto de procedimentos a seguir

para comparar MDS. Os procedimentos são então aplicados a um conjunto de

populares MDS provando o conceito aqui apresentado, disponibilizando uma

comparação de base com uma explicação para cada metodologia escolhida que

pode, e deve, ser estendida por quem utilizar o conjunto de procedimentos aqui

descritos.

A classificação é conseguida através de uma escala que vai da satisfação total à

não satisfação, com um ńıvel intermédio de satisfação parcial, para cada uma

das chaves. As chaves escolhidas são baseadas no SWEBOK (sigla de Soft-

ware Engineering Body of Knowledge, em Português, Corpo de Conhecimento

para a Engenharia de Software), que descreve e explica as diferentes áreas de

conhecimento da engenharia de software com referência às melhores práticas

e problemas comuns para cada uma delas. Para o conjunto de procedimentos

apresentado, cada uma das áreas de conhecimento é analisada e as MDS são

avaliadas de acordo com a forma como abordam cada uma das àreas de conhec-

imento do SWEBOK utilizando a escala anteriormente referida.

Estes procedimentos podem ser enriquecidos por quem o escolha utilizar atribuindo

pesos a cada uma das áreas de conhecimento com base no projecto a que a MDS

será aplicada e a experiências anterirores.

viii

Acronyms

ADM Agile Development Methodologies

BDUF Big Design Up Front

CASE Computer Aided Software Engineering

CASL Common Framework for Algebraic Specification

CMMI Capability Maturity Model Integration

DSDM Dynamic systems development method

FDD Feature Driven Development

ITIL Information Technology Infrastructure Library

KA Knowledge Area

KLOC Kilo Line of Code

PMBOK Project Management Body of Knowledge

RAD Rapid Application Development

RIPP Rapid Iterative Production Prototyping

ROI Return of Investment

SAGE Semi-Automated Ground Environment

SCM Software Configuration Management

SDLC Systems Development Life Cycle

SDM Software Development Methodology

SQM Software Quality Management

SSADM Structured Systems Analysis and Design Methodology

ix

SWAT Skilled Workers With Advanced Tools

SWEBOK Software Engineer Body of Knowledge

TDM Traditional Development Methodologies

UML Unified Modeling Language

VDM Vienna Development Method

XP eXtreme Programming

x

Chapter 1

Introduction

1.1 Context

The importance of software in the world is constantly increasing, and with the

increase of its importance also the size of the software systems is increasing

as well as the effects of its development. These effects have consequences on

the way software is developed. Software development of huge projects involves

huge amounts of money and time, which have to be used in the correct way for

delivering the final product with the minimal cost.

With the evolution of software development, different approaches have been pre-

sented and used to deliver a software product with aim of reducing time and cost

of its development, without impairing the quality of the product. Each approach

has its benefits and criticism but they all have similar goals, delivering a quality

product in the fastest and cheapest way possible. When we look for a Software

Development Methodologies (SDM) we have a set of very different perspectives,

and even different approaches for the same perspectives, to choose from. These

SDMs define the way we should organize our teams, and the way we should

organize our activities, so they provide a good guideline for achieving our goals.

So one big question that arises when starting a project is which methodology to

choose. Perhaps an even bigger question is how can one answer that question,

giving that, each project has its own specific characteristics to take in account.

Most companies simplify this issue by adopting one or more methodologies and

then all their projects are done using a specific methodology. But, given the

quantity of different kind of projects a software company is nowadays involved

in, is this the right answer?

In times of economical crisis, where budget and resources are more limited than

ever, a bad choice or a misuse of a methodology can lead to its death or to

spending more money and resources than expected.

1

Introduction Introduction

So when it comes to choose a methodology we should rely on something that

assures that we are beginning our project using the correct methodology, for the

specific characteristics of the project in cause, that the methodology fits those

characteristics, and will guide the development the cheapest and fastest way

possible. So the big issue is, how can one choose the best SDM for one project.

1.2 Goals

This dissertation provides a set of tools that one can rely upon when choosing

an SDM. In this document you will find an explanation of the framework used,

and the comparison of some of the most well-known SDMs.

To provide a comparison of SDMs and not to be biased by the project involved,

empirical testing and evaluation of the projects was not a desirable solution,

so a comparison method should be used without regarding the project it self

but a established set of facts and activities involved in the development of a

software project. The goal is to provide a framework for evaluating SDMs and

output a mean of comparison between them, that can be adapted according to

the project and context of the software system to develop.

The principle of comparing SDMs is the main goal of this dissertation, and it

must be clear that the intention is not to provide the best SDM. So, if the goal is

achieved, the framework output in this dissertation, together with someone who

is able to identify which characteristics are most important to a given project,

should be able to aid the election of an SDM, that fits the best to the project.

That process can be done by, after measuring the approach of the methodologies

according to key factors, and giving weights according to needs of the project

and its characteristics. Then we can get a comparison of the SDM with an

output of accountable metrics according to the characteristics of the project.

Thus, the subjectivity is in the side of the one that chooses, by determining the

weights, and not by the classification of each SDM. The choice of weights can

also be the flaw of the framework, but it helps to serve the one who chooses the

weight. The problem of correctly choosing the weights is a problem that won’t

be addressed during this dissertation, but it is a problem to take in account

when making this choice.

The framework delivered here is provided together with the explanation of each

key factor for the comparison of SDMs.

1.3 Structure of the Document

The document is structured in 5 main chapters:

2

Introduction Introduction

� Introduction: considerations about the structure of the document and

the terms used during the text. A clarification of the objectives of this

dissertation and the context involved is also done in this part of the doc-

ument.

� State of the art: in this chapter an overview of the software engineering

topics is done composed by a brief history of software engineering, clarify-

ing the different edges of software quality and explaining each knowledge

area that is used in the framework.

� SDMs Description: in this chapter the concept of SDM is explained

in detail and a group of popular SDM is explained and analyzed. This

analysis will be used further to support the framework proposed in this

dissertation.

� Results: in the results, the analysis done previously for each of the SDM,

will be used with the framework proposed in this dissertation and the

data produced is delivered providing the conclusions and satisfaction data

according of the framework. This data consist on the satisfaction classifi-

cation and an explanation for this classification.

� Conclusion: the final chapter is a wrap up of the work done, stating pros

and cons of the approach taken in this dissertation and referring to further

work that can be added to this dissertation.

1.4 Terms Elucidation

When talking about software development methodologies SDM an elucidation

about the terms used is needed, since they vary from author to author. In this

dissertation the term software development methodology (SDM) is used

when referring to a set of practices and roles combined with a definition of

software life cycle, also referred as model that supports a certain philosophy of

development.

So, when an SDM is referenced it should be read as the combination of the

following concepts:

� Philosophy: the philosophy of an SDM is the principles behind the SDM,

the description of the SDM should support this philosophy. It is frequent

to see a lot of authors defending a certain philosophy and criticizing an

SDM, that allegedly follows some philosophy, of not doing it, so some

times it is difficult to clearly define an SDM philosophy, because when

defining an SDM you are putting in practice your own interpretation of

3

Introduction Introduction

some philosophy. When talking about philosophies we also have to take

in account the level of abstraction a philosophy have, it can be divided in

sub-philosophies (a good analogy is with religion, for instance, there are a

lot of philosophies underneath Christianity, and even more religions that

practice these philosophies with roles and practices underneath those).

� Software Life Cycle: is the backbone of the SDM. It defines the se-

quence of activities that the software development should follow. It is also

responsible for defining its precedences and outputs, according to the cycle

of development. The software life cycles can be categorized by the way the

activities can be arranged, most of the times associated with the software

development philosophy. These categories can be related to the nature of

the development cycle, for example being linear or incremental/iterative,

or the way they address the sequence of activities, for example, big design

up front (BDUF).

� Practices: define the activities the SDM should follow, considering its

life cycle. These practices come obviously associated with the software

life cycle, and with the definition of roles. The practices define the need of

performing certain activities to support the philosophy the methodology

is build on. Some SDM practices become popular and notable and are

sometimes adopted by other methodologies or ad-Hoc development (one

of the most notable examples would be the practice of pair-programming

and eXtreme programming).

� Roles: defining the scope of action and profile of the project’s team mem-

bers. This involves splitting up the activities for each members, but also

defining the main focus of each team member by addressing them a role.

The roles may also involve responsibility of outputs and procedures.

The separation between some of these concepts it is not always obvious.

The software life cycle is associated with the activities and roles and obviously

the philosophy can also consider roles and practices if its abstraction level is

sufficiently low. The separation of these concepts is important but an SDM is

composed by the combination of these factors, and when they come together

they define an SDM’s weakest and strongest links.

Some SDMs have several versions, that may differ on the life cycle or in estab-

lishing different practices and roles. In this dissertation we also extrapolate some

software life cycles adopting the practices and roles that are more addressed in

the bibliography or most used in the industry.

4

Chapter 2

State of Art

2.1 Software Engineering

In the early days of computer science, programming was viewed essentially as a

sequence of instructions and it’s main problem was how to place it [11]. All the

problems were well understood and normally were used to solve problems, and

thereby written by the people that were trying to solve it, so no other person

would be involved.

Then computers started to be more common and the amount of people using

them increased, and the concept of programmer emerged. People were asking

others to write their programs implying the use of more evolved, and complex

languages. The introduction of the programming business started with the sep-

aration of the user, the software and its development, thereby the user had to

specify what he intended and then the programmer would have to translate it

into programming notation [15].

With the increase of the complexity of software to develop and of the amount

of people involved in the process, communication took an important role in the

process, specially in transversal tasks (tasks that involves different roles within

the team). The increase of the importance of communication was also justified

by the increase of misinterpretations of what the user intended leading to big

differences to what was actually being developed.

The term Software Engineering was first formally used in 1968 during a

NATO conference [34] in Garmish (Germany) because and during the so called

software crisis [12] derived from the increase of complexity and computing power

of the software projects. Most of the projects were major flops and some of them

with irreversible damage including the death of people [25].

Some authors have defined Software Engineering as the development of soft-

ware by many people and with many versions [33]. This definition brings out

5

State of Art State of Art

the difference between programming and software engineering, while the first

is used to write programs the second is concerned with the process to deliver

a program developed by numerous people and with different areas of action.

Therefore a software engineer has to be able to translate what is intended for

the software to perform and also concern all the different levels of abstraction,

from the user point of view to the specific aspects of the programming language,

and in different stages of the development process. Software engineering as an

obvious relationship with computer science but also with other areas of knowl-

edge, or disciplines, such as management and system engineering, from which

much information as been used and adapted to software engineering. Therefore

the way the team interacts, and the definition of stages of a project, became an

essential part of software projects and different definitions of how to structure,

plan and control the software development, became a major study in software

engineering. The arising of software engineering also brought up the terms of

Software Life Cycle and SDM.

2.2 Brief History of SDM

During the so called, and referenced previously, software crisis, software engi-

neering research was focused on finding a solution for the problems of produc-

tivity and quality that were taking over so many projects. This originated a

series of developments that were of great importance to software engineering.

The concern by the way software was developed started with some authors ad-

dressing specific aspects of the process, an example of this kind of output is

structured programming [11]. Most authors suggest this represents a naive ap-

proach for an SDM, and do not consider it as such, claiming that an SDM is an

integrated set of methods and tools that define the life cycle of software develop-

ment by describing its activities and roles [3]. So they suggest, that Structured

programming, doesn’t fit this definition and should rather be considered as a

technique or practice. Nevertheless this concern with the the way software is

developed is strongly related to SDM and can be consider as its ancestor. An-

other example is object oriented programming, a program paradigm, that also

urged during this time, providing tools to deliver better software and stating

software development principles to improve the quality and productivity of the

development process. During this crisis, the use of formal methods to prove

software correctness also had huge developments. In the social component of

software engineering and with the establishment of the programmer profession

the definition of ethics and principles were also evolving quickly. Sooner these

developments were becoming silver bullets, believed they solved the problems

that were taking over software projects. In 1986, Frederik Brooks wrote an ar-

6

State of Art State of Art

ticle about how in that decade none of the software techniques would bring an

improvement to software production by it self [8], [19], representing the scep-

ticism that was also associated with which those developments represented by

them selves.

Parallel to these developments the concept of the software process, and its rep-

resentation, emerged and sooner the definition of the, now called, traditional

development methodologies also appeared. These methodologies were charac-

terized by the use of linear and step-forward software development, and based

in models (or software life cycles) that defined the steps that a software project

should follow.

Another milestone on the history of SDM was created by the combination of

ideas from several scientists, later formalized by James Martin in a book in 1991,

which had the same name as the SDM developed in the 80’s, RAD (Rapid Appli-

cation Development). RAD intended to be a response to the called TDM (Tra-

ditional Development Methodologies) that allegedly its use implied the projects

to be so long that the prerequisites defined in the beginning of the project, by

its end were already obsolete, causing the solution to be useless and therefore

to be a waste of money and resources.

These critics originated the rising of the called ADM (Agile Development Method-

ologies) with Jeff Sutherland, John Scumniotales, Jeff McKenna and Ken Schwaber

[36] adapting the method based in the work of Takeuchi e Nonaka [43] applied

to the Software Development. The work of Takeuchi e Nonaka was based in a

rugby technique called Scrum, name which the SDM inherit.

Around 1996 Kent Beck formalized the concept of eXtreme Programming (XP)

in his book “Extreme Programming Explained: Embrace Change” [5]. This ap-

proach was used previously by Kent Beck and other authors, but without the

proper notability and only in industrial projects without any formal definition

of the SDM, at least externally to the companies in which it was being used.

In 2001 some of the authors responsible for this SDM gather and came up with

the agile manifesto, a sequence of principle that they all subscribe and that is

available to new subscribers, this subject has a further explanation in 3.5.1 and

more on this subject can also be found in the bibliography [42].

2.3 Software Qualities

Software quality is intrinsically related to SDM, as it constitutes the objective

of its use. The different kinds and types of qualities are also related with the dif-

ferent phases of the software life cycle. The quality of the software produced is

one of the most crucial responsibilities of the act of software engineering. Other

fields of engineering have much more tangible ways of perceiving that quality,

7

State of Art State of Art

civil engineers have ways of demonstrating the robustness of their buildings,

and a mechanical engineer has to demonstrate that an engine works properly.

The kind of products produced by these disciplines is much more known to the

humanity and interacts directly with the common sense of people. The product

of software engineering is a software system, even if it is a much more abstract

product, it still is, a product (produced by the act of software engineering), and

becoming very quickly a product that is used by everyone. Therefore the quality

of a product as to be assured, and the problem of defining the quality of the

product as been since the beginning of software engineering a challenge which

as lead to a amount of discussions and theories around it.

Even being a different task to define what is a software system with quality,

there are some formalisms that are, nowadays, common to most software sys-

tem, without regarding that are specific qualities for different kinds of software

systems (a web page, has different quality measures than a core system of a

bank).

The term quality is not only focused on the system produced (the software

system) but also in the way that the product is developed (the software devel-

opment process). Additionally, quality can be divided into two major groups,

the external qualities which are visible to the users and to the people that

interact with the system, and the internal qualities those which are only visi-

ble to people that are involved in the development process (people that develop

the software system and the ones that have to maintain it).

In this section we will approach some of the qualities that are common to most

software systems, even if for some projects the weight for each of the qualities

changes. This section will present a definition for the terms that are further

used during this dissertation concerning the quality of software systems. A cor-

rect definition of this terms/concepts will be particularly important during the

explanation of the SDM. During this, a correlation between quality and the

SDM phase, its activities and roles will be established clarifying its goals and

purposes. So to fully understand the goals of a certain activity or roles is im-

portant to understand what each of this concepts mean and from which point

of view they will be addressed.

2.3.1 Correctness

The term correctness is intrinsically connected to software specification. A

software specification is where it is stated what a software system is intended

to do. The formalism of this specification can vary, the field of formal methods

in computer science take the approach of defining the specification with aid of

8

State of Art State of Art

algebras and co-algebras, which is than used to proof the correctness of the

software using these formalisms. Is also very common that the term requisites

is used along the specification, which is a much more empirical way to specify

what is intend for the system to do. Nevertheless, the correctness of a software

system is the act of comparing an implementation against its specification. As

stated above, the correctness can be verified using mathematical formalisms,

the algebras and co-algebras, or by a more empirical way, by performing tests.

These techniques are related to the way the specification as been done, and

also, although not directly, by the implementation it self. For example, the use

of high level languages, specially functional languages, turns the use of formal

methods more easy to perform, there are even specification languages (such as

VDM, CASL, UML to more information, please refer the bibliography: [45],[9]

and [44], respectively). On the other hand, empirical specifications, and the

prove of correctness, can also determine how software is developed, one of this

approaches is commonly known as Test Driven Development, and the prove

of the specification is done up-front in the beginning of the project and the

implementation will then be done to surpass the tests previously developed.

2.3.2 Reliability

This concept is highly connected with correctness. Reliability is by definition

the ability of a software system to perform which it is required to, and under

the conditions it was designed for. It would be of common sense to say that if a

software is Correct, then it should be reliable, if the specification fulfill the user

requirements and if it does not have coding errors. Although, even if the software

is correct it does not imply that is reliable, it could suffer from performance

issues, or functional errors that could turn the software into not reliable. Also

the concept of reliability is relative, because an error in the program can be

harmful and by that you can still rely on the system. Relationship between

reliability and correctness can be retain by imagine a mathematical domain C
R, where C represents correctness and R reliability. Although, in a practical

way a program can be incorrect but reliable, if a the specification does not fulfill

what is intended but the implementation does (and all the issues of reliability are

fulfilled), than the software is reliable but not correct (against that particular

specification). Even though, if we abstract the term of the specification to

the level, of the program doing what the user intended, and not to the

representation of what the user intended, then correctness also involves a

correct specification (which would fail in the above example), and therefore the

previous theorem is true.

9

State of Art State of Art

2.3.3 Robustness

A software system is robust if it is reliable in not only the circumstances that

were predicted in requirements and specification. These circumstances are the

ones that are not in power of the developer to avoid, such as network crashes or

erroneous input from the user. Comparing to classical engineering disciplines,

such as, a motor of a car, one can say that a motor is more robust than other

because it resists more time to the erosion of the sand in the desert, or be-

cause the pieces are more resistant to higher temperatures compared to other

engines. Even in these cases, the concept of robustness is not absolute, and

software robustness it can be related with different aspects of the software sys-

tem. Robustness is commonly addressed when talking about operating systems

or core systems, and normally comparing the time it can perform without faults

or without the need of restarting the system. Robustness also measures the ca-

pability a system has to recover from faults and the way it interacts with other

systems when a fault occurs. Robustness is normally achieved for preparing the

system to have a certain behavior under fault and to address the best use of its

environment.

Like stated previously robustness is a relative concept and for that reason nor-

mally a software system is proven robust against a standard, that should also be

stated in the specification (leading that correctness can imply robustness), and

standards are commonly delivered by some institutions and companies which

can address which the software system should be ready for and normally the

tests it should be exposed before being considered robust.

2.3.4 Performance

Some disciplines in computer science do not consider the performance as effi-

ciency (the act of performing a task), and a program is considered efficient if

it ends performing the desirable act (less the infinite tasks which derive from

the conditional task e.g. while). In software engineering, as it is more into the

empirical experience of software development, efficiency is turned into the use of

computing resources in an economical way, strongly connected to the concepts

studied in the field of complexity. In software engineering, a software should

perform in a reasonable amount of time (bringing back the concept of reliabil-

ity 2.3.2) . If a user can rely on a software it should perform tasks without

the lost of a huge amount of time, which would lead to a lack of productivity

2.3.10, and would affect usability 2.3.5. Some would think that the performance

quality with the increase of computational resources would become an obsolete

issue, even so, by definition performance and efficiency would demand the use of

10

State of Art State of Art

these computational resources economically, but also, the argument rests with

the introduction of mobility, Internet and with virtualization. Therefore the use

of the resources in a proficient way, is required to the quality of the software

produced.

Regarding the complexity of algorithms, a very famous approach for this anal-

ysis, is the asymptotic approach commonly know as big-O notation which de-

scribes the behavior of a function when its limits tend to infinite value. The

performance can be calculated using different kind of approaches from the use

of calculus of the worst case scenario or more empirically by monitoring the

activity and measuring it, with simulation, for example, where the performance

of the model is evaluated. It is also common to use stress testing to see how

performant a software system is (this kind of testing is also normally used to

measure robustness 2.3.3).

2.3.5 User Friendliness/Usability

Usability as been an increasing issue, with the massification of the use of com-

puters. This is one of the most subjective software qualities. A software system

could be considered user friendly for a mathematician but it would be very hard

to use by a children. User Friendliness is also connected to the disciplines of

design in which some standards and best practices exists, but it still relies in a

huge amount of subjectivity, regarding someone’s taste and accommodation to

previous experiences. Some methodologies to address this issue always consider

a user representative group that can help to understand the taste and previous

experience of a user and accommodate the design . Of course when a software

system is intend to mass distribution this kind of scenario is more difficult to

predict but benchmarking and statistical input can help minimizing it.

In this particular quality, one can see the humanizing factor that software engi-

neering introduced when compared to other areas of computer science, specially

when it considers directly the communication issue regarding the concern that

software is transmitting to the user what is intended to transmit and in a way

that the user can understand the output given.

The user friendliness is also connected to other qualities stated above, such as

correctness 2.3.1, a software that does not give the user the correct output is

not user friendly, as it induces the user into assuming erroneous facts, also if a

system is not performant it will not be very friendly to the user, as it has to

wait an undesirable amount of time for the software to respond or to act, this

is also related to the performance quality 2.3.4.

Previous experience and the background of the user cam also influence usabil-

ity.Some methodologies suggest a role, that can be address using a representa-

11

State of Art State of Art

tive group, or event take into account, specially when the software is targeted

to mass-us, benchmarking and statistical input to help on this matter.

2.3.6 Verifiability

The qualities stated previously were centered on the desired behavior of the

system produced, verifiability and the further explained qualities are focused on

what the properties of the code produced allows to do. Verifiability is on of the

most forgotten qualities of software. The possibility to verify that a software

system is correct is indeed a difficult task if the abstraction level of the language

on which the software is produced is very low, even the use of good practices on

the structure of the code, and it’s modularization affect how verifiable a software

is.

This is a quality that easily fit in the group of internal qualities, but if you take

into account that a software of Internet banking must insure the user that the

security is verified we can bring out the quality to fit also as an external quality.

To measure this quality is not always an easy task, and is done mainly in an

empirical way by trying to prove that the software is correct. The ways of per-

forming a verification, have already been stated above, they can be calculations,

with strong formalisms, or monitoring a system and producing an analysis of

its behaviour (auditing a software system).

This quality is easily obtain by assuring during the process of development that

the software is verifiable with best practices, such as proper commenting the

code and providing test cases (or formal methodologies) for every functionality

developed.

2.3.7 Maintainability

To maintain software is necessary because a software system is intend to evolve

with time, considering adaptation of the context where it is built in (e.g. user,operative

system, system core, hardware), or the lack of some of the referred qualities,

which would imply a modification in the software system, so it gains a correct

behavior. Studies as been carried stating that, in some projects, the time used

in maintenance is bigger than the time taken to develop the system. Nowadays

with the increase of outsourcing, systems are often developed by people that

will not be responsible for maintaining the system, and after the final release of

the product, will no longer be with contact with the system. Maintainability

is a quality that customers take into account with an increasing weight in the

project development and management.

Most SDMs, since their main target is the development of software, don’t have

a specific maintenance phase (even though, specially the TDMs, do have this

12

State of Art State of Art

phase), but the main concern of an SDM should be to properly provide the

conditions for future maintenance, this can be done by providing tools and doc-

umentation that can be used in the future and addressing good practices when

developing the system (e.g. commented/understandable code, encapsulation).

2.3.8 Re-usability

The concept of re-usability as two sides, one as an internal quality, that the

code produced to some determine module of the project can be used in another

system if serves the same purpose and the other, an external quality while

the program can be used in different contexts without the need of rewriting a

program. The common example when describing re-usability is to address the

example of the batch command, when is intended to perform a simple operative

system task, one could write an assembly or C program to execute an amount

of basic actions, on the other hand it could built a command line instruction or

a shell script, that is in fact reusing the amount of work that a batch command

requires, and it would be probably a more efficient way of doing it.

From the point of view of the software life cycle, it can also reuse parts of the

project with different ways, if a calculation is needed in various modules of the

project, maybe is a good start to do a generic calculation module, that can be

reused by the other components of the project.

2.3.9 Interoperability

The question of interoperability has two branches :

1. First is portability, which means the ability of a software to be installed

in different environments. To measure interoperability is extremely hard,

and it’s normally done when designing the software depending on the

environment; and

2. and the other is integration, which defines the coexistence with other

software elements. This is really crucial in some particular cases, such

as decision aid software or core systems, where is common that many

programs use the information generated by other software systems.

In some ways portability affects integration, because when trying to make a cross

platform software, the integration with the different systems is sometimes tricky

due to the differences between platforms. Some software companies, prefer

to deliver different releases of the same product to different platforms, taking

advantage of the development made for each of the release 2.3.8. Integration

can also be assured by creating a layer that addresses this problem specifically

by creating components to assure the coexistence with other software elements.

13

State of Art State of Art

2.3.10 Productivity

This is mainly an internal quality, and not referring for the productivity of the

software it self, but from the process of developing the software. The produc-

tivity is normally measured by the amount of deliverables, or for the evolution

of the project it self. A lot of constraints are introduced when measuring pro-

ductivity. In a group of individuals, the productivity is not the sum of the

particular productivity of each member of the group. A team can maximize or

minimize the productivity of each member. The SDM and project management

practices crucial for the productivity of a team.

The productivity is by far the most influential quality when determining which

is the most appropriated methodology to develop a project, and also where most

SDM focus on increasing. Unfortunately is also one of the most unpredictable

qualities, causing it to be one issue that as been studied extensively. The SDM is

responsible to aid the productivity and to provide tools/methods to measure it,

and this is probably where most methodologies diverge, in the balance between

increasing productivity and where to cut the fat of the project.

2.4 Knowledge Areas in Software Engineering

In this section we analyze the knowledge areas of software engineering according

to the SWEBOK (Software Engineer Body of Knowledge) [18]. The SWEBOK

provides a division of the knowledge areas (KA) into sub-areas. The KA within

the scope of Software Engineering are:

� Software requirements;

� Software design;

� Software construction;

� Software testing;

� Software maintenance;

� Software configuration management;

� Software engineering management;

� Software engineering process;

� Software engineering tools and methods; and

� Software quality.

Now each one of these knowledge areas is going to be explained with further

detail.

14

State of Art State of Art

2.4.1 Software Requirements

� Software requirements fundamentals

A requirement is defined as a property of a real life problem that must be

exhibited by the software and the use that is given to it. Requirements

define not only the functionality of the system, as it can describe technical

details or automation tasks, it as a wide range of definition which must

be verifiable.

Software requirements can describe the properties of the product it self,

what it should be able to do, and how it should be done. These require-

ments derive from the system requirements as they define how hardware,

firmware, software and all the support elements of the system. They de-

fine the system as a whole, what all its components should or should not

do.

Functional requirements addresses to functions and actions that the soft-

ware can perform and non-functional requirements are defined as con-

straints to the product, normally addressed to the qualities of the software

to produce (section 2.3).

Emergent requirements, refer to properties that cannot be seen into func-

tions of the software but as an overall goal of the software as they rely on

the system architecture and on the system requirements.

Quantifiable requirements are desired when it’s possible, specially when

addressing to qualities, even if the qualities don’t refer to software quali-

ties (a good example would be, the system should reduce the amount of

paper work in 80%).

These definitions of requirements are not isolated, as a requirement can

fit into more than one definition, these only pretend to define kinds of

requirements and how to classify them.

� Requirement process

The requirement process in an activity within a software project and it’s

normally initiated in the beginning of the project, although they should be

continuously refined throughout the project. By not being a discrete pro-

cess, normally, is very hard to define how the process should be performed.

A requirement process should identify the requirements as a configuration

item and it should be faced with the same practices as any other software

element of a development process.

The requirement process involves different actors or stakeholders which

include (not exclusive):

– Users: The users are very important when defining requirements as

15

State of Art State of Art

they are the ones who will be operating the system. It’s normally an

heterogeneous group, with people with different levels of education

and with different roles and requirements needs;

– Customers: Customers are the ones who have commissioned the soft-

ware, who ask for its development, and normally represent, together

with the users,the target of the software to be implemented, but who

might have different requirements types. A good example to differ-

entiate users from customers is a example of a call center system,

which the users, will be the phone assistants, and the customer being

the company who ordered the software with a specific requirements.

In this case the requirements of users and customers are potentially

different, if you imagine that one of the requirements of the software

is to monitor the phone assistants activity;

– Market analysts: Often, specially when addressing to the called

mass-market product, the user can not be easily personified, so a

market analyst represents the called common user defining what the

user needs acting as a proxy for the users;

– Regulator : Some specific domains have constraints in which a soft-

ware can do and what it should do (such as financial services, or

aviation industry). Software has to comply with the requirements

defined for the regulators of that specific market or to seek a certifi-

cation that allows them to operate with certain players; and

– Software engineers: Specially on integration issues, software engi-

neers have an important role in defining the requirements for the

system to comply. When the development of a system or a compo-

nent can imply with the reuse of other components, software engi-

neers are called to decide technical requirements, causing them to be

important actors on the requirement process.

Most of the times is not possible to comply with all stakeholders require-

ments as is the job of a software engineer/project manager to negotiate

the different trade-offs, without disregarding that to negotiate is necessary

that every stakeholder can be identified and their stake analyzed.

The requirements process has to be managed and supported, and the cost

of each activity analyzed within the different cost and human resources

issues.

One of the difficulties of the requirement process is the assessment of the

its qualities, cost and time-line within the overall project. As well, cus-

tomer satisfaction is directly correlated with the requirements definition

and the fulfillment of those requirements.

16

State of Art State of Art

Quality standards and software improvement models are a good aid to ori-

ent the requirement process, this subject is closely related to the software

qualities and with the definition of the software engineering process knowl-

edge areas. This topic also covers some techniques such as requirement

process coverage and benchmarking.

� Requirements elicitation

This topic is related in how the software requirements are retrieved by

the software engineers. Human activity is crucial to the understanding of

requirements, where communication is crucial within all the project and

a specialist should be assigned to mediate the domain of the users and

the technical lexicon of the software development, normally designated as

business analyst. Requirements sources can come from the process actors

or from the different aspects of the organization and operational environ-

ment or even from the business and technical knowledge from the market

and technology involved.

There are different techniques of covering these requirements such as in-

terviewing, prototyping, meetings and even observation. The techniques

involved should be measured by its cost and resources need. One of the

most critical factors in big projects is not involving all the necessary peo-

ple, and its a difficult task to assure that the correct people have been

assigned to the project, since normally too much people reflects in harder

negotiations and bringing people without power or knowledge to decide

can influence negatively the agility of the process.

� Requirement analysis

The requirements analysis have to deal with the classification it has de-

fined in the requirement fundamentals, to its scope and properties within

the project and they should be classified for its volatility or probability to

change.

The use of conceptual models are important when analyzing software re-

quirements, they assist the understanding of the real life problem into the

design of the system. The correct kind of the model has to be chosen

regarding the skills of the team involved, the nature of the problem it self

and should be aware of the tools and methods available. The models are

various and can go from data flows to user interaction models and they

are an important aspect when analyzing requirements. Another important

topic is the negotiation of the requirements with the stakeholders as they

may be incompatible, reinforcing the need for communication in all the

process.

� Requirements specification

17

State of Art State of Art

The specification deals with the formalization of the requirements and how

they should be delivered. The importance of the production of the doc-

ument and its separation levels, some projects have the need of dividing

into several documents or specification according to the classification of

the process. The specification must be clear and well standardized, with-

out disregarding the specific needs of the project.

There are several standards to the documentation and production of soft-

ware specification as they are a good aid to create common terms and

rules for the requirements to be well understood by the developing part

of the project. In this point, a lot of SDMs diverge into the level of

abstraction these documents should have,generally the more traditional

methodologies support a more detailed specification with a lower abstrac-

tion level, which also implies a bigger risk if a requirement change occurs,

and more modern, specially agile, methodologies support more abstract

requirements implying more effort on the development but being more

adaptable to requirement changes.

� Requirements validation

The validation of the requirements is crucial for the success of a software

system, as it proves that the system complies with its objectives. There

are several practices advised for the validation of requirements as a soft-

ware methodology should use them for the success of the project. These

techniques cover model validation, the proof of requirements and more

empirical techniques such as, requirements review, acceptance tests and

the use of prototypes/simulators prior to development in which the system

produced (prototype) is used to validate the requirements.

2.4.2 Software Design

� Software design fundamentals

Software design is the process of defining the characteristics of the system,

its component and results. These characteristics can be divided in its ar-

chitecture, components and interface. This process represents, within the

software life cycle, the activity of analyzing the requirements and produc-

ing the software internal and external structure description.

Design can be separated into two main activities: top-level design,

where the architectural design is performed, describing the top-level struc-

ture, organization and description of it’s components; and the detailed

design where it’s component it’s described into more detail to allow its

proper construction. The result of this design can be a set of models

and/or artefacts that can log the major decisions taken.

18

State of Art State of Art

There are several principles involved when approaching software design.

Abstraction is a principle where the information is viewed from a very high

level, removing specificity from the components leading into the produc-

tion, parametrization and specification of the solution. There are several

levels of abstraction, and it’s normal that the level of abstractions is re-

duced with the evolution of the project. Abstraction can also be divided

into the elements it represents: data, procedural and control iteration as

many others.

Besides the division considering the abstraction levels, design is often di-

vided into functional and technical design, being the first the approach the

system will have according to the requirements and the second entering

into technical details. This approach has the advantaged of non-technical

users to validate and understand the design of the system and being able

to argue and comment the delivered design.

One important principle in software design is the relationship between

modules, that can be divided into coupling, the strength of the relation-

ships, and cohesion, how the elements of each module are integrated.

Recommended and often used techniques are decomposition and modular-

ization, which consists in dividing the problem into smaller independent

problems, that can be treated separately and then integrated into a major

goal.

Encapsulation is a technique, very related with the object oriented paradigm,

in which the internal details of each module or component are isolated,

with each module acting like a black box. It is also common to separate

the interface from the implementation of each module, which is related

to the previous concept of encapsulating the components, and separating

what it is known to the users from what is not.

Software design has to correctly capture all the characteristics of the sys-

tem, and nothing else. Fulfilling sufficiency, completeness and primitive-

ness.

Software design is obviously related to software requirements and it is com-

mon that these activities are done together reflecting the requirements and

design in a single document or procedure, although it varies from SDM to

SDM, where before detailing the design, a description of the requirements

that support the design are addressed.

� Key issues in software design

Software design addresses many issues in its process, it has to deal with

concurrency issues related to the efficiency and execution of processes and

how to decompose the system into processes and threads.

19

State of Art State of Art

All these processes, if they run concurrently, have to be synchronized and

scheduled which strongly relies on the atomicy of the design.

The data-flow control and the data organization is also crucial to define

the design, how to react to different events, according to its characteristics

and how to handle them properly.

The distribution of the software across the hardware is also an important

task when addressing software design, specially when handling with dis-

tributed software and client-server architectures. This activity deals also

with how the components will communicate with the concepts of the use

or non-use of middle-ware components.

Interaction and the presentation of the information to the user is also

an important task of the process of design software, which information is

pertinent for the user to see and for whom is important to be seen. The

handling of the information, for how long will it remain accurate how long

and when it will be available and other information flow issues are also

important when dealing with the process of Software Design.

The design of the user interface and the importance of properly address-

ing the issues of usability/user-friendliness qualities are crucial elements

during this activity.

� Software structure and architecture

The software architecture is a description of its components, how they

are organized and the relationship between them. With the evolution of

software engineering the architectures started to be decomposed, not only

by abstraction levels but by the style they reflect on the system, which

also introduces the notion of architecture families, with a common set of

constraints that each style follow. There are several styles and structures

of architectures which can go from distributed systems, interactive sys-

tems, adaptable systems among others. The use of architectural styles

is recommended for its common use, creating an easy understanding of

technical constraints for common related platforms. Although it should

be carefully use so it will not disregard the specific aspects of the system

being developed.

Other standardization commonly used within software engineering are de-

sign patterns, which differentiate mainly from the architectural styles by

it’s level of abstraction. Design patterns are also called micro-architectural

patterns, and they describe common solutions for common problems.

The reuse of software has also to be addressed in the design process and it

is an optional approach to the development of a system. There are several

families of programs or frameworks, often addressed as packages, that can

20

State of Art State of Art

be used to resolve common problems. The reuse of components is also an

option to be addressed in the design process.

� Software design quality analysis and evaluation

The quality of a software design is strongly related to the quality of the

product delivered, therefore the measure and review of the quality of the

software design is a important activity of the design process to ensure

that the final product will have the desired software qualities (section

2.3). These can be done by assuring that the software design meets the

required software qualities, obviously some of the software qualities cannot

be measured during the design process, because they have to deal with

the execution of the software. All of the qualities should be revisited after

the implementation (the satisfaction of the software qualities in the design

process does not imply the satisfaction of its implementation).

There are several techniques that can provide an aid to ensure the quality

of the software design. Review of the designs artefact’s with formal or in-

formal tracing, static analysis or non-executable analysis or more dynamic

approaches using simulation and prototyping.

Qualities are often hard to quantify, and therefore to measure quality is

not an easy task, but it can help to estimate various aspects of software

design. The use of measures to asset the size, quality and structure of the

design have been proposed according to the approach chosen to perform

the design. When referring to measures there are two main categories, the

functional oriented design measurement and the object oriented design

measurements. The fist category approaches design structure by decom-

posing the design into its functions and computing measurements for each

function. The second category uses measurements at the level of class, a

subcomponent of the design representation internal data (normally a class

diagram).

� Software design notations

Software design notation is used to built common terms, that can be an

aid when understanding the design. There are several software design

notations that are based into different levels of design, abstraction and

design styles. These notations will not be extent in this document. For

further informations of software design notations please address to the

bibliography [18], [14], [32] and [29]. The important idea to take from this

sub-area is that it is advisable for a software development methodology to

have a software design notation or to promote the use of one. Is also usual

that a project have a specific notation, according to the team involved

and the environment where project is enrolled. Some projects also use

21

State of Art State of Art

glossaries to aid people with the notation used and to help newcomers to

easily read and understand the notations used and therefore the software

design.

� Software design strategies and methods

A software design strategy guides the design process and the method.

Being more specific defines the use of a notation and a process that have

to be carried to produce a design artifact. There are several strategies, that

can be used when performing the design, and as the previous sub-area it

will not be further detailed in this document, due to the extent of strategies

existent. The use of design strategies and methods is a good aid to the

design process and an SDM should address the use of one, or to promote

it. To choice of the strategy is related to the kind of product that is being

designed and the conditions in which this is being designed. This strategies

can also be fitted into groups according to the initial approach, top-bottom

or bottum-up are typical groups where strategies can be grouped into.

Some SDM also directly influences the design strategy by defining it or by

guiding it. It’s important that an SDM addresses a strategy or encourages

the use of one.

2.4.3 Software Construction

� Software construction fundamentals

Software construction is defined as the detailed creation of working in

meaningful software, going through, and combining, the activities of cod-

ing, verification, unit testing, integration testing and debugging. This KA

is related to all others, as is the core of software development and strongly

depends on Software Design and Software Testing.

When constructing software, one must minimize the complexity of almost

every aspect of software construction. The human brain, memorizes very

easily simple structures, putting much more effort when leading with com-

plex structures. So the simplicity of the aspects of it’s construction are

advisable to be as simple as possible, the minimization of the complex-

ity is accomplished by empathizing code writing to be clean and readable

instead of very smart and complex. This can be accomplished with the

use of coding standards, correct naming of variables and classes as well as

organizational code, meaning that within a company people should reuse

source packages and styles of programming to increase the readability of

the code.

Another important concept when addressing to software construction is

the anticipation of change. It is predictable that software will change

22

State of Art State of Art

during times, as well as it’s requirements, and it’s construction should be

ready and oriented to change. The verification of software is also an im-

portant task when construction software, as it’s process should reflect this

concern. Therefore, software should be constructed in a way that allows to

detect errors and the functionalities to be verified. The previous concept

about minimizing complexity aids these two aspects of software construc-

tion, when code is simple and easy to understand by software engineers,

anticipating changes and verifying the code becomes, also, more easy to

perform.

� Managing construction

The construction management is supported by the use of models and

methodologies, the main concern of this dissertation, The main goal of

an SDM is to manage the construction, of course all the other KA are

important but the main focus of an SDM

The choice of the methodology should empathize the concepts previously

addressed: minimizing the complexity, anticipation of change, con-

struction for verification and the use of standards.

Measuring the construction process can be performed, by measuring its

artifacts and activities. The code inspection statistics, complexity, effort,

faults and scheduling commitment are examples of elements that can be

measured.

Techniques to increase quality of software are various and will not be ex-

tended in this document, but they should be addressed by the SDMs.

The choice of programming languages is also very important for the sake

of software construction but the complexity of this choice and the believe

of the methodology being adaptable to various programming languages,

the theme will not be further addressed in this document.

2.4.4 Software Testing

� Software testing fundamentals

Testing is the activity of evaluating the product’s quality, identifying the

problems and defects, commonly referred as bugs, and improving the prod-

uct by correcting them.

The key issues when addressing to software testing are: the fact that soft-

ware is dynamic, and will not react in the same way to input, and even

the same input can produce different output, according to the environment

and current state of the product. Software test is finite, the possibilities

of tests and inputs to perform are enormous and an exhaustive testing,

23

State of Art State of Art

even in a small program, is not temporal feasible to perform. When per-

forming tests, a software engineer have to select the test set, which will

produce a variety of outputs and different levels of effectiveness. The selec-

tion of criteria can be aided with risk analysis and other test engineering

techniques. The possibilities of acceptance of the outcome of the tests is

related to what is expected:

– Testing for validation: producing tests for the user to confirm the

correct behaviour, normally addresses as User Acceptance Tests;

– Testing for verification: producing tests to prove that the imple-

mentation fulfills the specification, by trying to perform the func-

tional requirements of the product; and

– Testing for reasonability: producing test that are known to pro-

duce errors in previous versions or in classical implementations of the

specific product its being implemented, and according to the expe-

rience of the tester and software developer. This kind of tests are

also used to verify that the product has a reasonable response to the

input it receives, a classical example is the elbow test where the soft-

ware is tested to an random input from the keyboard. This kind of

tests is commonly used in an ad-hoc way by developers during the

development phase. Some authors defend that reasonable testing is

providing that all the specifications, and requirements have been ful-

filled by the implementation, then considering all the above testing

outcome acceptance tests.

Testing has to be seen as an activity to perform not only after the devel-

opment to detected failure, but as an activity to prevent problems from

occur during the development, it is better to avoid problems than to cor-

rect them.

� Test levels

Software test can be performed in different stages and with different pur-

poses. The target of the test can be a function a module or the whole

system. Testing is also commonly divided by its target, defining:

– Unit testing, where the modules and components are tested iso-

lated;

– Integration testing, where the relationship between the modules

are tested concerning possible incompatibilities and the common be-

haviour of all modules; and

24

State of Art State of Art

– System testing where the functionality of the product as a whole

is tested, after all the above tests and in production environment, or

in very similar conditions.

Testing can also be divided according to the objectives of the test, a test

can be used to asset different qualities of the software and a division can

be done by testing it’s qualities (see section 2.3), as well as other charac-

teristics of the software development process, for example, stress testing,

installation testing or recovery disaster testing.

In products that are target to mass-use, its also common to release some

alpha and beta versions of the product to a group of user, normally power-

users or even developers, to do the final testings before completely deliv-

ering the product.

� Test techniques

The techniques to perform tests are used to increase as much failure poten-

tial as possible in the product that is tested. The techniques can go from

more empirical, as ad-hoc testing and exploratory testing, to more formal,

as decision tables or to proof that the product (implementation) imple-

ments the specification using calculation. Other approaches are based on

the code developed (code-based techniques) or in errors (fault-based tech-

niques). Examples of code-based techniques are control-flow or data-flow

techniques and of fault-bases are error guessing or mutation testing.

Techniques can also empathize on the usage that it will be given to the

software (usage-based techniques) or in it’s nature, examples are, respec-

tively, operational profiling and object oriented testing. Combinations of

different kinds of techniques are also possible and advisable.

� Test related measures

Measures in software testing are a way of determining it’s quality. These

measures can be related to the coverage of the test, the amount of function-

alities that are tested, as for the characteristics of the software according

to the test behaviour. The first kind of measures are related more to the

quality and extension of the test and to the validation that the test can

perform. While the second kind refers more to the quality of the software

it self. These measures can be determined by a fault analysis and clas-

sification, or by the density of faults in the program. There are several

techniques that can be further analyzed in the bibliography [18].

� Test process

When addressing to test processes the attitude of its development rep-

25

State of Art State of Art

resents a key principle to it’s success. The problems of the human ego,

related to the non-success of tests, can lead to the misuse of its process, as

also to solving its problems. The use of test guides is advisable to avoid

mistakes and to provide a mitigation of the risk by prioritizing tests and

by serving as a play-book to be performed.

The use of test patterns and reuse of previous test batteries is desirable

by its cost and time reductions but it has to be used carefully for it can

be inadequate for specific situations.

To decide when to stop testing is also very important issue, because early

termination of the testing process can lead to uncovered errors and prob-

lems and the delayed termination can lead to not fulfilling schedules and

to a waste of effort and resources.

Considering its activities the software testing process can be divided into:

– Planning : deals with the allocation and coordination of the person-

nel as well as the resources needed to perform the tests and to all

variables of effort, techniques and reactions to problems.

– Test-case generation: Implementing the tests according to the tech-

niques chosen and the expected outcome of the test.

– Test environment development : Setting up the resources, hardware

and software needed for the execution of the test and also for the

logging and tracking purposes.

– Execution: The act of performing the tests developed on the previ-

ously configured environment. The execution should be performed

in accordance to the established procedures and techniques with the

results correctly documented.

– Results evaluation: The result evaluation is used to asset the quality

of the test, that could imply to re-execute the tests and to re-asset

the quality of the product that is being tested.

– Test logging : The logging of testing activities is a good practice to

aid the correction of problems and to have an idea of the current

state and evolution of the product.

– Defect tracking : To be able to understand where the product has

failed, and what caused it to fail, is important to reorientate the

project, according to the software engineering practices. It can also

provide an aid when solving similar problems in the future.

The testing process is very important in the evolution of a software project,

and a lot of techniques and processes exists on this matter, there are even

26

State of Art State of Art

test oriented development strategies (commonly known as Test-Driven de-

velopment) where automated tests are developed up front, following a

short development cycle which its result is then submitted to the previ-

ously prepared automated tests. Also, modern approaches try to perform

user acceptance tests, earlier in the project, normally by doing unit testing

and providing the integrated behaviour relying on simulation and proto-

types, which can help to re-orient the development according to the users

input.

Regarding SDM, all address this issue, and they should provide techniques

and tools to mitigate risks and to help improve the testing process. With

the aim of an SDM being the increase the efficiency of the development

process, testing should be one of the processes it should aid by addressing

it properly.

2.4.5 Software Maintenance

� Software maintenance fundamentals

As was stated previously, software product is in constant change and

evolution. Even the operative system and environment are in constant

change. Also when the product is delivered, defects not retracted in pre-

vious phases are uncovered and new user requirements appear. The ac-

tual maintenance usually starts with the end of a warranty period after

the product delivered, where a post-implementation support refines the

product until is considered in production, although maintenance activi-

ties should start earlier in the process.

The maintenance is defined as the activities required to provide cost-

effective support to a software product. These activities concern not only

the modification of software after the delivery, but also the correction of

faults, improvement of software qualities and pre-delivery activities such

as planning.

Maintenance sustains the software product throughout its life cycle and

the modifications required are registered, tracked and the impact of the

changes is measured. The outcome of the process is code, with software

artifacts being modified and after properly testing delivered in production

environment. Maintenance can also be responsible to provide support and

training to users which means, that besides involving tasks of the software

development it can have a boarder scope of action.

Maintenance starting in early phases reduces the effort of the people in-

volved in this process, maintainer may learn from the development knowl-

edge and has to be ready when the developing team is no longer avail-

27

State of Art State of Art

able to provide aid to this process. Therefore maintenance should be

involved throughout the software development life cycle and to take the

documentation and code developed and to be evolved progressively with

the product. Maintenance should provide fault correction, improvement

of the design, enhancements, support the interaction with other systems,

adapt the software to its environment (hardware, operative system, net-

work, etc.), migrate legacy software and to sustainably retire software.

The people who perform maintenance activities have to develop different

task in order to provide the concepts described above:

– Sustain the control of the software day-to-day functionalities;

– Control and sustain the software modifications;

– Automating and perfecting existing functions; and

– Preventing that qualities of software, such as, performance, don’t

degrade to unacceptable levels.

Maintenance can be divided into different kinds:

– Corrective maintenance: modifications (reactive modifications)

performed to correct a problem discovered after the product is deliv-

ered;

– Adaptive maintenance: modifications that will prevent the soft-

ware from becoming unusable or incorrect due to environment changes;

– Perfective maintenance: modifications that will provide an in-

crease of a certain quality (normally performance); and

– Preventive maintenance: modification to detect and correct an

potential fault of the software product before it becomes an actual

fault.

� Key issues in software maintenance

The key issues in software maintenance can be grouped into wider groups:

– Technical issues: referring to the issues based on the technology

involved, these kind of issues are related with dealing of the limited

understanding of a person who was not involved in the development

of the software and has to perform modifications in it, testing fea-

tures all over again after the modifications are provided can be sig-

nificantly expensive in times of effort and resources, specially when

concerning integration testing, a modification in a small piece of soft-

ware can compromise the entire application. Impact analysis is also

an issue to be addressed when performing maintenance activities, the

28

State of Art State of Art

people who perform the activities must have a strong knowledge of

the system’s structure and its content. With changes, a risk assess-

ment must be done, determining its scope, estimating the resources

needed, analyzing the trade-off cost/benefit and to informing oth-

ers of its complexity and possible side effects. Maintainability (see

section 2.3.7) is also a technical issue that affects the process of main-

tenance and have to be properly control to avoid extra costs. This is

specially important during pre-delivery support.

– Management issues: these issues are related to act of planning and

allocating resources to perform the maintenance as well as organiza-

tional aspects. The management should be concerned with the align-

ment of organizational objectives, how the organization will benefit

with the maintenance of the product and the trade-off maintenance

cost/extending software life. Staffing issues are also important, be-

cause people who are in charge of maintenance tend to be considered,

with prejudice, less-ranked staff. This issue is very relevant, as main-

tenance staff is very important to keep. They are essential for the

survival of the software, and current changes of staff carry cost and

effort increase, to provide the required knowledge. Process manage-

ment during the pre-delivery phase is also an issue, as maintenance

staff as to be provided with the proper knowledge, but it should not

create obstacles to its development speed and efficiency. Also, as it

was referred previously, the maintenance process carries tasks outside

the scope of development and these activities are a known challenge to

the management of the process. Outsourcing and organizational as-

pects are issues related with the choice of staffing, the duality between

choosing a member of the development team to perform maintenance

or someone outside the scope of development. Recurring to people

from a different organization but reporting to people within the or-

ganization, is also an option to retain. This is normally designated

as outsourcing and concerns problems that should be addressed to

the management of maintenance.

– Cost estimation: this issue is essential to the success of mainte-

nance. The management should be aware of the different categories

of maintenance and to be able to estimate its cost. This estimation

provides an important input when determining the impact of changes

as well the planning and management of its process. There are sev-

eral models, to estimate cost of maintenance, some more formal, like

parametric models and more empirical ways based on the experience

29

State of Art State of Art

of previous maintenance (use the bibliography for further detail [18]).

� Maintenance process

The maintenance process is described as going through:

– Process implementation;

– Problem and modification analysis;

– Modification implementation;

– Review and acceptance;

– Migration;

– Software retirement

This process addresses numerous activities, divided into main groups:

unique activities and supporting activities. The first is related to

the ones that are unique to this KA, (transition, modification request ac-

ceptance/rejection, problem report/help-desk, impact analysis, software

support and service level agreements [18]), while the second to the activi-

ties that considered support to other KA: maintenance planning, config-

uration management, quality assurance, audits/reviews and user training

are examples of such activities.

� Techniques for maintenance

Techniques to aid software maintenance are program comprehension, re-

engineering and reverse engineering among others. These techniques refer

to understanding the software developed and to then develop the changes.

Program comprehension in understanding the software by using documen-

tation and code browsers to aid the software modifications. Re-engineering

is the examination and radical reconstitution of the software developed.

Reverse engineering inverts the development of the software produced to

understand its components and their relationships and to rebuild them

from the analysis done.

2.4.6 Software Configuration Management (SCM)

Software configuration management is a support activity within software devel-

opment where the configuration, defined as the sum of functional components

and physical characteristics of the system, is identified and controlled through-

out the system’s life.

SCM process is characterized by the following activities:

� Management of SCM process

The SCM is responsible for controlling the evolution and integrity of a

30

State of Art State of Art

software product and the identification of all its elements. To control and

manage change, provide verification, recording and reporting of the con-

figuration a comprehension of the organization context, evolving software,

hardware and firmware issues strongly related with quality assurance is-

sues and also with maintenance.

There are some constraints when addressing to SCM, such as, internal

policies and procedures within the organization where the system is de-

veloped.

� Software configuration identification

The identification of configuration items is the base of its management.

It should identify the items to be controlled, their relationships and the

baseline of the software development, which configuration items will be

available at a specific time of the project.

� Software configuration control

Configuration control addresses the changes needed to be done during the

product’s life and their impact on configuration and all the process taken

to evolve the configuration to fulfill the changes as well as tracking and

reporting these changes.

� Software configuration status accounting

This activity leads with the information needed to manage the software

configuration and with its recording and reporting. The report of con-

figuration status, aids the configuration management. This may imply

measuring, for example, the effects of a certain configuration at a given

time, and the information produced will be important for assuring the

quality assurance of the system.

� Software configuration status auditing

While the previous activity deals with the production of information about

status, this deals with the evaluation of the conformance of the system

with the guidelines, standards and can be based in different aspects of

the configuration (functional, physical or related with the baseline of the

software project).

� Software release management and delivery

This activity relates with the delivery of products and trying to manage

these deliveries. Building of software libraries and versioning are issues

addressed in this activity as well as the management of the delivery, exe-

cutable product, documentation and all the environment variables needed

for the software product to be released.

31

State of Art State of Art

2.4.7 Software Engineering Management

Software engineering management is an organizational process composed by

concepts of process and project management. When dealing with software en-

gineering management KA we can decompose them into the following topics:

� Initiation and scope definition

The beginning of a software project deals directly with the software re-

quirements KA and it is during the initiation that the methods of require-

ments elicitation are defined and applied retaining the different stake-

holders perspectives and therefore to the determination of project scope,

objectives and constraints.

The feasibility analysis is also important to determine that opportunity

and conditions are proper for the project success. This often requires es-

timation of effort and cost as well as that all technical skills and resources

are cost-effective available.

Change is an inevitability of software, specially their requirements, so it’s

vital for the project sucess to obtain the agreement of the stakeholders

and that the scope and requirements are not rigid, and that reviewing

and revision should be performed according to a risk analysis .

� Software project planning

Software planning process should receive the input provided for the scope

and requirements definition and by the feasibility study, a process is then

chosen according to the nature of the project. Resource allocation and

equipment are then define and the determination of which deliverables

to produce. The reuse of software can also be considered during these

stage. Scheduling of the activities is also important to define, determining

task dependencies and cost/effort estimation. To correctly perform the

planning, an analysis of risks and possible problems should also be part

of planning.

Quality should be defined using pertinent attributes of the specific project

and in quantitative and qualitative terms (see section 2.3) and a plan for

quality assurance should be done, determining deliverables verification and

validation throughout the development process.

A plan for how the project will be managed should also be delineated and

it should fit the process chosen. As the change is inevitable this plan for

management should be of extreme importance for the project success.

� Software project enactment

The plan is then putted in practice, and the process should enact the

planning. The adherence to the plan is essential for the satisfaction of

32

State of Art State of Art

the stakeholders and to the validation of the requirements. Implement-

ing the plan is then acquired in reference with the schedule defined and

with deliverables to produce. Along with the implementation of the plan,

measurement and monitor process should be performed throughout the

process, measuring qualities of the product and to monitor the adherence

of the resources to the plan. The outcome of the monitoring and measur-

ing should provide input to control the process that will lead to reorienting

the plan or introducing practices to increase the quality or adherence to

the plan. All these activities should be reported at specified and agreed

periods to the organization and stakeholders and should report mainly in

the adherence to the plan.

� Review and evaluation

Reviewing and evaluation should be performed at critical points of the

projects, normally within releases, and that will review factors as sat-

isfaction of the requirements and evaluating efficiency of the project, the

adherence to plan. These milestones review and evaluation should provide

the stakeholders the achievements of the project and problems faced dur-

ing its development, that can aid to the satisfaction of the requirements

defined by the stakeholders as well for the stakeholders can unblock some

issues and provide guiding to plan modifications and improvements.

� Closure

The closure of the project is when all the milestones addressed in the plan

are fulfilled and all the satisfaction and validation from the stakeholders

is given. One of the issues of closure is to determine when it’s the correct

time to define that the project is done.

And the revision of the work done is then performed to gain from the

problems and success of the project leading to an organizational learning

and improvement.

� Software engineering measurement

The use of measures should empathize the managing role and develop

a commitment for measurement. The staff and managing of the team

should accept a guide and the requirements for each measurement. This

means that a definition for the scope, which item should be measured, and

a plan, defining the criteria and data sets to perform the measurement.

These procedures should be used according to the plan defined and prop-

erly evaluated. This measurement should be integrated into the process

and their evaluation should produce enhancements and improvements.

Of course this is not an easy task, and SDM is the correct tool to ad-

dress this measures. The objective of an SDM is in fact to support the

33

State of Art State of Art

software engineering management in providing the correct approach to

impediments by defining a cycle, the evaluation of the activities and to

improve the management effect of the project evolution. To evaluate an

SDM by verifying that it is providing the correct measurement of software

engineering management is not possible without the empirical approach

that was putted beside in the goals and objectives of this dissertation.

This sub-knowledge area will provide input to asset if an SDM is address-

ing the software engineering measurements, but it cannot prove that is

done in an efficient way, thus that would require an empirical approach,

like stated previously.

2.4.8 Software Engineering Process

Software engineering process can be defined as the definition of the software life

cycle, its implementation, assessment, improvement, measurement and change.

Following we will present these concepts:

� Process implementation and change

This sub-area leads with the organizational change the infrastructure, ac-

tivities, models and practices of the software have to be well described

when considering the process implementation. The infrastructure is es-

sential to the success of process implementation. The resources have to

be available and responsibilities properly assigned.

To manage the software engineering process a set of activities have to be

performed in order to obtain continuous feedback of the process and its

improvement. These activities are:

– Establish Process Infrastructure: to establish commitment into pro-

cess implementation and to allocate the appropriate infrastructure.

– Planning : understand business objectives and the needs of the project,

to identify the weak points and strong points of the process and to

make plan for the process implementation.

– Process implementation and change: the plan defined in the previous

activity is executed and to deploy the process or change the existing

defined processes.

– Process evaluation: the materialization of the process implementa-

tion and change benefits to the project and how the implementation

and change has influenced the development. The results are used for

the subsequent cycles.

� Process definition

Process definition can be of different kinds, it can be a procedure, a policy

34

State of Art State of Art

or a standard and they are defined to increase the qualities of the product,

enabling communication and understanding among other factors. The

types of process definitions required depend of the project context and

the reasons to produce it.

Software life cycle models serve as the definition of the phases that occur

during the software development, defining its activities and combined with

a software process, where these activities are detailed and ordered. A

software methodology arises when these are associated with a philosophy,

its practices and roles.

� Process assessment

Process assessment is performed using assessment models and methods.

Assessment models retain what is considered to be a good practice in terms

of different variables, such as technical software activities or management,

examples of these models are ITIL or CMMI. To perform the assessment

a method is also required, these methods will provide quantifiable scores

which will characterize the capability of the process.

� Process and product measurement

To measure activities and software products is not an easy task and it

carries a lot of complexity and subjectivity. Process can be measured by

its strengths and weaknesses or by the impact it produces on the out-

come. This project outcome can be quantified, as an example for faults

per KLOC (Kilo Line of Code) or for the amounts of lines coded for each

functionality.

While this dissertation provides a method for choosing an SDM based on

the weight given to KA in software engineering and the correct addressing

of such, to measure the process and the product obtained after using a

certain SDM can help to guide future choices. The methods combined

provide decision based on experience and on facts, and a new weight can

be used, that is the past experience with a certain SDM that can help

to come up with a choice. In fact even previous evaluations using these

dissertation strategy can be improved by measuring the process and the

final product.

2.4.9 Software Engineering Tools and Methods

Tools and methods are used to assist the software engineering activities during

the software life cycle. The tools can be computed-based tools that can simplify

some of the activities performed. These tools are widely scoped and they can

be divided according to the KA and sub-divided into the activities they intend

35

State of Art State of Art

to act. Methods are more commonly divided into the kind of approach taken,

heuristic approach, formal approach and prototyping approach.

A software methodology can advise the use of tools when referring to its prac-

tices. Even though they are not essential to the success of software engineering

approaches they provide a good aid to its activities.

The methods are part of an SDM, so they all address methods that support the

SDM provided.

2.4.10 Software Quality

� Software quality fundamentals

The objective of a software engineering project is to assure that the prod-

uct it produces will have the desired quality, not only the software it self

but also the activities performed.

Quality does not come for free and it have associated costs. These costs can

be divided into: prevention cost, appraisal cost, internal failure cost and

external failure cost. Each product have a predictable cost and associated

perspectives for that cost. So the trade-off between value and cost as to be

established, these decisions should be done during software requirements

definitions, but they are likely to arise throughout the software life cycle.

Software quality as to deal not only with the quality of the product, but

also with the software engineering process quality, both aspects have been

discussed previously on this dissertation (see section 2.3 and section 2.4.8).

� Software quality management processes

Software quality management (SQM) is applied to all the aspects of the

software process, products and resources. This activity is responsible for

the definition of process owners, the requirements for that process and the

definition of the process it self. SQM is also responsible for measuring

the process and its artifacts and to provide that the the outcome of this

measurement is properly channeled throughout the members of the project

and the way this feedback is provided.

Planning for quality involves defining products in terms of the desired

quality characteristics and to define a plan to achieve these products.

SQM processes can be:

– Quality assurance: assures that the software products and processes

are in conformance with the specified requirements. These involves

planning and enacting according to what was planned in order to

provide and sustain that quality is being built into software;

36

State of Art State of Art

– Verification and validation: strongly related to testing, these activ-

ities identify faults and verify if products satisfy the requirements.

While verification attempts to ensure products are being built cor-

rectly, validation attempts to ensure that the intended product is

built according to what was specified and fulfilling the designated

requirements;

– Review : the review process monitor management artifacts and ac-

tivities. During the review, technical aspects and the suitability of

the software built has to be analyzed and an inspection for software

anomalies, or less formally walk-troughs the product, to assure the

correctness of its development; and

– Audit : independent evaluation of the software according to guidelines

and regulations to asset its conformance, these activities are normally

done by someone who is not involved deeply in the development of

the product in order to the job as with the required independence.

37

Chapter 3

SDM Descriptions

3.1 Software Development Methodologies

Previously in the introductory chapter a terms elucidation is given (1.3) explain-

ing that durint this dissertation an SDM is a combination between a software

development life cycle, also called software production process or model, a set of

practices, roles and a philosophy that sustains these concepts. The main objec-

tive of an SDM is to enhance a team productivity in order to obtain a product

(software) as fast and cheapest as possible. Most production and manufacturing

processes are very extensively studied when the objective is to deliver tangible

products. To build a product its positive to take advantage of common produc-

tion processes highly standardized and automated and it’s all about making a

product as reliable, predictable and efficient as possible.

Although the software process takes a huge amount of intellectual and creative

activities, not so adaptable to automation. And last, but not least the product

of software is submitted to high instability and requirements changes, therefore

obliging the software to be adaptable and to evolve in time.

So the real question is how to make a software product as reliable, effective and

predictable as possible without disregarding the unique characteristics of a soft-

ware product. The differences between SDM are precisely in how to obtain this

for a software project. As it was explained in the state of the art section, there

have been the need to seek an answer and also plenty of attempts to enhance

software production, and it has proven to be a difficult task. The beauty of

software relies in its complexity and adaptation, software is almost everywhere

nowadays, and to define a methodology that supports such different targets is

obviously difficult.

So the first step is to put software into a production line, separate its devel-

opment into phases, create a software life cycle (although they are not exactly

38

SDM Descriptions SDM Descriptions

linear to all life cycles), then to provide roles to do work in these phases and

then to provide the proper control for this activities by defining practices and

tools that should be used to avoid failure and to increase efficiency. Supporting

all this with a philosophy that can convince people to commit to this practices

and roles and you have yourself an SDM.

In the following sections we will describe a group of SDM, chosen by its popular-

ity in the academic and industrial worlds and grouped by its similarities in the

philosophy and life cycle. The order in which they appear is not random and

they should be order chronologically. The given prove that to choose an SDM is

not an easy task since that all these SDM are all used plenty used criticized and

adored with a lot of successful and disastrous stories to support them. And here

is where this dissertation enters and try to help to choose an SDM by giving

weights and classifying facts and making a sustained choice.

3.2 Traditional Development Methodologies

The first SDMs are today commonly known as Traditional Development Method-

ologies TDM. These models were mainly based in defining a Software Life Cycle

and how all these stages should be approached. Before the TDM the process of

developing software, even if it was in a big project the tasks were performed ad

hoc without any formalisms or definition of what was being done, this is stated

as code and fix or more jocosely cowboy coding methodology, which is by defi-

nition the lack of a methodology. With the inclusion of formalisms the process

gain much more effectiveness and correctness but also become more rigid and

with less flexibility. These methodologies are supported by a strong preparation

before coding and by relying each phase in very tangible artifacts, providing

documentation and careful verifications and validations.

3.2.1 Waterfall Methodologies

The waterfall model was first used in late 1950’s in a military project called

SAGE (Semi-Automated Ground Environment) which was a air-defence soft-

ware system, but only became popular in the 1970’s when it was used as a

standard industrial practice and most state of the art software engineering text-

books.

The waterfall model is divided into phases, each one structured in a set of ac-

tivities that can be performed concurrently, and the input of one phase is the

result of the previous phase, giving the idea of its name of a waterfall of inputs

and outputs being enriched by the activities of each phase.

There are many variations of the waterfall model but they are very similar and

39

SDM Descriptions SDM Descriptions

they use the same underlying philosophy. The following phase division will be

considered in this dissertation:

� Feasibility Study;

� Requirements Analysis and Specification;

� Design and Specification;

� Coding and Module Testing;

� Integration and System Testing;

� Delivery and Maintenance.

Figure 3.1: The waterfall model

Feasibility Study

This phase is not stated in all variations of the waterfall model, due to not being

applied in practice very often.

The feasibility study starts when a problem emerges, the first step into the fea-

sibility study is to understand the problem correctly by analyzing it and finding

alternative solutions. Therefore this phase should take into a deep knowledge

of the problem which consumes a lot of time (and money) to the people who

are undertaking the activities. It’s normal that the feasibility study, outputs

instead of a feasibility study document, delivers a commercial proposal, where

normally only the advantages of undertaking the project are shown. Obviously

if a feasibility study determines that the project would not be much of an advan-

tage to the client, the time and effort given to the task are wasted (if a proper

40

SDM Descriptions SDM Descriptions

alternative is not achieved). Although, the feasibility study is normally done

into short time bounds and in a lot of pressure, it’s crucial that a simulation

of the project can be studied and that the resources needed and time-lines are

estimated.

The result of this phase should be a document stating the definition of the

problem suggesting alternative solutions with the expected benefits and chal-

lenges and all the costs, dates and required for each of the solutions presented

or suggested.

Requirements Analysis and Specification

After understanding the problem, and realizing which seems to be the best

solution, the goals of the solution should be very well defined. By this, functional

and technical requirements are defined. These requirements should state the

qualities stated in the previous section 2.3 with refinements for the solution in

cause.

The center of a requirement definition is not how it should be done it’s all about

what must, should or has to be done. The output of this phase is a requirement

specification document where all the requirements are stated, this document

should be revised with the customer for it to be clear what the product is

suppose to do.

The requirements can be divided into three big types:

� Functional Requirements: These kind of requirements specify what the so-

lution should do. this can be done using formalisms or a specific notation,

provided that what the solution does is clear.

� Non-Functional Requirements: These are the requirements that infer about

the quality of the software produced and takes into account operating con-

straints, performance, etc.

� Development and Maintenance Requirements: These requirements take a

special account in big customers with quality assurance teams and meth-

ods, these requirements are about the procedures the solution must enrol

before delivery and in which conditions maintenance will be performed.

Design and Specification

The design and specification phase results in a document describing how the

software product should be built. It is based in the requirements defined in the

previous phase. It is suggested to divide the software into modules, and is in

this phase that the division occurs and the relationships between modules are

41

SDM Descriptions SDM Descriptions

defined. The design and specification can be done iteratively going through dif-

ferent levels of abstraction, starting from the point of a formal specification that

will be decomposed into an implementation in the next phase. There are many

different approaches into writing specifications from the formal point of view to

the other more empirical methods. To see more about specification languages

and methods see [45], [44], [9] and take a look into correctness quality in section

2.3.1.

It is also a suggested that a company should use a standard on specification and

design documents, regarding how appropriate the standard is for the specific

solution in which it should be used.

In short words the design and specification is like the project of a house or a

roadmap of a trip, its the guideline of the implementation, and should be as

clear as it is possible. The process of design and specification can be called dis-

ambiguation where vague terms will be translated to terms that a programmer

would not have doubts into converting to a programming language.

Coding and Module Testing

Coding is the part where the software is actually built. This phase translates

the design and specification document of the previous phase into a programming

language, as in the previous phase the notation and standards are advised. If

it was suggested in the previous phase that the product should be split into

modules and if the implementation follows the specification the software should

be coded into different modules. These modules should be tested individually

before being integrated in the next phase and all the tests should be documented.

The module testing should also occur in this phase, which should be the first line

of testing, standard in module testing is also advised and a line plan of tests

where the kind of tests to perform should be explicit (e.g. white-box, black-

box, unit testing etc.). The inspection of a well written code and the qualities

of software are also desirable some of them taking more relevance in later stages

of the coding process. Some authors suggest that correctness should not be

verified in this phase, although correctness of the product cannot be proofed

from one module, if the specification and the functional requirements are also

designed in a modular way, module correctness can be measured.

Integration and System Testing

In the integration and System Testing, the modules built in the previous phase

are assembled and is sometimes included into the coding phase. Although inte-

gration requires different kind of coding and testing. The testing in this phase

42

SDM Descriptions SDM Descriptions

should assure the relationship between modules, as defined in the specification,

and integrated tests should be performed, the module testing does not assure

that the system testing. During this phase the software system should be tested

in the environment that it is supposed to work and also the integration with the

system where it will work (hardware, operative system, users, etc.).

The output of this phase should be a produced that can be used, and can be

shown to the users and the so called alpha testing, tests under realistic condi-

tions should be performed. It is also suggested that the integration tests follow

a standard within an organization. The integration can also be done according

to standards (such as top down or bottom up) and documentation of the tests

performed should be done.

Delivery and Maintenance

In the delivery phase, the application is ready to use before the beginning of

the phase, and the delivery is normally carried out in phases, to minor changes

and the impact of errors and misunderstanding of requirements.

It is normal that a controlled experiment is carried with a group of prior users,

that will provide output of the system, often called beta testing. During these

activities is nowadays common to put professionals from social areas with tech-

nical professionals to assure that the software fits all the required qualities, some

complex systems also require people that can explain better to users than the

people who have developed it.

After the product has been submitted to the beta testing if it is not reverted to

an early phase it will be released to the customers. After the release the main-

tenance of the system is essential, specially when requirements change fast and

the system have to evolve fast as well. The maintenance is by that responsible

for correction of missed errors and to adapt the system for the current needs.

Maintenance within the Waterfall methodology goes through repeating the life

cycle for the modifications to be done.

Critic to the Waterfall Methodologies

The Waterfall main principle can be “measure twice cut once” which is its most

loved and hated principle. The benefits gained from the use of the Waterfall

Method are unquestionable because it brought discipline and method that was

most needed when the method was created. It brought discipline, planning and

management to a world where coding and fixing was the main strategy. It is

calculated that a project costs much more when late requirements are discovered.

The Waterfall method is categorized as Big Design Up Front BDUF, where first

is well decided what/how and if it is worth to be done (“measure”) and then

43

SDM Descriptions SDM Descriptions

start coding the product (“cut”). The Waterfall method is an ideal model,

and obviously can only be approximated and the discipline and perfectionism

defended by the method is also its worst critic. Some critics suggests that

Waterfall is too rigid and that most clients/users don’t realize some of the

requirements until late in the project, so a project should not waste a lot of

time in the pre-coding phases, on the other hand climbing up the Waterfall is

much more expensive than going through the phases. It is also suggested by

some authors [15] that the Waterfall method to be effective should be used with

the feedback loop between phases, so that a mistake in the beginning is not

postponed to later phases and that the linearity of the process is the main key

of success when using the model.

The principle that the balance between resources and requirements are difficult

to define and that to use documents/specifications are not mutable according

to the software development is a static document that can be changed, but

according to the model, to change it, it would imply going back to a previous

phase is also a common critic to the model. Also that the real life projects are

in constant change and requirements change more often than predicted and that

the monolithic design of the method is not sufficiently agile to adapt to those

changes.

Even though its critics Waterfall is still considered as one of the most important

methods which as brought a lot to the software industry, and it is fact a reference

still today when approaching Software Methodologies. It can also be considered

as the father of TDM.

3.2.2 Transformation Methodologies

The transformation model is rooted in mathematical and theoretical work on

turning specifications into implementations. The model is strongly connected

to formal methods of specification. With this method a specification should be

as abstract as possible and then refined into an implementation. This model is

not used often in industrial software, besides in some cases in the called critical

software, and it can be viewed as a step by step refinement of the specification,

and on each step the level of abstraction is lowered until it becomes executable.

The process is lead by proving its correction from the previous step, normally

using formal mathematical proof. Optimization of the implementation should

be performed and the reuse of software components can be part of the project

ensuring that the reused material is formal verified against the specification. The

refinement process is done with the use of algebras and co-algebras and through

calculation. These activities can be helped with the use of proof or verification

language (or even specification languages [9] and[45]). For more information on

44

SDM Descriptions SDM Descriptions

formal methods and program calculation please see the bibliography [30] and

[31] (in Portuguese). During the development process there is also a place for

redevelopment or the adaptation of new or future requests, but the development

would began in the point where is appropriated and will accommodate the

changes to the verification and correction of the software.

Critic to Transformation Methodologies

The transformation model is still very research oriented and it requires a lot

of familiarity to mathematical and formal methods which may not be suited

for large projects were the requirements analysis is very difficult even using

more informal processes. One of most pointed out issues is concerned with

change of requirements which must be changed in the initial model and if a

change is done it has to be drilled down until the final the implementation

because all implementation has been calculated/proven from the refinement of

the specification. So a small change in the requirements would affect all the

work, and all the verification and proof of correction had to be redone. Even

though the transformation can bring the correction to the equation of software

development and all the process of verification, if done correctly can proof that

a software implements the specification.

3.3 Evolutionary Methodologies

3.3.1 The Win-Win Approach

The evolutionary methodologies are based in the evolutionary life cycle, this

model is an incremental model where the new increments are developed in a

reactive way. This methodology was raised by the awareness that first versions

lead to re-work or to high rates of adaptive or perfective maintenance. To

prevent the need of extra development and analysis in later phases of a project,

this methodology bring the stakeholders to evaluate and verify the software in

early phases. So the first versions of software, often just prototypes are released

to stakeholders (users, customers, etc.) to test the product and with their input

an increment is specified, implemented and then integrated with the previous

solution. First versions might be even thrown away if the increment does not

fit at all with the previous version, causing that it cannot be integrated. This

philosophy of development advocates the principle of evolution by operational

experience. This approach disrupts with the measure twice, cut once advocated

by the waterfall methodology and one of its mentors Tom Gilb [17] mention in

his book “do it twice”. This method could be confused with cowboy coding or

ad-hoc development, but instead it relies on specific activities that should be

45

SDM Descriptions SDM Descriptions

performed and it provides practices of management and documentation of every

step taken. The solution is properly specified, according to the philosophy of the

methodology, but solutions are proposed and negotiated instead of decided and

proven. The requirements analysis are then mixed with the development which

is refined taking advantage of modeling and prototyping. Tom Gilb defined

this strategy has Win-Win, because the customer wins, because it gets what

it wants, with the input, and the development team doesn’t need to perform

rework on the final implementation, they are changing the development as it

goes.

The software life cycle of this methodology may vary from author to author, in

this dissertation the following is presented:

Requirement Analysis

In this phase the requirements are analyzed. The methodology defends that

the common approach of “How” and “What” should not be used and advises a

“How well it must do what” approach. This means that normally during this

phase people are worried in finding all the functionalities and how to implement

them and they should be also focused on defining the proper quality for each

functionality. Then for the requirement analysis a specification is delivered

explaining the main functionalities to support the first version of the product

(or the first prototype).

Deliver

The deliver phase is where artifacts are released to the client, this means that

after the requirements analysis the specification is released with a prototype of

what the product will be. The deliver phase occurs for all the artifacts in the

project, including all the versions of the software. This phase is characterized

by small periods of development so the stakeholders can be almost constantly

providing input and feedback to the team. Each deliver is designated as an

increment and after validation it should be integrated with the previous releases.

Measure

In this phase an input by the users/customers is given by measuring the oper-

ational value of the software (in all critical aspects and qualities). This phase

can be done with user acceptance tests, or in more informal ways by showing

the artifact and request input. This phase also should be done to all artifacts,

and occurs immediately after the deliver phase. The objective of this phase is

to identify requirements that weren’t correctly identified or interpreted by the

team, and it should be intercalated with small periods of development so the

46

SDM Descriptions SDM Descriptions

changes identified don’t imply massive changes in the products. This measure

also defines that the product is in conditions to terminate the development of

the product.

Adjust

This phase occurs just after the measure and it should be followed by a deliver. It

is characterized by the development of the changes identified during the measure

phase, with the incorporation of the feedback provided. This feedback should

be systematic to produce the work that it has to be done by the development

team. This phase shouldn’t be very long and it should be delivered to the

client as soon as is in conditions to be measured, otherwise, the measurement

phase can result on a waste of time as resources for development. This means

that a modularization of the product is also advisable so they can be measured

individually. This approach can be adapted to measure integrated artifacts or

only modules and then later the integrated is again submitted to the different

phases.

Terminate

This is a final phase and is achieved when the solution delivered fits into the

needs of the client and no more development, besides maintenance, is needed.

This means that the product delivered fulfills the objectives, always considering

that it does as well as it should (according to the previously stated “How well

it must do whatâ requirements), and no more adjustments are needed. Obvi-

ously, and according to what was stated previously, this phase can occur only

to a module, not implying that the project has terminated but that the specific

module is done and should only be submitted to the process when the integrated

solution is delivered. This is always a critical part of the project and it’s always

hard to terminate a project and an approach regarding the quote ”perfect solu-

tions are enemies of good solutions“ should be applied. In a software product

there is always space for improvements and the difficult task is to realize when

is it good enough (again the same issue stated in the requirements), and that’s

why this methodology states that during the requirement analysis

To see more on evolutionary methodologies please see the bibliography [17]

and [16].

Critic to Win-Win Approach

The Win-Win approach, and evolutionary methodologies, advocates the use of

prototyping and reflects the need for the user and client to be involved in the

47

SDM Descriptions SDM Descriptions

development process and can decrease the time of revising the requirement anal-

ysis before having anything tangible to work with. The cost of throwing away

prototypes is not very well understood by the majority of software vendors and

resistance to change is also common within clients, so these problems should

not be neglected. If the requirements are not well understood from the first

prototype and to actually throw everything of the first version is very hard, and

from the point of view of the developer is not easy to understand and accept

that the software produced is going to be disposed and can cause some issues

within the team and a resistance to adjustments. Another issue is related with

the common practice of using prototypes to sell the idea to the client that the

software will fulfill the requirements, which can cause a deviation from the phi-

losophy of the methodology. One of the most positive criticism to evolutionary

methodologies is the use of prototyping as a good practice to detect early mod-

ifications and needs of change, and using this with disregarding documentation

and to empathize the requirement analysis. This methodology is still used (or

its derivatives, like the spiral methodology) and is defined by removing some

of the rigid development of waterfall (section 3.2.1) without going deeply into

more flexible processes like agile methodologies (section 3.5).

3.3.2 Spiral Methodologies

The Spiral Model was first defined in an article by Barry Boehm [6] and where

it introduced an effort to combine the advantages of top-down and bottom-up

strategies (see table 3.1). To achieve this, he combined the use of prototyping

and design. A prototype is built in a top-down approach, each step is inserting

more detail into the specification, until a operational prototype is released, then

the the implementation is performed by picking up this operational prototype

and defining a detailed design of the product that will lead implementation,

implying a bottom-up approach of this process.

The spiral methodology gets its name from the Cartesian diagram representation

with a spiral with center in the point (0,0) of the diagram. The radius of the

spiral is the representation of the accumulated process cost, that should be

followed by the review effort, and the angular dimension its progress (see Figure

3.2).

The spiral methodology can be seen as a derivative of the evolutionary method-

ology, where an iteration of the cycle is based on the result of the previous one.

The change from the original methodology is in its risk analysis in the measure

phase (see table 3.2) and the combination with a systematic control in a linear

sequence (like waterfall 3.2.1). This leads to the fact that Spiral Model evolution

it’s cyclic. This model emphasizes the design process for an identification and

48

SDM Descriptions SDM Descriptions

Figure 3.2: Spiral Model, Boehm,1988 (CC)

Top-Down Bottom-Up

This strategy is based in beginning into
a very not detailed analysis of the sys-
tem, and then refining it into differ-
ent sub-systems into greater detail go-
ing through it until the entire definition
is reduced to a set of base definitions.
The theme words for this strategy is
analysis or decomposition.

This strategy is almost the reverse of
the previous one. The definition of the
system is began by its base elements,
and then trying to linked them into a
greater system (inferring the system, by
a set of base elements). The theme
words for this strategy is synthesis or
induction.

Table 3.1: Top-Down and Bottom-Up Strategies

“(...)discipline whose objectives are to identify, address, and eliminate software
risk items before they become either threats to successful software operation or a
major source of expensive software rework“ - Boehm 1989 [7]

”Risks are potentially adverse circumstances that may impair the development pro-
cess and the quality of the products.“ - Fundamentals of Software Engineering 1991
[15]

Table 3.2: Risk in software projects

49

SDM Descriptions SDM Descriptions

mitigation of the high risk problems and a differential reaction for the severity

of the risk in cause.

This methodology phases are better understood when placed in the diagram

represented in figure 3.2, but a description of each phase is presented next:

Determine Objectives

This phase is characterized by identifying the objectives of each iteration and to

define a requirements plan to build the project. Its main concern is the review of

work done, and as stated previously it should increase in each iteration. In this

phase a requirements plan is elaborated to guide the iterations of the project.

Identify and resolve risks

Mainly characterized by the implementation and analysis of prototypes. Each it-

eration should provide a prototype lead by the previous risk analysis performed.

This risk analysis should determine what should be changed from the previous

prototype and what should be done, to minimize the risk of project failure, in

the next prototype. When a prototype is ready this phase terminates. This is

similar to the measure phase combined with the adjustments that derive from

the measurement. The implementation of a release begins with the operational

prototype, delivered in this phase.

Development and Test

The development and test phase is responsible for delivering artifacts and for

its verification and validation. The concepts of requirements are defined in

this phase and after the first prototype the requirements are defined also in

this phase. Then for each prototype presented a draft product is verified and

validated until, with base on the operational prototype, the detailed design is

presented. With the detailed the design the development of code, followed by

integration and test is done until the implementation is achieved.

Plan the next iteration

As all the previous phases, this phase starts with the results from the previous

one, so with the validation and verification of the requirements this phase will

produce the concept of operation. With the verification and validation of re-

quirements the development plan is also done in this phase and for each draft,

and its validation/verification, the test plan is elaborated until the release is

50

SDM Descriptions SDM Descriptions

delivered. This phase is also responsible for feeding the first phases, determin-

ing the cycle iteration, for each plan elaborated the determination of objectives

and risk analysis is performed supporting the new prototype and so on until the

release that terminates the spiral.

Critic to the Spiral Methodology

The Spiral Model has introduced the risk analysis into the planning a software

product which the earlier process model did not have. This measure occurs in

a natural way in a real-life situations but it was not considered as a part of the

management and planning of the project, was just performed taking intuition

and empirical knowledge. This and a strong versatility of the model are the

great advantages of using the spiral model.

Although the risk analysis can be hard to perform and if a high risk is measured

as a low or not important (or the opposite) the development process can be

easily become an disadvantage. Also the misuse of the spiral iterations can lead

to a waste of time if the risk, tracking and control are not performed carefully.

Also from the point of view of the contractors you can have an image issue,

where the work performed it’s not very tangible from his point of view in early

stages of the spiral, but that can be mitigated by using the clients into the

process of risk analysis by, for example, performing user acceptance tests with

the prototypes delivered (like in evolutionary methodology 3.3).

3.4 Rapid Application Development

3.4.1 Changing Plans

This methodology represents the shift on setting the importance in the plan-

ning phases for the implementation this methodology made the introduction for

the agile methodologies to arise. Before this methodology a great effort of the

software development process was in planning.RAD (Rapid Application Devel-

opment) opened the door for less planning and more action philosophy, defended

by the agile development methodologies. Although other methodologies could

be used to represent this step RAD has been choosen for its relevance and use

in industrial and academic environment.

3.4.2 RAD

The Rapid Application Development was first published in a book by James

Martin in 1991 [28], although it was based in previous works of Scott Schultz

51

SDM Descriptions SDM Descriptions

who created a methodology called RIPP (Rapid Iterative Production Prototyp-

ing). The base for RIPP was the work Barry Boehm ([6]) and Tom Gilb ([17])

the creators of evolutionary methodologies, Spiral (section 3.3.2) and Win-Win

(section 3.3.1), respectively. The believe that the later methodologies (such as

waterfall model 3.2.1) were taking too long to develop, that by the time they

were finished the requirements had already changed, which resulted that the

system built, especially in large projects would not correspond to the current

needs. Scott Schultz was the first to introduce the term ”timebox“ (it was in fact

a concept used also by Tom Gilb but without actually using the term time-box

[17]. James Martin took the RIPP and formalized it and extended with values

from other development models and created RAD (he called time-boxing a vari-

ant of RAD in his book [28]). These methodologies started the rupture with the

so called TDM, they were the first to evolve from the monolithic and linear way

of developing software (RAD is also often called the father or grandfather of the

Agile Development Methodologies ADM).The work of James Martin was also

formalized by other authors, also with the interaction of James Martin. This

methodology was a reference by he introduced and used some concepts that are

the core elements:

1. Prototyping: Prototyping was the base of the evolutionary model (sec-

tion 3.3), but in RAD the construction of prototype is used with the

purpose of kick-off for design. The objective is to built, in just a few days,

a light version and serves as proof of concept for the client and as a point

for the discussion with users and client for refining the requirements. This

prototype is advised to be accomplished with the use of CASE (Computer

Aided Software Engineering) tools, that focus in capturing the require-

ments, converting them into a data model and finally converting into code

and auxiliary components (such as databases).

2. Iterative Development: This resembles to the spiral model (section

3.3.2), but the length of each iteration has been revised to a short pe-

riod (one day to three weeks top), which represents the closeness to agile

methodologies (section 3.5). The feedback for each iteration is crucial to

the success of the method. The feedback is used (as in most development

methods) to provide refinements of the requirements and to control and

manage the progress of the project.

3. Time Boxing: Is a time management technique use to plan deliverables

in short time periods. The objective is instead of delivering an complete

future of version, it’s to split the development in goals within a time box,

with a period no longer than six weeks long. For each time-box a budget

and a deadline is defined. The use of strict time boxes is one of the main

52

SDM Descriptions SDM Descriptions

principles of RAD and assures the length of a development iteration and

it can manage the expectation of the client according to the deliverables.

The misused of time boxing can derive the iterations of the project to be

futile and to roll back to a linear development.

4. Team Members: The RAD advises the teams to be small and experi-

enced and where the client performs an important role in the development

process specially during the initial and final period of an iteration. Team

members should be able to perform multiple roles not to disregard im-

portant aspects of the system and are organized into called SWAT teams

(Skilled Workers with Advanced Tools).

5. Management Approach: Management should be as active and involved

as possible, it’s one of the most vital activities in this methodology to asset

risks and to mitigate them, specially when considering long development

cycles. Also the management is important one balancing clients misun-

derstandings and on motivating the team. It should emphasize a strict

control of time-lines and on removing the political and bureaucratic ob-

stacles from the developing team, nevertheless keeping the team aware of

the critical points and major risks.

6. Tools: Obviously when the method was formalized, the tools used are

nowadays almost obsolete although others evolved, but the major point

is that the RAD methodology relies on the use of state of the art tools

(such as IDE’s and 4th generation languages) to speed up the development

process.

There are many divisions in phases of the RAD process, here the approach of

James Kerr and Richard Hunter [21], will be considered for its popularity among

industry and academic players in software engineering.

Kerr divides RAD into 5 phases as shown in figure 3.3:

1. Business Modelling: This phase is characterized by understanding the

functional operations demanded by the business which the system will

serve. All business process are cleared during this phase and modeled

during this phase. This task is necessary for understanding not only the

functional requirements but also all the business where the system is in-

volved to mitigate probable change of requirements and the need of new

functionalities.

2. Data Modelling: With the output from the previous phase, then the

need of technical resources is needed, the business is understood and there

53

SDM Descriptions SDM Descriptions

is the need of understanding where the system is needed and which in-

formation is needed for the system to work. During this stage the data

flow of information is modeled according to the business model previous

defined.

3. Process Modelling: After understanding where is the information and

how can the system get it, the need of understanding what should the

system do and perform with the information provided. The flow of the

information within the system is then defined and concrete data objects

that will be processed by the system.

4. Application Generation: The application generation should take ad-

vantage of tools available to the project to reduce the development to

the minimum, and the reuse of software is encouraged for its reduction

on testing. Automation tools are also strongly advised to enhance the

development and generation.

5. Testing and Turnover: All new components should be tested and inte-

gration testing is essentially for the success of one deliverable. As the reuse

of software is encouraged, the testing can be minimized to integration tests

(understanding that the component being reused has been tested). The

called turnover is used for modifications and changes detected in the final

testing and to deliver a release for the focus group sessions to evaluate the

state of the project and the deliverable it self.

Figure 3.3: Rapid Application Development

54

SDM Descriptions SDM Descriptions

Critic to Rapid Application Development

This methodology represented a cut with the previous methodologies without

disregarding the important features in older development models. It introduced

some new practices and reused others, such as:

� The use of time-boxes;

� Combined risk analysis (as address in the spiral model 3.3.2);

� Prototyping (also present in evolutionary methodologies 3.3)

One of the innovation brought by RAD was the effort to reduce the time used for

each iteration as most models only focused on reducing the overall time taken in

the development. This can be viewed as a divide and conquer strategy, reducing

each iteration for reducing the overall activities and therefore the project. For

this purpose, RAD encourages the use of modern technology and management

techniques.

The main criticism to RAD is its feasibility in large projects. The encourage-

ment of reuse, is also cited as a high risk for the success of innovation projects.

Another common criticism to this methodology is the difficulty of its imple-

mentation, and the fact that if is not properly used it may lead to a chaotic

development.

The methodology is also criticized by not addressing properly the performance

software quality, because of its goal to reduce time of development specially

when developing critical software that can require an extra formal analysis and

cutting edge science, although this criticism can be rejected if the testing and

turnover phase addresses all software qualities.

The RAD methodology represents a mark in the history of SDMs and it is the

connection between the Traditional Development Methodologies and the Agile

Development Methodologies, together with the evolutionary methodologies, it

opened the door for new approaches to arise, and most of the new methodolo-

gies that did, were inspired by RAD. This methodology is still used by some

major software companies and is one of the most quoted methodologies both in

academic and industry papers about software development methodologies.

55

SDM Descriptions SDM Descriptions

3.5 Agile Development Methodologies

The ADM (Agile Development Methodologies considered the modern wave of

software development), were based strongly in iterative development as the later

TDMs started to put in practice. The term agile development was first used in

agile manifesto (3.5.1), by the year of 2001. The main difference of these new

methodologies was the self-organization of the team (one of its ruptures with

RAD) and the use of management skill within a cross-functional teams (one

of the resemblances with RAD). During this section some of the most notable

methodologies will be addressed, regarding the popularity and relevance.

3.5.1 Agile Manifesto

In the year of 2001, a group of representatives of the new wave methodologies

gather in Utah (United States of America) in a ski resort to discuss the need

of lighter software methodologies opposed to the heavy monolithic traditional

methodologies. By the end of the gathering they deliver a manifesto addressing

a statement of principles that they (17 authors) subscribed. The full transcript

of the manifesto can be read in table 3.3. With this gathering the Agile Alliance

was created and they also added to the manifesto a statement of twelve principles

of agile software (table 3.4). To see more about the agile manifesto please check

the bibliography [42].

”We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on
the left more.“

Authors:

Kent Beck James Grenning Robert C. Martin Mike Beedle
Jim Highsmith Andrew Hunt Arie van Bennekum Ron Jeffries
Ken Schwaber Alistair Cockburn Jon Kern Jeff Sutherland
Ward Cunningham Brian Marick Dave Thomas Martin Fowler
Steve Mellor

Table 3.3: Agile Manifesto

56

SDM Descriptions SDM Descriptions

”We follow these principles:

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity–the art of maximizing the amount of work not done–is essential.

The best architectures, requirements, and designs emerge from self-organizing
teams.

At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly. “

Table 3.4: The Twelve principles behind the Agile Manifesto

57

SDM Descriptions SDM Descriptions

3.5.2 Scrum

Scrum in a known rugby formation and it was the theme for a work from

Takeuchi and Nonaka in an article [43] on Harvard Business Review. The anal-

ogy with the rugby formation technique, where the whole team achieves distance

by passing the ball back and forth as a a single unit, was made from the fact

that the approach to deliver a new product was made by a cross-functional

team going through overlapping phases. The analogy used to describe the old

approach was a relay race where the different teams are passing the baton to

the next group.

The cross-functional team should be able to self organize within the project,

with the proper control being performed subtly and should be able to learn dif-

ferent areas taking advantage of the knowledge resources within the organization

where the project is being held. In consideration to the development it should

be performed in overlapping phases and with the called built-in instability. The

built-in instability consists in creating a tension to promote creativity, the goals

for the new product should not be very strict neither should hand out clear-cut

concept of the new product. By that instability teams have a wide measure of

freedom and challenging goals.

In the early 1990’s Ken Schawber, Jeff Sutherland, John Scumniotales and Jeff

Mckenna start exploring this kind of approach in the industrial software. Schaw-

ber and Sutherland then presented a paper describing Scrum. They started

working together in refining the methodology, by their experience in the soft-

ware industry and come up with the methodology that is now widely known

as Scrum. Ken Schwaber with the help of Mike Beedle then formalized the

methodology in a book in 2001 [36].

Roles

Scrum has distinctive roles within the teams [35], they divide the roles into two

different kinds: the pig roles and the chicken roles. The division of the roles is

based on a joke about the creation of a restaurant by a chicken and pig:

The roles in Scrum are composed by:

� Scrum Master: The Scrum Master is responsible to ensure that the

project is enrolled according to the principles of Scrum, and to remove

the obstacles to keep the team focused on the tasks and to organize and

coach the team in fulfilling the Scrum principles. The Scrum Master is

58

SDM Descriptions SDM Descriptions

A chicken and a pig are together when the chicken says, ”Let’s start a restaurant!”
The pig thinks it over and says, ”What would we call this restaurant?”

The chicken says, ”Ham n’ Eggs!”
The pig says, ”No thanks, I’d be committed, but you’d only be involved!”

Table 3.5: Pig and Chicken roles: the joke

not the leader of the team neither manages the team, the team is self-

organizing, the Scrum Master just helps the team understand and use the

principles of self-organization and cross-functionality. The Scrum Master

is also responsible for choosing and teaching the Product Owner to perform

his work according to Scrum. The Scrum Master can also be a member of

the Scrum Team but it can never be the Product Owner.

� Product Owner: The Product Owner is entitled to assure the quality of

the product and is responsible for managing the Product Backlog, where

a set of priorities is defined, and to make it visible to all the team. This

set of priorities is only defined by the Product Owner, he and only he can

change the Product Backlog, if some member of the team thinks some item

need a change of priority he has to convince the Product Owner, and the

team should only work according to the priorities defined by the Product

Owner. The Product Owner can be a team member, but it can never be

the Scrum Master. This role is very visible and requires responsibility,

being a demanding nevertheless rewarding role.

� The Team: The team is responsible, with the input from the Product

Owner (Product Backlog), to put the requirements in a deliverable in each

iteration (called sprint in Scrum). Team members can have specialized

tasks and activities but cross-functionality is required and they should

learn from each other, and even perform tasks they are not used to if

required. The team has no titles within, and no one should refuse to do

a task because it’s not their job. Scrum strongly refuses the creation of

sub-teams with specific tasks, and the team should not be very big and

as a optimal size of seven people (plus or minus two), Scrum Master and

Product Owner are not included in this count, unless they are also part

of the team. The team should be self-organized and not even the Scrum

Master should tell the team how to convert the Product Backlog into a

deliverable or an increment by the end of the sprint. Changes within

membership in the team are not advisable, because can affect the self-

organization of the team and therefore affect the productivity and these

59

SDM Descriptions SDM Descriptions

changes should be done in the end of a sprint.

Using the previous analogy of the chicken and pig, the Scrum Team members

are pigs and all other roles are chickens. The Product Owner and Scrum Master

are considered to be chicken, but how was said before, they can also be a Scrum

team member, so they can also be pigs.

One of the rules in Scrum, is that chickens cannot tell pigs how to do their work,

by then, only if the Product Owner and/or Scrum Master are involved in the

deliver of the product as part of the Scrum Team (pigs), may they interfere in

the way pigs perform their tasks [35].

There are also other roles considered within the scope of Scrum, considered to be

chickens, such as managers who will be responsible for creating the conditions

for the project to be held and the clients and users of the product normally

designated as stakeholders.

Practices and Life Cycle

Scrum can be divided into three major phases Pre-Game, Development and

Post-Game that will be now analyzed with more detail.

1. Pre-Game

In the pre-game phase the planning and conceptual architecture are defined.

This phase consists in preparing the requirements analysis that will be used to

construct the Product Backlog. In this phase, are also chosen the tools that are

going to be used to develop the product, the composition of the project mem-

bers and their roles. Also, a risk analysis and global costs are calculated to asset

the viability of the project. This phase involves the called chicken stakeholders.

Each requirement defined goes into the Product Backlog, the document that

will be managed by the Product Owner, defining the priorities for each one of

the requirements. This requirement list will be continuously updated during

the development phase. The pre-game is meant to provide the input for the

development phase, that works like a black box, the stakeholders define the

team, requirements and tools to the development phase and by the end of the

development phase a product will be released.

The conceptual architecture is also defined during this phase. A meeting with

different approaches should be taken and a conceptual approach should be cho-

sen and this architecture should be based in the requirements that are present

in the Product Backlog at this point.

The creation of the Product Backlog consists on defining an priority and ef-

fort estimation for each requirement, this should happen in the Release Planning

Meeting.

60

SDM Descriptions SDM Descriptions

2. Development

The development phase is the phase where the development is actually per-

formed. This phase is considered to be a black box, in which changes of require-

ments are predictable, and where the called pig elements of the project appear.

The development phase is divided into iterations called Sprints. Each sprint,

with a time-box between 2 and 4 weeks, should end with an some increment to

the product. A sprint starts with a Sprint Planning Meeting, time-boxed

to 8 hours for a 4 week sprint (with the rule of 5% for the total amount of

the sprint). This meeting is divided in two parts: the what part and the how

part, the meeting is conducted by the Scrum Master and the Product Owner

presents the priority list as in the Product Backlog. The parts are time-boxed

to half the time of the meeting (although the parts can be combined). The

input for the meeting is the Product Backlog, previous sprints increment, the

capacity and previous performance of the team. The team chooses an amount

of the Product Backlog and a Sprint Goal is crafted defining the objectives

for the sprint, which is represents a subset of the release goal, this is normally

done in the what part of the meeting. In the how part of the meeting the team

decomposes the part of the Product Backlog chosen into tasks and activities

that should be performed in order to obtain the Sprint Goals (converting the

subset of the Product Backlog into tangible software). The task list is called

the Sprint Backlog. The assigning part can be performed during the meeting

or during the sprint it self, it’s up to the team, advocating the self-organization

of the Scrum Team. The Product Owner should be involved in the meeting to

clarify the Product Backlog and to help in the negotiation of trade-offs. The

Product Owner may also reconsider the priorities in the Product Backlog.

The sprint is then started and during the sprints, there are meetings, time-boxed

to 15 minutes, called Daily Scrums, in which each member explains:

� What he/she has accomplished since the last meeting;

� What he/she is going to do before the next meeting;

� What obstacles are in his/her way.

These meetings should take place at the same time and in the same place every

day. The Scrum Master conducts the meeting and assures that it happens

and happens within the correct time-box. The purpose of these meeting is to

improve the communication in the team and to eliminate impediments to the

development.

During the sprint are also some artifacts that are present to the all team:

� Release Burn-down graph: represents the amount of the Product

61

SDM Descriptions SDM Descriptions

Backlog estimated effort across the time. The units are usually Sprints,

but it’s up to the team to decide how it should be measured.

� Sprint Burn-down graph: As the above it represents the amount of the

Sprint Backlog to be done, it’s advised that the Sprint Burn-down graph

should be a physical one, that it should be visible in the project area, for

motivational reasons.

In the end of the sprint, a Sprint Review meeting is held, with a time-box of 4

hours meeting for a month sprint (should be half the time of the Sprint Planning

Meeting). In this meeting the stakeholders should also be present to asset the

increment and the Product Owner should explain what has been done according

to the Product Backlog and all the items that are done, and the revisions that

have been performed to the Product Backlog and estimation of the completion

dates and velocity assumptions (how much Product Backlog effort can a team

handle for each Sprint). The team also discuss the problems they had, how they

solved it and what went well. The team then presents the work done, and the

meeting should provide the input for the next Sprint Planning Meeting that will

begin the next sprint. Before the next Sprint and after the Sprint Review, a

Sprint Retrospective meeting is also held, for the Scrum Team to revise their

organization and development practices. This meeting is time-boxed to 3 hours

and discuss not only technical aspects but all the aspects that can contribute

for an increase of effectiveness for the next sprint.

Figure 3.4: The Scrum Sprint [1]

62

SDM Descriptions SDM Descriptions

3. Post-Game

The final phase starts when all the goals defined in the Pre-Game phase are

achieved, the preparation and creation of the final release, including its tests,

manuals and learning material. In this phase all stakeholders should be informed

of the end of the project. The tests to perform should include integration and

system testing. The definition of done is defined by the Project Owner, meaning

the conclusion of development, that can include, tests, documentation and other

kind of requirements such as internationalization issues, and it is the Product

Owner responsibility to clarify what should be done before releasing the product

to the final user.

Figure 3.5: The Scrum Life Cycle [1]

Critic to the Scrum Methodology

Scrum, as the other agile methodologies, introduced a lightweight strategy over-

coming some of the problems of rigid methodologies when adapting to change

of requirements or new requirements. Scrum also introduced some key elements

of software engineering practices to adapt to change and to speed up the devel-

63

SDM Descriptions SDM Descriptions

opment without putting so much effort in the bureaucracy.

The main criticism brought by Scrum is the fact that the self-management of

the Team, may lead to chaos development. Some authors state that Scrum does

not consider the Human factor, and that people inside teams tend to gain the

control of the team, specially when different levels of seniority are present in

the team.

Also specially when addressing inexperienced team members can lead to ad-hoc

management and/or cowboy coding being somewhat difficult to by stand with

the philosophy of the methodology.

3.5.3 eXtreme Programming

The eXtreme Programming, normally designated XP, was created by Kent Beck,

during a project for the auto-mobile industry, to develop a payroll system. XP

is based in five values, the fifth was added in the 2nd edition of the publication

of Extreme Programming explained by Kent Beck [5]:

� Comunication: It’s a crucial factor when developing software, some au-

thors considered inefficient communication to be the core of most of the

problems in software projects. In traditional development methodologies,

communication is formalized into documents, XP considers communica-

tion between the team, without the need of elaborated document, should

be simple, mainly verbal communication, with the use of metaphors and

simple designs that speed up the process and respond efficiently to changes.

� Simplicity: Designs should be as simple as possible and they should

not try to prevent all problems that will surge, because they cannot be all

predicted. So, the up front design should be a simple solution with no great

detail, so it can be easily adaptable and extra functionality (the cherry in

the top of the cake) can be designed and developed later, after everything

that is essential is done. The buzz word for this value is ”great is enemy

of good“. Simplicity is also strongly connected with communication, a

simpler design is easier to understand than a very complex one, and if the

code developed is simpler all programmers will understand it quickly.

� Feedback: Frequent and on time feedback provides a proper reaction to

problems and issues. Client also needs to receive feedback to avoid tension

and rupture. This value is also related to the previous, being feedback a

part of communication it should also be simple, one way of a very simple

feedback from system is performing unit and integration testing of the

increments added to the solution. Clients can also, periodically provide

64

SDM Descriptions SDM Descriptions

feedback when testing the functional requirements (called user stories) of

the system.

� Courage: Acts should be taken with courage. Team members should have

the courage to admit failure, and to provide the proper feedback without

fearing the consequences, no programmer likes to throw away code that as

cost him or her a lot of effort and time, but they should have the courage

to throw it away when needed and to admit they failed. Courage is needed

to respect the values above, and to stay strict to them.

� Respect: Team members should respect each others and their work

should rely on that. When submitting a piece a code, a member of the

team should take into account that it can affect the work of the others, so

it should assure that the respect for others members work is guaranteed.

They accomplish that by performing unit and integration testing between

other tasks. Respect for the values is also required for the team members,

and if the values are respected is a good start for respecting the other

team members.

Roles

� Programmer: The programmer is the central figure of the methodology,

as its name indicates. Its role is to translate the user story of the client into

software. The programmer is also responsible for conducting unit testing

(once XP uses test driven development as it will be explained further).He

or she is also responsible for reviewing other programmers work (as it uses

pair-programming, also explained further) and to re-factor code. The

programmer has to respect all the values stated by XP.

� Customer: The customer is part of the team and is responsible for cre-

ating user stories, that will define the requirements for the programmers

to implement, and to perform the acceptance test of the functionalities

implemented. The customer knows what to be implemented and the pro-

grammer how, so it’s the customer job to define which tests should be

used to test the acceptance of the release.

� Tester: The tester helps the customer in writing the tests and to execute

tests already implemented to assure that re-factoring and new functional-

ities don’t compromise the previous implementations.

� Tracker: The tracker is in charge of retrieving informations about the

evolution of the project and to deliver an opinion on effort estimations to

implement each on of the functionalities, even that the effort estimation

65

SDM Descriptions SDM Descriptions

should be performed by the programmer, the tracker adjust them and

try to keep them as exact as possible. The tracker is also responsible for

keeping a log of all test results, errors and problems as well to inform the

responsible to perform the corrections and tests with all the information

required to do it. The tracker as to be capable of perform these activities as

exact as possible and without being affected by the eventual the pressure

that programmers feel towards changes and corrections, because it can

lead to omissions of facts and possible problems.

� Coach: The coach is the person in charge of the project and to guide the

rest of the team during the process. The coach, as to know the details of

the process and to be capable of which practices can mitigate the problems

that appear in the project.

� Consultant: This is an optional element of the team, and is a person

that can bring specialized skills that the team does not have. The con-

sultant has to guide the team members in solving the problems of the

specialization that brought him to the project.

� Big Boss: The big boss is the project manager responsible to allocate

and to deliver all the resources needed and it’s responsible to intervene, if

needed, to assure the success of the project.

Practices and Life Cycle

XP was named after the extreme approach when considering agile and lean

development, this demonstrates how XP is strict with the use of some practices.

In this section the life cycle of the methodology and the use of theses practices

during each phase of the process are described.

The XP methodology is divided in 6 phases:

1. Exploration

The first phase of XP is characterized by the developers team getting used

to the technologies and tools that they will use to develop the product and

the customer developing an essential artifact to the implementation of XP, the

User Story. User Stories defines, in a very succinct way, a functionality or

functional requirement, to be implemented in the final product. The user story

is built using Story Cards, which is a paper where the user describes the

functionality in just a few words, is advised to think of a story card as a reminder

to the developer to have a conversation with the customer. The developers then

pick up the user stories and built up a very rudimentary system, exploring

the technologies that will be used in the development of the system. During

66

SDM Descriptions SDM Descriptions

this phase programmers should develop in different ways presenting alternatives

in concern of the architecture. In this stage, as in the rest of the process,

programmers should work using Pair-Programming. In pair-programming,

two programmers work in the same workstation analyzing the same task, one

of them regarding the coding detail and the other with the functionality and

reviewing the code. Programmers often trade roles, and it’s advised that the

pairs switch often, so everyone is familiar with what others are doing.

2. Planning

In this phase, characterized by the practice called The Planning Game, cus-

tomers work with the programmers in order to define priorities and estimate

effort for each user story and define which user stories are going to be imple-

mented in the the next iteration. This phase can be split in two phases, being

the first with the interaction of the user, to define the priorities and estimate the

effort, called the Release Planning and a second phase, where only program-

mers are included defining the activities and tasks for each pair of programmers,

who will commit them selves into a deadline for the task to be complete. Dur-

ing this phase also unit tests are developed, prior to the actual development,

this approach is called the Test Driven Development is one of the practices

advocated by XP

3. Iterations

The iteration phase can take from one to four weeks long and considers all the

tasks normally stated in software development: analysis, design and testing.

It also adds a planning for testing when the developers gather to discuss how

the tests should be performed. The development how was explained above is

developed using pair-programming.

XP recommends the practices of code sharing, where all the team is able to

view and modify the code the called Collective Code Ownership. The use of

Coding Standards is advised in order to simplify the mixture of the program-

mers and for everyone to understand the code as easy as possible. Developers,

according to the values of XP, should develop simple designs and should use

common metaphors so everyone can easily understand when someone is refer-

ring to some specific element of the requirements.

During the process of development besides the Continuous Review from part

of one member of the pair, they should always work with the latest version of

software, advocating the called Continuous Integration, and should perform

Re-factoring of the code produced. This means removing ambiguity and re-

dundancy from the code. As was referred in the previous phase, XP uses test

67

SDM Descriptions SDM Descriptions

driven development, which means that tests should be continuous and even pre-

cede the development of code.

The customer is considered as part of the team as it should be involved during

the development of the code, and should perform functional tests to the re-

leases. This relates to two more practices that XP refers, Customer On-Site

and Small Releases. Customer on-site, means that the client is not considered

as to be external and should be in the same physical space as the developers,

and the small releases serve to the customer to test each increment as soon as

possible, these releases should run independently and they are not intended to

go live.

When regarding the programmer welfare, the XP is very strict, and defines that

no programmer should work more than 40 hours per week, as tired program-

mers are more likely to produce errors. In the need of extra hours of work in

one week from a developer, this developer should not work overtime in the next

week.

4. Productionizing

In this phase the performance is analysed and together with the released pro-

duced in the previous phase the customer revises the release and can suggest

modifications, the customer can demand new acceptance tests and performance

to prove the validation of the release. Modifications can be pointed out, and

they are then evaluated to go to the maintenance phase or being included in a

next iteration if the cost and objectives suggest it.

5. Maintenance

In this phase the modifications suggested by the customer are implemented and

an extra caution to integration is required. All uses cases should be re-run after

the modifications are done and an update of the previous release is presented

to the customer and it’s considered to be in production.

6. Death

The dead of the project happens when there are no more user stories to imple-

ment and performance and stability of the system are approved by the customer.

In this phase all documentation required by the customer is then produced,

considering a simple description of the of the architecture and functionalities

implemented.

68

SDM Descriptions SDM Descriptions

Figure 3.6: The Extreme Programming Life Cycle [1]

Critic to the XP Methodology

The extreme Programming methodology brought the simplicity commitment to

software development, and a very big effort on tests. Being a agile methodology

it was also a big cut with the previous monolithic approach.

One of the main critics to eXtreme programming comes from the design process

being too simple, which can cause additional problems further in the end of the

process, the rudimentary design address in the begin of the phase is considered

by some author to be insufficient.

About pair programming, the critic made is concerned with lack of concentration

coming from the work constantly done by two people, without having time to

think in silence, when programming is a work, specially when addressing very

complex algorithms or problems, that requires concentration and focus on the

problem. Other privacy issues may cause also discomfort within the place of

work.

The same concern is addressed when dealing with inexperienced programmers

can cause the project to decline to chaos, like the criticism performed to Scrum,

and almost all the agile development methodologies.

69

Chapter 4

Results

4.1 Method

To analyze SDMs using an empirical approach will imply an influence on the

outcome, of using the SDM, and even in the adherence of the team to SDM’s

definition. This influence can appear by the characteristics of the team, its ex-

perience and to specific issues of the project given the context in which it is

enrolled. This influence reflects subjectivity, and when performing an evalua-

tion/classification subjectivity can imply that the results are not accurate. This

kind of approach has been used by attempting to analyze and quantify the qual-

ities of the product delivered when using the evaluated SDM, some examples

can be found in the bibliography in [4] and [22].

Other approach, more informal, is to analyze an SDM and then try to determine

how is better or worst by its advantages and criticisms.The problem with this

approach is that the subjectivity is on the person who evaluates and by the

sources that were used. Some examples of this kind of approaches can be found

in the bibliography in [40],[38], [39] and [1]).

The approach taken in this dissertation was not to perform an empirical re-

search, therefore removing the subjectivity of the specific experiences of using

the SDM, and to perform an analysis of the SDM but removing the subjectivity

by confronting them against facts instead of identifying advantages or criticisms

informally.

The first step was to define an ideal use of the methodology, that is present in

the state of the art sections 3.2, 3.4.2, and 3.5. Then the ideal methodology is

confronted against the SWEBOK’s knowledge areas by grading its adherence

to these KAs. With this approach both subjectivity flaws stated previously

are being avoided. Of course that the grading is performed by someone who

analyzed the SDMs and also researched about the advantages and criticisms of

70

Results Results

the SDM and it can still be biased by this research. Although, it will have to

confront the SDM directly against a fact, prove that is adherent or not to this

fact, and grade it with a satisfaction scale, so in the end subjectivity is lessened.

The framework here presented it also allows to inflect subjectivity into the final

results. It may sound confusing, because subjectivity is not in benefit of the

classification but it can be useful when someone wishes to add their experience

and their context to the choice that they are doing. These addition can be made

by weighting the knowledge areas (or more detailed into the sub-knowledge ar-

eas). Again, because this addition is made after the classification is not adding

subjectivity to the process of grading the SDM but to the process of choosing

one.

An important issue when defining, the previous mentioned, ideal methodologies,

was the extrapolation made from the models, specifically when addressing to

waterfall and spiral model (sections 3.2.1 and 3.3.2). This extrapolation was

risky but the intention was to address two very common approaches in the

actual industry where methodologies derived from these models are still very

used. This extrapolation used descriptions of the use of the models to projects

defining an implicit methodology by both idealistic and averages uses of the

methodology.

The analysis that is presented in this chapter is the, already mentioned, con-

frontation of the definition of the methodologies against the knowledge areas.

To provide quantifiable metrics, the use of satisfaction points was given with the

justification. A quantification is made, to provide a more easy way of addressing

the results, by defining 0 to no satisfaction, 1 to partial satisfaction and 2 to

full satisfaction.

A visual aid is also delivered for each methodology, by gathering the results in

a bar chart with the percentage of satisfaction obtained in each knowledge area,

this is calculated by dividing the actual satisfaction by the maximum possible

of satisfaction.

This analysis should not be understood as an attempt of choosing which SDM

is better, but to provide an overview of each methodology according to the

software engineering methodologies, and to provide an aid when choosing a

methodology, according to the required KA concerns.

4.2 Waterfall

Waterfall is still one of the most used methodologies (or methodologies based

on this model) in the world, so it was a necessary presence in this analysis.

The software engineering knowledge areas have evolved to fit the new context

71

Results Results

engineering areas, some of the satisfaction points were low because of its mono-

lithic approach, without space for change and and effective process evaluation

or adaptation. The design process is very sustained in documents rather than

in practical solutions that can provide a more effective design when defining

the different kind of design levels. Quality assurance and requirements analysis

have very high satisfaction points and software construction was penalized for

not committing to simplicity and coding for verification.

The tables and bar chart for the waterfall methodology can be seen below.

Figure 4.1: Waterfall: Software KA satisfaction bar chart

72

Results Results

Table 4.1: Waterfall: Software Requirements, Software Design and Software
Construction KA

73

Results Results

Table 4.2: Waterfall: Software Testing, Software Maintenance and Software
Configuration Management KA

74

Results Results

Table 4.3: Waterfall: Software Engineering Management, Software Engineering
Process and Software Quality KA

75

Results Results

4.3 Spiral

The spiral methodology, due to the prototyping technique, and the introduction

of iterations and the revision in each iteration, provide a great satisfaction in

the design and testing KA and a very reasonable one in software configuration

management and software engineering process and management.

The lack of metrics and quantifications, besides the risk assessments, and the not

commitment for simplicity and code verification are responsible for lower satis-

faction points in software construction and software engineering management.

Also a non definition of a specific phase or activities concerning maintenance

reflected in the lower satisfaction for this methodology.

Next the tables and satisfaction bar chart for the spiral methodology are pre-

sented.

Figure 4.2: Spiral: Software KA satisfaction bar chart

76

Results Results

Table 4.4: Spiral: Software Requirements, Software Design and Software Con-
struction KA

77

Results Results

Table 4.5: Spiral: Software Testing, Software Maintenance and Software Con-
figuration Management KA

78

Results Results

Table 4.6: Spiral: Software Engineering Management, Software Engineering
Process and Software Quality KA

79

Results Results

4.4 Rapid Application Development

The RAD methodology, with the use of tools and its management approach

got a total satisfaction of the software construction KA and with the use of

simulation a total satisfaction of the requirements KA.

An insufficient concern with the testing and maintenance phase were reflected in

the lowest satisfaction for this methodology. The design lacked a notation and

standard definition and the methodology lacked measurements and quantifiable

reviews.

Figure 4.3: RAD: Software KA satisfaction bar chart

80

Results Results

Table 4.7: RAD: Software Requirements, Software Design and Software Con-
struction KA

81

Results Results

Table 4.8: RAD: Software Testing, Software Maintenance and Software Config-
uration Management KA

82

Results Results

Table 4.9: RAD: Software Engineering Management, Software Engineering Pro-
cess and Software Quality KA

83

Results Results

4.5 Scrum

The Scrum methodology due to its role distribution and with the use of artifacts

such as backlogs and burn-down charts was the only methodology to fully sat-

isfy the software engineering management and software engineering process KA

(although eXtreme programming also fulfilled the software engineering process).

Scrum approach on maintenance as another iteration of the process and the lack

of effort on minimizing the complexity reflected in the lowest satisfaction for this

methodology on software construction and maintenances KA. The tables and

bar chart satisfaction for the Scrum methodology are stated below.

Figure 4.4: Scrum: Software KA satisfaction bar chart

84

Results Results

Table 4.10: Scrum: Software Requirements, Software Design and Software Con-
struction KA

85

Results Results

Table 4.11: Scrum: Software Testing, Software Maintenance and Software Con-
figuration Management KA

86

Results Results

Table 4.12: Scrum: Software Engineering Management, Software Engineering
Process and Software Quality KA

87

Results Results

4.6 eXtreme Programming

A dedicated phase to maintenance, and a concern with activities that extend

the development issues, as the philosophy stating the principles of simplicity,

a very detailed review and roles reflecting those principle turned into eXtreme

Programming being the only methodology to totally satisfy the software main-

tenance and software construction KA. Adding the roles of tester and tracker

the proper Software Configuration Management was also only fully satisfied by

this methodology.

It was also interesting noticing that one of the main critics to this methodology

being the design process, it was also, together with software engineering manage-

ment and process KA, the lowest satisfied KA for this methodology. Although

getting a very high satisfaction on all of them. The fact of not considering the

different levels of design and not providing the measures or assessments of the

procedures and process was the reason for those satisfaction levels.

More detailed descriptions for each sub-KA can be found in the tables and bar

charts for this methodology that are now presented.

Figure 4.5: XP: Software KA satisfaction bar chart

88

Results Results

Table 4.13: XP: Software Requirements, Software Design and Software Con-
struction KA

89

Results Results

Table 4.14: XP: Software Testing, Software Maintenance and Software Config-
uration Management KA

90

Results Results

Table 4.15: XP: Software Engineering Management, Software Engineering Pro-
cess and Software Quality KA

91

Chapter 5

Conclusions and further

work

5.1 Conclusions

This dissertation provides a framework to compare SDMs and to correctly

choose one when embracing a new software project. This framework is backed

up by SWEBOK and its knowledge areas, providing that the classification and

comparison of the SDM is objective and based on facts. Subjectivity and expe-

rience can also be added to the framework by weighting the KA according to

what is believed to be the KA more important for the project in cause. One

of the main problems with software development projects is that normally this

activity is not done at all, normally a team or a company uses the same SDM

for all the projects and use them until something goes wrong or they decide

is time to use another methodology. The fact is that software development

projects should use an SDM that suits their demands and not the one that is

normally used. Even though experience using an SDM can influence the deci-

sion it should not be the only factor. So the result of this dissertation should

not be only the framework delivered but a concern with the importance that a

correct choice of an SDM can have in the final product. This dissertation also

contributes with an analysis of software engineering evolution during the years

and the contribution it has given to software development. With the the results

of this dissertation is possible to effectively improve the quality of the software

produce and the process of building it. In order to achieve it is necessary to

maintain the framework that have been delivered by increasing the number of

SDM and feeding the analysis with previous experiences, by giving weights not

only to KA but also to SDM them selves and updating the classification with

92

Conclusions and further work Conclusions and further work

the input of the experience in using those SDM.

The choice of the SDM to include in the framework delivered was made accord-

ing to the evolution of the SDM in time, confronting different SDM philosophies

and to compare the approaches that are being used in industry. These confront

led to choosing a set of most used methodologies of each approach/philosophy

and analyze them according to the previously explained methodology. This ap-

proach helps to mitigate and dismiss some generalizations and prejudices that

exist with the SDMs and that supporters of these philosophies tend to have

regarding the “opposite” philosophies. One of the objectives of this dissertation

is also do demonstrate that most of the times a methodology is not better than

other but is more appropriate than other given a determined context. In other

words, the choice of an SDM is not choosing the “best SDM ever“ but is ac-

tually using this framework for assessing what are the qualities of an SDM by

performing the classification against the SWEBOK knowledge areas and putting

the classification in context by giving weights to these KA regarding the pre-

dicted risks and the environment variables that the project will be involved in.

When concerning the results, and when confronting to critics and similar works

was interesting to find out that most of the results were similar, even though

different approaches have been taken. The results seem to point that when

considering the software engineering process and management the more modern

methodologies satisfy these KA without disregarding the KA that the TDM

were mainly concerned with. Although the main critic pointed to the ADM is

that they should work in theory but fail when actual implementations occur

and that the methodologies tend to degrade into an exaggerated concern with

the way those activities are performed disregarding that the actual activities,

turning the project into chaos where the final product is be delivered with sev-

eral problems. Translating into the terminology of this dissertation, regarding

more the KA dedicated to software engineering process and management but

failing into correctly outputting the needs addressed by the KA of software con-

struction, requirements, design and testing. This kind of critic it cannot be

supported or declined by the work done in this dissertation, for proving the

work done here and to clarify some of the doubts and opinions addressed by the

different authors an statistical work, trying to assess and to ask for input over

different projects using different methodologies, should be done as a support

to this dissertation. Of course as was stated previously, this work should be

done, taking in consideration the specific constraints of the project, team and

stakeholders involved.

Another important aspect when reviewing the work done in this document is

to address the subjectivity of the results. The analysis is performed by a per-

son, who carries opinions, experiences and interpretations, although an effort

93

Conclusions and further work Conclusions and further work

on minimizing this by trying to provide factual verifications and analysis was

done. When reviewing this work and confronting to similar works, even though

with different approaches, scopes and goals, was good to verify that the results,

even that they differ in the metric, they tend to be similar in the overview (the

main goal of this dissertation) given for the same KA/SDM.

In overall, the necessary description of the SDM and KA was provided to un-

derstand the results and its justifications. When regarding the extension an

intentional confront between different approaches of SDM (TDM and ADM)

with the inclusion of a methodology that would not fit into neither of the group

representing the link between them, of course some very popular ADM could

also be described (e.g. DSDM (Dynamic systems development method), FDD

(Feature Driven Development) or Agile Modeling), but the popularity factor of

Scrum and eXtrememe Programming was chosen among other factors. The con-

frontation of TDM/ADM was/is very common in several papers, forums, books

and other ways of communication within the software engineering community

and were a must have confrontation in this dissertation. Other confrontations

could be done and will be addressed in further work section.

5.2 Further Work

Although the objectives of the dissertation were fulfilled and the framework

delivered can help to choose an SDM, there are more variables that can be

included in the work developed.

The first addition that must be addresses is the scope of SDMs that have been

analyzed and used in the classification process. As it was mention previously

the choice of this SDMs was made by confronting different approaches and

philosophies regarding the evolution of the SDMs in time and the popularity of

each SDM in academic and industrial contexts. A group of SDM that was not

included in this dissertation is a confrontation that is now in vogue and that

could lead to interesting conclusions. These confrontations, more modern, is

the increase of discussion between the lean software development methodologies

and agile development methodologies and it will be considered as further work.

In the same topic is to broaden the SDM for each group including some popular

SDMs that have not been included in this work but were taken in consideration

when making the choice. Some examples of these SDMs are: DSDM (Dynamic

systems development method), FDD (Feature Driven Development) and Agile

Modeling.

The other addition that could increase the quality of the framework delivered

is the classification it self, in this work the software engineering approach was

developed by using the SWEBOK but it would be also interesting to develop an

94

Conclusions and further work Conclusions and further work

additional classification regarding the view of project management by using the

same approach with PMBOK and its knowledge areas. This insight could lead

to additional weights in the classification and it could broaden the scope of the

classification and provide insight of the problems and risks that project managers

face in the view some what disconnected from the software development it self

and more focused in management giving a different input on the subject.

This dissertation also approached the sense of what software quality means by

explaining the different qualities that can be measured and that a software can

have. It would also be interesting to analyze how an SDM can influence those

particular qualities and to build up a classification for each SDM regarding the

qualities it enforces when developing software. This approach is more difficult

to explore, keeping in mind the objectivity that was referenced has being one of

the goals of that the framework should retrieve. To measure how an SDM can

influence the quality of software would not be an easy task, because it could

imply analyzing the results of the SDM which brings the subjectivity of the

context to the classification. Other approaches could lessen the subjectivity

and that would be an important work to add to this framework.

The support to this framework is also considered as further work by providing

a tool that can help people using the framework, the ideal scenario would be

to build an web application that could be enriched with SDM descriptions and

classifications and an front-end that would allow a user to wheight KA and

deliver graphical input with a set of choosen SDM. This would be an important

work as it should help to materialize the work developed in this dissertation.

95

Bibliography

[1] Pekka Abrahamsson, Jussi Ronkainen, and Juhani Warsta. Agile develop-

ment methods - review and analysis. Technical report, University of Oulu,

2002.

[2] D. E. Avison and G. Fitzgerald. Information Systems Development:

Methodologies, Techniques, and Tools. McGraw-Hill Higher Education, 2nd

edition, 1998.

[3] Victor R. Basili. Quantitative evaluation of software methodology. Techni-

cal report, Deparment of Computer Science, University of Maryland, 1985.

www.cs.umd.edu/~basili/publications/proceedings/P29.pdf.

[4] Victor R. Basili and Robert Reiter JR. A controlled experiment quan-

titatively comparing software development approaches. IEEE Transac-

tions on Software Engeneering, VOL. SE-7(NO. 3), May 1981. http:

//www.cs.umd.edu/~basili/publications/journals/J10.pdf.

[5] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-

Wesley Professional, 2nd edition, 2005.

[6] Barry Boehm. A spiral model of software development and enhancement.

VOL 5:61–72, 1988.

[7] Barry Boehm. Tutorial on software risk management. 1989.

[8] Frederick P. Brooks. No silver bullet. Proceedings of the IFIP Tenth World

Computing Conference, 1986.

[9] Common framework for algebraic specification. http://www.informatik.

uni-bremen.de/cofi/wiki/index.php/CoFI.

[10] Edward R. Comer. Alternative software life cycle models. VOL 2:289–299,

1997.

96

www.cs.umd.edu/~basili/publications/proceedings/P29.pdf
http://www.cs.umd.edu/~basili/publications/journals/J10.pdf
http://www.cs.umd.edu/~basili/publications/journals/J10.pdf
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CoFI
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CoFI

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Edgsger W. Dijkstra. Notes on structured programming. Technical report,

Technological University Eindhoven,The Netherlands, 1969. http://www.

cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.

[12] Edsger Dijkstra. The humble programmer. ACM Turing Lecture.

[13] William R. Duncan, editor. Guide to Project Management Body of Knowl-

edge. Project Management Institute - Standards Committee, 1996.

[14] Gamma and all. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[15] Carlo Ghezzi, Mehdi Jazayero, and Dino Mandrioli. Fundamentals of Soft-

ware Engineering. Prentice-Hall International Editions, 1991.

[16] Kai Gilb. EVO - Evolutionary Management and Product Developement.

Manuscript from www.gilb.com, 2007.

[17] Tom Gilb. Principles Of Software Engineering Management. Addison-

Wesley, 1988.

[18] IEEE, editor. Guide to Software Engineering Body of Knowledge. IEEE

Computer Society - Professional Practices Committee, 2004.

[19] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley, 1995.

[20] Stephen H. Kan. Metrics and models in software quality engineering. Pear-

son Education, 2nd edition, 2009.

[21] James M. Kerr and Richard Hunter. Inside RAD: How to Build a Fully

Functional Computer System in 90 Days or Less. McGraw-Hill, 1994.

[22] Riaan Klopper, Stefan Gruner, and Derrick G. Kourie. Assessment of a

framework to compare software development methodologies. Proceeding of

SAICSIT 2007, South African institute of computer scientists and infor-

mation technologists on IT research in developing countries, 2007.

[23] Henrik Kniber. Scrum and XP from the trenches - How we do Scrum.

InfoQ - Enterprise Software Development Series, 1999. http://infoq.

com/minibooks/scrum-xpfrom-the-trenches.

[24] Craig Larman. Agile and iterative development: a manager’s guide.

Addison-Wesley Professional, 2004.

[25] Nancy Leveson. Medical devices: The therac-25. Appendix of: Safeware:

System Safety and Computers.

97

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://infoq.com/minibooks/ scrum-xpfrom-the-trenches
http://infoq.com/minibooks/ scrum-xpfrom-the-trenches

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Lidwell and all. Universal Design Principles. Rockport, 1993.

[27] James Martin. Information Engineering: Desing and Construction.

Prentice-Hall, 1990.

[28] James Martin. Rapid Application Development. Prentice-Hall, 1991.

[29] Robert Martin. Agile Software Development, Principles, Patterns, and

Practices. Prentice-Hall, 2002.

[30] Lampert Meertens. Category theory for program construction by calcula-

tion. 1995.

[31] José Nuno Oliveira. Especificação e desenvolvimento formal de programas.

1995.

[32] D.L. Parnas. On the criteria to be used in decomposing systems into mod-

ules. 1972.

[33] D.L. Parnas and D.M. Weiss. Active design reviews: principles and prac-

tices. 1987.

[34] Brian Randell. The 1968/69 nato software engineering reports.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/

index.html.

[35] Ken Schwaber. Scrum guide. 2009.

[36] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.

Prentice Hall, 2001.

[37] Ken schwaber google talks. http://video.google.com/videoplay?

docid=-7230144396191025011.

[38] Henk Gerard Sol. A feature analysis of information systems design method-

ologies: Methodological considerations. 1983.

[39] Xiping Song and Leon J. Osterweil. Toward objective, systematic design-

method comparisons. IEEE Software Journal, VOL 9 issue 3, 1992.

[40] Reed Sorensen. A comparison of software development methodologies.

[41] Matt Stephens and Doug Rosenberg. Extreme Programming Refactored:

The Case Against XP. A! Press, 2003.

[42] Various subscribers. Agile manifesto, 2001. http://agilemanifesto.org.

[43] Hirotaka Takeuchi and Ikujiro Nonaka. The new new product development

game. Jan 1986.

98

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html
http://video.google.com/videoplay?docid=-7230144396191025011
http://video.google.com/videoplay?docid=-7230144396191025011
http://agilemanifesto.org

BIBLIOGRAPHY BIBLIOGRAPHY

[44] Unified modeling language. http://www.uml.org.

[45] Vienna development method. http://www.vdmtools.jp/en/.

99

http://www.uml.org
http://www.vdmtools.jp/en/

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context
	Goals
	Structure of the Document
	Terms Elucidation

	State of Art
	Software Engineering
	Brief History of SDM
	Software Qualities
	Correctness
	Reliability
	Robustness
	Performance
	User Friendliness/Usability
	Verifiability
	Maintainability
	Re-usability
	Interoperability
	Productivity

	Knowledge Areas in Software Engineering
	Software Requirements
	Software Design
	Software Construction
	Software Testing
	Software Maintenance
	Software Configuration Management (SCM)
	Software Engineering Management
	Software Engineering Process
	Software Engineering Tools and Methods
	Software Quality

	SDM Descriptions
	Software Development Methodologies
	Traditional Development Methodologies
	Waterfall Methodologies
	Transformation Methodologies

	Evolutionary Methodologies
	The Win-Win Approach
	Spiral Methodologies

	Rapid Application Development
	Changing Plans
	RAD

	Agile Development Methodologies
	Agile Manifesto
	Scrum
	eXtreme Programming

	Results
	Method
	Waterfall
	Spiral
	Rapid Application Development
	Scrum
	eXtreme Programming

	Conclusions and further work
	Conclusions
	Further Work

	Bibliography

